]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
stl_heap.h: Update markup.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d2af65b9 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
54#define TARGET_AVX OPTION_ISA_AVX
55#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 56#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 57#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 58#define TARGET_XOP OPTION_ISA_XOP
3e901069 59#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 60#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
61#define TARGET_ABM OPTION_ISA_ABM
62#define TARGET_POPCNT OPTION_ISA_POPCNT
63#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 64#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 65#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
66#define TARGET_AES OPTION_ISA_AES
67#define TARGET_PCLMUL OPTION_ISA_PCLMUL
68#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
69#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
70#define TARGET_RDRND OPTION_ISA_RDRND
71#define TARGET_F16C OPTION_ISA_F16C
ab442df7 72
04e1d06b 73
cbf2e4d4
HJ
74/* SSE4.1 defines round instructions */
75#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 76#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 77
26b5109f
RS
78#include "config/vxworks-dummy.h"
79
8c996513
JH
80/* Algorithm to expand string function with. */
81enum stringop_alg
82{
83 no_stringop,
84 libcall,
85 rep_prefix_1_byte,
86 rep_prefix_4_byte,
87 rep_prefix_8_byte,
88 loop_1_byte,
89 loop,
90 unrolled_loop
91};
ccf8e764 92
8c996513 93#define NAX_STRINGOP_ALGS 4
ccf8e764 94
8c996513
JH
95/* Specify what algorithm to use for stringops on known size.
96 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
97 known at compile time or estimated via feedback, the SIZE array
98 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 99 means infinity). Corresponding ALG is used then.
8c996513 100 For example initializer:
4f3f76e6 101 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 102 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 103 be used otherwise. */
8c996513
JH
104struct stringop_algs
105{
106 const enum stringop_alg unknown_size;
107 const struct stringop_strategy {
108 const int max;
109 const enum stringop_alg alg;
110 } size [NAX_STRINGOP_ALGS];
111};
112
d4ba09c0
SC
113/* Define the specific costs for a given cpu */
114
115struct processor_costs {
8b60264b
KG
116 const int add; /* cost of an add instruction */
117 const int lea; /* cost of a lea instruction */
118 const int shift_var; /* variable shift costs */
119 const int shift_const; /* constant shift costs */
f676971a 120 const int mult_init[5]; /* cost of starting a multiply
4977bab6 121 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 122 const int mult_bit; /* cost of multiply per each bit set */
f676971a 123 const int divide[5]; /* cost of a divide/mod
4977bab6 124 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
125 int movsx; /* The cost of movsx operation. */
126 int movzx; /* The cost of movzx operation. */
8b60264b
KG
127 const int large_insn; /* insns larger than this cost more */
128 const int move_ratio; /* The threshold of number of scalar
ac775968 129 memory-to-memory move insns. */
8b60264b
KG
130 const int movzbl_load; /* cost of loading using movzbl */
131 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
132 in QImode, HImode and SImode relative
133 to reg-reg move (2). */
8b60264b 134 const int int_store[3]; /* cost of storing integer register
96e7ae40 135 in QImode, HImode and SImode */
8b60264b
KG
136 const int fp_move; /* cost of reg,reg fld/fst */
137 const int fp_load[3]; /* cost of loading FP register
96e7ae40 138 in SFmode, DFmode and XFmode */
8b60264b 139 const int fp_store[3]; /* cost of storing FP register
96e7ae40 140 in SFmode, DFmode and XFmode */
8b60264b
KG
141 const int mmx_move; /* cost of moving MMX register. */
142 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 143 in SImode and DImode */
8b60264b 144 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 145 in SImode and DImode */
8b60264b
KG
146 const int sse_move; /* cost of moving SSE register. */
147 const int sse_load[3]; /* cost of loading SSE register
fa79946e 148 in SImode, DImode and TImode*/
8b60264b 149 const int sse_store[3]; /* cost of storing SSE register
fa79946e 150 in SImode, DImode and TImode*/
8b60264b 151 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 152 integer and vice versa. */
46cb0441
ZD
153 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
154 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
155 const int prefetch_block; /* bytes moved to cache for prefetch. */
156 const int simultaneous_prefetches; /* number of parallel prefetch
157 operations. */
4977bab6 158 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
159 const int fadd; /* cost of FADD and FSUB instructions. */
160 const int fmul; /* cost of FMUL instruction. */
161 const int fdiv; /* cost of FDIV instruction. */
162 const int fabs; /* cost of FABS instruction. */
163 const int fchs; /* cost of FCHS instruction. */
164 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
165 /* Specify what algorithm
166 to use for stringops on unknown size. */
167 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
168 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
169 load and store. */
170 const int scalar_load_cost; /* Cost of scalar load. */
171 const int scalar_store_cost; /* Cost of scalar store. */
172 const int vec_stmt_cost; /* Cost of any vector operation, excluding
173 load, store, vector-to-scalar and
174 scalar-to-vector operation. */
175 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
176 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 177 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
178 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
179 const int vec_store_cost; /* Cost of vector store. */
180 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
181 cost model. */
182 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
183 vectorizer cost model. */
d4ba09c0
SC
184};
185
8b60264b 186extern const struct processor_costs *ix86_cost;
b2077fd2
JH
187extern const struct processor_costs ix86_size_cost;
188
189#define ix86_cur_cost() \
190 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 191
c98f8742
JVA
192/* Macros used in the machine description to test the flags. */
193
ddd5a7c1 194/* configure can arrange to make this 2, to force a 486. */
e075ae69 195
35b528be 196#ifndef TARGET_CPU_DEFAULT
d326eaf0 197#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 198#endif
35b528be 199
004d3859
GK
200#ifndef TARGET_FPMATH_DEFAULT
201#define TARGET_FPMATH_DEFAULT \
202 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
203#endif
204
6ac49599 205#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 206
5791cc29
JT
207/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
208 compile-time constant. */
209#ifdef IN_LIBGCC2
6ac49599 210#undef TARGET_64BIT
5791cc29
JT
211#ifdef __x86_64__
212#define TARGET_64BIT 1
213#else
214#define TARGET_64BIT 0
215#endif
216#else
6ac49599
RS
217#ifndef TARGET_BI_ARCH
218#undef TARGET_64BIT
67adf6a9 219#if TARGET_64BIT_DEFAULT
0c2dc519
JH
220#define TARGET_64BIT 1
221#else
222#define TARGET_64BIT 0
223#endif
224#endif
5791cc29 225#endif
25f94bb5 226
750054a2
CT
227#define HAS_LONG_COND_BRANCH 1
228#define HAS_LONG_UNCOND_BRANCH 1
229
9e555526
RH
230#define TARGET_386 (ix86_tune == PROCESSOR_I386)
231#define TARGET_486 (ix86_tune == PROCESSOR_I486)
232#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
233#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 234#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
235#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
236#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
237#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
238#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 239#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 240#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 241#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
242#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
243#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
244#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 245#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 246#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
b6837b94 247#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 248
80fd744f
RH
249/* Feature tests against the various tunings. */
250enum ix86_tune_indices {
251 X86_TUNE_USE_LEAVE,
252 X86_TUNE_PUSH_MEMORY,
253 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
254 X86_TUNE_UNROLL_STRLEN,
255 X86_TUNE_DEEP_BRANCH_PREDICTION,
256 X86_TUNE_BRANCH_PREDICTION_HINTS,
257 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 258 X86_TUNE_USE_SAHF,
80fd744f
RH
259 X86_TUNE_MOVX,
260 X86_TUNE_PARTIAL_REG_STALL,
261 X86_TUNE_PARTIAL_FLAG_REG_STALL,
262 X86_TUNE_USE_HIMODE_FIOP,
263 X86_TUNE_USE_SIMODE_FIOP,
264 X86_TUNE_USE_MOV0,
265 X86_TUNE_USE_CLTD,
266 X86_TUNE_USE_XCHGB,
267 X86_TUNE_SPLIT_LONG_MOVES,
268 X86_TUNE_READ_MODIFY_WRITE,
269 X86_TUNE_READ_MODIFY,
270 X86_TUNE_PROMOTE_QIMODE,
271 X86_TUNE_FAST_PREFIX,
272 X86_TUNE_SINGLE_STRINGOP,
273 X86_TUNE_QIMODE_MATH,
274 X86_TUNE_HIMODE_MATH,
275 X86_TUNE_PROMOTE_QI_REGS,
276 X86_TUNE_PROMOTE_HI_REGS,
277 X86_TUNE_ADD_ESP_4,
278 X86_TUNE_ADD_ESP_8,
279 X86_TUNE_SUB_ESP_4,
280 X86_TUNE_SUB_ESP_8,
281 X86_TUNE_INTEGER_DFMODE_MOVES,
282 X86_TUNE_PARTIAL_REG_DEPENDENCY,
283 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
284 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
285 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
286 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
287 X86_TUNE_SSE_SPLIT_REGS,
288 X86_TUNE_SSE_TYPELESS_STORES,
289 X86_TUNE_SSE_LOAD0_BY_PXOR,
290 X86_TUNE_MEMORY_MISMATCH_STALL,
291 X86_TUNE_PROLOGUE_USING_MOVE,
292 X86_TUNE_EPILOGUE_USING_MOVE,
293 X86_TUNE_SHIFT1,
294 X86_TUNE_USE_FFREEP,
295 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 296 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
297 X86_TUNE_FOUR_JUMP_LIMIT,
298 X86_TUNE_SCHEDULE,
299 X86_TUNE_USE_BT,
300 X86_TUNE_USE_INCDEC,
301 X86_TUNE_PAD_RETURNS,
302 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
303 X86_TUNE_SHORTEN_X87_SSE,
304 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 305 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
306 X86_TUNE_SLOW_IMUL_IMM32_MEM,
307 X86_TUNE_SLOW_IMUL_IMM8,
308 X86_TUNE_MOVE_M1_VIA_OR,
309 X86_TUNE_NOT_UNPAIRABLE,
310 X86_TUNE_NOT_VECTORMODE,
54723b46 311 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 312 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 313 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 314 X86_TUNE_OPT_AGU,
80fd744f
RH
315
316 X86_TUNE_LAST
317};
318
ab442df7 319extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
320
321#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
322#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
323#define TARGET_ZERO_EXTEND_WITH_AND \
324 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
325#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
326#define TARGET_DEEP_BRANCH_PREDICTION \
327 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
328#define TARGET_BRANCH_PREDICTION_HINTS \
329 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
330#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
331#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
332#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
333#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
334#define TARGET_PARTIAL_FLAG_REG_STALL \
335 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
336#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
337#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
338#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
339#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
340#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
341#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
342#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
343#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
344#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
345#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
346#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
347#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
348#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
349#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
350#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
351#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
352#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
353#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
354#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
355#define TARGET_INTEGER_DFMODE_MOVES \
356 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
357#define TARGET_PARTIAL_REG_DEPENDENCY \
358 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
359#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
360 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
361#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
362 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
363#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
364 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
365#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
366 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
367#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
368#define TARGET_SSE_TYPELESS_STORES \
369 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
370#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
371#define TARGET_MEMORY_MISMATCH_STALL \
372 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
373#define TARGET_PROLOGUE_USING_MOVE \
374 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
375#define TARGET_EPILOGUE_USING_MOVE \
376 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
377#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
378#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
379#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
380#define TARGET_INTER_UNIT_CONVERSIONS\
381 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
382#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
383#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
384#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
385#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
386#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
387#define TARGET_EXT_80387_CONSTANTS \
388 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
389#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
390#define TARGET_AVOID_VECTOR_DECODE \
391 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
392#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
393 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
394#define TARGET_SLOW_IMUL_IMM32_MEM \
395 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
396#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
397#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
398#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
399#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
400#define TARGET_USE_VECTOR_FP_CONVERTS \
401 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
402#define TARGET_USE_VECTOR_CONVERTS \
403 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
404#define TARGET_FUSE_CMP_AND_BRANCH \
405 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 406#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
80fd744f
RH
407
408/* Feature tests against the various architecture variations. */
409enum ix86_arch_indices {
410 X86_ARCH_CMOVE, /* || TARGET_SSE */
411 X86_ARCH_CMPXCHG,
412 X86_ARCH_CMPXCHG8B,
413 X86_ARCH_XADD,
414 X86_ARCH_BSWAP,
415
416 X86_ARCH_LAST
417};
4f3f76e6 418
ab442df7 419extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
420
421#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
422#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
423#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
424#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
425#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
426
427#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
428
429extern int x86_prefetch_sse;
0a1c5e55 430
80fd744f
RH
431#define TARGET_PREFETCH_SSE x86_prefetch_sse
432
80fd744f
RH
433#define ASSEMBLER_DIALECT (ix86_asm_dialect)
434
435#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
436#define TARGET_MIX_SSE_I387 \
437 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
438
439#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
440#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
441#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 442#define TARGET_SUN_TLS 0
1ef45b77 443
0a1c5e55
UB
444extern int ix86_isa_flags;
445
67adf6a9
RH
446#ifndef TARGET_64BIT_DEFAULT
447#define TARGET_64BIT_DEFAULT 0
25f94bb5 448#endif
74dc3e94
RH
449#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
450#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
451#endif
25f94bb5 452
79f5e442
ZD
453/* Fence to use after loop using storent. */
454
455extern tree x86_mfence;
456#define FENCE_FOLLOWING_MOVNT x86_mfence
457
0ed4a390
JL
458/* Once GDB has been enhanced to deal with functions without frame
459 pointers, we can change this to allow for elimination of
460 the frame pointer in leaf functions. */
461#define TARGET_DEFAULT 0
67adf6a9 462
0a1c5e55
UB
463/* Extra bits to force. */
464#define TARGET_SUBTARGET_DEFAULT 0
465#define TARGET_SUBTARGET_ISA_DEFAULT 0
466
467/* Extra bits to force on w/ 32-bit mode. */
468#define TARGET_SUBTARGET32_DEFAULT 0
469#define TARGET_SUBTARGET32_ISA_DEFAULT 0
470
ccf8e764
RH
471/* Extra bits to force on w/ 64-bit mode. */
472#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 473#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 474
b069de3b
SS
475/* This is not really a target flag, but is done this way so that
476 it's analogous to similar code for Mach-O on PowerPC. darwin.h
477 redefines this to 1. */
478#define TARGET_MACHO 0
479
ccf8e764 480/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
481#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
482
483/* Available call abi. */
35cbb299 484enum calling_abi
7c800926
KT
485{
486 SYSV_ABI = 0,
487 MS_ABI = 1
488};
489
51212b32
L
490/* The abi used by target. */
491extern enum calling_abi ix86_abi;
492
493/* The default abi used by target. */
7c800926 494#define DEFAULT_ABI SYSV_ABI
ccf8e764 495
cc69336f
RH
496/* Subtargets may reset this to 1 in order to enable 96-bit long double
497 with the rounding mode forced to 53 bits. */
498#define TARGET_96_ROUND_53_LONG_DOUBLE 0
499
f5316dfe
MM
500/* Sometimes certain combinations of command options do not make
501 sense on a particular target machine. You can define a macro
502 `OVERRIDE_OPTIONS' to take account of this. This macro, if
503 defined, is executed once just after all the command options have
504 been parsed.
505
506 Don't use this macro to turn on various extra optimizations for
507 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
508
ab442df7 509#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 510
d4ba09c0 511/* Define this to change the optimizations performed by default. */
d9a5f180
GS
512#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
513 optimization_options ((LEVEL), (SIZE))
d4ba09c0 514
682cd442
GK
515/* -march=native handling only makes sense with compiler running on
516 an x86 or x86_64 chip. If changing this condition, also change
517 the condition in driver-i386.c. */
518#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
519/* In driver-i386.c. */
520extern const char *host_detect_local_cpu (int argc, const char **argv);
521#define EXTRA_SPEC_FUNCTIONS \
522 { "local_cpu_detect", host_detect_local_cpu },
682cd442 523#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
524#endif
525
8981c15b
JM
526#if TARGET_64BIT_DEFAULT
527#define OPT_ARCH64 "!m32"
528#define OPT_ARCH32 "m32"
529#else
530#define OPT_ARCH64 "m64"
531#define OPT_ARCH32 "!m64"
532#endif
533
1cba2b96
EC
534/* Support for configure-time defaults of some command line options.
535 The order here is important so that -march doesn't squash the
536 tune or cpu values. */
ce998900 537#define OPTION_DEFAULT_SPECS \
da2d4c01 538 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
539 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
540 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 541 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
542 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
543 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
544 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
545 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
546 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 547
241e1a89
SC
548/* Specs for the compiler proper */
549
628714d8 550#ifndef CC1_CPU_SPEC
fa959ce4 551#define CC1_CPU_SPEC_1 "\
9d913bbf 552%{mcpu=*:-mtune=%* \
d347d4c7 553%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 554%<mcpu=* \
c93e80a5
JH
555%{mintel-syntax:-masm=intel \
556%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
5c1a2bb1
JH
557%{msse5:-mavx \
558%n'-msse5' was removed.\n} \
c93e80a5
JH
559%{mno-intel-syntax:-masm=att \
560%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 561
682cd442 562#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
563#define CC1_CPU_SPEC CC1_CPU_SPEC_1
564#else
565#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
566"%{march=native:%<march=native %:local_cpu_detect(arch) \
567 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
568%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
569#endif
241e1a89 570#endif
c98f8742 571\f
30efe578 572/* Target CPU builtins. */
ab442df7
MM
573#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
574
575/* Target Pragmas. */
576#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 577
c2f17e19
UB
578enum target_cpu_default
579{
580 TARGET_CPU_DEFAULT_generic = 0,
581
582 TARGET_CPU_DEFAULT_i386,
583 TARGET_CPU_DEFAULT_i486,
584 TARGET_CPU_DEFAULT_pentium,
585 TARGET_CPU_DEFAULT_pentium_mmx,
586 TARGET_CPU_DEFAULT_pentiumpro,
587 TARGET_CPU_DEFAULT_pentium2,
588 TARGET_CPU_DEFAULT_pentium3,
589 TARGET_CPU_DEFAULT_pentium4,
590 TARGET_CPU_DEFAULT_pentium_m,
591 TARGET_CPU_DEFAULT_prescott,
592 TARGET_CPU_DEFAULT_nocona,
593 TARGET_CPU_DEFAULT_core2,
b6837b94 594 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
595
596 TARGET_CPU_DEFAULT_geode,
597 TARGET_CPU_DEFAULT_k6,
598 TARGET_CPU_DEFAULT_k6_2,
599 TARGET_CPU_DEFAULT_k6_3,
600 TARGET_CPU_DEFAULT_athlon,
601 TARGET_CPU_DEFAULT_athlon_sse,
602 TARGET_CPU_DEFAULT_k8,
603 TARGET_CPU_DEFAULT_amdfam10,
1133125e 604 TARGET_CPU_DEFAULT_bdver1,
c2f17e19
UB
605
606 TARGET_CPU_DEFAULT_max
607};
0c2dc519 608
628714d8 609#ifndef CC1_SPEC
8015b78d 610#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
611#endif
612
613/* This macro defines names of additional specifications to put in the
614 specs that can be used in various specifications like CC1_SPEC. Its
615 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
616
617 Each subgrouping contains a string constant, that defines the
188fc5b5 618 specification name, and a string constant that used by the GCC driver
bcd86433
SC
619 program.
620
621 Do not define this macro if it does not need to do anything. */
622
623#ifndef SUBTARGET_EXTRA_SPECS
624#define SUBTARGET_EXTRA_SPECS
625#endif
626
627#define EXTRA_SPECS \
628714d8 628 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
629 SUBTARGET_EXTRA_SPECS
630\f
ce998900 631
d57a4b98
RH
632/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
633 FPU, assume that the fpcw is set to extended precision; when using
634 only SSE, rounding is correct; when using both SSE and the FPU,
635 the rounding precision is indeterminate, since either may be chosen
636 apparently at random. */
637#define TARGET_FLT_EVAL_METHOD \
5ccd517a 638 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 639
8ce94e44
JM
640/* Whether to allow x87 floating-point arithmetic on MODE (one of
641 SFmode, DFmode and XFmode) in the current excess precision
642 configuration. */
643#define X87_ENABLE_ARITH(MODE) \
644 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
645
646/* Likewise, whether to allow direct conversions from integer mode
647 IMODE (HImode, SImode or DImode) to MODE. */
648#define X87_ENABLE_FLOAT(MODE, IMODE) \
649 (flag_excess_precision == EXCESS_PRECISION_FAST \
650 || (MODE) == XFmode \
651 || ((MODE) == DFmode && (IMODE) == SImode) \
652 || (IMODE) == HImode)
653
979c67a5
UB
654/* target machine storage layout */
655
65d9c0ab
JH
656#define SHORT_TYPE_SIZE 16
657#define INT_TYPE_SIZE 32
658#define FLOAT_TYPE_SIZE 32
659#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
660#define DOUBLE_TYPE_SIZE 64
661#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
662#define LONG_DOUBLE_TYPE_SIZE 80
663
664#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 665
67adf6a9 666#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 667#define MAX_BITS_PER_WORD 64
0c2dc519
JH
668#else
669#define MAX_BITS_PER_WORD 32
0c2dc519
JH
670#endif
671
c98f8742
JVA
672/* Define this if most significant byte of a word is the lowest numbered. */
673/* That is true on the 80386. */
674
675#define BITS_BIG_ENDIAN 0
676
677/* Define this if most significant byte of a word is the lowest numbered. */
678/* That is not true on the 80386. */
679#define BYTES_BIG_ENDIAN 0
680
681/* Define this if most significant word of a multiword number is the lowest
682 numbered. */
683/* Not true for 80386 */
684#define WORDS_BIG_ENDIAN 0
685
c98f8742 686/* Width of a word, in units (bytes). */
4ae8027b 687#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
688#ifdef IN_LIBGCC2
689#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
690#else
691#define MIN_UNITS_PER_WORD 4
692#endif
c98f8742 693
c98f8742 694/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 695#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 696
e075ae69 697/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 698#define STACK_BOUNDARY \
51212b32 699 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 700
2e3f842f
L
701/* Stack boundary of the main function guaranteed by OS. */
702#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
703
de1132d1
L
704/* Minimum stack boundary. */
705#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 706
d1f87653 707/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 708 aligned; the compiler cannot rely on having this alignment. */
e075ae69 709#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 710
de1132d1 711/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
712 both 32bit and 64bit, to support codes that need 128 bit stack
713 alignment for SSE instructions, but can't realign the stack. */
714#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
715
716/* 1 if -mstackrealign should be turned on by default. It will
717 generate an alternate prologue and epilogue that realigns the
718 runtime stack if nessary. This supports mixing codes that keep a
719 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 720 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
721#define STACK_REALIGN_DEFAULT 0
722
723/* Boundary (in *bits*) on which the incoming stack is aligned. */
724#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 725
ebff937c
SH
726/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
727 mandatory for the 64-bit ABI, and may or may not be true for other
728 operating systems. */
729#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
730
f963b5d9
RS
731/* Minimum allocation boundary for the code of a function. */
732#define FUNCTION_BOUNDARY 8
733
734/* C++ stores the virtual bit in the lowest bit of function pointers. */
735#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 736
892a2d68 737/* Alignment of field after `int : 0' in a structure. */
c98f8742 738
65d9c0ab 739#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
740
741/* Minimum size in bits of the largest boundary to which any
742 and all fundamental data types supported by the hardware
743 might need to be aligned. No data type wants to be aligned
17f24ff0 744 rounder than this.
fce5a9f2 745
d1f87653 746 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
747 and Pentium Pro XFmode values at 128 bit boundaries. */
748
95879c72 749#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
17f24ff0 750
2e3f842f
L
751/* Maximum stack alignment. */
752#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
753
6e4f1168
L
754/* Alignment value for attribute ((aligned)). It is a constant since
755 it is the part of the ABI. We shouldn't change it with -mavx. */
756#define ATTRIBUTE_ALIGNED_VALUE 128
757
822eda12 758/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 759#define ALIGN_MODE_128(MODE) \
4501d314 760 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 761
17f24ff0 762/* The published ABIs say that doubles should be aligned on word
d1f87653 763 boundaries, so lower the alignment for structure fields unless
6fc605d8 764 -malign-double is set. */
e932b21b 765
e83f3cff
RH
766/* ??? Blah -- this macro is used directly by libobjc. Since it
767 supports no vector modes, cut out the complexity and fall back
768 on BIGGEST_FIELD_ALIGNMENT. */
769#ifdef IN_TARGET_LIBS
ef49d42e
JH
770#ifdef __x86_64__
771#define BIGGEST_FIELD_ALIGNMENT 128
772#else
e83f3cff 773#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 774#endif
e83f3cff 775#else
e932b21b
JH
776#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
777 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 778#endif
c98f8742 779
e5e8a8bf 780/* If defined, a C expression to compute the alignment given to a
a7180f70 781 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
782 and ALIGN is the alignment that the object would ordinarily have.
783 The value of this macro is used instead of that alignment to align
784 the object.
785
786 If this macro is not defined, then ALIGN is used.
787
788 The typical use of this macro is to increase alignment for string
789 constants to be word aligned so that `strcpy' calls that copy
790 constants can be done inline. */
791
d9a5f180 792#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 793
8a022443
JW
794/* If defined, a C expression to compute the alignment for a static
795 variable. TYPE is the data type, and ALIGN is the alignment that
796 the object would ordinarily have. The value of this macro is used
797 instead of that alignment to align the object.
798
799 If this macro is not defined, then ALIGN is used.
800
801 One use of this macro is to increase alignment of medium-size
802 data to make it all fit in fewer cache lines. Another is to
803 cause character arrays to be word-aligned so that `strcpy' calls
804 that copy constants to character arrays can be done inline. */
805
d9a5f180 806#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
807
808/* If defined, a C expression to compute the alignment for a local
809 variable. TYPE is the data type, and ALIGN is the alignment that
810 the object would ordinarily have. The value of this macro is used
811 instead of that alignment to align the object.
812
813 If this macro is not defined, then ALIGN is used.
814
815 One use of this macro is to increase alignment of medium-size
816 data to make it all fit in fewer cache lines. */
817
76fe54f0
L
818#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
819 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
820
821/* If defined, a C expression to compute the alignment for stack slot.
822 TYPE is the data type, MODE is the widest mode available, and ALIGN
823 is the alignment that the slot would ordinarily have. The value of
824 this macro is used instead of that alignment to align the slot.
825
826 If this macro is not defined, then ALIGN is used when TYPE is NULL,
827 Otherwise, LOCAL_ALIGNMENT will be used.
828
829 One use of this macro is to set alignment of stack slot to the
830 maximum alignment of all possible modes which the slot may have. */
831
832#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
833 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 834
9bfaf89d
JJ
835/* If defined, a C expression to compute the alignment for a local
836 variable DECL.
837
838 If this macro is not defined, then
839 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
840
841 One use of this macro is to increase alignment of medium-size
842 data to make it all fit in fewer cache lines. */
843
844#define LOCAL_DECL_ALIGNMENT(DECL) \
845 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
846
ae58e548
JJ
847/* If defined, a C expression to compute the minimum required alignment
848 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
849 MODE, assuming normal alignment ALIGN.
850
851 If this macro is not defined, then (ALIGN) will be used. */
852
853#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
854 ix86_minimum_alignment (EXP, MODE, ALIGN)
855
9bfaf89d 856
53c17031
JH
857/* If defined, a C expression that gives the alignment boundary, in
858 bits, of an argument with the specified mode and type. If it is
859 not defined, `PARM_BOUNDARY' is used for all arguments. */
860
d9a5f180
GS
861#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
862 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 863
9cd10576 864/* Set this nonzero if move instructions will actually fail to work
c98f8742 865 when given unaligned data. */
b4ac57ab 866#define STRICT_ALIGNMENT 0
c98f8742
JVA
867
868/* If bit field type is int, don't let it cross an int,
869 and give entire struct the alignment of an int. */
43a88a8c 870/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 871#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
872\f
873/* Standard register usage. */
874
875/* This processor has special stack-like registers. See reg-stack.c
892a2d68 876 for details. */
c98f8742
JVA
877
878#define STACK_REGS
ce998900 879
d9a5f180 880#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
881 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
882 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
883 || (MODE) == XFmode)
c98f8742 884
1833192f
VM
885/* Cover class containing the stack registers. */
886#define STACK_REG_COVER_CLASS FLOAT_REGS
887
c98f8742
JVA
888/* Number of actual hardware registers.
889 The hardware registers are assigned numbers for the compiler
890 from 0 to just below FIRST_PSEUDO_REGISTER.
891 All registers that the compiler knows about must be given numbers,
892 even those that are not normally considered general registers.
893
894 In the 80386 we give the 8 general purpose registers the numbers 0-7.
895 We number the floating point registers 8-15.
896 Note that registers 0-7 can be accessed as a short or int,
897 while only 0-3 may be used with byte `mov' instructions.
898
899 Reg 16 does not correspond to any hardware register, but instead
900 appears in the RTL as an argument pointer prior to reload, and is
901 eliminated during reloading in favor of either the stack or frame
892a2d68 902 pointer. */
c98f8742 903
b0d95de8 904#define FIRST_PSEUDO_REGISTER 53
c98f8742 905
3073d01c
ML
906/* Number of hardware registers that go into the DWARF-2 unwind info.
907 If not defined, equals FIRST_PSEUDO_REGISTER. */
908
909#define DWARF_FRAME_REGISTERS 17
910
c98f8742
JVA
911/* 1 for registers that have pervasive standard uses
912 and are not available for the register allocator.
3f3f2124 913 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 914
3a4416fb
RS
915 The value is zero if the register is not fixed on either 32 or
916 64 bit targets, one if the register if fixed on both 32 and 64
917 bit targets, two if it is only fixed on 32bit targets and three
918 if its only fixed on 64bit targets.
919 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 920 */
a7180f70
BS
921#define FIXED_REGISTERS \
922/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 923{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
924/*arg,flags,fpsr,fpcr,frame*/ \
925 1, 1, 1, 1, 1, \
a7180f70
BS
926/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
927 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 928/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
929 0, 0, 0, 0, 0, 0, 0, 0, \
930/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 931 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 932/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 933 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 934
c98f8742
JVA
935
936/* 1 for registers not available across function calls.
937 These must include the FIXED_REGISTERS and also any
938 registers that can be used without being saved.
939 The latter must include the registers where values are returned
940 and the register where structure-value addresses are passed.
fce5a9f2
EC
941 Aside from that, you can include as many other registers as you like.
942
9d72d996
JJ
943 The value is zero if the register is not call used on either 32 or
944 64 bit targets, one if the register if call used on both 32 and 64
945 bit targets, two if it is only call used on 32bit targets and three
946 if its only call used on 64bit targets.
3a4416fb 947 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 948*/
a7180f70
BS
949#define CALL_USED_REGISTERS \
950/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 951{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
952/*arg,flags,fpsr,fpcr,frame*/ \
953 1, 1, 1, 1, 1, \
a7180f70 954/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 955 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 956/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 957 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 958/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 959 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 960/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 961 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 962
3b3c6a3f
MM
963/* Order in which to allocate registers. Each register must be
964 listed once, even those in FIXED_REGISTERS. List frame pointer
965 late and fixed registers last. Note that, in general, we prefer
966 registers listed in CALL_USED_REGISTERS, keeping the others
967 available for storage of persistent values.
968
5a733826 969 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 970 so this is just empty initializer for array. */
3b3c6a3f 971
162f023b
JH
972#define REG_ALLOC_ORDER \
973{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
974 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
975 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 976 48, 49, 50, 51, 52 }
3b3c6a3f 977
5a733826 978/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 979 to be rearranged based on a particular function. When using sse math,
03c259ad 980 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 981
5a733826 982#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 983
f5316dfe 984
7c800926
KT
985#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
986
c98f8742 987/* Macro to conditionally modify fixed_regs/call_used_regs. */
ac2e563f 988#define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
c98f8742
JVA
989
990/* Return number of consecutive hard regs needed starting at reg REGNO
991 to hold something of mode MODE.
992 This is ordinarily the length in words of a value of mode MODE
993 but can be less for certain modes in special long registers.
994
fce5a9f2 995 Actually there are no two word move instructions for consecutive
c98f8742
JVA
996 registers. And only registers 0-3 may have mov byte instructions
997 applied to them.
998 */
999
ce998900 1000#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1001 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1002 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1003 : ((MODE) == XFmode \
92d0fb09 1004 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1005 : (MODE) == XCmode \
92d0fb09 1006 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1007 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1008
8521c414
JM
1009#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1010 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1011 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1012 ? 0 \
1013 : ((MODE) == XFmode || (MODE) == XCmode)) \
1014 : 0)
1015
1016#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1017
95879c72
L
1018#define VALID_AVX256_REG_MODE(MODE) \
1019 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1020 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1021
ce998900
UB
1022#define VALID_SSE2_REG_MODE(MODE) \
1023 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1024 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1025
d9a5f180 1026#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1027 ((MODE) == V1TImode || (MODE) == TImode \
1028 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1029 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1030
47f339cf 1031#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1032 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1033
d9a5f180 1034#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1035 ((MODE == V1DImode) || (MODE) == DImode \
1036 || (MODE) == V2SImode || (MODE) == SImode \
1037 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1038
accde4cf 1039/* ??? No autovectorization into MMX or 3DNOW until we can reliably
95879c72
L
1040 place emms and femms instructions.
1041 FIXME: AVX has 32byte floating point vector operations and 16byte
1042 integer vector operations. But vectorizer doesn't support
1043 different sizes for integer and floating point vectors. We limit
1044 vector size to 16byte. */
1045#define UNITS_PER_SIMD_WORD(MODE) \
1046 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1047 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
0bf43309 1048
ce998900
UB
1049#define VALID_DFP_MODE_P(MODE) \
1050 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1051
d9a5f180 1052#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1053 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1054 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1055
d9a5f180 1056#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1057 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1058 || (MODE) == DImode \
1059 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1060 || (MODE) == CDImode \
1061 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1062 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1063
822eda12 1064/* Return true for modes passed in SSE registers. */
ce998900 1065#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1066 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1067 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1068 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1069 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1070 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1071
e075ae69 1072/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1073
a946dd00 1074#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1075 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1076
1077/* Value is 1 if it is a good idea to tie two pseudo registers
1078 when one has mode MODE1 and one has mode MODE2.
1079 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1080 for any hard reg, then this must be 0 for correct output. */
1081
c1c5b5e3 1082#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1083
ff25ef99
ZD
1084/* It is possible to write patterns to move flags; but until someone
1085 does it, */
1086#define AVOID_CCMODE_COPIES
c98f8742 1087
e075ae69 1088/* Specify the modes required to caller save a given hard regno.
787dc842 1089 We do this on i386 to prevent flags from being saved at all.
e075ae69 1090
787dc842
JH
1091 Kill any attempts to combine saving of modes. */
1092
d9a5f180
GS
1093#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1094 (CC_REGNO_P (REGNO) ? VOIDmode \
1095 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1096 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1097 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1098 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1099 : (MODE))
ce998900 1100
c98f8742
JVA
1101/* Specify the registers used for certain standard purposes.
1102 The values of these macros are register numbers. */
1103
1104/* on the 386 the pc register is %eip, and is not usable as a general
1105 register. The ordinary mov instructions won't work */
1106/* #define PC_REGNUM */
1107
1108/* Register to use for pushing function arguments. */
1109#define STACK_POINTER_REGNUM 7
1110
1111/* Base register for access to local variables of the function. */
564d80f4
JH
1112#define HARD_FRAME_POINTER_REGNUM 6
1113
1114/* Base register for access to local variables of the function. */
b0d95de8 1115#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1116
1117/* First floating point reg */
1118#define FIRST_FLOAT_REG 8
1119
1120/* First & last stack-like regs */
1121#define FIRST_STACK_REG FIRST_FLOAT_REG
1122#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1123
a7180f70
BS
1124#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1125#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1126
a7180f70
BS
1127#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1128#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1129
3f3f2124
JH
1130#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1131#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1132
1133#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1134#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1135
aabcd309 1136/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1137 requiring a frame pointer. */
1138#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1139#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1140#endif
1141
1142/* Make sure we can access arbitrary call frames. */
1143#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1144
1145/* Base register for access to arguments of the function. */
1146#define ARG_POINTER_REGNUM 16
1147
c98f8742 1148/* Register to hold the addressing base for position independent
5b43fed1
RH
1149 code access to data items. We don't use PIC pointer for 64bit
1150 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1151 pessimizing code dealing with EBX.
bd09bdeb
RH
1152
1153 To avoid clobbering a call-saved register unnecessarily, we renumber
1154 the pic register when possible. The change is visible after the
1155 prologue has been emitted. */
1156
2e3f842f 1157#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1158
1159#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1160 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1161 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1162 : reload_completed ? REGNO (pic_offset_table_rtx) \
1163 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1164
5fc0e5df
KW
1165#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1166
c51e6d85 1167/* This is overridden by <cygwin.h>. */
5e062767
DS
1168#define MS_AGGREGATE_RETURN 0
1169
61fec9ff
JB
1170/* This is overridden by <netware.h>. */
1171#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1172\f
1173/* Define the classes of registers for register constraints in the
1174 machine description. Also define ranges of constants.
1175
1176 One of the classes must always be named ALL_REGS and include all hard regs.
1177 If there is more than one class, another class must be named NO_REGS
1178 and contain no registers.
1179
1180 The name GENERAL_REGS must be the name of a class (or an alias for
1181 another name such as ALL_REGS). This is the class of registers
1182 that is allowed by "g" or "r" in a register constraint.
1183 Also, registers outside this class are allocated only when
1184 instructions express preferences for them.
1185
1186 The classes must be numbered in nondecreasing order; that is,
1187 a larger-numbered class must never be contained completely
1188 in a smaller-numbered class.
1189
1190 For any two classes, it is very desirable that there be another
ab408a86
JVA
1191 class that represents their union.
1192
1193 It might seem that class BREG is unnecessary, since no useful 386
1194 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1195 and the "b" register constraint is useful in asms for syscalls.
1196
03c259ad 1197 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1198
1199enum reg_class
1200{
1201 NO_REGS,
e075ae69 1202 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1203 AD_REGS, /* %eax/%edx for DImode */
ac2e563f 1204 CLOBBERED_REGS, /* call-clobbered integers */
c98f8742 1205 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1206 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1207 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1208 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1209 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1210 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1211 FLOAT_REGS,
06f4e35d 1212 SSE_FIRST_REG,
a7180f70
BS
1213 SSE_REGS,
1214 MMX_REGS,
446988df
JH
1215 FP_TOP_SSE_REGS,
1216 FP_SECOND_SSE_REGS,
1217 FLOAT_SSE_REGS,
1218 FLOAT_INT_REGS,
1219 INT_SSE_REGS,
1220 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1221 ALL_REGS, LIM_REG_CLASSES
1222};
1223
d9a5f180
GS
1224#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1225
1226#define INTEGER_CLASS_P(CLASS) \
1227 reg_class_subset_p ((CLASS), GENERAL_REGS)
1228#define FLOAT_CLASS_P(CLASS) \
1229 reg_class_subset_p ((CLASS), FLOAT_REGS)
1230#define SSE_CLASS_P(CLASS) \
06f4e35d 1231 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1232#define MMX_CLASS_P(CLASS) \
f75959a6 1233 ((CLASS) == MMX_REGS)
d9a5f180
GS
1234#define MAYBE_INTEGER_CLASS_P(CLASS) \
1235 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1236#define MAYBE_FLOAT_CLASS_P(CLASS) \
1237 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1238#define MAYBE_SSE_CLASS_P(CLASS) \
1239 reg_classes_intersect_p (SSE_REGS, (CLASS))
1240#define MAYBE_MMX_CLASS_P(CLASS) \
1241 reg_classes_intersect_p (MMX_REGS, (CLASS))
1242
1243#define Q_CLASS_P(CLASS) \
1244 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1245
43f3a59d 1246/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1247
1248#define REG_CLASS_NAMES \
1249{ "NO_REGS", \
ab408a86 1250 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1251 "SIREG", "DIREG", \
e075ae69 1252 "AD_REGS", \
ac2e563f 1253 "CLOBBERED_REGS", \
e075ae69 1254 "Q_REGS", "NON_Q_REGS", \
c98f8742 1255 "INDEX_REGS", \
3f3f2124 1256 "LEGACY_REGS", \
c98f8742
JVA
1257 "GENERAL_REGS", \
1258 "FP_TOP_REG", "FP_SECOND_REG", \
1259 "FLOAT_REGS", \
cb482895 1260 "SSE_FIRST_REG", \
a7180f70
BS
1261 "SSE_REGS", \
1262 "MMX_REGS", \
446988df
JH
1263 "FP_TOP_SSE_REGS", \
1264 "FP_SECOND_SSE_REGS", \
1265 "FLOAT_SSE_REGS", \
8fcaaa80 1266 "FLOAT_INT_REGS", \
446988df
JH
1267 "INT_SSE_REGS", \
1268 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1269 "ALL_REGS" }
1270
ac2e563f
RH
1271/* Define which registers fit in which classes. This is an initializer
1272 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1273
1274 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1275 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
c98f8742 1276
a7180f70 1277#define REG_CLASS_CONTENTS \
3f3f2124
JH
1278{ { 0x00, 0x0 }, \
1279 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1280 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1281 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1282 { 0x03, 0x0 }, /* AD_REGS */ \
ac2e563f 1283 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
3f3f2124 1284 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1285 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1286 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1287 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1288 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1289 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1290 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1291 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1292{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1293{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1294{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1295{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1296{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1297 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1298{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1299{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1300{ 0xffffffff,0x1fffff } \
e075ae69 1301}
c98f8742
JVA
1302
1303/* The same information, inverted:
1304 Return the class number of the smallest class containing
1305 reg number REGNO. This could be a conditional expression
1306 or could index an array. */
1307
c98f8742
JVA
1308#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1309
42db504c
SB
1310/* When this hook returns true for MODE, the compiler allows
1311 registers explicitly used in the rtl to be used as spill registers
1312 but prevents the compiler from extending the lifetime of these
1313 registers. */
1314#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1315
6c6094f1 1316#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1317
d9a5f180 1318#define GENERAL_REGNO_P(N) \
fb84c7a0 1319 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1320
1321#define GENERAL_REG_P(X) \
6189a572 1322 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1323
1324#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1325
fb84c7a0
UB
1326#define REX_INT_REGNO_P(N) \
1327 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1328#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1329
c98f8742 1330#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1331#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1332#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1333#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1334
54a88090 1335#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1336 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1337
fb84c7a0
UB
1338#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1339#define SSE_REGNO_P(N) \
1340 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1341 || REX_SSE_REGNO_P (N))
3f3f2124 1342
4977bab6 1343#define REX_SSE_REGNO_P(N) \
fb84c7a0 1344 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1345
d9a5f180
GS
1346#define SSE_REGNO(N) \
1347 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1348
d9a5f180 1349#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1350 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1351
d6023b50
UB
1352#define SSE_VEC_FLOAT_MODE_P(MODE) \
1353 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1354
95879c72
L
1355#define AVX_FLOAT_MODE_P(MODE) \
1356 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1357
1358#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1359 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1360
1361#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1362 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1363
1364#define AVX_VEC_FLOAT_MODE_P(MODE) \
1365 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1366 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1367
cbf2e4d4
HJ
1368#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1369 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1370 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1371
d9a5f180 1372#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1373#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1374
fb84c7a0 1375#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1376#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1377
d9a5f180 1378#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1379
e075ae69
RH
1380#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1381#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1382
c98f8742
JVA
1383/* The class value for index registers, and the one for base regs. */
1384
1385#define INDEX_REG_CLASS INDEX_REGS
1386#define BASE_REG_CLASS GENERAL_REGS
1387
c98f8742 1388/* Place additional restrictions on the register class to use when it
4cbb525c 1389 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1390 register for which class CLASS would ordinarily be used. */
c98f8742 1391
d2836273
JH
1392#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1393 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1394 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1395 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1396 ? Q_REGS : (CLASS))
1397
1398/* Given an rtx X being reloaded into a reg required to be
1399 in class CLASS, return the class of reg to actually use.
1400 In general this is just CLASS; but on some machines
1401 in some cases it is preferable to use a more restrictive class.
1402 On the 80386 series, we prevent floating constants from being
1403 reloaded into floating registers (since no move-insn can do that)
1404 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1405
d398b3b1 1406/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1407 QImode must go into class Q_REGS.
d398b3b1 1408 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1409 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1410
d9a5f180
GS
1411#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1412 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1413
b5c82fa1
PB
1414/* Discourage putting floating-point values in SSE registers unless
1415 SSE math is being used, and likewise for the 387 registers. */
1416
1417#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1418 ix86_preferred_output_reload_class ((X), (CLASS))
1419
85ff473e 1420/* If we are copying between general and FP registers, we need a memory
f84aa48a 1421 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1422#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1423 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1424
c62b3659
UB
1425/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1426 There is no need to emit full 64 bit move on 64 bit targets
1427 for integral modes that can be moved using 32 bit move. */
1428#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1429 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1430 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1431 : MODE)
1432
c98f8742
JVA
1433/* Return the maximum number of consecutive registers
1434 needed to represent mode MODE in a register of class CLASS. */
1435/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1436 except in the FP regs, where a single reg is always enough. */
a7180f70 1437#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1438 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1439 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1440 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1441 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1442
1443/* A C expression whose value is nonzero if pseudos that have been
1444 assigned to registers of class CLASS would likely be spilled
1445 because registers of CLASS are needed for spill registers.
1446
1447 The default value of this macro returns 1 if CLASS has exactly one
1448 register and zero otherwise. On most machines, this default
1449 should be used. Only define this macro to some other expression
1450 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1451 their hard registers were needed for spill registers. If this
f5316dfe
MM
1452 macro returns nonzero for those classes, those pseudos will only
1453 be allocated by `global.c', which knows how to reallocate the
1454 pseudo to another register. If there would not be another
1455 register available for reallocation, you should not change the
1456 definition of this macro since the only effect of such a
1457 definition would be to slow down register allocation. */
1458
1459#define CLASS_LIKELY_SPILLED_P(CLASS) \
1460 (((CLASS) == AREG) \
1461 || ((CLASS) == DREG) \
1462 || ((CLASS) == CREG) \
1463 || ((CLASS) == BREG) \
1464 || ((CLASS) == AD_REGS) \
1465 || ((CLASS) == SIREG) \
b0af5c03 1466 || ((CLASS) == DIREG) \
2a457a9b 1467 || ((CLASS) == SSE_FIRST_REG) \
b0af5c03
JH
1468 || ((CLASS) == FP_TOP_REG) \
1469 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1470
1272914c
RH
1471/* Return a class of registers that cannot change FROM mode to TO mode. */
1472
1473#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1474 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1475\f
1476/* Stack layout; function entry, exit and calling. */
1477
1478/* Define this if pushing a word on the stack
1479 makes the stack pointer a smaller address. */
1480#define STACK_GROWS_DOWNWARD
1481
a4d05547 1482/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1483 is at the high-address end of the local variables;
1484 that is, each additional local variable allocated
1485 goes at a more negative offset in the frame. */
f62c8a5c 1486#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1487
1488/* Offset within stack frame to start allocating local variables at.
1489 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1490 first local allocated. Otherwise, it is the offset to the BEGINNING
1491 of the first local allocated. */
1492#define STARTING_FRAME_OFFSET 0
1493
1494/* If we generate an insn to push BYTES bytes,
1495 this says how many the stack pointer really advances by.
6541fe75
JJ
1496 On 386, we have pushw instruction that decrements by exactly 2 no
1497 matter what the position was, there is no pushb.
1498 But as CIE data alignment factor on this arch is -4, we need to make
1499 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1500
d2836273
JH
1501 For 64bit ABI we round up to 8 bytes.
1502 */
c98f8742 1503
d2836273
JH
1504#define PUSH_ROUNDING(BYTES) \
1505 (TARGET_64BIT \
1506 ? (((BYTES) + 7) & (-8)) \
6541fe75 1507 : (((BYTES) + 3) & (-4)))
c98f8742 1508
f73ad30e
JH
1509/* If defined, the maximum amount of space required for outgoing arguments will
1510 be computed and placed into the variable
38173d38 1511 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e 1512 stack for each call; instead, the function prologue should increase the stack
9aa5c1b2
JH
1513 frame size by this amount.
1514
1515 MS ABI seem to require 16 byte alignment everywhere except for function
1516 prologue and apilogue. This is not possible without
1517 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1518
6c6094f1
UB
1519#define ACCUMULATE_OUTGOING_ARGS \
1520 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
f73ad30e
JH
1521
1522/* If defined, a C expression whose value is nonzero when we want to use PUSH
1523 instructions to pass outgoing arguments. */
1524
1525#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1526
2da4124d
L
1527/* We want the stack and args grow in opposite directions, even if
1528 PUSH_ARGS is 0. */
1529#define PUSH_ARGS_REVERSED 1
1530
c98f8742
JVA
1531/* Offset of first parameter from the argument pointer register value. */
1532#define FIRST_PARM_OFFSET(FNDECL) 0
1533
a7180f70
BS
1534/* Define this macro if functions should assume that stack space has been
1535 allocated for arguments even when their values are passed in registers.
1536
1537 The value of this macro is the size, in bytes, of the area reserved for
1538 arguments passed in registers for the function represented by FNDECL.
1539
1540 This space can be allocated by the caller, or be a part of the
1541 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1542 which. */
7c800926
KT
1543#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1544
4ae8027b
UB
1545#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1546 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1547
c98f8742
JVA
1548/* Define how to find the value returned by a library function
1549 assuming the value has mode MODE. */
1550
4ae8027b 1551#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1552
e9125c09
TW
1553/* Define the size of the result block used for communication between
1554 untyped_call and untyped_return. The block contains a DImode value
1555 followed by the block used by fnsave and frstor. */
1556
1557#define APPLY_RESULT_SIZE (8+108)
1558
b08de47e 1559/* 1 if N is a possible register number for function argument passing. */
53c17031 1560#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1561
1562/* Define a data type for recording info about an argument list
1563 during the scan of that argument list. This data type should
1564 hold all necessary information about the function itself
1565 and about the args processed so far, enough to enable macros
b08de47e 1566 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1567
e075ae69 1568typedef struct ix86_args {
fa283935 1569 int words; /* # words passed so far */
b08de47e
MM
1570 int nregs; /* # registers available for passing */
1571 int regno; /* next available register number */
3e65f251
KT
1572 int fastcall; /* fastcall or thiscall calling convention
1573 is used */
fa283935 1574 int sse_words; /* # sse words passed so far */
a7180f70 1575 int sse_nregs; /* # sse registers available for passing */
95879c72 1576 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1577 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1578 int warn_mmx; /* True when we want to warn about MMX ABI. */
1579 int sse_regno; /* next available sse register number */
1580 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1581 int mmx_nregs; /* # mmx registers available for passing */
1582 int mmx_regno; /* next available mmx register number */
892a2d68 1583 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1584 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1585 be passed in SSE registers. Otherwise 0. */
51212b32 1586 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1587 MS_ABI for ms abi. */
b08de47e 1588} CUMULATIVE_ARGS;
c98f8742
JVA
1589
1590/* Initialize a variable CUM of type CUMULATIVE_ARGS
1591 for a call to a function whose data type is FNTYPE.
b08de47e 1592 For a library call, FNTYPE is 0. */
c98f8742 1593
0f6937fe 1594#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1595 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742 1596
c98f8742
JVA
1597/* Output assembler code to FILE to increment profiler label # LABELNO
1598 for profiling a function entry. */
1599
a5fa1ecd
JH
1600#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1601
1602#define MCOUNT_NAME "_mcount"
1603
1604#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1605
1606/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1607 the stack pointer does not matter. The value is tested only in
1608 functions that have frame pointers.
1609 No definition is equivalent to always zero. */
fce5a9f2 1610/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1611 we have to restore it ourselves from the frame pointer, in order to
1612 use pop */
1613
1614#define EXIT_IGNORE_STACK 1
1615
c98f8742
JVA
1616/* Output assembler code for a block containing the constant parts
1617 of a trampoline, leaving space for the variable parts. */
1618
a269a03c 1619/* On the 386, the trampoline contains two instructions:
c98f8742 1620 mov #STATIC,ecx
a269a03c
JC
1621 jmp FUNCTION
1622 The trampoline is generated entirely at runtime. The operand of JMP
1623 is the address of FUNCTION relative to the instruction following the
1624 JMP (which is 5 bytes long). */
c98f8742
JVA
1625
1626/* Length in units of the trampoline for entering a nested function. */
1627
3452586b 1628#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1629\f
1630/* Definitions for register eliminations.
1631
1632 This is an array of structures. Each structure initializes one pair
1633 of eliminable registers. The "from" register number is given first,
1634 followed by "to". Eliminations of the same "from" register are listed
1635 in order of preference.
1636
afc2cd05
NC
1637 There are two registers that can always be eliminated on the i386.
1638 The frame pointer and the arg pointer can be replaced by either the
1639 hard frame pointer or to the stack pointer, depending upon the
1640 circumstances. The hard frame pointer is not used before reload and
1641 so it is not eligible for elimination. */
c98f8742 1642
564d80f4
JH
1643#define ELIMINABLE_REGS \
1644{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1645 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1646 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1647 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1648
c98f8742
JVA
1649/* Define the offset between two registers, one to be eliminated, and the other
1650 its replacement, at the start of a routine. */
1651
d9a5f180
GS
1652#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1653 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1654\f
1655/* Addressing modes, and classification of registers for them. */
1656
c98f8742
JVA
1657/* Macros to check register numbers against specific register classes. */
1658
1659/* These assume that REGNO is a hard or pseudo reg number.
1660 They give nonzero only if REGNO is a hard reg of the suitable class
1661 or a pseudo reg currently allocated to a suitable hard reg.
1662 Since they use reg_renumber, they are safe only once reg_renumber
1663 has been allocated, which happens in local-alloc.c. */
1664
3f3f2124
JH
1665#define REGNO_OK_FOR_INDEX_P(REGNO) \
1666 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1667 || REX_INT_REGNO_P (REGNO) \
1668 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1669 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1670
3f3f2124 1671#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1672 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1673 || (REGNO) == ARG_POINTER_REGNUM \
1674 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1675 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1676
c98f8742
JVA
1677/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1678 and check its validity for a certain class.
1679 We have two alternate definitions for each of them.
1680 The usual definition accepts all pseudo regs; the other rejects
1681 them unless they have been allocated suitable hard regs.
1682 The symbol REG_OK_STRICT causes the latter definition to be used.
1683
1684 Most source files want to accept pseudo regs in the hope that
1685 they will get allocated to the class that the insn wants them to be in.
1686 Source files for reload pass need to be strict.
1687 After reload, it makes no difference, since pseudo regs have
1688 been eliminated by then. */
1689
c98f8742 1690
ff482c8d 1691/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1692#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1693 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1694 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1695 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1696
3b3c6a3f 1697#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1698 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1699 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1700 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1701 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1702
3b3c6a3f
MM
1703/* Strict versions, hard registers only */
1704#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1705#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1706
3b3c6a3f 1707#ifndef REG_OK_STRICT
d9a5f180
GS
1708#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1709#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1710
1711#else
d9a5f180
GS
1712#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1713#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1714#endif
1715
331d9186 1716/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1717 that is a valid memory address for an instruction.
1718 The MODE argument is the machine mode for the MEM expression
1719 that wants to use this address.
1720
331d9186 1721 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1722 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1723
1724 See legitimize_pic_address in i386.c for details as to what
1725 constitutes a legitimate address when -fpic is used. */
1726
1727#define MAX_REGS_PER_ADDRESS 2
1728
f996902d 1729#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1730
1731/* Nonzero if the constant value X is a legitimate general operand.
1732 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1733
f996902d 1734#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1735
b949ea8b
JW
1736/* If defined, a C expression to determine the base term of address X.
1737 This macro is used in only one place: `find_base_term' in alias.c.
1738
1739 It is always safe for this macro to not be defined. It exists so
1740 that alias analysis can understand machine-dependent addresses.
1741
1742 The typical use of this macro is to handle addresses containing
1743 a label_ref or symbol_ref within an UNSPEC. */
1744
d9a5f180 1745#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1746
c98f8742 1747/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1748 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1749 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1750
f996902d 1751#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1752
1753#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1754 (GET_CODE (X) == SYMBOL_REF \
1755 || GET_CODE (X) == LABEL_REF \
1756 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1757\f
b08de47e
MM
1758/* Max number of args passed in registers. If this is more than 3, we will
1759 have problems with ebx (register #4), since it is a caller save register and
1760 is also used as the pic register in ELF. So for now, don't allow more than
1761 3 registers to be passed in registers. */
1762
7c800926
KT
1763/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1764#define X86_64_REGPARM_MAX 6
72fa3605 1765#define X86_64_MS_REGPARM_MAX 4
7c800926 1766
72fa3605 1767#define X86_32_REGPARM_MAX 3
7c800926 1768
4ae8027b 1769#define REGPARM_MAX \
72fa3605 1770 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \
4ae8027b
UB
1771 : X86_64_REGPARM_MAX) \
1772 : X86_32_REGPARM_MAX)
d2836273 1773
72fa3605
UB
1774#define X86_64_SSE_REGPARM_MAX 8
1775#define X86_64_MS_SSE_REGPARM_MAX 4
1776
b6010cab 1777#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1778
4ae8027b 1779#define SSE_REGPARM_MAX \
72fa3605 1780 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \
4ae8027b
UB
1781 : X86_64_SSE_REGPARM_MAX) \
1782 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1783
1784#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1785
c98f8742
JVA
1786\f
1787/* Specify the machine mode that this machine uses
1788 for the index in the tablejump instruction. */
dc4d7240
JH
1789#define CASE_VECTOR_MODE \
1790 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1791
c98f8742
JVA
1792/* Define this as 1 if `char' should by default be signed; else as 0. */
1793#define DEFAULT_SIGNED_CHAR 1
1794
1795/* Max number of bytes we can move from memory to memory
1796 in one reasonably fast instruction. */
65d9c0ab
JH
1797#define MOVE_MAX 16
1798
1799/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1800 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1801 number of bytes we can move with a single instruction. */
65d9c0ab 1802#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1803
7e24ffc9 1804/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1805 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1806 Increasing the value will always make code faster, but eventually
1807 incurs high cost in increased code size.
c98f8742 1808
e2e52e1b 1809 If you don't define this, a reasonable default is used. */
c98f8742 1810
e04ad03d 1811#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1812
45d78e7f
JJ
1813/* If a clear memory operation would take CLEAR_RATIO or more simple
1814 move-instruction sequences, we will do a clrmem or libcall instead. */
1815
e04ad03d 1816#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1817
c98f8742
JVA
1818/* Define if shifts truncate the shift count
1819 which implies one can omit a sign-extension or zero-extension
1820 of a shift count. */
892a2d68 1821/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1822
1823/* #define SHIFT_COUNT_TRUNCATED */
1824
1825/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1826 is done just by pretending it is already truncated. */
1827#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1828
d9f32422
JH
1829/* A macro to update M and UNSIGNEDP when an object whose type is
1830 TYPE and which has the specified mode and signedness is to be
1831 stored in a register. This macro is only called when TYPE is a
1832 scalar type.
1833
f710504c 1834 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1835 quantities to SImode. The choice depends on target type. */
1836
1837#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1838do { \
d9f32422
JH
1839 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1840 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1841 (MODE) = SImode; \
1842} while (0)
d9f32422 1843
c98f8742
JVA
1844/* Specify the machine mode that pointers have.
1845 After generation of rtl, the compiler makes no further distinction
1846 between pointers and any other objects of this machine mode. */
65d9c0ab 1847#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1848
1849/* A function address in a call instruction
1850 is a byte address (for indexing purposes)
1851 so give the MEM rtx a byte's mode. */
1852#define FUNCTION_MODE QImode
d4ba09c0 1853\f
d4ba09c0 1854
d4ba09c0
SC
1855/* A C expression for the cost of a branch instruction. A value of 1
1856 is the default; other values are interpreted relative to that. */
1857
3a4fd356
JH
1858#define BRANCH_COST(speed_p, predictable_p) \
1859 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1860
1861/* Define this macro as a C expression which is nonzero if accessing
1862 less than a word of memory (i.e. a `char' or a `short') is no
1863 faster than accessing a word of memory, i.e., if such access
1864 require more than one instruction or if there is no difference in
1865 cost between byte and (aligned) word loads.
1866
1867 When this macro is not defined, the compiler will access a field by
1868 finding the smallest containing object; when it is defined, a
1869 fullword load will be used if alignment permits. Unless bytes
1870 accesses are faster than word accesses, using word accesses is
1871 preferable since it may eliminate subsequent memory access if
1872 subsequent accesses occur to other fields in the same word of the
1873 structure, but to different bytes. */
1874
1875#define SLOW_BYTE_ACCESS 0
1876
1877/* Nonzero if access to memory by shorts is slow and undesirable. */
1878#define SLOW_SHORT_ACCESS 0
1879
d4ba09c0
SC
1880/* Define this macro to be the value 1 if unaligned accesses have a
1881 cost many times greater than aligned accesses, for example if they
1882 are emulated in a trap handler.
1883
9cd10576
KH
1884 When this macro is nonzero, the compiler will act as if
1885 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1886 moves. This can cause significantly more instructions to be
9cd10576 1887 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1888 accesses only add a cycle or two to the time for a memory access.
1889
1890 If the value of this macro is always zero, it need not be defined. */
1891
e1565e65 1892/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1893
d4ba09c0
SC
1894/* Define this macro if it is as good or better to call a constant
1895 function address than to call an address kept in a register.
1896
1897 Desirable on the 386 because a CALL with a constant address is
1898 faster than one with a register address. */
1899
1900#define NO_FUNCTION_CSE
c98f8742 1901\f
c572e5ba
JVA
1902/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1903 return the mode to be used for the comparison.
1904
1905 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1906 VOIDmode should be used in all other cases.
c572e5ba 1907
16189740 1908 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1909 possible, to allow for more combinations. */
c98f8742 1910
d9a5f180 1911#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1912
9cd10576 1913/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1914 reversed. */
1915
1916#define REVERSIBLE_CC_MODE(MODE) 1
1917
1918/* A C expression whose value is reversed condition code of the CODE for
1919 comparison done in CC_MODE mode. */
3c5cb3e4 1920#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1921
c98f8742
JVA
1922\f
1923/* Control the assembler format that we output, to the extent
1924 this does not vary between assemblers. */
1925
1926/* How to refer to registers in assembler output.
892a2d68 1927 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1928
a7b376ee 1929/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1930 For non floating point regs, the following are the HImode names.
1931
1932 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1933 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1934 "y" code. */
c98f8742 1935
a7180f70
BS
1936#define HI_REGISTER_NAMES \
1937{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1938 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1939 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1940 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1941 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1942 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1943 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1944
c98f8742
JVA
1945#define REGISTER_NAMES HI_REGISTER_NAMES
1946
1947/* Table of additional register names to use in user input. */
1948
1949#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1950{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1951 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1952 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1953 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1954 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1955 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1956
1957/* Note we are omitting these since currently I don't know how
1958to get gcc to use these, since they want the same but different
1959number as al, and ax.
1960*/
1961
c98f8742 1962#define QI_REGISTER_NAMES \
3f3f2124 1963{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1964
1965/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1966 of regs 0 through 3. */
c98f8742
JVA
1967
1968#define QI_HIGH_REGISTER_NAMES \
1969{"ah", "dh", "ch", "bh", }
1970
1971/* How to renumber registers for dbx and gdb. */
1972
d9a5f180
GS
1973#define DBX_REGISTER_NUMBER(N) \
1974 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1975
9a82e702
MS
1976extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1977extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1978extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1979
469ac993
JM
1980/* Before the prologue, RA is at 0(%esp). */
1981#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1982 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1983
e414ab29 1984/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1985#define RETURN_ADDR_RTX(COUNT, FRAME) \
1986 ((COUNT) == 0 \
1987 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1988 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1989
892a2d68 1990/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1991#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1992
a6ab3aad 1993/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1994#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1995
1020a5ab
RH
1996/* Describe how we implement __builtin_eh_return. */
1997#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1998#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1999
ad919812 2000
e4c4ebeb
RH
2001/* Select a format to encode pointers in exception handling data. CODE
2002 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2003 true if the symbol may be affected by dynamic relocations.
2004
2005 ??? All x86 object file formats are capable of representing this.
2006 After all, the relocation needed is the same as for the call insn.
2007 Whether or not a particular assembler allows us to enter such, I
2008 guess we'll have to see. */
d9a5f180 2009#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2010 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2011
c98f8742
JVA
2012/* This is how to output an insn to push a register on the stack.
2013 It need not be very fast code. */
2014
d9a5f180 2015#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2016do { \
2017 if (TARGET_64BIT) \
2018 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2019 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2020 else \
2021 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2022} while (0)
c98f8742
JVA
2023
2024/* This is how to output an insn to pop a register from the stack.
2025 It need not be very fast code. */
2026
d9a5f180 2027#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2028do { \
2029 if (TARGET_64BIT) \
2030 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2031 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2032 else \
2033 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2034} while (0)
c98f8742 2035
f88c65f7 2036/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2037
2038#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2039 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2040
f88c65f7 2041/* This is how to output an element of a case-vector that is relative. */
c98f8742 2042
33f7f353 2043#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2044 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2045
95879c72
L
2046/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2047 true. */
2048
2049#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2050{ \
2051 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2052 { \
2053 if (TARGET_AVX) \
2054 (PTR) += 1; \
2055 else \
2056 (PTR) += 2; \
2057 } \
2058}
2059
2060/* A C statement or statements which output an assembler instruction
2061 opcode to the stdio stream STREAM. The macro-operand PTR is a
2062 variable of type `char *' which points to the opcode name in
2063 its "internal" form--the form that is written in the machine
2064 description. */
2065
2066#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2067 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2068
6a90d232
L
2069/* A C statement to output to the stdio stream FILE an assembler
2070 command to pad the location counter to a multiple of 1<<LOG
2071 bytes if it is within MAX_SKIP bytes. */
2072
2073#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2074#undef ASM_OUTPUT_MAX_SKIP_PAD
2075#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2076 if ((LOG) != 0) \
2077 { \
2078 if ((MAX_SKIP) == 0) \
2079 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2080 else \
2081 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2082 }
2083#endif
2084
f7288899
EC
2085/* Under some conditions we need jump tables in the text section,
2086 because the assembler cannot handle label differences between
2087 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2088
2089#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2090 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2091 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2092
cea3bd3e
RH
2093/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2094 and switch back. For x86 we do this only to save a few bytes that
2095 would otherwise be unused in the text section. */
ad211091
KT
2096#define CRT_MKSTR2(VAL) #VAL
2097#define CRT_MKSTR(x) CRT_MKSTR2(x)
2098
2099#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2100 asm (SECTION_OP "\n\t" \
2101 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2102 TEXT_SECTION_ASM_OP);
74b42c8b 2103\f
f996902d
RH
2104#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2105do { \
2106 if (! output_addr_const_extra (FILE, (X))) \
2107 goto FAIL; \
2108} while (0);
d4ba09c0 2109\f
5bf0ebab
RH
2110/* Which processor to schedule for. The cpu attribute defines a list that
2111 mirrors this list, so changes to i386.md must be made at the same time. */
2112
2113enum processor_type
2114{
8383d43c 2115 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2116 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2117 PROCESSOR_PENTIUM,
2118 PROCESSOR_PENTIUMPRO,
cfe1b18f 2119 PROCESSOR_GEODE,
5bf0ebab
RH
2120 PROCESSOR_K6,
2121 PROCESSOR_ATHLON,
2122 PROCESSOR_PENTIUM4,
4977bab6 2123 PROCESSOR_K8,
89c43c0a 2124 PROCESSOR_NOCONA,
05f85dbb 2125 PROCESSOR_CORE2,
d326eaf0
JH
2126 PROCESSOR_GENERIC32,
2127 PROCESSOR_GENERIC64,
21efb4d4 2128 PROCESSOR_AMDFAM10,
1133125e 2129 PROCESSOR_BDVER1,
b6837b94 2130 PROCESSOR_ATOM,
5bf0ebab
RH
2131 PROCESSOR_max
2132};
2133
9e555526 2134extern enum processor_type ix86_tune;
5bf0ebab 2135extern enum processor_type ix86_arch;
5bf0ebab
RH
2136
2137enum fpmath_unit
2138{
2139 FPMATH_387 = 1,
2140 FPMATH_SSE = 2
2141};
2142
2143extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2144
f996902d
RH
2145enum tls_dialect
2146{
2147 TLS_DIALECT_GNU,
5bf5a10b 2148 TLS_DIALECT_GNU2,
f996902d
RH
2149 TLS_DIALECT_SUN
2150};
2151
2152extern enum tls_dialect ix86_tls_dialect;
f996902d 2153
6189a572 2154enum cmodel {
5bf0ebab
RH
2155 CM_32, /* The traditional 32-bit ABI. */
2156 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2157 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2158 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2159 CM_LARGE, /* No assumptions. */
7dcbf659 2160 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2161 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2162 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2163};
2164
5bf0ebab 2165extern enum cmodel ix86_cmodel;
5bf0ebab 2166
8362f420
JH
2167/* Size of the RED_ZONE area. */
2168#define RED_ZONE_SIZE 128
2169/* Reserved area of the red zone for temporaries. */
2170#define RED_ZONE_RESERVE 8
c93e80a5
JH
2171
2172enum asm_dialect {
2173 ASM_ATT,
2174 ASM_INTEL
2175};
5bf0ebab 2176
80f33d06 2177extern enum asm_dialect ix86_asm_dialect;
95899b34 2178extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2179extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2180extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2181
2182/* Smallest class containing REGNO. */
2183extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2184
d9a5f180
GS
2185extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2186extern rtx ix86_compare_op1; /* operand 1 for comparisons */
0948ccb2
PB
2187
2188enum ix86_fpcmp_strategy {
2189 IX86_FPCMP_SAHF,
2190 IX86_FPCMP_COMI,
2191 IX86_FPCMP_ARITH
2192};
22fb740d
JH
2193\f
2194/* To properly truncate FP values into integers, we need to set i387 control
2195 word. We can't emit proper mode switching code before reload, as spills
2196 generated by reload may truncate values incorrectly, but we still can avoid
2197 redundant computation of new control word by the mode switching pass.
2198 The fldcw instructions are still emitted redundantly, but this is probably
2199 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2200 the sequence.
22fb740d
JH
2201
2202 The machinery is to emit simple truncation instructions and split them
2203 before reload to instructions having USEs of two memory locations that
2204 are filled by this code to old and new control word.
fce5a9f2 2205
22fb740d
JH
2206 Post-reload pass may be later used to eliminate the redundant fildcw if
2207 needed. */
2208
ff680eb1
UB
2209enum ix86_entity
2210{
2211 I387_TRUNC = 0,
2212 I387_FLOOR,
2213 I387_CEIL,
2214 I387_MASK_PM,
2215 MAX_386_ENTITIES
2216};
2217
1cba2b96 2218enum ix86_stack_slot
ff680eb1 2219{
80dcd3aa
UB
2220 SLOT_VIRTUAL = 0,
2221 SLOT_TEMP,
ff680eb1
UB
2222 SLOT_CW_STORED,
2223 SLOT_CW_TRUNC,
2224 SLOT_CW_FLOOR,
2225 SLOT_CW_CEIL,
2226 SLOT_CW_MASK_PM,
2227 MAX_386_STACK_LOCALS
2228};
22fb740d
JH
2229
2230/* Define this macro if the port needs extra instructions inserted
2231 for mode switching in an optimizing compilation. */
2232
ff680eb1
UB
2233#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2234 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2235
2236/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2237 initializer for an array of integers. Each initializer element N
2238 refers to an entity that needs mode switching, and specifies the
2239 number of different modes that might need to be set for this
2240 entity. The position of the initializer in the initializer -
2241 starting counting at zero - determines the integer that is used to
2242 refer to the mode-switched entity in question. */
2243
ff680eb1
UB
2244#define NUM_MODES_FOR_MODE_SWITCHING \
2245 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2246
2247/* ENTITY is an integer specifying a mode-switched entity. If
2248 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2249 return an integer value not larger than the corresponding element
2250 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2251 must be switched into prior to the execution of INSN. */
2252
2253#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2254
2255/* This macro specifies the order in which modes for ENTITY are
2256 processed. 0 is the highest priority. */
2257
d9a5f180 2258#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2259
2260/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2261 is the set of hard registers live at the point where the insn(s)
2262 are to be inserted. */
2263
2264#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2265 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2266 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2267 : 0)
ff680eb1 2268
0f0138b6
JH
2269\f
2270/* Avoid renaming of stack registers, as doing so in combination with
2271 scheduling just increases amount of live registers at time and in
2272 the turn amount of fxch instructions needed.
2273
43f3a59d 2274 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2275
d9a5f180 2276#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2277 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2278
3b3c6a3f 2279\f
e91f04de 2280#define FASTCALL_PREFIX '@'
fa1a0d02 2281\f
cd9c1ca8
RH
2282/* Machine specific CFA tracking during prologue/epilogue generation. */
2283
604a6be9 2284#ifndef USED_FOR_TARGET
cd9c1ca8
RH
2285struct GTY(()) machine_cfa_state
2286{
2287 rtx reg;
2288 HOST_WIDE_INT offset;
2289};
2290
d1b38208 2291struct GTY(()) machine_function {
fa1a0d02
JH
2292 struct stack_local_entry *stack_locals;
2293 const char *some_ld_name;
4aab97f9
L
2294 int varargs_gpr_size;
2295 int varargs_fpr_size;
ff680eb1 2296 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2297
2298 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2299 has been computed for. */
2300 int use_fast_prologue_epilogue_nregs;
2301
3452586b
RH
2302 /* This value is used for amd64 targets and specifies the current abi
2303 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2304 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2305
2306 /* Nonzero if the function accesses a previous frame. */
2307 BOOL_BITFIELD accesses_prev_frame : 1;
2308
2309 /* Nonzero if the function requires a CLD in the prologue. */
2310 BOOL_BITFIELD needs_cld : 1;
2311
922e3e33
UB
2312 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2313 expander to determine the style used. */
3452586b
RH
2314 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2315
5bf5a10b
AO
2316 /* If true, the current function needs the default PIC register, not
2317 an alternate register (on x86) and must not use the red zone (on
2318 x86_64), even if it's a leaf function. We don't want the
2319 function to be regarded as non-leaf because TLS calls need not
2320 affect register allocation. This flag is set when a TLS call
2321 instruction is expanded within a function, and never reset, even
2322 if all such instructions are optimized away. Use the
2323 ix86_current_function_calls_tls_descriptor macro for a better
2324 approximation. */
3452586b
RH
2325 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2326
2327 /* If true, the current function has a STATIC_CHAIN is placed on the
2328 stack below the return address. */
2329 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060
NF
2330
2331 /* The CFA state at the end of the prologue. */
2332 struct machine_cfa_state cfa;
fa1a0d02 2333};
cd9c1ca8 2334#endif
fa1a0d02
JH
2335
2336#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2337#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2338#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2339#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2340#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2341#define ix86_tls_descriptor_calls_expanded_in_cfun \
2342 (cfun->machine->tls_descriptor_call_expanded_p)
2343/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2344 calls are optimized away, we try to detect cases in which it was
2345 optimized away. Since such instructions (use (reg REG_SP)), we can
2346 verify whether there's any such instruction live by testing that
2347 REG_SP is live. */
2348#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2349 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
cd9c1ca8 2350#define ix86_cfa_state (&cfun->machine->cfa)
3452586b 2351#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2352
1bc7c5b6
ZW
2353/* Control behavior of x86_file_start. */
2354#define X86_FILE_START_VERSION_DIRECTIVE false
2355#define X86_FILE_START_FLTUSED false
2356
7dcbf659
JH
2357/* Flag to mark data that is in the large address area. */
2358#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2359#define SYMBOL_REF_FAR_ADDR_P(X) \
2360 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2361
2362/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2363 have defined always, to avoid ifdefing. */
2364#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2365#define SYMBOL_REF_DLLIMPORT_P(X) \
2366 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2367
2368#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2369#define SYMBOL_REF_DLLEXPORT_P(X) \
2370 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2371
c98f8742
JVA
2372/*
2373Local variables:
2374version-control: t
2375End:
2376*/