]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR rtl-optimization/82628 (wrong code at -Os on x86_64-linux-gnu in the 32-bit...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cbe34bb5 2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
79fc8ffe
AS
88#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90922d36 90#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 91#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 92#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 93#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 94#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 95#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 96#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 97#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 98#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 99#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 100#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 101#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
73e32c47
JK
102#define TARGET_SGX TARGET_ISA_SGX
103#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
104#define TARGET_RDPID TARGET_ISA_RDPID
105#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
106#define TARGET_GFNI TARGET_ISA_GFNI
107#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
90922d36 108#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 109#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 110#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 111#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 112#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 113#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 114#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 115#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 116#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 117#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 118#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 119#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 120#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 121#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 122#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 123#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 124#define TARGET_AES TARGET_ISA_AES
bf7b5747 125#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
126#define TARGET_SHA TARGET_ISA_SHA
127#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
128#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
129#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
130#define TARGET_CLZERO TARGET_ISA_CLZERO
131#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
132#define TARGET_XSAVEC TARGET_ISA_XSAVEC
133#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
134#define TARGET_XSAVES TARGET_ISA_XSAVES
135#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 136#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 137#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
138#define TARGET_CMPXCHG16B TARGET_ISA_CX16
139#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 140#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 141#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 142#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 143#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 144#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 145#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
146#define TARGET_RTM TARGET_ISA_RTM
147#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 148#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 149#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 150#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 151#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 152#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 153#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 154#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 155#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 156#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 157#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 158#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 159#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 160#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 161#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
162#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
163#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
164#define TARGET_MPX TARGET_ISA_MPX
165#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
166#define TARGET_CLWB TARGET_ISA_CLWB
167#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
168#define TARGET_MWAITX TARGET_ISA_MWAITX
169#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
170#define TARGET_PKU TARGET_ISA_PKU
171#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
172#define TARGET_IBT TARGET_ISA_IBT
173#define TARGET_IBT_P(x) TARGET_ISA_IBT_P(x)
174#define TARGET_SHSTK TARGET_ISA_SHSTK
175#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
41a4ef22 176
90922d36 177#define TARGET_LP64 TARGET_ABI_64
bf7b5747 178#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 179#define TARGET_X32 TARGET_ABI_X32
bf7b5747 180#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
181#define TARGET_16BIT TARGET_CODE16
182#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 183
26b5109f
RS
184#include "config/vxworks-dummy.h"
185
7eb68c06 186#include "config/i386/i386-opts.h"
ccf8e764 187
c69fa2d4 188#define MAX_STRINGOP_ALGS 4
ccf8e764 189
8c996513
JH
190/* Specify what algorithm to use for stringops on known size.
191 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
192 known at compile time or estimated via feedback, the SIZE array
193 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 194 means infinity). Corresponding ALG is used then.
340ef734
JH
195 When NOALIGN is true the code guaranting the alignment of the memory
196 block is skipped.
197
8c996513 198 For example initializer:
4f3f76e6 199 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 200 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 201 be used otherwise. */
8c996513
JH
202struct stringop_algs
203{
204 const enum stringop_alg unknown_size;
205 const struct stringop_strategy {
206 const int max;
207 const enum stringop_alg alg;
340ef734 208 int noalign;
c69fa2d4 209 } size [MAX_STRINGOP_ALGS];
8c996513
JH
210};
211
d4ba09c0
SC
212/* Define the specific costs for a given cpu */
213
214struct processor_costs {
8b60264b
KG
215 const int add; /* cost of an add instruction */
216 const int lea; /* cost of a lea instruction */
217 const int shift_var; /* variable shift costs */
218 const int shift_const; /* constant shift costs */
f676971a 219 const int mult_init[5]; /* cost of starting a multiply
4977bab6 220 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 221 const int mult_bit; /* cost of multiply per each bit set */
f676971a 222 const int divide[5]; /* cost of a divide/mod
4977bab6 223 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
224 int movsx; /* The cost of movsx operation. */
225 int movzx; /* The cost of movzx operation. */
8b60264b
KG
226 const int large_insn; /* insns larger than this cost more */
227 const int move_ratio; /* The threshold of number of scalar
ac775968 228 memory-to-memory move insns. */
8b60264b
KG
229 const int movzbl_load; /* cost of loading using movzbl */
230 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
231 in QImode, HImode and SImode relative
232 to reg-reg move (2). */
8b60264b 233 const int int_store[3]; /* cost of storing integer register
96e7ae40 234 in QImode, HImode and SImode */
8b60264b
KG
235 const int fp_move; /* cost of reg,reg fld/fst */
236 const int fp_load[3]; /* cost of loading FP register
96e7ae40 237 in SFmode, DFmode and XFmode */
8b60264b 238 const int fp_store[3]; /* cost of storing FP register
96e7ae40 239 in SFmode, DFmode and XFmode */
8b60264b
KG
240 const int mmx_move; /* cost of moving MMX register. */
241 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 242 in SImode and DImode */
8b60264b 243 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 244 in SImode and DImode */
8b60264b
KG
245 const int sse_move; /* cost of moving SSE register. */
246 const int sse_load[3]; /* cost of loading SSE register
fa79946e 247 in SImode, DImode and TImode*/
8b60264b 248 const int sse_store[3]; /* cost of storing SSE register
fa79946e 249 in SImode, DImode and TImode*/
8b60264b 250 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 251 integer and vice versa. */
46cb0441
ZD
252 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
253 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
254 const int prefetch_block; /* bytes moved to cache for prefetch. */
255 const int simultaneous_prefetches; /* number of parallel prefetch
256 operations. */
4977bab6 257 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
258 const int fadd; /* cost of FADD and FSUB instructions. */
259 const int fmul; /* cost of FMUL instruction. */
260 const int fdiv; /* cost of FDIV instruction. */
261 const int fabs; /* cost of FABS instruction. */
262 const int fchs; /* cost of FCHS instruction. */
263 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 264 /* Specify what algorithm
bee51209 265 to use for stringops on unknown size. */
c53c148c 266 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
267 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
268 const int mulss; /* cost of MULSS instructions. */
269 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
270 const int fmass; /* cost of FMASS instructions. */
271 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
272 const int divss; /* cost of DIVSS instructions. */
273 const int divsd; /* cost of DIVSD instructions. */
274 const int sqrtss; /* cost of SQRTSS instructions. */
275 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
276 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
277 /* Specify reassociation width for integer,
278 fp, vector integer and vector fp
279 operations. Generally should correspond
280 to number of instructions executed in
281 parallel. See also
282 ix86_reassociation_width. */
ad83025e 283 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
284 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
285 cost model. */
286 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
287 vectorizer cost model. */
d4ba09c0
SC
288};
289
8b60264b 290extern const struct processor_costs *ix86_cost;
b2077fd2
JH
291extern const struct processor_costs ix86_size_cost;
292
293#define ix86_cur_cost() \
294 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 295
c98f8742
JVA
296/* Macros used in the machine description to test the flags. */
297
b97de419 298/* configure can arrange to change it. */
e075ae69 299
35b528be 300#ifndef TARGET_CPU_DEFAULT
b97de419 301#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 302#endif
35b528be 303
004d3859
GK
304#ifndef TARGET_FPMATH_DEFAULT
305#define TARGET_FPMATH_DEFAULT \
306 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
307#endif
308
bf7b5747
ST
309#ifndef TARGET_FPMATH_DEFAULT_P
310#define TARGET_FPMATH_DEFAULT_P(x) \
311 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
312#endif
313
c207fd99
L
314/* If the i387 is disabled or -miamcu is used , then do not return
315 values in it. */
316#define TARGET_FLOAT_RETURNS_IN_80387 \
317 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
318#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
319 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 320
5791cc29
JT
321/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
322 compile-time constant. */
323#ifdef IN_LIBGCC2
6ac49599 324#undef TARGET_64BIT
5791cc29
JT
325#ifdef __x86_64__
326#define TARGET_64BIT 1
327#else
328#define TARGET_64BIT 0
329#endif
330#else
6ac49599
RS
331#ifndef TARGET_BI_ARCH
332#undef TARGET_64BIT
e49080ec 333#undef TARGET_64BIT_P
67adf6a9 334#if TARGET_64BIT_DEFAULT
0c2dc519 335#define TARGET_64BIT 1
e49080ec 336#define TARGET_64BIT_P(x) 1
0c2dc519
JH
337#else
338#define TARGET_64BIT 0
e49080ec 339#define TARGET_64BIT_P(x) 0
0c2dc519
JH
340#endif
341#endif
5791cc29 342#endif
25f94bb5 343
750054a2
CT
344#define HAS_LONG_COND_BRANCH 1
345#define HAS_LONG_UNCOND_BRANCH 1
346
9e555526
RH
347#define TARGET_386 (ix86_tune == PROCESSOR_I386)
348#define TARGET_486 (ix86_tune == PROCESSOR_I486)
349#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
350#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 351#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
352#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
353#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
354#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
355#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 356#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 357#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 358#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
359#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
360#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 361#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
362#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
363#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 364#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 365#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
06caf59d 366#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 367#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 368#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 369#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 370#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 371#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 372#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 373#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 374#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 375#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 376#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 377
80fd744f
RH
378/* Feature tests against the various tunings. */
379enum ix86_tune_indices {
4b8bc035 380#undef DEF_TUNE
3ad20bd4 381#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
382#include "x86-tune.def"
383#undef DEF_TUNE
384X86_TUNE_LAST
80fd744f
RH
385};
386
ab442df7 387extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
388
389#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
390#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
391#define TARGET_ZERO_EXTEND_WITH_AND \
392 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 393#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
394#define TARGET_BRANCH_PREDICTION_HINTS \
395 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
396#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
397#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
398#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
399#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
400#define TARGET_PARTIAL_FLAG_REG_STALL \
401 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
402#define TARGET_LCP_STALL \
403 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
404#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
405#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
406#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
407#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
408#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
409#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
410#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
411#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
412#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
413#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
414#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
415#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
416 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
417#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
418#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
419#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
420#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
421#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
422#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
423#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
424#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
425#define TARGET_INTEGER_DFMODE_MOVES \
426 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
427#define TARGET_PARTIAL_REG_DEPENDENCY \
428 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
429#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
430 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
431#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
432 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
433#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
434 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
435#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
436 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
437#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
438#define TARGET_SSE_TYPELESS_STORES \
439 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
440#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
441#define TARGET_MEMORY_MISMATCH_STALL \
442 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
443#define TARGET_PROLOGUE_USING_MOVE \
444 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
445#define TARGET_EPILOGUE_USING_MOVE \
446 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
447#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
448#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
449#define TARGET_INTER_UNIT_MOVES_TO_VEC \
450 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
451#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
452 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
453#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 454 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
455#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
456#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
457#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
458#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
459#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
460#define TARGET_PAD_SHORT_FUNCTION \
461 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
462#define TARGET_EXT_80387_CONSTANTS \
463 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
464#define TARGET_AVOID_VECTOR_DECODE \
465 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
466#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
467 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
468#define TARGET_SLOW_IMUL_IMM32_MEM \
469 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
470#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
471#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
472#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
473#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
474#define TARGET_USE_VECTOR_FP_CONVERTS \
475 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
476#define TARGET_USE_VECTOR_CONVERTS \
477 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
478#define TARGET_SLOW_PSHUFB \
479 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
480#define TARGET_AVOID_4BYTE_PREFIXES \
481 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
482#define TARGET_FUSE_CMP_AND_BRANCH_32 \
483 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
484#define TARGET_FUSE_CMP_AND_BRANCH_64 \
485 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 486#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
487 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
488 : TARGET_FUSE_CMP_AND_BRANCH_32)
489#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
490 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
491#define TARGET_FUSE_ALU_AND_BRANCH \
492 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 493#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
494#define TARGET_AVOID_LEA_FOR_ADDR \
495 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
496#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
497 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
498#define TARGET_AVX128_OPTIMAL \
499 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
500#define TARGET_GENERAL_REGS_SSE_SPILL \
501 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
502#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
503 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 504#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 505 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
506#define TARGET_ADJUST_UNROLL \
507 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
508#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
509 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
510#define TARGET_ONE_IF_CONV_INSN \
511 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 512
80fd744f
RH
513/* Feature tests against the various architecture variations. */
514enum ix86_arch_indices {
cef31f9c 515 X86_ARCH_CMOV,
80fd744f
RH
516 X86_ARCH_CMPXCHG,
517 X86_ARCH_CMPXCHG8B,
518 X86_ARCH_XADD,
519 X86_ARCH_BSWAP,
520
521 X86_ARCH_LAST
522};
4f3f76e6 523
ab442df7 524extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 525
cef31f9c 526#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
527#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
528#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
529#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
530#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
531
cef31f9c
UB
532/* For sane SSE instruction set generation we need fcomi instruction.
533 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
534 expands to a sequence that includes conditional move. */
535#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
536
80fd744f
RH
537#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
538
cb261eb7 539extern unsigned char x86_prefetch_sse;
80fd744f
RH
540#define TARGET_PREFETCH_SSE x86_prefetch_sse
541
80fd744f
RH
542#define ASSEMBLER_DIALECT (ix86_asm_dialect)
543
544#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
545#define TARGET_MIX_SSE_I387 \
546 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
547
5fa578f0
UB
548#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
549#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
550#define TARGET_HARD_XF_REGS (TARGET_80387)
551
80fd744f
RH
552#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
553#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
554#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 555#define TARGET_SUN_TLS 0
1ef45b77 556
67adf6a9
RH
557#ifndef TARGET_64BIT_DEFAULT
558#define TARGET_64BIT_DEFAULT 0
25f94bb5 559#endif
74dc3e94
RH
560#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
561#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
562#endif
25f94bb5 563
e0ea8797
AH
564#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
565#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
566
79f5e442
ZD
567/* Fence to use after loop using storent. */
568
569extern tree x86_mfence;
570#define FENCE_FOLLOWING_MOVNT x86_mfence
571
0ed4a390
JL
572/* Once GDB has been enhanced to deal with functions without frame
573 pointers, we can change this to allow for elimination of
574 the frame pointer in leaf functions. */
575#define TARGET_DEFAULT 0
67adf6a9 576
0a1c5e55
UB
577/* Extra bits to force. */
578#define TARGET_SUBTARGET_DEFAULT 0
579#define TARGET_SUBTARGET_ISA_DEFAULT 0
580
581/* Extra bits to force on w/ 32-bit mode. */
582#define TARGET_SUBTARGET32_DEFAULT 0
583#define TARGET_SUBTARGET32_ISA_DEFAULT 0
584
ccf8e764
RH
585/* Extra bits to force on w/ 64-bit mode. */
586#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 587#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 588
fee3eacd
IS
589/* Replace MACH-O, ifdefs by in-line tests, where possible.
590 (a) Macros defined in config/i386/darwin.h */
b069de3b 591#define TARGET_MACHO 0
9005471b 592#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
593#define MACHOPIC_ATT_STUB 0
594/* (b) Macros defined in config/darwin.h */
595#define MACHO_DYNAMIC_NO_PIC_P 0
596#define MACHOPIC_INDIRECT 0
597#define MACHOPIC_PURE 0
9005471b 598
5a579c3b
LE
599/* For the RDOS */
600#define TARGET_RDOS 0
601
9005471b 602/* For the Windows 64-bit ABI. */
7c800926
KT
603#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
604
6510e8bb
KT
605/* For the Windows 32-bit ABI. */
606#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
607
f81c9774
RH
608/* This is re-defined by cygming.h. */
609#define TARGET_SEH 0
610
51212b32 611/* The default abi used by target. */
7c800926 612#define DEFAULT_ABI SYSV_ABI
ccf8e764 613
b8b3f0ca 614/* The default TLS segment register used by target. */
00402c94
RH
615#define DEFAULT_TLS_SEG_REG \
616 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 617
cc69336f
RH
618/* Subtargets may reset this to 1 in order to enable 96-bit long double
619 with the rounding mode forced to 53 bits. */
620#define TARGET_96_ROUND_53_LONG_DOUBLE 0
621
682cd442
GK
622/* -march=native handling only makes sense with compiler running on
623 an x86 or x86_64 chip. If changing this condition, also change
624 the condition in driver-i386.c. */
625#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
626/* In driver-i386.c. */
627extern const char *host_detect_local_cpu (int argc, const char **argv);
628#define EXTRA_SPEC_FUNCTIONS \
629 { "local_cpu_detect", host_detect_local_cpu },
682cd442 630#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
631#endif
632
8981c15b
JM
633#if TARGET_64BIT_DEFAULT
634#define OPT_ARCH64 "!m32"
635#define OPT_ARCH32 "m32"
636#else
f0ea7581
L
637#define OPT_ARCH64 "m64|mx32"
638#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
639#endif
640
1cba2b96
EC
641/* Support for configure-time defaults of some command line options.
642 The order here is important so that -march doesn't squash the
643 tune or cpu values. */
ce998900 644#define OPTION_DEFAULT_SPECS \
da2d4c01 645 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
646 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
647 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 648 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
649 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
650 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
651 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
652 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
653 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 654
241e1a89
SC
655/* Specs for the compiler proper */
656
628714d8 657#ifndef CC1_CPU_SPEC
eb5bb0fd 658#define CC1_CPU_SPEC_1 ""
fa959ce4 659
682cd442 660#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
661#define CC1_CPU_SPEC CC1_CPU_SPEC_1
662#else
663#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
664"%{march=native:%>march=native %:local_cpu_detect(arch) \
665 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
666%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 667#endif
241e1a89 668#endif
c98f8742 669\f
30efe578 670/* Target CPU builtins. */
ab442df7
MM
671#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
672
673/* Target Pragmas. */
674#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 675
628714d8 676#ifndef CC1_SPEC
8015b78d 677#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
678#endif
679
680/* This macro defines names of additional specifications to put in the
681 specs that can be used in various specifications like CC1_SPEC. Its
682 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
683
684 Each subgrouping contains a string constant, that defines the
188fc5b5 685 specification name, and a string constant that used by the GCC driver
bcd86433
SC
686 program.
687
688 Do not define this macro if it does not need to do anything. */
689
690#ifndef SUBTARGET_EXTRA_SPECS
691#define SUBTARGET_EXTRA_SPECS
692#endif
693
694#define EXTRA_SPECS \
628714d8 695 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
696 SUBTARGET_EXTRA_SPECS
697\f
ce998900 698
8ce94e44
JM
699/* Whether to allow x87 floating-point arithmetic on MODE (one of
700 SFmode, DFmode and XFmode) in the current excess precision
701 configuration. */
b8cab8a5
UB
702#define X87_ENABLE_ARITH(MODE) \
703 (flag_unsafe_math_optimizations \
704 || flag_excess_precision == EXCESS_PRECISION_FAST \
705 || (MODE) == XFmode)
8ce94e44
JM
706
707/* Likewise, whether to allow direct conversions from integer mode
708 IMODE (HImode, SImode or DImode) to MODE. */
709#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
710 (flag_unsafe_math_optimizations \
711 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
712 || (MODE) == XFmode \
713 || ((MODE) == DFmode && (IMODE) == SImode) \
714 || (IMODE) == HImode)
715
979c67a5
UB
716/* target machine storage layout */
717
65d9c0ab
JH
718#define SHORT_TYPE_SIZE 16
719#define INT_TYPE_SIZE 32
f0ea7581
L
720#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
721#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 722#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 723#define FLOAT_TYPE_SIZE 32
65d9c0ab 724#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
725#define LONG_DOUBLE_TYPE_SIZE \
726 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 727
c637141a 728#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 729
67adf6a9 730#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 731#define MAX_BITS_PER_WORD 64
0c2dc519
JH
732#else
733#define MAX_BITS_PER_WORD 32
0c2dc519
JH
734#endif
735
c98f8742
JVA
736/* Define this if most significant byte of a word is the lowest numbered. */
737/* That is true on the 80386. */
738
739#define BITS_BIG_ENDIAN 0
740
741/* Define this if most significant byte of a word is the lowest numbered. */
742/* That is not true on the 80386. */
743#define BYTES_BIG_ENDIAN 0
744
745/* Define this if most significant word of a multiword number is the lowest
746 numbered. */
747/* Not true for 80386 */
748#define WORDS_BIG_ENDIAN 0
749
c98f8742 750/* Width of a word, in units (bytes). */
4ae8027b 751#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
752
753#ifndef IN_LIBGCC2
2e64c636
JH
754#define MIN_UNITS_PER_WORD 4
755#endif
c98f8742 756
c98f8742 757/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 758#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 759
e075ae69 760/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 761#define STACK_BOUNDARY \
51212b32 762 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 763
2e3f842f
L
764/* Stack boundary of the main function guaranteed by OS. */
765#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
766
de1132d1 767/* Minimum stack boundary. */
cba9c789 768#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 769
d1f87653 770/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 771 aligned; the compiler cannot rely on having this alignment. */
e075ae69 772#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 773
de1132d1 774/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
775 both 32bit and 64bit, to support codes that need 128 bit stack
776 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
777#define PREFERRED_STACK_BOUNDARY_DEFAULT \
778 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
779
780/* 1 if -mstackrealign should be turned on by default. It will
781 generate an alternate prologue and epilogue that realigns the
782 runtime stack if nessary. This supports mixing codes that keep a
783 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 784 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
785#define STACK_REALIGN_DEFAULT 0
786
787/* Boundary (in *bits*) on which the incoming stack is aligned. */
788#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 789
a2851b75
TG
790/* According to Windows x64 software convention, the maximum stack allocatable
791 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
792 instructions allowed to adjust the stack pointer in the epilog, forcing the
793 use of frame pointer for frames larger than 2 GB. This theorical limit
794 is reduced by 256, an over-estimated upper bound for the stack use by the
795 prologue.
796 We define only one threshold for both the prolog and the epilog. When the
4e523f33 797 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
798 regs, then save them, and then allocate the remaining. There is no SEH
799 unwind info for this later allocation. */
800#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
801
ebff937c
SH
802/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
803 mandatory for the 64-bit ABI, and may or may not be true for other
804 operating systems. */
805#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
806
f963b5d9
RS
807/* Minimum allocation boundary for the code of a function. */
808#define FUNCTION_BOUNDARY 8
809
810/* C++ stores the virtual bit in the lowest bit of function pointers. */
811#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 812
c98f8742
JVA
813/* Minimum size in bits of the largest boundary to which any
814 and all fundamental data types supported by the hardware
815 might need to be aligned. No data type wants to be aligned
17f24ff0 816 rounder than this.
fce5a9f2 817
d1f87653 818 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
819 and Pentium Pro XFmode values at 128 bit boundaries.
820
821 When increasing the maximum, also update
822 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 823
3f97cb0b 824#define BIGGEST_ALIGNMENT \
0076c82f 825 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 826
2e3f842f
L
827/* Maximum stack alignment. */
828#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
829
6e4f1168
L
830/* Alignment value for attribute ((aligned)). It is a constant since
831 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 832#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 833
822eda12 834/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 835#define ALIGN_MODE_128(MODE) \
4501d314 836 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 837
17f24ff0 838/* The published ABIs say that doubles should be aligned on word
d1f87653 839 boundaries, so lower the alignment for structure fields unless
6fc605d8 840 -malign-double is set. */
e932b21b 841
e83f3cff
RH
842/* ??? Blah -- this macro is used directly by libobjc. Since it
843 supports no vector modes, cut out the complexity and fall back
844 on BIGGEST_FIELD_ALIGNMENT. */
845#ifdef IN_TARGET_LIBS
ef49d42e
JH
846#ifdef __x86_64__
847#define BIGGEST_FIELD_ALIGNMENT 128
848#else
e83f3cff 849#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 850#endif
e83f3cff 851#else
a4cf4b64
RB
852#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
853 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 854#endif
c98f8742 855
8a022443
JW
856/* If defined, a C expression to compute the alignment for a static
857 variable. TYPE is the data type, and ALIGN is the alignment that
858 the object would ordinarily have. The value of this macro is used
859 instead of that alignment to align the object.
860
861 If this macro is not defined, then ALIGN is used.
862
863 One use of this macro is to increase alignment of medium-size
864 data to make it all fit in fewer cache lines. Another is to
865 cause character arrays to be word-aligned so that `strcpy' calls
866 that copy constants to character arrays can be done inline. */
867
df8a1d28
JJ
868#define DATA_ALIGNMENT(TYPE, ALIGN) \
869 ix86_data_alignment ((TYPE), (ALIGN), true)
870
871/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
872 some alignment increase, instead of optimization only purposes. E.g.
873 AMD x86-64 psABI says that variables with array type larger than 15 bytes
874 must be aligned to 16 byte boundaries.
875
876 If this macro is not defined, then ALIGN is used. */
877
878#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
879 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
880
881/* If defined, a C expression to compute the alignment for a local
882 variable. TYPE is the data type, and ALIGN is the alignment that
883 the object would ordinarily have. The value of this macro is used
884 instead of that alignment to align the object.
885
886 If this macro is not defined, then ALIGN is used.
887
888 One use of this macro is to increase alignment of medium-size
889 data to make it all fit in fewer cache lines. */
890
76fe54f0
L
891#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
892 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
893
894/* If defined, a C expression to compute the alignment for stack slot.
895 TYPE is the data type, MODE is the widest mode available, and ALIGN
896 is the alignment that the slot would ordinarily have. The value of
897 this macro is used instead of that alignment to align the slot.
898
899 If this macro is not defined, then ALIGN is used when TYPE is NULL,
900 Otherwise, LOCAL_ALIGNMENT will be used.
901
902 One use of this macro is to set alignment of stack slot to the
903 maximum alignment of all possible modes which the slot may have. */
904
905#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
906 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 907
9bfaf89d
JJ
908/* If defined, a C expression to compute the alignment for a local
909 variable DECL.
910
911 If this macro is not defined, then
912 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
913
914 One use of this macro is to increase alignment of medium-size
915 data to make it all fit in fewer cache lines. */
916
917#define LOCAL_DECL_ALIGNMENT(DECL) \
918 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
919
ae58e548
JJ
920/* If defined, a C expression to compute the minimum required alignment
921 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
922 MODE, assuming normal alignment ALIGN.
923
924 If this macro is not defined, then (ALIGN) will be used. */
925
926#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 927 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 928
9bfaf89d 929
9cd10576 930/* Set this nonzero if move instructions will actually fail to work
c98f8742 931 when given unaligned data. */
b4ac57ab 932#define STRICT_ALIGNMENT 0
c98f8742
JVA
933
934/* If bit field type is int, don't let it cross an int,
935 and give entire struct the alignment of an int. */
43a88a8c 936/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 937#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
938\f
939/* Standard register usage. */
940
941/* This processor has special stack-like registers. See reg-stack.c
892a2d68 942 for details. */
c98f8742
JVA
943
944#define STACK_REGS
ce998900 945
f48b4284
UB
946#define IS_STACK_MODE(MODE) \
947 (X87_FLOAT_MODE_P (MODE) \
948 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
949 || TARGET_MIX_SSE_I387))
c98f8742
JVA
950
951/* Number of actual hardware registers.
952 The hardware registers are assigned numbers for the compiler
953 from 0 to just below FIRST_PSEUDO_REGISTER.
954 All registers that the compiler knows about must be given numbers,
955 even those that are not normally considered general registers.
956
957 In the 80386 we give the 8 general purpose registers the numbers 0-7.
958 We number the floating point registers 8-15.
959 Note that registers 0-7 can be accessed as a short or int,
960 while only 0-3 may be used with byte `mov' instructions.
961
962 Reg 16 does not correspond to any hardware register, but instead
963 appears in the RTL as an argument pointer prior to reload, and is
964 eliminated during reloading in favor of either the stack or frame
892a2d68 965 pointer. */
c98f8742 966
05416670 967#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 968
3073d01c
ML
969/* Number of hardware registers that go into the DWARF-2 unwind info.
970 If not defined, equals FIRST_PSEUDO_REGISTER. */
971
972#define DWARF_FRAME_REGISTERS 17
973
c98f8742
JVA
974/* 1 for registers that have pervasive standard uses
975 and are not available for the register allocator.
3f3f2124 976 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 977
621bc046
UB
978 REX registers are disabled for 32bit targets in
979 TARGET_CONDITIONAL_REGISTER_USAGE. */
980
a7180f70
BS
981#define FIXED_REGISTERS \
982/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 983{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
984/*arg,flags,fpsr,fpcr,frame*/ \
985 1, 1, 1, 1, 1, \
a7180f70
BS
986/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
987 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 988/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
989 0, 0, 0, 0, 0, 0, 0, 0, \
990/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 991 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 992/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
993 0, 0, 0, 0, 0, 0, 0, 0, \
994/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
995 0, 0, 0, 0, 0, 0, 0, 0, \
996/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
997 0, 0, 0, 0, 0, 0, 0, 0, \
998/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
999 0, 0, 0, 0, 0, 0, 0, 0, \
1000/* b0, b1, b2, b3*/ \
1001 0, 0, 0, 0 }
c98f8742
JVA
1002
1003/* 1 for registers not available across function calls.
1004 These must include the FIXED_REGISTERS and also any
1005 registers that can be used without being saved.
1006 The latter must include the registers where values are returned
1007 and the register where structure-value addresses are passed.
fce5a9f2
EC
1008 Aside from that, you can include as many other registers as you like.
1009
621bc046
UB
1010 Value is set to 1 if the register is call used unconditionally.
1011 Bit one is set if the register is call used on TARGET_32BIT ABI.
1012 Bit two is set if the register is call used on TARGET_64BIT ABI.
1013 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1014
1015 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1016
1f3ccbc8
L
1017#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1018 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1019
a7180f70
BS
1020#define CALL_USED_REGISTERS \
1021/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1022{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1023/*arg,flags,fpsr,fpcr,frame*/ \
1024 1, 1, 1, 1, 1, \
a7180f70 1025/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1026 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1027/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1028 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1029/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1030 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1031/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1032 6, 6, 6, 6, 6, 6, 6, 6, \
1033/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1034 6, 6, 6, 6, 6, 6, 6, 6, \
1035/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1036 6, 6, 6, 6, 6, 6, 6, 6, \
1037 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1038 1, 1, 1, 1, 1, 1, 1, 1, \
1039/* b0, b1, b2, b3*/ \
1040 1, 1, 1, 1 }
c98f8742 1041
3b3c6a3f
MM
1042/* Order in which to allocate registers. Each register must be
1043 listed once, even those in FIXED_REGISTERS. List frame pointer
1044 late and fixed registers last. Note that, in general, we prefer
1045 registers listed in CALL_USED_REGISTERS, keeping the others
1046 available for storage of persistent values.
1047
5a733826 1048 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1049 so this is just empty initializer for array. */
3b3c6a3f 1050
162f023b
JH
1051#define REG_ALLOC_ORDER \
1052{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1053 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1054 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1055 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1056 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1057 78, 79, 80 }
3b3c6a3f 1058
5a733826 1059/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1060 to be rearranged based on a particular function. When using sse math,
03c259ad 1061 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1062
5a733826 1063#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1064
f5316dfe 1065
7c800926
KT
1066#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1067
8521c414 1068#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1069 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1070 && GENERAL_REGNO_P (REGNO) \
1071 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1072
1073#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1074
95879c72
L
1075#define VALID_AVX256_REG_MODE(MODE) \
1076 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1077 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1078 || (MODE) == V4DFmode)
95879c72 1079
4ac005ba 1080#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1081 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1082
3f97cb0b
AI
1083#define VALID_AVX512F_SCALAR_MODE(MODE) \
1084 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1085 || (MODE) == SFmode)
1086
1087#define VALID_AVX512F_REG_MODE(MODE) \
1088 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1089 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1090 || (MODE) == V4TImode)
1091
05416670 1092#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1093 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1094 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1095 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1096
ce998900
UB
1097#define VALID_SSE2_REG_MODE(MODE) \
1098 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1099 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1100
d9a5f180 1101#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1102 ((MODE) == V1TImode || (MODE) == TImode \
1103 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1104 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1105
47f339cf 1106#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1107 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1108
d9a5f180 1109#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1110 ((MODE == V1DImode) || (MODE) == DImode \
1111 || (MODE) == V2SImode || (MODE) == SImode \
1112 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1113
05416670
UB
1114#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1115
1116#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1117
d5e254e1
IE
1118#define VALID_BND_REG_MODE(MODE) \
1119 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1120
ce998900
UB
1121#define VALID_DFP_MODE_P(MODE) \
1122 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1123
d9a5f180 1124#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1125 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1126 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1127
d9a5f180 1128#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1129 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1130 || (MODE) == DImode \
1131 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1132 || (MODE) == CDImode \
1133 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1134 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1135
822eda12 1136/* Return true for modes passed in SSE registers. */
ce998900 1137#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1138 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1139 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1140 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1141 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1142 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1143 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1144 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1145 || (MODE) == V16SFmode)
822eda12 1146
05416670
UB
1147#define X87_FLOAT_MODE_P(MODE) \
1148 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1149
05416670
UB
1150#define SSE_FLOAT_MODE_P(MODE) \
1151 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1152
1153#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1154 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1155 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1156
ff25ef99
ZD
1157/* It is possible to write patterns to move flags; but until someone
1158 does it, */
1159#define AVOID_CCMODE_COPIES
c98f8742 1160
e075ae69 1161/* Specify the modes required to caller save a given hard regno.
787dc842 1162 We do this on i386 to prevent flags from being saved at all.
e075ae69 1163
787dc842
JH
1164 Kill any attempts to combine saving of modes. */
1165
d9a5f180
GS
1166#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1167 (CC_REGNO_P (REGNO) ? VOIDmode \
1168 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1169 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1170 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1171 && TARGET_PARTIAL_REG_STALL) \
85a77221 1172 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1173 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1174 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1175 : (MODE))
ce998900 1176
c98f8742
JVA
1177/* Specify the registers used for certain standard purposes.
1178 The values of these macros are register numbers. */
1179
1180/* on the 386 the pc register is %eip, and is not usable as a general
1181 register. The ordinary mov instructions won't work */
1182/* #define PC_REGNUM */
1183
05416670
UB
1184/* Base register for access to arguments of the function. */
1185#define ARG_POINTER_REGNUM ARGP_REG
1186
c98f8742 1187/* Register to use for pushing function arguments. */
05416670 1188#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1189
1190/* Base register for access to local variables of the function. */
05416670
UB
1191#define FRAME_POINTER_REGNUM FRAME_REG
1192#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1193
05416670
UB
1194#define FIRST_INT_REG AX_REG
1195#define LAST_INT_REG SP_REG
c98f8742 1196
05416670
UB
1197#define FIRST_QI_REG AX_REG
1198#define LAST_QI_REG BX_REG
c98f8742
JVA
1199
1200/* First & last stack-like regs */
05416670
UB
1201#define FIRST_STACK_REG ST0_REG
1202#define LAST_STACK_REG ST7_REG
c98f8742 1203
05416670
UB
1204#define FIRST_SSE_REG XMM0_REG
1205#define LAST_SSE_REG XMM7_REG
fce5a9f2 1206
05416670
UB
1207#define FIRST_MMX_REG MM0_REG
1208#define LAST_MMX_REG MM7_REG
a7180f70 1209
05416670
UB
1210#define FIRST_REX_INT_REG R8_REG
1211#define LAST_REX_INT_REG R15_REG
3f3f2124 1212
05416670
UB
1213#define FIRST_REX_SSE_REG XMM8_REG
1214#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1215
05416670
UB
1216#define FIRST_EXT_REX_SSE_REG XMM16_REG
1217#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1218
05416670
UB
1219#define FIRST_MASK_REG MASK0_REG
1220#define LAST_MASK_REG MASK7_REG
85a77221 1221
05416670
UB
1222#define FIRST_BND_REG BND0_REG
1223#define LAST_BND_REG BND3_REG
d5e254e1 1224
aabcd309 1225/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1226 requiring a frame pointer. */
1227#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1228#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1229#endif
1230
1231/* Make sure we can access arbitrary call frames. */
1232#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1233
c98f8742 1234/* Register to hold the addressing base for position independent
5b43fed1
RH
1235 code access to data items. We don't use PIC pointer for 64bit
1236 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1237 pessimizing code dealing with EBX.
bd09bdeb
RH
1238
1239 To avoid clobbering a call-saved register unnecessarily, we renumber
1240 the pic register when possible. The change is visible after the
1241 prologue has been emitted. */
1242
e8b5eb25 1243#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1244
bcb21886 1245#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1246 (ix86_use_pseudo_pic_reg () \
1247 ? (pic_offset_table_rtx \
1248 ? INVALID_REGNUM \
1249 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1250 : INVALID_REGNUM)
c98f8742 1251
5fc0e5df
KW
1252#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1253
c51e6d85 1254/* This is overridden by <cygwin.h>. */
5e062767
DS
1255#define MS_AGGREGATE_RETURN 0
1256
61fec9ff 1257#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1258\f
1259/* Define the classes of registers for register constraints in the
1260 machine description. Also define ranges of constants.
1261
1262 One of the classes must always be named ALL_REGS and include all hard regs.
1263 If there is more than one class, another class must be named NO_REGS
1264 and contain no registers.
1265
1266 The name GENERAL_REGS must be the name of a class (or an alias for
1267 another name such as ALL_REGS). This is the class of registers
1268 that is allowed by "g" or "r" in a register constraint.
1269 Also, registers outside this class are allocated only when
1270 instructions express preferences for them.
1271
1272 The classes must be numbered in nondecreasing order; that is,
1273 a larger-numbered class must never be contained completely
2e24efd3
AM
1274 in a smaller-numbered class. This is why CLOBBERED_REGS class
1275 is listed early, even though in 64-bit mode it contains more
1276 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1277
1278 For any two classes, it is very desirable that there be another
ab408a86
JVA
1279 class that represents their union.
1280
1281 It might seem that class BREG is unnecessary, since no useful 386
1282 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1283 and the "b" register constraint is useful in asms for syscalls.
1284
03c259ad 1285 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1286
1287enum reg_class
1288{
1289 NO_REGS,
e075ae69 1290 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1291 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1292 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1293 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1294 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1295 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1296 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1297 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1298 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1299 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1300 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1301 FLOAT_REGS,
06f4e35d 1302 SSE_FIRST_REG,
45392c76 1303 NO_REX_SSE_REGS,
a7180f70 1304 SSE_REGS,
3f97cb0b 1305 EVEX_SSE_REGS,
d5e254e1 1306 BND_REGS,
3f97cb0b 1307 ALL_SSE_REGS,
a7180f70 1308 MMX_REGS,
446988df
JH
1309 FP_TOP_SSE_REGS,
1310 FP_SECOND_SSE_REGS,
1311 FLOAT_SSE_REGS,
1312 FLOAT_INT_REGS,
1313 INT_SSE_REGS,
1314 FLOAT_INT_SSE_REGS,
85a77221
AI
1315 MASK_EVEX_REGS,
1316 MASK_REGS,
5fbb13a7 1317 MOD4_SSE_REGS,
c98f8742
JVA
1318 ALL_REGS, LIM_REG_CLASSES
1319};
1320
d9a5f180
GS
1321#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1322
1323#define INTEGER_CLASS_P(CLASS) \
1324 reg_class_subset_p ((CLASS), GENERAL_REGS)
1325#define FLOAT_CLASS_P(CLASS) \
1326 reg_class_subset_p ((CLASS), FLOAT_REGS)
1327#define SSE_CLASS_P(CLASS) \
3f97cb0b 1328 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1329#define MMX_CLASS_P(CLASS) \
f75959a6 1330 ((CLASS) == MMX_REGS)
4ed04e93
UB
1331#define MASK_CLASS_P(CLASS) \
1332 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1333#define MAYBE_INTEGER_CLASS_P(CLASS) \
1334 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1335#define MAYBE_FLOAT_CLASS_P(CLASS) \
1336 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1337#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1338 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1339#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1340 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1341#define MAYBE_MASK_CLASS_P(CLASS) \
1342 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1343
1344#define Q_CLASS_P(CLASS) \
1345 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1346
0bd72901
UB
1347#define MAYBE_NON_Q_CLASS_P(CLASS) \
1348 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1349
43f3a59d 1350/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1351
1352#define REG_CLASS_NAMES \
1353{ "NO_REGS", \
ab408a86 1354 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1355 "SIREG", "DIREG", \
e075ae69 1356 "AD_REGS", \
2e24efd3 1357 "CLOBBERED_REGS", \
e075ae69 1358 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1359 "TLS_GOTBASE_REGS", \
c98f8742 1360 "INDEX_REGS", \
3f3f2124 1361 "LEGACY_REGS", \
c98f8742
JVA
1362 "GENERAL_REGS", \
1363 "FP_TOP_REG", "FP_SECOND_REG", \
1364 "FLOAT_REGS", \
cb482895 1365 "SSE_FIRST_REG", \
45392c76 1366 "NO_REX_SSE_REGS", \
a7180f70 1367 "SSE_REGS", \
3f97cb0b 1368 "EVEX_SSE_REGS", \
d5e254e1 1369 "BND_REGS", \
3f97cb0b 1370 "ALL_SSE_REGS", \
a7180f70 1371 "MMX_REGS", \
446988df
JH
1372 "FP_TOP_SSE_REGS", \
1373 "FP_SECOND_SSE_REGS", \
1374 "FLOAT_SSE_REGS", \
8fcaaa80 1375 "FLOAT_INT_REGS", \
446988df
JH
1376 "INT_SSE_REGS", \
1377 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1378 "MASK_EVEX_REGS", \
1379 "MASK_REGS", \
cae67b80 1380 "MOD4_SSE_REGS", \
c98f8742
JVA
1381 "ALL_REGS" }
1382
ac2e563f
RH
1383/* Define which registers fit in which classes. This is an initializer
1384 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1385
621bc046
UB
1386 Note that CLOBBERED_REGS are calculated by
1387 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1388
3f97cb0b 1389#define REG_CLASS_CONTENTS \
d5e254e1
IE
1390{ { 0x00, 0x0, 0x0 }, \
1391 { 0x01, 0x0, 0x0 }, /* AREG */ \
1392 { 0x02, 0x0, 0x0 }, /* DREG */ \
1393 { 0x04, 0x0, 0x0 }, /* CREG */ \
1394 { 0x08, 0x0, 0x0 }, /* BREG */ \
1395 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1396 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1397 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1398 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1399 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1400 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1401 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1402 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1403 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1404 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1405 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1406 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1407 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1408 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1409{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1410{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1411 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1412 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1413{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1414{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1415{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1416{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1417{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1418{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1419{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1420{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1421 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1422 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1423{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1424{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1425}
c98f8742
JVA
1426
1427/* The same information, inverted:
1428 Return the class number of the smallest class containing
1429 reg number REGNO. This could be a conditional expression
1430 or could index an array. */
1431
1a6e82b8 1432#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1433
42db504c
SB
1434/* When this hook returns true for MODE, the compiler allows
1435 registers explicitly used in the rtl to be used as spill registers
1436 but prevents the compiler from extending the lifetime of these
1437 registers. */
1438#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1439
fc27f749 1440#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1441#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1442
1443#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1444#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1445
1446#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1447#define REX_INT_REGNO_P(N) \
1448 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1449
58b0b34c 1450#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1451#define GENERAL_REGNO_P(N) \
58b0b34c 1452 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1453
fc27f749
UB
1454#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1455#define ANY_QI_REGNO_P(N) \
1456 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1457
66aaf16f
UB
1458#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1459#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1460
fc27f749 1461#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1462#define SSE_REGNO_P(N) \
1463 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1464 || REX_SSE_REGNO_P (N) \
1465 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1466
4977bab6 1467#define REX_SSE_REGNO_P(N) \
fb84c7a0 1468 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1469
0a48088a
IT
1470#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1471
3f97cb0b
AI
1472#define EXT_REX_SSE_REGNO_P(N) \
1473 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1474
05416670
UB
1475#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1476#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1477
9e4a4dd6 1478#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1479#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1480
fc27f749 1481#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1482#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1483
e075ae69
RH
1484#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1485#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1486
58b0b34c 1487#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1488#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1489
5fbb13a7
KY
1490#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1491#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1492 || (N) == XMM4_REG \
1493 || (N) == XMM8_REG \
1494 || (N) == XMM12_REG \
1495 || (N) == XMM16_REG \
1496 || (N) == XMM20_REG \
1497 || (N) == XMM24_REG \
1498 || (N) == XMM28_REG)
1499
05416670
UB
1500/* First floating point reg */
1501#define FIRST_FLOAT_REG FIRST_STACK_REG
1502#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1503
1504#define SSE_REGNO(N) \
1505 ((N) < 8 ? FIRST_SSE_REG + (N) \
1506 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1507 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1508
c98f8742
JVA
1509/* The class value for index registers, and the one for base regs. */
1510
1511#define INDEX_REG_CLASS INDEX_REGS
1512#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1513\f
1514/* Stack layout; function entry, exit and calling. */
1515
1516/* Define this if pushing a word on the stack
1517 makes the stack pointer a smaller address. */
62f9f30b 1518#define STACK_GROWS_DOWNWARD 1
c98f8742 1519
a4d05547 1520/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1521 is at the high-address end of the local variables;
1522 that is, each additional local variable allocated
1523 goes at a more negative offset in the frame. */
f62c8a5c 1524#define FRAME_GROWS_DOWNWARD 1
c98f8742 1525
8c2b2fae
UB
1526/* If we generate an insn to push BYTES bytes, this says how many the stack
1527 pointer really advances by. On 386, we have pushw instruction that
1528 decrements by exactly 2 no matter what the position was, there is no pushb.
1529
1530 But as CIE data alignment factor on this arch is -4 for 32bit targets
1531 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1532 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1533
1a6e82b8 1534#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1535
1536/* If defined, the maximum amount of space required for outgoing arguments
1537 will be computed and placed into the variable `crtl->outgoing_args_size'.
1538 No space will be pushed onto the stack for each call; instead, the
1539 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1540
1541 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1542 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1543 mode the difference is less drastic but visible.
1544
1545 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1546 actually grow with accumulation. Is that because accumulated args
41ee845b 1547 unwind info became unnecesarily bloated?
f830ddc2
RH
1548
1549 With the 64-bit MS ABI, we can generate correct code with or without
1550 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1551 generated without accumulated args is terrible.
41ee845b
JH
1552
1553 If stack probes are required, the space used for large function
1554 arguments on the stack must also be probed, so enable
f8071c05
L
1555 -maccumulate-outgoing-args so this happens in the prologue.
1556
1557 We must use argument accumulation in interrupt function if stack
1558 may be realigned to avoid DRAP. */
f73ad30e 1559
6c6094f1 1560#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1561 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1562 && optimize_function_for_speed_p (cfun)) \
1563 || (cfun->machine->func_type != TYPE_NORMAL \
1564 && crtl->stack_realign_needed) \
1565 || TARGET_STACK_PROBE \
1566 || TARGET_64BIT_MS_ABI \
ff734e26 1567 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1568
1569/* If defined, a C expression whose value is nonzero when we want to use PUSH
1570 instructions to pass outgoing arguments. */
1571
1572#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1573
2da4124d
L
1574/* We want the stack and args grow in opposite directions, even if
1575 PUSH_ARGS is 0. */
1576#define PUSH_ARGS_REVERSED 1
1577
c98f8742
JVA
1578/* Offset of first parameter from the argument pointer register value. */
1579#define FIRST_PARM_OFFSET(FNDECL) 0
1580
a7180f70
BS
1581/* Define this macro if functions should assume that stack space has been
1582 allocated for arguments even when their values are passed in registers.
1583
1584 The value of this macro is the size, in bytes, of the area reserved for
1585 arguments passed in registers for the function represented by FNDECL.
1586
1587 This space can be allocated by the caller, or be a part of the
1588 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1589 which. */
7c800926
KT
1590#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1591
4ae8027b 1592#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1593 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1594
c98f8742
JVA
1595/* Define how to find the value returned by a library function
1596 assuming the value has mode MODE. */
1597
4ae8027b 1598#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1599
e9125c09
TW
1600/* Define the size of the result block used for communication between
1601 untyped_call and untyped_return. The block contains a DImode value
1602 followed by the block used by fnsave and frstor. */
1603
1604#define APPLY_RESULT_SIZE (8+108)
1605
b08de47e 1606/* 1 if N is a possible register number for function argument passing. */
53c17031 1607#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1608
1609/* Define a data type for recording info about an argument list
1610 during the scan of that argument list. This data type should
1611 hold all necessary information about the function itself
1612 and about the args processed so far, enough to enable macros
b08de47e 1613 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1614
e075ae69 1615typedef struct ix86_args {
fa283935 1616 int words; /* # words passed so far */
b08de47e
MM
1617 int nregs; /* # registers available for passing */
1618 int regno; /* next available register number */
3e65f251
KT
1619 int fastcall; /* fastcall or thiscall calling convention
1620 is used */
fa283935 1621 int sse_words; /* # sse words passed so far */
a7180f70 1622 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1623 int warn_avx512f; /* True when we want to warn
1624 about AVX512F ABI. */
95879c72 1625 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1626 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1627 int warn_mmx; /* True when we want to warn about MMX ABI. */
1628 int sse_regno; /* next available sse register number */
1629 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1630 int mmx_nregs; /* # mmx registers available for passing */
1631 int mmx_regno; /* next available mmx register number */
892a2d68 1632 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1633 int caller; /* true if it is caller. */
2824d6e5
UB
1634 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1635 SFmode/DFmode arguments should be passed
1636 in SSE registers. Otherwise 0. */
d5e254e1
IE
1637 int bnd_regno; /* next available bnd register number */
1638 int bnds_in_bt; /* number of bounds expected in BT. */
1639 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1640 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1641 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1642 MS_ABI for ms abi. */
e66fc623 1643 tree decl; /* Callee decl. */
b08de47e 1644} CUMULATIVE_ARGS;
c98f8742
JVA
1645
1646/* Initialize a variable CUM of type CUMULATIVE_ARGS
1647 for a call to a function whose data type is FNTYPE.
b08de47e 1648 For a library call, FNTYPE is 0. */
c98f8742 1649
0f6937fe 1650#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1651 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1652 (N_NAMED_ARGS) != -1)
c98f8742 1653
c98f8742
JVA
1654/* Output assembler code to FILE to increment profiler label # LABELNO
1655 for profiling a function entry. */
1656
1a6e82b8
UB
1657#define FUNCTION_PROFILER(FILE, LABELNO) \
1658 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1659
1660#define MCOUNT_NAME "_mcount"
1661
3c5273a9
KT
1662#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1663
a5fa1ecd 1664#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1665
1666/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1667 the stack pointer does not matter. The value is tested only in
1668 functions that have frame pointers.
1669 No definition is equivalent to always zero. */
fce5a9f2 1670/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1671 we have to restore it ourselves from the frame pointer, in order to
1672 use pop */
1673
1674#define EXIT_IGNORE_STACK 1
1675
f8071c05
L
1676/* Define this macro as a C expression that is nonzero for registers
1677 used by the epilogue or the `return' pattern. */
1678
1679#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1680
c98f8742
JVA
1681/* Output assembler code for a block containing the constant parts
1682 of a trampoline, leaving space for the variable parts. */
1683
a269a03c 1684/* On the 386, the trampoline contains two instructions:
c98f8742 1685 mov #STATIC,ecx
a269a03c
JC
1686 jmp FUNCTION
1687 The trampoline is generated entirely at runtime. The operand of JMP
1688 is the address of FUNCTION relative to the instruction following the
1689 JMP (which is 5 bytes long). */
c98f8742
JVA
1690
1691/* Length in units of the trampoline for entering a nested function. */
1692
3452586b 1693#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1694\f
1695/* Definitions for register eliminations.
1696
1697 This is an array of structures. Each structure initializes one pair
1698 of eliminable registers. The "from" register number is given first,
1699 followed by "to". Eliminations of the same "from" register are listed
1700 in order of preference.
1701
afc2cd05
NC
1702 There are two registers that can always be eliminated on the i386.
1703 The frame pointer and the arg pointer can be replaced by either the
1704 hard frame pointer or to the stack pointer, depending upon the
1705 circumstances. The hard frame pointer is not used before reload and
1706 so it is not eligible for elimination. */
c98f8742 1707
564d80f4
JH
1708#define ELIMINABLE_REGS \
1709{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1710 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1711 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1712 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1713
c98f8742
JVA
1714/* Define the offset between two registers, one to be eliminated, and the other
1715 its replacement, at the start of a routine. */
1716
d9a5f180
GS
1717#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1718 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1719\f
1720/* Addressing modes, and classification of registers for them. */
1721
c98f8742
JVA
1722/* Macros to check register numbers against specific register classes. */
1723
1724/* These assume that REGNO is a hard or pseudo reg number.
1725 They give nonzero only if REGNO is a hard reg of the suitable class
1726 or a pseudo reg currently allocated to a suitable hard reg.
1727 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1728 has been allocated, which happens in reginfo.c during register
1729 allocation. */
c98f8742 1730
3f3f2124
JH
1731#define REGNO_OK_FOR_INDEX_P(REGNO) \
1732 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1733 || REX_INT_REGNO_P (REGNO) \
1734 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1735 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1736
3f3f2124 1737#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1738 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1739 || (REGNO) == ARG_POINTER_REGNUM \
1740 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1741 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1742
c98f8742
JVA
1743/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1744 and check its validity for a certain class.
1745 We have two alternate definitions for each of them.
1746 The usual definition accepts all pseudo regs; the other rejects
1747 them unless they have been allocated suitable hard regs.
1748 The symbol REG_OK_STRICT causes the latter definition to be used.
1749
1750 Most source files want to accept pseudo regs in the hope that
1751 they will get allocated to the class that the insn wants them to be in.
1752 Source files for reload pass need to be strict.
1753 After reload, it makes no difference, since pseudo regs have
1754 been eliminated by then. */
1755
c98f8742 1756
ff482c8d 1757/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1758#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1759 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1760 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1761 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1762
3b3c6a3f 1763#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1764 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1765 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1766 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1767 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1768
3b3c6a3f
MM
1769/* Strict versions, hard registers only */
1770#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1771#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1772
3b3c6a3f 1773#ifndef REG_OK_STRICT
d9a5f180
GS
1774#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1775#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1776
1777#else
d9a5f180
GS
1778#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1779#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1780#endif
1781
331d9186 1782/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1783 that is a valid memory address for an instruction.
1784 The MODE argument is the machine mode for the MEM expression
1785 that wants to use this address.
1786
331d9186 1787 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1788 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1789
1790 See legitimize_pic_address in i386.c for details as to what
1791 constitutes a legitimate address when -fpic is used. */
1792
1793#define MAX_REGS_PER_ADDRESS 2
1794
f996902d 1795#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1796
b949ea8b
JW
1797/* If defined, a C expression to determine the base term of address X.
1798 This macro is used in only one place: `find_base_term' in alias.c.
1799
1800 It is always safe for this macro to not be defined. It exists so
1801 that alias analysis can understand machine-dependent addresses.
1802
1803 The typical use of this macro is to handle addresses containing
1804 a label_ref or symbol_ref within an UNSPEC. */
1805
d9a5f180 1806#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1807
c98f8742 1808/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1809 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1810 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1811
f996902d 1812#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1813
1814#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1815 (GET_CODE (X) == SYMBOL_REF \
1816 || GET_CODE (X) == LABEL_REF \
1817 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1818\f
b08de47e
MM
1819/* Max number of args passed in registers. If this is more than 3, we will
1820 have problems with ebx (register #4), since it is a caller save register and
1821 is also used as the pic register in ELF. So for now, don't allow more than
1822 3 registers to be passed in registers. */
1823
7c800926
KT
1824/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1825#define X86_64_REGPARM_MAX 6
72fa3605 1826#define X86_64_MS_REGPARM_MAX 4
7c800926 1827
72fa3605 1828#define X86_32_REGPARM_MAX 3
7c800926 1829
4ae8027b 1830#define REGPARM_MAX \
2824d6e5
UB
1831 (TARGET_64BIT \
1832 ? (TARGET_64BIT_MS_ABI \
1833 ? X86_64_MS_REGPARM_MAX \
1834 : X86_64_REGPARM_MAX) \
4ae8027b 1835 : X86_32_REGPARM_MAX)
d2836273 1836
72fa3605
UB
1837#define X86_64_SSE_REGPARM_MAX 8
1838#define X86_64_MS_SSE_REGPARM_MAX 4
1839
b6010cab 1840#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1841
4ae8027b 1842#define SSE_REGPARM_MAX \
2824d6e5
UB
1843 (TARGET_64BIT \
1844 ? (TARGET_64BIT_MS_ABI \
1845 ? X86_64_MS_SSE_REGPARM_MAX \
1846 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1847 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1848
1849#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1850\f
1851/* Specify the machine mode that this machine uses
1852 for the index in the tablejump instruction. */
dc4d7240 1853#define CASE_VECTOR_MODE \
6025b127 1854 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1855
c98f8742
JVA
1856/* Define this as 1 if `char' should by default be signed; else as 0. */
1857#define DEFAULT_SIGNED_CHAR 1
1858
1859/* Max number of bytes we can move from memory to memory
1860 in one reasonably fast instruction. */
65d9c0ab
JH
1861#define MOVE_MAX 16
1862
1863/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1864 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1865 number of bytes we can move with a single instruction.
1866
1867 ??? We should use TImode in 32-bit mode and use OImode or XImode
1868 if they are available. But since by_pieces_ninsns determines the
1869 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1870 64-bit mode. */
1871#define MOVE_MAX_PIECES \
1872 ((TARGET_64BIT \
1873 && TARGET_SSE2 \
1874 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1875 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1876 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1877
7e24ffc9 1878/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1879 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1880 Increasing the value will always make code faster, but eventually
1881 incurs high cost in increased code size.
c98f8742 1882
e2e52e1b 1883 If you don't define this, a reasonable default is used. */
c98f8742 1884
e04ad03d 1885#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1886
45d78e7f
JJ
1887/* If a clear memory operation would take CLEAR_RATIO or more simple
1888 move-instruction sequences, we will do a clrmem or libcall instead. */
1889
e04ad03d 1890#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1891
53f00dde
UB
1892/* Define if shifts truncate the shift count which implies one can
1893 omit a sign-extension or zero-extension of a shift count.
1894
1895 On i386, shifts do truncate the count. But bit test instructions
1896 take the modulo of the bit offset operand. */
c98f8742
JVA
1897
1898/* #define SHIFT_COUNT_TRUNCATED */
1899
d9f32422
JH
1900/* A macro to update M and UNSIGNEDP when an object whose type is
1901 TYPE and which has the specified mode and signedness is to be
1902 stored in a register. This macro is only called when TYPE is a
1903 scalar type.
1904
f710504c 1905 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1906 quantities to SImode. The choice depends on target type. */
1907
1908#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1909do { \
d9f32422
JH
1910 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1911 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1912 (MODE) = SImode; \
1913} while (0)
d9f32422 1914
c98f8742
JVA
1915/* Specify the machine mode that pointers have.
1916 After generation of rtl, the compiler makes no further distinction
1917 between pointers and any other objects of this machine mode. */
28968d91 1918#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1919
d5e254e1
IE
1920/* Specify the machine mode that bounds have. */
1921#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1922
f0ea7581
L
1923/* A C expression whose value is zero if pointers that need to be extended
1924 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1925 greater then zero if they are zero-extended and less then zero if the
1926 ptr_extend instruction should be used. */
1927
1928#define POINTERS_EXTEND_UNSIGNED 1
1929
c98f8742
JVA
1930/* A function address in a call instruction
1931 is a byte address (for indexing purposes)
1932 so give the MEM rtx a byte's mode. */
1933#define FUNCTION_MODE QImode
d4ba09c0 1934\f
d4ba09c0 1935
d4ba09c0
SC
1936/* A C expression for the cost of a branch instruction. A value of 1
1937 is the default; other values are interpreted relative to that. */
1938
3a4fd356
JH
1939#define BRANCH_COST(speed_p, predictable_p) \
1940 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1941
e327d1a3
L
1942/* An integer expression for the size in bits of the largest integer machine
1943 mode that should actually be used. We allow pairs of registers. */
1944#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1945
d4ba09c0
SC
1946/* Define this macro as a C expression which is nonzero if accessing
1947 less than a word of memory (i.e. a `char' or a `short') is no
1948 faster than accessing a word of memory, i.e., if such access
1949 require more than one instruction or if there is no difference in
1950 cost between byte and (aligned) word loads.
1951
1952 When this macro is not defined, the compiler will access a field by
1953 finding the smallest containing object; when it is defined, a
1954 fullword load will be used if alignment permits. Unless bytes
1955 accesses are faster than word accesses, using word accesses is
1956 preferable since it may eliminate subsequent memory access if
1957 subsequent accesses occur to other fields in the same word of the
1958 structure, but to different bytes. */
1959
1960#define SLOW_BYTE_ACCESS 0
1961
1962/* Nonzero if access to memory by shorts is slow and undesirable. */
1963#define SLOW_SHORT_ACCESS 0
1964
d4ba09c0
SC
1965/* Define this macro if it is as good or better to call a constant
1966 function address than to call an address kept in a register.
1967
1968 Desirable on the 386 because a CALL with a constant address is
1969 faster than one with a register address. */
1970
1e8552c2 1971#define NO_FUNCTION_CSE 1
c98f8742 1972\f
c572e5ba
JVA
1973/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1974 return the mode to be used for the comparison.
1975
1976 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1977 VOIDmode should be used in all other cases.
c572e5ba 1978
16189740 1979 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1980 possible, to allow for more combinations. */
c98f8742 1981
d9a5f180 1982#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1983
9cd10576 1984/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1985 reversed. */
1986
1987#define REVERSIBLE_CC_MODE(MODE) 1
1988
1989/* A C expression whose value is reversed condition code of the CODE for
1990 comparison done in CC_MODE mode. */
3c5cb3e4 1991#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1992
c98f8742
JVA
1993\f
1994/* Control the assembler format that we output, to the extent
1995 this does not vary between assemblers. */
1996
1997/* How to refer to registers in assembler output.
892a2d68 1998 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1999
a7b376ee 2000/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2001 For non floating point regs, the following are the HImode names.
2002
2003 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2004 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2005 "y" code. */
c98f8742 2006
a7180f70
BS
2007#define HI_REGISTER_NAMES \
2008{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2009 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2010 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2011 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2012 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2013 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2014 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2015 "xmm16", "xmm17", "xmm18", "xmm19", \
2016 "xmm20", "xmm21", "xmm22", "xmm23", \
2017 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2018 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2019 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2020 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2021
c98f8742
JVA
2022#define REGISTER_NAMES HI_REGISTER_NAMES
2023
2024/* Table of additional register names to use in user input. */
2025
2026#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2027{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2028 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2029 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2030 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2031 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2032 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2033 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2034 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2035 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2036 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2037 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2038 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2039 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2040 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2041 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2042 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2043 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2044 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2045 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2046 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2047 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2048 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2049
2050/* Note we are omitting these since currently I don't know how
2051to get gcc to use these, since they want the same but different
2052number as al, and ax.
2053*/
2054
c98f8742 2055#define QI_REGISTER_NAMES \
3f3f2124 2056{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2057
2058/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2059 of regs 0 through 3. */
c98f8742
JVA
2060
2061#define QI_HIGH_REGISTER_NAMES \
2062{"ah", "dh", "ch", "bh", }
2063
2064/* How to renumber registers for dbx and gdb. */
2065
d9a5f180
GS
2066#define DBX_REGISTER_NUMBER(N) \
2067 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2068
9a82e702
MS
2069extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2070extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2071extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2072
469ac993
JM
2073/* Before the prologue, RA is at 0(%esp). */
2074#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2075 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2076
e414ab29 2077/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2078#define RETURN_ADDR_RTX(COUNT, FRAME) \
2079 ((COUNT) == 0 \
2080 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2081 -UNITS_PER_WORD)) \
2082 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2083
892a2d68 2084/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2085#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2086
a10b3cf1
L
2087/* Before the prologue, there are return address and error code for
2088 exception handler on the top of the frame. */
2089#define INCOMING_FRAME_SP_OFFSET \
2090 (cfun->machine->func_type == TYPE_EXCEPTION \
2091 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2092
1020a5ab 2093/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2094#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2095#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2096
ad919812 2097
e4c4ebeb
RH
2098/* Select a format to encode pointers in exception handling data. CODE
2099 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2100 true if the symbol may be affected by dynamic relocations.
2101
2102 ??? All x86 object file formats are capable of representing this.
2103 After all, the relocation needed is the same as for the call insn.
2104 Whether or not a particular assembler allows us to enter such, I
2105 guess we'll have to see. */
d9a5f180 2106#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2107 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2108
ec1895c1
UB
2109/* These are a couple of extensions to the formats accepted
2110 by asm_fprintf:
2111 %z prints out opcode suffix for word-mode instruction
2112 %r prints out word-mode name for reg_names[arg] */
2113#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2114 case 'z': \
2115 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2116 break; \
2117 \
2118 case 'r': \
2119 { \
2120 unsigned int regno = va_arg ((ARGS), int); \
2121 if (LEGACY_INT_REGNO_P (regno)) \
2122 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2123 fputs (reg_names[regno], (FILE)); \
2124 break; \
2125 }
2126
2127/* This is how to output an insn to push a register on the stack. */
2128
2129#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2130 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2131
2132/* This is how to output an insn to pop a register from the stack. */
c98f8742 2133
d9a5f180 2134#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2135 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2136
f88c65f7 2137/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2138
2139#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2140 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2141
f88c65f7 2142/* This is how to output an element of a case-vector that is relative. */
c98f8742 2143
33f7f353 2144#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2145 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2146
63001560 2147/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2148
2149#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2150{ \
2151 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2152 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2153}
2154
2155/* A C statement or statements which output an assembler instruction
2156 opcode to the stdio stream STREAM. The macro-operand PTR is a
2157 variable of type `char *' which points to the opcode name in
2158 its "internal" form--the form that is written in the machine
2159 description. */
2160
2161#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2162 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2163
6a90d232
L
2164/* A C statement to output to the stdio stream FILE an assembler
2165 command to pad the location counter to a multiple of 1<<LOG
2166 bytes if it is within MAX_SKIP bytes. */
2167
2168#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2169#undef ASM_OUTPUT_MAX_SKIP_PAD
2170#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2171 if ((LOG) != 0) \
2172 { \
2173 if ((MAX_SKIP) == 0) \
2174 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2175 else \
2176 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2177 }
2178#endif
2179
135a687e
KT
2180/* Write the extra assembler code needed to declare a function
2181 properly. */
2182
2183#undef ASM_OUTPUT_FUNCTION_LABEL
2184#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2185 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2186
f7288899
EC
2187/* Under some conditions we need jump tables in the text section,
2188 because the assembler cannot handle label differences between
2189 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2190
2191#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2192 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2193 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2194
cea3bd3e
RH
2195/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2196 and switch back. For x86 we do this only to save a few bytes that
2197 would otherwise be unused in the text section. */
ad211091
KT
2198#define CRT_MKSTR2(VAL) #VAL
2199#define CRT_MKSTR(x) CRT_MKSTR2(x)
2200
2201#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2202 asm (SECTION_OP "\n\t" \
2203 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2204 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2205
2206/* Default threshold for putting data in large sections
2207 with x86-64 medium memory model */
2208#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2209
2210/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2211
2212#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2213do { \
2214 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2215 && get_attr_maybe_prefix_bnd (INSN)) \
2216 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2217} while (0)
74b42c8b 2218\f
b97de419
L
2219/* Which processor to tune code generation for. These must be in sync
2220 with processor_target_table in i386.c. */
5bf0ebab
RH
2221
2222enum processor_type
2223{
b97de419
L
2224 PROCESSOR_GENERIC = 0,
2225 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2226 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2227 PROCESSOR_PENTIUM,
2d6b2e28 2228 PROCESSOR_LAKEMONT,
5bf0ebab 2229 PROCESSOR_PENTIUMPRO,
5bf0ebab 2230 PROCESSOR_PENTIUM4,
89c43c0a 2231 PROCESSOR_NOCONA,
340ef734 2232 PROCESSOR_CORE2,
d3c11974
L
2233 PROCESSOR_NEHALEM,
2234 PROCESSOR_SANDYBRIDGE,
3a579e09 2235 PROCESSOR_HASWELL,
d3c11974
L
2236 PROCESSOR_BONNELL,
2237 PROCESSOR_SILVERMONT,
52747219 2238 PROCESSOR_KNL,
cace2309 2239 PROCESSOR_KNM,
06caf59d 2240 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2241 PROCESSOR_INTEL,
b97de419
L
2242 PROCESSOR_GEODE,
2243 PROCESSOR_K6,
2244 PROCESSOR_ATHLON,
2245 PROCESSOR_K8,
21efb4d4 2246 PROCESSOR_AMDFAM10,
1133125e 2247 PROCESSOR_BDVER1,
4d652a18 2248 PROCESSOR_BDVER2,
eb2f2b44 2249 PROCESSOR_BDVER3,
ed97ad47 2250 PROCESSOR_BDVER4,
14b52538 2251 PROCESSOR_BTVER1,
e32bfc16 2252 PROCESSOR_BTVER2,
9ce29eb0 2253 PROCESSOR_ZNVER1,
5bf0ebab
RH
2254 PROCESSOR_max
2255};
2256
9e555526 2257extern enum processor_type ix86_tune;
5bf0ebab 2258extern enum processor_type ix86_arch;
5bf0ebab 2259
8362f420
JH
2260/* Size of the RED_ZONE area. */
2261#define RED_ZONE_SIZE 128
2262/* Reserved area of the red zone for temporaries. */
2263#define RED_ZONE_RESERVE 8
c93e80a5 2264
95899b34 2265extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2266extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2267
2268/* Smallest class containing REGNO. */
2269extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2270
0948ccb2
PB
2271enum ix86_fpcmp_strategy {
2272 IX86_FPCMP_SAHF,
2273 IX86_FPCMP_COMI,
2274 IX86_FPCMP_ARITH
2275};
22fb740d
JH
2276\f
2277/* To properly truncate FP values into integers, we need to set i387 control
2278 word. We can't emit proper mode switching code before reload, as spills
2279 generated by reload may truncate values incorrectly, but we still can avoid
2280 redundant computation of new control word by the mode switching pass.
2281 The fldcw instructions are still emitted redundantly, but this is probably
2282 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2283 the sequence.
22fb740d
JH
2284
2285 The machinery is to emit simple truncation instructions and split them
2286 before reload to instructions having USEs of two memory locations that
2287 are filled by this code to old and new control word.
fce5a9f2 2288
22fb740d
JH
2289 Post-reload pass may be later used to eliminate the redundant fildcw if
2290 needed. */
2291
c7ca8ef8
UB
2292enum ix86_stack_slot
2293{
2294 SLOT_TEMP = 0,
2295 SLOT_CW_STORED,
2296 SLOT_CW_TRUNC,
2297 SLOT_CW_FLOOR,
2298 SLOT_CW_CEIL,
2299 SLOT_CW_MASK_PM,
80008279 2300 SLOT_STV_TEMP,
c7ca8ef8
UB
2301 MAX_386_STACK_LOCALS
2302};
2303
ff680eb1
UB
2304enum ix86_entity
2305{
c7ca8ef8
UB
2306 X86_DIRFLAG = 0,
2307 AVX_U128,
ff97910d 2308 I387_TRUNC,
ff680eb1
UB
2309 I387_FLOOR,
2310 I387_CEIL,
2311 I387_MASK_PM,
2312 MAX_386_ENTITIES
2313};
2314
c7ca8ef8 2315enum x86_dirflag_state
ff680eb1 2316{
c7ca8ef8
UB
2317 X86_DIRFLAG_RESET,
2318 X86_DIRFLAG_ANY
ff680eb1 2319};
22fb740d 2320
ff97910d
VY
2321enum avx_u128_state
2322{
2323 AVX_U128_CLEAN,
2324 AVX_U128_DIRTY,
2325 AVX_U128_ANY
2326};
2327
22fb740d
JH
2328/* Define this macro if the port needs extra instructions inserted
2329 for mode switching in an optimizing compilation. */
2330
ff680eb1
UB
2331#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2332 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2333
2334/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2335 initializer for an array of integers. Each initializer element N
2336 refers to an entity that needs mode switching, and specifies the
2337 number of different modes that might need to be set for this
2338 entity. The position of the initializer in the initializer -
2339 starting counting at zero - determines the integer that is used to
2340 refer to the mode-switched entity in question. */
2341
c7ca8ef8
UB
2342#define NUM_MODES_FOR_MODE_SWITCHING \
2343 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2344 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2345
0f0138b6
JH
2346\f
2347/* Avoid renaming of stack registers, as doing so in combination with
2348 scheduling just increases amount of live registers at time and in
2349 the turn amount of fxch instructions needed.
2350
3f97cb0b
AI
2351 ??? Maybe Pentium chips benefits from renaming, someone can try....
2352
2353 Don't rename evex to non-evex sse registers. */
0f0138b6 2354
1a6e82b8
UB
2355#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2356 (!STACK_REGNO_P (SRC) \
2357 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2358
3b3c6a3f 2359\f
e91f04de 2360#define FASTCALL_PREFIX '@'
fa1a0d02 2361\f
77560086
BE
2362#ifndef USED_FOR_TARGET
2363/* Structure describing stack frame layout.
2364 Stack grows downward:
2365
2366 [arguments]
2367 <- ARG_POINTER
2368 saved pc
2369
2370 saved static chain if ix86_static_chain_on_stack
2371
2372 saved frame pointer if frame_pointer_needed
2373 <- HARD_FRAME_POINTER
2374 [saved regs]
2375 <- reg_save_offset
2376 [padding0]
2377 <- stack_realign_offset
2378 [saved SSE regs]
2379 OR
2380 [stub-saved registers for ms x64 --> sysv clobbers
2381 <- Start of out-of-line, stub-saved/restored regs
2382 (see libgcc/config/i386/(sav|res)ms64*.S)
2383 [XMM6-15]
2384 [RSI]
2385 [RDI]
2386 [?RBX] only if RBX is clobbered
2387 [?RBP] only if RBP and RBX are clobbered
2388 [?R12] only if R12 and all previous regs are clobbered
2389 [?R13] only if R13 and all previous regs are clobbered
2390 [?R14] only if R14 and all previous regs are clobbered
2391 [?R15] only if R15 and all previous regs are clobbered
2392 <- end of stub-saved/restored regs
2393 [padding1]
2394 ]
5d9d834d 2395 <- sse_reg_save_offset
77560086
BE
2396 [padding2]
2397 | <- FRAME_POINTER
2398 [va_arg registers] |
2399 |
2400 [frame] |
2401 |
2402 [padding2] | = to_allocate
2403 <- STACK_POINTER
2404 */
2405struct GTY(()) ix86_frame
2406{
2407 int nsseregs;
2408 int nregs;
2409 int va_arg_size;
2410 int red_zone_size;
2411 int outgoing_arguments_size;
2412
2413 /* The offsets relative to ARG_POINTER. */
2414 HOST_WIDE_INT frame_pointer_offset;
2415 HOST_WIDE_INT hard_frame_pointer_offset;
2416 HOST_WIDE_INT stack_pointer_offset;
2417 HOST_WIDE_INT hfp_save_offset;
2418 HOST_WIDE_INT reg_save_offset;
122f9da1 2419 HOST_WIDE_INT stack_realign_allocate;
77560086 2420 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2421 HOST_WIDE_INT sse_reg_save_offset;
2422
2423 /* When save_regs_using_mov is set, emit prologue using
2424 move instead of push instructions. */
2425 bool save_regs_using_mov;
2426};
2427
122f9da1
DS
2428/* Machine specific frame tracking during prologue/epilogue generation. All
2429 values are positive, but since the x86 stack grows downward, are subtratced
2430 from the CFA to produce a valid address. */
cd9c1ca8 2431
ec7ded37 2432struct GTY(()) machine_frame_state
cd9c1ca8 2433{
ec7ded37
RH
2434 /* This pair tracks the currently active CFA as reg+offset. When reg
2435 is drap_reg, we don't bother trying to record here the real CFA when
2436 it might really be a DW_CFA_def_cfa_expression. */
2437 rtx cfa_reg;
2438 HOST_WIDE_INT cfa_offset;
2439
2440 /* The current offset (canonically from the CFA) of ESP and EBP.
2441 When stack frame re-alignment is active, these may not be relative
2442 to the CFA. However, in all cases they are relative to the offsets
2443 of the saved registers stored in ix86_frame. */
2444 HOST_WIDE_INT sp_offset;
2445 HOST_WIDE_INT fp_offset;
2446
2447 /* The size of the red-zone that may be assumed for the purposes of
2448 eliding register restore notes in the epilogue. This may be zero
2449 if no red-zone is in effect, or may be reduced from the real
2450 red-zone value by a maximum runtime stack re-alignment value. */
2451 int red_zone_offset;
2452
2453 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2454 value within the frame. If false then the offset above should be
2455 ignored. Note that DRAP, if valid, *always* points to the CFA and
2456 thus has an offset of zero. */
2457 BOOL_BITFIELD sp_valid : 1;
2458 BOOL_BITFIELD fp_valid : 1;
2459 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2460
2461 /* Indicate whether the local stack frame has been re-aligned. When
2462 set, the SP/FP offsets above are relative to the aligned frame
2463 and not the CFA. */
2464 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2465
2466 /* Indicates whether the stack pointer has been re-aligned. When set,
2467 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2468 should only be used for offsets > sp_realigned_offset, while
2469 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2470 The flags realigned and sp_realigned are mutually exclusive. */
2471 BOOL_BITFIELD sp_realigned : 1;
2472
122f9da1
DS
2473 /* If sp_realigned is set, this is the last valid offset from the CFA
2474 that can be used for access with the frame pointer. */
2475 HOST_WIDE_INT sp_realigned_fp_last;
2476
2477 /* If sp_realigned is set, this is the offset from the CFA that the stack
2478 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2479 Access via the stack pointer is only valid for offsets that are greater than
2480 this value. */
d6d4d770 2481 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2482};
2483
f81c9774
RH
2484/* Private to winnt.c. */
2485struct seh_frame_state;
2486
f8071c05
L
2487enum function_type
2488{
2489 TYPE_UNKNOWN = 0,
2490 TYPE_NORMAL,
2491 /* The current function is an interrupt service routine with a
2492 pointer argument as specified by the "interrupt" attribute. */
2493 TYPE_INTERRUPT,
2494 /* The current function is an interrupt service routine with a
2495 pointer argument and an integer argument as specified by the
2496 "interrupt" attribute. */
2497 TYPE_EXCEPTION
2498};
2499
d1b38208 2500struct GTY(()) machine_function {
fa1a0d02 2501 struct stack_local_entry *stack_locals;
4aab97f9
L
2502 int varargs_gpr_size;
2503 int varargs_fpr_size;
ff680eb1 2504 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2505
77560086
BE
2506 /* Cached initial frame layout for the current function. */
2507 struct ix86_frame frame;
3452586b 2508
7458026b
ILT
2509 /* For -fsplit-stack support: A stack local which holds a pointer to
2510 the stack arguments for a function with a variable number of
2511 arguments. This is set at the start of the function and is used
2512 to initialize the overflow_arg_area field of the va_list
2513 structure. */
2514 rtx split_stack_varargs_pointer;
2515
3452586b
RH
2516 /* This value is used for amd64 targets and specifies the current abi
2517 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2518 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2519
2520 /* Nonzero if the function accesses a previous frame. */
2521 BOOL_BITFIELD accesses_prev_frame : 1;
2522
922e3e33
UB
2523 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2524 expander to determine the style used. */
3452586b
RH
2525 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2526
1e4490dc
UB
2527 /* Nonzero if the current function calls pc thunk and
2528 must not use the red zone. */
2529 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2530
5bf5a10b
AO
2531 /* If true, the current function needs the default PIC register, not
2532 an alternate register (on x86) and must not use the red zone (on
2533 x86_64), even if it's a leaf function. We don't want the
2534 function to be regarded as non-leaf because TLS calls need not
2535 affect register allocation. This flag is set when a TLS call
2536 instruction is expanded within a function, and never reset, even
2537 if all such instructions are optimized away. Use the
2538 ix86_current_function_calls_tls_descriptor macro for a better
2539 approximation. */
3452586b
RH
2540 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2541
2542 /* If true, the current function has a STATIC_CHAIN is placed on the
2543 stack below the return address. */
2544 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2545
529a6471
JJ
2546 /* If true, it is safe to not save/restore DRAP register. */
2547 BOOL_BITFIELD no_drap_save_restore : 1;
2548
f8071c05
L
2549 /* Function type. */
2550 ENUM_BITFIELD(function_type) func_type : 2;
2551
2552 /* If true, the current function is a function specified with
2553 the "interrupt" or "no_caller_saved_registers" attribute. */
2554 BOOL_BITFIELD no_caller_saved_registers : 1;
2555
a0ff7835
L
2556 /* If true, there is register available for argument passing. This
2557 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2558 if there is scratch register available for indirect sibcall. In
2559 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2560 pass arguments and can be used for indirect sibcall. */
2561 BOOL_BITFIELD arg_reg_available : 1;
2562
d6d4d770 2563 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2564 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2565 BOOL_BITFIELD call_ms2sysv : 1;
2566
2567 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2568 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2569 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2570
d6d4d770
DS
2571 /* This is the number of extra registers saved by stub (valid range is
2572 0-6). Each additional register is only saved/restored by the stubs
2573 if all successive ones are. (Will always be zero when using a hard
2574 frame pointer.) */
2575 unsigned int call_ms2sysv_extra_regs:3;
2576
35c95658
L
2577 /* Nonzero if the function places outgoing arguments on stack. */
2578 BOOL_BITFIELD outgoing_args_on_stack : 1;
2579
ec7ded37
RH
2580 /* During prologue/epilogue generation, the current frame state.
2581 Otherwise, the frame state at the end of the prologue. */
2582 struct machine_frame_state fs;
f81c9774
RH
2583
2584 /* During SEH output, this is non-null. */
2585 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2586};
cd9c1ca8 2587#endif
fa1a0d02
JH
2588
2589#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2590#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2591#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2592#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2593#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2594#define ix86_tls_descriptor_calls_expanded_in_cfun \
2595 (cfun->machine->tls_descriptor_call_expanded_p)
2596/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2597 calls are optimized away, we try to detect cases in which it was
2598 optimized away. Since such instructions (use (reg REG_SP)), we can
2599 verify whether there's any such instruction live by testing that
2600 REG_SP is live. */
2601#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2602 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2603#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2604#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2605
1bc7c5b6
ZW
2606/* Control behavior of x86_file_start. */
2607#define X86_FILE_START_VERSION_DIRECTIVE false
2608#define X86_FILE_START_FLTUSED false
2609
7dcbf659
JH
2610/* Flag to mark data that is in the large address area. */
2611#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2612#define SYMBOL_REF_FAR_ADDR_P(X) \
2613 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2614
2615/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2616 have defined always, to avoid ifdefing. */
2617#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2618#define SYMBOL_REF_DLLIMPORT_P(X) \
2619 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2620
2621#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2622#define SYMBOL_REF_DLLEXPORT_P(X) \
2623 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2624
82c0e1a0
KT
2625#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2626#define SYMBOL_REF_STUBVAR_P(X) \
2627 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2628
7942e47e
RY
2629extern void debug_ready_dispatch (void);
2630extern void debug_dispatch_window (int);
2631
91afcfa3
QN
2632/* The value at zero is only defined for the BMI instructions
2633 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2634#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2635 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2636#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2637 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2638
2639
b8ce4e94
KT
2640/* Flags returned by ix86_get_callcvt (). */
2641#define IX86_CALLCVT_CDECL 0x1
2642#define IX86_CALLCVT_STDCALL 0x2
2643#define IX86_CALLCVT_FASTCALL 0x4
2644#define IX86_CALLCVT_THISCALL 0x8
2645#define IX86_CALLCVT_REGPARM 0x10
2646#define IX86_CALLCVT_SSEREGPARM 0x20
2647
2648#define IX86_BASE_CALLCVT(FLAGS) \
2649 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2650 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2651
b86b9f44
MM
2652#define RECIP_MASK_NONE 0x00
2653#define RECIP_MASK_DIV 0x01
2654#define RECIP_MASK_SQRT 0x02
2655#define RECIP_MASK_VEC_DIV 0x04
2656#define RECIP_MASK_VEC_SQRT 0x08
2657#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2658 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2659#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2660
2661#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2662#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2663#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2664#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2665
5dcfdccd
KY
2666#define IX86_HLE_ACQUIRE (1 << 16)
2667#define IX86_HLE_RELEASE (1 << 17)
2668
e83b8e2e
JJ
2669/* For switching between functions with different target attributes. */
2670#define SWITCHABLE_TARGET 1
2671
44d0de8d
UB
2672#define TARGET_SUPPORTS_WIDE_INT 1
2673
c98f8742
JVA
2674/*
2675Local variables:
2676version-control: t
2677End:
2678*/