]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Reorganize post-ra pipeline for targets without register allocation.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
90922d36 80#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 81#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 82#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 83#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 84#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 85#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 86#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 87#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 88#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 89#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
90#define TARGET_ROUND TARGET_ISA_ROUND
91#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 92#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 93#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 94#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 95#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 96#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 97#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 98#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 99#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 100#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 101#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 102#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 103#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 104#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 105#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 106#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 107#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 108#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 109#define TARGET_AES TARGET_ISA_AES
bf7b5747 110#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
111#define TARGET_SHA TARGET_ISA_SHA
112#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
113#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
114#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
115#define TARGET_XSAVEC TARGET_ISA_XSAVEC
116#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
117#define TARGET_XSAVES TARGET_ISA_XSAVES
118#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 119#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 120#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
121#define TARGET_CMPXCHG16B TARGET_ISA_CX16
122#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 123#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 124#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 125#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 126#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 127#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 128#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
129#define TARGET_RTM TARGET_ISA_RTM
130#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 131#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 132#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 133#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 134#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 135#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 136#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 137#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 138#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 139#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 140#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 141#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 142#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 143#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 144#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
145#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
146#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
ab442df7 147
90922d36 148#define TARGET_LP64 TARGET_ABI_64
bf7b5747 149#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 150#define TARGET_X32 TARGET_ABI_X32
bf7b5747 151#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
152#define TARGET_16BIT TARGET_CODE16
153#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 154
cbf2e4d4
HJ
155/* SSE4.1 defines round instructions */
156#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 157#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 158
26b5109f
RS
159#include "config/vxworks-dummy.h"
160
7eb68c06 161#include "config/i386/i386-opts.h"
ccf8e764 162
c69fa2d4 163#define MAX_STRINGOP_ALGS 4
ccf8e764 164
8c996513
JH
165/* Specify what algorithm to use for stringops on known size.
166 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
167 known at compile time or estimated via feedback, the SIZE array
168 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 169 means infinity). Corresponding ALG is used then.
340ef734
JH
170 When NOALIGN is true the code guaranting the alignment of the memory
171 block is skipped.
172
8c996513 173 For example initializer:
4f3f76e6 174 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 175 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 176 be used otherwise. */
8c996513
JH
177struct stringop_algs
178{
179 const enum stringop_alg unknown_size;
180 const struct stringop_strategy {
181 const int max;
182 const enum stringop_alg alg;
340ef734 183 int noalign;
c69fa2d4 184 } size [MAX_STRINGOP_ALGS];
8c996513
JH
185};
186
d4ba09c0
SC
187/* Define the specific costs for a given cpu */
188
189struct processor_costs {
8b60264b
KG
190 const int add; /* cost of an add instruction */
191 const int lea; /* cost of a lea instruction */
192 const int shift_var; /* variable shift costs */
193 const int shift_const; /* constant shift costs */
f676971a 194 const int mult_init[5]; /* cost of starting a multiply
4977bab6 195 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 196 const int mult_bit; /* cost of multiply per each bit set */
f676971a 197 const int divide[5]; /* cost of a divide/mod
4977bab6 198 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
199 int movsx; /* The cost of movsx operation. */
200 int movzx; /* The cost of movzx operation. */
8b60264b
KG
201 const int large_insn; /* insns larger than this cost more */
202 const int move_ratio; /* The threshold of number of scalar
ac775968 203 memory-to-memory move insns. */
8b60264b
KG
204 const int movzbl_load; /* cost of loading using movzbl */
205 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
206 in QImode, HImode and SImode relative
207 to reg-reg move (2). */
8b60264b 208 const int int_store[3]; /* cost of storing integer register
96e7ae40 209 in QImode, HImode and SImode */
8b60264b
KG
210 const int fp_move; /* cost of reg,reg fld/fst */
211 const int fp_load[3]; /* cost of loading FP register
96e7ae40 212 in SFmode, DFmode and XFmode */
8b60264b 213 const int fp_store[3]; /* cost of storing FP register
96e7ae40 214 in SFmode, DFmode and XFmode */
8b60264b
KG
215 const int mmx_move; /* cost of moving MMX register. */
216 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 217 in SImode and DImode */
8b60264b 218 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 219 in SImode and DImode */
8b60264b
KG
220 const int sse_move; /* cost of moving SSE register. */
221 const int sse_load[3]; /* cost of loading SSE register
fa79946e 222 in SImode, DImode and TImode*/
8b60264b 223 const int sse_store[3]; /* cost of storing SSE register
fa79946e 224 in SImode, DImode and TImode*/
8b60264b 225 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 226 integer and vice versa. */
46cb0441
ZD
227 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
228 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
229 const int prefetch_block; /* bytes moved to cache for prefetch. */
230 const int simultaneous_prefetches; /* number of parallel prefetch
231 operations. */
4977bab6 232 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
233 const int fadd; /* cost of FADD and FSUB instructions. */
234 const int fmul; /* cost of FMUL instruction. */
235 const int fdiv; /* cost of FDIV instruction. */
236 const int fabs; /* cost of FABS instruction. */
237 const int fchs; /* cost of FCHS instruction. */
238 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 239 /* Specify what algorithm
bee51209 240 to use for stringops on unknown size. */
ad83025e 241 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
242 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
243 load and store. */
244 const int scalar_load_cost; /* Cost of scalar load. */
245 const int scalar_store_cost; /* Cost of scalar store. */
246 const int vec_stmt_cost; /* Cost of any vector operation, excluding
247 load, store, vector-to-scalar and
248 scalar-to-vector operation. */
249 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
250 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 251 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
252 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
253 const int vec_store_cost; /* Cost of vector store. */
254 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
255 cost model. */
256 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
257 vectorizer cost model. */
d4ba09c0
SC
258};
259
8b60264b 260extern const struct processor_costs *ix86_cost;
b2077fd2
JH
261extern const struct processor_costs ix86_size_cost;
262
263#define ix86_cur_cost() \
264 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 265
c98f8742
JVA
266/* Macros used in the machine description to test the flags. */
267
b97de419 268/* configure can arrange to change it. */
e075ae69 269
35b528be 270#ifndef TARGET_CPU_DEFAULT
b97de419 271#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 272#endif
35b528be 273
004d3859
GK
274#ifndef TARGET_FPMATH_DEFAULT
275#define TARGET_FPMATH_DEFAULT \
276 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
277#endif
278
bf7b5747
ST
279#ifndef TARGET_FPMATH_DEFAULT_P
280#define TARGET_FPMATH_DEFAULT_P(x) \
281 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
282#endif
283
6ac49599 284#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 285#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 286
5791cc29
JT
287/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
288 compile-time constant. */
289#ifdef IN_LIBGCC2
6ac49599 290#undef TARGET_64BIT
5791cc29
JT
291#ifdef __x86_64__
292#define TARGET_64BIT 1
293#else
294#define TARGET_64BIT 0
295#endif
296#else
6ac49599
RS
297#ifndef TARGET_BI_ARCH
298#undef TARGET_64BIT
e49080ec 299#undef TARGET_64BIT_P
67adf6a9 300#if TARGET_64BIT_DEFAULT
0c2dc519 301#define TARGET_64BIT 1
e49080ec 302#define TARGET_64BIT_P(x) 1
0c2dc519
JH
303#else
304#define TARGET_64BIT 0
e49080ec 305#define TARGET_64BIT_P(x) 0
0c2dc519
JH
306#endif
307#endif
5791cc29 308#endif
25f94bb5 309
750054a2
CT
310#define HAS_LONG_COND_BRANCH 1
311#define HAS_LONG_UNCOND_BRANCH 1
312
9e555526
RH
313#define TARGET_386 (ix86_tune == PROCESSOR_I386)
314#define TARGET_486 (ix86_tune == PROCESSOR_I486)
315#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
316#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 317#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
318#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
319#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
320#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
321#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 322#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 323#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 324#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
325#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
326#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 327#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
328#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
329#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 330#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 331#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 332#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 333#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 334#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 335#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 336#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 337#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 338#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 339
80fd744f
RH
340/* Feature tests against the various tunings. */
341enum ix86_tune_indices {
4b8bc035 342#undef DEF_TUNE
3ad20bd4 343#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
344#include "x86-tune.def"
345#undef DEF_TUNE
346X86_TUNE_LAST
80fd744f
RH
347};
348
ab442df7 349extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
350
351#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
352#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
353#define TARGET_ZERO_EXTEND_WITH_AND \
354 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 355#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
356#define TARGET_BRANCH_PREDICTION_HINTS \
357 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
358#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
359#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
360#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
361#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
362#define TARGET_PARTIAL_FLAG_REG_STALL \
363 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
364#define TARGET_LCP_STALL \
365 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
366#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
367#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
368#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
369#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
370#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
371#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
372#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
373#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
374#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
375#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
376#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
377#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
378 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
379#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
380#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
381#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
382#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
383#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
384#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
385#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
386#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
387#define TARGET_INTEGER_DFMODE_MOVES \
388 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
389#define TARGET_PARTIAL_REG_DEPENDENCY \
390 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
391#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
392 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
393#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
394 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
395#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
396 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
397#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
398 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
399#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
400#define TARGET_SSE_TYPELESS_STORES \
401 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
402#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
403#define TARGET_MEMORY_MISMATCH_STALL \
404 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
405#define TARGET_PROLOGUE_USING_MOVE \
406 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
407#define TARGET_EPILOGUE_USING_MOVE \
408 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
409#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
410#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
411#define TARGET_INTER_UNIT_MOVES_TO_VEC \
412 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
413#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
414 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
415#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 416 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
417#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
418#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
419#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
420#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
421#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
422#define TARGET_PAD_SHORT_FUNCTION \
423 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
424#define TARGET_EXT_80387_CONSTANTS \
425 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
426#define TARGET_AVOID_VECTOR_DECODE \
427 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
428#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
429 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
430#define TARGET_SLOW_IMUL_IMM32_MEM \
431 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
432#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
433#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
434#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
435#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
436#define TARGET_USE_VECTOR_FP_CONVERTS \
437 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
438#define TARGET_USE_VECTOR_CONVERTS \
439 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
440#define TARGET_SLOW_PSHUFB \
441 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
442#define TARGET_VECTOR_PARALLEL_EXECUTION \
443 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
444#define TARGET_FUSE_CMP_AND_BRANCH_32 \
445 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
446#define TARGET_FUSE_CMP_AND_BRANCH_64 \
447 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 448#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
449 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
450 : TARGET_FUSE_CMP_AND_BRANCH_32)
451#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
452 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
453#define TARGET_FUSE_ALU_AND_BRANCH \
454 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 455#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
456#define TARGET_AVOID_LEA_FOR_ADDR \
457 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
458#define TARGET_VECTORIZE_DOUBLE \
459 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
460#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
461 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
462#define TARGET_AVX128_OPTIMAL \
463 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
464#define TARGET_REASSOC_INT_TO_PARALLEL \
465 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
466#define TARGET_REASSOC_FP_TO_PARALLEL \
467 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
468#define TARGET_GENERAL_REGS_SSE_SPILL \
469 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
470#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
471 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 472#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 473 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
474#define TARGET_ADJUST_UNROLL \
475 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
476#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
477 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 478
80fd744f
RH
479/* Feature tests against the various architecture variations. */
480enum ix86_arch_indices {
cef31f9c 481 X86_ARCH_CMOV,
80fd744f
RH
482 X86_ARCH_CMPXCHG,
483 X86_ARCH_CMPXCHG8B,
484 X86_ARCH_XADD,
485 X86_ARCH_BSWAP,
486
487 X86_ARCH_LAST
488};
4f3f76e6 489
ab442df7 490extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 491
cef31f9c 492#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
493#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
494#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
495#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
496#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
497
cef31f9c
UB
498/* For sane SSE instruction set generation we need fcomi instruction.
499 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
500 expands to a sequence that includes conditional move. */
501#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
502
80fd744f
RH
503#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
504
cb261eb7 505extern unsigned char x86_prefetch_sse;
80fd744f
RH
506#define TARGET_PREFETCH_SSE x86_prefetch_sse
507
80fd744f
RH
508#define ASSEMBLER_DIALECT (ix86_asm_dialect)
509
510#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
511#define TARGET_MIX_SSE_I387 \
512 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
513
514#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
515#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
516#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 517#define TARGET_SUN_TLS 0
1ef45b77 518
67adf6a9
RH
519#ifndef TARGET_64BIT_DEFAULT
520#define TARGET_64BIT_DEFAULT 0
25f94bb5 521#endif
74dc3e94
RH
522#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
523#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
524#endif
25f94bb5 525
e0ea8797
AH
526#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
527#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
528
79f5e442
ZD
529/* Fence to use after loop using storent. */
530
531extern tree x86_mfence;
532#define FENCE_FOLLOWING_MOVNT x86_mfence
533
0ed4a390
JL
534/* Once GDB has been enhanced to deal with functions without frame
535 pointers, we can change this to allow for elimination of
536 the frame pointer in leaf functions. */
537#define TARGET_DEFAULT 0
67adf6a9 538
0a1c5e55
UB
539/* Extra bits to force. */
540#define TARGET_SUBTARGET_DEFAULT 0
541#define TARGET_SUBTARGET_ISA_DEFAULT 0
542
543/* Extra bits to force on w/ 32-bit mode. */
544#define TARGET_SUBTARGET32_DEFAULT 0
545#define TARGET_SUBTARGET32_ISA_DEFAULT 0
546
ccf8e764
RH
547/* Extra bits to force on w/ 64-bit mode. */
548#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 549#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 550
fee3eacd
IS
551/* Replace MACH-O, ifdefs by in-line tests, where possible.
552 (a) Macros defined in config/i386/darwin.h */
b069de3b 553#define TARGET_MACHO 0
9005471b 554#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
555#define MACHOPIC_ATT_STUB 0
556/* (b) Macros defined in config/darwin.h */
557#define MACHO_DYNAMIC_NO_PIC_P 0
558#define MACHOPIC_INDIRECT 0
559#define MACHOPIC_PURE 0
9005471b 560
5a579c3b
LE
561/* For the RDOS */
562#define TARGET_RDOS 0
563
9005471b 564/* For the Windows 64-bit ABI. */
7c800926
KT
565#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
566
6510e8bb
KT
567/* For the Windows 32-bit ABI. */
568#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
569
f81c9774
RH
570/* This is re-defined by cygming.h. */
571#define TARGET_SEH 0
572
a3d7ab92
KT
573/* This is re-defined by cygming.h. */
574#define TARGET_PECOFF 0
575
51212b32 576/* The default abi used by target. */
7c800926 577#define DEFAULT_ABI SYSV_ABI
ccf8e764 578
b8b3f0ca
LE
579/* The default TLS segment register used by target. */
580#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
581
cc69336f
RH
582/* Subtargets may reset this to 1 in order to enable 96-bit long double
583 with the rounding mode forced to 53 bits. */
584#define TARGET_96_ROUND_53_LONG_DOUBLE 0
585
682cd442
GK
586/* -march=native handling only makes sense with compiler running on
587 an x86 or x86_64 chip. If changing this condition, also change
588 the condition in driver-i386.c. */
589#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
590/* In driver-i386.c. */
591extern const char *host_detect_local_cpu (int argc, const char **argv);
592#define EXTRA_SPEC_FUNCTIONS \
593 { "local_cpu_detect", host_detect_local_cpu },
682cd442 594#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
595#endif
596
8981c15b
JM
597#if TARGET_64BIT_DEFAULT
598#define OPT_ARCH64 "!m32"
599#define OPT_ARCH32 "m32"
600#else
f0ea7581
L
601#define OPT_ARCH64 "m64|mx32"
602#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
603#endif
604
1cba2b96
EC
605/* Support for configure-time defaults of some command line options.
606 The order here is important so that -march doesn't squash the
607 tune or cpu values. */
ce998900 608#define OPTION_DEFAULT_SPECS \
da2d4c01 609 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
610 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
611 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 612 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
613 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
614 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
615 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
616 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
617 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 618
241e1a89
SC
619/* Specs for the compiler proper */
620
628714d8 621#ifndef CC1_CPU_SPEC
eb5bb0fd 622#define CC1_CPU_SPEC_1 ""
fa959ce4 623
682cd442 624#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
625#define CC1_CPU_SPEC CC1_CPU_SPEC_1
626#else
627#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
628"%{march=native:%>march=native %:local_cpu_detect(arch) \
629 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
630%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 631#endif
241e1a89 632#endif
c98f8742 633\f
30efe578 634/* Target CPU builtins. */
ab442df7
MM
635#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
636
637/* Target Pragmas. */
638#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 639
628714d8 640#ifndef CC1_SPEC
8015b78d 641#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
642#endif
643
644/* This macro defines names of additional specifications to put in the
645 specs that can be used in various specifications like CC1_SPEC. Its
646 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
647
648 Each subgrouping contains a string constant, that defines the
188fc5b5 649 specification name, and a string constant that used by the GCC driver
bcd86433
SC
650 program.
651
652 Do not define this macro if it does not need to do anything. */
653
654#ifndef SUBTARGET_EXTRA_SPECS
655#define SUBTARGET_EXTRA_SPECS
656#endif
657
658#define EXTRA_SPECS \
628714d8 659 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
660 SUBTARGET_EXTRA_SPECS
661\f
ce998900 662
d57a4b98
RH
663/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
664 FPU, assume that the fpcw is set to extended precision; when using
665 only SSE, rounding is correct; when using both SSE and the FPU,
666 the rounding precision is indeterminate, since either may be chosen
667 apparently at random. */
668#define TARGET_FLT_EVAL_METHOD \
5ccd517a 669 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 670
8ce94e44
JM
671/* Whether to allow x87 floating-point arithmetic on MODE (one of
672 SFmode, DFmode and XFmode) in the current excess precision
673 configuration. */
674#define X87_ENABLE_ARITH(MODE) \
675 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
676
677/* Likewise, whether to allow direct conversions from integer mode
678 IMODE (HImode, SImode or DImode) to MODE. */
679#define X87_ENABLE_FLOAT(MODE, IMODE) \
680 (flag_excess_precision == EXCESS_PRECISION_FAST \
681 || (MODE) == XFmode \
682 || ((MODE) == DFmode && (IMODE) == SImode) \
683 || (IMODE) == HImode)
684
979c67a5
UB
685/* target machine storage layout */
686
65d9c0ab
JH
687#define SHORT_TYPE_SIZE 16
688#define INT_TYPE_SIZE 32
f0ea7581
L
689#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
690#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 691#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 692#define FLOAT_TYPE_SIZE 32
65d9c0ab 693#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
694#define LONG_DOUBLE_TYPE_SIZE \
695 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 696
c637141a 697#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 698
67adf6a9 699#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 700#define MAX_BITS_PER_WORD 64
0c2dc519
JH
701#else
702#define MAX_BITS_PER_WORD 32
0c2dc519
JH
703#endif
704
c98f8742
JVA
705/* Define this if most significant byte of a word is the lowest numbered. */
706/* That is true on the 80386. */
707
708#define BITS_BIG_ENDIAN 0
709
710/* Define this if most significant byte of a word is the lowest numbered. */
711/* That is not true on the 80386. */
712#define BYTES_BIG_ENDIAN 0
713
714/* Define this if most significant word of a multiword number is the lowest
715 numbered. */
716/* Not true for 80386 */
717#define WORDS_BIG_ENDIAN 0
718
c98f8742 719/* Width of a word, in units (bytes). */
4ae8027b 720#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
721
722#ifndef IN_LIBGCC2
2e64c636
JH
723#define MIN_UNITS_PER_WORD 4
724#endif
c98f8742 725
c98f8742 726/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 727#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 728
e075ae69 729/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 730#define STACK_BOUNDARY \
51212b32 731 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 732
2e3f842f
L
733/* Stack boundary of the main function guaranteed by OS. */
734#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
735
de1132d1 736/* Minimum stack boundary. */
5bfb2af2 737#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 738
d1f87653 739/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 740 aligned; the compiler cannot rely on having this alignment. */
e075ae69 741#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 742
de1132d1 743/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
744 both 32bit and 64bit, to support codes that need 128 bit stack
745 alignment for SSE instructions, but can't realign the stack. */
746#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
747
748/* 1 if -mstackrealign should be turned on by default. It will
749 generate an alternate prologue and epilogue that realigns the
750 runtime stack if nessary. This supports mixing codes that keep a
751 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 752 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
753#define STACK_REALIGN_DEFAULT 0
754
755/* Boundary (in *bits*) on which the incoming stack is aligned. */
756#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 757
a2851b75
TG
758/* According to Windows x64 software convention, the maximum stack allocatable
759 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
760 instructions allowed to adjust the stack pointer in the epilog, forcing the
761 use of frame pointer for frames larger than 2 GB. This theorical limit
762 is reduced by 256, an over-estimated upper bound for the stack use by the
763 prologue.
764 We define only one threshold for both the prolog and the epilog. When the
4e523f33 765 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
766 regs, then save them, and then allocate the remaining. There is no SEH
767 unwind info for this later allocation. */
768#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
769
ebff937c
SH
770/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
771 mandatory for the 64-bit ABI, and may or may not be true for other
772 operating systems. */
773#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
774
f963b5d9
RS
775/* Minimum allocation boundary for the code of a function. */
776#define FUNCTION_BOUNDARY 8
777
778/* C++ stores the virtual bit in the lowest bit of function pointers. */
779#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 780
c98f8742
JVA
781/* Minimum size in bits of the largest boundary to which any
782 and all fundamental data types supported by the hardware
783 might need to be aligned. No data type wants to be aligned
17f24ff0 784 rounder than this.
fce5a9f2 785
d1f87653 786 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
787 and Pentium Pro XFmode values at 128 bit boundaries. */
788
3f97cb0b
AI
789#define BIGGEST_ALIGNMENT \
790 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 791
2e3f842f
L
792/* Maximum stack alignment. */
793#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
794
6e4f1168
L
795/* Alignment value for attribute ((aligned)). It is a constant since
796 it is the part of the ABI. We shouldn't change it with -mavx. */
797#define ATTRIBUTE_ALIGNED_VALUE 128
798
822eda12 799/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 800#define ALIGN_MODE_128(MODE) \
4501d314 801 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 802
17f24ff0 803/* The published ABIs say that doubles should be aligned on word
d1f87653 804 boundaries, so lower the alignment for structure fields unless
6fc605d8 805 -malign-double is set. */
e932b21b 806
e83f3cff
RH
807/* ??? Blah -- this macro is used directly by libobjc. Since it
808 supports no vector modes, cut out the complexity and fall back
809 on BIGGEST_FIELD_ALIGNMENT. */
810#ifdef IN_TARGET_LIBS
ef49d42e
JH
811#ifdef __x86_64__
812#define BIGGEST_FIELD_ALIGNMENT 128
813#else
e83f3cff 814#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 815#endif
e83f3cff 816#else
e932b21b
JH
817#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
818 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 819#endif
c98f8742 820
e5e8a8bf 821/* If defined, a C expression to compute the alignment given to a
a7180f70 822 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
823 and ALIGN is the alignment that the object would ordinarily have.
824 The value of this macro is used instead of that alignment to align
825 the object.
826
827 If this macro is not defined, then ALIGN is used.
828
829 The typical use of this macro is to increase alignment for string
830 constants to be word aligned so that `strcpy' calls that copy
831 constants can be done inline. */
832
d9a5f180 833#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 834
8a022443
JW
835/* If defined, a C expression to compute the alignment for a static
836 variable. TYPE is the data type, and ALIGN is the alignment that
837 the object would ordinarily have. The value of this macro is used
838 instead of that alignment to align the object.
839
840 If this macro is not defined, then ALIGN is used.
841
842 One use of this macro is to increase alignment of medium-size
843 data to make it all fit in fewer cache lines. Another is to
844 cause character arrays to be word-aligned so that `strcpy' calls
845 that copy constants to character arrays can be done inline. */
846
df8a1d28
JJ
847#define DATA_ALIGNMENT(TYPE, ALIGN) \
848 ix86_data_alignment ((TYPE), (ALIGN), true)
849
850/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
851 some alignment increase, instead of optimization only purposes. E.g.
852 AMD x86-64 psABI says that variables with array type larger than 15 bytes
853 must be aligned to 16 byte boundaries.
854
855 If this macro is not defined, then ALIGN is used. */
856
857#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
858 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
859
860/* If defined, a C expression to compute the alignment for a local
861 variable. TYPE is the data type, and ALIGN is the alignment that
862 the object would ordinarily have. The value of this macro is used
863 instead of that alignment to align the object.
864
865 If this macro is not defined, then ALIGN is used.
866
867 One use of this macro is to increase alignment of medium-size
868 data to make it all fit in fewer cache lines. */
869
76fe54f0
L
870#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
871 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
872
873/* If defined, a C expression to compute the alignment for stack slot.
874 TYPE is the data type, MODE is the widest mode available, and ALIGN
875 is the alignment that the slot would ordinarily have. The value of
876 this macro is used instead of that alignment to align the slot.
877
878 If this macro is not defined, then ALIGN is used when TYPE is NULL,
879 Otherwise, LOCAL_ALIGNMENT will be used.
880
881 One use of this macro is to set alignment of stack slot to the
882 maximum alignment of all possible modes which the slot may have. */
883
884#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
885 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 886
9bfaf89d
JJ
887/* If defined, a C expression to compute the alignment for a local
888 variable DECL.
889
890 If this macro is not defined, then
891 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
892
893 One use of this macro is to increase alignment of medium-size
894 data to make it all fit in fewer cache lines. */
895
896#define LOCAL_DECL_ALIGNMENT(DECL) \
897 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
898
ae58e548
JJ
899/* If defined, a C expression to compute the minimum required alignment
900 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
901 MODE, assuming normal alignment ALIGN.
902
903 If this macro is not defined, then (ALIGN) will be used. */
904
905#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
906 ix86_minimum_alignment (EXP, MODE, ALIGN)
907
9bfaf89d 908
9cd10576 909/* Set this nonzero if move instructions will actually fail to work
c98f8742 910 when given unaligned data. */
b4ac57ab 911#define STRICT_ALIGNMENT 0
c98f8742
JVA
912
913/* If bit field type is int, don't let it cross an int,
914 and give entire struct the alignment of an int. */
43a88a8c 915/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 916#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
917\f
918/* Standard register usage. */
919
920/* This processor has special stack-like registers. See reg-stack.c
892a2d68 921 for details. */
c98f8742
JVA
922
923#define STACK_REGS
ce998900 924
d9a5f180 925#define IS_STACK_MODE(MODE) \
63001560
UB
926 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
927 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 928 || (MODE) == XFmode)
c98f8742
JVA
929
930/* Number of actual hardware registers.
931 The hardware registers are assigned numbers for the compiler
932 from 0 to just below FIRST_PSEUDO_REGISTER.
933 All registers that the compiler knows about must be given numbers,
934 even those that are not normally considered general registers.
935
936 In the 80386 we give the 8 general purpose registers the numbers 0-7.
937 We number the floating point registers 8-15.
938 Note that registers 0-7 can be accessed as a short or int,
939 while only 0-3 may be used with byte `mov' instructions.
940
941 Reg 16 does not correspond to any hardware register, but instead
942 appears in the RTL as an argument pointer prior to reload, and is
943 eliminated during reloading in favor of either the stack or frame
892a2d68 944 pointer. */
c98f8742 945
089d1227 946#define FIRST_PSEUDO_REGISTER 77
c98f8742 947
3073d01c
ML
948/* Number of hardware registers that go into the DWARF-2 unwind info.
949 If not defined, equals FIRST_PSEUDO_REGISTER. */
950
951#define DWARF_FRAME_REGISTERS 17
952
c98f8742
JVA
953/* 1 for registers that have pervasive standard uses
954 and are not available for the register allocator.
3f3f2124 955 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 956
621bc046
UB
957 REX registers are disabled for 32bit targets in
958 TARGET_CONDITIONAL_REGISTER_USAGE. */
959
a7180f70
BS
960#define FIXED_REGISTERS \
961/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 962{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
963/*arg,flags,fpsr,fpcr,frame*/ \
964 1, 1, 1, 1, 1, \
a7180f70
BS
965/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
966 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 967/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
968 0, 0, 0, 0, 0, 0, 0, 0, \
969/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 970 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 971/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
972 0, 0, 0, 0, 0, 0, 0, 0, \
973/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
976 0, 0, 0, 0, 0, 0, 0, 0, \
977/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 978 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
979
980/* 1 for registers not available across function calls.
981 These must include the FIXED_REGISTERS and also any
982 registers that can be used without being saved.
983 The latter must include the registers where values are returned
984 and the register where structure-value addresses are passed.
fce5a9f2
EC
985 Aside from that, you can include as many other registers as you like.
986
621bc046
UB
987 Value is set to 1 if the register is call used unconditionally.
988 Bit one is set if the register is call used on TARGET_32BIT ABI.
989 Bit two is set if the register is call used on TARGET_64BIT ABI.
990 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
991
992 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
993
a7180f70
BS
994#define CALL_USED_REGISTERS \
995/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 996{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
997/*arg,flags,fpsr,fpcr,frame*/ \
998 1, 1, 1, 1, 1, \
a7180f70 999/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1000 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1001/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1002 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1003/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1004 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1005/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1006 6, 6, 6, 6, 6, 6, 6, 6, \
1007/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1008 6, 6, 6, 6, 6, 6, 6, 6, \
1009/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1010 6, 6, 6, 6, 6, 6, 6, 6, \
1011 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 1012 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1013
3b3c6a3f
MM
1014/* Order in which to allocate registers. Each register must be
1015 listed once, even those in FIXED_REGISTERS. List frame pointer
1016 late and fixed registers last. Note that, in general, we prefer
1017 registers listed in CALL_USED_REGISTERS, keeping the others
1018 available for storage of persistent values.
1019
5a733826 1020 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1021 so this is just empty initializer for array. */
3b3c6a3f 1022
162f023b
JH
1023#define REG_ALLOC_ORDER \
1024{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1025 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1026 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1027 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
089d1227 1028 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1029
5a733826 1030/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1031 to be rearranged based on a particular function. When using sse math,
03c259ad 1032 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1033
5a733826 1034#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1035
f5316dfe 1036
7c800926
KT
1037#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1038
c98f8742
JVA
1039/* Return number of consecutive hard regs needed starting at reg REGNO
1040 to hold something of mode MODE.
1041 This is ordinarily the length in words of a value of mode MODE
1042 but can be less for certain modes in special long registers.
1043
fce5a9f2 1044 Actually there are no two word move instructions for consecutive
c98f8742 1045 registers. And only registers 0-3 may have mov byte instructions
63001560 1046 applied to them. */
c98f8742 1047
ce998900 1048#define HARD_REGNO_NREGS(REGNO, MODE) \
9e4a4dd6
AI
1049 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) \
1050 || MMX_REGNO_P (REGNO) || MASK_REGNO_P (REGNO) \
92d0fb09 1051 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1052 : ((MODE) == XFmode \
92d0fb09 1053 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1054 : (MODE) == XCmode \
92d0fb09 1055 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1056 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1057
8521c414
JM
1058#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1059 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1060 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1061 ? 0 \
1062 : ((MODE) == XFmode || (MODE) == XCmode)) \
1063 : 0)
1064
1065#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1066
95879c72
L
1067#define VALID_AVX256_REG_MODE(MODE) \
1068 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1069 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1070 || (MODE) == V4DFmode)
95879c72 1071
4ac005ba 1072#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1073 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1074
3f97cb0b
AI
1075#define VALID_AVX512F_SCALAR_MODE(MODE) \
1076 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1077 || (MODE) == SFmode)
1078
1079#define VALID_AVX512F_REG_MODE(MODE) \
1080 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1081 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1082 || (MODE) == V4TImode)
1083
1084#define VALID_AVX512VL_128_REG_MODE(MODE) \
1085 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1086 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1087
ce998900
UB
1088#define VALID_SSE2_REG_MODE(MODE) \
1089 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1090 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1091
d9a5f180 1092#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1093 ((MODE) == V1TImode || (MODE) == TImode \
1094 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1095 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1096
47f339cf 1097#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1098 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1099
d9a5f180 1100#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1101 ((MODE == V1DImode) || (MODE) == DImode \
1102 || (MODE) == V2SImode || (MODE) == SImode \
1103 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1104
ce998900
UB
1105#define VALID_DFP_MODE_P(MODE) \
1106 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1107
d9a5f180 1108#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1109 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1110 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1111
d9a5f180 1112#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1113 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1114 || (MODE) == DImode \
1115 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1116 || (MODE) == CDImode \
1117 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1118 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1119
822eda12 1120/* Return true for modes passed in SSE registers. */
ce998900 1121#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1122 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1123 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1124 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1125 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1126 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1127 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1128 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1129 || (MODE) == V16SFmode)
822eda12 1130
85a77221
AI
1131#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1132
9e4a4dd6
AI
1133#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1134
e075ae69 1135/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1136
a946dd00 1137#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1138 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1139
1140/* Value is 1 if it is a good idea to tie two pseudo registers
1141 when one has mode MODE1 and one has mode MODE2.
1142 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1143 for any hard reg, then this must be 0 for correct output. */
1144
c1c5b5e3 1145#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1146
ff25ef99
ZD
1147/* It is possible to write patterns to move flags; but until someone
1148 does it, */
1149#define AVOID_CCMODE_COPIES
c98f8742 1150
e075ae69 1151/* Specify the modes required to caller save a given hard regno.
787dc842 1152 We do this on i386 to prevent flags from being saved at all.
e075ae69 1153
787dc842
JH
1154 Kill any attempts to combine saving of modes. */
1155
d9a5f180
GS
1156#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1157 (CC_REGNO_P (REGNO) ? VOIDmode \
1158 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1159 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1160 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1161 || MASK_REGNO_P (REGNO)) ? SImode \
1162 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1163 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1164 : (MODE))
ce998900 1165
51ba747a
RH
1166/* The only ABI that saves SSE registers across calls is Win64 (thus no
1167 need to check the current ABI here), and with AVX enabled Win64 only
1168 guarantees that the low 16 bytes are saved. */
1169#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1170 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1171
c98f8742
JVA
1172/* Specify the registers used for certain standard purposes.
1173 The values of these macros are register numbers. */
1174
1175/* on the 386 the pc register is %eip, and is not usable as a general
1176 register. The ordinary mov instructions won't work */
1177/* #define PC_REGNUM */
1178
1179/* Register to use for pushing function arguments. */
1180#define STACK_POINTER_REGNUM 7
1181
1182/* Base register for access to local variables of the function. */
564d80f4
JH
1183#define HARD_FRAME_POINTER_REGNUM 6
1184
1185/* Base register for access to local variables of the function. */
b0d95de8 1186#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1187
1188/* First floating point reg */
1189#define FIRST_FLOAT_REG 8
1190
1191/* First & last stack-like regs */
1192#define FIRST_STACK_REG FIRST_FLOAT_REG
1193#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1194
a7180f70
BS
1195#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1196#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1197
3f97cb0b 1198#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1199#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1200
3f97cb0b 1201#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1202#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1203
3f97cb0b 1204#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1205#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1206
3f97cb0b
AI
1207#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1208#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1209
85a77221
AI
1210#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1211#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1212
aabcd309 1213/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1214 requiring a frame pointer. */
1215#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1216#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1217#endif
1218
1219/* Make sure we can access arbitrary call frames. */
1220#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1221
1222/* Base register for access to arguments of the function. */
1223#define ARG_POINTER_REGNUM 16
1224
c98f8742 1225/* Register to hold the addressing base for position independent
5b43fed1
RH
1226 code access to data items. We don't use PIC pointer for 64bit
1227 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1228 pessimizing code dealing with EBX.
bd09bdeb
RH
1229
1230 To avoid clobbering a call-saved register unnecessarily, we renumber
1231 the pic register when possible. The change is visible after the
1232 prologue has been emitted. */
1233
2e3f842f 1234#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb 1235
bcb21886
KY
1236#define PIC_OFFSET_TABLE_REGNUM \
1237 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1238 || TARGET_PECOFF)) \
1239 || !flag_pic \
1240 ? INVALID_REGNUM \
1241 : pic_offset_table_rtx \
1242 ? INVALID_REGNUM \
1243 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1244
5fc0e5df
KW
1245#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1246
c51e6d85 1247/* This is overridden by <cygwin.h>. */
5e062767
DS
1248#define MS_AGGREGATE_RETURN 0
1249
61fec9ff 1250#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1251\f
1252/* Define the classes of registers for register constraints in the
1253 machine description. Also define ranges of constants.
1254
1255 One of the classes must always be named ALL_REGS and include all hard regs.
1256 If there is more than one class, another class must be named NO_REGS
1257 and contain no registers.
1258
1259 The name GENERAL_REGS must be the name of a class (or an alias for
1260 another name such as ALL_REGS). This is the class of registers
1261 that is allowed by "g" or "r" in a register constraint.
1262 Also, registers outside this class are allocated only when
1263 instructions express preferences for them.
1264
1265 The classes must be numbered in nondecreasing order; that is,
1266 a larger-numbered class must never be contained completely
1267 in a smaller-numbered class.
1268
1269 For any two classes, it is very desirable that there be another
ab408a86
JVA
1270 class that represents their union.
1271
1272 It might seem that class BREG is unnecessary, since no useful 386
1273 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1274 and the "b" register constraint is useful in asms for syscalls.
1275
03c259ad 1276 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1277
1278enum reg_class
1279{
1280 NO_REGS,
e075ae69 1281 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1282 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1283 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1284 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1285 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1286 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1287 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1288 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1289 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1290 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1291 FLOAT_REGS,
06f4e35d 1292 SSE_FIRST_REG,
a7180f70 1293 SSE_REGS,
3f97cb0b
AI
1294 EVEX_SSE_REGS,
1295 ALL_SSE_REGS,
a7180f70 1296 MMX_REGS,
446988df
JH
1297 FP_TOP_SSE_REGS,
1298 FP_SECOND_SSE_REGS,
1299 FLOAT_SSE_REGS,
1300 FLOAT_INT_REGS,
1301 INT_SSE_REGS,
1302 FLOAT_INT_SSE_REGS,
85a77221
AI
1303 MASK_EVEX_REGS,
1304 MASK_REGS,
c98f8742
JVA
1305 ALL_REGS, LIM_REG_CLASSES
1306};
1307
d9a5f180
GS
1308#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1309
1310#define INTEGER_CLASS_P(CLASS) \
1311 reg_class_subset_p ((CLASS), GENERAL_REGS)
1312#define FLOAT_CLASS_P(CLASS) \
1313 reg_class_subset_p ((CLASS), FLOAT_REGS)
1314#define SSE_CLASS_P(CLASS) \
3f97cb0b 1315 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1316#define MMX_CLASS_P(CLASS) \
f75959a6 1317 ((CLASS) == MMX_REGS)
d9a5f180
GS
1318#define MAYBE_INTEGER_CLASS_P(CLASS) \
1319 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1320#define MAYBE_FLOAT_CLASS_P(CLASS) \
1321 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1322#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1323 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1324#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1325 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1326#define MAYBE_MASK_CLASS_P(CLASS) \
1327 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1328
1329#define Q_CLASS_P(CLASS) \
1330 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1331
0bd72901
UB
1332#define MAYBE_NON_Q_CLASS_P(CLASS) \
1333 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1334
43f3a59d 1335/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1336
1337#define REG_CLASS_NAMES \
1338{ "NO_REGS", \
ab408a86 1339 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1340 "SIREG", "DIREG", \
e075ae69
RH
1341 "AD_REGS", \
1342 "Q_REGS", "NON_Q_REGS", \
c98f8742 1343 "INDEX_REGS", \
3f3f2124 1344 "LEGACY_REGS", \
621bc046 1345 "CLOBBERED_REGS", \
c98f8742
JVA
1346 "GENERAL_REGS", \
1347 "FP_TOP_REG", "FP_SECOND_REG", \
1348 "FLOAT_REGS", \
cb482895 1349 "SSE_FIRST_REG", \
a7180f70 1350 "SSE_REGS", \
3f97cb0b
AI
1351 "EVEX_SSE_REGS", \
1352 "ALL_SSE_REGS", \
a7180f70 1353 "MMX_REGS", \
446988df
JH
1354 "FP_TOP_SSE_REGS", \
1355 "FP_SECOND_SSE_REGS", \
1356 "FLOAT_SSE_REGS", \
8fcaaa80 1357 "FLOAT_INT_REGS", \
446988df
JH
1358 "INT_SSE_REGS", \
1359 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1360 "MASK_EVEX_REGS", \
1361 "MASK_REGS", \
c98f8742
JVA
1362 "ALL_REGS" }
1363
ac2e563f
RH
1364/* Define which registers fit in which classes. This is an initializer
1365 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1366
621bc046
UB
1367 Note that CLOBBERED_REGS are calculated by
1368 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1369
3f97cb0b 1370#define REG_CLASS_CONTENTS \
089d1227
IE
1371{ { 0x00, 0x0, 0x0 }, \
1372 { 0x01, 0x0, 0x0 }, /* AREG */ \
1373 { 0x02, 0x0, 0x0 }, /* DREG */ \
1374 { 0x04, 0x0, 0x0 }, /* CREG */ \
1375 { 0x08, 0x0, 0x0 }, /* BREG */ \
1376 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1377 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1378 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1379 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1380 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1381 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1382 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1383 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1384 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1385 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1386 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1387 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1388 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1389{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1390 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1391{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1392{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1393{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1394{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1395{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1396{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1397{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1398{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1399 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1400 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1401{ 0xffffffff,0xffffffff,0x1fff } \
e075ae69 1402}
c98f8742
JVA
1403
1404/* The same information, inverted:
1405 Return the class number of the smallest class containing
1406 reg number REGNO. This could be a conditional expression
1407 or could index an array. */
1408
c98f8742
JVA
1409#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1410
42db504c
SB
1411/* When this hook returns true for MODE, the compiler allows
1412 registers explicitly used in the rtl to be used as spill registers
1413 but prevents the compiler from extending the lifetime of these
1414 registers. */
1415#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1416
fc27f749
UB
1417#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1418#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1419
1420#define GENERAL_REG_P(X) \
6189a572 1421 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1422#define GENERAL_REGNO_P(N) \
1423 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1424
fc27f749
UB
1425#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1426#define ANY_QI_REGNO_P(N) \
1427 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1428
fc27f749 1429#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1430#define REX_INT_REGNO_P(N) \
1431 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1432
66aaf16f
UB
1433#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1434#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1435
446988df 1436#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1437#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1438
54a88090 1439#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1440 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1441
fc27f749 1442#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1443#define SSE_REGNO_P(N) \
1444 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1445 || REX_SSE_REGNO_P (N) \
1446 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1447
4977bab6 1448#define REX_SSE_REGNO_P(N) \
fb84c7a0 1449 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1450
3f97cb0b
AI
1451#define EXT_REX_SSE_REGNO_P(N) \
1452 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1453
d9a5f180 1454#define SSE_REGNO(N) \
3f97cb0b
AI
1455 ((N) < 8 ? FIRST_SSE_REG + (N) \
1456 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1457 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1458
9e4a4dd6 1459#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221
AI
1460#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1461#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1462
d9a5f180 1463#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1464 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1465
cbf2e4d4
HJ
1466#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1467 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1468 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1469
fc27f749 1470#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1471#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1472
fc27f749 1473#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1474
e075ae69
RH
1475#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1476#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1477
c98f8742
JVA
1478/* The class value for index registers, and the one for base regs. */
1479
1480#define INDEX_REG_CLASS INDEX_REGS
1481#define BASE_REG_CLASS GENERAL_REGS
1482
c98f8742 1483/* Place additional restrictions on the register class to use when it
4cbb525c 1484 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1485 register for which class CLASS would ordinarily be used.
1486
1487 We avoid classes containing registers from multiple units due to
1488 the limitation in ix86_secondary_memory_needed. We limit these
1489 classes to their "natural mode" single unit register class, depending
1490 on the unit availability.
1491
1492 Please note that reg_class_subset_p is not commutative, so these
1493 conditions mean "... if (CLASS) includes ALL registers from the
1494 register set." */
1495
1496#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1497 (((MODE) == QImode && !TARGET_64BIT \
1498 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1499 : (((MODE) == SImode || (MODE) == DImode) \
1500 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1501 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1502 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1503 : (X87_FLOAT_MODE_P (MODE) \
1504 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1505 : (CLASS))
c98f8742 1506
85ff473e 1507/* If we are copying between general and FP registers, we need a memory
f84aa48a 1508 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1509#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1510 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1511
c62b3659
UB
1512/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1513 There is no need to emit full 64 bit move on 64 bit targets
1514 for integral modes that can be moved using 32 bit move. */
1515#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1516 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1517 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1518 : MODE)
1519
1272914c
RH
1520/* Return a class of registers that cannot change FROM mode to TO mode. */
1521
1522#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1523 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1524\f
1525/* Stack layout; function entry, exit and calling. */
1526
1527/* Define this if pushing a word on the stack
1528 makes the stack pointer a smaller address. */
1529#define STACK_GROWS_DOWNWARD
1530
a4d05547 1531/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1532 is at the high-address end of the local variables;
1533 that is, each additional local variable allocated
1534 goes at a more negative offset in the frame. */
f62c8a5c 1535#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1536
1537/* Offset within stack frame to start allocating local variables at.
1538 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1539 first local allocated. Otherwise, it is the offset to the BEGINNING
1540 of the first local allocated. */
1541#define STARTING_FRAME_OFFSET 0
1542
8c2b2fae
UB
1543/* If we generate an insn to push BYTES bytes, this says how many the stack
1544 pointer really advances by. On 386, we have pushw instruction that
1545 decrements by exactly 2 no matter what the position was, there is no pushb.
1546
1547 But as CIE data alignment factor on this arch is -4 for 32bit targets
1548 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1549 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1550
d2836273 1551#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1552 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1553
1554/* If defined, the maximum amount of space required for outgoing arguments
1555 will be computed and placed into the variable `crtl->outgoing_args_size'.
1556 No space will be pushed onto the stack for each call; instead, the
1557 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1558
1559 In 32bit mode enabling argument accumulation results in about 5% code size
1560 growth becuase move instructions are less compact than push. In 64bit
1561 mode the difference is less drastic but visible.
1562
1563 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1564 actually grow with accumulation. Is that because accumulated args
41ee845b 1565 unwind info became unnecesarily bloated?
f830ddc2
RH
1566
1567 With the 64-bit MS ABI, we can generate correct code with or without
1568 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1569 generated without accumulated args is terrible.
41ee845b
JH
1570
1571 If stack probes are required, the space used for large function
1572 arguments on the stack must also be probed, so enable
1573 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1574
6c6094f1 1575#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1576 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1577 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1578
1579/* If defined, a C expression whose value is nonzero when we want to use PUSH
1580 instructions to pass outgoing arguments. */
1581
1582#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1583
2da4124d
L
1584/* We want the stack and args grow in opposite directions, even if
1585 PUSH_ARGS is 0. */
1586#define PUSH_ARGS_REVERSED 1
1587
c98f8742
JVA
1588/* Offset of first parameter from the argument pointer register value. */
1589#define FIRST_PARM_OFFSET(FNDECL) 0
1590
a7180f70
BS
1591/* Define this macro if functions should assume that stack space has been
1592 allocated for arguments even when their values are passed in registers.
1593
1594 The value of this macro is the size, in bytes, of the area reserved for
1595 arguments passed in registers for the function represented by FNDECL.
1596
1597 This space can be allocated by the caller, or be a part of the
1598 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1599 which. */
7c800926
KT
1600#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1601
4ae8027b 1602#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1603 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1604
c98f8742
JVA
1605/* Define how to find the value returned by a library function
1606 assuming the value has mode MODE. */
1607
4ae8027b 1608#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1609
e9125c09
TW
1610/* Define the size of the result block used for communication between
1611 untyped_call and untyped_return. The block contains a DImode value
1612 followed by the block used by fnsave and frstor. */
1613
1614#define APPLY_RESULT_SIZE (8+108)
1615
b08de47e 1616/* 1 if N is a possible register number for function argument passing. */
53c17031 1617#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1618
1619/* Define a data type for recording info about an argument list
1620 during the scan of that argument list. This data type should
1621 hold all necessary information about the function itself
1622 and about the args processed so far, enough to enable macros
b08de47e 1623 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1624
e075ae69 1625typedef struct ix86_args {
fa283935 1626 int words; /* # words passed so far */
b08de47e
MM
1627 int nregs; /* # registers available for passing */
1628 int regno; /* next available register number */
3e65f251
KT
1629 int fastcall; /* fastcall or thiscall calling convention
1630 is used */
fa283935 1631 int sse_words; /* # sse words passed so far */
a7180f70 1632 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1633 int warn_avx512f; /* True when we want to warn
1634 about AVX512F ABI. */
95879c72 1635 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1636 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1637 int warn_mmx; /* True when we want to warn about MMX ABI. */
1638 int sse_regno; /* next available sse register number */
1639 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1640 int mmx_nregs; /* # mmx registers available for passing */
1641 int mmx_regno; /* next available mmx register number */
892a2d68 1642 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1643 int caller; /* true if it is caller. */
2824d6e5
UB
1644 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1645 SFmode/DFmode arguments should be passed
1646 in SSE registers. Otherwise 0. */
51212b32 1647 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1648 MS_ABI for ms abi. */
b08de47e 1649} CUMULATIVE_ARGS;
c98f8742
JVA
1650
1651/* Initialize a variable CUM of type CUMULATIVE_ARGS
1652 for a call to a function whose data type is FNTYPE.
b08de47e 1653 For a library call, FNTYPE is 0. */
c98f8742 1654
0f6937fe 1655#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1656 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1657 (N_NAMED_ARGS) != -1)
c98f8742 1658
c98f8742
JVA
1659/* Output assembler code to FILE to increment profiler label # LABELNO
1660 for profiling a function entry. */
1661
a5fa1ecd
JH
1662#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1663
1664#define MCOUNT_NAME "_mcount"
1665
3c5273a9
KT
1666#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1667
a5fa1ecd 1668#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1669
1670/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1671 the stack pointer does not matter. The value is tested only in
1672 functions that have frame pointers.
1673 No definition is equivalent to always zero. */
fce5a9f2 1674/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1675 we have to restore it ourselves from the frame pointer, in order to
1676 use pop */
1677
1678#define EXIT_IGNORE_STACK 1
1679
c98f8742
JVA
1680/* Output assembler code for a block containing the constant parts
1681 of a trampoline, leaving space for the variable parts. */
1682
a269a03c 1683/* On the 386, the trampoline contains two instructions:
c98f8742 1684 mov #STATIC,ecx
a269a03c
JC
1685 jmp FUNCTION
1686 The trampoline is generated entirely at runtime. The operand of JMP
1687 is the address of FUNCTION relative to the instruction following the
1688 JMP (which is 5 bytes long). */
c98f8742
JVA
1689
1690/* Length in units of the trampoline for entering a nested function. */
1691
3452586b 1692#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1693\f
1694/* Definitions for register eliminations.
1695
1696 This is an array of structures. Each structure initializes one pair
1697 of eliminable registers. The "from" register number is given first,
1698 followed by "to". Eliminations of the same "from" register are listed
1699 in order of preference.
1700
afc2cd05
NC
1701 There are two registers that can always be eliminated on the i386.
1702 The frame pointer and the arg pointer can be replaced by either the
1703 hard frame pointer or to the stack pointer, depending upon the
1704 circumstances. The hard frame pointer is not used before reload and
1705 so it is not eligible for elimination. */
c98f8742 1706
564d80f4
JH
1707#define ELIMINABLE_REGS \
1708{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1709 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1710 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1711 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1712
c98f8742
JVA
1713/* Define the offset between two registers, one to be eliminated, and the other
1714 its replacement, at the start of a routine. */
1715
d9a5f180
GS
1716#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1717 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1718\f
1719/* Addressing modes, and classification of registers for them. */
1720
c98f8742
JVA
1721/* Macros to check register numbers against specific register classes. */
1722
1723/* These assume that REGNO is a hard or pseudo reg number.
1724 They give nonzero only if REGNO is a hard reg of the suitable class
1725 or a pseudo reg currently allocated to a suitable hard reg.
1726 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1727 has been allocated, which happens in reginfo.c during register
1728 allocation. */
c98f8742 1729
3f3f2124
JH
1730#define REGNO_OK_FOR_INDEX_P(REGNO) \
1731 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1732 || REX_INT_REGNO_P (REGNO) \
1733 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1734 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1735
3f3f2124 1736#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1737 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1738 || (REGNO) == ARG_POINTER_REGNUM \
1739 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1740 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1741
c98f8742
JVA
1742/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1743 and check its validity for a certain class.
1744 We have two alternate definitions for each of them.
1745 The usual definition accepts all pseudo regs; the other rejects
1746 them unless they have been allocated suitable hard regs.
1747 The symbol REG_OK_STRICT causes the latter definition to be used.
1748
1749 Most source files want to accept pseudo regs in the hope that
1750 they will get allocated to the class that the insn wants them to be in.
1751 Source files for reload pass need to be strict.
1752 After reload, it makes no difference, since pseudo regs have
1753 been eliminated by then. */
1754
c98f8742 1755
ff482c8d 1756/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1757#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1758 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1759 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1760 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1761
3b3c6a3f 1762#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1763 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1764 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1765 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1766 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1767
3b3c6a3f
MM
1768/* Strict versions, hard registers only */
1769#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1770#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1771
3b3c6a3f 1772#ifndef REG_OK_STRICT
d9a5f180
GS
1773#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1774#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1775
1776#else
d9a5f180
GS
1777#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1778#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1779#endif
1780
331d9186 1781/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1782 that is a valid memory address for an instruction.
1783 The MODE argument is the machine mode for the MEM expression
1784 that wants to use this address.
1785
331d9186 1786 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1787 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1788
1789 See legitimize_pic_address in i386.c for details as to what
1790 constitutes a legitimate address when -fpic is used. */
1791
1792#define MAX_REGS_PER_ADDRESS 2
1793
f996902d 1794#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1795
ae1547cc
UB
1796/* Try a machine-dependent way of reloading an illegitimate address
1797 operand. If we find one, push the reload and jump to WIN. This
1798 macro is used in only one place: `find_reloads_address' in reload.c. */
1799
1800#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1801do { \
1802 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1803 (int)(TYPE), (INDL))) \
1804 goto WIN; \
1805} while (0)
1806
b949ea8b
JW
1807/* If defined, a C expression to determine the base term of address X.
1808 This macro is used in only one place: `find_base_term' in alias.c.
1809
1810 It is always safe for this macro to not be defined. It exists so
1811 that alias analysis can understand machine-dependent addresses.
1812
1813 The typical use of this macro is to handle addresses containing
1814 a label_ref or symbol_ref within an UNSPEC. */
1815
d9a5f180 1816#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1817
c98f8742 1818/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1819 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1820 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1821
f996902d 1822#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1823
1824#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1825 (GET_CODE (X) == SYMBOL_REF \
1826 || GET_CODE (X) == LABEL_REF \
1827 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1828\f
b08de47e
MM
1829/* Max number of args passed in registers. If this is more than 3, we will
1830 have problems with ebx (register #4), since it is a caller save register and
1831 is also used as the pic register in ELF. So for now, don't allow more than
1832 3 registers to be passed in registers. */
1833
7c800926
KT
1834/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1835#define X86_64_REGPARM_MAX 6
72fa3605 1836#define X86_64_MS_REGPARM_MAX 4
7c800926 1837
72fa3605 1838#define X86_32_REGPARM_MAX 3
7c800926 1839
4ae8027b 1840#define REGPARM_MAX \
2824d6e5
UB
1841 (TARGET_64BIT \
1842 ? (TARGET_64BIT_MS_ABI \
1843 ? X86_64_MS_REGPARM_MAX \
1844 : X86_64_REGPARM_MAX) \
4ae8027b 1845 : X86_32_REGPARM_MAX)
d2836273 1846
72fa3605
UB
1847#define X86_64_SSE_REGPARM_MAX 8
1848#define X86_64_MS_SSE_REGPARM_MAX 4
1849
b6010cab 1850#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1851
4ae8027b 1852#define SSE_REGPARM_MAX \
2824d6e5
UB
1853 (TARGET_64BIT \
1854 ? (TARGET_64BIT_MS_ABI \
1855 ? X86_64_MS_SSE_REGPARM_MAX \
1856 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1857 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1858
1859#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1860\f
1861/* Specify the machine mode that this machine uses
1862 for the index in the tablejump instruction. */
dc4d7240 1863#define CASE_VECTOR_MODE \
6025b127 1864 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1865
c98f8742
JVA
1866/* Define this as 1 if `char' should by default be signed; else as 0. */
1867#define DEFAULT_SIGNED_CHAR 1
1868
1869/* Max number of bytes we can move from memory to memory
1870 in one reasonably fast instruction. */
65d9c0ab
JH
1871#define MOVE_MAX 16
1872
1873/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1874 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1875 number of bytes we can move with a single instruction. */
63001560 1876#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1877
7e24ffc9 1878/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1879 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1880 Increasing the value will always make code faster, but eventually
1881 incurs high cost in increased code size.
c98f8742 1882
e2e52e1b 1883 If you don't define this, a reasonable default is used. */
c98f8742 1884
e04ad03d 1885#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1886
45d78e7f
JJ
1887/* If a clear memory operation would take CLEAR_RATIO or more simple
1888 move-instruction sequences, we will do a clrmem or libcall instead. */
1889
e04ad03d 1890#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1891
53f00dde
UB
1892/* Define if shifts truncate the shift count which implies one can
1893 omit a sign-extension or zero-extension of a shift count.
1894
1895 On i386, shifts do truncate the count. But bit test instructions
1896 take the modulo of the bit offset operand. */
c98f8742
JVA
1897
1898/* #define SHIFT_COUNT_TRUNCATED */
1899
1900/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1901 is done just by pretending it is already truncated. */
1902#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1903
d9f32422
JH
1904/* A macro to update M and UNSIGNEDP when an object whose type is
1905 TYPE and which has the specified mode and signedness is to be
1906 stored in a register. This macro is only called when TYPE is a
1907 scalar type.
1908
f710504c 1909 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1910 quantities to SImode. The choice depends on target type. */
1911
1912#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1913do { \
d9f32422
JH
1914 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1915 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1916 (MODE) = SImode; \
1917} while (0)
d9f32422 1918
c98f8742
JVA
1919/* Specify the machine mode that pointers have.
1920 After generation of rtl, the compiler makes no further distinction
1921 between pointers and any other objects of this machine mode. */
28968d91 1922#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1923
f0ea7581
L
1924/* A C expression whose value is zero if pointers that need to be extended
1925 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1926 greater then zero if they are zero-extended and less then zero if the
1927 ptr_extend instruction should be used. */
1928
1929#define POINTERS_EXTEND_UNSIGNED 1
1930
c98f8742
JVA
1931/* A function address in a call instruction
1932 is a byte address (for indexing purposes)
1933 so give the MEM rtx a byte's mode. */
1934#define FUNCTION_MODE QImode
d4ba09c0 1935\f
d4ba09c0 1936
d4ba09c0
SC
1937/* A C expression for the cost of a branch instruction. A value of 1
1938 is the default; other values are interpreted relative to that. */
1939
3a4fd356
JH
1940#define BRANCH_COST(speed_p, predictable_p) \
1941 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1942
e327d1a3
L
1943/* An integer expression for the size in bits of the largest integer machine
1944 mode that should actually be used. We allow pairs of registers. */
1945#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1946
d4ba09c0
SC
1947/* Define this macro as a C expression which is nonzero if accessing
1948 less than a word of memory (i.e. a `char' or a `short') is no
1949 faster than accessing a word of memory, i.e., if such access
1950 require more than one instruction or if there is no difference in
1951 cost between byte and (aligned) word loads.
1952
1953 When this macro is not defined, the compiler will access a field by
1954 finding the smallest containing object; when it is defined, a
1955 fullword load will be used if alignment permits. Unless bytes
1956 accesses are faster than word accesses, using word accesses is
1957 preferable since it may eliminate subsequent memory access if
1958 subsequent accesses occur to other fields in the same word of the
1959 structure, but to different bytes. */
1960
1961#define SLOW_BYTE_ACCESS 0
1962
1963/* Nonzero if access to memory by shorts is slow and undesirable. */
1964#define SLOW_SHORT_ACCESS 0
1965
d4ba09c0
SC
1966/* Define this macro to be the value 1 if unaligned accesses have a
1967 cost many times greater than aligned accesses, for example if they
1968 are emulated in a trap handler.
1969
9cd10576
KH
1970 When this macro is nonzero, the compiler will act as if
1971 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1972 moves. This can cause significantly more instructions to be
9cd10576 1973 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1974 accesses only add a cycle or two to the time for a memory access.
1975
1976 If the value of this macro is always zero, it need not be defined. */
1977
e1565e65 1978/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1979
d4ba09c0
SC
1980/* Define this macro if it is as good or better to call a constant
1981 function address than to call an address kept in a register.
1982
1983 Desirable on the 386 because a CALL with a constant address is
1984 faster than one with a register address. */
1985
1986#define NO_FUNCTION_CSE
c98f8742 1987\f
c572e5ba
JVA
1988/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1989 return the mode to be used for the comparison.
1990
1991 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1992 VOIDmode should be used in all other cases.
c572e5ba 1993
16189740 1994 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1995 possible, to allow for more combinations. */
c98f8742 1996
d9a5f180 1997#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1998
9cd10576 1999/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2000 reversed. */
2001
2002#define REVERSIBLE_CC_MODE(MODE) 1
2003
2004/* A C expression whose value is reversed condition code of the CODE for
2005 comparison done in CC_MODE mode. */
3c5cb3e4 2006#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2007
c98f8742
JVA
2008\f
2009/* Control the assembler format that we output, to the extent
2010 this does not vary between assemblers. */
2011
2012/* How to refer to registers in assembler output.
892a2d68 2013 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2014
a7b376ee 2015/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2016 For non floating point regs, the following are the HImode names.
2017
2018 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2019 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2020 "y" code. */
c98f8742 2021
a7180f70
BS
2022#define HI_REGISTER_NAMES \
2023{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2024 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2025 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2026 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2027 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2028 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2029 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2030 "xmm16", "xmm17", "xmm18", "xmm19", \
2031 "xmm20", "xmm21", "xmm22", "xmm23", \
2032 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2033 "xmm28", "xmm29", "xmm30", "xmm31", \
089d1227 2034 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2035
c98f8742
JVA
2036#define REGISTER_NAMES HI_REGISTER_NAMES
2037
2038/* Table of additional register names to use in user input. */
2039
2040#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2041{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2042 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2043 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2044 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2045 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2046 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2047 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2048 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2049 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2050 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2051 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2052 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2053 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2054 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2055 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2056 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2057 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2058 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2059 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2060 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2061 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2062 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2063
2064/* Note we are omitting these since currently I don't know how
2065to get gcc to use these, since they want the same but different
2066number as al, and ax.
2067*/
2068
c98f8742 2069#define QI_REGISTER_NAMES \
3f3f2124 2070{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2071
2072/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2073 of regs 0 through 3. */
c98f8742
JVA
2074
2075#define QI_HIGH_REGISTER_NAMES \
2076{"ah", "dh", "ch", "bh", }
2077
2078/* How to renumber registers for dbx and gdb. */
2079
d9a5f180
GS
2080#define DBX_REGISTER_NUMBER(N) \
2081 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2082
9a82e702
MS
2083extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2084extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2085extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2086
780a5b71
UB
2087extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2088
469ac993
JM
2089/* Before the prologue, RA is at 0(%esp). */
2090#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2091 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2092
e414ab29 2093/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2094#define RETURN_ADDR_RTX(COUNT, FRAME) \
2095 ((COUNT) == 0 \
0a81f074
RS
2096 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2097 -UNITS_PER_WORD)) \
2098 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2099
892a2d68 2100/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2101#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2102
a6ab3aad 2103/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2104#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2105
1020a5ab 2106/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2107#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2108#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2109
ad919812 2110
e4c4ebeb
RH
2111/* Select a format to encode pointers in exception handling data. CODE
2112 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2113 true if the symbol may be affected by dynamic relocations.
2114
2115 ??? All x86 object file formats are capable of representing this.
2116 After all, the relocation needed is the same as for the call insn.
2117 Whether or not a particular assembler allows us to enter such, I
2118 guess we'll have to see. */
d9a5f180 2119#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2120 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2121
c98f8742
JVA
2122/* This is how to output an insn to push a register on the stack.
2123 It need not be very fast code. */
2124
d9a5f180 2125#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2126do { \
2127 if (TARGET_64BIT) \
2128 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2129 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2130 else \
2131 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2132} while (0)
c98f8742
JVA
2133
2134/* This is how to output an insn to pop a register from the stack.
2135 It need not be very fast code. */
2136
d9a5f180 2137#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2138do { \
2139 if (TARGET_64BIT) \
2140 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2141 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2142 else \
2143 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2144} while (0)
c98f8742 2145
f88c65f7 2146/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2147
2148#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2149 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2150
f88c65f7 2151/* This is how to output an element of a case-vector that is relative. */
c98f8742 2152
33f7f353 2153#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2154 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2155
63001560 2156/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2157
2158#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2159{ \
2160 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2161 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2162}
2163
2164/* A C statement or statements which output an assembler instruction
2165 opcode to the stdio stream STREAM. The macro-operand PTR is a
2166 variable of type `char *' which points to the opcode name in
2167 its "internal" form--the form that is written in the machine
2168 description. */
2169
2170#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2171 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2172
6a90d232
L
2173/* A C statement to output to the stdio stream FILE an assembler
2174 command to pad the location counter to a multiple of 1<<LOG
2175 bytes if it is within MAX_SKIP bytes. */
2176
2177#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2178#undef ASM_OUTPUT_MAX_SKIP_PAD
2179#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2180 if ((LOG) != 0) \
2181 { \
2182 if ((MAX_SKIP) == 0) \
2183 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2184 else \
2185 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2186 }
2187#endif
2188
135a687e
KT
2189/* Write the extra assembler code needed to declare a function
2190 properly. */
2191
2192#undef ASM_OUTPUT_FUNCTION_LABEL
2193#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2194 ix86_asm_output_function_label (FILE, NAME, DECL)
2195
f7288899
EC
2196/* Under some conditions we need jump tables in the text section,
2197 because the assembler cannot handle label differences between
2198 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2199
2200#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2201 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2202 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2203
cea3bd3e
RH
2204/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2205 and switch back. For x86 we do this only to save a few bytes that
2206 would otherwise be unused in the text section. */
ad211091
KT
2207#define CRT_MKSTR2(VAL) #VAL
2208#define CRT_MKSTR(x) CRT_MKSTR2(x)
2209
2210#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2211 asm (SECTION_OP "\n\t" \
2212 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2213 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2214
2215/* Default threshold for putting data in large sections
2216 with x86-64 medium memory model */
2217#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2218\f
b97de419
L
2219/* Which processor to tune code generation for. These must be in sync
2220 with processor_target_table in i386.c. */
5bf0ebab
RH
2221
2222enum processor_type
2223{
b97de419
L
2224 PROCESSOR_GENERIC = 0,
2225 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2226 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2227 PROCESSOR_PENTIUM,
2228 PROCESSOR_PENTIUMPRO,
5bf0ebab 2229 PROCESSOR_PENTIUM4,
89c43c0a 2230 PROCESSOR_NOCONA,
340ef734 2231 PROCESSOR_CORE2,
d3c11974
L
2232 PROCESSOR_NEHALEM,
2233 PROCESSOR_SANDYBRIDGE,
3a579e09 2234 PROCESSOR_HASWELL,
d3c11974
L
2235 PROCESSOR_BONNELL,
2236 PROCESSOR_SILVERMONT,
9a7f94d7 2237 PROCESSOR_INTEL,
b97de419
L
2238 PROCESSOR_GEODE,
2239 PROCESSOR_K6,
2240 PROCESSOR_ATHLON,
2241 PROCESSOR_K8,
21efb4d4 2242 PROCESSOR_AMDFAM10,
1133125e 2243 PROCESSOR_BDVER1,
4d652a18 2244 PROCESSOR_BDVER2,
eb2f2b44 2245 PROCESSOR_BDVER3,
ed97ad47 2246 PROCESSOR_BDVER4,
14b52538 2247 PROCESSOR_BTVER1,
e32bfc16 2248 PROCESSOR_BTVER2,
5bf0ebab
RH
2249 PROCESSOR_max
2250};
2251
9e555526 2252extern enum processor_type ix86_tune;
5bf0ebab 2253extern enum processor_type ix86_arch;
5bf0ebab 2254
8362f420
JH
2255/* Size of the RED_ZONE area. */
2256#define RED_ZONE_SIZE 128
2257/* Reserved area of the red zone for temporaries. */
2258#define RED_ZONE_RESERVE 8
c93e80a5 2259
95899b34 2260extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2261extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2262
2263/* Smallest class containing REGNO. */
2264extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2265
0948ccb2
PB
2266enum ix86_fpcmp_strategy {
2267 IX86_FPCMP_SAHF,
2268 IX86_FPCMP_COMI,
2269 IX86_FPCMP_ARITH
2270};
22fb740d
JH
2271\f
2272/* To properly truncate FP values into integers, we need to set i387 control
2273 word. We can't emit proper mode switching code before reload, as spills
2274 generated by reload may truncate values incorrectly, but we still can avoid
2275 redundant computation of new control word by the mode switching pass.
2276 The fldcw instructions are still emitted redundantly, but this is probably
2277 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2278 the sequence.
22fb740d
JH
2279
2280 The machinery is to emit simple truncation instructions and split them
2281 before reload to instructions having USEs of two memory locations that
2282 are filled by this code to old and new control word.
fce5a9f2 2283
22fb740d
JH
2284 Post-reload pass may be later used to eliminate the redundant fildcw if
2285 needed. */
2286
ff680eb1
UB
2287enum ix86_entity
2288{
ff97910d
VY
2289 AVX_U128 = 0,
2290 I387_TRUNC,
ff680eb1
UB
2291 I387_FLOOR,
2292 I387_CEIL,
2293 I387_MASK_PM,
2294 MAX_386_ENTITIES
2295};
2296
1cba2b96 2297enum ix86_stack_slot
ff680eb1 2298{
443ca5fc 2299 SLOT_TEMP = 0,
ff680eb1
UB
2300 SLOT_CW_STORED,
2301 SLOT_CW_TRUNC,
2302 SLOT_CW_FLOOR,
2303 SLOT_CW_CEIL,
2304 SLOT_CW_MASK_PM,
2305 MAX_386_STACK_LOCALS
2306};
22fb740d 2307
ff97910d
VY
2308enum avx_u128_state
2309{
2310 AVX_U128_CLEAN,
2311 AVX_U128_DIRTY,
2312 AVX_U128_ANY
2313};
2314
22fb740d
JH
2315/* Define this macro if the port needs extra instructions inserted
2316 for mode switching in an optimizing compilation. */
2317
ff680eb1
UB
2318#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2319 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2320
2321/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2322 initializer for an array of integers. Each initializer element N
2323 refers to an entity that needs mode switching, and specifies the
2324 number of different modes that might need to be set for this
2325 entity. The position of the initializer in the initializer -
2326 starting counting at zero - determines the integer that is used to
2327 refer to the mode-switched entity in question. */
2328
ff680eb1 2329#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2330 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2331
0f0138b6
JH
2332\f
2333/* Avoid renaming of stack registers, as doing so in combination with
2334 scheduling just increases amount of live registers at time and in
2335 the turn amount of fxch instructions needed.
2336
3f97cb0b
AI
2337 ??? Maybe Pentium chips benefits from renaming, someone can try....
2338
2339 Don't rename evex to non-evex sse registers. */
0f0138b6 2340
3f97cb0b
AI
2341#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2342 (EXT_REX_SSE_REGNO_P (SRC) == \
2343 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2344
3b3c6a3f 2345\f
e91f04de 2346#define FASTCALL_PREFIX '@'
fa1a0d02 2347\f
ec7ded37 2348/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2349
604a6be9 2350#ifndef USED_FOR_TARGET
ec7ded37 2351struct GTY(()) machine_frame_state
cd9c1ca8 2352{
ec7ded37
RH
2353 /* This pair tracks the currently active CFA as reg+offset. When reg
2354 is drap_reg, we don't bother trying to record here the real CFA when
2355 it might really be a DW_CFA_def_cfa_expression. */
2356 rtx cfa_reg;
2357 HOST_WIDE_INT cfa_offset;
2358
2359 /* The current offset (canonically from the CFA) of ESP and EBP.
2360 When stack frame re-alignment is active, these may not be relative
2361 to the CFA. However, in all cases they are relative to the offsets
2362 of the saved registers stored in ix86_frame. */
2363 HOST_WIDE_INT sp_offset;
2364 HOST_WIDE_INT fp_offset;
2365
2366 /* The size of the red-zone that may be assumed for the purposes of
2367 eliding register restore notes in the epilogue. This may be zero
2368 if no red-zone is in effect, or may be reduced from the real
2369 red-zone value by a maximum runtime stack re-alignment value. */
2370 int red_zone_offset;
2371
2372 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2373 value within the frame. If false then the offset above should be
2374 ignored. Note that DRAP, if valid, *always* points to the CFA and
2375 thus has an offset of zero. */
2376 BOOL_BITFIELD sp_valid : 1;
2377 BOOL_BITFIELD fp_valid : 1;
2378 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2379
2380 /* Indicate whether the local stack frame has been re-aligned. When
2381 set, the SP/FP offsets above are relative to the aligned frame
2382 and not the CFA. */
2383 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2384};
2385
f81c9774
RH
2386/* Private to winnt.c. */
2387struct seh_frame_state;
2388
d1b38208 2389struct GTY(()) machine_function {
fa1a0d02
JH
2390 struct stack_local_entry *stack_locals;
2391 const char *some_ld_name;
4aab97f9
L
2392 int varargs_gpr_size;
2393 int varargs_fpr_size;
ff680eb1 2394 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2395
2396 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2397 has been computed for. */
2398 int use_fast_prologue_epilogue_nregs;
2399
7458026b
ILT
2400 /* For -fsplit-stack support: A stack local which holds a pointer to
2401 the stack arguments for a function with a variable number of
2402 arguments. This is set at the start of the function and is used
2403 to initialize the overflow_arg_area field of the va_list
2404 structure. */
2405 rtx split_stack_varargs_pointer;
2406
3452586b
RH
2407 /* This value is used for amd64 targets and specifies the current abi
2408 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2409 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2410
2411 /* Nonzero if the function accesses a previous frame. */
2412 BOOL_BITFIELD accesses_prev_frame : 1;
2413
2414 /* Nonzero if the function requires a CLD in the prologue. */
2415 BOOL_BITFIELD needs_cld : 1;
2416
922e3e33
UB
2417 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2418 expander to determine the style used. */
3452586b
RH
2419 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2420
5bf5a10b
AO
2421 /* If true, the current function needs the default PIC register, not
2422 an alternate register (on x86) and must not use the red zone (on
2423 x86_64), even if it's a leaf function. We don't want the
2424 function to be regarded as non-leaf because TLS calls need not
2425 affect register allocation. This flag is set when a TLS call
2426 instruction is expanded within a function, and never reset, even
2427 if all such instructions are optimized away. Use the
2428 ix86_current_function_calls_tls_descriptor macro for a better
2429 approximation. */
3452586b
RH
2430 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2431
2432 /* If true, the current function has a STATIC_CHAIN is placed on the
2433 stack below the return address. */
2434 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2435
529a6471
JJ
2436 /* If true, it is safe to not save/restore DRAP register. */
2437 BOOL_BITFIELD no_drap_save_restore : 1;
2438
ec7ded37
RH
2439 /* During prologue/epilogue generation, the current frame state.
2440 Otherwise, the frame state at the end of the prologue. */
2441 struct machine_frame_state fs;
f81c9774
RH
2442
2443 /* During SEH output, this is non-null. */
2444 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2445};
cd9c1ca8 2446#endif
fa1a0d02
JH
2447
2448#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2449#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2450#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2451#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2452#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2453#define ix86_tls_descriptor_calls_expanded_in_cfun \
2454 (cfun->machine->tls_descriptor_call_expanded_p)
2455/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2456 calls are optimized away, we try to detect cases in which it was
2457 optimized away. Since such instructions (use (reg REG_SP)), we can
2458 verify whether there's any such instruction live by testing that
2459 REG_SP is live. */
2460#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2461 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2462#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2463
1bc7c5b6
ZW
2464/* Control behavior of x86_file_start. */
2465#define X86_FILE_START_VERSION_DIRECTIVE false
2466#define X86_FILE_START_FLTUSED false
2467
7dcbf659
JH
2468/* Flag to mark data that is in the large address area. */
2469#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2470#define SYMBOL_REF_FAR_ADDR_P(X) \
2471 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2472
2473/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2474 have defined always, to avoid ifdefing. */
2475#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2476#define SYMBOL_REF_DLLIMPORT_P(X) \
2477 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2478
2479#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2480#define SYMBOL_REF_DLLEXPORT_P(X) \
2481 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2482
82c0e1a0
KT
2483#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2484#define SYMBOL_REF_STUBVAR_P(X) \
2485 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2486
7942e47e
RY
2487extern void debug_ready_dispatch (void);
2488extern void debug_dispatch_window (int);
2489
91afcfa3
QN
2490/* The value at zero is only defined for the BMI instructions
2491 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2492#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2493 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2494#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2495 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2496
2497
b8ce4e94
KT
2498/* Flags returned by ix86_get_callcvt (). */
2499#define IX86_CALLCVT_CDECL 0x1
2500#define IX86_CALLCVT_STDCALL 0x2
2501#define IX86_CALLCVT_FASTCALL 0x4
2502#define IX86_CALLCVT_THISCALL 0x8
2503#define IX86_CALLCVT_REGPARM 0x10
2504#define IX86_CALLCVT_SSEREGPARM 0x20
2505
2506#define IX86_BASE_CALLCVT(FLAGS) \
2507 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2508 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2509
b86b9f44
MM
2510#define RECIP_MASK_NONE 0x00
2511#define RECIP_MASK_DIV 0x01
2512#define RECIP_MASK_SQRT 0x02
2513#define RECIP_MASK_VEC_DIV 0x04
2514#define RECIP_MASK_VEC_SQRT 0x08
2515#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2516 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2517#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2518
2519#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2520#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2521#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2522#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2523
5dcfdccd
KY
2524#define IX86_HLE_ACQUIRE (1 << 16)
2525#define IX86_HLE_RELEASE (1 << 17)
2526
e83b8e2e
JJ
2527/* For switching between functions with different target attributes. */
2528#define SWITCHABLE_TARGET 1
2529
c98f8742
JVA
2530/*
2531Local variables:
2532version-control: t
2533End:
2534*/