]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
sse.md (sse_cvtpi2ps): Use TARGET_MMX in insn condition.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
a5544970 2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
90922d36 96#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 97#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 98#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 99#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 100#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 101#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 102#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 103#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 104#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 105#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 106#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 107#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
108#define TARGET_PCONFIG TARGET_ISA_PCONFIG
109#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
112#define TARGET_SGX TARGET_ISA_SGX
113#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
114#define TARGET_RDPID TARGET_ISA_RDPID
115#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
116#define TARGET_GFNI TARGET_ISA_GFNI
117#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
118#define TARGET_VAES TARGET_ISA_VAES
119#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
120#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 122#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 123#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 124#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 125#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 126#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 127#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 128#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 129#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 130#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 131#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 132#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 133#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 134#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 135#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 136#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 137#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 138#define TARGET_AES TARGET_ISA_AES
bf7b5747 139#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
140#define TARGET_SHA TARGET_ISA_SHA
141#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
142#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
144#define TARGET_CLZERO TARGET_ISA_CLZERO
145#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
146#define TARGET_XSAVEC TARGET_ISA_XSAVEC
147#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148#define TARGET_XSAVES TARGET_ISA_XSAVES
149#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 150#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 151#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
152#define TARGET_CMPXCHG16B TARGET_ISA_CX16
153#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 154#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 155#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 156#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 157#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 158#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 159#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
160#define TARGET_RTM TARGET_ISA_RTM
161#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 162#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 163#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 164#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 165#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 166#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 167#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 168#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 169#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 170#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 171#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 172#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 173#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 174#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 175#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
176#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
178#define TARGET_CLWB TARGET_ISA_CLWB
179#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
180#define TARGET_MWAITX TARGET_ISA_MWAITX
181#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
182#define TARGET_PKU TARGET_ISA_PKU
183#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
184#define TARGET_SHSTK TARGET_ISA_SHSTK
185#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
186#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
187#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
188#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
189#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
190#define TARGET_WAITPKG TARGET_ISA_WAITPKG
191#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
192#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
193#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41f8d1fc
AK
194#define TARGET_PTWRITE TARGET_ISA_PTWRITE
195#define TARGET_PTWRITE_P(x) TARGET_ISA_PTWRITE_P(x)
4f0e90fa
HL
196#define TARGET_AVX512BF16 TARGET_ISA_AVX512BF16
197#define TARGET_AVX512BF16_P(x) TARGET_ISA_AVX512BF16_P(x)
41a4ef22 198
90922d36 199#define TARGET_LP64 TARGET_ABI_64
bf7b5747 200#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 201#define TARGET_X32 TARGET_ABI_X32
bf7b5747 202#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
203#define TARGET_16BIT TARGET_CODE16
204#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 205
dfa61b9e
L
206#define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
207
26b5109f
RS
208#include "config/vxworks-dummy.h"
209
7eb68c06 210#include "config/i386/i386-opts.h"
ccf8e764 211
c69fa2d4 212#define MAX_STRINGOP_ALGS 4
ccf8e764 213
8c996513
JH
214/* Specify what algorithm to use for stringops on known size.
215 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
216 known at compile time or estimated via feedback, the SIZE array
217 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 218 means infinity). Corresponding ALG is used then.
340ef734
JH
219 When NOALIGN is true the code guaranting the alignment of the memory
220 block is skipped.
221
8c996513 222 For example initializer:
4f3f76e6 223 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 224 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 225 be used otherwise. */
8c996513
JH
226struct stringop_algs
227{
228 const enum stringop_alg unknown_size;
229 const struct stringop_strategy {
230 const int max;
231 const enum stringop_alg alg;
340ef734 232 int noalign;
c69fa2d4 233 } size [MAX_STRINGOP_ALGS];
8c996513
JH
234};
235
d4ba09c0
SC
236/* Define the specific costs for a given cpu */
237
238struct processor_costs {
8b60264b
KG
239 const int add; /* cost of an add instruction */
240 const int lea; /* cost of a lea instruction */
241 const int shift_var; /* variable shift costs */
242 const int shift_const; /* constant shift costs */
f676971a 243 const int mult_init[5]; /* cost of starting a multiply
4977bab6 244 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 245 const int mult_bit; /* cost of multiply per each bit set */
f676971a 246 const int divide[5]; /* cost of a divide/mod
4977bab6 247 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
248 int movsx; /* The cost of movsx operation. */
249 int movzx; /* The cost of movzx operation. */
8b60264b
KG
250 const int large_insn; /* insns larger than this cost more */
251 const int move_ratio; /* The threshold of number of scalar
ac775968 252 memory-to-memory move insns. */
8b60264b
KG
253 const int movzbl_load; /* cost of loading using movzbl */
254 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
255 in QImode, HImode and SImode relative
256 to reg-reg move (2). */
8b60264b 257 const int int_store[3]; /* cost of storing integer register
96e7ae40 258 in QImode, HImode and SImode */
8b60264b
KG
259 const int fp_move; /* cost of reg,reg fld/fst */
260 const int fp_load[3]; /* cost of loading FP register
96e7ae40 261 in SFmode, DFmode and XFmode */
8b60264b 262 const int fp_store[3]; /* cost of storing FP register
96e7ae40 263 in SFmode, DFmode and XFmode */
8b60264b
KG
264 const int mmx_move; /* cost of moving MMX register. */
265 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 266 in SImode and DImode */
8b60264b 267 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 268 in SImode and DImode */
df41dbaf
JH
269 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
270 zmm_move;
271 const int sse_load[5]; /* cost of loading SSE register
272 in 32bit, 64bit, 128bit, 256bit and 512bit */
273 const int sse_unaligned_load[5];/* cost of unaligned load. */
274 const int sse_store[5]; /* cost of storing SSE register
275 in SImode, DImode and TImode. */
276 const int sse_unaligned_store[5];/* cost of unaligned store. */
8b60264b 277 const int mmxsse_to_integer; /* cost of moving mmxsse register to
df41dbaf
JH
278 integer. */
279 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
a4fe6139
JH
280 const int gather_static, gather_per_elt; /* Cost of gather load is computed
281 as static + per_item * nelts. */
282 const int scatter_static, scatter_per_elt; /* Cost of gather store is
283 computed as static + per_item * nelts. */
46cb0441
ZD
284 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
285 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
286 const int prefetch_block; /* bytes moved to cache for prefetch. */
287 const int simultaneous_prefetches; /* number of parallel prefetch
288 operations. */
4977bab6 289 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
290 const int fadd; /* cost of FADD and FSUB instructions. */
291 const int fmul; /* cost of FMUL instruction. */
292 const int fdiv; /* cost of FDIV instruction. */
293 const int fabs; /* cost of FABS instruction. */
294 const int fchs; /* cost of FCHS instruction. */
295 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 296 /* Specify what algorithm
bee51209 297 to use for stringops on unknown size. */
c53c148c 298 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
299 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
300 const int mulss; /* cost of MULSS instructions. */
301 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
302 const int fmass; /* cost of FMASS instructions. */
303 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
304 const int divss; /* cost of DIVSS instructions. */
305 const int divsd; /* cost of DIVSD instructions. */
306 const int sqrtss; /* cost of SQRTSS instructions. */
307 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
308 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
309 /* Specify reassociation width for integer,
310 fp, vector integer and vector fp
311 operations. Generally should correspond
312 to number of instructions executed in
313 parallel. See also
314 ix86_reassociation_width. */
ad83025e 315 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
316 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
317 cost model. */
318 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
319 vectorizer cost model. */
7dc58b50
ML
320
321 /* The "0:0:8" label alignment specified for some processors generates
322 secondary 8-byte alignment only for those label/jump/loop targets
323 which have primary alignment. */
324 const char *const align_loop; /* Loop alignment. */
325 const char *const align_jump; /* Jump alignment. */
326 const char *const align_label; /* Label alignment. */
327 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
328};
329
8b60264b 330extern const struct processor_costs *ix86_cost;
b2077fd2
JH
331extern const struct processor_costs ix86_size_cost;
332
333#define ix86_cur_cost() \
334 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 335
c98f8742
JVA
336/* Macros used in the machine description to test the flags. */
337
b97de419 338/* configure can arrange to change it. */
e075ae69 339
35b528be 340#ifndef TARGET_CPU_DEFAULT
b97de419 341#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 342#endif
35b528be 343
004d3859
GK
344#ifndef TARGET_FPMATH_DEFAULT
345#define TARGET_FPMATH_DEFAULT \
346 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
347#endif
348
bf7b5747
ST
349#ifndef TARGET_FPMATH_DEFAULT_P
350#define TARGET_FPMATH_DEFAULT_P(x) \
351 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
352#endif
353
c207fd99
L
354/* If the i387 is disabled or -miamcu is used , then do not return
355 values in it. */
356#define TARGET_FLOAT_RETURNS_IN_80387 \
357 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
358#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
359 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 360
5791cc29
JT
361/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
362 compile-time constant. */
363#ifdef IN_LIBGCC2
6ac49599 364#undef TARGET_64BIT
5791cc29
JT
365#ifdef __x86_64__
366#define TARGET_64BIT 1
367#else
368#define TARGET_64BIT 0
369#endif
370#else
6ac49599
RS
371#ifndef TARGET_BI_ARCH
372#undef TARGET_64BIT
e49080ec 373#undef TARGET_64BIT_P
67adf6a9 374#if TARGET_64BIT_DEFAULT
0c2dc519 375#define TARGET_64BIT 1
e49080ec 376#define TARGET_64BIT_P(x) 1
0c2dc519
JH
377#else
378#define TARGET_64BIT 0
e49080ec 379#define TARGET_64BIT_P(x) 0
0c2dc519
JH
380#endif
381#endif
5791cc29 382#endif
25f94bb5 383
750054a2
CT
384#define HAS_LONG_COND_BRANCH 1
385#define HAS_LONG_UNCOND_BRANCH 1
386
9e555526
RH
387#define TARGET_386 (ix86_tune == PROCESSOR_I386)
388#define TARGET_486 (ix86_tune == PROCESSOR_I486)
389#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
390#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 391#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
392#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
393#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
394#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
395#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 396#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 397#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 398#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
399#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
400#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 401#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
402#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
403#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 404#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 405#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 406#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 407#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 408#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 409#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 410#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 411#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
412#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
413#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
7cab07f0 414#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
9a7f94d7 415#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 416#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 417#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 418#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 419#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 420#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 421#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 422#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 423#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 424#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
2901f42f 425#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
a269a03c 426
80fd744f
RH
427/* Feature tests against the various tunings. */
428enum ix86_tune_indices {
4b8bc035 429#undef DEF_TUNE
3ad20bd4 430#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
431#include "x86-tune.def"
432#undef DEF_TUNE
433X86_TUNE_LAST
80fd744f
RH
434};
435
ab442df7 436extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
437
438#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
439#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
440#define TARGET_ZERO_EXTEND_WITH_AND \
441 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 442#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
443#define TARGET_BRANCH_PREDICTION_HINTS \
444 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
445#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
446#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
447#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
448#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
449#define TARGET_PARTIAL_FLAG_REG_STALL \
450 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
451#define TARGET_LCP_STALL \
452 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
453#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
454#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
455#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
456#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
457#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
458#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
459#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
460#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
461#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
462#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
463#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
464#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
465 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
466#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
467#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
468#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
469#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
470#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
471#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
472#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
473#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
474#define TARGET_INTEGER_DFMODE_MOVES \
475 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
476#define TARGET_PARTIAL_REG_DEPENDENCY \
477 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
478#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
479 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
480#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
481 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
482#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
483 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
484#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
485 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
486#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
487#define TARGET_SSE_TYPELESS_STORES \
488 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
489#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
490#define TARGET_MEMORY_MISMATCH_STALL \
491 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
492#define TARGET_PROLOGUE_USING_MOVE \
493 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
494#define TARGET_EPILOGUE_USING_MOVE \
495 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
496#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
497#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
498#define TARGET_INTER_UNIT_MOVES_TO_VEC \
499 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
500#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
501 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
502#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 503 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
504#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
505#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
506#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
507#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
508#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
509#define TARGET_PAD_SHORT_FUNCTION \
510 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
511#define TARGET_EXT_80387_CONSTANTS \
512 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
513#define TARGET_AVOID_VECTOR_DECODE \
514 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
515#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
516 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
517#define TARGET_SLOW_IMUL_IMM32_MEM \
518 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
519#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
520#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
521#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
522#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
523#define TARGET_USE_VECTOR_FP_CONVERTS \
524 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
525#define TARGET_USE_VECTOR_CONVERTS \
526 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
527#define TARGET_SLOW_PSHUFB \
528 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
529#define TARGET_AVOID_4BYTE_PREFIXES \
530 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
531#define TARGET_USE_GATHER \
532 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
533#define TARGET_FUSE_CMP_AND_BRANCH_32 \
534 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
535#define TARGET_FUSE_CMP_AND_BRANCH_64 \
536 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 537#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
538 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
539 : TARGET_FUSE_CMP_AND_BRANCH_32)
540#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
541 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
542#define TARGET_FUSE_ALU_AND_BRANCH \
543 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 544#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
545#define TARGET_AVOID_LEA_FOR_ADDR \
546 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
547#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
548 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
549#define TARGET_AVX128_OPTIMAL \
550 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
551#define TARGET_GENERAL_REGS_SSE_SPILL \
552 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
553#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
554 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 555#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 556 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
557#define TARGET_ADJUST_UNROLL \
558 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
559#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
560 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
561#define TARGET_ONE_IF_CONV_INSN \
562 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
563#define TARGET_EMIT_VZEROUPPER \
564 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 565
80fd744f
RH
566/* Feature tests against the various architecture variations. */
567enum ix86_arch_indices {
cef31f9c 568 X86_ARCH_CMOV,
80fd744f
RH
569 X86_ARCH_CMPXCHG,
570 X86_ARCH_CMPXCHG8B,
571 X86_ARCH_XADD,
572 X86_ARCH_BSWAP,
573
574 X86_ARCH_LAST
575};
4f3f76e6 576
ab442df7 577extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 578
cef31f9c 579#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
580#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
581#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
582#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
583#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
584
cef31f9c
UB
585/* For sane SSE instruction set generation we need fcomi instruction.
586 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
587 expands to a sequence that includes conditional move. */
588#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
589
80fd744f
RH
590#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
591
cb261eb7 592extern unsigned char x86_prefetch_sse;
80fd744f
RH
593#define TARGET_PREFETCH_SSE x86_prefetch_sse
594
80fd744f
RH
595#define ASSEMBLER_DIALECT (ix86_asm_dialect)
596
597#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
598#define TARGET_MIX_SSE_I387 \
599 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
600
5fa578f0
UB
601#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
602#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
603#define TARGET_HARD_XF_REGS (TARGET_80387)
604
80fd744f
RH
605#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
606#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
607#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 608#define TARGET_SUN_TLS 0
1ef45b77 609
67adf6a9
RH
610#ifndef TARGET_64BIT_DEFAULT
611#define TARGET_64BIT_DEFAULT 0
25f94bb5 612#endif
74dc3e94
RH
613#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
614#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
615#endif
25f94bb5 616
e0ea8797
AH
617#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
618#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
619
79f5e442
ZD
620/* Fence to use after loop using storent. */
621
622extern tree x86_mfence;
623#define FENCE_FOLLOWING_MOVNT x86_mfence
624
0ed4a390
JL
625/* Once GDB has been enhanced to deal with functions without frame
626 pointers, we can change this to allow for elimination of
627 the frame pointer in leaf functions. */
628#define TARGET_DEFAULT 0
67adf6a9 629
0a1c5e55
UB
630/* Extra bits to force. */
631#define TARGET_SUBTARGET_DEFAULT 0
632#define TARGET_SUBTARGET_ISA_DEFAULT 0
633
634/* Extra bits to force on w/ 32-bit mode. */
635#define TARGET_SUBTARGET32_DEFAULT 0
636#define TARGET_SUBTARGET32_ISA_DEFAULT 0
637
ccf8e764
RH
638/* Extra bits to force on w/ 64-bit mode. */
639#define TARGET_SUBTARGET64_DEFAULT 0
8b131a8a
UB
640/* Enable MMX, SSE and SSE2 by default. */
641#define TARGET_SUBTARGET64_ISA_DEFAULT \
642 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
ccf8e764 643
fee3eacd
IS
644/* Replace MACH-O, ifdefs by in-line tests, where possible.
645 (a) Macros defined in config/i386/darwin.h */
b069de3b 646#define TARGET_MACHO 0
9005471b 647#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
648#define MACHOPIC_ATT_STUB 0
649/* (b) Macros defined in config/darwin.h */
650#define MACHO_DYNAMIC_NO_PIC_P 0
651#define MACHOPIC_INDIRECT 0
652#define MACHOPIC_PURE 0
9005471b 653
5a579c3b
LE
654/* For the RDOS */
655#define TARGET_RDOS 0
656
9005471b 657/* For the Windows 64-bit ABI. */
7c800926
KT
658#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
659
6510e8bb
KT
660/* For the Windows 32-bit ABI. */
661#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
662
f81c9774
RH
663/* This is re-defined by cygming.h. */
664#define TARGET_SEH 0
665
51212b32 666/* The default abi used by target. */
7c800926 667#define DEFAULT_ABI SYSV_ABI
ccf8e764 668
b8b3f0ca 669/* The default TLS segment register used by target. */
00402c94
RH
670#define DEFAULT_TLS_SEG_REG \
671 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 672
cc69336f
RH
673/* Subtargets may reset this to 1 in order to enable 96-bit long double
674 with the rounding mode forced to 53 bits. */
675#define TARGET_96_ROUND_53_LONG_DOUBLE 0
676
682cd442
GK
677/* -march=native handling only makes sense with compiler running on
678 an x86 or x86_64 chip. If changing this condition, also change
679 the condition in driver-i386.c. */
680#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
681/* In driver-i386.c. */
682extern const char *host_detect_local_cpu (int argc, const char **argv);
683#define EXTRA_SPEC_FUNCTIONS \
684 { "local_cpu_detect", host_detect_local_cpu },
682cd442 685#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
686#endif
687
8981c15b
JM
688#if TARGET_64BIT_DEFAULT
689#define OPT_ARCH64 "!m32"
690#define OPT_ARCH32 "m32"
691#else
f0ea7581
L
692#define OPT_ARCH64 "m64|mx32"
693#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
694#endif
695
1cba2b96
EC
696/* Support for configure-time defaults of some command line options.
697 The order here is important so that -march doesn't squash the
698 tune or cpu values. */
ce998900 699#define OPTION_DEFAULT_SPECS \
da2d4c01 700 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
701 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
702 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 703 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
704 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
705 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
706 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
707 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
708 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 709
241e1a89
SC
710/* Specs for the compiler proper */
711
628714d8 712#ifndef CC1_CPU_SPEC
eb5bb0fd 713#define CC1_CPU_SPEC_1 ""
fa959ce4 714
682cd442 715#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
716#define CC1_CPU_SPEC CC1_CPU_SPEC_1
717#else
718#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
719"%{march=native:%>march=native %:local_cpu_detect(arch) \
720 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
721%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 722#endif
241e1a89 723#endif
c98f8742 724\f
30efe578 725/* Target CPU builtins. */
ab442df7
MM
726#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
727
728/* Target Pragmas. */
729#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 730
b4c522fa
IB
731/* Target CPU versions for D. */
732#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
733
628714d8 734#ifndef CC1_SPEC
8015b78d 735#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
736#endif
737
738/* This macro defines names of additional specifications to put in the
739 specs that can be used in various specifications like CC1_SPEC. Its
740 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
741
742 Each subgrouping contains a string constant, that defines the
188fc5b5 743 specification name, and a string constant that used by the GCC driver
bcd86433
SC
744 program.
745
746 Do not define this macro if it does not need to do anything. */
747
748#ifndef SUBTARGET_EXTRA_SPECS
749#define SUBTARGET_EXTRA_SPECS
750#endif
751
752#define EXTRA_SPECS \
628714d8 753 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
754 SUBTARGET_EXTRA_SPECS
755\f
ce998900 756
8ce94e44
JM
757/* Whether to allow x87 floating-point arithmetic on MODE (one of
758 SFmode, DFmode and XFmode) in the current excess precision
759 configuration. */
b8cab8a5
UB
760#define X87_ENABLE_ARITH(MODE) \
761 (flag_unsafe_math_optimizations \
762 || flag_excess_precision == EXCESS_PRECISION_FAST \
763 || (MODE) == XFmode)
8ce94e44
JM
764
765/* Likewise, whether to allow direct conversions from integer mode
766 IMODE (HImode, SImode or DImode) to MODE. */
767#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
768 (flag_unsafe_math_optimizations \
769 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
770 || (MODE) == XFmode \
771 || ((MODE) == DFmode && (IMODE) == SImode) \
772 || (IMODE) == HImode)
773
979c67a5
UB
774/* target machine storage layout */
775
65d9c0ab
JH
776#define SHORT_TYPE_SIZE 16
777#define INT_TYPE_SIZE 32
f0ea7581
L
778#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
779#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 780#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 781#define FLOAT_TYPE_SIZE 32
65d9c0ab 782#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
783#define LONG_DOUBLE_TYPE_SIZE \
784 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 785
c637141a 786#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 787
67adf6a9 788#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 789#define MAX_BITS_PER_WORD 64
0c2dc519
JH
790#else
791#define MAX_BITS_PER_WORD 32
0c2dc519
JH
792#endif
793
c98f8742
JVA
794/* Define this if most significant byte of a word is the lowest numbered. */
795/* That is true on the 80386. */
796
797#define BITS_BIG_ENDIAN 0
798
799/* Define this if most significant byte of a word is the lowest numbered. */
800/* That is not true on the 80386. */
801#define BYTES_BIG_ENDIAN 0
802
803/* Define this if most significant word of a multiword number is the lowest
804 numbered. */
805/* Not true for 80386 */
806#define WORDS_BIG_ENDIAN 0
807
c98f8742 808/* Width of a word, in units (bytes). */
4ae8027b 809#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
810
811#ifndef IN_LIBGCC2
2e64c636
JH
812#define MIN_UNITS_PER_WORD 4
813#endif
c98f8742 814
c98f8742 815/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 816#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 817
e075ae69 818/* Boundary (in *bits*) on which stack pointer should be aligned. */
bd5d3961 819#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 820
2e3f842f
L
821/* Stack boundary of the main function guaranteed by OS. */
822#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
823
de1132d1 824/* Minimum stack boundary. */
cba9c789 825#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 826
d1f87653 827/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 828 aligned; the compiler cannot rely on having this alignment. */
e075ae69 829#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 830
de1132d1 831/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
832 both 32bit and 64bit, to support codes that need 128 bit stack
833 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
834#define PREFERRED_STACK_BOUNDARY_DEFAULT \
835 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
836
837/* 1 if -mstackrealign should be turned on by default. It will
838 generate an alternate prologue and epilogue that realigns the
839 runtime stack if nessary. This supports mixing codes that keep a
840 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 841 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
842#define STACK_REALIGN_DEFAULT 0
843
844/* Boundary (in *bits*) on which the incoming stack is aligned. */
845#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 846
a2851b75
TG
847/* According to Windows x64 software convention, the maximum stack allocatable
848 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
849 instructions allowed to adjust the stack pointer in the epilog, forcing the
850 use of frame pointer for frames larger than 2 GB. This theorical limit
851 is reduced by 256, an over-estimated upper bound for the stack use by the
852 prologue.
853 We define only one threshold for both the prolog and the epilog. When the
4e523f33 854 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
855 regs, then save them, and then allocate the remaining. There is no SEH
856 unwind info for this later allocation. */
857#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
858
ebff937c
SH
859/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
860 mandatory for the 64-bit ABI, and may or may not be true for other
861 operating systems. */
862#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
863
f963b5d9
RS
864/* Minimum allocation boundary for the code of a function. */
865#define FUNCTION_BOUNDARY 8
866
867/* C++ stores the virtual bit in the lowest bit of function pointers. */
868#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 869
c98f8742
JVA
870/* Minimum size in bits of the largest boundary to which any
871 and all fundamental data types supported by the hardware
872 might need to be aligned. No data type wants to be aligned
17f24ff0 873 rounder than this.
fce5a9f2 874
d1f87653 875 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
876 and Pentium Pro XFmode values at 128 bit boundaries.
877
878 When increasing the maximum, also update
879 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 880
3f97cb0b 881#define BIGGEST_ALIGNMENT \
0076c82f 882 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 883
2e3f842f
L
884/* Maximum stack alignment. */
885#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
886
6e4f1168
L
887/* Alignment value for attribute ((aligned)). It is a constant since
888 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 889#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 890
822eda12 891/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 892#define ALIGN_MODE_128(MODE) \
4501d314 893 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 894
17f24ff0 895/* The published ABIs say that doubles should be aligned on word
d1f87653 896 boundaries, so lower the alignment for structure fields unless
6fc605d8 897 -malign-double is set. */
e932b21b 898
e83f3cff
RH
899/* ??? Blah -- this macro is used directly by libobjc. Since it
900 supports no vector modes, cut out the complexity and fall back
901 on BIGGEST_FIELD_ALIGNMENT. */
902#ifdef IN_TARGET_LIBS
ef49d42e
JH
903#ifdef __x86_64__
904#define BIGGEST_FIELD_ALIGNMENT 128
905#else
e83f3cff 906#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 907#endif
e83f3cff 908#else
a4cf4b64
RB
909#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
910 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 911#endif
c98f8742 912
8a022443
JW
913/* If defined, a C expression to compute the alignment for a static
914 variable. TYPE is the data type, and ALIGN is the alignment that
915 the object would ordinarily have. The value of this macro is used
916 instead of that alignment to align the object.
917
918 If this macro is not defined, then ALIGN is used.
919
920 One use of this macro is to increase alignment of medium-size
921 data to make it all fit in fewer cache lines. Another is to
922 cause character arrays to be word-aligned so that `strcpy' calls
923 that copy constants to character arrays can be done inline. */
924
df8a1d28
JJ
925#define DATA_ALIGNMENT(TYPE, ALIGN) \
926 ix86_data_alignment ((TYPE), (ALIGN), true)
927
928/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
929 some alignment increase, instead of optimization only purposes. E.g.
930 AMD x86-64 psABI says that variables with array type larger than 15 bytes
931 must be aligned to 16 byte boundaries.
932
933 If this macro is not defined, then ALIGN is used. */
934
935#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
936 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
937
938/* If defined, a C expression to compute the alignment for a local
939 variable. TYPE is the data type, and ALIGN is the alignment that
940 the object would ordinarily have. The value of this macro is used
941 instead of that alignment to align the object.
942
943 If this macro is not defined, then ALIGN is used.
944
945 One use of this macro is to increase alignment of medium-size
946 data to make it all fit in fewer cache lines. */
947
76fe54f0
L
948#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
949 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
950
951/* If defined, a C expression to compute the alignment for stack slot.
952 TYPE is the data type, MODE is the widest mode available, and ALIGN
953 is the alignment that the slot would ordinarily have. The value of
954 this macro is used instead of that alignment to align the slot.
955
956 If this macro is not defined, then ALIGN is used when TYPE is NULL,
957 Otherwise, LOCAL_ALIGNMENT will be used.
958
959 One use of this macro is to set alignment of stack slot to the
960 maximum alignment of all possible modes which the slot may have. */
961
962#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
963 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 964
9bfaf89d
JJ
965/* If defined, a C expression to compute the alignment for a local
966 variable DECL.
967
968 If this macro is not defined, then
969 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
970
971 One use of this macro is to increase alignment of medium-size
972 data to make it all fit in fewer cache lines. */
973
974#define LOCAL_DECL_ALIGNMENT(DECL) \
975 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
976
ae58e548
JJ
977/* If defined, a C expression to compute the minimum required alignment
978 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
979 MODE, assuming normal alignment ALIGN.
980
981 If this macro is not defined, then (ALIGN) will be used. */
982
983#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 984 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 985
9bfaf89d 986
9cd10576 987/* Set this nonzero if move instructions will actually fail to work
c98f8742 988 when given unaligned data. */
b4ac57ab 989#define STRICT_ALIGNMENT 0
c98f8742
JVA
990
991/* If bit field type is int, don't let it cross an int,
992 and give entire struct the alignment of an int. */
43a88a8c 993/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 994#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
995\f
996/* Standard register usage. */
997
998/* This processor has special stack-like registers. See reg-stack.c
892a2d68 999 for details. */
c98f8742
JVA
1000
1001#define STACK_REGS
ce998900 1002
f48b4284
UB
1003#define IS_STACK_MODE(MODE) \
1004 (X87_FLOAT_MODE_P (MODE) \
1005 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1006 || TARGET_MIX_SSE_I387))
c98f8742
JVA
1007
1008/* Number of actual hardware registers.
1009 The hardware registers are assigned numbers for the compiler
1010 from 0 to just below FIRST_PSEUDO_REGISTER.
1011 All registers that the compiler knows about must be given numbers,
1012 even those that are not normally considered general registers.
1013
1014 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1015 We number the floating point registers 8-15.
1016 Note that registers 0-7 can be accessed as a short or int,
1017 while only 0-3 may be used with byte `mov' instructions.
1018
1019 Reg 16 does not correspond to any hardware register, but instead
1020 appears in the RTL as an argument pointer prior to reload, and is
1021 eliminated during reloading in favor of either the stack or frame
892a2d68 1022 pointer. */
c98f8742 1023
05416670 1024#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1025
3073d01c
ML
1026/* Number of hardware registers that go into the DWARF-2 unwind info.
1027 If not defined, equals FIRST_PSEUDO_REGISTER. */
1028
1029#define DWARF_FRAME_REGISTERS 17
1030
c98f8742
JVA
1031/* 1 for registers that have pervasive standard uses
1032 and are not available for the register allocator.
3f3f2124 1033 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1034
621bc046
UB
1035 REX registers are disabled for 32bit targets in
1036 TARGET_CONDITIONAL_REGISTER_USAGE. */
1037
a7180f70
BS
1038#define FIXED_REGISTERS \
1039/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1040{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1041/*arg,flags,fpsr,frame*/ \
1042 1, 1, 1, 1, \
a7180f70
BS
1043/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1044 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1045/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1046 0, 0, 0, 0, 0, 0, 0, 0, \
1047/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1048 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1049/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1050 0, 0, 0, 0, 0, 0, 0, 0, \
1051/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1052 0, 0, 0, 0, 0, 0, 0, 0, \
1053/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1054 0, 0, 0, 0, 0, 0, 0, 0, \
1055/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1056 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1057
1058/* 1 for registers not available across function calls.
1059 These must include the FIXED_REGISTERS and also any
1060 registers that can be used without being saved.
1061 The latter must include the registers where values are returned
1062 and the register where structure-value addresses are passed.
fce5a9f2
EC
1063 Aside from that, you can include as many other registers as you like.
1064
621bc046
UB
1065 Value is set to 1 if the register is call used unconditionally.
1066 Bit one is set if the register is call used on TARGET_32BIT ABI.
1067 Bit two is set if the register is call used on TARGET_64BIT ABI.
1068 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1069
1070 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1071
1f3ccbc8
L
1072#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1073 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1074
a7180f70
BS
1075#define CALL_USED_REGISTERS \
1076/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1077{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1078/*arg,flags,fpsr,frame*/ \
1079 1, 1, 1, 1, \
a7180f70 1080/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1081 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1082/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1083 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1084/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1085 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1086/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1087 6, 6, 6, 6, 6, 6, 6, 6, \
1088/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1089 6, 6, 6, 6, 6, 6, 6, 6, \
1090/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1091 6, 6, 6, 6, 6, 6, 6, 6, \
1092 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1093 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1094
3b3c6a3f
MM
1095/* Order in which to allocate registers. Each register must be
1096 listed once, even those in FIXED_REGISTERS. List frame pointer
1097 late and fixed registers last. Note that, in general, we prefer
1098 registers listed in CALL_USED_REGISTERS, keeping the others
1099 available for storage of persistent values.
1100
5a733826 1101 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1102 so this is just empty initializer for array. */
3b3c6a3f 1103
eaa17c21
UB
1104#define REG_ALLOC_ORDER \
1105{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1106 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1107 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1108 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1109 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1110
5a733826 1111/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1112 to be rearranged based on a particular function. When using sse math,
03c259ad 1113 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1114
5a733826 1115#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1116
f5316dfe 1117
7c800926
KT
1118#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1119
8521c414 1120#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1121 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1122 && GENERAL_REGNO_P (REGNO) \
1123 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1124
1125#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1126
95879c72
L
1127#define VALID_AVX256_REG_MODE(MODE) \
1128 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1129 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1130 || (MODE) == V4DFmode)
95879c72 1131
4ac005ba 1132#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1133 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1134
3f97cb0b
AI
1135#define VALID_AVX512F_SCALAR_MODE(MODE) \
1136 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1137 || (MODE) == SFmode)
1138
1139#define VALID_AVX512F_REG_MODE(MODE) \
1140 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1141 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1142 || (MODE) == V4TImode)
1143
e6f146d2
SP
1144#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1145 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1146
05416670 1147#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1148 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1149 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1150 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1151
ce998900
UB
1152#define VALID_SSE2_REG_MODE(MODE) \
1153 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1154 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1155
d9a5f180 1156#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1157 ((MODE) == V1TImode || (MODE) == TImode \
1158 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1159 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1160
47f339cf 1161#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1162 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1163
d9a5f180 1164#define VALID_MMX_REG_MODE(MODE) \
879f9d0b 1165 ((MODE) == V1DImode || (MODE) == DImode \
10a97ae6
UB
1166 || (MODE) == V2SImode || (MODE) == SImode \
1167 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1168
05416670
UB
1169#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1170
1171#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1172
ce998900
UB
1173#define VALID_DFP_MODE_P(MODE) \
1174 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1175
d9a5f180 1176#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1177 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1178 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1179
d9a5f180 1180#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1181 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1182 || (MODE) == DImode \
1183 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1184 || (MODE) == CDImode \
1185 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1186 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1187
822eda12 1188/* Return true for modes passed in SSE registers. */
ce998900 1189#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1190 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1191 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1192 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1193 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1194 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1195 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1196 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1197 || (MODE) == V16SFmode)
822eda12 1198
05416670
UB
1199#define X87_FLOAT_MODE_P(MODE) \
1200 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1201
05416670
UB
1202#define SSE_FLOAT_MODE_P(MODE) \
1203 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1204
1205#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1206 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1207 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1208
ff25ef99
ZD
1209/* It is possible to write patterns to move flags; but until someone
1210 does it, */
1211#define AVOID_CCMODE_COPIES
c98f8742 1212
e075ae69 1213/* Specify the modes required to caller save a given hard regno.
787dc842 1214 We do this on i386 to prevent flags from being saved at all.
e075ae69 1215
787dc842
JH
1216 Kill any attempts to combine saving of modes. */
1217
d9a5f180
GS
1218#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1219 (CC_REGNO_P (REGNO) ? VOIDmode \
1220 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1221 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1222 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1223 && TARGET_PARTIAL_REG_STALL) \
85a77221 1224 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1225 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1226 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1227 : (MODE))
ce998900 1228
c98f8742
JVA
1229/* Specify the registers used for certain standard purposes.
1230 The values of these macros are register numbers. */
1231
1232/* on the 386 the pc register is %eip, and is not usable as a general
1233 register. The ordinary mov instructions won't work */
1234/* #define PC_REGNUM */
1235
05416670
UB
1236/* Base register for access to arguments of the function. */
1237#define ARG_POINTER_REGNUM ARGP_REG
1238
c98f8742 1239/* Register to use for pushing function arguments. */
05416670 1240#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1241
1242/* Base register for access to local variables of the function. */
05416670
UB
1243#define FRAME_POINTER_REGNUM FRAME_REG
1244#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1245
05416670
UB
1246#define FIRST_INT_REG AX_REG
1247#define LAST_INT_REG SP_REG
c98f8742 1248
05416670
UB
1249#define FIRST_QI_REG AX_REG
1250#define LAST_QI_REG BX_REG
c98f8742
JVA
1251
1252/* First & last stack-like regs */
05416670
UB
1253#define FIRST_STACK_REG ST0_REG
1254#define LAST_STACK_REG ST7_REG
c98f8742 1255
05416670
UB
1256#define FIRST_SSE_REG XMM0_REG
1257#define LAST_SSE_REG XMM7_REG
fce5a9f2 1258
05416670
UB
1259#define FIRST_MMX_REG MM0_REG
1260#define LAST_MMX_REG MM7_REG
a7180f70 1261
05416670
UB
1262#define FIRST_REX_INT_REG R8_REG
1263#define LAST_REX_INT_REG R15_REG
3f3f2124 1264
05416670
UB
1265#define FIRST_REX_SSE_REG XMM8_REG
1266#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1267
05416670
UB
1268#define FIRST_EXT_REX_SSE_REG XMM16_REG
1269#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1270
05416670
UB
1271#define FIRST_MASK_REG MASK0_REG
1272#define LAST_MASK_REG MASK7_REG
85a77221 1273
aabcd309 1274/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1275 requiring a frame pointer. */
1276#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1277#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1278#endif
1279
1280/* Make sure we can access arbitrary call frames. */
1281#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1282
c98f8742 1283/* Register to hold the addressing base for position independent
5b43fed1
RH
1284 code access to data items. We don't use PIC pointer for 64bit
1285 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1286 pessimizing code dealing with EBX.
bd09bdeb
RH
1287
1288 To avoid clobbering a call-saved register unnecessarily, we renumber
1289 the pic register when possible. The change is visible after the
1290 prologue has been emitted. */
1291
e8b5eb25 1292#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1293
bcb21886 1294#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1295 (ix86_use_pseudo_pic_reg () \
1296 ? (pic_offset_table_rtx \
1297 ? INVALID_REGNUM \
1298 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1299 : INVALID_REGNUM)
c98f8742 1300
5fc0e5df
KW
1301#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1302
c51e6d85 1303/* This is overridden by <cygwin.h>. */
5e062767
DS
1304#define MS_AGGREGATE_RETURN 0
1305
61fec9ff 1306#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1307\f
1308/* Define the classes of registers for register constraints in the
1309 machine description. Also define ranges of constants.
1310
1311 One of the classes must always be named ALL_REGS and include all hard regs.
1312 If there is more than one class, another class must be named NO_REGS
1313 and contain no registers.
1314
1315 The name GENERAL_REGS must be the name of a class (or an alias for
1316 another name such as ALL_REGS). This is the class of registers
1317 that is allowed by "g" or "r" in a register constraint.
1318 Also, registers outside this class are allocated only when
1319 instructions express preferences for them.
1320
1321 The classes must be numbered in nondecreasing order; that is,
1322 a larger-numbered class must never be contained completely
2e24efd3
AM
1323 in a smaller-numbered class. This is why CLOBBERED_REGS class
1324 is listed early, even though in 64-bit mode it contains more
1325 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1326
1327 For any two classes, it is very desirable that there be another
ab408a86
JVA
1328 class that represents their union.
1329
eaa17c21 1330 The flags and fpsr registers are in no class. */
c98f8742
JVA
1331
1332enum reg_class
1333{
1334 NO_REGS,
e075ae69 1335 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1336 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1337 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1338 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1339 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1340 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1341 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1342 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1343 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1344 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1345 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1346 FLOAT_REGS,
06f4e35d 1347 SSE_FIRST_REG,
45392c76 1348 NO_REX_SSE_REGS,
a7180f70 1349 SSE_REGS,
3f97cb0b 1350 ALL_SSE_REGS,
a7180f70 1351 MMX_REGS,
446988df
JH
1352 FLOAT_SSE_REGS,
1353 FLOAT_INT_REGS,
1354 INT_SSE_REGS,
1355 FLOAT_INT_SSE_REGS,
85a77221 1356 MASK_REGS,
d18cbbf6
UB
1357 ALL_MASK_REGS,
1358 ALL_REGS,
1359 LIM_REG_CLASSES
c98f8742
JVA
1360};
1361
d9a5f180
GS
1362#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1363
1364#define INTEGER_CLASS_P(CLASS) \
1365 reg_class_subset_p ((CLASS), GENERAL_REGS)
1366#define FLOAT_CLASS_P(CLASS) \
1367 reg_class_subset_p ((CLASS), FLOAT_REGS)
1368#define SSE_CLASS_P(CLASS) \
3f97cb0b 1369 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1370#define MMX_CLASS_P(CLASS) \
f75959a6 1371 ((CLASS) == MMX_REGS)
4ed04e93 1372#define MASK_CLASS_P(CLASS) \
d18cbbf6 1373 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1374#define MAYBE_INTEGER_CLASS_P(CLASS) \
1375 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1376#define MAYBE_FLOAT_CLASS_P(CLASS) \
1377 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1378#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1379 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1380#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1381 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1382#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1383 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1384
1385#define Q_CLASS_P(CLASS) \
1386 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1387
0bd72901
UB
1388#define MAYBE_NON_Q_CLASS_P(CLASS) \
1389 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1390
43f3a59d 1391/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1392
1393#define REG_CLASS_NAMES \
1394{ "NO_REGS", \
ab408a86 1395 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1396 "SIREG", "DIREG", \
e075ae69 1397 "AD_REGS", \
2e24efd3 1398 "CLOBBERED_REGS", \
e075ae69 1399 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1400 "TLS_GOTBASE_REGS", \
c98f8742 1401 "INDEX_REGS", \
3f3f2124 1402 "LEGACY_REGS", \
c98f8742
JVA
1403 "GENERAL_REGS", \
1404 "FP_TOP_REG", "FP_SECOND_REG", \
1405 "FLOAT_REGS", \
cb482895 1406 "SSE_FIRST_REG", \
45392c76 1407 "NO_REX_SSE_REGS", \
a7180f70 1408 "SSE_REGS", \
3f97cb0b 1409 "ALL_SSE_REGS", \
a7180f70 1410 "MMX_REGS", \
446988df 1411 "FLOAT_SSE_REGS", \
8fcaaa80 1412 "FLOAT_INT_REGS", \
446988df
JH
1413 "INT_SSE_REGS", \
1414 "FLOAT_INT_SSE_REGS", \
85a77221 1415 "MASK_REGS", \
d18cbbf6 1416 "ALL_MASK_REGS", \
c98f8742
JVA
1417 "ALL_REGS" }
1418
ac2e563f
RH
1419/* Define which registers fit in which classes. This is an initializer
1420 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1421
621bc046
UB
1422 Note that CLOBBERED_REGS are calculated by
1423 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1424
d18cbbf6 1425#define REG_CLASS_CONTENTS \
eaa17c21
UB
1426{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1427 { 0x01, 0x0, 0x0 }, /* AREG */ \
1428 { 0x02, 0x0, 0x0 }, /* DREG */ \
1429 { 0x04, 0x0, 0x0 }, /* CREG */ \
1430 { 0x08, 0x0, 0x0 }, /* BREG */ \
1431 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1432 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1433 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1434 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1435 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1436 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1437 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1438 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1439 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1440 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1441 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1442 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1443 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1444 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1445 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1446 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1447 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1448{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1449 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1450 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1451 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1452 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1453 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1454 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1455{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1456}
c98f8742
JVA
1457
1458/* The same information, inverted:
1459 Return the class number of the smallest class containing
1460 reg number REGNO. This could be a conditional expression
1461 or could index an array. */
1462
1a6e82b8 1463#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1464
42db504c
SB
1465/* When this hook returns true for MODE, the compiler allows
1466 registers explicitly used in the rtl to be used as spill registers
1467 but prevents the compiler from extending the lifetime of these
1468 registers. */
1469#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1470
fc27f749 1471#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1472#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1473
1474#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1475#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1476
1477#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1478#define REX_INT_REGNO_P(N) \
1479 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1480
58b0b34c 1481#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1482#define GENERAL_REGNO_P(N) \
58b0b34c 1483 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1484
fc27f749
UB
1485#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1486#define ANY_QI_REGNO_P(N) \
1487 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1488
66aaf16f
UB
1489#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1490#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1491
fc27f749 1492#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1493#define SSE_REGNO_P(N) \
1494 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1495 || REX_SSE_REGNO_P (N) \
1496 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1497
4977bab6 1498#define REX_SSE_REGNO_P(N) \
fb84c7a0 1499 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1500
0a48088a
IT
1501#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1502
3f97cb0b
AI
1503#define EXT_REX_SSE_REGNO_P(N) \
1504 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1505
05416670
UB
1506#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1507#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1508
9e4a4dd6 1509#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1510#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1511
fc27f749 1512#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1513#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1514
e075ae69 1515#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1516#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1517
5fbb13a7
KY
1518#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1519#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1520 || (N) == XMM4_REG \
1521 || (N) == XMM8_REG \
1522 || (N) == XMM12_REG \
1523 || (N) == XMM16_REG \
1524 || (N) == XMM20_REG \
1525 || (N) == XMM24_REG \
1526 || (N) == XMM28_REG)
1527
05416670
UB
1528/* First floating point reg */
1529#define FIRST_FLOAT_REG FIRST_STACK_REG
1530#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1531
02469d3a
UB
1532#define GET_SSE_REGNO(N) \
1533 ((N) < 8 ? FIRST_SSE_REG + (N) \
1534 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1535 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1536
c98f8742
JVA
1537/* The class value for index registers, and the one for base regs. */
1538
1539#define INDEX_REG_CLASS INDEX_REGS
1540#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1541\f
1542/* Stack layout; function entry, exit and calling. */
1543
1544/* Define this if pushing a word on the stack
1545 makes the stack pointer a smaller address. */
62f9f30b 1546#define STACK_GROWS_DOWNWARD 1
c98f8742 1547
a4d05547 1548/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1549 is at the high-address end of the local variables;
1550 that is, each additional local variable allocated
1551 goes at a more negative offset in the frame. */
f62c8a5c 1552#define FRAME_GROWS_DOWNWARD 1
c98f8742 1553
7b4df2bf 1554#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1555
1556/* If defined, the maximum amount of space required for outgoing arguments
1557 will be computed and placed into the variable `crtl->outgoing_args_size'.
1558 No space will be pushed onto the stack for each call; instead, the
1559 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1560
1561 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1562 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1563 mode the difference is less drastic but visible.
1564
1565 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1566 actually grow with accumulation. Is that because accumulated args
41ee845b 1567 unwind info became unnecesarily bloated?
f830ddc2
RH
1568
1569 With the 64-bit MS ABI, we can generate correct code with or without
1570 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1571 generated without accumulated args is terrible.
41ee845b
JH
1572
1573 If stack probes are required, the space used for large function
1574 arguments on the stack must also be probed, so enable
f8071c05
L
1575 -maccumulate-outgoing-args so this happens in the prologue.
1576
1577 We must use argument accumulation in interrupt function if stack
1578 may be realigned to avoid DRAP. */
f73ad30e 1579
6c6094f1 1580#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1581 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1582 && optimize_function_for_speed_p (cfun)) \
1583 || (cfun->machine->func_type != TYPE_NORMAL \
1584 && crtl->stack_realign_needed) \
1585 || TARGET_STACK_PROBE \
1586 || TARGET_64BIT_MS_ABI \
ff734e26 1587 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1588
1589/* If defined, a C expression whose value is nonzero when we want to use PUSH
1590 instructions to pass outgoing arguments. */
1591
1592#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1593
2da4124d
L
1594/* We want the stack and args grow in opposite directions, even if
1595 PUSH_ARGS is 0. */
1596#define PUSH_ARGS_REVERSED 1
1597
c98f8742
JVA
1598/* Offset of first parameter from the argument pointer register value. */
1599#define FIRST_PARM_OFFSET(FNDECL) 0
1600
a7180f70
BS
1601/* Define this macro if functions should assume that stack space has been
1602 allocated for arguments even when their values are passed in registers.
1603
1604 The value of this macro is the size, in bytes, of the area reserved for
1605 arguments passed in registers for the function represented by FNDECL.
1606
1607 This space can be allocated by the caller, or be a part of the
1608 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1609 which. */
7c800926
KT
1610#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1611
4ae8027b 1612#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1613 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1614
c98f8742
JVA
1615/* Define how to find the value returned by a library function
1616 assuming the value has mode MODE. */
1617
4ae8027b 1618#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1619
e9125c09
TW
1620/* Define the size of the result block used for communication between
1621 untyped_call and untyped_return. The block contains a DImode value
1622 followed by the block used by fnsave and frstor. */
1623
1624#define APPLY_RESULT_SIZE (8+108)
1625
b08de47e 1626/* 1 if N is a possible register number for function argument passing. */
53c17031 1627#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1628
1629/* Define a data type for recording info about an argument list
1630 during the scan of that argument list. This data type should
1631 hold all necessary information about the function itself
1632 and about the args processed so far, enough to enable macros
b08de47e 1633 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1634
e075ae69 1635typedef struct ix86_args {
fa283935 1636 int words; /* # words passed so far */
b08de47e
MM
1637 int nregs; /* # registers available for passing */
1638 int regno; /* next available register number */
3e65f251
KT
1639 int fastcall; /* fastcall or thiscall calling convention
1640 is used */
fa283935 1641 int sse_words; /* # sse words passed so far */
a7180f70 1642 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1643 int warn_avx512f; /* True when we want to warn
1644 about AVX512F ABI. */
95879c72 1645 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1646 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1647 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1648 int warn_empty; /* True when we want to warn about empty classes
1649 passing ABI change. */
fa283935
UB
1650 int sse_regno; /* next available sse register number */
1651 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1652 int mmx_nregs; /* # mmx registers available for passing */
1653 int mmx_regno; /* next available mmx register number */
892a2d68 1654 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1655 int caller; /* true if it is caller. */
2824d6e5
UB
1656 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1657 SFmode/DFmode arguments should be passed
1658 in SSE registers. Otherwise 0. */
d5e254e1 1659 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1660 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1661 MS_ABI for ms abi. */
e66fc623 1662 tree decl; /* Callee decl. */
b08de47e 1663} CUMULATIVE_ARGS;
c98f8742
JVA
1664
1665/* Initialize a variable CUM of type CUMULATIVE_ARGS
1666 for a call to a function whose data type is FNTYPE.
b08de47e 1667 For a library call, FNTYPE is 0. */
c98f8742 1668
0f6937fe 1669#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1670 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1671 (N_NAMED_ARGS) != -1)
c98f8742 1672
c98f8742
JVA
1673/* Output assembler code to FILE to increment profiler label # LABELNO
1674 for profiling a function entry. */
1675
1a6e82b8
UB
1676#define FUNCTION_PROFILER(FILE, LABELNO) \
1677 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1678
1679#define MCOUNT_NAME "_mcount"
1680
3c5273a9
KT
1681#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1682
a5fa1ecd 1683#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1684
1685/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1686 the stack pointer does not matter. The value is tested only in
1687 functions that have frame pointers.
1688 No definition is equivalent to always zero. */
fce5a9f2 1689/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1690 we have to restore it ourselves from the frame pointer, in order to
1691 use pop */
1692
1693#define EXIT_IGNORE_STACK 1
1694
f8071c05
L
1695/* Define this macro as a C expression that is nonzero for registers
1696 used by the epilogue or the `return' pattern. */
1697
1698#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1699
c98f8742
JVA
1700/* Output assembler code for a block containing the constant parts
1701 of a trampoline, leaving space for the variable parts. */
1702
a269a03c 1703/* On the 386, the trampoline contains two instructions:
c98f8742 1704 mov #STATIC,ecx
a269a03c
JC
1705 jmp FUNCTION
1706 The trampoline is generated entirely at runtime. The operand of JMP
1707 is the address of FUNCTION relative to the instruction following the
1708 JMP (which is 5 bytes long). */
c98f8742
JVA
1709
1710/* Length in units of the trampoline for entering a nested function. */
1711
6514899f 1712#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1713\f
1714/* Definitions for register eliminations.
1715
1716 This is an array of structures. Each structure initializes one pair
1717 of eliminable registers. The "from" register number is given first,
1718 followed by "to". Eliminations of the same "from" register are listed
1719 in order of preference.
1720
afc2cd05
NC
1721 There are two registers that can always be eliminated on the i386.
1722 The frame pointer and the arg pointer can be replaced by either the
1723 hard frame pointer or to the stack pointer, depending upon the
1724 circumstances. The hard frame pointer is not used before reload and
1725 so it is not eligible for elimination. */
c98f8742 1726
564d80f4
JH
1727#define ELIMINABLE_REGS \
1728{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1729 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1730 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1731 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1732
c98f8742
JVA
1733/* Define the offset between two registers, one to be eliminated, and the other
1734 its replacement, at the start of a routine. */
1735
d9a5f180
GS
1736#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1737 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1738\f
1739/* Addressing modes, and classification of registers for them. */
1740
c98f8742
JVA
1741/* Macros to check register numbers against specific register classes. */
1742
1743/* These assume that REGNO is a hard or pseudo reg number.
1744 They give nonzero only if REGNO is a hard reg of the suitable class
1745 or a pseudo reg currently allocated to a suitable hard reg.
1746 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1747 has been allocated, which happens in reginfo.c during register
1748 allocation. */
c98f8742 1749
3f3f2124
JH
1750#define REGNO_OK_FOR_INDEX_P(REGNO) \
1751 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1752 || REX_INT_REGNO_P (REGNO) \
1753 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1754 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1755
3f3f2124 1756#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1757 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1758 || (REGNO) == ARG_POINTER_REGNUM \
1759 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1760 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1761
c98f8742
JVA
1762/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1763 and check its validity for a certain class.
1764 We have two alternate definitions for each of them.
1765 The usual definition accepts all pseudo regs; the other rejects
1766 them unless they have been allocated suitable hard regs.
1767 The symbol REG_OK_STRICT causes the latter definition to be used.
1768
1769 Most source files want to accept pseudo regs in the hope that
1770 they will get allocated to the class that the insn wants them to be in.
1771 Source files for reload pass need to be strict.
1772 After reload, it makes no difference, since pseudo regs have
1773 been eliminated by then. */
1774
c98f8742 1775
ff482c8d 1776/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1777#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1778 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1779 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1780 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1781
3b3c6a3f 1782#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1783 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1784 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1785 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1786 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1787
3b3c6a3f
MM
1788/* Strict versions, hard registers only */
1789#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1790#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1791
3b3c6a3f 1792#ifndef REG_OK_STRICT
d9a5f180
GS
1793#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1794#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1795
1796#else
d9a5f180
GS
1797#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1798#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1799#endif
1800
331d9186 1801/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1802 that is a valid memory address for an instruction.
1803 The MODE argument is the machine mode for the MEM expression
1804 that wants to use this address.
1805
331d9186 1806 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1807 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1808
1809 See legitimize_pic_address in i386.c for details as to what
1810 constitutes a legitimate address when -fpic is used. */
1811
1812#define MAX_REGS_PER_ADDRESS 2
1813
f996902d 1814#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1815
b949ea8b
JW
1816/* If defined, a C expression to determine the base term of address X.
1817 This macro is used in only one place: `find_base_term' in alias.c.
1818
1819 It is always safe for this macro to not be defined. It exists so
1820 that alias analysis can understand machine-dependent addresses.
1821
1822 The typical use of this macro is to handle addresses containing
1823 a label_ref or symbol_ref within an UNSPEC. */
1824
d9a5f180 1825#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1826
c98f8742 1827/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1828 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1829 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1830
f996902d 1831#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1832
1833#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1834 (GET_CODE (X) == SYMBOL_REF \
1835 || GET_CODE (X) == LABEL_REF \
1836 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1837\f
b08de47e
MM
1838/* Max number of args passed in registers. If this is more than 3, we will
1839 have problems with ebx (register #4), since it is a caller save register and
1840 is also used as the pic register in ELF. So for now, don't allow more than
1841 3 registers to be passed in registers. */
1842
7c800926
KT
1843/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1844#define X86_64_REGPARM_MAX 6
72fa3605 1845#define X86_64_MS_REGPARM_MAX 4
7c800926 1846
72fa3605 1847#define X86_32_REGPARM_MAX 3
7c800926 1848
4ae8027b 1849#define REGPARM_MAX \
2824d6e5
UB
1850 (TARGET_64BIT \
1851 ? (TARGET_64BIT_MS_ABI \
1852 ? X86_64_MS_REGPARM_MAX \
1853 : X86_64_REGPARM_MAX) \
4ae8027b 1854 : X86_32_REGPARM_MAX)
d2836273 1855
72fa3605
UB
1856#define X86_64_SSE_REGPARM_MAX 8
1857#define X86_64_MS_SSE_REGPARM_MAX 4
1858
b6010cab 1859#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1860
4ae8027b 1861#define SSE_REGPARM_MAX \
2824d6e5
UB
1862 (TARGET_64BIT \
1863 ? (TARGET_64BIT_MS_ABI \
1864 ? X86_64_MS_SSE_REGPARM_MAX \
1865 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1866 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1867
1868#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1869\f
1870/* Specify the machine mode that this machine uses
1871 for the index in the tablejump instruction. */
dc4d7240 1872#define CASE_VECTOR_MODE \
6025b127 1873 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1874
c98f8742
JVA
1875/* Define this as 1 if `char' should by default be signed; else as 0. */
1876#define DEFAULT_SIGNED_CHAR 1
1877
1878/* Max number of bytes we can move from memory to memory
1879 in one reasonably fast instruction. */
65d9c0ab
JH
1880#define MOVE_MAX 16
1881
1882/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1883 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1884 number of bytes we can move with a single instruction.
1885
1886 ??? We should use TImode in 32-bit mode and use OImode or XImode
1887 if they are available. But since by_pieces_ninsns determines the
1888 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1889 64-bit mode. */
1890#define MOVE_MAX_PIECES \
1891 ((TARGET_64BIT \
1892 && TARGET_SSE2 \
1893 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1894 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1895 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1896
7e24ffc9 1897/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1898 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1899 Increasing the value will always make code faster, but eventually
1900 incurs high cost in increased code size.
c98f8742 1901
e2e52e1b 1902 If you don't define this, a reasonable default is used. */
c98f8742 1903
e04ad03d 1904#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1905
45d78e7f
JJ
1906/* If a clear memory operation would take CLEAR_RATIO or more simple
1907 move-instruction sequences, we will do a clrmem or libcall instead. */
1908
e04ad03d 1909#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1910
53f00dde
UB
1911/* Define if shifts truncate the shift count which implies one can
1912 omit a sign-extension or zero-extension of a shift count.
1913
1914 On i386, shifts do truncate the count. But bit test instructions
1915 take the modulo of the bit offset operand. */
c98f8742
JVA
1916
1917/* #define SHIFT_COUNT_TRUNCATED */
1918
d9f32422
JH
1919/* A macro to update M and UNSIGNEDP when an object whose type is
1920 TYPE and which has the specified mode and signedness is to be
1921 stored in a register. This macro is only called when TYPE is a
1922 scalar type.
1923
f710504c 1924 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1925 quantities to SImode. The choice depends on target type. */
1926
1927#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1928do { \
d9f32422
JH
1929 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1930 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1931 (MODE) = SImode; \
1932} while (0)
d9f32422 1933
c98f8742
JVA
1934/* Specify the machine mode that pointers have.
1935 After generation of rtl, the compiler makes no further distinction
1936 between pointers and any other objects of this machine mode. */
28968d91 1937#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1938
5e1e91c4
L
1939/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1940 NONLOCAL needs space to save both shadow stack and stack pointers.
1941
1942 FIXME: We only need to save and restore stack pointer in ptr_mode.
1943 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1944 to save and restore stack pointer. See
1945 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1946 */
1947#define STACK_SAVEAREA_MODE(LEVEL) \
1948 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1949
f0ea7581
L
1950/* A C expression whose value is zero if pointers that need to be extended
1951 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1952 greater then zero if they are zero-extended and less then zero if the
1953 ptr_extend instruction should be used. */
1954
1955#define POINTERS_EXTEND_UNSIGNED 1
1956
c98f8742
JVA
1957/* A function address in a call instruction
1958 is a byte address (for indexing purposes)
1959 so give the MEM rtx a byte's mode. */
1960#define FUNCTION_MODE QImode
d4ba09c0 1961\f
d4ba09c0 1962
d4ba09c0
SC
1963/* A C expression for the cost of a branch instruction. A value of 1
1964 is the default; other values are interpreted relative to that. */
1965
3a4fd356
JH
1966#define BRANCH_COST(speed_p, predictable_p) \
1967 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1968
e327d1a3
L
1969/* An integer expression for the size in bits of the largest integer machine
1970 mode that should actually be used. We allow pairs of registers. */
1971#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1972
d4ba09c0
SC
1973/* Define this macro as a C expression which is nonzero if accessing
1974 less than a word of memory (i.e. a `char' or a `short') is no
1975 faster than accessing a word of memory, i.e., if such access
1976 require more than one instruction or if there is no difference in
1977 cost between byte and (aligned) word loads.
1978
1979 When this macro is not defined, the compiler will access a field by
1980 finding the smallest containing object; when it is defined, a
1981 fullword load will be used if alignment permits. Unless bytes
1982 accesses are faster than word accesses, using word accesses is
1983 preferable since it may eliminate subsequent memory access if
1984 subsequent accesses occur to other fields in the same word of the
1985 structure, but to different bytes. */
1986
1987#define SLOW_BYTE_ACCESS 0
1988
1989/* Nonzero if access to memory by shorts is slow and undesirable. */
1990#define SLOW_SHORT_ACCESS 0
1991
d4ba09c0
SC
1992/* Define this macro if it is as good or better to call a constant
1993 function address than to call an address kept in a register.
1994
1995 Desirable on the 386 because a CALL with a constant address is
1996 faster than one with a register address. */
1997
1e8552c2 1998#define NO_FUNCTION_CSE 1
c98f8742 1999\f
c572e5ba
JVA
2000/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2001 return the mode to be used for the comparison.
2002
2003 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2004 VOIDmode should be used in all other cases.
c572e5ba 2005
16189740 2006 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2007 possible, to allow for more combinations. */
c98f8742 2008
d9a5f180 2009#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2010
9cd10576 2011/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2012 reversed. */
2013
2014#define REVERSIBLE_CC_MODE(MODE) 1
2015
2016/* A C expression whose value is reversed condition code of the CODE for
2017 comparison done in CC_MODE mode. */
3c5cb3e4 2018#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2019
c98f8742
JVA
2020\f
2021/* Control the assembler format that we output, to the extent
2022 this does not vary between assemblers. */
2023
2024/* How to refer to registers in assembler output.
892a2d68 2025 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2026
a7b376ee 2027/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2028 For non floating point regs, the following are the HImode names.
2029
2030 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2031 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2032 "y" code. */
c98f8742 2033
a7180f70
BS
2034#define HI_REGISTER_NAMES \
2035{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2036 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2037 "argp", "flags", "fpsr", "frame", \
a7180f70 2038 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2039 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2040 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2041 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2042 "xmm16", "xmm17", "xmm18", "xmm19", \
2043 "xmm20", "xmm21", "xmm22", "xmm23", \
2044 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2045 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2046 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2047
c98f8742
JVA
2048#define REGISTER_NAMES HI_REGISTER_NAMES
2049
50bec228
UB
2050#define QI_REGISTER_NAMES \
2051{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2052
2053#define QI_HIGH_REGISTER_NAMES \
2054{"ah", "dh", "ch", "bh"}
2055
c98f8742
JVA
2056/* Table of additional register names to use in user input. */
2057
eaa17c21
UB
2058#define ADDITIONAL_REGISTER_NAMES \
2059{ \
2060 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2061 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2062 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2063 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2064 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
50bec228 2065 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
eaa17c21
UB
2066 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2067 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2068 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2069 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2070 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2071 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2072 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2073 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2074 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2075 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2076 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2077 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2078 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2079 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2080 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2081 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2082 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2083}
c98f8742 2084
c98f8742
JVA
2085/* How to renumber registers for dbx and gdb. */
2086
d9a5f180
GS
2087#define DBX_REGISTER_NUMBER(N) \
2088 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2089
9a82e702
MS
2090extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2091extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2092extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2093
469ac993
JM
2094/* Before the prologue, RA is at 0(%esp). */
2095#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2096 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2097
e414ab29 2098/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2099#define RETURN_ADDR_RTX(COUNT, FRAME) \
2100 ((COUNT) == 0 \
2101 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2102 -UNITS_PER_WORD)) \
2103 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2104
892a2d68 2105/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2106#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2107
a10b3cf1
L
2108/* Before the prologue, there are return address and error code for
2109 exception handler on the top of the frame. */
2110#define INCOMING_FRAME_SP_OFFSET \
2111 (cfun->machine->func_type == TYPE_EXCEPTION \
2112 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2113
26fc730d
JJ
2114/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2115 .cfi_startproc. */
2116#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2117
1020a5ab 2118/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2119#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2120#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2121
ad919812 2122
e4c4ebeb
RH
2123/* Select a format to encode pointers in exception handling data. CODE
2124 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2125 true if the symbol may be affected by dynamic relocations.
2126
2127 ??? All x86 object file formats are capable of representing this.
2128 After all, the relocation needed is the same as for the call insn.
2129 Whether or not a particular assembler allows us to enter such, I
2130 guess we'll have to see. */
d9a5f180 2131#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2132 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2133
ec1895c1
UB
2134/* These are a couple of extensions to the formats accepted
2135 by asm_fprintf:
2136 %z prints out opcode suffix for word-mode instruction
2137 %r prints out word-mode name for reg_names[arg] */
2138#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2139 case 'z': \
2140 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2141 break; \
2142 \
2143 case 'r': \
2144 { \
2145 unsigned int regno = va_arg ((ARGS), int); \
2146 if (LEGACY_INT_REGNO_P (regno)) \
2147 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2148 fputs (reg_names[regno], (FILE)); \
2149 break; \
2150 }
2151
2152/* This is how to output an insn to push a register on the stack. */
2153
2154#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2155 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2156
2157/* This is how to output an insn to pop a register from the stack. */
c98f8742 2158
d9a5f180 2159#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2160 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2161
f88c65f7 2162/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2163
2164#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2165 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2166
f88c65f7 2167/* This is how to output an element of a case-vector that is relative. */
c98f8742 2168
33f7f353 2169#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2170 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2171
63001560 2172/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2173
2174#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2175{ \
2176 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2177 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2178}
2179
2180/* A C statement or statements which output an assembler instruction
2181 opcode to the stdio stream STREAM. The macro-operand PTR is a
2182 variable of type `char *' which points to the opcode name in
2183 its "internal" form--the form that is written in the machine
2184 description. */
2185
2186#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2187 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2188
6a90d232
L
2189/* A C statement to output to the stdio stream FILE an assembler
2190 command to pad the location counter to a multiple of 1<<LOG
2191 bytes if it is within MAX_SKIP bytes. */
2192
2193#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2194#undef ASM_OUTPUT_MAX_SKIP_PAD
2195#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2196 if ((LOG) != 0) \
2197 { \
dd047c67 2198 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2199 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2200 else \
2201 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2202 }
2203#endif
2204
135a687e
KT
2205/* Write the extra assembler code needed to declare a function
2206 properly. */
2207
2208#undef ASM_OUTPUT_FUNCTION_LABEL
2209#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2210 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2211
f7288899
EC
2212/* Under some conditions we need jump tables in the text section,
2213 because the assembler cannot handle label differences between
2214 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2215
2216#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2217 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2218 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2219
cea3bd3e
RH
2220/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2221 and switch back. For x86 we do this only to save a few bytes that
2222 would otherwise be unused in the text section. */
ad211091
KT
2223#define CRT_MKSTR2(VAL) #VAL
2224#define CRT_MKSTR(x) CRT_MKSTR2(x)
2225
2226#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2227 asm (SECTION_OP "\n\t" \
2228 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2229 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2230
2231/* Default threshold for putting data in large sections
2232 with x86-64 medium memory model */
2233#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2234\f
b97de419
L
2235/* Which processor to tune code generation for. These must be in sync
2236 with processor_target_table in i386.c. */
5bf0ebab
RH
2237
2238enum processor_type
2239{
b97de419
L
2240 PROCESSOR_GENERIC = 0,
2241 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2242 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2243 PROCESSOR_PENTIUM,
2d6b2e28 2244 PROCESSOR_LAKEMONT,
5bf0ebab 2245 PROCESSOR_PENTIUMPRO,
5bf0ebab 2246 PROCESSOR_PENTIUM4,
89c43c0a 2247 PROCESSOR_NOCONA,
340ef734 2248 PROCESSOR_CORE2,
d3c11974
L
2249 PROCESSOR_NEHALEM,
2250 PROCESSOR_SANDYBRIDGE,
3a579e09 2251 PROCESSOR_HASWELL,
d3c11974
L
2252 PROCESSOR_BONNELL,
2253 PROCESSOR_SILVERMONT,
50e461df 2254 PROCESSOR_GOLDMONT,
74b2bb19 2255 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2256 PROCESSOR_TREMONT,
52747219 2257 PROCESSOR_KNL,
cace2309 2258 PROCESSOR_KNM,
176a3386 2259 PROCESSOR_SKYLAKE,
06caf59d 2260 PROCESSOR_SKYLAKE_AVX512,
c234d831 2261 PROCESSOR_CANNONLAKE,
79ab5364
JK
2262 PROCESSOR_ICELAKE_CLIENT,
2263 PROCESSOR_ICELAKE_SERVER,
7cab07f0 2264 PROCESSOR_CASCADELAKE,
9a7f94d7 2265 PROCESSOR_INTEL,
b97de419
L
2266 PROCESSOR_GEODE,
2267 PROCESSOR_K6,
2268 PROCESSOR_ATHLON,
2269 PROCESSOR_K8,
21efb4d4 2270 PROCESSOR_AMDFAM10,
1133125e 2271 PROCESSOR_BDVER1,
4d652a18 2272 PROCESSOR_BDVER2,
eb2f2b44 2273 PROCESSOR_BDVER3,
ed97ad47 2274 PROCESSOR_BDVER4,
14b52538 2275 PROCESSOR_BTVER1,
e32bfc16 2276 PROCESSOR_BTVER2,
9ce29eb0 2277 PROCESSOR_ZNVER1,
2901f42f 2278 PROCESSOR_ZNVER2,
5bf0ebab
RH
2279 PROCESSOR_max
2280};
2281
c98c2430 2282#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2559ef9f 2283extern const char *const processor_names[];
c98c2430
ML
2284
2285#include "wide-int-bitmask.h"
2286
2287const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2288const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2289const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2290const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2291const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2292const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2293const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2294const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2295const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2296const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2297const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2298const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2299const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2300const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2301const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2302const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2303const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2304const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2305const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2306const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2307const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2308const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2309const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2310const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2311const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2312const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2313const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2314const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2315const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2316const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2317const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2318const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2319const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2320const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2321const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2322const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2323const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2324const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2325const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2326const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2327const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2328const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2329const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2330const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2331/* Hole after PTA_MPX was removed. */
2332const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2333const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2334const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2335const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2336const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2337const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2338const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2339const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2340const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2341const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2342const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2343const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2344const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2345const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2346const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2347const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2348const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2349const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2350const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2351const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2352const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2353const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2354const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2355const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2356const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2357const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2358const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2359const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2360const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
41f8d1fc 2361const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
4f0e90fa 2362const wide_int_bitmask PTA_AVX512BF16 (0, HOST_WIDE_INT_1U << 11);
c98c2430
ML
2363
2364const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2365 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2366const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2367 | PTA_POPCNT;
c9450033 2368const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
c98c2430
ML
2369const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2370 | PTA_XSAVEOPT;
2371const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2372 | PTA_RDRND | PTA_F16C;
2373const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2374 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2375const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2376 | PTA_RDSEED;
c9450033 2377const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES | PTA_CLFLUSHOPT
c98c2430
ML
2378 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2379const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2380 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2381 | PTA_CLWB;
7cab07f0 2382const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
c98c2430
ML
2383const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2384 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2385 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2386const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2387 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2388 | PTA_RDPID | PTA_CLWB;
2389const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2390 | PTA_WBNOINVD;
2391const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2392 | PTA_AVX512F | PTA_AVX512CD;
2393const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2394const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
c9450033 2395const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA | PTA_XSAVE
c98c2430
ML
2396 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2397 | PTA_FSGSBASE;
2398const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
41f8d1fc 2399 | PTA_SGX | PTA_PTWRITE;
c98c2430
ML
2400const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2401 | PTA_GFNI;
2402const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2403 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2404
2405#ifndef GENERATOR_FILE
2406
2407#include "insn-attr-common.h"
2408
2409struct pta
2410{
2411 const char *const name; /* processor name or nickname. */
2412 const enum processor_type processor;
2413 const enum attr_cpu schedule;
2414 const wide_int_bitmask flags;
2415};
2416
2417extern const pta processor_alias_table[];
2418extern int const pta_size;
2419#endif
2420
2421#endif
2422
9e555526 2423extern enum processor_type ix86_tune;
5bf0ebab 2424extern enum processor_type ix86_arch;
5bf0ebab 2425
8362f420
JH
2426/* Size of the RED_ZONE area. */
2427#define RED_ZONE_SIZE 128
2428/* Reserved area of the red zone for temporaries. */
2429#define RED_ZONE_RESERVE 8
c93e80a5 2430
95899b34 2431extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2432extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2433
2434/* Smallest class containing REGNO. */
2435extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2436
0948ccb2
PB
2437enum ix86_fpcmp_strategy {
2438 IX86_FPCMP_SAHF,
2439 IX86_FPCMP_COMI,
2440 IX86_FPCMP_ARITH
2441};
22fb740d
JH
2442\f
2443/* To properly truncate FP values into integers, we need to set i387 control
2444 word. We can't emit proper mode switching code before reload, as spills
2445 generated by reload may truncate values incorrectly, but we still can avoid
2446 redundant computation of new control word by the mode switching pass.
2447 The fldcw instructions are still emitted redundantly, but this is probably
2448 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2449 the sequence.
22fb740d
JH
2450
2451 The machinery is to emit simple truncation instructions and split them
2452 before reload to instructions having USEs of two memory locations that
2453 are filled by this code to old and new control word.
fce5a9f2 2454
22fb740d
JH
2455 Post-reload pass may be later used to eliminate the redundant fildcw if
2456 needed. */
2457
c7ca8ef8
UB
2458enum ix86_stack_slot
2459{
2460 SLOT_TEMP = 0,
2461 SLOT_CW_STORED,
2462 SLOT_CW_TRUNC,
2463 SLOT_CW_FLOOR,
2464 SLOT_CW_CEIL,
80008279 2465 SLOT_STV_TEMP,
c7ca8ef8
UB
2466 MAX_386_STACK_LOCALS
2467};
2468
ff680eb1
UB
2469enum ix86_entity
2470{
c7ca8ef8
UB
2471 X86_DIRFLAG = 0,
2472 AVX_U128,
ff97910d 2473 I387_TRUNC,
ff680eb1
UB
2474 I387_FLOOR,
2475 I387_CEIL,
ff680eb1
UB
2476 MAX_386_ENTITIES
2477};
2478
c7ca8ef8 2479enum x86_dirflag_state
ff680eb1 2480{
c7ca8ef8
UB
2481 X86_DIRFLAG_RESET,
2482 X86_DIRFLAG_ANY
ff680eb1 2483};
22fb740d 2484
ff97910d
VY
2485enum avx_u128_state
2486{
2487 AVX_U128_CLEAN,
2488 AVX_U128_DIRTY,
2489 AVX_U128_ANY
2490};
2491
22fb740d
JH
2492/* Define this macro if the port needs extra instructions inserted
2493 for mode switching in an optimizing compilation. */
2494
ff680eb1
UB
2495#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2496 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2497
2498/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2499 initializer for an array of integers. Each initializer element N
2500 refers to an entity that needs mode switching, and specifies the
2501 number of different modes that might need to be set for this
2502 entity. The position of the initializer in the initializer -
2503 starting counting at zero - determines the integer that is used to
2504 refer to the mode-switched entity in question. */
2505
c7ca8ef8
UB
2506#define NUM_MODES_FOR_MODE_SWITCHING \
2507 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2508 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2509
0f0138b6
JH
2510\f
2511/* Avoid renaming of stack registers, as doing so in combination with
2512 scheduling just increases amount of live registers at time and in
2513 the turn amount of fxch instructions needed.
2514
3f97cb0b
AI
2515 ??? Maybe Pentium chips benefits from renaming, someone can try....
2516
2517 Don't rename evex to non-evex sse registers. */
0f0138b6 2518
1a6e82b8
UB
2519#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2520 (!STACK_REGNO_P (SRC) \
2521 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2522
3b3c6a3f 2523\f
e91f04de 2524#define FASTCALL_PREFIX '@'
fa1a0d02 2525\f
77560086
BE
2526#ifndef USED_FOR_TARGET
2527/* Structure describing stack frame layout.
2528 Stack grows downward:
2529
2530 [arguments]
2531 <- ARG_POINTER
2532 saved pc
2533
2534 saved static chain if ix86_static_chain_on_stack
2535
2536 saved frame pointer if frame_pointer_needed
2537 <- HARD_FRAME_POINTER
2538 [saved regs]
2539 <- reg_save_offset
2540 [padding0]
2541 <- stack_realign_offset
2542 [saved SSE regs]
2543 OR
2544 [stub-saved registers for ms x64 --> sysv clobbers
2545 <- Start of out-of-line, stub-saved/restored regs
2546 (see libgcc/config/i386/(sav|res)ms64*.S)
2547 [XMM6-15]
2548 [RSI]
2549 [RDI]
2550 [?RBX] only if RBX is clobbered
2551 [?RBP] only if RBP and RBX are clobbered
2552 [?R12] only if R12 and all previous regs are clobbered
2553 [?R13] only if R13 and all previous regs are clobbered
2554 [?R14] only if R14 and all previous regs are clobbered
2555 [?R15] only if R15 and all previous regs are clobbered
2556 <- end of stub-saved/restored regs
2557 [padding1]
2558 ]
5d9d834d 2559 <- sse_reg_save_offset
77560086
BE
2560 [padding2]
2561 | <- FRAME_POINTER
2562 [va_arg registers] |
2563 |
2564 [frame] |
2565 |
2566 [padding2] | = to_allocate
2567 <- STACK_POINTER
2568 */
2569struct GTY(()) ix86_frame
2570{
2571 int nsseregs;
2572 int nregs;
2573 int va_arg_size;
2574 int red_zone_size;
2575 int outgoing_arguments_size;
2576
2577 /* The offsets relative to ARG_POINTER. */
2578 HOST_WIDE_INT frame_pointer_offset;
2579 HOST_WIDE_INT hard_frame_pointer_offset;
2580 HOST_WIDE_INT stack_pointer_offset;
2581 HOST_WIDE_INT hfp_save_offset;
2582 HOST_WIDE_INT reg_save_offset;
122f9da1 2583 HOST_WIDE_INT stack_realign_allocate;
77560086 2584 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2585 HOST_WIDE_INT sse_reg_save_offset;
2586
2587 /* When save_regs_using_mov is set, emit prologue using
2588 move instead of push instructions. */
2589 bool save_regs_using_mov;
2590};
2591
122f9da1
DS
2592/* Machine specific frame tracking during prologue/epilogue generation. All
2593 values are positive, but since the x86 stack grows downward, are subtratced
2594 from the CFA to produce a valid address. */
cd9c1ca8 2595
ec7ded37 2596struct GTY(()) machine_frame_state
cd9c1ca8 2597{
ec7ded37
RH
2598 /* This pair tracks the currently active CFA as reg+offset. When reg
2599 is drap_reg, we don't bother trying to record here the real CFA when
2600 it might really be a DW_CFA_def_cfa_expression. */
2601 rtx cfa_reg;
2602 HOST_WIDE_INT cfa_offset;
2603
2604 /* The current offset (canonically from the CFA) of ESP and EBP.
2605 When stack frame re-alignment is active, these may not be relative
2606 to the CFA. However, in all cases they are relative to the offsets
2607 of the saved registers stored in ix86_frame. */
2608 HOST_WIDE_INT sp_offset;
2609 HOST_WIDE_INT fp_offset;
2610
2611 /* The size of the red-zone that may be assumed for the purposes of
2612 eliding register restore notes in the epilogue. This may be zero
2613 if no red-zone is in effect, or may be reduced from the real
2614 red-zone value by a maximum runtime stack re-alignment value. */
2615 int red_zone_offset;
2616
2617 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2618 value within the frame. If false then the offset above should be
2619 ignored. Note that DRAP, if valid, *always* points to the CFA and
2620 thus has an offset of zero. */
2621 BOOL_BITFIELD sp_valid : 1;
2622 BOOL_BITFIELD fp_valid : 1;
2623 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2624
2625 /* Indicate whether the local stack frame has been re-aligned. When
2626 set, the SP/FP offsets above are relative to the aligned frame
2627 and not the CFA. */
2628 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2629
2630 /* Indicates whether the stack pointer has been re-aligned. When set,
2631 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2632 should only be used for offsets > sp_realigned_offset, while
2633 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2634 The flags realigned and sp_realigned are mutually exclusive. */
2635 BOOL_BITFIELD sp_realigned : 1;
2636
122f9da1
DS
2637 /* If sp_realigned is set, this is the last valid offset from the CFA
2638 that can be used for access with the frame pointer. */
2639 HOST_WIDE_INT sp_realigned_fp_last;
2640
2641 /* If sp_realigned is set, this is the offset from the CFA that the stack
2642 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2643 Access via the stack pointer is only valid for offsets that are greater than
2644 this value. */
d6d4d770 2645 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2646};
2647
f81c9774
RH
2648/* Private to winnt.c. */
2649struct seh_frame_state;
2650
f8071c05
L
2651enum function_type
2652{
2653 TYPE_UNKNOWN = 0,
2654 TYPE_NORMAL,
2655 /* The current function is an interrupt service routine with a
2656 pointer argument as specified by the "interrupt" attribute. */
2657 TYPE_INTERRUPT,
2658 /* The current function is an interrupt service routine with a
2659 pointer argument and an integer argument as specified by the
2660 "interrupt" attribute. */
2661 TYPE_EXCEPTION
2662};
2663
d1b38208 2664struct GTY(()) machine_function {
fa1a0d02 2665 struct stack_local_entry *stack_locals;
4aab97f9
L
2666 int varargs_gpr_size;
2667 int varargs_fpr_size;
ff680eb1 2668 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2669
77560086
BE
2670 /* Cached initial frame layout for the current function. */
2671 struct ix86_frame frame;
3452586b 2672
7458026b
ILT
2673 /* For -fsplit-stack support: A stack local which holds a pointer to
2674 the stack arguments for a function with a variable number of
2675 arguments. This is set at the start of the function and is used
2676 to initialize the overflow_arg_area field of the va_list
2677 structure. */
2678 rtx split_stack_varargs_pointer;
2679
3452586b
RH
2680 /* This value is used for amd64 targets and specifies the current abi
2681 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2682 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2683
2684 /* Nonzero if the function accesses a previous frame. */
2685 BOOL_BITFIELD accesses_prev_frame : 1;
2686
922e3e33
UB
2687 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2688 expander to determine the style used. */
3452586b
RH
2689 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2690
1e4490dc
UB
2691 /* Nonzero if the current function calls pc thunk and
2692 must not use the red zone. */
2693 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2694
5bf5a10b
AO
2695 /* If true, the current function needs the default PIC register, not
2696 an alternate register (on x86) and must not use the red zone (on
2697 x86_64), even if it's a leaf function. We don't want the
2698 function to be regarded as non-leaf because TLS calls need not
2699 affect register allocation. This flag is set when a TLS call
2700 instruction is expanded within a function, and never reset, even
2701 if all such instructions are optimized away. Use the
2702 ix86_current_function_calls_tls_descriptor macro for a better
2703 approximation. */
3452586b
RH
2704 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2705
2706 /* If true, the current function has a STATIC_CHAIN is placed on the
2707 stack below the return address. */
2708 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2709
529a6471
JJ
2710 /* If true, it is safe to not save/restore DRAP register. */
2711 BOOL_BITFIELD no_drap_save_restore : 1;
2712
f8071c05
L
2713 /* Function type. */
2714 ENUM_BITFIELD(function_type) func_type : 2;
2715
da99fd4a
L
2716 /* How to generate indirec branch. */
2717 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2718
2719 /* If true, the current function has local indirect jumps, like
2720 "indirect_jump" or "tablejump". */
2721 BOOL_BITFIELD has_local_indirect_jump : 1;
2722
45e14019
L
2723 /* How to generate function return. */
2724 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2725
f8071c05
L
2726 /* If true, the current function is a function specified with
2727 the "interrupt" or "no_caller_saved_registers" attribute. */
2728 BOOL_BITFIELD no_caller_saved_registers : 1;
2729
a0ff7835
L
2730 /* If true, there is register available for argument passing. This
2731 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2732 if there is scratch register available for indirect sibcall. In
2733 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2734 pass arguments and can be used for indirect sibcall. */
2735 BOOL_BITFIELD arg_reg_available : 1;
2736
d6d4d770 2737 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2738 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2739 BOOL_BITFIELD call_ms2sysv : 1;
2740
2741 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2742 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2743 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2744
d6d4d770
DS
2745 /* This is the number of extra registers saved by stub (valid range is
2746 0-6). Each additional register is only saved/restored by the stubs
2747 if all successive ones are. (Will always be zero when using a hard
2748 frame pointer.) */
2749 unsigned int call_ms2sysv_extra_regs:3;
2750
35c95658
L
2751 /* Nonzero if the function places outgoing arguments on stack. */
2752 BOOL_BITFIELD outgoing_args_on_stack : 1;
2753
708c728d
L
2754 /* If true, ENDBR is queued at function entrance. */
2755 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2756
cd3410cc
L
2757 /* The largest alignment, in bytes, of stack slot actually used. */
2758 unsigned int max_used_stack_alignment;
2759
ec7ded37
RH
2760 /* During prologue/epilogue generation, the current frame state.
2761 Otherwise, the frame state at the end of the prologue. */
2762 struct machine_frame_state fs;
f81c9774
RH
2763
2764 /* During SEH output, this is non-null. */
2765 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2766};
2bf6d935
ML
2767
2768extern GTY(()) tree sysv_va_list_type_node;
2769extern GTY(()) tree ms_va_list_type_node;
cd9c1ca8 2770#endif
fa1a0d02
JH
2771
2772#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2773#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2774#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2775#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2776#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2777#define ix86_tls_descriptor_calls_expanded_in_cfun \
2778 (cfun->machine->tls_descriptor_call_expanded_p)
2779/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2780 calls are optimized away, we try to detect cases in which it was
2781 optimized away. Since such instructions (use (reg REG_SP)), we can
2782 verify whether there's any such instruction live by testing that
2783 REG_SP is live. */
2784#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2785 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2786#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2787#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2788
1bc7c5b6
ZW
2789/* Control behavior of x86_file_start. */
2790#define X86_FILE_START_VERSION_DIRECTIVE false
2791#define X86_FILE_START_FLTUSED false
2792
7dcbf659
JH
2793/* Flag to mark data that is in the large address area. */
2794#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2795#define SYMBOL_REF_FAR_ADDR_P(X) \
2796 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2797
2798/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2799 have defined always, to avoid ifdefing. */
2800#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2801#define SYMBOL_REF_DLLIMPORT_P(X) \
2802 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2803
2804#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2805#define SYMBOL_REF_DLLEXPORT_P(X) \
2806 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2807
82c0e1a0
KT
2808#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2809#define SYMBOL_REF_STUBVAR_P(X) \
2810 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2811
7942e47e
RY
2812extern void debug_ready_dispatch (void);
2813extern void debug_dispatch_window (int);
2814
91afcfa3
QN
2815/* The value at zero is only defined for the BMI instructions
2816 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2817#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2818 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2819#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2820 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2821
2822
b8ce4e94
KT
2823/* Flags returned by ix86_get_callcvt (). */
2824#define IX86_CALLCVT_CDECL 0x1
2825#define IX86_CALLCVT_STDCALL 0x2
2826#define IX86_CALLCVT_FASTCALL 0x4
2827#define IX86_CALLCVT_THISCALL 0x8
2828#define IX86_CALLCVT_REGPARM 0x10
2829#define IX86_CALLCVT_SSEREGPARM 0x20
2830
2831#define IX86_BASE_CALLCVT(FLAGS) \
2832 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2833 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2834
b86b9f44
MM
2835#define RECIP_MASK_NONE 0x00
2836#define RECIP_MASK_DIV 0x01
2837#define RECIP_MASK_SQRT 0x02
2838#define RECIP_MASK_VEC_DIV 0x04
2839#define RECIP_MASK_VEC_SQRT 0x08
2840#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2841 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2842#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2843
2844#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2845#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2846#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2847#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2848
ab2c4ec8
SS
2849/* Use 128-bit AVX instructions in the auto-vectorizer. */
2850#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2851/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2852#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2853 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2854
c2c601b2
L
2855#define TARGET_INDIRECT_BRANCH_REGISTER \
2856 (ix86_indirect_branch_register \
2857 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2858
5dcfdccd
KY
2859#define IX86_HLE_ACQUIRE (1 << 16)
2860#define IX86_HLE_RELEASE (1 << 17)
2861
e83b8e2e
JJ
2862/* For switching between functions with different target attributes. */
2863#define SWITCHABLE_TARGET 1
2864
44d0de8d
UB
2865#define TARGET_SUPPORTS_WIDE_INT 1
2866
2bf6d935
ML
2867#if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2868extern enum attr_cpu ix86_schedule;
2869
2870#define NUM_X86_64_MS_CLOBBERED_REGS 12
2871#endif
2872
c98f8742
JVA
2873/*
2874Local variables:
2875version-control: t
2876End:
2877*/