]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
dbxout.c (dbxout_symbol_location): Pass new argument to alter_subreg.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
90922d36 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
90922d36
MM
44#define TARGET_64BIT TARGET_ISA_64BIT
45#define TARGET_MMX TARGET_ISA_MMX
46#define TARGET_3DNOW TARGET_ISA_3DNOW
47#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
48#define TARGET_SSE TARGET_ISA_SSE
49#define TARGET_SSE2 TARGET_ISA_SSE2
50#define TARGET_SSE3 TARGET_ISA_SSE3
51#define TARGET_SSSE3 TARGET_ISA_SSSE3
52#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
53#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
54#define TARGET_AVX TARGET_ISA_AVX
55#define TARGET_AVX2 TARGET_ISA_AVX2
56#define TARGET_FMA TARGET_ISA_FMA
57#define TARGET_SSE4A TARGET_ISA_SSE4A
58#define TARGET_FMA4 TARGET_ISA_FMA4
59#define TARGET_XOP TARGET_ISA_XOP
60#define TARGET_LWP TARGET_ISA_LWP
61#define TARGET_ROUND TARGET_ISA_ROUND
62#define TARGET_ABM TARGET_ISA_ABM
63#define TARGET_BMI TARGET_ISA_BMI
64#define TARGET_BMI2 TARGET_ISA_BMI2
65#define TARGET_LZCNT TARGET_ISA_LZCNT
66#define TARGET_TBM TARGET_ISA_TBM
67#define TARGET_POPCNT TARGET_ISA_POPCNT
68#define TARGET_SAHF TARGET_ISA_SAHF
69#define TARGET_MOVBE TARGET_ISA_MOVBE
70#define TARGET_CRC32 TARGET_ISA_CRC32
71#define TARGET_AES TARGET_ISA_AES
72#define TARGET_PCLMUL TARGET_ISA_PCLMUL
73#define TARGET_CMPXCHG16B TARGET_ISA_CX16
74#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
75#define TARGET_RDRND TARGET_ISA_RDRND
76#define TARGET_F16C TARGET_ISA_F16C
77#define TARGET_RTM TARGET_ISA_RTM
78#define TARGET_HLE TARGET_ISA_HLE
79#define TARGET_RDSEED TARGET_ISA_RDSEED
80#define TARGET_PRFCHW TARGET_ISA_PRFCHW
81#define TARGET_ADX TARGET_ISA_ADX
ab442df7 82
90922d36
MM
83#define TARGET_LP64 TARGET_ABI_64
84#define TARGET_X32 TARGET_ABI_X32
04e1d06b 85
cbf2e4d4
HJ
86/* SSE4.1 defines round instructions */
87#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 88#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 89
26b5109f
RS
90#include "config/vxworks-dummy.h"
91
7eb68c06 92#include "config/i386/i386-opts.h"
ccf8e764 93
c69fa2d4 94#define MAX_STRINGOP_ALGS 4
ccf8e764 95
8c996513
JH
96/* Specify what algorithm to use for stringops on known size.
97 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
98 known at compile time or estimated via feedback, the SIZE array
99 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 100 means infinity). Corresponding ALG is used then.
8c996513 101 For example initializer:
4f3f76e6 102 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 103 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 104 be used otherwise. */
8c996513
JH
105struct stringop_algs
106{
107 const enum stringop_alg unknown_size;
108 const struct stringop_strategy {
109 const int max;
110 const enum stringop_alg alg;
c69fa2d4 111 } size [MAX_STRINGOP_ALGS];
8c996513
JH
112};
113
d4ba09c0
SC
114/* Define the specific costs for a given cpu */
115
116struct processor_costs {
8b60264b
KG
117 const int add; /* cost of an add instruction */
118 const int lea; /* cost of a lea instruction */
119 const int shift_var; /* variable shift costs */
120 const int shift_const; /* constant shift costs */
f676971a 121 const int mult_init[5]; /* cost of starting a multiply
4977bab6 122 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 123 const int mult_bit; /* cost of multiply per each bit set */
f676971a 124 const int divide[5]; /* cost of a divide/mod
4977bab6 125 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
126 int movsx; /* The cost of movsx operation. */
127 int movzx; /* The cost of movzx operation. */
8b60264b
KG
128 const int large_insn; /* insns larger than this cost more */
129 const int move_ratio; /* The threshold of number of scalar
ac775968 130 memory-to-memory move insns. */
8b60264b
KG
131 const int movzbl_load; /* cost of loading using movzbl */
132 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
133 in QImode, HImode and SImode relative
134 to reg-reg move (2). */
8b60264b 135 const int int_store[3]; /* cost of storing integer register
96e7ae40 136 in QImode, HImode and SImode */
8b60264b
KG
137 const int fp_move; /* cost of reg,reg fld/fst */
138 const int fp_load[3]; /* cost of loading FP register
96e7ae40 139 in SFmode, DFmode and XFmode */
8b60264b 140 const int fp_store[3]; /* cost of storing FP register
96e7ae40 141 in SFmode, DFmode and XFmode */
8b60264b
KG
142 const int mmx_move; /* cost of moving MMX register. */
143 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 144 in SImode and DImode */
8b60264b 145 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 146 in SImode and DImode */
8b60264b
KG
147 const int sse_move; /* cost of moving SSE register. */
148 const int sse_load[3]; /* cost of loading SSE register
fa79946e 149 in SImode, DImode and TImode*/
8b60264b 150 const int sse_store[3]; /* cost of storing SSE register
fa79946e 151 in SImode, DImode and TImode*/
8b60264b 152 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 153 integer and vice versa. */
46cb0441
ZD
154 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
155 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
156 const int prefetch_block; /* bytes moved to cache for prefetch. */
157 const int simultaneous_prefetches; /* number of parallel prefetch
158 operations. */
4977bab6 159 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
160 const int fadd; /* cost of FADD and FSUB instructions. */
161 const int fmul; /* cost of FMUL instruction. */
162 const int fdiv; /* cost of FDIV instruction. */
163 const int fabs; /* cost of FABS instruction. */
164 const int fchs; /* cost of FCHS instruction. */
165 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 166 /* Specify what algorithm
bee51209
L
167 to use for stringops on unknown size. */
168 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
169 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
170 load and store. */
171 const int scalar_load_cost; /* Cost of scalar load. */
172 const int scalar_store_cost; /* Cost of scalar store. */
173 const int vec_stmt_cost; /* Cost of any vector operation, excluding
174 load, store, vector-to-scalar and
175 scalar-to-vector operation. */
176 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
177 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 178 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
179 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
180 const int vec_store_cost; /* Cost of vector store. */
181 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
182 cost model. */
183 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
184 vectorizer cost model. */
d4ba09c0
SC
185};
186
8b60264b 187extern const struct processor_costs *ix86_cost;
b2077fd2
JH
188extern const struct processor_costs ix86_size_cost;
189
190#define ix86_cur_cost() \
191 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 192
c98f8742
JVA
193/* Macros used in the machine description to test the flags. */
194
ddd5a7c1 195/* configure can arrange to make this 2, to force a 486. */
e075ae69 196
35b528be 197#ifndef TARGET_CPU_DEFAULT
d326eaf0 198#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 199#endif
35b528be 200
004d3859
GK
201#ifndef TARGET_FPMATH_DEFAULT
202#define TARGET_FPMATH_DEFAULT \
203 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
204#endif
205
6ac49599 206#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 207
5791cc29
JT
208/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
209 compile-time constant. */
210#ifdef IN_LIBGCC2
6ac49599 211#undef TARGET_64BIT
5791cc29
JT
212#ifdef __x86_64__
213#define TARGET_64BIT 1
214#else
215#define TARGET_64BIT 0
216#endif
217#else
6ac49599
RS
218#ifndef TARGET_BI_ARCH
219#undef TARGET_64BIT
67adf6a9 220#if TARGET_64BIT_DEFAULT
0c2dc519
JH
221#define TARGET_64BIT 1
222#else
223#define TARGET_64BIT 0
224#endif
225#endif
5791cc29 226#endif
25f94bb5 227
750054a2
CT
228#define HAS_LONG_COND_BRANCH 1
229#define HAS_LONG_UNCOND_BRANCH 1
230
9e555526
RH
231#define TARGET_386 (ix86_tune == PROCESSOR_I386)
232#define TARGET_486 (ix86_tune == PROCESSOR_I486)
233#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
234#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 235#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
236#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
237#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
238#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
239#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 240#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 241#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
ab247762
MK
242#define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
243#define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
244#define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
b2b01543
BS
245#define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
246#define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
247#define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
d326eaf0
JH
248#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
249#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
250#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 251#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 252#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 253#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
14b52538 254#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 255#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 256#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 257
80fd744f
RH
258/* Feature tests against the various tunings. */
259enum ix86_tune_indices {
260 X86_TUNE_USE_LEAVE,
261 X86_TUNE_PUSH_MEMORY,
262 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 263 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
264 X86_TUNE_BRANCH_PREDICTION_HINTS,
265 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 266 X86_TUNE_USE_SAHF,
80fd744f
RH
267 X86_TUNE_MOVX,
268 X86_TUNE_PARTIAL_REG_STALL,
269 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 270 X86_TUNE_LCP_STALL,
80fd744f
RH
271 X86_TUNE_USE_HIMODE_FIOP,
272 X86_TUNE_USE_SIMODE_FIOP,
273 X86_TUNE_USE_MOV0,
274 X86_TUNE_USE_CLTD,
275 X86_TUNE_USE_XCHGB,
276 X86_TUNE_SPLIT_LONG_MOVES,
277 X86_TUNE_READ_MODIFY_WRITE,
278 X86_TUNE_READ_MODIFY,
279 X86_TUNE_PROMOTE_QIMODE,
280 X86_TUNE_FAST_PREFIX,
281 X86_TUNE_SINGLE_STRINGOP,
282 X86_TUNE_QIMODE_MATH,
283 X86_TUNE_HIMODE_MATH,
284 X86_TUNE_PROMOTE_QI_REGS,
285 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
286 X86_TUNE_SINGLE_POP,
287 X86_TUNE_DOUBLE_POP,
288 X86_TUNE_SINGLE_PUSH,
289 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
290 X86_TUNE_INTEGER_DFMODE_MOVES,
291 X86_TUNE_PARTIAL_REG_DEPENDENCY,
292 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
293 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
294 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
295 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
296 X86_TUNE_SSE_SPLIT_REGS,
297 X86_TUNE_SSE_TYPELESS_STORES,
298 X86_TUNE_SSE_LOAD0_BY_PXOR,
299 X86_TUNE_MEMORY_MISMATCH_STALL,
300 X86_TUNE_PROLOGUE_USING_MOVE,
301 X86_TUNE_EPILOGUE_USING_MOVE,
302 X86_TUNE_SHIFT1,
303 X86_TUNE_USE_FFREEP,
304 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 305 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
306 X86_TUNE_FOUR_JUMP_LIMIT,
307 X86_TUNE_SCHEDULE,
308 X86_TUNE_USE_BT,
309 X86_TUNE_USE_INCDEC,
310 X86_TUNE_PAD_RETURNS,
e7ed95a2 311 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 312 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
313 X86_TUNE_SHORTEN_X87_SSE,
314 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 315 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
316 X86_TUNE_SLOW_IMUL_IMM32_MEM,
317 X86_TUNE_SLOW_IMUL_IMM8,
318 X86_TUNE_MOVE_M1_VIA_OR,
319 X86_TUNE_NOT_UNPAIRABLE,
320 X86_TUNE_NOT_VECTORMODE,
54723b46 321 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 322 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 323 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 324 X86_TUNE_OPT_AGU,
e72eba85 325 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 326 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 327 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
328 X86_TUNE_REASSOC_INT_TO_PARALLEL,
329 X86_TUNE_REASSOC_FP_TO_PARALLEL,
55a2c322 330 X86_TUNE_GENERAL_REGS_SSE_SPILL,
80fd744f
RH
331
332 X86_TUNE_LAST
333};
334
ab442df7 335extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
336
337#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
338#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
339#define TARGET_ZERO_EXTEND_WITH_AND \
340 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 341#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
342#define TARGET_BRANCH_PREDICTION_HINTS \
343 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
344#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
345#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
346#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
347#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
348#define TARGET_PARTIAL_FLAG_REG_STALL \
349 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
350#define TARGET_LCP_STALL \
351 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
352#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
353#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
354#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
355#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
356#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
357#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
358#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
359#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
360#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
361#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
362#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
363#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
364#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
365#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
366#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
367#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
368#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
369#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
370#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
371#define TARGET_INTEGER_DFMODE_MOVES \
372 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
373#define TARGET_PARTIAL_REG_DEPENDENCY \
374 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
375#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
376 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
377#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
378 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
379#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
380 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
381#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
382 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
383#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
384#define TARGET_SSE_TYPELESS_STORES \
385 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
386#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
387#define TARGET_MEMORY_MISMATCH_STALL \
388 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
389#define TARGET_PROLOGUE_USING_MOVE \
390 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
391#define TARGET_EPILOGUE_USING_MOVE \
392 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
393#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
394#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
395#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
396#define TARGET_INTER_UNIT_CONVERSIONS\
397 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
398#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
399#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
400#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
401#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
402#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
403#define TARGET_PAD_SHORT_FUNCTION \
404 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
405#define TARGET_EXT_80387_CONSTANTS \
406 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
407#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
408#define TARGET_AVOID_VECTOR_DECODE \
409 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
410#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
411 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
412#define TARGET_SLOW_IMUL_IMM32_MEM \
413 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
414#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
415#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
416#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
417#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
418#define TARGET_USE_VECTOR_FP_CONVERTS \
419 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
420#define TARGET_USE_VECTOR_CONVERTS \
421 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
422#define TARGET_FUSE_CMP_AND_BRANCH \
423 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 424#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
425#define TARGET_VECTORIZE_DOUBLE \
426 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
427#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
428 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
429#define TARGET_AVX128_OPTIMAL \
430 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
431#define TARGET_REASSOC_INT_TO_PARALLEL \
432 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
433#define TARGET_REASSOC_FP_TO_PARALLEL \
434 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
435#define TARGET_GENERAL_REGS_SSE_SPILL \
436 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
df7b0cc4 437
80fd744f
RH
438/* Feature tests against the various architecture variations. */
439enum ix86_arch_indices {
cef31f9c 440 X86_ARCH_CMOV,
80fd744f
RH
441 X86_ARCH_CMPXCHG,
442 X86_ARCH_CMPXCHG8B,
443 X86_ARCH_XADD,
444 X86_ARCH_BSWAP,
445
446 X86_ARCH_LAST
447};
4f3f76e6 448
ab442df7 449extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 450
cef31f9c 451#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
452#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
453#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
454#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
455#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
456
cef31f9c
UB
457/* For sane SSE instruction set generation we need fcomi instruction.
458 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
459 expands to a sequence that includes conditional move. */
460#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
461
80fd744f
RH
462#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
463
cb261eb7 464extern unsigned char x86_prefetch_sse;
80fd744f
RH
465#define TARGET_PREFETCH_SSE x86_prefetch_sse
466
80fd744f
RH
467#define ASSEMBLER_DIALECT (ix86_asm_dialect)
468
469#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
470#define TARGET_MIX_SSE_I387 \
471 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
472
473#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
474#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
475#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 476#define TARGET_SUN_TLS 0
1ef45b77 477
67adf6a9
RH
478#ifndef TARGET_64BIT_DEFAULT
479#define TARGET_64BIT_DEFAULT 0
25f94bb5 480#endif
74dc3e94
RH
481#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
482#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
483#endif
25f94bb5 484
79f5e442
ZD
485/* Fence to use after loop using storent. */
486
487extern tree x86_mfence;
488#define FENCE_FOLLOWING_MOVNT x86_mfence
489
0ed4a390
JL
490/* Once GDB has been enhanced to deal with functions without frame
491 pointers, we can change this to allow for elimination of
492 the frame pointer in leaf functions. */
493#define TARGET_DEFAULT 0
67adf6a9 494
0a1c5e55
UB
495/* Extra bits to force. */
496#define TARGET_SUBTARGET_DEFAULT 0
497#define TARGET_SUBTARGET_ISA_DEFAULT 0
498
499/* Extra bits to force on w/ 32-bit mode. */
500#define TARGET_SUBTARGET32_DEFAULT 0
501#define TARGET_SUBTARGET32_ISA_DEFAULT 0
502
ccf8e764
RH
503/* Extra bits to force on w/ 64-bit mode. */
504#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 505#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 506
fee3eacd
IS
507/* Replace MACH-O, ifdefs by in-line tests, where possible.
508 (a) Macros defined in config/i386/darwin.h */
b069de3b 509#define TARGET_MACHO 0
9005471b 510#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
511#define MACHOPIC_ATT_STUB 0
512/* (b) Macros defined in config/darwin.h */
513#define MACHO_DYNAMIC_NO_PIC_P 0
514#define MACHOPIC_INDIRECT 0
515#define MACHOPIC_PURE 0
9005471b
IS
516
517/* For the Windows 64-bit ABI. */
7c800926
KT
518#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
519
6510e8bb
KT
520/* For the Windows 32-bit ABI. */
521#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
522
f81c9774
RH
523/* This is re-defined by cygming.h. */
524#define TARGET_SEH 0
525
51212b32 526/* The default abi used by target. */
7c800926 527#define DEFAULT_ABI SYSV_ABI
ccf8e764 528
cc69336f
RH
529/* Subtargets may reset this to 1 in order to enable 96-bit long double
530 with the rounding mode forced to 53 bits. */
531#define TARGET_96_ROUND_53_LONG_DOUBLE 0
532
682cd442
GK
533/* -march=native handling only makes sense with compiler running on
534 an x86 or x86_64 chip. If changing this condition, also change
535 the condition in driver-i386.c. */
536#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
537/* In driver-i386.c. */
538extern const char *host_detect_local_cpu (int argc, const char **argv);
539#define EXTRA_SPEC_FUNCTIONS \
540 { "local_cpu_detect", host_detect_local_cpu },
682cd442 541#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
542#endif
543
8981c15b
JM
544#if TARGET_64BIT_DEFAULT
545#define OPT_ARCH64 "!m32"
546#define OPT_ARCH32 "m32"
547#else
f0ea7581
L
548#define OPT_ARCH64 "m64|mx32"
549#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
550#endif
551
1cba2b96
EC
552/* Support for configure-time defaults of some command line options.
553 The order here is important so that -march doesn't squash the
554 tune or cpu values. */
ce998900 555#define OPTION_DEFAULT_SPECS \
da2d4c01 556 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
557 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
558 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 559 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
560 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
561 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
562 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
563 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
564 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 565
241e1a89
SC
566/* Specs for the compiler proper */
567
628714d8 568#ifndef CC1_CPU_SPEC
eb5bb0fd 569#define CC1_CPU_SPEC_1 ""
fa959ce4 570
682cd442 571#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
572#define CC1_CPU_SPEC CC1_CPU_SPEC_1
573#else
574#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
575"%{march=native:%>march=native %:local_cpu_detect(arch) \
576 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
577%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 578#endif
241e1a89 579#endif
c98f8742 580\f
30efe578 581/* Target CPU builtins. */
ab442df7
MM
582#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
583
584/* Target Pragmas. */
585#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 586
c2f17e19
UB
587enum target_cpu_default
588{
589 TARGET_CPU_DEFAULT_generic = 0,
590
591 TARGET_CPU_DEFAULT_i386,
592 TARGET_CPU_DEFAULT_i486,
593 TARGET_CPU_DEFAULT_pentium,
594 TARGET_CPU_DEFAULT_pentium_mmx,
595 TARGET_CPU_DEFAULT_pentiumpro,
596 TARGET_CPU_DEFAULT_pentium2,
597 TARGET_CPU_DEFAULT_pentium3,
598 TARGET_CPU_DEFAULT_pentium4,
599 TARGET_CPU_DEFAULT_pentium_m,
600 TARGET_CPU_DEFAULT_prescott,
601 TARGET_CPU_DEFAULT_nocona,
602 TARGET_CPU_DEFAULT_core2,
9d8477b6 603 TARGET_CPU_DEFAULT_corei7,
b6837b94 604 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
605
606 TARGET_CPU_DEFAULT_geode,
607 TARGET_CPU_DEFAULT_k6,
608 TARGET_CPU_DEFAULT_k6_2,
609 TARGET_CPU_DEFAULT_k6_3,
610 TARGET_CPU_DEFAULT_athlon,
611 TARGET_CPU_DEFAULT_athlon_sse,
612 TARGET_CPU_DEFAULT_k8,
613 TARGET_CPU_DEFAULT_amdfam10,
1133125e 614 TARGET_CPU_DEFAULT_bdver1,
4d652a18 615 TARGET_CPU_DEFAULT_bdver2,
14b52538 616 TARGET_CPU_DEFAULT_btver1,
e32bfc16 617 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
618
619 TARGET_CPU_DEFAULT_max
620};
0c2dc519 621
628714d8 622#ifndef CC1_SPEC
8015b78d 623#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
624#endif
625
626/* This macro defines names of additional specifications to put in the
627 specs that can be used in various specifications like CC1_SPEC. Its
628 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
629
630 Each subgrouping contains a string constant, that defines the
188fc5b5 631 specification name, and a string constant that used by the GCC driver
bcd86433
SC
632 program.
633
634 Do not define this macro if it does not need to do anything. */
635
636#ifndef SUBTARGET_EXTRA_SPECS
637#define SUBTARGET_EXTRA_SPECS
638#endif
639
640#define EXTRA_SPECS \
628714d8 641 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
642 SUBTARGET_EXTRA_SPECS
643\f
ce998900 644
d57a4b98
RH
645/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
646 FPU, assume that the fpcw is set to extended precision; when using
647 only SSE, rounding is correct; when using both SSE and the FPU,
648 the rounding precision is indeterminate, since either may be chosen
649 apparently at random. */
650#define TARGET_FLT_EVAL_METHOD \
5ccd517a 651 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 652
8ce94e44
JM
653/* Whether to allow x87 floating-point arithmetic on MODE (one of
654 SFmode, DFmode and XFmode) in the current excess precision
655 configuration. */
656#define X87_ENABLE_ARITH(MODE) \
657 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
658
659/* Likewise, whether to allow direct conversions from integer mode
660 IMODE (HImode, SImode or DImode) to MODE. */
661#define X87_ENABLE_FLOAT(MODE, IMODE) \
662 (flag_excess_precision == EXCESS_PRECISION_FAST \
663 || (MODE) == XFmode \
664 || ((MODE) == DFmode && (IMODE) == SImode) \
665 || (IMODE) == HImode)
666
979c67a5
UB
667/* target machine storage layout */
668
65d9c0ab
JH
669#define SHORT_TYPE_SIZE 16
670#define INT_TYPE_SIZE 32
f0ea7581
L
671#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
672#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 673#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 674#define FLOAT_TYPE_SIZE 32
65d9c0ab 675#define DOUBLE_TYPE_SIZE 64
c637141a 676#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 677
c637141a
L
678/* Define this to set long double type size to use in libgcc2.c, which can
679 not depend on target_flags. */
680#ifdef __LONG_DOUBLE_64__
681#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
682#else
683#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
684#endif
685
686#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 687
67adf6a9 688#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 689#define MAX_BITS_PER_WORD 64
0c2dc519
JH
690#else
691#define MAX_BITS_PER_WORD 32
0c2dc519
JH
692#endif
693
c98f8742
JVA
694/* Define this if most significant byte of a word is the lowest numbered. */
695/* That is true on the 80386. */
696
697#define BITS_BIG_ENDIAN 0
698
699/* Define this if most significant byte of a word is the lowest numbered. */
700/* That is not true on the 80386. */
701#define BYTES_BIG_ENDIAN 0
702
703/* Define this if most significant word of a multiword number is the lowest
704 numbered. */
705/* Not true for 80386 */
706#define WORDS_BIG_ENDIAN 0
707
c98f8742 708/* Width of a word, in units (bytes). */
4ae8027b 709#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
710
711#ifndef IN_LIBGCC2
2e64c636
JH
712#define MIN_UNITS_PER_WORD 4
713#endif
c98f8742 714
c98f8742 715/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 716#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 717
e075ae69 718/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 719#define STACK_BOUNDARY \
51212b32 720 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 721
2e3f842f
L
722/* Stack boundary of the main function guaranteed by OS. */
723#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
724
de1132d1 725/* Minimum stack boundary. */
5bfb2af2 726#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 727
d1f87653 728/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 729 aligned; the compiler cannot rely on having this alignment. */
e075ae69 730#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 731
de1132d1 732/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
733 both 32bit and 64bit, to support codes that need 128 bit stack
734 alignment for SSE instructions, but can't realign the stack. */
735#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
736
737/* 1 if -mstackrealign should be turned on by default. It will
738 generate an alternate prologue and epilogue that realigns the
739 runtime stack if nessary. This supports mixing codes that keep a
740 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 741 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
742#define STACK_REALIGN_DEFAULT 0
743
744/* Boundary (in *bits*) on which the incoming stack is aligned. */
745#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 746
a2851b75
TG
747/* According to Windows x64 software convention, the maximum stack allocatable
748 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
749 instructions allowed to adjust the stack pointer in the epilog, forcing the
750 use of frame pointer for frames larger than 2 GB. This theorical limit
751 is reduced by 256, an over-estimated upper bound for the stack use by the
752 prologue.
753 We define only one threshold for both the prolog and the epilog. When the
4e523f33 754 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
755 regs, then save them, and then allocate the remaining. There is no SEH
756 unwind info for this later allocation. */
757#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
758
ebff937c
SH
759/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
760 mandatory for the 64-bit ABI, and may or may not be true for other
761 operating systems. */
762#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
763
f963b5d9
RS
764/* Minimum allocation boundary for the code of a function. */
765#define FUNCTION_BOUNDARY 8
766
767/* C++ stores the virtual bit in the lowest bit of function pointers. */
768#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 769
c98f8742
JVA
770/* Minimum size in bits of the largest boundary to which any
771 and all fundamental data types supported by the hardware
772 might need to be aligned. No data type wants to be aligned
17f24ff0 773 rounder than this.
fce5a9f2 774
d1f87653 775 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
776 and Pentium Pro XFmode values at 128 bit boundaries. */
777
2824d6e5 778#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 779
2e3f842f
L
780/* Maximum stack alignment. */
781#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
782
6e4f1168
L
783/* Alignment value for attribute ((aligned)). It is a constant since
784 it is the part of the ABI. We shouldn't change it with -mavx. */
785#define ATTRIBUTE_ALIGNED_VALUE 128
786
822eda12 787/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 788#define ALIGN_MODE_128(MODE) \
4501d314 789 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 790
17f24ff0 791/* The published ABIs say that doubles should be aligned on word
d1f87653 792 boundaries, so lower the alignment for structure fields unless
6fc605d8 793 -malign-double is set. */
e932b21b 794
e83f3cff
RH
795/* ??? Blah -- this macro is used directly by libobjc. Since it
796 supports no vector modes, cut out the complexity and fall back
797 on BIGGEST_FIELD_ALIGNMENT. */
798#ifdef IN_TARGET_LIBS
ef49d42e
JH
799#ifdef __x86_64__
800#define BIGGEST_FIELD_ALIGNMENT 128
801#else
e83f3cff 802#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 803#endif
e83f3cff 804#else
e932b21b
JH
805#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
806 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 807#endif
c98f8742 808
e5e8a8bf 809/* If defined, a C expression to compute the alignment given to a
a7180f70 810 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
811 and ALIGN is the alignment that the object would ordinarily have.
812 The value of this macro is used instead of that alignment to align
813 the object.
814
815 If this macro is not defined, then ALIGN is used.
816
817 The typical use of this macro is to increase alignment for string
818 constants to be word aligned so that `strcpy' calls that copy
819 constants can be done inline. */
820
d9a5f180 821#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 822
8a022443
JW
823/* If defined, a C expression to compute the alignment for a static
824 variable. TYPE is the data type, and ALIGN is the alignment that
825 the object would ordinarily have. The value of this macro is used
826 instead of that alignment to align the object.
827
828 If this macro is not defined, then ALIGN is used.
829
830 One use of this macro is to increase alignment of medium-size
831 data to make it all fit in fewer cache lines. Another is to
832 cause character arrays to be word-aligned so that `strcpy' calls
833 that copy constants to character arrays can be done inline. */
834
d9a5f180 835#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
836
837/* If defined, a C expression to compute the alignment for a local
838 variable. TYPE is the data type, and ALIGN is the alignment that
839 the object would ordinarily have. The value of this macro is used
840 instead of that alignment to align the object.
841
842 If this macro is not defined, then ALIGN is used.
843
844 One use of this macro is to increase alignment of medium-size
845 data to make it all fit in fewer cache lines. */
846
76fe54f0
L
847#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
848 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
849
850/* If defined, a C expression to compute the alignment for stack slot.
851 TYPE is the data type, MODE is the widest mode available, and ALIGN
852 is the alignment that the slot would ordinarily have. The value of
853 this macro is used instead of that alignment to align the slot.
854
855 If this macro is not defined, then ALIGN is used when TYPE is NULL,
856 Otherwise, LOCAL_ALIGNMENT will be used.
857
858 One use of this macro is to set alignment of stack slot to the
859 maximum alignment of all possible modes which the slot may have. */
860
861#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
862 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 863
9bfaf89d
JJ
864/* If defined, a C expression to compute the alignment for a local
865 variable DECL.
866
867 If this macro is not defined, then
868 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
869
870 One use of this macro is to increase alignment of medium-size
871 data to make it all fit in fewer cache lines. */
872
873#define LOCAL_DECL_ALIGNMENT(DECL) \
874 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
875
ae58e548
JJ
876/* If defined, a C expression to compute the minimum required alignment
877 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
878 MODE, assuming normal alignment ALIGN.
879
880 If this macro is not defined, then (ALIGN) will be used. */
881
882#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
883 ix86_minimum_alignment (EXP, MODE, ALIGN)
884
9bfaf89d 885
9cd10576 886/* Set this nonzero if move instructions will actually fail to work
c98f8742 887 when given unaligned data. */
b4ac57ab 888#define STRICT_ALIGNMENT 0
c98f8742
JVA
889
890/* If bit field type is int, don't let it cross an int,
891 and give entire struct the alignment of an int. */
43a88a8c 892/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 893#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
894\f
895/* Standard register usage. */
896
897/* This processor has special stack-like registers. See reg-stack.c
892a2d68 898 for details. */
c98f8742
JVA
899
900#define STACK_REGS
ce998900 901
d9a5f180 902#define IS_STACK_MODE(MODE) \
63001560
UB
903 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
904 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 905 || (MODE) == XFmode)
c98f8742
JVA
906
907/* Number of actual hardware registers.
908 The hardware registers are assigned numbers for the compiler
909 from 0 to just below FIRST_PSEUDO_REGISTER.
910 All registers that the compiler knows about must be given numbers,
911 even those that are not normally considered general registers.
912
913 In the 80386 we give the 8 general purpose registers the numbers 0-7.
914 We number the floating point registers 8-15.
915 Note that registers 0-7 can be accessed as a short or int,
916 while only 0-3 may be used with byte `mov' instructions.
917
918 Reg 16 does not correspond to any hardware register, but instead
919 appears in the RTL as an argument pointer prior to reload, and is
920 eliminated during reloading in favor of either the stack or frame
892a2d68 921 pointer. */
c98f8742 922
b0d95de8 923#define FIRST_PSEUDO_REGISTER 53
c98f8742 924
3073d01c
ML
925/* Number of hardware registers that go into the DWARF-2 unwind info.
926 If not defined, equals FIRST_PSEUDO_REGISTER. */
927
928#define DWARF_FRAME_REGISTERS 17
929
c98f8742
JVA
930/* 1 for registers that have pervasive standard uses
931 and are not available for the register allocator.
3f3f2124 932 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 933
621bc046
UB
934 REX registers are disabled for 32bit targets in
935 TARGET_CONDITIONAL_REGISTER_USAGE. */
936
a7180f70
BS
937#define FIXED_REGISTERS \
938/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 939{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
940/*arg,flags,fpsr,fpcr,frame*/ \
941 1, 1, 1, 1, 1, \
a7180f70
BS
942/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
943 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 944/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
945 0, 0, 0, 0, 0, 0, 0, 0, \
946/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 947 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 948/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 949 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
950
951/* 1 for registers not available across function calls.
952 These must include the FIXED_REGISTERS and also any
953 registers that can be used without being saved.
954 The latter must include the registers where values are returned
955 and the register where structure-value addresses are passed.
fce5a9f2
EC
956 Aside from that, you can include as many other registers as you like.
957
621bc046
UB
958 Value is set to 1 if the register is call used unconditionally.
959 Bit one is set if the register is call used on TARGET_32BIT ABI.
960 Bit two is set if the register is call used on TARGET_64BIT ABI.
961 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
962
963 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
964
a7180f70
BS
965#define CALL_USED_REGISTERS \
966/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 967{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
968/*arg,flags,fpsr,fpcr,frame*/ \
969 1, 1, 1, 1, 1, \
a7180f70 970/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 971 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 972/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 973 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 974/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 975 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 976/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 977 6, 6, 6, 6, 6, 6, 6, 6 }
c98f8742 978
3b3c6a3f
MM
979/* Order in which to allocate registers. Each register must be
980 listed once, even those in FIXED_REGISTERS. List frame pointer
981 late and fixed registers last. Note that, in general, we prefer
982 registers listed in CALL_USED_REGISTERS, keeping the others
983 available for storage of persistent values.
984
5a733826 985 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 986 so this is just empty initializer for array. */
3b3c6a3f 987
162f023b
JH
988#define REG_ALLOC_ORDER \
989{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
990 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
991 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 992 48, 49, 50, 51, 52 }
3b3c6a3f 993
5a733826 994/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 995 to be rearranged based on a particular function. When using sse math,
03c259ad 996 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 997
5a733826 998#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 999
f5316dfe 1000
7c800926
KT
1001#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1002
c98f8742
JVA
1003/* Return number of consecutive hard regs needed starting at reg REGNO
1004 to hold something of mode MODE.
1005 This is ordinarily the length in words of a value of mode MODE
1006 but can be less for certain modes in special long registers.
1007
fce5a9f2 1008 Actually there are no two word move instructions for consecutive
c98f8742 1009 registers. And only registers 0-3 may have mov byte instructions
63001560 1010 applied to them. */
c98f8742 1011
ce998900 1012#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1013 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1014 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1015 : ((MODE) == XFmode \
92d0fb09 1016 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1017 : (MODE) == XCmode \
92d0fb09 1018 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1019 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1020
8521c414
JM
1021#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1022 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1023 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1024 ? 0 \
1025 : ((MODE) == XFmode || (MODE) == XCmode)) \
1026 : 0)
1027
1028#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1029
95879c72
L
1030#define VALID_AVX256_REG_MODE(MODE) \
1031 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1032 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1033 || (MODE) == V4DFmode)
95879c72 1034
ce998900
UB
1035#define VALID_SSE2_REG_MODE(MODE) \
1036 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1037 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1038
d9a5f180 1039#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1040 ((MODE) == V1TImode || (MODE) == TImode \
1041 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1042 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1043
47f339cf 1044#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1045 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1046
d9a5f180 1047#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1048 ((MODE == V1DImode) || (MODE) == DImode \
1049 || (MODE) == V2SImode || (MODE) == SImode \
1050 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1051
ce998900
UB
1052#define VALID_DFP_MODE_P(MODE) \
1053 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1054
d9a5f180 1055#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1056 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1057 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1058
d9a5f180 1059#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1060 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1061 || (MODE) == DImode \
1062 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1063 || (MODE) == CDImode \
1064 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1065 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1066
822eda12 1067/* Return true for modes passed in SSE registers. */
ce998900 1068#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1069 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1070 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1071 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1072 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1073 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1074 || (MODE) == V2TImode)
822eda12 1075
e075ae69 1076/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1077
a946dd00 1078#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1079 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1080
1081/* Value is 1 if it is a good idea to tie two pseudo registers
1082 when one has mode MODE1 and one has mode MODE2.
1083 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1084 for any hard reg, then this must be 0 for correct output. */
1085
c1c5b5e3 1086#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1087
ff25ef99
ZD
1088/* It is possible to write patterns to move flags; but until someone
1089 does it, */
1090#define AVOID_CCMODE_COPIES
c98f8742 1091
e075ae69 1092/* Specify the modes required to caller save a given hard regno.
787dc842 1093 We do this on i386 to prevent flags from being saved at all.
e075ae69 1094
787dc842
JH
1095 Kill any attempts to combine saving of modes. */
1096
d9a5f180
GS
1097#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1098 (CC_REGNO_P (REGNO) ? VOIDmode \
1099 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1100 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1101 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
fc27f749 1102 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
d2836273 1103 : (MODE))
ce998900 1104
51ba747a
RH
1105/* The only ABI that saves SSE registers across calls is Win64 (thus no
1106 need to check the current ABI here), and with AVX enabled Win64 only
1107 guarantees that the low 16 bytes are saved. */
1108#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1109 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1110
c98f8742
JVA
1111/* Specify the registers used for certain standard purposes.
1112 The values of these macros are register numbers. */
1113
1114/* on the 386 the pc register is %eip, and is not usable as a general
1115 register. The ordinary mov instructions won't work */
1116/* #define PC_REGNUM */
1117
1118/* Register to use for pushing function arguments. */
1119#define STACK_POINTER_REGNUM 7
1120
1121/* Base register for access to local variables of the function. */
564d80f4
JH
1122#define HARD_FRAME_POINTER_REGNUM 6
1123
1124/* Base register for access to local variables of the function. */
b0d95de8 1125#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1126
1127/* First floating point reg */
1128#define FIRST_FLOAT_REG 8
1129
1130/* First & last stack-like regs */
1131#define FIRST_STACK_REG FIRST_FLOAT_REG
1132#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1133
a7180f70
BS
1134#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1135#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1136
a7180f70
BS
1137#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1138#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1139
3f3f2124
JH
1140#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1141#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1142
1143#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1144#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1145
aabcd309 1146/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1147 requiring a frame pointer. */
1148#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1149#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1150#endif
1151
1152/* Make sure we can access arbitrary call frames. */
1153#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1154
1155/* Base register for access to arguments of the function. */
1156#define ARG_POINTER_REGNUM 16
1157
c98f8742 1158/* Register to hold the addressing base for position independent
5b43fed1
RH
1159 code access to data items. We don't use PIC pointer for 64bit
1160 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1161 pessimizing code dealing with EBX.
bd09bdeb
RH
1162
1163 To avoid clobbering a call-saved register unnecessarily, we renumber
1164 the pic register when possible. The change is visible after the
1165 prologue has been emitted. */
1166
2e3f842f 1167#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1168
1169#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1170 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1171 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1172 : reload_completed ? REGNO (pic_offset_table_rtx) \
1173 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1174
5fc0e5df
KW
1175#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1176
c51e6d85 1177/* This is overridden by <cygwin.h>. */
5e062767
DS
1178#define MS_AGGREGATE_RETURN 0
1179
61fec9ff 1180#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1181\f
1182/* Define the classes of registers for register constraints in the
1183 machine description. Also define ranges of constants.
1184
1185 One of the classes must always be named ALL_REGS and include all hard regs.
1186 If there is more than one class, another class must be named NO_REGS
1187 and contain no registers.
1188
1189 The name GENERAL_REGS must be the name of a class (or an alias for
1190 another name such as ALL_REGS). This is the class of registers
1191 that is allowed by "g" or "r" in a register constraint.
1192 Also, registers outside this class are allocated only when
1193 instructions express preferences for them.
1194
1195 The classes must be numbered in nondecreasing order; that is,
1196 a larger-numbered class must never be contained completely
1197 in a smaller-numbered class.
1198
1199 For any two classes, it is very desirable that there be another
ab408a86
JVA
1200 class that represents their union.
1201
1202 It might seem that class BREG is unnecessary, since no useful 386
1203 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1204 and the "b" register constraint is useful in asms for syscalls.
1205
03c259ad 1206 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1207
1208enum reg_class
1209{
1210 NO_REGS,
e075ae69 1211 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1212 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1213 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1214 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1215 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1216 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1217 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1218 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1219 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1220 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1221 FLOAT_REGS,
06f4e35d 1222 SSE_FIRST_REG,
a7180f70
BS
1223 SSE_REGS,
1224 MMX_REGS,
446988df
JH
1225 FP_TOP_SSE_REGS,
1226 FP_SECOND_SSE_REGS,
1227 FLOAT_SSE_REGS,
1228 FLOAT_INT_REGS,
1229 INT_SSE_REGS,
1230 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1231 ALL_REGS, LIM_REG_CLASSES
1232};
1233
d9a5f180
GS
1234#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1235
1236#define INTEGER_CLASS_P(CLASS) \
1237 reg_class_subset_p ((CLASS), GENERAL_REGS)
1238#define FLOAT_CLASS_P(CLASS) \
1239 reg_class_subset_p ((CLASS), FLOAT_REGS)
1240#define SSE_CLASS_P(CLASS) \
06f4e35d 1241 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1242#define MMX_CLASS_P(CLASS) \
f75959a6 1243 ((CLASS) == MMX_REGS)
d9a5f180
GS
1244#define MAYBE_INTEGER_CLASS_P(CLASS) \
1245 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1246#define MAYBE_FLOAT_CLASS_P(CLASS) \
1247 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1248#define MAYBE_SSE_CLASS_P(CLASS) \
1249 reg_classes_intersect_p (SSE_REGS, (CLASS))
1250#define MAYBE_MMX_CLASS_P(CLASS) \
1251 reg_classes_intersect_p (MMX_REGS, (CLASS))
1252
1253#define Q_CLASS_P(CLASS) \
1254 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1255
43f3a59d 1256/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1257
1258#define REG_CLASS_NAMES \
1259{ "NO_REGS", \
ab408a86 1260 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1261 "SIREG", "DIREG", \
e075ae69
RH
1262 "AD_REGS", \
1263 "Q_REGS", "NON_Q_REGS", \
c98f8742 1264 "INDEX_REGS", \
3f3f2124 1265 "LEGACY_REGS", \
621bc046 1266 "CLOBBERED_REGS", \
c98f8742
JVA
1267 "GENERAL_REGS", \
1268 "FP_TOP_REG", "FP_SECOND_REG", \
1269 "FLOAT_REGS", \
cb482895 1270 "SSE_FIRST_REG", \
a7180f70
BS
1271 "SSE_REGS", \
1272 "MMX_REGS", \
446988df
JH
1273 "FP_TOP_SSE_REGS", \
1274 "FP_SECOND_SSE_REGS", \
1275 "FLOAT_SSE_REGS", \
8fcaaa80 1276 "FLOAT_INT_REGS", \
446988df
JH
1277 "INT_SSE_REGS", \
1278 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1279 "ALL_REGS" }
1280
ac2e563f
RH
1281/* Define which registers fit in which classes. This is an initializer
1282 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1283
621bc046
UB
1284 Note that CLOBBERED_REGS are calculated by
1285 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1286
a7180f70 1287#define REG_CLASS_CONTENTS \
3f3f2124
JH
1288{ { 0x00, 0x0 }, \
1289 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1290 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1291 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1292 { 0x03, 0x0 }, /* AD_REGS */ \
1293 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1294 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1295 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1296 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
621bc046 1297 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
b0d95de8 1298 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1299 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1300 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1301 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1302{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1303{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1304{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1305{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1306{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b197fc48
UB
1307 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1308{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1309{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
b0d95de8 1310{ 0xffffffff,0x1fffff } \
e075ae69 1311}
c98f8742
JVA
1312
1313/* The same information, inverted:
1314 Return the class number of the smallest class containing
1315 reg number REGNO. This could be a conditional expression
1316 or could index an array. */
1317
c98f8742
JVA
1318#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1319
42db504c
SB
1320/* When this hook returns true for MODE, the compiler allows
1321 registers explicitly used in the rtl to be used as spill registers
1322 but prevents the compiler from extending the lifetime of these
1323 registers. */
1324#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1325
fc27f749
UB
1326#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1327#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1328
1329#define GENERAL_REG_P(X) \
6189a572 1330 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1331#define GENERAL_REGNO_P(N) \
1332 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1333
fc27f749
UB
1334#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1335#define ANY_QI_REGNO_P(N) \
1336 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1337
fc27f749 1338#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1339#define REX_INT_REGNO_P(N) \
1340 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1341
66aaf16f
UB
1342#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1343#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1344
446988df 1345#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1346#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1347
54a88090 1348#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1349 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1350
fc27f749 1351#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1352#define SSE_REGNO_P(N) \
1353 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1354 || REX_SSE_REGNO_P (N))
3f3f2124 1355
4977bab6 1356#define REX_SSE_REGNO_P(N) \
fb84c7a0 1357 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1358
d9a5f180
GS
1359#define SSE_REGNO(N) \
1360 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1361
d9a5f180 1362#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1363 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1364
cbf2e4d4
HJ
1365#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1366 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1367 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1368
fc27f749 1369#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1370#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1371
fc27f749 1372#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1373
e075ae69
RH
1374#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1375#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1376
c98f8742
JVA
1377/* The class value for index registers, and the one for base regs. */
1378
1379#define INDEX_REG_CLASS INDEX_REGS
1380#define BASE_REG_CLASS GENERAL_REGS
1381
c98f8742 1382/* Place additional restrictions on the register class to use when it
4cbb525c 1383 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1384 register for which class CLASS would ordinarily be used.
1385
1386 We avoid classes containing registers from multiple units due to
1387 the limitation in ix86_secondary_memory_needed. We limit these
1388 classes to their "natural mode" single unit register class, depending
1389 on the unit availability.
1390
1391 Please note that reg_class_subset_p is not commutative, so these
1392 conditions mean "... if (CLASS) includes ALL registers from the
1393 register set." */
1394
1395#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1396 (((MODE) == QImode && !TARGET_64BIT \
1397 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1398 : (((MODE) == SImode || (MODE) == DImode) \
1399 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1400 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1401 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1402 : (X87_FLOAT_MODE_P (MODE) \
1403 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1404 : (CLASS))
c98f8742 1405
85ff473e 1406/* If we are copying between general and FP registers, we need a memory
f84aa48a 1407 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1408#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1409 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1410
c62b3659
UB
1411/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1412 There is no need to emit full 64 bit move on 64 bit targets
1413 for integral modes that can be moved using 32 bit move. */
1414#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1415 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1416 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1417 : MODE)
1418
1272914c
RH
1419/* Return a class of registers that cannot change FROM mode to TO mode. */
1420
1421#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1422 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1423\f
1424/* Stack layout; function entry, exit and calling. */
1425
1426/* Define this if pushing a word on the stack
1427 makes the stack pointer a smaller address. */
1428#define STACK_GROWS_DOWNWARD
1429
a4d05547 1430/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1431 is at the high-address end of the local variables;
1432 that is, each additional local variable allocated
1433 goes at a more negative offset in the frame. */
f62c8a5c 1434#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1435
1436/* Offset within stack frame to start allocating local variables at.
1437 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1438 first local allocated. Otherwise, it is the offset to the BEGINNING
1439 of the first local allocated. */
1440#define STARTING_FRAME_OFFSET 0
1441
8c2b2fae
UB
1442/* If we generate an insn to push BYTES bytes, this says how many the stack
1443 pointer really advances by. On 386, we have pushw instruction that
1444 decrements by exactly 2 no matter what the position was, there is no pushb.
1445
1446 But as CIE data alignment factor on this arch is -4 for 32bit targets
1447 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1448 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1449
d2836273 1450#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1451 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1452
1453/* If defined, the maximum amount of space required for outgoing arguments
1454 will be computed and placed into the variable `crtl->outgoing_args_size'.
1455 No space will be pushed onto the stack for each call; instead, the
1456 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1457
6510e8bb
KT
1458 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1459 function prologue and apilogue. This is not possible without
9aa5c1b2 1460 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1461
6c6094f1 1462#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1463 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1464
1465/* If defined, a C expression whose value is nonzero when we want to use PUSH
1466 instructions to pass outgoing arguments. */
1467
1468#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1469
2da4124d
L
1470/* We want the stack and args grow in opposite directions, even if
1471 PUSH_ARGS is 0. */
1472#define PUSH_ARGS_REVERSED 1
1473
c98f8742
JVA
1474/* Offset of first parameter from the argument pointer register value. */
1475#define FIRST_PARM_OFFSET(FNDECL) 0
1476
a7180f70
BS
1477/* Define this macro if functions should assume that stack space has been
1478 allocated for arguments even when their values are passed in registers.
1479
1480 The value of this macro is the size, in bytes, of the area reserved for
1481 arguments passed in registers for the function represented by FNDECL.
1482
1483 This space can be allocated by the caller, or be a part of the
1484 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1485 which. */
7c800926
KT
1486#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1487
4ae8027b 1488#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1489 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1490
c98f8742
JVA
1491/* Define how to find the value returned by a library function
1492 assuming the value has mode MODE. */
1493
4ae8027b 1494#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1495
e9125c09
TW
1496/* Define the size of the result block used for communication between
1497 untyped_call and untyped_return. The block contains a DImode value
1498 followed by the block used by fnsave and frstor. */
1499
1500#define APPLY_RESULT_SIZE (8+108)
1501
b08de47e 1502/* 1 if N is a possible register number for function argument passing. */
53c17031 1503#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1504
1505/* Define a data type for recording info about an argument list
1506 during the scan of that argument list. This data type should
1507 hold all necessary information about the function itself
1508 and about the args processed so far, enough to enable macros
b08de47e 1509 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1510
e075ae69 1511typedef struct ix86_args {
fa283935 1512 int words; /* # words passed so far */
b08de47e
MM
1513 int nregs; /* # registers available for passing */
1514 int regno; /* next available register number */
3e65f251
KT
1515 int fastcall; /* fastcall or thiscall calling convention
1516 is used */
fa283935 1517 int sse_words; /* # sse words passed so far */
a7180f70 1518 int sse_nregs; /* # sse registers available for passing */
95879c72 1519 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1520 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1521 int warn_mmx; /* True when we want to warn about MMX ABI. */
1522 int sse_regno; /* next available sse register number */
1523 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1524 int mmx_nregs; /* # mmx registers available for passing */
1525 int mmx_regno; /* next available mmx register number */
892a2d68 1526 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1527 int caller; /* true if it is caller. */
2824d6e5
UB
1528 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1529 SFmode/DFmode arguments should be passed
1530 in SSE registers. Otherwise 0. */
51212b32 1531 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1532 MS_ABI for ms abi. */
b08de47e 1533} CUMULATIVE_ARGS;
c98f8742
JVA
1534
1535/* Initialize a variable CUM of type CUMULATIVE_ARGS
1536 for a call to a function whose data type is FNTYPE.
b08de47e 1537 For a library call, FNTYPE is 0. */
c98f8742 1538
0f6937fe 1539#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1540 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1541 (N_NAMED_ARGS) != -1)
c98f8742 1542
c98f8742
JVA
1543/* Output assembler code to FILE to increment profiler label # LABELNO
1544 for profiling a function entry. */
1545
a5fa1ecd
JH
1546#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1547
1548#define MCOUNT_NAME "_mcount"
1549
3c5273a9
KT
1550#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1551
a5fa1ecd 1552#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1553
1554/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1555 the stack pointer does not matter. The value is tested only in
1556 functions that have frame pointers.
1557 No definition is equivalent to always zero. */
fce5a9f2 1558/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1559 we have to restore it ourselves from the frame pointer, in order to
1560 use pop */
1561
1562#define EXIT_IGNORE_STACK 1
1563
c98f8742
JVA
1564/* Output assembler code for a block containing the constant parts
1565 of a trampoline, leaving space for the variable parts. */
1566
a269a03c 1567/* On the 386, the trampoline contains two instructions:
c98f8742 1568 mov #STATIC,ecx
a269a03c
JC
1569 jmp FUNCTION
1570 The trampoline is generated entirely at runtime. The operand of JMP
1571 is the address of FUNCTION relative to the instruction following the
1572 JMP (which is 5 bytes long). */
c98f8742
JVA
1573
1574/* Length in units of the trampoline for entering a nested function. */
1575
3452586b 1576#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1577\f
1578/* Definitions for register eliminations.
1579
1580 This is an array of structures. Each structure initializes one pair
1581 of eliminable registers. The "from" register number is given first,
1582 followed by "to". Eliminations of the same "from" register are listed
1583 in order of preference.
1584
afc2cd05
NC
1585 There are two registers that can always be eliminated on the i386.
1586 The frame pointer and the arg pointer can be replaced by either the
1587 hard frame pointer or to the stack pointer, depending upon the
1588 circumstances. The hard frame pointer is not used before reload and
1589 so it is not eligible for elimination. */
c98f8742 1590
564d80f4
JH
1591#define ELIMINABLE_REGS \
1592{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1593 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1594 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1595 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1596
c98f8742
JVA
1597/* Define the offset between two registers, one to be eliminated, and the other
1598 its replacement, at the start of a routine. */
1599
d9a5f180
GS
1600#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1601 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1602\f
1603/* Addressing modes, and classification of registers for them. */
1604
c98f8742
JVA
1605/* Macros to check register numbers against specific register classes. */
1606
1607/* These assume that REGNO is a hard or pseudo reg number.
1608 They give nonzero only if REGNO is a hard reg of the suitable class
1609 or a pseudo reg currently allocated to a suitable hard reg.
1610 Since they use reg_renumber, they are safe only once reg_renumber
1611 has been allocated, which happens in local-alloc.c. */
1612
3f3f2124
JH
1613#define REGNO_OK_FOR_INDEX_P(REGNO) \
1614 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1615 || REX_INT_REGNO_P (REGNO) \
1616 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1617 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1618
3f3f2124 1619#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1620 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1621 || (REGNO) == ARG_POINTER_REGNUM \
1622 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1623 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1624
c98f8742
JVA
1625/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1626 and check its validity for a certain class.
1627 We have two alternate definitions for each of them.
1628 The usual definition accepts all pseudo regs; the other rejects
1629 them unless they have been allocated suitable hard regs.
1630 The symbol REG_OK_STRICT causes the latter definition to be used.
1631
1632 Most source files want to accept pseudo regs in the hope that
1633 they will get allocated to the class that the insn wants them to be in.
1634 Source files for reload pass need to be strict.
1635 After reload, it makes no difference, since pseudo regs have
1636 been eliminated by then. */
1637
c98f8742 1638
ff482c8d 1639/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1640#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1641 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1642 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1643 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1644
3b3c6a3f 1645#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1646 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1647 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1648 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1649 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1650
3b3c6a3f
MM
1651/* Strict versions, hard registers only */
1652#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1653#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1654
3b3c6a3f 1655#ifndef REG_OK_STRICT
d9a5f180
GS
1656#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1657#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1658
1659#else
d9a5f180
GS
1660#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1661#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1662#endif
1663
331d9186 1664/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1665 that is a valid memory address for an instruction.
1666 The MODE argument is the machine mode for the MEM expression
1667 that wants to use this address.
1668
331d9186 1669 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1670 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1671
1672 See legitimize_pic_address in i386.c for details as to what
1673 constitutes a legitimate address when -fpic is used. */
1674
1675#define MAX_REGS_PER_ADDRESS 2
1676
f996902d 1677#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1678
ae1547cc
UB
1679/* Try a machine-dependent way of reloading an illegitimate address
1680 operand. If we find one, push the reload and jump to WIN. This
1681 macro is used in only one place: `find_reloads_address' in reload.c. */
1682
1683#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1684do { \
1685 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1686 (int)(TYPE), (INDL))) \
1687 goto WIN; \
1688} while (0)
1689
b949ea8b
JW
1690/* If defined, a C expression to determine the base term of address X.
1691 This macro is used in only one place: `find_base_term' in alias.c.
1692
1693 It is always safe for this macro to not be defined. It exists so
1694 that alias analysis can understand machine-dependent addresses.
1695
1696 The typical use of this macro is to handle addresses containing
1697 a label_ref or symbol_ref within an UNSPEC. */
1698
d9a5f180 1699#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1700
c98f8742 1701/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1702 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1703 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1704
f996902d 1705#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1706
1707#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1708 (GET_CODE (X) == SYMBOL_REF \
1709 || GET_CODE (X) == LABEL_REF \
1710 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1711\f
b08de47e
MM
1712/* Max number of args passed in registers. If this is more than 3, we will
1713 have problems with ebx (register #4), since it is a caller save register and
1714 is also used as the pic register in ELF. So for now, don't allow more than
1715 3 registers to be passed in registers. */
1716
7c800926
KT
1717/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1718#define X86_64_REGPARM_MAX 6
72fa3605 1719#define X86_64_MS_REGPARM_MAX 4
7c800926 1720
72fa3605 1721#define X86_32_REGPARM_MAX 3
7c800926 1722
4ae8027b 1723#define REGPARM_MAX \
2824d6e5
UB
1724 (TARGET_64BIT \
1725 ? (TARGET_64BIT_MS_ABI \
1726 ? X86_64_MS_REGPARM_MAX \
1727 : X86_64_REGPARM_MAX) \
4ae8027b 1728 : X86_32_REGPARM_MAX)
d2836273 1729
72fa3605
UB
1730#define X86_64_SSE_REGPARM_MAX 8
1731#define X86_64_MS_SSE_REGPARM_MAX 4
1732
b6010cab 1733#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1734
4ae8027b 1735#define SSE_REGPARM_MAX \
2824d6e5
UB
1736 (TARGET_64BIT \
1737 ? (TARGET_64BIT_MS_ABI \
1738 ? X86_64_MS_SSE_REGPARM_MAX \
1739 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1740 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1741
1742#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1743\f
1744/* Specify the machine mode that this machine uses
1745 for the index in the tablejump instruction. */
dc4d7240 1746#define CASE_VECTOR_MODE \
6025b127 1747 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1748
c98f8742
JVA
1749/* Define this as 1 if `char' should by default be signed; else as 0. */
1750#define DEFAULT_SIGNED_CHAR 1
1751
1752/* Max number of bytes we can move from memory to memory
1753 in one reasonably fast instruction. */
65d9c0ab
JH
1754#define MOVE_MAX 16
1755
1756/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1757 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1758 number of bytes we can move with a single instruction. */
63001560 1759#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1760
7e24ffc9 1761/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1762 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1763 Increasing the value will always make code faster, but eventually
1764 incurs high cost in increased code size.
c98f8742 1765
e2e52e1b 1766 If you don't define this, a reasonable default is used. */
c98f8742 1767
e04ad03d 1768#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1769
45d78e7f
JJ
1770/* If a clear memory operation would take CLEAR_RATIO or more simple
1771 move-instruction sequences, we will do a clrmem or libcall instead. */
1772
e04ad03d 1773#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1774
53f00dde
UB
1775/* Define if shifts truncate the shift count which implies one can
1776 omit a sign-extension or zero-extension of a shift count.
1777
1778 On i386, shifts do truncate the count. But bit test instructions
1779 take the modulo of the bit offset operand. */
c98f8742
JVA
1780
1781/* #define SHIFT_COUNT_TRUNCATED */
1782
1783/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1784 is done just by pretending it is already truncated. */
1785#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1786
d9f32422
JH
1787/* A macro to update M and UNSIGNEDP when an object whose type is
1788 TYPE and which has the specified mode and signedness is to be
1789 stored in a register. This macro is only called when TYPE is a
1790 scalar type.
1791
f710504c 1792 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1793 quantities to SImode. The choice depends on target type. */
1794
1795#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1796do { \
d9f32422
JH
1797 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1798 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1799 (MODE) = SImode; \
1800} while (0)
d9f32422 1801
c98f8742
JVA
1802/* Specify the machine mode that pointers have.
1803 After generation of rtl, the compiler makes no further distinction
1804 between pointers and any other objects of this machine mode. */
28968d91 1805#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1806
f0ea7581
L
1807/* A C expression whose value is zero if pointers that need to be extended
1808 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1809 greater then zero if they are zero-extended and less then zero if the
1810 ptr_extend instruction should be used. */
1811
1812#define POINTERS_EXTEND_UNSIGNED 1
1813
c98f8742
JVA
1814/* A function address in a call instruction
1815 is a byte address (for indexing purposes)
1816 so give the MEM rtx a byte's mode. */
1817#define FUNCTION_MODE QImode
d4ba09c0 1818\f
d4ba09c0 1819
d4ba09c0
SC
1820/* A C expression for the cost of a branch instruction. A value of 1
1821 is the default; other values are interpreted relative to that. */
1822
3a4fd356
JH
1823#define BRANCH_COST(speed_p, predictable_p) \
1824 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1825
e327d1a3
L
1826/* An integer expression for the size in bits of the largest integer machine
1827 mode that should actually be used. We allow pairs of registers. */
1828#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1829
d4ba09c0
SC
1830/* Define this macro as a C expression which is nonzero if accessing
1831 less than a word of memory (i.e. a `char' or a `short') is no
1832 faster than accessing a word of memory, i.e., if such access
1833 require more than one instruction or if there is no difference in
1834 cost between byte and (aligned) word loads.
1835
1836 When this macro is not defined, the compiler will access a field by
1837 finding the smallest containing object; when it is defined, a
1838 fullword load will be used if alignment permits. Unless bytes
1839 accesses are faster than word accesses, using word accesses is
1840 preferable since it may eliminate subsequent memory access if
1841 subsequent accesses occur to other fields in the same word of the
1842 structure, but to different bytes. */
1843
1844#define SLOW_BYTE_ACCESS 0
1845
1846/* Nonzero if access to memory by shorts is slow and undesirable. */
1847#define SLOW_SHORT_ACCESS 0
1848
d4ba09c0
SC
1849/* Define this macro to be the value 1 if unaligned accesses have a
1850 cost many times greater than aligned accesses, for example if they
1851 are emulated in a trap handler.
1852
9cd10576
KH
1853 When this macro is nonzero, the compiler will act as if
1854 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1855 moves. This can cause significantly more instructions to be
9cd10576 1856 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1857 accesses only add a cycle or two to the time for a memory access.
1858
1859 If the value of this macro is always zero, it need not be defined. */
1860
e1565e65 1861/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1862
d4ba09c0
SC
1863/* Define this macro if it is as good or better to call a constant
1864 function address than to call an address kept in a register.
1865
1866 Desirable on the 386 because a CALL with a constant address is
1867 faster than one with a register address. */
1868
1869#define NO_FUNCTION_CSE
c98f8742 1870\f
c572e5ba
JVA
1871/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1872 return the mode to be used for the comparison.
1873
1874 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1875 VOIDmode should be used in all other cases.
c572e5ba 1876
16189740 1877 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1878 possible, to allow for more combinations. */
c98f8742 1879
d9a5f180 1880#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1881
9cd10576 1882/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1883 reversed. */
1884
1885#define REVERSIBLE_CC_MODE(MODE) 1
1886
1887/* A C expression whose value is reversed condition code of the CODE for
1888 comparison done in CC_MODE mode. */
3c5cb3e4 1889#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1890
c98f8742
JVA
1891\f
1892/* Control the assembler format that we output, to the extent
1893 this does not vary between assemblers. */
1894
1895/* How to refer to registers in assembler output.
892a2d68 1896 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1897
a7b376ee 1898/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1899 For non floating point regs, the following are the HImode names.
1900
1901 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1902 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1903 "y" code. */
c98f8742 1904
a7180f70
BS
1905#define HI_REGISTER_NAMES \
1906{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1907 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1908 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1909 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1910 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1911 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1912 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1913
c98f8742
JVA
1914#define REGISTER_NAMES HI_REGISTER_NAMES
1915
1916/* Table of additional register names to use in user input. */
1917
1918#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1919{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1920 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1921 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1922 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1923 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1924 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1925
1926/* Note we are omitting these since currently I don't know how
1927to get gcc to use these, since they want the same but different
1928number as al, and ax.
1929*/
1930
c98f8742 1931#define QI_REGISTER_NAMES \
3f3f2124 1932{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1933
1934/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1935 of regs 0 through 3. */
c98f8742
JVA
1936
1937#define QI_HIGH_REGISTER_NAMES \
1938{"ah", "dh", "ch", "bh", }
1939
1940/* How to renumber registers for dbx and gdb. */
1941
d9a5f180
GS
1942#define DBX_REGISTER_NUMBER(N) \
1943 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1944
9a82e702
MS
1945extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1946extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1947extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1948
469ac993
JM
1949/* Before the prologue, RA is at 0(%esp). */
1950#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1951 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1952
e414ab29 1953/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1954#define RETURN_ADDR_RTX(COUNT, FRAME) \
1955 ((COUNT) == 0 \
0a81f074
RS
1956 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1957 -UNITS_PER_WORD)) \
1958 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 1959
892a2d68 1960/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1961#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1962
a6ab3aad 1963/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1964#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1965
1020a5ab 1966/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1967#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1968#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1969
ad919812 1970
e4c4ebeb
RH
1971/* Select a format to encode pointers in exception handling data. CODE
1972 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1973 true if the symbol may be affected by dynamic relocations.
1974
1975 ??? All x86 object file formats are capable of representing this.
1976 After all, the relocation needed is the same as for the call insn.
1977 Whether or not a particular assembler allows us to enter such, I
1978 guess we'll have to see. */
d9a5f180 1979#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1980 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1981
c98f8742
JVA
1982/* This is how to output an insn to push a register on the stack.
1983 It need not be very fast code. */
1984
d9a5f180 1985#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1986do { \
1987 if (TARGET_64BIT) \
1988 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1989 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1990 else \
1991 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1992} while (0)
c98f8742
JVA
1993
1994/* This is how to output an insn to pop a register from the stack.
1995 It need not be very fast code. */
1996
d9a5f180 1997#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1998do { \
1999 if (TARGET_64BIT) \
2000 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2001 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2002 else \
2003 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2004} while (0)
c98f8742 2005
f88c65f7 2006/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2007
2008#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2009 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2010
f88c65f7 2011/* This is how to output an element of a case-vector that is relative. */
c98f8742 2012
33f7f353 2013#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2014 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2015
63001560 2016/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2017
2018#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2019{ \
2020 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2021 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2022}
2023
2024/* A C statement or statements which output an assembler instruction
2025 opcode to the stdio stream STREAM. The macro-operand PTR is a
2026 variable of type `char *' which points to the opcode name in
2027 its "internal" form--the form that is written in the machine
2028 description. */
2029
2030#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2031 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2032
6a90d232
L
2033/* A C statement to output to the stdio stream FILE an assembler
2034 command to pad the location counter to a multiple of 1<<LOG
2035 bytes if it is within MAX_SKIP bytes. */
2036
2037#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2038#undef ASM_OUTPUT_MAX_SKIP_PAD
2039#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2040 if ((LOG) != 0) \
2041 { \
2042 if ((MAX_SKIP) == 0) \
2043 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2044 else \
2045 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2046 }
2047#endif
2048
135a687e
KT
2049/* Write the extra assembler code needed to declare a function
2050 properly. */
2051
2052#undef ASM_OUTPUT_FUNCTION_LABEL
2053#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2054 ix86_asm_output_function_label (FILE, NAME, DECL)
2055
f7288899
EC
2056/* Under some conditions we need jump tables in the text section,
2057 because the assembler cannot handle label differences between
2058 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2059
2060#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2061 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2062 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2063
cea3bd3e
RH
2064/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2065 and switch back. For x86 we do this only to save a few bytes that
2066 would otherwise be unused in the text section. */
ad211091
KT
2067#define CRT_MKSTR2(VAL) #VAL
2068#define CRT_MKSTR(x) CRT_MKSTR2(x)
2069
2070#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2071 asm (SECTION_OP "\n\t" \
2072 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2073 TEXT_SECTION_ASM_OP);
74b42c8b 2074\f
b2b01543 2075/* Which processor to tune code generation for. */
5bf0ebab
RH
2076
2077enum processor_type
2078{
8383d43c 2079 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2080 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2081 PROCESSOR_PENTIUM,
2082 PROCESSOR_PENTIUMPRO,
cfe1b18f 2083 PROCESSOR_GEODE,
5bf0ebab
RH
2084 PROCESSOR_K6,
2085 PROCESSOR_ATHLON,
2086 PROCESSOR_PENTIUM4,
4977bab6 2087 PROCESSOR_K8,
89c43c0a 2088 PROCESSOR_NOCONA,
ab247762
MK
2089 PROCESSOR_CORE2_32,
2090 PROCESSOR_CORE2_64,
b2b01543
BS
2091 PROCESSOR_COREI7_32,
2092 PROCESSOR_COREI7_64,
d326eaf0
JH
2093 PROCESSOR_GENERIC32,
2094 PROCESSOR_GENERIC64,
21efb4d4 2095 PROCESSOR_AMDFAM10,
1133125e 2096 PROCESSOR_BDVER1,
4d652a18 2097 PROCESSOR_BDVER2,
14b52538 2098 PROCESSOR_BTVER1,
e32bfc16 2099 PROCESSOR_BTVER2,
b6837b94 2100 PROCESSOR_ATOM,
5bf0ebab
RH
2101 PROCESSOR_max
2102};
2103
9e555526 2104extern enum processor_type ix86_tune;
5bf0ebab 2105extern enum processor_type ix86_arch;
5bf0ebab 2106
8362f420
JH
2107/* Size of the RED_ZONE area. */
2108#define RED_ZONE_SIZE 128
2109/* Reserved area of the red zone for temporaries. */
2110#define RED_ZONE_RESERVE 8
c93e80a5 2111
95899b34 2112extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2113extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2114
2115/* Smallest class containing REGNO. */
2116extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2117
0948ccb2
PB
2118enum ix86_fpcmp_strategy {
2119 IX86_FPCMP_SAHF,
2120 IX86_FPCMP_COMI,
2121 IX86_FPCMP_ARITH
2122};
22fb740d
JH
2123\f
2124/* To properly truncate FP values into integers, we need to set i387 control
2125 word. We can't emit proper mode switching code before reload, as spills
2126 generated by reload may truncate values incorrectly, but we still can avoid
2127 redundant computation of new control word by the mode switching pass.
2128 The fldcw instructions are still emitted redundantly, but this is probably
2129 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2130 the sequence.
22fb740d
JH
2131
2132 The machinery is to emit simple truncation instructions and split them
2133 before reload to instructions having USEs of two memory locations that
2134 are filled by this code to old and new control word.
fce5a9f2 2135
22fb740d
JH
2136 Post-reload pass may be later used to eliminate the redundant fildcw if
2137 needed. */
2138
ff680eb1
UB
2139enum ix86_entity
2140{
2141 I387_TRUNC = 0,
2142 I387_FLOOR,
2143 I387_CEIL,
2144 I387_MASK_PM,
2145 MAX_386_ENTITIES
2146};
2147
1cba2b96 2148enum ix86_stack_slot
ff680eb1 2149{
80dcd3aa
UB
2150 SLOT_VIRTUAL = 0,
2151 SLOT_TEMP,
ff680eb1
UB
2152 SLOT_CW_STORED,
2153 SLOT_CW_TRUNC,
2154 SLOT_CW_FLOOR,
2155 SLOT_CW_CEIL,
2156 SLOT_CW_MASK_PM,
2157 MAX_386_STACK_LOCALS
2158};
22fb740d
JH
2159
2160/* Define this macro if the port needs extra instructions inserted
2161 for mode switching in an optimizing compilation. */
2162
ff680eb1
UB
2163#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2164 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2165
2166/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2167 initializer for an array of integers. Each initializer element N
2168 refers to an entity that needs mode switching, and specifies the
2169 number of different modes that might need to be set for this
2170 entity. The position of the initializer in the initializer -
2171 starting counting at zero - determines the integer that is used to
2172 refer to the mode-switched entity in question. */
2173
ff680eb1
UB
2174#define NUM_MODES_FOR_MODE_SWITCHING \
2175 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2176
2177/* ENTITY is an integer specifying a mode-switched entity. If
2178 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2179 return an integer value not larger than the corresponding element
2180 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2181 must be switched into prior to the execution of INSN. */
2182
2183#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2184
2185/* This macro specifies the order in which modes for ENTITY are
2186 processed. 0 is the highest priority. */
2187
d9a5f180 2188#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2189
2190/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2191 is the set of hard registers live at the point where the insn(s)
2192 are to be inserted. */
2193
2194#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2195 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2196 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2197 : 0)
ff680eb1 2198
0f0138b6
JH
2199\f
2200/* Avoid renaming of stack registers, as doing so in combination with
2201 scheduling just increases amount of live registers at time and in
2202 the turn amount of fxch instructions needed.
2203
43f3a59d 2204 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2205
66aaf16f 2206#define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
22fb740d 2207
3b3c6a3f 2208\f
e91f04de 2209#define FASTCALL_PREFIX '@'
fa1a0d02 2210\f
ec7ded37 2211/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2212
604a6be9 2213#ifndef USED_FOR_TARGET
ec7ded37 2214struct GTY(()) machine_frame_state
cd9c1ca8 2215{
ec7ded37
RH
2216 /* This pair tracks the currently active CFA as reg+offset. When reg
2217 is drap_reg, we don't bother trying to record here the real CFA when
2218 it might really be a DW_CFA_def_cfa_expression. */
2219 rtx cfa_reg;
2220 HOST_WIDE_INT cfa_offset;
2221
2222 /* The current offset (canonically from the CFA) of ESP and EBP.
2223 When stack frame re-alignment is active, these may not be relative
2224 to the CFA. However, in all cases they are relative to the offsets
2225 of the saved registers stored in ix86_frame. */
2226 HOST_WIDE_INT sp_offset;
2227 HOST_WIDE_INT fp_offset;
2228
2229 /* The size of the red-zone that may be assumed for the purposes of
2230 eliding register restore notes in the epilogue. This may be zero
2231 if no red-zone is in effect, or may be reduced from the real
2232 red-zone value by a maximum runtime stack re-alignment value. */
2233 int red_zone_offset;
2234
2235 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2236 value within the frame. If false then the offset above should be
2237 ignored. Note that DRAP, if valid, *always* points to the CFA and
2238 thus has an offset of zero. */
2239 BOOL_BITFIELD sp_valid : 1;
2240 BOOL_BITFIELD fp_valid : 1;
2241 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2242
2243 /* Indicate whether the local stack frame has been re-aligned. When
2244 set, the SP/FP offsets above are relative to the aligned frame
2245 and not the CFA. */
2246 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2247};
2248
f81c9774
RH
2249/* Private to winnt.c. */
2250struct seh_frame_state;
2251
d1b38208 2252struct GTY(()) machine_function {
fa1a0d02
JH
2253 struct stack_local_entry *stack_locals;
2254 const char *some_ld_name;
4aab97f9
L
2255 int varargs_gpr_size;
2256 int varargs_fpr_size;
ff680eb1 2257 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2258
2259 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2260 has been computed for. */
2261 int use_fast_prologue_epilogue_nregs;
2262
7458026b
ILT
2263 /* For -fsplit-stack support: A stack local which holds a pointer to
2264 the stack arguments for a function with a variable number of
2265 arguments. This is set at the start of the function and is used
2266 to initialize the overflow_arg_area field of the va_list
2267 structure. */
2268 rtx split_stack_varargs_pointer;
2269
3452586b
RH
2270 /* This value is used for amd64 targets and specifies the current abi
2271 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2272 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2273
2274 /* Nonzero if the function accesses a previous frame. */
2275 BOOL_BITFIELD accesses_prev_frame : 1;
2276
2277 /* Nonzero if the function requires a CLD in the prologue. */
2278 BOOL_BITFIELD needs_cld : 1;
2279
922e3e33
UB
2280 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2281 expander to determine the style used. */
3452586b
RH
2282 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2283
5bf5a10b
AO
2284 /* If true, the current function needs the default PIC register, not
2285 an alternate register (on x86) and must not use the red zone (on
2286 x86_64), even if it's a leaf function. We don't want the
2287 function to be regarded as non-leaf because TLS calls need not
2288 affect register allocation. This flag is set when a TLS call
2289 instruction is expanded within a function, and never reset, even
2290 if all such instructions are optimized away. Use the
2291 ix86_current_function_calls_tls_descriptor macro for a better
2292 approximation. */
3452586b
RH
2293 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2294
2295 /* If true, the current function has a STATIC_CHAIN is placed on the
2296 stack below the return address. */
2297 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2298
2767a7f2
L
2299 /* Nonzero if caller passes 256bit AVX modes. */
2300 BOOL_BITFIELD caller_pass_avx256_p : 1;
2301
2302 /* Nonzero if caller returns 256bit AVX modes. */
2303 BOOL_BITFIELD caller_return_avx256_p : 1;
2304
2305 /* Nonzero if the current callee passes 256bit AVX modes. */
2306 BOOL_BITFIELD callee_pass_avx256_p : 1;
2307
2308 /* Nonzero if the current callee returns 256bit AVX modes. */
2309 BOOL_BITFIELD callee_return_avx256_p : 1;
2310
617e6634
L
2311 /* Nonzero if rescan vzerouppers in the current function is needed. */
2312 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2313
ec7ded37
RH
2314 /* During prologue/epilogue generation, the current frame state.
2315 Otherwise, the frame state at the end of the prologue. */
2316 struct machine_frame_state fs;
f81c9774
RH
2317
2318 /* During SEH output, this is non-null. */
2319 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2320};
cd9c1ca8 2321#endif
fa1a0d02
JH
2322
2323#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2324#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2325#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2326#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2327#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2328#define ix86_tls_descriptor_calls_expanded_in_cfun \
2329 (cfun->machine->tls_descriptor_call_expanded_p)
2330/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2331 calls are optimized away, we try to detect cases in which it was
2332 optimized away. Since such instructions (use (reg REG_SP)), we can
2333 verify whether there's any such instruction live by testing that
2334 REG_SP is live. */
2335#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2336 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2337#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2338
1bc7c5b6
ZW
2339/* Control behavior of x86_file_start. */
2340#define X86_FILE_START_VERSION_DIRECTIVE false
2341#define X86_FILE_START_FLTUSED false
2342
7dcbf659
JH
2343/* Flag to mark data that is in the large address area. */
2344#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2345#define SYMBOL_REF_FAR_ADDR_P(X) \
2346 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2347
2348/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2349 have defined always, to avoid ifdefing. */
2350#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2351#define SYMBOL_REF_DLLIMPORT_P(X) \
2352 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2353
2354#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2355#define SYMBOL_REF_DLLEXPORT_P(X) \
2356 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2357
7942e47e
RY
2358extern void debug_ready_dispatch (void);
2359extern void debug_dispatch_window (int);
2360
91afcfa3
QN
2361/* The value at zero is only defined for the BMI instructions
2362 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2363#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2364 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2365#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2366 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2367
2368
b8ce4e94
KT
2369/* Flags returned by ix86_get_callcvt (). */
2370#define IX86_CALLCVT_CDECL 0x1
2371#define IX86_CALLCVT_STDCALL 0x2
2372#define IX86_CALLCVT_FASTCALL 0x4
2373#define IX86_CALLCVT_THISCALL 0x8
2374#define IX86_CALLCVT_REGPARM 0x10
2375#define IX86_CALLCVT_SSEREGPARM 0x20
2376
2377#define IX86_BASE_CALLCVT(FLAGS) \
2378 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2379 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2380
b86b9f44
MM
2381#define RECIP_MASK_NONE 0x00
2382#define RECIP_MASK_DIV 0x01
2383#define RECIP_MASK_SQRT 0x02
2384#define RECIP_MASK_VEC_DIV 0x04
2385#define RECIP_MASK_VEC_SQRT 0x08
2386#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2387 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2388#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2389
2390#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2391#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2392#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2393#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2394
5dcfdccd
KY
2395#define IX86_HLE_ACQUIRE (1 << 16)
2396#define IX86_HLE_RELEASE (1 << 17)
2397
c98f8742
JVA
2398/*
2399Local variables:
2400version-control: t
2401End:
2402*/