]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Enable -Wunused-local-typedefs when -Wall or -Wunused is on
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
eb5bb0fd 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72 54#define TARGET_AVX OPTION_ISA_AVX
7afac110 55#define TARGET_AVX2 OPTION_ISA_AVX2
95879c72 56#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 57#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 58#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 59#define TARGET_XOP OPTION_ISA_XOP
3e901069 60#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 61#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7 62#define TARGET_ABM OPTION_ISA_ABM
91afcfa3 63#define TARGET_BMI OPTION_ISA_BMI
82feeb8d 64#define TARGET_BMI2 OPTION_ISA_BMI2
5fcafa60 65#define TARGET_LZCNT OPTION_ISA_LZCNT
94d13ad1 66#define TARGET_TBM OPTION_ISA_TBM
ab442df7
MM
67#define TARGET_POPCNT OPTION_ISA_POPCNT
68#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 69#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 70#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
71#define TARGET_AES OPTION_ISA_AES
72#define TARGET_PCLMUL OPTION_ISA_PCLMUL
73#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
74#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
75#define TARGET_RDRND OPTION_ISA_RDRND
76#define TARGET_F16C OPTION_ISA_F16C
bf2eaa3f 77#define TARGET_RTM OPTION_ISA_RTM
5dcfdccd 78#define TARGET_HLE OPTION_ISA_HLE
ab442df7 79
1ab8b791
L
80#define TARGET_LP64 OPTION_ABI_64
81#define TARGET_X32 OPTION_ABI_X32
04e1d06b 82
cbf2e4d4
HJ
83/* SSE4.1 defines round instructions */
84#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 85#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 86
26b5109f
RS
87#include "config/vxworks-dummy.h"
88
7eb68c06 89#include "config/i386/i386-opts.h"
ccf8e764 90
c69fa2d4 91#define MAX_STRINGOP_ALGS 4
ccf8e764 92
8c996513
JH
93/* Specify what algorithm to use for stringops on known size.
94 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
95 known at compile time or estimated via feedback, the SIZE array
96 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 97 means infinity). Corresponding ALG is used then.
8c996513 98 For example initializer:
4f3f76e6 99 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 100 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 101 be used otherwise. */
8c996513
JH
102struct stringop_algs
103{
104 const enum stringop_alg unknown_size;
105 const struct stringop_strategy {
106 const int max;
107 const enum stringop_alg alg;
c69fa2d4 108 } size [MAX_STRINGOP_ALGS];
8c996513
JH
109};
110
d4ba09c0
SC
111/* Define the specific costs for a given cpu */
112
113struct processor_costs {
8b60264b
KG
114 const int add; /* cost of an add instruction */
115 const int lea; /* cost of a lea instruction */
116 const int shift_var; /* variable shift costs */
117 const int shift_const; /* constant shift costs */
f676971a 118 const int mult_init[5]; /* cost of starting a multiply
4977bab6 119 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 120 const int mult_bit; /* cost of multiply per each bit set */
f676971a 121 const int divide[5]; /* cost of a divide/mod
4977bab6 122 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
123 int movsx; /* The cost of movsx operation. */
124 int movzx; /* The cost of movzx operation. */
8b60264b
KG
125 const int large_insn; /* insns larger than this cost more */
126 const int move_ratio; /* The threshold of number of scalar
ac775968 127 memory-to-memory move insns. */
8b60264b
KG
128 const int movzbl_load; /* cost of loading using movzbl */
129 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
130 in QImode, HImode and SImode relative
131 to reg-reg move (2). */
8b60264b 132 const int int_store[3]; /* cost of storing integer register
96e7ae40 133 in QImode, HImode and SImode */
8b60264b
KG
134 const int fp_move; /* cost of reg,reg fld/fst */
135 const int fp_load[3]; /* cost of loading FP register
96e7ae40 136 in SFmode, DFmode and XFmode */
8b60264b 137 const int fp_store[3]; /* cost of storing FP register
96e7ae40 138 in SFmode, DFmode and XFmode */
8b60264b
KG
139 const int mmx_move; /* cost of moving MMX register. */
140 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 141 in SImode and DImode */
8b60264b 142 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 143 in SImode and DImode */
8b60264b
KG
144 const int sse_move; /* cost of moving SSE register. */
145 const int sse_load[3]; /* cost of loading SSE register
fa79946e 146 in SImode, DImode and TImode*/
8b60264b 147 const int sse_store[3]; /* cost of storing SSE register
fa79946e 148 in SImode, DImode and TImode*/
8b60264b 149 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 150 integer and vice versa. */
46cb0441
ZD
151 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
152 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
153 const int prefetch_block; /* bytes moved to cache for prefetch. */
154 const int simultaneous_prefetches; /* number of parallel prefetch
155 operations. */
4977bab6 156 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
157 const int fadd; /* cost of FADD and FSUB instructions. */
158 const int fmul; /* cost of FMUL instruction. */
159 const int fdiv; /* cost of FDIV instruction. */
160 const int fabs; /* cost of FABS instruction. */
161 const int fchs; /* cost of FCHS instruction. */
162 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 163 /* Specify what algorithm
bee51209
L
164 to use for stringops on unknown size. */
165 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
166 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
167 load and store. */
168 const int scalar_load_cost; /* Cost of scalar load. */
169 const int scalar_store_cost; /* Cost of scalar store. */
170 const int vec_stmt_cost; /* Cost of any vector operation, excluding
171 load, store, vector-to-scalar and
172 scalar-to-vector operation. */
173 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
174 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 175 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
176 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
177 const int vec_store_cost; /* Cost of vector store. */
178 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
179 cost model. */
180 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
181 vectorizer cost model. */
d4ba09c0
SC
182};
183
8b60264b 184extern const struct processor_costs *ix86_cost;
b2077fd2
JH
185extern const struct processor_costs ix86_size_cost;
186
187#define ix86_cur_cost() \
188 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 189
c98f8742
JVA
190/* Macros used in the machine description to test the flags. */
191
ddd5a7c1 192/* configure can arrange to make this 2, to force a 486. */
e075ae69 193
35b528be 194#ifndef TARGET_CPU_DEFAULT
d326eaf0 195#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 196#endif
35b528be 197
004d3859
GK
198#ifndef TARGET_FPMATH_DEFAULT
199#define TARGET_FPMATH_DEFAULT \
200 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
201#endif
202
6ac49599 203#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 204
5791cc29
JT
205/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
206 compile-time constant. */
207#ifdef IN_LIBGCC2
6ac49599 208#undef TARGET_64BIT
5791cc29
JT
209#ifdef __x86_64__
210#define TARGET_64BIT 1
211#else
212#define TARGET_64BIT 0
213#endif
214#else
6ac49599
RS
215#ifndef TARGET_BI_ARCH
216#undef TARGET_64BIT
67adf6a9 217#if TARGET_64BIT_DEFAULT
0c2dc519
JH
218#define TARGET_64BIT 1
219#else
220#define TARGET_64BIT 0
221#endif
222#endif
5791cc29 223#endif
25f94bb5 224
750054a2
CT
225#define HAS_LONG_COND_BRANCH 1
226#define HAS_LONG_UNCOND_BRANCH 1
227
9e555526
RH
228#define TARGET_386 (ix86_tune == PROCESSOR_I386)
229#define TARGET_486 (ix86_tune == PROCESSOR_I486)
230#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
231#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 232#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
233#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
234#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
235#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
236#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 237#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 238#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
ab247762
MK
239#define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
240#define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
241#define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
b2b01543
BS
242#define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
243#define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
244#define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
d326eaf0
JH
245#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
246#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
247#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 248#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 249#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 250#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
14b52538 251#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
b6837b94 252#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 253
80fd744f
RH
254/* Feature tests against the various tunings. */
255enum ix86_tune_indices {
256 X86_TUNE_USE_LEAVE,
257 X86_TUNE_PUSH_MEMORY,
258 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 259 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
260 X86_TUNE_BRANCH_PREDICTION_HINTS,
261 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 262 X86_TUNE_USE_SAHF,
80fd744f
RH
263 X86_TUNE_MOVX,
264 X86_TUNE_PARTIAL_REG_STALL,
265 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 266 X86_TUNE_LCP_STALL,
80fd744f
RH
267 X86_TUNE_USE_HIMODE_FIOP,
268 X86_TUNE_USE_SIMODE_FIOP,
269 X86_TUNE_USE_MOV0,
270 X86_TUNE_USE_CLTD,
271 X86_TUNE_USE_XCHGB,
272 X86_TUNE_SPLIT_LONG_MOVES,
273 X86_TUNE_READ_MODIFY_WRITE,
274 X86_TUNE_READ_MODIFY,
275 X86_TUNE_PROMOTE_QIMODE,
276 X86_TUNE_FAST_PREFIX,
277 X86_TUNE_SINGLE_STRINGOP,
278 X86_TUNE_QIMODE_MATH,
279 X86_TUNE_HIMODE_MATH,
280 X86_TUNE_PROMOTE_QI_REGS,
281 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
282 X86_TUNE_SINGLE_POP,
283 X86_TUNE_DOUBLE_POP,
284 X86_TUNE_SINGLE_PUSH,
285 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
286 X86_TUNE_INTEGER_DFMODE_MOVES,
287 X86_TUNE_PARTIAL_REG_DEPENDENCY,
288 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
289 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
290 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
291 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
292 X86_TUNE_SSE_SPLIT_REGS,
293 X86_TUNE_SSE_TYPELESS_STORES,
294 X86_TUNE_SSE_LOAD0_BY_PXOR,
295 X86_TUNE_MEMORY_MISMATCH_STALL,
296 X86_TUNE_PROLOGUE_USING_MOVE,
297 X86_TUNE_EPILOGUE_USING_MOVE,
298 X86_TUNE_SHIFT1,
299 X86_TUNE_USE_FFREEP,
300 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 301 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
302 X86_TUNE_FOUR_JUMP_LIMIT,
303 X86_TUNE_SCHEDULE,
304 X86_TUNE_USE_BT,
305 X86_TUNE_USE_INCDEC,
306 X86_TUNE_PAD_RETURNS,
e7ed95a2 307 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 308 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
309 X86_TUNE_SHORTEN_X87_SSE,
310 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 311 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
312 X86_TUNE_SLOW_IMUL_IMM32_MEM,
313 X86_TUNE_SLOW_IMUL_IMM8,
314 X86_TUNE_MOVE_M1_VIA_OR,
315 X86_TUNE_NOT_UNPAIRABLE,
316 X86_TUNE_NOT_VECTORMODE,
54723b46 317 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 318 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 319 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 320 X86_TUNE_OPT_AGU,
e72eba85 321 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 322 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 323 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
324 X86_TUNE_REASSOC_INT_TO_PARALLEL,
325 X86_TUNE_REASSOC_FP_TO_PARALLEL,
80fd744f
RH
326
327 X86_TUNE_LAST
328};
329
ab442df7 330extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
331
332#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
333#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
334#define TARGET_ZERO_EXTEND_WITH_AND \
335 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 336#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
337#define TARGET_BRANCH_PREDICTION_HINTS \
338 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
339#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
340#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
341#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
342#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
343#define TARGET_PARTIAL_FLAG_REG_STALL \
344 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
345#define TARGET_LCP_STALL \
346 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
347#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
348#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
349#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
350#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
351#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
352#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
353#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
354#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
355#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
356#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
357#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
358#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
359#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
360#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
361#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
362#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
363#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
364#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
365#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
366#define TARGET_INTEGER_DFMODE_MOVES \
367 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
368#define TARGET_PARTIAL_REG_DEPENDENCY \
369 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
370#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
371 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
372#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
373 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
374#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
375 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
376#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
378#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
379#define TARGET_SSE_TYPELESS_STORES \
380 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
381#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
382#define TARGET_MEMORY_MISMATCH_STALL \
383 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
384#define TARGET_PROLOGUE_USING_MOVE \
385 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
386#define TARGET_EPILOGUE_USING_MOVE \
387 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
388#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
389#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
390#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
391#define TARGET_INTER_UNIT_CONVERSIONS\
392 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
393#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
394#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
395#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
396#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
397#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
398#define TARGET_PAD_SHORT_FUNCTION \
399 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
400#define TARGET_EXT_80387_CONSTANTS \
401 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
402#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
403#define TARGET_AVOID_VECTOR_DECODE \
404 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
405#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
406 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
407#define TARGET_SLOW_IMUL_IMM32_MEM \
408 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
409#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
410#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
411#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
412#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
413#define TARGET_USE_VECTOR_FP_CONVERTS \
414 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
415#define TARGET_USE_VECTOR_CONVERTS \
416 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
417#define TARGET_FUSE_CMP_AND_BRANCH \
418 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 419#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
420#define TARGET_VECTORIZE_DOUBLE \
421 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
422#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
423 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
424#define TARGET_AVX128_OPTIMAL \
425 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
426#define TARGET_REASSOC_INT_TO_PARALLEL \
427 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
428#define TARGET_REASSOC_FP_TO_PARALLEL \
429 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
430
80fd744f
RH
431/* Feature tests against the various architecture variations. */
432enum ix86_arch_indices {
433 X86_ARCH_CMOVE, /* || TARGET_SSE */
434 X86_ARCH_CMPXCHG,
435 X86_ARCH_CMPXCHG8B,
436 X86_ARCH_XADD,
437 X86_ARCH_BSWAP,
438
439 X86_ARCH_LAST
440};
4f3f76e6 441
ab442df7 442extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
443
444#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
445#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
446#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
447#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
448#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
449
450#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
451
452extern int x86_prefetch_sse;
0a1c5e55 453
80fd744f
RH
454#define TARGET_PREFETCH_SSE x86_prefetch_sse
455
80fd744f
RH
456#define ASSEMBLER_DIALECT (ix86_asm_dialect)
457
458#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
459#define TARGET_MIX_SSE_I387 \
460 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
461
462#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
463#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
464#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 465#define TARGET_SUN_TLS 0
1ef45b77 466
67adf6a9
RH
467#ifndef TARGET_64BIT_DEFAULT
468#define TARGET_64BIT_DEFAULT 0
25f94bb5 469#endif
74dc3e94
RH
470#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
471#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
472#endif
25f94bb5 473
79f5e442
ZD
474/* Fence to use after loop using storent. */
475
476extern tree x86_mfence;
477#define FENCE_FOLLOWING_MOVNT x86_mfence
478
0ed4a390
JL
479/* Once GDB has been enhanced to deal with functions without frame
480 pointers, we can change this to allow for elimination of
481 the frame pointer in leaf functions. */
482#define TARGET_DEFAULT 0
67adf6a9 483
0a1c5e55
UB
484/* Extra bits to force. */
485#define TARGET_SUBTARGET_DEFAULT 0
486#define TARGET_SUBTARGET_ISA_DEFAULT 0
487
488/* Extra bits to force on w/ 32-bit mode. */
489#define TARGET_SUBTARGET32_DEFAULT 0
490#define TARGET_SUBTARGET32_ISA_DEFAULT 0
491
ccf8e764
RH
492/* Extra bits to force on w/ 64-bit mode. */
493#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 494#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 495
fee3eacd
IS
496/* Replace MACH-O, ifdefs by in-line tests, where possible.
497 (a) Macros defined in config/i386/darwin.h */
b069de3b 498#define TARGET_MACHO 0
9005471b 499#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
500#define MACHOPIC_ATT_STUB 0
501/* (b) Macros defined in config/darwin.h */
502#define MACHO_DYNAMIC_NO_PIC_P 0
503#define MACHOPIC_INDIRECT 0
504#define MACHOPIC_PURE 0
9005471b
IS
505
506/* For the Windows 64-bit ABI. */
7c800926
KT
507#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
508
6510e8bb
KT
509/* For the Windows 32-bit ABI. */
510#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
511
f81c9774
RH
512/* This is re-defined by cygming.h. */
513#define TARGET_SEH 0
514
51212b32 515/* The default abi used by target. */
7c800926 516#define DEFAULT_ABI SYSV_ABI
ccf8e764 517
cc69336f
RH
518/* Subtargets may reset this to 1 in order to enable 96-bit long double
519 with the rounding mode forced to 53 bits. */
520#define TARGET_96_ROUND_53_LONG_DOUBLE 0
521
682cd442
GK
522/* -march=native handling only makes sense with compiler running on
523 an x86 or x86_64 chip. If changing this condition, also change
524 the condition in driver-i386.c. */
525#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
526/* In driver-i386.c. */
527extern const char *host_detect_local_cpu (int argc, const char **argv);
528#define EXTRA_SPEC_FUNCTIONS \
529 { "local_cpu_detect", host_detect_local_cpu },
682cd442 530#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
531#endif
532
8981c15b
JM
533#if TARGET_64BIT_DEFAULT
534#define OPT_ARCH64 "!m32"
535#define OPT_ARCH32 "m32"
536#else
f0ea7581
L
537#define OPT_ARCH64 "m64|mx32"
538#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
539#endif
540
1cba2b96
EC
541/* Support for configure-time defaults of some command line options.
542 The order here is important so that -march doesn't squash the
543 tune or cpu values. */
ce998900 544#define OPTION_DEFAULT_SPECS \
da2d4c01 545 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
546 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
547 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 548 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
549 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
550 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
551 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
552 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
553 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 554
241e1a89
SC
555/* Specs for the compiler proper */
556
628714d8 557#ifndef CC1_CPU_SPEC
eb5bb0fd 558#define CC1_CPU_SPEC_1 ""
fa959ce4 559
682cd442 560#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
561#define CC1_CPU_SPEC CC1_CPU_SPEC_1
562#else
563#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
564"%{march=native:%>march=native %:local_cpu_detect(arch) \
565 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
566%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 567#endif
241e1a89 568#endif
c98f8742 569\f
30efe578 570/* Target CPU builtins. */
ab442df7
MM
571#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
572
573/* Target Pragmas. */
574#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 575
c2f17e19
UB
576enum target_cpu_default
577{
578 TARGET_CPU_DEFAULT_generic = 0,
579
580 TARGET_CPU_DEFAULT_i386,
581 TARGET_CPU_DEFAULT_i486,
582 TARGET_CPU_DEFAULT_pentium,
583 TARGET_CPU_DEFAULT_pentium_mmx,
584 TARGET_CPU_DEFAULT_pentiumpro,
585 TARGET_CPU_DEFAULT_pentium2,
586 TARGET_CPU_DEFAULT_pentium3,
587 TARGET_CPU_DEFAULT_pentium4,
588 TARGET_CPU_DEFAULT_pentium_m,
589 TARGET_CPU_DEFAULT_prescott,
590 TARGET_CPU_DEFAULT_nocona,
591 TARGET_CPU_DEFAULT_core2,
9d8477b6 592 TARGET_CPU_DEFAULT_corei7,
b6837b94 593 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
594
595 TARGET_CPU_DEFAULT_geode,
596 TARGET_CPU_DEFAULT_k6,
597 TARGET_CPU_DEFAULT_k6_2,
598 TARGET_CPU_DEFAULT_k6_3,
599 TARGET_CPU_DEFAULT_athlon,
600 TARGET_CPU_DEFAULT_athlon_sse,
601 TARGET_CPU_DEFAULT_k8,
602 TARGET_CPU_DEFAULT_amdfam10,
1133125e 603 TARGET_CPU_DEFAULT_bdver1,
4d652a18 604 TARGET_CPU_DEFAULT_bdver2,
14b52538 605 TARGET_CPU_DEFAULT_btver1,
c2f17e19
UB
606
607 TARGET_CPU_DEFAULT_max
608};
0c2dc519 609
628714d8 610#ifndef CC1_SPEC
8015b78d 611#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
612#endif
613
614/* This macro defines names of additional specifications to put in the
615 specs that can be used in various specifications like CC1_SPEC. Its
616 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
617
618 Each subgrouping contains a string constant, that defines the
188fc5b5 619 specification name, and a string constant that used by the GCC driver
bcd86433
SC
620 program.
621
622 Do not define this macro if it does not need to do anything. */
623
624#ifndef SUBTARGET_EXTRA_SPECS
625#define SUBTARGET_EXTRA_SPECS
626#endif
627
628#define EXTRA_SPECS \
628714d8 629 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
630 SUBTARGET_EXTRA_SPECS
631\f
ce998900 632
d57a4b98
RH
633/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
634 FPU, assume that the fpcw is set to extended precision; when using
635 only SSE, rounding is correct; when using both SSE and the FPU,
636 the rounding precision is indeterminate, since either may be chosen
637 apparently at random. */
638#define TARGET_FLT_EVAL_METHOD \
5ccd517a 639 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 640
8ce94e44
JM
641/* Whether to allow x87 floating-point arithmetic on MODE (one of
642 SFmode, DFmode and XFmode) in the current excess precision
643 configuration. */
644#define X87_ENABLE_ARITH(MODE) \
645 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
646
647/* Likewise, whether to allow direct conversions from integer mode
648 IMODE (HImode, SImode or DImode) to MODE. */
649#define X87_ENABLE_FLOAT(MODE, IMODE) \
650 (flag_excess_precision == EXCESS_PRECISION_FAST \
651 || (MODE) == XFmode \
652 || ((MODE) == DFmode && (IMODE) == SImode) \
653 || (IMODE) == HImode)
654
979c67a5
UB
655/* target machine storage layout */
656
65d9c0ab
JH
657#define SHORT_TYPE_SIZE 16
658#define INT_TYPE_SIZE 32
f0ea7581
L
659#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
660#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 661#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 662#define FLOAT_TYPE_SIZE 32
65d9c0ab 663#define DOUBLE_TYPE_SIZE 64
979c67a5
UB
664#define LONG_DOUBLE_TYPE_SIZE 80
665
666#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 667
67adf6a9 668#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 669#define MAX_BITS_PER_WORD 64
0c2dc519
JH
670#else
671#define MAX_BITS_PER_WORD 32
0c2dc519
JH
672#endif
673
c98f8742
JVA
674/* Define this if most significant byte of a word is the lowest numbered. */
675/* That is true on the 80386. */
676
677#define BITS_BIG_ENDIAN 0
678
679/* Define this if most significant byte of a word is the lowest numbered. */
680/* That is not true on the 80386. */
681#define BYTES_BIG_ENDIAN 0
682
683/* Define this if most significant word of a multiword number is the lowest
684 numbered. */
685/* Not true for 80386 */
686#define WORDS_BIG_ENDIAN 0
687
c98f8742 688/* Width of a word, in units (bytes). */
4ae8027b 689#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
690
691#ifndef IN_LIBGCC2
2e64c636
JH
692#define MIN_UNITS_PER_WORD 4
693#endif
c98f8742 694
c98f8742 695/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 696#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 697
e075ae69 698/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 699#define STACK_BOUNDARY \
51212b32 700 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 701
2e3f842f
L
702/* Stack boundary of the main function guaranteed by OS. */
703#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
704
de1132d1
L
705/* Minimum stack boundary. */
706#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 707
d1f87653 708/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 709 aligned; the compiler cannot rely on having this alignment. */
e075ae69 710#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 711
de1132d1 712/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
713 both 32bit and 64bit, to support codes that need 128 bit stack
714 alignment for SSE instructions, but can't realign the stack. */
715#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
716
717/* 1 if -mstackrealign should be turned on by default. It will
718 generate an alternate prologue and epilogue that realigns the
719 runtime stack if nessary. This supports mixing codes that keep a
720 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 721 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
722#define STACK_REALIGN_DEFAULT 0
723
724/* Boundary (in *bits*) on which the incoming stack is aligned. */
725#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 726
ebff937c
SH
727/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
728 mandatory for the 64-bit ABI, and may or may not be true for other
729 operating systems. */
730#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
731
f963b5d9
RS
732/* Minimum allocation boundary for the code of a function. */
733#define FUNCTION_BOUNDARY 8
734
735/* C++ stores the virtual bit in the lowest bit of function pointers. */
736#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 737
c98f8742
JVA
738/* Minimum size in bits of the largest boundary to which any
739 and all fundamental data types supported by the hardware
740 might need to be aligned. No data type wants to be aligned
17f24ff0 741 rounder than this.
fce5a9f2 742
d1f87653 743 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
744 and Pentium Pro XFmode values at 128 bit boundaries. */
745
2824d6e5 746#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 747
2e3f842f
L
748/* Maximum stack alignment. */
749#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
750
6e4f1168
L
751/* Alignment value for attribute ((aligned)). It is a constant since
752 it is the part of the ABI. We shouldn't change it with -mavx. */
753#define ATTRIBUTE_ALIGNED_VALUE 128
754
822eda12 755/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 756#define ALIGN_MODE_128(MODE) \
4501d314 757 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 758
17f24ff0 759/* The published ABIs say that doubles should be aligned on word
d1f87653 760 boundaries, so lower the alignment for structure fields unless
6fc605d8 761 -malign-double is set. */
e932b21b 762
e83f3cff
RH
763/* ??? Blah -- this macro is used directly by libobjc. Since it
764 supports no vector modes, cut out the complexity and fall back
765 on BIGGEST_FIELD_ALIGNMENT. */
766#ifdef IN_TARGET_LIBS
ef49d42e
JH
767#ifdef __x86_64__
768#define BIGGEST_FIELD_ALIGNMENT 128
769#else
e83f3cff 770#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 771#endif
e83f3cff 772#else
e932b21b
JH
773#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
774 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 775#endif
c98f8742 776
e5e8a8bf 777/* If defined, a C expression to compute the alignment given to a
a7180f70 778 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
779 and ALIGN is the alignment that the object would ordinarily have.
780 The value of this macro is used instead of that alignment to align
781 the object.
782
783 If this macro is not defined, then ALIGN is used.
784
785 The typical use of this macro is to increase alignment for string
786 constants to be word aligned so that `strcpy' calls that copy
787 constants can be done inline. */
788
d9a5f180 789#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 790
8a022443
JW
791/* If defined, a C expression to compute the alignment for a static
792 variable. TYPE is the data type, and ALIGN is the alignment that
793 the object would ordinarily have. The value of this macro is used
794 instead of that alignment to align the object.
795
796 If this macro is not defined, then ALIGN is used.
797
798 One use of this macro is to increase alignment of medium-size
799 data to make it all fit in fewer cache lines. Another is to
800 cause character arrays to be word-aligned so that `strcpy' calls
801 that copy constants to character arrays can be done inline. */
802
d9a5f180 803#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
804
805/* If defined, a C expression to compute the alignment for a local
806 variable. TYPE is the data type, and ALIGN is the alignment that
807 the object would ordinarily have. The value of this macro is used
808 instead of that alignment to align the object.
809
810 If this macro is not defined, then ALIGN is used.
811
812 One use of this macro is to increase alignment of medium-size
813 data to make it all fit in fewer cache lines. */
814
76fe54f0
L
815#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
816 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
817
818/* If defined, a C expression to compute the alignment for stack slot.
819 TYPE is the data type, MODE is the widest mode available, and ALIGN
820 is the alignment that the slot would ordinarily have. The value of
821 this macro is used instead of that alignment to align the slot.
822
823 If this macro is not defined, then ALIGN is used when TYPE is NULL,
824 Otherwise, LOCAL_ALIGNMENT will be used.
825
826 One use of this macro is to set alignment of stack slot to the
827 maximum alignment of all possible modes which the slot may have. */
828
829#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
830 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 831
9bfaf89d
JJ
832/* If defined, a C expression to compute the alignment for a local
833 variable DECL.
834
835 If this macro is not defined, then
836 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
837
838 One use of this macro is to increase alignment of medium-size
839 data to make it all fit in fewer cache lines. */
840
841#define LOCAL_DECL_ALIGNMENT(DECL) \
842 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
843
ae58e548
JJ
844/* If defined, a C expression to compute the minimum required alignment
845 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
846 MODE, assuming normal alignment ALIGN.
847
848 If this macro is not defined, then (ALIGN) will be used. */
849
850#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
851 ix86_minimum_alignment (EXP, MODE, ALIGN)
852
9bfaf89d 853
9cd10576 854/* Set this nonzero if move instructions will actually fail to work
c98f8742 855 when given unaligned data. */
b4ac57ab 856#define STRICT_ALIGNMENT 0
c98f8742
JVA
857
858/* If bit field type is int, don't let it cross an int,
859 and give entire struct the alignment of an int. */
43a88a8c 860/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 861#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
862\f
863/* Standard register usage. */
864
865/* This processor has special stack-like registers. See reg-stack.c
892a2d68 866 for details. */
c98f8742
JVA
867
868#define STACK_REGS
ce998900 869
d9a5f180 870#define IS_STACK_MODE(MODE) \
63001560
UB
871 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
872 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 873 || (MODE) == XFmode)
c98f8742
JVA
874
875/* Number of actual hardware registers.
876 The hardware registers are assigned numbers for the compiler
877 from 0 to just below FIRST_PSEUDO_REGISTER.
878 All registers that the compiler knows about must be given numbers,
879 even those that are not normally considered general registers.
880
881 In the 80386 we give the 8 general purpose registers the numbers 0-7.
882 We number the floating point registers 8-15.
883 Note that registers 0-7 can be accessed as a short or int,
884 while only 0-3 may be used with byte `mov' instructions.
885
886 Reg 16 does not correspond to any hardware register, but instead
887 appears in the RTL as an argument pointer prior to reload, and is
888 eliminated during reloading in favor of either the stack or frame
892a2d68 889 pointer. */
c98f8742 890
b0d95de8 891#define FIRST_PSEUDO_REGISTER 53
c98f8742 892
3073d01c
ML
893/* Number of hardware registers that go into the DWARF-2 unwind info.
894 If not defined, equals FIRST_PSEUDO_REGISTER. */
895
896#define DWARF_FRAME_REGISTERS 17
897
c98f8742
JVA
898/* 1 for registers that have pervasive standard uses
899 and are not available for the register allocator.
3f3f2124 900 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 901
3a4416fb
RS
902 The value is zero if the register is not fixed on either 32 or
903 64 bit targets, one if the register if fixed on both 32 and 64
904 bit targets, two if it is only fixed on 32bit targets and three
905 if its only fixed on 64bit targets.
5efd84c5 906 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
3f3f2124 907 */
a7180f70
BS
908#define FIXED_REGISTERS \
909/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 910{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
911/*arg,flags,fpsr,fpcr,frame*/ \
912 1, 1, 1, 1, 1, \
a7180f70
BS
913/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
914 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 915/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
916 0, 0, 0, 0, 0, 0, 0, 0, \
917/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 918 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 919/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 920 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 921
c98f8742
JVA
922
923/* 1 for registers not available across function calls.
924 These must include the FIXED_REGISTERS and also any
925 registers that can be used without being saved.
926 The latter must include the registers where values are returned
927 and the register where structure-value addresses are passed.
fce5a9f2
EC
928 Aside from that, you can include as many other registers as you like.
929
9d72d996
JJ
930 The value is zero if the register is not call used on either 32 or
931 64 bit targets, one if the register if call used on both 32 and 64
932 bit targets, two if it is only call used on 32bit targets and three
933 if its only call used on 64bit targets.
5efd84c5 934 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
3f3f2124 935*/
a7180f70
BS
936#define CALL_USED_REGISTERS \
937/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 938{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
939/*arg,flags,fpsr,fpcr,frame*/ \
940 1, 1, 1, 1, 1, \
a7180f70 941/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 942 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 943/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 944 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 945/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 946 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 947/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 948 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 949
3b3c6a3f
MM
950/* Order in which to allocate registers. Each register must be
951 listed once, even those in FIXED_REGISTERS. List frame pointer
952 late and fixed registers last. Note that, in general, we prefer
953 registers listed in CALL_USED_REGISTERS, keeping the others
954 available for storage of persistent values.
955
5a733826 956 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 957 so this is just empty initializer for array. */
3b3c6a3f 958
162f023b
JH
959#define REG_ALLOC_ORDER \
960{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
961 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
962 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 963 48, 49, 50, 51, 52 }
3b3c6a3f 964
5a733826 965/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 966 to be rearranged based on a particular function. When using sse math,
03c259ad 967 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 968
5a733826 969#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 970
f5316dfe 971
7c800926
KT
972#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
973
c98f8742
JVA
974/* Return number of consecutive hard regs needed starting at reg REGNO
975 to hold something of mode MODE.
976 This is ordinarily the length in words of a value of mode MODE
977 but can be less for certain modes in special long registers.
978
fce5a9f2 979 Actually there are no two word move instructions for consecutive
c98f8742 980 registers. And only registers 0-3 may have mov byte instructions
63001560 981 applied to them. */
c98f8742 982
ce998900 983#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
984 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
985 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 986 : ((MODE) == XFmode \
92d0fb09 987 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 988 : (MODE) == XCmode \
92d0fb09 989 ? (TARGET_64BIT ? 4 : 6) \
2b589241 990 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 991
8521c414
JM
992#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
993 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
994 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
995 ? 0 \
996 : ((MODE) == XFmode || (MODE) == XCmode)) \
997 : 0)
998
999#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1000
95879c72
L
1001#define VALID_AVX256_REG_MODE(MODE) \
1002 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1003 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1004 || (MODE) == V4DFmode)
95879c72 1005
ce998900
UB
1006#define VALID_SSE2_REG_MODE(MODE) \
1007 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1008 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1009
d9a5f180 1010#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1011 ((MODE) == V1TImode || (MODE) == TImode \
1012 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1013 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1014
47f339cf 1015#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1016 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1017
d9a5f180 1018#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1019 ((MODE == V1DImode) || (MODE) == DImode \
1020 || (MODE) == V2SImode || (MODE) == SImode \
1021 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1022
ce998900
UB
1023#define VALID_DFP_MODE_P(MODE) \
1024 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1025
d9a5f180 1026#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1027 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1028 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1029
d9a5f180 1030#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1031 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1032 || (MODE) == DImode \
1033 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1034 || (MODE) == CDImode \
1035 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1036 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1037
822eda12 1038/* Return true for modes passed in SSE registers. */
ce998900 1039#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1040 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1041 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1042 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1043 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1044 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1045 || (MODE) == V2TImode)
822eda12 1046
e075ae69 1047/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1048
a946dd00 1049#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1050 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1051
1052/* Value is 1 if it is a good idea to tie two pseudo registers
1053 when one has mode MODE1 and one has mode MODE2.
1054 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1055 for any hard reg, then this must be 0 for correct output. */
1056
c1c5b5e3 1057#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1058
ff25ef99
ZD
1059/* It is possible to write patterns to move flags; but until someone
1060 does it, */
1061#define AVOID_CCMODE_COPIES
c98f8742 1062
e075ae69 1063/* Specify the modes required to caller save a given hard regno.
787dc842 1064 We do this on i386 to prevent flags from being saved at all.
e075ae69 1065
787dc842
JH
1066 Kill any attempts to combine saving of modes. */
1067
d9a5f180
GS
1068#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1069 (CC_REGNO_P (REGNO) ? VOIDmode \
1070 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1071 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1072 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1073 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1074 : (MODE))
ce998900 1075
51ba747a
RH
1076/* The only ABI that saves SSE registers across calls is Win64 (thus no
1077 need to check the current ABI here), and with AVX enabled Win64 only
1078 guarantees that the low 16 bytes are saved. */
1079#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1080 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1081
c98f8742
JVA
1082/* Specify the registers used for certain standard purposes.
1083 The values of these macros are register numbers. */
1084
1085/* on the 386 the pc register is %eip, and is not usable as a general
1086 register. The ordinary mov instructions won't work */
1087/* #define PC_REGNUM */
1088
1089/* Register to use for pushing function arguments. */
1090#define STACK_POINTER_REGNUM 7
1091
1092/* Base register for access to local variables of the function. */
564d80f4
JH
1093#define HARD_FRAME_POINTER_REGNUM 6
1094
1095/* Base register for access to local variables of the function. */
b0d95de8 1096#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1097
1098/* First floating point reg */
1099#define FIRST_FLOAT_REG 8
1100
1101/* First & last stack-like regs */
1102#define FIRST_STACK_REG FIRST_FLOAT_REG
1103#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1104
a7180f70
BS
1105#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1106#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1107
a7180f70
BS
1108#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1109#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1110
3f3f2124
JH
1111#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1112#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1113
1114#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1115#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1116
aabcd309 1117/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1118 requiring a frame pointer. */
1119#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1120#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1121#endif
1122
1123/* Make sure we can access arbitrary call frames. */
1124#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1125
1126/* Base register for access to arguments of the function. */
1127#define ARG_POINTER_REGNUM 16
1128
c98f8742 1129/* Register to hold the addressing base for position independent
5b43fed1
RH
1130 code access to data items. We don't use PIC pointer for 64bit
1131 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1132 pessimizing code dealing with EBX.
bd09bdeb
RH
1133
1134 To avoid clobbering a call-saved register unnecessarily, we renumber
1135 the pic register when possible. The change is visible after the
1136 prologue has been emitted. */
1137
2e3f842f 1138#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1139
1140#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1141 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1142 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1143 : reload_completed ? REGNO (pic_offset_table_rtx) \
1144 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1145
5fc0e5df
KW
1146#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1147
c51e6d85 1148/* This is overridden by <cygwin.h>. */
5e062767
DS
1149#define MS_AGGREGATE_RETURN 0
1150
61fec9ff 1151#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1152\f
1153/* Define the classes of registers for register constraints in the
1154 machine description. Also define ranges of constants.
1155
1156 One of the classes must always be named ALL_REGS and include all hard regs.
1157 If there is more than one class, another class must be named NO_REGS
1158 and contain no registers.
1159
1160 The name GENERAL_REGS must be the name of a class (or an alias for
1161 another name such as ALL_REGS). This is the class of registers
1162 that is allowed by "g" or "r" in a register constraint.
1163 Also, registers outside this class are allocated only when
1164 instructions express preferences for them.
1165
1166 The classes must be numbered in nondecreasing order; that is,
1167 a larger-numbered class must never be contained completely
1168 in a smaller-numbered class.
1169
1170 For any two classes, it is very desirable that there be another
ab408a86
JVA
1171 class that represents their union.
1172
1173 It might seem that class BREG is unnecessary, since no useful 386
1174 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1175 and the "b" register constraint is useful in asms for syscalls.
1176
03c259ad 1177 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1178
1179enum reg_class
1180{
1181 NO_REGS,
e075ae69 1182 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1183 AD_REGS, /* %eax/%edx for DImode */
ac2e563f 1184 CLOBBERED_REGS, /* call-clobbered integers */
c98f8742 1185 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1186 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1187 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1188 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1189 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1190 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1191 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1192 FLOAT_REGS,
06f4e35d 1193 SSE_FIRST_REG,
a7180f70
BS
1194 SSE_REGS,
1195 MMX_REGS,
446988df
JH
1196 FP_TOP_SSE_REGS,
1197 FP_SECOND_SSE_REGS,
1198 FLOAT_SSE_REGS,
1199 FLOAT_INT_REGS,
1200 INT_SSE_REGS,
1201 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1202 ALL_REGS, LIM_REG_CLASSES
1203};
1204
d9a5f180
GS
1205#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1206
1207#define INTEGER_CLASS_P(CLASS) \
1208 reg_class_subset_p ((CLASS), GENERAL_REGS)
1209#define FLOAT_CLASS_P(CLASS) \
1210 reg_class_subset_p ((CLASS), FLOAT_REGS)
1211#define SSE_CLASS_P(CLASS) \
06f4e35d 1212 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1213#define MMX_CLASS_P(CLASS) \
f75959a6 1214 ((CLASS) == MMX_REGS)
d9a5f180
GS
1215#define MAYBE_INTEGER_CLASS_P(CLASS) \
1216 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1217#define MAYBE_FLOAT_CLASS_P(CLASS) \
1218 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1219#define MAYBE_SSE_CLASS_P(CLASS) \
1220 reg_classes_intersect_p (SSE_REGS, (CLASS))
1221#define MAYBE_MMX_CLASS_P(CLASS) \
1222 reg_classes_intersect_p (MMX_REGS, (CLASS))
1223
1224#define Q_CLASS_P(CLASS) \
1225 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1226
43f3a59d 1227/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1228
1229#define REG_CLASS_NAMES \
1230{ "NO_REGS", \
ab408a86 1231 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1232 "SIREG", "DIREG", \
e075ae69 1233 "AD_REGS", \
ac2e563f 1234 "CLOBBERED_REGS", \
e075ae69 1235 "Q_REGS", "NON_Q_REGS", \
c98f8742 1236 "INDEX_REGS", \
3f3f2124 1237 "LEGACY_REGS", \
c98f8742
JVA
1238 "GENERAL_REGS", \
1239 "FP_TOP_REG", "FP_SECOND_REG", \
1240 "FLOAT_REGS", \
cb482895 1241 "SSE_FIRST_REG", \
a7180f70
BS
1242 "SSE_REGS", \
1243 "MMX_REGS", \
446988df
JH
1244 "FP_TOP_SSE_REGS", \
1245 "FP_SECOND_SSE_REGS", \
1246 "FLOAT_SSE_REGS", \
8fcaaa80 1247 "FLOAT_INT_REGS", \
446988df
JH
1248 "INT_SSE_REGS", \
1249 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1250 "ALL_REGS" }
1251
ac2e563f
RH
1252/* Define which registers fit in which classes. This is an initializer
1253 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1254
1255 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
5efd84c5
NF
1256 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1257 in effect. */
c98f8742 1258
a7180f70 1259#define REG_CLASS_CONTENTS \
3f3f2124
JH
1260{ { 0x00, 0x0 }, \
1261 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1262 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1263 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1264 { 0x03, 0x0 }, /* AD_REGS */ \
ac2e563f 1265 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
3f3f2124 1266 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1267 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1268 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1269 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1270 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1271 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1272 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1273 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1274{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1275{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1276{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1277{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1278{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b0d95de8
UB
1279 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1280{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1281{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1282{ 0xffffffff,0x1fffff } \
e075ae69 1283}
c98f8742
JVA
1284
1285/* The same information, inverted:
1286 Return the class number of the smallest class containing
1287 reg number REGNO. This could be a conditional expression
1288 or could index an array. */
1289
c98f8742
JVA
1290#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1291
42db504c
SB
1292/* When this hook returns true for MODE, the compiler allows
1293 registers explicitly used in the rtl to be used as spill registers
1294 but prevents the compiler from extending the lifetime of these
1295 registers. */
1296#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1297
6c6094f1 1298#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1299
d9a5f180 1300#define GENERAL_REGNO_P(N) \
fb84c7a0 1301 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1302
1303#define GENERAL_REG_P(X) \
6189a572 1304 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1305
1306#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1307
fb84c7a0
UB
1308#define REX_INT_REGNO_P(N) \
1309 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1310#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1311
c98f8742 1312#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1313#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1314#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1315#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1316
54a88090 1317#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1318 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1319
fb84c7a0
UB
1320#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1321#define SSE_REGNO_P(N) \
1322 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1323 || REX_SSE_REGNO_P (N))
3f3f2124 1324
4977bab6 1325#define REX_SSE_REGNO_P(N) \
fb84c7a0 1326 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1327
d9a5f180
GS
1328#define SSE_REGNO(N) \
1329 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1330
d9a5f180 1331#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1332 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1333
cbf2e4d4
HJ
1334#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1335 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1336 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1337
d9a5f180 1338#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1339#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1340
fb84c7a0 1341#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1342#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1343
d9a5f180 1344#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1345
e075ae69
RH
1346#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1347#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1348
c98f8742
JVA
1349/* The class value for index registers, and the one for base regs. */
1350
1351#define INDEX_REG_CLASS INDEX_REGS
1352#define BASE_REG_CLASS GENERAL_REGS
1353
c98f8742 1354/* Place additional restrictions on the register class to use when it
4cbb525c 1355 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1356 register for which class CLASS would ordinarily be used. */
c98f8742 1357
d2836273
JH
1358#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1359 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1360 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1361 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1362 ? Q_REGS : (CLASS))
1363
85ff473e 1364/* If we are copying between general and FP registers, we need a memory
f84aa48a 1365 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1366#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1367 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1368
c62b3659
UB
1369/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1370 There is no need to emit full 64 bit move on 64 bit targets
1371 for integral modes that can be moved using 32 bit move. */
1372#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1373 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1374 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1375 : MODE)
1376
1272914c
RH
1377/* Return a class of registers that cannot change FROM mode to TO mode. */
1378
1379#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1380 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1381\f
1382/* Stack layout; function entry, exit and calling. */
1383
1384/* Define this if pushing a word on the stack
1385 makes the stack pointer a smaller address. */
1386#define STACK_GROWS_DOWNWARD
1387
a4d05547 1388/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1389 is at the high-address end of the local variables;
1390 that is, each additional local variable allocated
1391 goes at a more negative offset in the frame. */
f62c8a5c 1392#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1393
1394/* Offset within stack frame to start allocating local variables at.
1395 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1396 first local allocated. Otherwise, it is the offset to the BEGINNING
1397 of the first local allocated. */
1398#define STARTING_FRAME_OFFSET 0
1399
8c2b2fae
UB
1400/* If we generate an insn to push BYTES bytes, this says how many the stack
1401 pointer really advances by. On 386, we have pushw instruction that
1402 decrements by exactly 2 no matter what the position was, there is no pushb.
1403
1404 But as CIE data alignment factor on this arch is -4 for 32bit targets
1405 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1406 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1407
d2836273 1408#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1409 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1410
1411/* If defined, the maximum amount of space required for outgoing arguments
1412 will be computed and placed into the variable `crtl->outgoing_args_size'.
1413 No space will be pushed onto the stack for each call; instead, the
1414 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1415
6510e8bb
KT
1416 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1417 function prologue and apilogue. This is not possible without
9aa5c1b2 1418 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1419
6c6094f1 1420#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1421 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1422
1423/* If defined, a C expression whose value is nonzero when we want to use PUSH
1424 instructions to pass outgoing arguments. */
1425
1426#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1427
2da4124d
L
1428/* We want the stack and args grow in opposite directions, even if
1429 PUSH_ARGS is 0. */
1430#define PUSH_ARGS_REVERSED 1
1431
c98f8742
JVA
1432/* Offset of first parameter from the argument pointer register value. */
1433#define FIRST_PARM_OFFSET(FNDECL) 0
1434
a7180f70
BS
1435/* Define this macro if functions should assume that stack space has been
1436 allocated for arguments even when their values are passed in registers.
1437
1438 The value of this macro is the size, in bytes, of the area reserved for
1439 arguments passed in registers for the function represented by FNDECL.
1440
1441 This space can be allocated by the caller, or be a part of the
1442 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1443 which. */
7c800926
KT
1444#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1445
4ae8027b 1446#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1447 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1448
c98f8742
JVA
1449/* Define how to find the value returned by a library function
1450 assuming the value has mode MODE. */
1451
4ae8027b 1452#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1453
e9125c09
TW
1454/* Define the size of the result block used for communication between
1455 untyped_call and untyped_return. The block contains a DImode value
1456 followed by the block used by fnsave and frstor. */
1457
1458#define APPLY_RESULT_SIZE (8+108)
1459
b08de47e 1460/* 1 if N is a possible register number for function argument passing. */
53c17031 1461#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1462
1463/* Define a data type for recording info about an argument list
1464 during the scan of that argument list. This data type should
1465 hold all necessary information about the function itself
1466 and about the args processed so far, enough to enable macros
b08de47e 1467 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1468
e075ae69 1469typedef struct ix86_args {
fa283935 1470 int words; /* # words passed so far */
b08de47e
MM
1471 int nregs; /* # registers available for passing */
1472 int regno; /* next available register number */
3e65f251
KT
1473 int fastcall; /* fastcall or thiscall calling convention
1474 is used */
fa283935 1475 int sse_words; /* # sse words passed so far */
a7180f70 1476 int sse_nregs; /* # sse registers available for passing */
95879c72 1477 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1478 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1479 int warn_mmx; /* True when we want to warn about MMX ABI. */
1480 int sse_regno; /* next available sse register number */
1481 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1482 int mmx_nregs; /* # mmx registers available for passing */
1483 int mmx_regno; /* next available mmx register number */
892a2d68 1484 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1485 int caller; /* true if it is caller. */
2824d6e5
UB
1486 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1487 SFmode/DFmode arguments should be passed
1488 in SSE registers. Otherwise 0. */
51212b32 1489 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1490 MS_ABI for ms abi. */
b08de47e 1491} CUMULATIVE_ARGS;
c98f8742
JVA
1492
1493/* Initialize a variable CUM of type CUMULATIVE_ARGS
1494 for a call to a function whose data type is FNTYPE.
b08de47e 1495 For a library call, FNTYPE is 0. */
c98f8742 1496
0f6937fe 1497#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1498 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1499 (N_NAMED_ARGS) != -1)
c98f8742 1500
c98f8742
JVA
1501/* Output assembler code to FILE to increment profiler label # LABELNO
1502 for profiling a function entry. */
1503
a5fa1ecd
JH
1504#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1505
1506#define MCOUNT_NAME "_mcount"
1507
3c5273a9
KT
1508#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1509
a5fa1ecd 1510#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1511
1512/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1513 the stack pointer does not matter. The value is tested only in
1514 functions that have frame pointers.
1515 No definition is equivalent to always zero. */
fce5a9f2 1516/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1517 we have to restore it ourselves from the frame pointer, in order to
1518 use pop */
1519
1520#define EXIT_IGNORE_STACK 1
1521
c98f8742
JVA
1522/* Output assembler code for a block containing the constant parts
1523 of a trampoline, leaving space for the variable parts. */
1524
a269a03c 1525/* On the 386, the trampoline contains two instructions:
c98f8742 1526 mov #STATIC,ecx
a269a03c
JC
1527 jmp FUNCTION
1528 The trampoline is generated entirely at runtime. The operand of JMP
1529 is the address of FUNCTION relative to the instruction following the
1530 JMP (which is 5 bytes long). */
c98f8742
JVA
1531
1532/* Length in units of the trampoline for entering a nested function. */
1533
3452586b 1534#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1535\f
1536/* Definitions for register eliminations.
1537
1538 This is an array of structures. Each structure initializes one pair
1539 of eliminable registers. The "from" register number is given first,
1540 followed by "to". Eliminations of the same "from" register are listed
1541 in order of preference.
1542
afc2cd05
NC
1543 There are two registers that can always be eliminated on the i386.
1544 The frame pointer and the arg pointer can be replaced by either the
1545 hard frame pointer or to the stack pointer, depending upon the
1546 circumstances. The hard frame pointer is not used before reload and
1547 so it is not eligible for elimination. */
c98f8742 1548
564d80f4
JH
1549#define ELIMINABLE_REGS \
1550{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1551 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1552 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1553 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1554
c98f8742
JVA
1555/* Define the offset between two registers, one to be eliminated, and the other
1556 its replacement, at the start of a routine. */
1557
d9a5f180
GS
1558#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1559 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1560\f
1561/* Addressing modes, and classification of registers for them. */
1562
c98f8742
JVA
1563/* Macros to check register numbers against specific register classes. */
1564
1565/* These assume that REGNO is a hard or pseudo reg number.
1566 They give nonzero only if REGNO is a hard reg of the suitable class
1567 or a pseudo reg currently allocated to a suitable hard reg.
1568 Since they use reg_renumber, they are safe only once reg_renumber
1569 has been allocated, which happens in local-alloc.c. */
1570
3f3f2124
JH
1571#define REGNO_OK_FOR_INDEX_P(REGNO) \
1572 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1573 || REX_INT_REGNO_P (REGNO) \
1574 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1575 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1576
3f3f2124 1577#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1578 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1579 || (REGNO) == ARG_POINTER_REGNUM \
1580 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1581 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1582
c98f8742
JVA
1583/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1584 and check its validity for a certain class.
1585 We have two alternate definitions for each of them.
1586 The usual definition accepts all pseudo regs; the other rejects
1587 them unless they have been allocated suitable hard regs.
1588 The symbol REG_OK_STRICT causes the latter definition to be used.
1589
1590 Most source files want to accept pseudo regs in the hope that
1591 they will get allocated to the class that the insn wants them to be in.
1592 Source files for reload pass need to be strict.
1593 After reload, it makes no difference, since pseudo regs have
1594 been eliminated by then. */
1595
c98f8742 1596
ff482c8d 1597/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1598#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1599 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1600 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1601 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1602
3b3c6a3f 1603#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1604 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1605 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1606 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1607 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1608
3b3c6a3f
MM
1609/* Strict versions, hard registers only */
1610#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1611#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1612
3b3c6a3f 1613#ifndef REG_OK_STRICT
d9a5f180
GS
1614#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1615#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1616
1617#else
d9a5f180
GS
1618#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1619#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1620#endif
1621
331d9186 1622/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1623 that is a valid memory address for an instruction.
1624 The MODE argument is the machine mode for the MEM expression
1625 that wants to use this address.
1626
331d9186 1627 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1628 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1629
1630 See legitimize_pic_address in i386.c for details as to what
1631 constitutes a legitimate address when -fpic is used. */
1632
1633#define MAX_REGS_PER_ADDRESS 2
1634
f996902d 1635#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1636
ae1547cc
UB
1637/* Try a machine-dependent way of reloading an illegitimate address
1638 operand. If we find one, push the reload and jump to WIN. This
1639 macro is used in only one place: `find_reloads_address' in reload.c. */
1640
1641#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1642do { \
1643 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1644 (int)(TYPE), (INDL))) \
1645 goto WIN; \
1646} while (0)
1647
b949ea8b
JW
1648/* If defined, a C expression to determine the base term of address X.
1649 This macro is used in only one place: `find_base_term' in alias.c.
1650
1651 It is always safe for this macro to not be defined. It exists so
1652 that alias analysis can understand machine-dependent addresses.
1653
1654 The typical use of this macro is to handle addresses containing
1655 a label_ref or symbol_ref within an UNSPEC. */
1656
d9a5f180 1657#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1658
c98f8742 1659/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1660 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1661 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1662
f996902d 1663#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1664
1665#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1666 (GET_CODE (X) == SYMBOL_REF \
1667 || GET_CODE (X) == LABEL_REF \
1668 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1669\f
b08de47e
MM
1670/* Max number of args passed in registers. If this is more than 3, we will
1671 have problems with ebx (register #4), since it is a caller save register and
1672 is also used as the pic register in ELF. So for now, don't allow more than
1673 3 registers to be passed in registers. */
1674
7c800926
KT
1675/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1676#define X86_64_REGPARM_MAX 6
72fa3605 1677#define X86_64_MS_REGPARM_MAX 4
7c800926 1678
72fa3605 1679#define X86_32_REGPARM_MAX 3
7c800926 1680
4ae8027b 1681#define REGPARM_MAX \
2824d6e5
UB
1682 (TARGET_64BIT \
1683 ? (TARGET_64BIT_MS_ABI \
1684 ? X86_64_MS_REGPARM_MAX \
1685 : X86_64_REGPARM_MAX) \
4ae8027b 1686 : X86_32_REGPARM_MAX)
d2836273 1687
72fa3605
UB
1688#define X86_64_SSE_REGPARM_MAX 8
1689#define X86_64_MS_SSE_REGPARM_MAX 4
1690
b6010cab 1691#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1692
4ae8027b 1693#define SSE_REGPARM_MAX \
2824d6e5
UB
1694 (TARGET_64BIT \
1695 ? (TARGET_64BIT_MS_ABI \
1696 ? X86_64_MS_SSE_REGPARM_MAX \
1697 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1698 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1699
1700#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1701\f
1702/* Specify the machine mode that this machine uses
1703 for the index in the tablejump instruction. */
dc4d7240 1704#define CASE_VECTOR_MODE \
6025b127 1705 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1706
c98f8742
JVA
1707/* Define this as 1 if `char' should by default be signed; else as 0. */
1708#define DEFAULT_SIGNED_CHAR 1
1709
1710/* Max number of bytes we can move from memory to memory
1711 in one reasonably fast instruction. */
65d9c0ab
JH
1712#define MOVE_MAX 16
1713
1714/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1715 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1716 number of bytes we can move with a single instruction. */
63001560 1717#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1718
7e24ffc9 1719/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1720 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1721 Increasing the value will always make code faster, but eventually
1722 incurs high cost in increased code size.
c98f8742 1723
e2e52e1b 1724 If you don't define this, a reasonable default is used. */
c98f8742 1725
e04ad03d 1726#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1727
45d78e7f
JJ
1728/* If a clear memory operation would take CLEAR_RATIO or more simple
1729 move-instruction sequences, we will do a clrmem or libcall instead. */
1730
e04ad03d 1731#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1732
53f00dde
UB
1733/* Define if shifts truncate the shift count which implies one can
1734 omit a sign-extension or zero-extension of a shift count.
1735
1736 On i386, shifts do truncate the count. But bit test instructions
1737 take the modulo of the bit offset operand. */
c98f8742
JVA
1738
1739/* #define SHIFT_COUNT_TRUNCATED */
1740
1741/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1742 is done just by pretending it is already truncated. */
1743#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1744
d9f32422
JH
1745/* A macro to update M and UNSIGNEDP when an object whose type is
1746 TYPE and which has the specified mode and signedness is to be
1747 stored in a register. This macro is only called when TYPE is a
1748 scalar type.
1749
f710504c 1750 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1751 quantities to SImode. The choice depends on target type. */
1752
1753#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1754do { \
d9f32422
JH
1755 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1756 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1757 (MODE) = SImode; \
1758} while (0)
d9f32422 1759
c98f8742
JVA
1760/* Specify the machine mode that pointers have.
1761 After generation of rtl, the compiler makes no further distinction
1762 between pointers and any other objects of this machine mode. */
28968d91 1763#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1764
f0ea7581
L
1765/* A C expression whose value is zero if pointers that need to be extended
1766 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1767 greater then zero if they are zero-extended and less then zero if the
1768 ptr_extend instruction should be used. */
1769
1770#define POINTERS_EXTEND_UNSIGNED 1
1771
c98f8742
JVA
1772/* A function address in a call instruction
1773 is a byte address (for indexing purposes)
1774 so give the MEM rtx a byte's mode. */
1775#define FUNCTION_MODE QImode
d4ba09c0 1776\f
d4ba09c0 1777
d4ba09c0
SC
1778/* A C expression for the cost of a branch instruction. A value of 1
1779 is the default; other values are interpreted relative to that. */
1780
3a4fd356
JH
1781#define BRANCH_COST(speed_p, predictable_p) \
1782 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1783
1784/* Define this macro as a C expression which is nonzero if accessing
1785 less than a word of memory (i.e. a `char' or a `short') is no
1786 faster than accessing a word of memory, i.e., if such access
1787 require more than one instruction or if there is no difference in
1788 cost between byte and (aligned) word loads.
1789
1790 When this macro is not defined, the compiler will access a field by
1791 finding the smallest containing object; when it is defined, a
1792 fullword load will be used if alignment permits. Unless bytes
1793 accesses are faster than word accesses, using word accesses is
1794 preferable since it may eliminate subsequent memory access if
1795 subsequent accesses occur to other fields in the same word of the
1796 structure, but to different bytes. */
1797
1798#define SLOW_BYTE_ACCESS 0
1799
1800/* Nonzero if access to memory by shorts is slow and undesirable. */
1801#define SLOW_SHORT_ACCESS 0
1802
d4ba09c0
SC
1803/* Define this macro to be the value 1 if unaligned accesses have a
1804 cost many times greater than aligned accesses, for example if they
1805 are emulated in a trap handler.
1806
9cd10576
KH
1807 When this macro is nonzero, the compiler will act as if
1808 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1809 moves. This can cause significantly more instructions to be
9cd10576 1810 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1811 accesses only add a cycle or two to the time for a memory access.
1812
1813 If the value of this macro is always zero, it need not be defined. */
1814
e1565e65 1815/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1816
d4ba09c0
SC
1817/* Define this macro if it is as good or better to call a constant
1818 function address than to call an address kept in a register.
1819
1820 Desirable on the 386 because a CALL with a constant address is
1821 faster than one with a register address. */
1822
1823#define NO_FUNCTION_CSE
c98f8742 1824\f
c572e5ba
JVA
1825/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1826 return the mode to be used for the comparison.
1827
1828 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1829 VOIDmode should be used in all other cases.
c572e5ba 1830
16189740 1831 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1832 possible, to allow for more combinations. */
c98f8742 1833
d9a5f180 1834#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1835
9cd10576 1836/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1837 reversed. */
1838
1839#define REVERSIBLE_CC_MODE(MODE) 1
1840
1841/* A C expression whose value is reversed condition code of the CODE for
1842 comparison done in CC_MODE mode. */
3c5cb3e4 1843#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1844
c98f8742
JVA
1845\f
1846/* Control the assembler format that we output, to the extent
1847 this does not vary between assemblers. */
1848
1849/* How to refer to registers in assembler output.
892a2d68 1850 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1851
a7b376ee 1852/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1853 For non floating point regs, the following are the HImode names.
1854
1855 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1856 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1857 "y" code. */
c98f8742 1858
a7180f70
BS
1859#define HI_REGISTER_NAMES \
1860{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1861 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1862 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1863 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1864 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1865 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1866 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1867
c98f8742
JVA
1868#define REGISTER_NAMES HI_REGISTER_NAMES
1869
1870/* Table of additional register names to use in user input. */
1871
1872#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1873{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1874 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1875 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1876 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1877 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1878 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1879
1880/* Note we are omitting these since currently I don't know how
1881to get gcc to use these, since they want the same but different
1882number as al, and ax.
1883*/
1884
c98f8742 1885#define QI_REGISTER_NAMES \
3f3f2124 1886{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1887
1888/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1889 of regs 0 through 3. */
c98f8742
JVA
1890
1891#define QI_HIGH_REGISTER_NAMES \
1892{"ah", "dh", "ch", "bh", }
1893
1894/* How to renumber registers for dbx and gdb. */
1895
d9a5f180
GS
1896#define DBX_REGISTER_NUMBER(N) \
1897 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1898
9a82e702
MS
1899extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1900extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1901extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1902
469ac993
JM
1903/* Before the prologue, RA is at 0(%esp). */
1904#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1905 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1906
e414ab29 1907/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1908#define RETURN_ADDR_RTX(COUNT, FRAME) \
1909 ((COUNT) == 0 \
1910 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1911 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1912
892a2d68 1913/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1914#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1915
a6ab3aad 1916/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1917#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1918
1020a5ab 1919/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1920#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1921#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1922
ad919812 1923
e4c4ebeb
RH
1924/* Select a format to encode pointers in exception handling data. CODE
1925 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1926 true if the symbol may be affected by dynamic relocations.
1927
1928 ??? All x86 object file formats are capable of representing this.
1929 After all, the relocation needed is the same as for the call insn.
1930 Whether or not a particular assembler allows us to enter such, I
1931 guess we'll have to see. */
d9a5f180 1932#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1933 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1934
c98f8742
JVA
1935/* This is how to output an insn to push a register on the stack.
1936 It need not be very fast code. */
1937
d9a5f180 1938#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1939do { \
1940 if (TARGET_64BIT) \
1941 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1942 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1943 else \
1944 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1945} while (0)
c98f8742
JVA
1946
1947/* This is how to output an insn to pop a register from the stack.
1948 It need not be very fast code. */
1949
d9a5f180 1950#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1951do { \
1952 if (TARGET_64BIT) \
1953 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1954 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1955 else \
1956 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1957} while (0)
c98f8742 1958
f88c65f7 1959/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
1960
1961#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 1962 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 1963
f88c65f7 1964/* This is how to output an element of a case-vector that is relative. */
c98f8742 1965
33f7f353 1966#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 1967 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 1968
63001560 1969/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
1970
1971#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1972{ \
1973 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 1974 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
1975}
1976
1977/* A C statement or statements which output an assembler instruction
1978 opcode to the stdio stream STREAM. The macro-operand PTR is a
1979 variable of type `char *' which points to the opcode name in
1980 its "internal" form--the form that is written in the machine
1981 description. */
1982
1983#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1984 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1985
6a90d232
L
1986/* A C statement to output to the stdio stream FILE an assembler
1987 command to pad the location counter to a multiple of 1<<LOG
1988 bytes if it is within MAX_SKIP bytes. */
1989
1990#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1991#undef ASM_OUTPUT_MAX_SKIP_PAD
1992#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
1993 if ((LOG) != 0) \
1994 { \
1995 if ((MAX_SKIP) == 0) \
1996 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
1997 else \
1998 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
1999 }
2000#endif
2001
135a687e
KT
2002/* Write the extra assembler code needed to declare a function
2003 properly. */
2004
2005#undef ASM_OUTPUT_FUNCTION_LABEL
2006#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2007 ix86_asm_output_function_label (FILE, NAME, DECL)
2008
f7288899
EC
2009/* Under some conditions we need jump tables in the text section,
2010 because the assembler cannot handle label differences between
2011 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2012
2013#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2014 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2015 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2016
cea3bd3e
RH
2017/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2018 and switch back. For x86 we do this only to save a few bytes that
2019 would otherwise be unused in the text section. */
ad211091
KT
2020#define CRT_MKSTR2(VAL) #VAL
2021#define CRT_MKSTR(x) CRT_MKSTR2(x)
2022
2023#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2024 asm (SECTION_OP "\n\t" \
2025 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2026 TEXT_SECTION_ASM_OP);
74b42c8b 2027\f
b2b01543 2028/* Which processor to tune code generation for. */
5bf0ebab
RH
2029
2030enum processor_type
2031{
8383d43c 2032 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2033 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2034 PROCESSOR_PENTIUM,
2035 PROCESSOR_PENTIUMPRO,
cfe1b18f 2036 PROCESSOR_GEODE,
5bf0ebab
RH
2037 PROCESSOR_K6,
2038 PROCESSOR_ATHLON,
2039 PROCESSOR_PENTIUM4,
4977bab6 2040 PROCESSOR_K8,
89c43c0a 2041 PROCESSOR_NOCONA,
ab247762
MK
2042 PROCESSOR_CORE2_32,
2043 PROCESSOR_CORE2_64,
b2b01543
BS
2044 PROCESSOR_COREI7_32,
2045 PROCESSOR_COREI7_64,
d326eaf0
JH
2046 PROCESSOR_GENERIC32,
2047 PROCESSOR_GENERIC64,
21efb4d4 2048 PROCESSOR_AMDFAM10,
1133125e 2049 PROCESSOR_BDVER1,
4d652a18 2050 PROCESSOR_BDVER2,
14b52538 2051 PROCESSOR_BTVER1,
b6837b94 2052 PROCESSOR_ATOM,
5bf0ebab
RH
2053 PROCESSOR_max
2054};
2055
9e555526 2056extern enum processor_type ix86_tune;
5bf0ebab 2057extern enum processor_type ix86_arch;
5bf0ebab 2058
8362f420
JH
2059/* Size of the RED_ZONE area. */
2060#define RED_ZONE_SIZE 128
2061/* Reserved area of the red zone for temporaries. */
2062#define RED_ZONE_RESERVE 8
c93e80a5 2063
95899b34 2064extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2065extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2066
2067/* Smallest class containing REGNO. */
2068extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2069
0948ccb2
PB
2070enum ix86_fpcmp_strategy {
2071 IX86_FPCMP_SAHF,
2072 IX86_FPCMP_COMI,
2073 IX86_FPCMP_ARITH
2074};
22fb740d
JH
2075\f
2076/* To properly truncate FP values into integers, we need to set i387 control
2077 word. We can't emit proper mode switching code before reload, as spills
2078 generated by reload may truncate values incorrectly, but we still can avoid
2079 redundant computation of new control word by the mode switching pass.
2080 The fldcw instructions are still emitted redundantly, but this is probably
2081 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2082 the sequence.
22fb740d
JH
2083
2084 The machinery is to emit simple truncation instructions and split them
2085 before reload to instructions having USEs of two memory locations that
2086 are filled by this code to old and new control word.
fce5a9f2 2087
22fb740d
JH
2088 Post-reload pass may be later used to eliminate the redundant fildcw if
2089 needed. */
2090
ff680eb1
UB
2091enum ix86_entity
2092{
2093 I387_TRUNC = 0,
2094 I387_FLOOR,
2095 I387_CEIL,
2096 I387_MASK_PM,
2097 MAX_386_ENTITIES
2098};
2099
1cba2b96 2100enum ix86_stack_slot
ff680eb1 2101{
80dcd3aa
UB
2102 SLOT_VIRTUAL = 0,
2103 SLOT_TEMP,
ff680eb1
UB
2104 SLOT_CW_STORED,
2105 SLOT_CW_TRUNC,
2106 SLOT_CW_FLOOR,
2107 SLOT_CW_CEIL,
2108 SLOT_CW_MASK_PM,
2109 MAX_386_STACK_LOCALS
2110};
22fb740d
JH
2111
2112/* Define this macro if the port needs extra instructions inserted
2113 for mode switching in an optimizing compilation. */
2114
ff680eb1
UB
2115#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2116 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2117
2118/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2119 initializer for an array of integers. Each initializer element N
2120 refers to an entity that needs mode switching, and specifies the
2121 number of different modes that might need to be set for this
2122 entity. The position of the initializer in the initializer -
2123 starting counting at zero - determines the integer that is used to
2124 refer to the mode-switched entity in question. */
2125
ff680eb1
UB
2126#define NUM_MODES_FOR_MODE_SWITCHING \
2127 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2128
2129/* ENTITY is an integer specifying a mode-switched entity. If
2130 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2131 return an integer value not larger than the corresponding element
2132 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2133 must be switched into prior to the execution of INSN. */
2134
2135#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2136
2137/* This macro specifies the order in which modes for ENTITY are
2138 processed. 0 is the highest priority. */
2139
d9a5f180 2140#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2141
2142/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2143 is the set of hard registers live at the point where the insn(s)
2144 are to be inserted. */
2145
2146#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2147 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2148 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2149 : 0)
ff680eb1 2150
0f0138b6
JH
2151\f
2152/* Avoid renaming of stack registers, as doing so in combination with
2153 scheduling just increases amount of live registers at time and in
2154 the turn amount of fxch instructions needed.
2155
43f3a59d 2156 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2157
d9a5f180 2158#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2159 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2160
3b3c6a3f 2161\f
e91f04de 2162#define FASTCALL_PREFIX '@'
fa1a0d02 2163\f
ec7ded37 2164/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2165
604a6be9 2166#ifndef USED_FOR_TARGET
ec7ded37 2167struct GTY(()) machine_frame_state
cd9c1ca8 2168{
ec7ded37
RH
2169 /* This pair tracks the currently active CFA as reg+offset. When reg
2170 is drap_reg, we don't bother trying to record here the real CFA when
2171 it might really be a DW_CFA_def_cfa_expression. */
2172 rtx cfa_reg;
2173 HOST_WIDE_INT cfa_offset;
2174
2175 /* The current offset (canonically from the CFA) of ESP and EBP.
2176 When stack frame re-alignment is active, these may not be relative
2177 to the CFA. However, in all cases they are relative to the offsets
2178 of the saved registers stored in ix86_frame. */
2179 HOST_WIDE_INT sp_offset;
2180 HOST_WIDE_INT fp_offset;
2181
2182 /* The size of the red-zone that may be assumed for the purposes of
2183 eliding register restore notes in the epilogue. This may be zero
2184 if no red-zone is in effect, or may be reduced from the real
2185 red-zone value by a maximum runtime stack re-alignment value. */
2186 int red_zone_offset;
2187
2188 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2189 value within the frame. If false then the offset above should be
2190 ignored. Note that DRAP, if valid, *always* points to the CFA and
2191 thus has an offset of zero. */
2192 BOOL_BITFIELD sp_valid : 1;
2193 BOOL_BITFIELD fp_valid : 1;
2194 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2195
2196 /* Indicate whether the local stack frame has been re-aligned. When
2197 set, the SP/FP offsets above are relative to the aligned frame
2198 and not the CFA. */
2199 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2200};
2201
f81c9774
RH
2202/* Private to winnt.c. */
2203struct seh_frame_state;
2204
d1b38208 2205struct GTY(()) machine_function {
fa1a0d02
JH
2206 struct stack_local_entry *stack_locals;
2207 const char *some_ld_name;
4aab97f9
L
2208 int varargs_gpr_size;
2209 int varargs_fpr_size;
ff680eb1 2210 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2211
2212 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2213 has been computed for. */
2214 int use_fast_prologue_epilogue_nregs;
2215
7458026b
ILT
2216 /* For -fsplit-stack support: A stack local which holds a pointer to
2217 the stack arguments for a function with a variable number of
2218 arguments. This is set at the start of the function and is used
2219 to initialize the overflow_arg_area field of the va_list
2220 structure. */
2221 rtx split_stack_varargs_pointer;
2222
3452586b
RH
2223 /* This value is used for amd64 targets and specifies the current abi
2224 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2225 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2226
2227 /* Nonzero if the function accesses a previous frame. */
2228 BOOL_BITFIELD accesses_prev_frame : 1;
2229
2230 /* Nonzero if the function requires a CLD in the prologue. */
2231 BOOL_BITFIELD needs_cld : 1;
2232
922e3e33
UB
2233 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2234 expander to determine the style used. */
3452586b
RH
2235 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2236
5bf5a10b
AO
2237 /* If true, the current function needs the default PIC register, not
2238 an alternate register (on x86) and must not use the red zone (on
2239 x86_64), even if it's a leaf function. We don't want the
2240 function to be regarded as non-leaf because TLS calls need not
2241 affect register allocation. This flag is set when a TLS call
2242 instruction is expanded within a function, and never reset, even
2243 if all such instructions are optimized away. Use the
2244 ix86_current_function_calls_tls_descriptor macro for a better
2245 approximation. */
3452586b
RH
2246 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2247
2248 /* If true, the current function has a STATIC_CHAIN is placed on the
2249 stack below the return address. */
2250 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2251
2767a7f2
L
2252 /* Nonzero if caller passes 256bit AVX modes. */
2253 BOOL_BITFIELD caller_pass_avx256_p : 1;
2254
2255 /* Nonzero if caller returns 256bit AVX modes. */
2256 BOOL_BITFIELD caller_return_avx256_p : 1;
2257
2258 /* Nonzero if the current callee passes 256bit AVX modes. */
2259 BOOL_BITFIELD callee_pass_avx256_p : 1;
2260
2261 /* Nonzero if the current callee returns 256bit AVX modes. */
2262 BOOL_BITFIELD callee_return_avx256_p : 1;
2263
617e6634
L
2264 /* Nonzero if rescan vzerouppers in the current function is needed. */
2265 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2266
ec7ded37
RH
2267 /* During prologue/epilogue generation, the current frame state.
2268 Otherwise, the frame state at the end of the prologue. */
2269 struct machine_frame_state fs;
f81c9774
RH
2270
2271 /* During SEH output, this is non-null. */
2272 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2273};
cd9c1ca8 2274#endif
fa1a0d02
JH
2275
2276#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2277#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2278#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2279#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2280#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2281#define ix86_tls_descriptor_calls_expanded_in_cfun \
2282 (cfun->machine->tls_descriptor_call_expanded_p)
2283/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2284 calls are optimized away, we try to detect cases in which it was
2285 optimized away. Since such instructions (use (reg REG_SP)), we can
2286 verify whether there's any such instruction live by testing that
2287 REG_SP is live. */
2288#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2289 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2290#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2291
1bc7c5b6
ZW
2292/* Control behavior of x86_file_start. */
2293#define X86_FILE_START_VERSION_DIRECTIVE false
2294#define X86_FILE_START_FLTUSED false
2295
7dcbf659
JH
2296/* Flag to mark data that is in the large address area. */
2297#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2298#define SYMBOL_REF_FAR_ADDR_P(X) \
2299 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2300
2301/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2302 have defined always, to avoid ifdefing. */
2303#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2304#define SYMBOL_REF_DLLIMPORT_P(X) \
2305 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2306
2307#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2308#define SYMBOL_REF_DLLEXPORT_P(X) \
2309 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2310
7942e47e
RY
2311extern void debug_ready_dispatch (void);
2312extern void debug_dispatch_window (int);
2313
91afcfa3
QN
2314/* The value at zero is only defined for the BMI instructions
2315 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2316#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2317 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2318#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2319 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2320
2321
b8ce4e94
KT
2322/* Flags returned by ix86_get_callcvt (). */
2323#define IX86_CALLCVT_CDECL 0x1
2324#define IX86_CALLCVT_STDCALL 0x2
2325#define IX86_CALLCVT_FASTCALL 0x4
2326#define IX86_CALLCVT_THISCALL 0x8
2327#define IX86_CALLCVT_REGPARM 0x10
2328#define IX86_CALLCVT_SSEREGPARM 0x20
2329
2330#define IX86_BASE_CALLCVT(FLAGS) \
2331 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2332 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2333
b86b9f44
MM
2334#define RECIP_MASK_NONE 0x00
2335#define RECIP_MASK_DIV 0x01
2336#define RECIP_MASK_SQRT 0x02
2337#define RECIP_MASK_VEC_DIV 0x04
2338#define RECIP_MASK_VEC_SQRT 0x08
2339#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2340 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2341#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2342
2343#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2344#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2345#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2346#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2347
5dcfdccd
KY
2348#define IX86_HLE_ACQUIRE (1 << 16)
2349#define IX86_HLE_RELEASE (1 << 17)
2350
c98f8742
JVA
2351/*
2352Local variables:
2353version-control: t
2354End:
2355*/