]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
i386.c (ix86_rtx_costs): Make difference between x87 and SSE operations.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cbe34bb5 2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
79fc8ffe
AS
88#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90922d36 90#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 91#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 92#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 93#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 94#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 95#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 96#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 97#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 98#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 99#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 100#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 101#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
73e32c47
JK
102#define TARGET_SGX TARGET_ISA_SGX
103#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
104#define TARGET_RDPID TARGET_ISA_RDPID
105#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
90922d36 106#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 107#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 108#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 109#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 110#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 111#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 112#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 113#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 114#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 115#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 116#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 117#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 118#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 119#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 120#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 121#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 122#define TARGET_AES TARGET_ISA_AES
bf7b5747 123#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
124#define TARGET_SHA TARGET_ISA_SHA
125#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
126#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
127#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
128#define TARGET_CLZERO TARGET_ISA_CLZERO
129#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
130#define TARGET_XSAVEC TARGET_ISA_XSAVEC
131#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
132#define TARGET_XSAVES TARGET_ISA_XSAVES
133#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 134#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 135#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
136#define TARGET_CMPXCHG16B TARGET_ISA_CX16
137#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 138#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 139#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 140#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 141#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 142#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 143#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
144#define TARGET_RTM TARGET_ISA_RTM
145#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 146#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 147#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 148#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 149#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 150#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 151#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 152#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 153#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 154#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 155#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 156#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 157#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 158#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 159#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
160#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
161#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
162#define TARGET_MPX TARGET_ISA_MPX
163#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
164#define TARGET_CLWB TARGET_ISA_CLWB
165#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
166#define TARGET_MWAITX TARGET_ISA_MWAITX
167#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
168#define TARGET_PKU TARGET_ISA_PKU
169#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
170
90922d36 171#define TARGET_LP64 TARGET_ABI_64
bf7b5747 172#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 173#define TARGET_X32 TARGET_ABI_X32
bf7b5747 174#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
175#define TARGET_16BIT TARGET_CODE16
176#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 177
26b5109f
RS
178#include "config/vxworks-dummy.h"
179
7eb68c06 180#include "config/i386/i386-opts.h"
ccf8e764 181
c69fa2d4 182#define MAX_STRINGOP_ALGS 4
ccf8e764 183
8c996513
JH
184/* Specify what algorithm to use for stringops on known size.
185 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
186 known at compile time or estimated via feedback, the SIZE array
187 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 188 means infinity). Corresponding ALG is used then.
340ef734
JH
189 When NOALIGN is true the code guaranting the alignment of the memory
190 block is skipped.
191
8c996513 192 For example initializer:
4f3f76e6 193 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 194 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 195 be used otherwise. */
8c996513
JH
196struct stringop_algs
197{
198 const enum stringop_alg unknown_size;
199 const struct stringop_strategy {
200 const int max;
201 const enum stringop_alg alg;
340ef734 202 int noalign;
c69fa2d4 203 } size [MAX_STRINGOP_ALGS];
8c996513
JH
204};
205
d4ba09c0
SC
206/* Define the specific costs for a given cpu */
207
208struct processor_costs {
8b60264b
KG
209 const int add; /* cost of an add instruction */
210 const int lea; /* cost of a lea instruction */
211 const int shift_var; /* variable shift costs */
212 const int shift_const; /* constant shift costs */
f676971a 213 const int mult_init[5]; /* cost of starting a multiply
4977bab6 214 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 215 const int mult_bit; /* cost of multiply per each bit set */
f676971a 216 const int divide[5]; /* cost of a divide/mod
4977bab6 217 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
218 int movsx; /* The cost of movsx operation. */
219 int movzx; /* The cost of movzx operation. */
8b60264b
KG
220 const int large_insn; /* insns larger than this cost more */
221 const int move_ratio; /* The threshold of number of scalar
ac775968 222 memory-to-memory move insns. */
8b60264b
KG
223 const int movzbl_load; /* cost of loading using movzbl */
224 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
225 in QImode, HImode and SImode relative
226 to reg-reg move (2). */
8b60264b 227 const int int_store[3]; /* cost of storing integer register
96e7ae40 228 in QImode, HImode and SImode */
8b60264b
KG
229 const int fp_move; /* cost of reg,reg fld/fst */
230 const int fp_load[3]; /* cost of loading FP register
96e7ae40 231 in SFmode, DFmode and XFmode */
8b60264b 232 const int fp_store[3]; /* cost of storing FP register
96e7ae40 233 in SFmode, DFmode and XFmode */
8b60264b
KG
234 const int mmx_move; /* cost of moving MMX register. */
235 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 236 in SImode and DImode */
8b60264b 237 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 238 in SImode and DImode */
8b60264b
KG
239 const int sse_move; /* cost of moving SSE register. */
240 const int sse_load[3]; /* cost of loading SSE register
fa79946e 241 in SImode, DImode and TImode*/
8b60264b 242 const int sse_store[3]; /* cost of storing SSE register
fa79946e 243 in SImode, DImode and TImode*/
8b60264b 244 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 245 integer and vice versa. */
46cb0441
ZD
246 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
247 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
248 const int prefetch_block; /* bytes moved to cache for prefetch. */
249 const int simultaneous_prefetches; /* number of parallel prefetch
250 operations. */
4977bab6 251 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
252 const int fadd; /* cost of FADD and FSUB instructions. */
253 const int fmul; /* cost of FMUL instruction. */
254 const int fdiv; /* cost of FDIV instruction. */
255 const int fabs; /* cost of FABS instruction. */
256 const int fchs; /* cost of FCHS instruction. */
257 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 258 /* Specify what algorithm
bee51209 259 to use for stringops on unknown size. */
6065f444
JH
260 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
261 const int mulss; /* cost of MULSS instructions. */
262 const int mulsd; /* cost of MULSD instructions. */
263 const int divss; /* cost of DIVSS instructions. */
264 const int divsd; /* cost of DIVSD instructions. */
265 const int sqrtss; /* cost of SQRTSS instructions. */
266 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
267 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
268 /* Specify reassociation width for integer,
269 fp, vector integer and vector fp
270 operations. Generally should correspond
271 to number of instructions executed in
272 parallel. See also
273 ix86_reassociation_width. */
ad83025e 274 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
275 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
276 load and store. */
277 const int scalar_load_cost; /* Cost of scalar load. */
278 const int scalar_store_cost; /* Cost of scalar store. */
279 const int vec_stmt_cost; /* Cost of any vector operation, excluding
280 load, store, vector-to-scalar and
281 scalar-to-vector operation. */
282 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
283 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 284 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
285 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
286 const int vec_store_cost; /* Cost of vector store. */
287 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
288 cost model. */
289 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
290 vectorizer cost model. */
d4ba09c0
SC
291};
292
8b60264b 293extern const struct processor_costs *ix86_cost;
b2077fd2
JH
294extern const struct processor_costs ix86_size_cost;
295
296#define ix86_cur_cost() \
297 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 298
c98f8742
JVA
299/* Macros used in the machine description to test the flags. */
300
b97de419 301/* configure can arrange to change it. */
e075ae69 302
35b528be 303#ifndef TARGET_CPU_DEFAULT
b97de419 304#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 305#endif
35b528be 306
004d3859
GK
307#ifndef TARGET_FPMATH_DEFAULT
308#define TARGET_FPMATH_DEFAULT \
309 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
310#endif
311
bf7b5747
ST
312#ifndef TARGET_FPMATH_DEFAULT_P
313#define TARGET_FPMATH_DEFAULT_P(x) \
314 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
315#endif
316
c207fd99
L
317/* If the i387 is disabled or -miamcu is used , then do not return
318 values in it. */
319#define TARGET_FLOAT_RETURNS_IN_80387 \
320 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
321#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
322 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 323
5791cc29
JT
324/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
325 compile-time constant. */
326#ifdef IN_LIBGCC2
6ac49599 327#undef TARGET_64BIT
5791cc29
JT
328#ifdef __x86_64__
329#define TARGET_64BIT 1
330#else
331#define TARGET_64BIT 0
332#endif
333#else
6ac49599
RS
334#ifndef TARGET_BI_ARCH
335#undef TARGET_64BIT
e49080ec 336#undef TARGET_64BIT_P
67adf6a9 337#if TARGET_64BIT_DEFAULT
0c2dc519 338#define TARGET_64BIT 1
e49080ec 339#define TARGET_64BIT_P(x) 1
0c2dc519
JH
340#else
341#define TARGET_64BIT 0
e49080ec 342#define TARGET_64BIT_P(x) 0
0c2dc519
JH
343#endif
344#endif
5791cc29 345#endif
25f94bb5 346
750054a2
CT
347#define HAS_LONG_COND_BRANCH 1
348#define HAS_LONG_UNCOND_BRANCH 1
349
9e555526
RH
350#define TARGET_386 (ix86_tune == PROCESSOR_I386)
351#define TARGET_486 (ix86_tune == PROCESSOR_I486)
352#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
353#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 354#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
355#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
356#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
357#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
358#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 359#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 360#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 361#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
362#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
363#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 364#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
365#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
366#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 367#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 368#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
06caf59d 369#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 370#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 371#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 372#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 373#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 374#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 375#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 376#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 377#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 378#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 379#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 380
80fd744f
RH
381/* Feature tests against the various tunings. */
382enum ix86_tune_indices {
4b8bc035 383#undef DEF_TUNE
3ad20bd4 384#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
385#include "x86-tune.def"
386#undef DEF_TUNE
387X86_TUNE_LAST
80fd744f
RH
388};
389
ab442df7 390extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
391
392#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
393#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
394#define TARGET_ZERO_EXTEND_WITH_AND \
395 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 396#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
397#define TARGET_BRANCH_PREDICTION_HINTS \
398 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
399#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
400#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
401#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
402#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
403#define TARGET_PARTIAL_FLAG_REG_STALL \
404 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
405#define TARGET_LCP_STALL \
406 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
407#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
408#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
409#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
410#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
411#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
412#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
413#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
414#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
415#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
416#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
417#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
418#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
419 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
420#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
421#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
422#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
423#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
424#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
425#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
426#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
427#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
428#define TARGET_INTEGER_DFMODE_MOVES \
429 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
430#define TARGET_PARTIAL_REG_DEPENDENCY \
431 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
432#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
433 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
434#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
435 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
436#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
437 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
438#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
439 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
440#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
441#define TARGET_SSE_TYPELESS_STORES \
442 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
443#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
444#define TARGET_MEMORY_MISMATCH_STALL \
445 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
446#define TARGET_PROLOGUE_USING_MOVE \
447 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
448#define TARGET_EPILOGUE_USING_MOVE \
449 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
450#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
451#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
452#define TARGET_INTER_UNIT_MOVES_TO_VEC \
453 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
454#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
455 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
456#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 457 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
458#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
459#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
460#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
461#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
462#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
463#define TARGET_PAD_SHORT_FUNCTION \
464 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
465#define TARGET_EXT_80387_CONSTANTS \
466 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
467#define TARGET_AVOID_VECTOR_DECODE \
468 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
469#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
470 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
471#define TARGET_SLOW_IMUL_IMM32_MEM \
472 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
473#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
474#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
475#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
476#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
477#define TARGET_USE_VECTOR_FP_CONVERTS \
478 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
479#define TARGET_USE_VECTOR_CONVERTS \
480 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
481#define TARGET_SLOW_PSHUFB \
482 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
483#define TARGET_AVOID_4BYTE_PREFIXES \
484 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
485#define TARGET_FUSE_CMP_AND_BRANCH_32 \
486 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
487#define TARGET_FUSE_CMP_AND_BRANCH_64 \
488 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 489#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
490 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
491 : TARGET_FUSE_CMP_AND_BRANCH_32)
492#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
493 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
494#define TARGET_FUSE_ALU_AND_BRANCH \
495 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 496#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
497#define TARGET_AVOID_LEA_FOR_ADDR \
498 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
499#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
500 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
501#define TARGET_AVX128_OPTIMAL \
502 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
503#define TARGET_GENERAL_REGS_SSE_SPILL \
504 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
505#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
506 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 507#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 508 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
509#define TARGET_ADJUST_UNROLL \
510 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
511#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
512 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
513#define TARGET_ONE_IF_CONV_INSN \
514 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 515
80fd744f
RH
516/* Feature tests against the various architecture variations. */
517enum ix86_arch_indices {
cef31f9c 518 X86_ARCH_CMOV,
80fd744f
RH
519 X86_ARCH_CMPXCHG,
520 X86_ARCH_CMPXCHG8B,
521 X86_ARCH_XADD,
522 X86_ARCH_BSWAP,
523
524 X86_ARCH_LAST
525};
4f3f76e6 526
ab442df7 527extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 528
cef31f9c 529#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
530#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
531#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
532#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
533#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
534
cef31f9c
UB
535/* For sane SSE instruction set generation we need fcomi instruction.
536 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
537 expands to a sequence that includes conditional move. */
538#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
539
80fd744f
RH
540#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
541
cb261eb7 542extern unsigned char x86_prefetch_sse;
80fd744f
RH
543#define TARGET_PREFETCH_SSE x86_prefetch_sse
544
80fd744f
RH
545#define ASSEMBLER_DIALECT (ix86_asm_dialect)
546
547#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
548#define TARGET_MIX_SSE_I387 \
549 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
550
5fa578f0
UB
551#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
552#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
553#define TARGET_HARD_XF_REGS (TARGET_80387)
554
80fd744f
RH
555#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
556#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
557#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 558#define TARGET_SUN_TLS 0
1ef45b77 559
67adf6a9
RH
560#ifndef TARGET_64BIT_DEFAULT
561#define TARGET_64BIT_DEFAULT 0
25f94bb5 562#endif
74dc3e94
RH
563#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
564#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
565#endif
25f94bb5 566
e0ea8797
AH
567#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
568#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
569
79f5e442
ZD
570/* Fence to use after loop using storent. */
571
572extern tree x86_mfence;
573#define FENCE_FOLLOWING_MOVNT x86_mfence
574
0ed4a390
JL
575/* Once GDB has been enhanced to deal with functions without frame
576 pointers, we can change this to allow for elimination of
577 the frame pointer in leaf functions. */
578#define TARGET_DEFAULT 0
67adf6a9 579
0a1c5e55
UB
580/* Extra bits to force. */
581#define TARGET_SUBTARGET_DEFAULT 0
582#define TARGET_SUBTARGET_ISA_DEFAULT 0
583
584/* Extra bits to force on w/ 32-bit mode. */
585#define TARGET_SUBTARGET32_DEFAULT 0
586#define TARGET_SUBTARGET32_ISA_DEFAULT 0
587
ccf8e764
RH
588/* Extra bits to force on w/ 64-bit mode. */
589#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 590#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 591
fee3eacd
IS
592/* Replace MACH-O, ifdefs by in-line tests, where possible.
593 (a) Macros defined in config/i386/darwin.h */
b069de3b 594#define TARGET_MACHO 0
9005471b 595#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
596#define MACHOPIC_ATT_STUB 0
597/* (b) Macros defined in config/darwin.h */
598#define MACHO_DYNAMIC_NO_PIC_P 0
599#define MACHOPIC_INDIRECT 0
600#define MACHOPIC_PURE 0
9005471b 601
5a579c3b
LE
602/* For the RDOS */
603#define TARGET_RDOS 0
604
9005471b 605/* For the Windows 64-bit ABI. */
7c800926
KT
606#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
607
6510e8bb
KT
608/* For the Windows 32-bit ABI. */
609#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
610
f81c9774
RH
611/* This is re-defined by cygming.h. */
612#define TARGET_SEH 0
613
51212b32 614/* The default abi used by target. */
7c800926 615#define DEFAULT_ABI SYSV_ABI
ccf8e764 616
b8b3f0ca 617/* The default TLS segment register used by target. */
00402c94
RH
618#define DEFAULT_TLS_SEG_REG \
619 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 620
cc69336f
RH
621/* Subtargets may reset this to 1 in order to enable 96-bit long double
622 with the rounding mode forced to 53 bits. */
623#define TARGET_96_ROUND_53_LONG_DOUBLE 0
624
682cd442
GK
625/* -march=native handling only makes sense with compiler running on
626 an x86 or x86_64 chip. If changing this condition, also change
627 the condition in driver-i386.c. */
628#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
629/* In driver-i386.c. */
630extern const char *host_detect_local_cpu (int argc, const char **argv);
631#define EXTRA_SPEC_FUNCTIONS \
632 { "local_cpu_detect", host_detect_local_cpu },
682cd442 633#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
634#endif
635
8981c15b
JM
636#if TARGET_64BIT_DEFAULT
637#define OPT_ARCH64 "!m32"
638#define OPT_ARCH32 "m32"
639#else
f0ea7581
L
640#define OPT_ARCH64 "m64|mx32"
641#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
642#endif
643
1cba2b96
EC
644/* Support for configure-time defaults of some command line options.
645 The order here is important so that -march doesn't squash the
646 tune or cpu values. */
ce998900 647#define OPTION_DEFAULT_SPECS \
da2d4c01 648 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
649 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
650 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 651 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
652 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
653 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
654 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
655 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
656 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 657
241e1a89
SC
658/* Specs for the compiler proper */
659
628714d8 660#ifndef CC1_CPU_SPEC
eb5bb0fd 661#define CC1_CPU_SPEC_1 ""
fa959ce4 662
682cd442 663#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
664#define CC1_CPU_SPEC CC1_CPU_SPEC_1
665#else
666#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
667"%{march=native:%>march=native %:local_cpu_detect(arch) \
668 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
669%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 670#endif
241e1a89 671#endif
c98f8742 672\f
30efe578 673/* Target CPU builtins. */
ab442df7
MM
674#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
675
676/* Target Pragmas. */
677#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 678
628714d8 679#ifndef CC1_SPEC
8015b78d 680#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
681#endif
682
683/* This macro defines names of additional specifications to put in the
684 specs that can be used in various specifications like CC1_SPEC. Its
685 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
686
687 Each subgrouping contains a string constant, that defines the
188fc5b5 688 specification name, and a string constant that used by the GCC driver
bcd86433
SC
689 program.
690
691 Do not define this macro if it does not need to do anything. */
692
693#ifndef SUBTARGET_EXTRA_SPECS
694#define SUBTARGET_EXTRA_SPECS
695#endif
696
697#define EXTRA_SPECS \
628714d8 698 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
699 SUBTARGET_EXTRA_SPECS
700\f
ce998900 701
8ce94e44
JM
702/* Whether to allow x87 floating-point arithmetic on MODE (one of
703 SFmode, DFmode and XFmode) in the current excess precision
704 configuration. */
b8cab8a5
UB
705#define X87_ENABLE_ARITH(MODE) \
706 (flag_unsafe_math_optimizations \
707 || flag_excess_precision == EXCESS_PRECISION_FAST \
708 || (MODE) == XFmode)
8ce94e44
JM
709
710/* Likewise, whether to allow direct conversions from integer mode
711 IMODE (HImode, SImode or DImode) to MODE. */
712#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
713 (flag_unsafe_math_optimizations \
714 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
715 || (MODE) == XFmode \
716 || ((MODE) == DFmode && (IMODE) == SImode) \
717 || (IMODE) == HImode)
718
979c67a5
UB
719/* target machine storage layout */
720
65d9c0ab
JH
721#define SHORT_TYPE_SIZE 16
722#define INT_TYPE_SIZE 32
f0ea7581
L
723#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
724#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 725#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 726#define FLOAT_TYPE_SIZE 32
65d9c0ab 727#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
728#define LONG_DOUBLE_TYPE_SIZE \
729 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 730
c637141a 731#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 732
67adf6a9 733#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 734#define MAX_BITS_PER_WORD 64
0c2dc519
JH
735#else
736#define MAX_BITS_PER_WORD 32
0c2dc519
JH
737#endif
738
c98f8742
JVA
739/* Define this if most significant byte of a word is the lowest numbered. */
740/* That is true on the 80386. */
741
742#define BITS_BIG_ENDIAN 0
743
744/* Define this if most significant byte of a word is the lowest numbered. */
745/* That is not true on the 80386. */
746#define BYTES_BIG_ENDIAN 0
747
748/* Define this if most significant word of a multiword number is the lowest
749 numbered. */
750/* Not true for 80386 */
751#define WORDS_BIG_ENDIAN 0
752
c98f8742 753/* Width of a word, in units (bytes). */
4ae8027b 754#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
755
756#ifndef IN_LIBGCC2
2e64c636
JH
757#define MIN_UNITS_PER_WORD 4
758#endif
c98f8742 759
c98f8742 760/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 761#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 762
e075ae69 763/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 764#define STACK_BOUNDARY \
51212b32 765 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 766
2e3f842f
L
767/* Stack boundary of the main function guaranteed by OS. */
768#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
769
de1132d1 770/* Minimum stack boundary. */
cba9c789 771#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 772
d1f87653 773/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 774 aligned; the compiler cannot rely on having this alignment. */
e075ae69 775#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 776
de1132d1 777/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
778 both 32bit and 64bit, to support codes that need 128 bit stack
779 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
780#define PREFERRED_STACK_BOUNDARY_DEFAULT \
781 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
782
783/* 1 if -mstackrealign should be turned on by default. It will
784 generate an alternate prologue and epilogue that realigns the
785 runtime stack if nessary. This supports mixing codes that keep a
786 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 787 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
788#define STACK_REALIGN_DEFAULT 0
789
790/* Boundary (in *bits*) on which the incoming stack is aligned. */
791#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 792
a2851b75
TG
793/* According to Windows x64 software convention, the maximum stack allocatable
794 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
795 instructions allowed to adjust the stack pointer in the epilog, forcing the
796 use of frame pointer for frames larger than 2 GB. This theorical limit
797 is reduced by 256, an over-estimated upper bound for the stack use by the
798 prologue.
799 We define only one threshold for both the prolog and the epilog. When the
4e523f33 800 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
801 regs, then save them, and then allocate the remaining. There is no SEH
802 unwind info for this later allocation. */
803#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
804
ebff937c
SH
805/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
806 mandatory for the 64-bit ABI, and may or may not be true for other
807 operating systems. */
808#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
809
f963b5d9
RS
810/* Minimum allocation boundary for the code of a function. */
811#define FUNCTION_BOUNDARY 8
812
813/* C++ stores the virtual bit in the lowest bit of function pointers. */
814#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 815
c98f8742
JVA
816/* Minimum size in bits of the largest boundary to which any
817 and all fundamental data types supported by the hardware
818 might need to be aligned. No data type wants to be aligned
17f24ff0 819 rounder than this.
fce5a9f2 820
d1f87653 821 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
822 and Pentium Pro XFmode values at 128 bit boundaries.
823
824 When increasing the maximum, also update
825 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 826
3f97cb0b 827#define BIGGEST_ALIGNMENT \
0076c82f 828 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 829
2e3f842f
L
830/* Maximum stack alignment. */
831#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
832
6e4f1168
L
833/* Alignment value for attribute ((aligned)). It is a constant since
834 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 835#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 836
822eda12 837/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 838#define ALIGN_MODE_128(MODE) \
4501d314 839 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 840
17f24ff0 841/* The published ABIs say that doubles should be aligned on word
d1f87653 842 boundaries, so lower the alignment for structure fields unless
6fc605d8 843 -malign-double is set. */
e932b21b 844
e83f3cff
RH
845/* ??? Blah -- this macro is used directly by libobjc. Since it
846 supports no vector modes, cut out the complexity and fall back
847 on BIGGEST_FIELD_ALIGNMENT. */
848#ifdef IN_TARGET_LIBS
ef49d42e
JH
849#ifdef __x86_64__
850#define BIGGEST_FIELD_ALIGNMENT 128
851#else
e83f3cff 852#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 853#endif
e83f3cff 854#else
a4cf4b64
RB
855#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
856 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 857#endif
c98f8742 858
8a022443
JW
859/* If defined, a C expression to compute the alignment for a static
860 variable. TYPE is the data type, and ALIGN is the alignment that
861 the object would ordinarily have. The value of this macro is used
862 instead of that alignment to align the object.
863
864 If this macro is not defined, then ALIGN is used.
865
866 One use of this macro is to increase alignment of medium-size
867 data to make it all fit in fewer cache lines. Another is to
868 cause character arrays to be word-aligned so that `strcpy' calls
869 that copy constants to character arrays can be done inline. */
870
df8a1d28
JJ
871#define DATA_ALIGNMENT(TYPE, ALIGN) \
872 ix86_data_alignment ((TYPE), (ALIGN), true)
873
874/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
875 some alignment increase, instead of optimization only purposes. E.g.
876 AMD x86-64 psABI says that variables with array type larger than 15 bytes
877 must be aligned to 16 byte boundaries.
878
879 If this macro is not defined, then ALIGN is used. */
880
881#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
882 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
883
884/* If defined, a C expression to compute the alignment for a local
885 variable. TYPE is the data type, and ALIGN is the alignment that
886 the object would ordinarily have. The value of this macro is used
887 instead of that alignment to align the object.
888
889 If this macro is not defined, then ALIGN is used.
890
891 One use of this macro is to increase alignment of medium-size
892 data to make it all fit in fewer cache lines. */
893
76fe54f0
L
894#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
895 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
896
897/* If defined, a C expression to compute the alignment for stack slot.
898 TYPE is the data type, MODE is the widest mode available, and ALIGN
899 is the alignment that the slot would ordinarily have. The value of
900 this macro is used instead of that alignment to align the slot.
901
902 If this macro is not defined, then ALIGN is used when TYPE is NULL,
903 Otherwise, LOCAL_ALIGNMENT will be used.
904
905 One use of this macro is to set alignment of stack slot to the
906 maximum alignment of all possible modes which the slot may have. */
907
908#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
909 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 910
9bfaf89d
JJ
911/* If defined, a C expression to compute the alignment for a local
912 variable DECL.
913
914 If this macro is not defined, then
915 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
916
917 One use of this macro is to increase alignment of medium-size
918 data to make it all fit in fewer cache lines. */
919
920#define LOCAL_DECL_ALIGNMENT(DECL) \
921 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
922
ae58e548
JJ
923/* If defined, a C expression to compute the minimum required alignment
924 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
925 MODE, assuming normal alignment ALIGN.
926
927 If this macro is not defined, then (ALIGN) will be used. */
928
929#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 930 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 931
9bfaf89d 932
9cd10576 933/* Set this nonzero if move instructions will actually fail to work
c98f8742 934 when given unaligned data. */
b4ac57ab 935#define STRICT_ALIGNMENT 0
c98f8742
JVA
936
937/* If bit field type is int, don't let it cross an int,
938 and give entire struct the alignment of an int. */
43a88a8c 939/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 940#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
941\f
942/* Standard register usage. */
943
944/* This processor has special stack-like registers. See reg-stack.c
892a2d68 945 for details. */
c98f8742
JVA
946
947#define STACK_REGS
ce998900 948
f48b4284
UB
949#define IS_STACK_MODE(MODE) \
950 (X87_FLOAT_MODE_P (MODE) \
951 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
952 || TARGET_MIX_SSE_I387))
c98f8742
JVA
953
954/* Number of actual hardware registers.
955 The hardware registers are assigned numbers for the compiler
956 from 0 to just below FIRST_PSEUDO_REGISTER.
957 All registers that the compiler knows about must be given numbers,
958 even those that are not normally considered general registers.
959
960 In the 80386 we give the 8 general purpose registers the numbers 0-7.
961 We number the floating point registers 8-15.
962 Note that registers 0-7 can be accessed as a short or int,
963 while only 0-3 may be used with byte `mov' instructions.
964
965 Reg 16 does not correspond to any hardware register, but instead
966 appears in the RTL as an argument pointer prior to reload, and is
967 eliminated during reloading in favor of either the stack or frame
892a2d68 968 pointer. */
c98f8742 969
05416670 970#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 971
3073d01c
ML
972/* Number of hardware registers that go into the DWARF-2 unwind info.
973 If not defined, equals FIRST_PSEUDO_REGISTER. */
974
975#define DWARF_FRAME_REGISTERS 17
976
c98f8742
JVA
977/* 1 for registers that have pervasive standard uses
978 and are not available for the register allocator.
3f3f2124 979 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 980
621bc046
UB
981 REX registers are disabled for 32bit targets in
982 TARGET_CONDITIONAL_REGISTER_USAGE. */
983
a7180f70
BS
984#define FIXED_REGISTERS \
985/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 986{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
987/*arg,flags,fpsr,fpcr,frame*/ \
988 1, 1, 1, 1, 1, \
a7180f70
BS
989/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
990 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 991/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
992 0, 0, 0, 0, 0, 0, 0, 0, \
993/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 994 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 995/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
996 0, 0, 0, 0, 0, 0, 0, 0, \
997/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
998 0, 0, 0, 0, 0, 0, 0, 0, \
999/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1000 0, 0, 0, 0, 0, 0, 0, 0, \
1001/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1002 0, 0, 0, 0, 0, 0, 0, 0, \
1003/* b0, b1, b2, b3*/ \
1004 0, 0, 0, 0 }
c98f8742
JVA
1005
1006/* 1 for registers not available across function calls.
1007 These must include the FIXED_REGISTERS and also any
1008 registers that can be used without being saved.
1009 The latter must include the registers where values are returned
1010 and the register where structure-value addresses are passed.
fce5a9f2
EC
1011 Aside from that, you can include as many other registers as you like.
1012
621bc046
UB
1013 Value is set to 1 if the register is call used unconditionally.
1014 Bit one is set if the register is call used on TARGET_32BIT ABI.
1015 Bit two is set if the register is call used on TARGET_64BIT ABI.
1016 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1017
1018 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1019
1f3ccbc8
L
1020#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1021 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1022
a7180f70
BS
1023#define CALL_USED_REGISTERS \
1024/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1025{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1026/*arg,flags,fpsr,fpcr,frame*/ \
1027 1, 1, 1, 1, 1, \
a7180f70 1028/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1029 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1030/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1031 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1032/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1033 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1034/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1035 6, 6, 6, 6, 6, 6, 6, 6, \
1036/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1037 6, 6, 6, 6, 6, 6, 6, 6, \
1038/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1039 6, 6, 6, 6, 6, 6, 6, 6, \
1040 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1041 1, 1, 1, 1, 1, 1, 1, 1, \
1042/* b0, b1, b2, b3*/ \
1043 1, 1, 1, 1 }
c98f8742 1044
3b3c6a3f
MM
1045/* Order in which to allocate registers. Each register must be
1046 listed once, even those in FIXED_REGISTERS. List frame pointer
1047 late and fixed registers last. Note that, in general, we prefer
1048 registers listed in CALL_USED_REGISTERS, keeping the others
1049 available for storage of persistent values.
1050
5a733826 1051 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1052 so this is just empty initializer for array. */
3b3c6a3f 1053
162f023b
JH
1054#define REG_ALLOC_ORDER \
1055{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1056 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1057 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1058 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1059 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1060 78, 79, 80 }
3b3c6a3f 1061
5a733826 1062/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1063 to be rearranged based on a particular function. When using sse math,
03c259ad 1064 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1065
5a733826 1066#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1067
f5316dfe 1068
7c800926
KT
1069#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1070
8521c414 1071#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1072 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1073 && GENERAL_REGNO_P (REGNO) \
1074 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1075
1076#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1077
95879c72
L
1078#define VALID_AVX256_REG_MODE(MODE) \
1079 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1080 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1081 || (MODE) == V4DFmode)
95879c72 1082
4ac005ba 1083#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1084 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1085
3f97cb0b
AI
1086#define VALID_AVX512F_SCALAR_MODE(MODE) \
1087 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1088 || (MODE) == SFmode)
1089
1090#define VALID_AVX512F_REG_MODE(MODE) \
1091 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1092 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1093 || (MODE) == V4TImode)
1094
05416670 1095#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1096 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1097 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1098 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1099
ce998900
UB
1100#define VALID_SSE2_REG_MODE(MODE) \
1101 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1102 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1103
d9a5f180 1104#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1105 ((MODE) == V1TImode || (MODE) == TImode \
1106 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1107 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1108
47f339cf 1109#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1110 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1111
d9a5f180 1112#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1113 ((MODE == V1DImode) || (MODE) == DImode \
1114 || (MODE) == V2SImode || (MODE) == SImode \
1115 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1116
05416670
UB
1117#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1118
1119#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1120
d5e254e1
IE
1121#define VALID_BND_REG_MODE(MODE) \
1122 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1123
ce998900
UB
1124#define VALID_DFP_MODE_P(MODE) \
1125 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1126
d9a5f180 1127#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1128 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1129 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1130
d9a5f180 1131#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1132 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1133 || (MODE) == DImode \
1134 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1135 || (MODE) == CDImode \
1136 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1137 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1138
822eda12 1139/* Return true for modes passed in SSE registers. */
ce998900 1140#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1141 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1142 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1143 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1144 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1145 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1146 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1147 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1148 || (MODE) == V16SFmode)
822eda12 1149
05416670
UB
1150#define X87_FLOAT_MODE_P(MODE) \
1151 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1152
05416670
UB
1153#define SSE_FLOAT_MODE_P(MODE) \
1154 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1155
1156#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1157 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1158 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1159
ff25ef99
ZD
1160/* It is possible to write patterns to move flags; but until someone
1161 does it, */
1162#define AVOID_CCMODE_COPIES
c98f8742 1163
e075ae69 1164/* Specify the modes required to caller save a given hard regno.
787dc842 1165 We do this on i386 to prevent flags from being saved at all.
e075ae69 1166
787dc842
JH
1167 Kill any attempts to combine saving of modes. */
1168
d9a5f180
GS
1169#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1170 (CC_REGNO_P (REGNO) ? VOIDmode \
1171 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1172 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1173 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1174 && TARGET_PARTIAL_REG_STALL) \
85a77221 1175 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1176 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1177 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1178 : (MODE))
ce998900 1179
c98f8742
JVA
1180/* Specify the registers used for certain standard purposes.
1181 The values of these macros are register numbers. */
1182
1183/* on the 386 the pc register is %eip, and is not usable as a general
1184 register. The ordinary mov instructions won't work */
1185/* #define PC_REGNUM */
1186
05416670
UB
1187/* Base register for access to arguments of the function. */
1188#define ARG_POINTER_REGNUM ARGP_REG
1189
c98f8742 1190/* Register to use for pushing function arguments. */
05416670 1191#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1192
1193/* Base register for access to local variables of the function. */
05416670
UB
1194#define FRAME_POINTER_REGNUM FRAME_REG
1195#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1196
05416670
UB
1197#define FIRST_INT_REG AX_REG
1198#define LAST_INT_REG SP_REG
c98f8742 1199
05416670
UB
1200#define FIRST_QI_REG AX_REG
1201#define LAST_QI_REG BX_REG
c98f8742
JVA
1202
1203/* First & last stack-like regs */
05416670
UB
1204#define FIRST_STACK_REG ST0_REG
1205#define LAST_STACK_REG ST7_REG
c98f8742 1206
05416670
UB
1207#define FIRST_SSE_REG XMM0_REG
1208#define LAST_SSE_REG XMM7_REG
fce5a9f2 1209
05416670
UB
1210#define FIRST_MMX_REG MM0_REG
1211#define LAST_MMX_REG MM7_REG
a7180f70 1212
05416670
UB
1213#define FIRST_REX_INT_REG R8_REG
1214#define LAST_REX_INT_REG R15_REG
3f3f2124 1215
05416670
UB
1216#define FIRST_REX_SSE_REG XMM8_REG
1217#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1218
05416670
UB
1219#define FIRST_EXT_REX_SSE_REG XMM16_REG
1220#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1221
05416670
UB
1222#define FIRST_MASK_REG MASK0_REG
1223#define LAST_MASK_REG MASK7_REG
85a77221 1224
05416670
UB
1225#define FIRST_BND_REG BND0_REG
1226#define LAST_BND_REG BND3_REG
d5e254e1 1227
aabcd309 1228/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1229 requiring a frame pointer. */
1230#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1231#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1232#endif
1233
1234/* Make sure we can access arbitrary call frames. */
1235#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1236
c98f8742 1237/* Register to hold the addressing base for position independent
5b43fed1
RH
1238 code access to data items. We don't use PIC pointer for 64bit
1239 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1240 pessimizing code dealing with EBX.
bd09bdeb
RH
1241
1242 To avoid clobbering a call-saved register unnecessarily, we renumber
1243 the pic register when possible. The change is visible after the
1244 prologue has been emitted. */
1245
e8b5eb25 1246#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1247
bcb21886 1248#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1249 (ix86_use_pseudo_pic_reg () \
1250 ? (pic_offset_table_rtx \
1251 ? INVALID_REGNUM \
1252 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1253 : INVALID_REGNUM)
c98f8742 1254
5fc0e5df
KW
1255#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1256
c51e6d85 1257/* This is overridden by <cygwin.h>. */
5e062767
DS
1258#define MS_AGGREGATE_RETURN 0
1259
61fec9ff 1260#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1261\f
1262/* Define the classes of registers for register constraints in the
1263 machine description. Also define ranges of constants.
1264
1265 One of the classes must always be named ALL_REGS and include all hard regs.
1266 If there is more than one class, another class must be named NO_REGS
1267 and contain no registers.
1268
1269 The name GENERAL_REGS must be the name of a class (or an alias for
1270 another name such as ALL_REGS). This is the class of registers
1271 that is allowed by "g" or "r" in a register constraint.
1272 Also, registers outside this class are allocated only when
1273 instructions express preferences for them.
1274
1275 The classes must be numbered in nondecreasing order; that is,
1276 a larger-numbered class must never be contained completely
2e24efd3
AM
1277 in a smaller-numbered class. This is why CLOBBERED_REGS class
1278 is listed early, even though in 64-bit mode it contains more
1279 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1280
1281 For any two classes, it is very desirable that there be another
ab408a86
JVA
1282 class that represents their union.
1283
1284 It might seem that class BREG is unnecessary, since no useful 386
1285 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1286 and the "b" register constraint is useful in asms for syscalls.
1287
03c259ad 1288 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1289
1290enum reg_class
1291{
1292 NO_REGS,
e075ae69 1293 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1294 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1295 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1296 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1297 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1298 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1299 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1300 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1301 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1302 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1303 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1304 FLOAT_REGS,
06f4e35d 1305 SSE_FIRST_REG,
45392c76 1306 NO_REX_SSE_REGS,
a7180f70 1307 SSE_REGS,
3f97cb0b 1308 EVEX_SSE_REGS,
d5e254e1 1309 BND_REGS,
3f97cb0b 1310 ALL_SSE_REGS,
a7180f70 1311 MMX_REGS,
446988df
JH
1312 FP_TOP_SSE_REGS,
1313 FP_SECOND_SSE_REGS,
1314 FLOAT_SSE_REGS,
1315 FLOAT_INT_REGS,
1316 INT_SSE_REGS,
1317 FLOAT_INT_SSE_REGS,
85a77221
AI
1318 MASK_EVEX_REGS,
1319 MASK_REGS,
5fbb13a7 1320 MOD4_SSE_REGS,
c98f8742
JVA
1321 ALL_REGS, LIM_REG_CLASSES
1322};
1323
d9a5f180
GS
1324#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1325
1326#define INTEGER_CLASS_P(CLASS) \
1327 reg_class_subset_p ((CLASS), GENERAL_REGS)
1328#define FLOAT_CLASS_P(CLASS) \
1329 reg_class_subset_p ((CLASS), FLOAT_REGS)
1330#define SSE_CLASS_P(CLASS) \
3f97cb0b 1331 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1332#define MMX_CLASS_P(CLASS) \
f75959a6 1333 ((CLASS) == MMX_REGS)
4ed04e93
UB
1334#define MASK_CLASS_P(CLASS) \
1335 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1336#define MAYBE_INTEGER_CLASS_P(CLASS) \
1337 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1338#define MAYBE_FLOAT_CLASS_P(CLASS) \
1339 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1340#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1341 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1342#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1343 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1344#define MAYBE_MASK_CLASS_P(CLASS) \
1345 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1346
1347#define Q_CLASS_P(CLASS) \
1348 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1349
0bd72901
UB
1350#define MAYBE_NON_Q_CLASS_P(CLASS) \
1351 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1352
43f3a59d 1353/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1354
1355#define REG_CLASS_NAMES \
1356{ "NO_REGS", \
ab408a86 1357 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1358 "SIREG", "DIREG", \
e075ae69 1359 "AD_REGS", \
2e24efd3 1360 "CLOBBERED_REGS", \
e075ae69 1361 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1362 "TLS_GOTBASE_REGS", \
c98f8742 1363 "INDEX_REGS", \
3f3f2124 1364 "LEGACY_REGS", \
c98f8742
JVA
1365 "GENERAL_REGS", \
1366 "FP_TOP_REG", "FP_SECOND_REG", \
1367 "FLOAT_REGS", \
cb482895 1368 "SSE_FIRST_REG", \
45392c76 1369 "NO_REX_SSE_REGS", \
a7180f70 1370 "SSE_REGS", \
3f97cb0b 1371 "EVEX_SSE_REGS", \
d5e254e1 1372 "BND_REGS", \
3f97cb0b 1373 "ALL_SSE_REGS", \
a7180f70 1374 "MMX_REGS", \
446988df
JH
1375 "FP_TOP_SSE_REGS", \
1376 "FP_SECOND_SSE_REGS", \
1377 "FLOAT_SSE_REGS", \
8fcaaa80 1378 "FLOAT_INT_REGS", \
446988df
JH
1379 "INT_SSE_REGS", \
1380 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1381 "MASK_EVEX_REGS", \
1382 "MASK_REGS", \
cae67b80 1383 "MOD4_SSE_REGS", \
c98f8742
JVA
1384 "ALL_REGS" }
1385
ac2e563f
RH
1386/* Define which registers fit in which classes. This is an initializer
1387 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1388
621bc046
UB
1389 Note that CLOBBERED_REGS are calculated by
1390 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1391
3f97cb0b 1392#define REG_CLASS_CONTENTS \
d5e254e1
IE
1393{ { 0x00, 0x0, 0x0 }, \
1394 { 0x01, 0x0, 0x0 }, /* AREG */ \
1395 { 0x02, 0x0, 0x0 }, /* DREG */ \
1396 { 0x04, 0x0, 0x0 }, /* CREG */ \
1397 { 0x08, 0x0, 0x0 }, /* BREG */ \
1398 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1399 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1400 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1401 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1402 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1403 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1404 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1405 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1406 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1407 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1408 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1409 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1410 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1411 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1412{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1413{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1414 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1415 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1416{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1417{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1418{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1419{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1420{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1421{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1422{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1423{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1424 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1425 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1426{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1427{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1428}
c98f8742
JVA
1429
1430/* The same information, inverted:
1431 Return the class number of the smallest class containing
1432 reg number REGNO. This could be a conditional expression
1433 or could index an array. */
1434
1a6e82b8 1435#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1436
42db504c
SB
1437/* When this hook returns true for MODE, the compiler allows
1438 registers explicitly used in the rtl to be used as spill registers
1439 but prevents the compiler from extending the lifetime of these
1440 registers. */
1441#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1442
fc27f749 1443#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1444#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1445
1446#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1447#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1448
1449#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1450#define REX_INT_REGNO_P(N) \
1451 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1452
58b0b34c 1453#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1454#define GENERAL_REGNO_P(N) \
58b0b34c 1455 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1456
fc27f749
UB
1457#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1458#define ANY_QI_REGNO_P(N) \
1459 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1460
66aaf16f
UB
1461#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1462#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1463
fc27f749 1464#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1465#define SSE_REGNO_P(N) \
1466 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1467 || REX_SSE_REGNO_P (N) \
1468 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1469
4977bab6 1470#define REX_SSE_REGNO_P(N) \
fb84c7a0 1471 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1472
0a48088a
IT
1473#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1474
3f97cb0b
AI
1475#define EXT_REX_SSE_REGNO_P(N) \
1476 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1477
05416670
UB
1478#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1479#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1480
9e4a4dd6 1481#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1482#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1483
fc27f749 1484#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1485#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1486
e075ae69
RH
1487#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1488#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1489
58b0b34c 1490#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1491#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1492
5fbb13a7
KY
1493#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1494#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1495 || (N) == XMM4_REG \
1496 || (N) == XMM8_REG \
1497 || (N) == XMM12_REG \
1498 || (N) == XMM16_REG \
1499 || (N) == XMM20_REG \
1500 || (N) == XMM24_REG \
1501 || (N) == XMM28_REG)
1502
05416670
UB
1503/* First floating point reg */
1504#define FIRST_FLOAT_REG FIRST_STACK_REG
1505#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1506
1507#define SSE_REGNO(N) \
1508 ((N) < 8 ? FIRST_SSE_REG + (N) \
1509 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1510 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1511
c98f8742
JVA
1512/* The class value for index registers, and the one for base regs. */
1513
1514#define INDEX_REG_CLASS INDEX_REGS
1515#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1516\f
1517/* Stack layout; function entry, exit and calling. */
1518
1519/* Define this if pushing a word on the stack
1520 makes the stack pointer a smaller address. */
62f9f30b 1521#define STACK_GROWS_DOWNWARD 1
c98f8742 1522
a4d05547 1523/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1524 is at the high-address end of the local variables;
1525 that is, each additional local variable allocated
1526 goes at a more negative offset in the frame. */
f62c8a5c 1527#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1528
1529/* Offset within stack frame to start allocating local variables at.
1530 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1531 first local allocated. Otherwise, it is the offset to the BEGINNING
1532 of the first local allocated. */
1533#define STARTING_FRAME_OFFSET 0
1534
8c2b2fae
UB
1535/* If we generate an insn to push BYTES bytes, this says how many the stack
1536 pointer really advances by. On 386, we have pushw instruction that
1537 decrements by exactly 2 no matter what the position was, there is no pushb.
1538
1539 But as CIE data alignment factor on this arch is -4 for 32bit targets
1540 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1541 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1542
1a6e82b8 1543#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1544
1545/* If defined, the maximum amount of space required for outgoing arguments
1546 will be computed and placed into the variable `crtl->outgoing_args_size'.
1547 No space will be pushed onto the stack for each call; instead, the
1548 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1549
1550 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1551 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1552 mode the difference is less drastic but visible.
1553
1554 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1555 actually grow with accumulation. Is that because accumulated args
41ee845b 1556 unwind info became unnecesarily bloated?
f830ddc2
RH
1557
1558 With the 64-bit MS ABI, we can generate correct code with or without
1559 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1560 generated without accumulated args is terrible.
41ee845b
JH
1561
1562 If stack probes are required, the space used for large function
1563 arguments on the stack must also be probed, so enable
f8071c05
L
1564 -maccumulate-outgoing-args so this happens in the prologue.
1565
1566 We must use argument accumulation in interrupt function if stack
1567 may be realigned to avoid DRAP. */
f73ad30e 1568
6c6094f1 1569#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1570 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1571 && optimize_function_for_speed_p (cfun)) \
1572 || (cfun->machine->func_type != TYPE_NORMAL \
1573 && crtl->stack_realign_needed) \
1574 || TARGET_STACK_PROBE \
1575 || TARGET_64BIT_MS_ABI \
ff734e26 1576 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1577
1578/* If defined, a C expression whose value is nonzero when we want to use PUSH
1579 instructions to pass outgoing arguments. */
1580
1581#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1582
2da4124d
L
1583/* We want the stack and args grow in opposite directions, even if
1584 PUSH_ARGS is 0. */
1585#define PUSH_ARGS_REVERSED 1
1586
c98f8742
JVA
1587/* Offset of first parameter from the argument pointer register value. */
1588#define FIRST_PARM_OFFSET(FNDECL) 0
1589
a7180f70
BS
1590/* Define this macro if functions should assume that stack space has been
1591 allocated for arguments even when their values are passed in registers.
1592
1593 The value of this macro is the size, in bytes, of the area reserved for
1594 arguments passed in registers for the function represented by FNDECL.
1595
1596 This space can be allocated by the caller, or be a part of the
1597 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1598 which. */
7c800926
KT
1599#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1600
4ae8027b 1601#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1602 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1603
c98f8742
JVA
1604/* Define how to find the value returned by a library function
1605 assuming the value has mode MODE. */
1606
4ae8027b 1607#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1608
e9125c09
TW
1609/* Define the size of the result block used for communication between
1610 untyped_call and untyped_return. The block contains a DImode value
1611 followed by the block used by fnsave and frstor. */
1612
1613#define APPLY_RESULT_SIZE (8+108)
1614
b08de47e 1615/* 1 if N is a possible register number for function argument passing. */
53c17031 1616#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1617
1618/* Define a data type for recording info about an argument list
1619 during the scan of that argument list. This data type should
1620 hold all necessary information about the function itself
1621 and about the args processed so far, enough to enable macros
b08de47e 1622 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1623
e075ae69 1624typedef struct ix86_args {
fa283935 1625 int words; /* # words passed so far */
b08de47e
MM
1626 int nregs; /* # registers available for passing */
1627 int regno; /* next available register number */
3e65f251
KT
1628 int fastcall; /* fastcall or thiscall calling convention
1629 is used */
fa283935 1630 int sse_words; /* # sse words passed so far */
a7180f70 1631 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1632 int warn_avx512f; /* True when we want to warn
1633 about AVX512F ABI. */
95879c72 1634 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1635 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1636 int warn_mmx; /* True when we want to warn about MMX ABI. */
1637 int sse_regno; /* next available sse register number */
1638 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1639 int mmx_nregs; /* # mmx registers available for passing */
1640 int mmx_regno; /* next available mmx register number */
892a2d68 1641 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1642 int caller; /* true if it is caller. */
2824d6e5
UB
1643 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1644 SFmode/DFmode arguments should be passed
1645 in SSE registers. Otherwise 0. */
d5e254e1
IE
1646 int bnd_regno; /* next available bnd register number */
1647 int bnds_in_bt; /* number of bounds expected in BT. */
1648 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1649 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1650 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1651 MS_ABI for ms abi. */
e66fc623 1652 tree decl; /* Callee decl. */
b08de47e 1653} CUMULATIVE_ARGS;
c98f8742
JVA
1654
1655/* Initialize a variable CUM of type CUMULATIVE_ARGS
1656 for a call to a function whose data type is FNTYPE.
b08de47e 1657 For a library call, FNTYPE is 0. */
c98f8742 1658
0f6937fe 1659#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1660 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1661 (N_NAMED_ARGS) != -1)
c98f8742 1662
c98f8742
JVA
1663/* Output assembler code to FILE to increment profiler label # LABELNO
1664 for profiling a function entry. */
1665
1a6e82b8
UB
1666#define FUNCTION_PROFILER(FILE, LABELNO) \
1667 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1668
1669#define MCOUNT_NAME "_mcount"
1670
3c5273a9
KT
1671#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1672
a5fa1ecd 1673#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1674
1675/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1676 the stack pointer does not matter. The value is tested only in
1677 functions that have frame pointers.
1678 No definition is equivalent to always zero. */
fce5a9f2 1679/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1680 we have to restore it ourselves from the frame pointer, in order to
1681 use pop */
1682
1683#define EXIT_IGNORE_STACK 1
1684
f8071c05
L
1685/* Define this macro as a C expression that is nonzero for registers
1686 used by the epilogue or the `return' pattern. */
1687
1688#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1689
c98f8742
JVA
1690/* Output assembler code for a block containing the constant parts
1691 of a trampoline, leaving space for the variable parts. */
1692
a269a03c 1693/* On the 386, the trampoline contains two instructions:
c98f8742 1694 mov #STATIC,ecx
a269a03c
JC
1695 jmp FUNCTION
1696 The trampoline is generated entirely at runtime. The operand of JMP
1697 is the address of FUNCTION relative to the instruction following the
1698 JMP (which is 5 bytes long). */
c98f8742
JVA
1699
1700/* Length in units of the trampoline for entering a nested function. */
1701
3452586b 1702#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1703\f
1704/* Definitions for register eliminations.
1705
1706 This is an array of structures. Each structure initializes one pair
1707 of eliminable registers. The "from" register number is given first,
1708 followed by "to". Eliminations of the same "from" register are listed
1709 in order of preference.
1710
afc2cd05
NC
1711 There are two registers that can always be eliminated on the i386.
1712 The frame pointer and the arg pointer can be replaced by either the
1713 hard frame pointer or to the stack pointer, depending upon the
1714 circumstances. The hard frame pointer is not used before reload and
1715 so it is not eligible for elimination. */
c98f8742 1716
564d80f4
JH
1717#define ELIMINABLE_REGS \
1718{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1719 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1720 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1721 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1722
c98f8742
JVA
1723/* Define the offset between two registers, one to be eliminated, and the other
1724 its replacement, at the start of a routine. */
1725
d9a5f180
GS
1726#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1727 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1728\f
1729/* Addressing modes, and classification of registers for them. */
1730
c98f8742
JVA
1731/* Macros to check register numbers against specific register classes. */
1732
1733/* These assume that REGNO is a hard or pseudo reg number.
1734 They give nonzero only if REGNO is a hard reg of the suitable class
1735 or a pseudo reg currently allocated to a suitable hard reg.
1736 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1737 has been allocated, which happens in reginfo.c during register
1738 allocation. */
c98f8742 1739
3f3f2124
JH
1740#define REGNO_OK_FOR_INDEX_P(REGNO) \
1741 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1742 || REX_INT_REGNO_P (REGNO) \
1743 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1744 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1745
3f3f2124 1746#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1747 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1748 || (REGNO) == ARG_POINTER_REGNUM \
1749 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1750 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1751
c98f8742
JVA
1752/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1753 and check its validity for a certain class.
1754 We have two alternate definitions for each of them.
1755 The usual definition accepts all pseudo regs; the other rejects
1756 them unless they have been allocated suitable hard regs.
1757 The symbol REG_OK_STRICT causes the latter definition to be used.
1758
1759 Most source files want to accept pseudo regs in the hope that
1760 they will get allocated to the class that the insn wants them to be in.
1761 Source files for reload pass need to be strict.
1762 After reload, it makes no difference, since pseudo regs have
1763 been eliminated by then. */
1764
c98f8742 1765
ff482c8d 1766/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1767#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1768 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1769 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1770 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1771
3b3c6a3f 1772#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1773 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1774 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1775 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1776 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1777
3b3c6a3f
MM
1778/* Strict versions, hard registers only */
1779#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1780#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1781
3b3c6a3f 1782#ifndef REG_OK_STRICT
d9a5f180
GS
1783#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1784#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1785
1786#else
d9a5f180
GS
1787#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1788#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1789#endif
1790
331d9186 1791/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1792 that is a valid memory address for an instruction.
1793 The MODE argument is the machine mode for the MEM expression
1794 that wants to use this address.
1795
331d9186 1796 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1797 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1798
1799 See legitimize_pic_address in i386.c for details as to what
1800 constitutes a legitimate address when -fpic is used. */
1801
1802#define MAX_REGS_PER_ADDRESS 2
1803
f996902d 1804#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1805
b949ea8b
JW
1806/* If defined, a C expression to determine the base term of address X.
1807 This macro is used in only one place: `find_base_term' in alias.c.
1808
1809 It is always safe for this macro to not be defined. It exists so
1810 that alias analysis can understand machine-dependent addresses.
1811
1812 The typical use of this macro is to handle addresses containing
1813 a label_ref or symbol_ref within an UNSPEC. */
1814
d9a5f180 1815#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1816
c98f8742 1817/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1818 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1819 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1820
f996902d 1821#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1822
1823#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1824 (GET_CODE (X) == SYMBOL_REF \
1825 || GET_CODE (X) == LABEL_REF \
1826 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1827\f
b08de47e
MM
1828/* Max number of args passed in registers. If this is more than 3, we will
1829 have problems with ebx (register #4), since it is a caller save register and
1830 is also used as the pic register in ELF. So for now, don't allow more than
1831 3 registers to be passed in registers. */
1832
7c800926
KT
1833/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1834#define X86_64_REGPARM_MAX 6
72fa3605 1835#define X86_64_MS_REGPARM_MAX 4
7c800926 1836
72fa3605 1837#define X86_32_REGPARM_MAX 3
7c800926 1838
4ae8027b 1839#define REGPARM_MAX \
2824d6e5
UB
1840 (TARGET_64BIT \
1841 ? (TARGET_64BIT_MS_ABI \
1842 ? X86_64_MS_REGPARM_MAX \
1843 : X86_64_REGPARM_MAX) \
4ae8027b 1844 : X86_32_REGPARM_MAX)
d2836273 1845
72fa3605
UB
1846#define X86_64_SSE_REGPARM_MAX 8
1847#define X86_64_MS_SSE_REGPARM_MAX 4
1848
b6010cab 1849#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1850
4ae8027b 1851#define SSE_REGPARM_MAX \
2824d6e5
UB
1852 (TARGET_64BIT \
1853 ? (TARGET_64BIT_MS_ABI \
1854 ? X86_64_MS_SSE_REGPARM_MAX \
1855 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1856 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1857
1858#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1859\f
1860/* Specify the machine mode that this machine uses
1861 for the index in the tablejump instruction. */
dc4d7240 1862#define CASE_VECTOR_MODE \
6025b127 1863 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1864
c98f8742
JVA
1865/* Define this as 1 if `char' should by default be signed; else as 0. */
1866#define DEFAULT_SIGNED_CHAR 1
1867
1868/* Max number of bytes we can move from memory to memory
1869 in one reasonably fast instruction. */
65d9c0ab
JH
1870#define MOVE_MAX 16
1871
1872/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1873 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1874 number of bytes we can move with a single instruction.
1875
1876 ??? We should use TImode in 32-bit mode and use OImode or XImode
1877 if they are available. But since by_pieces_ninsns determines the
1878 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1879 64-bit mode. */
1880#define MOVE_MAX_PIECES \
1881 ((TARGET_64BIT \
1882 && TARGET_SSE2 \
1883 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1884 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1885 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1886
7e24ffc9 1887/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1888 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1889 Increasing the value will always make code faster, but eventually
1890 incurs high cost in increased code size.
c98f8742 1891
e2e52e1b 1892 If you don't define this, a reasonable default is used. */
c98f8742 1893
e04ad03d 1894#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1895
45d78e7f
JJ
1896/* If a clear memory operation would take CLEAR_RATIO or more simple
1897 move-instruction sequences, we will do a clrmem or libcall instead. */
1898
e04ad03d 1899#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1900
53f00dde
UB
1901/* Define if shifts truncate the shift count which implies one can
1902 omit a sign-extension or zero-extension of a shift count.
1903
1904 On i386, shifts do truncate the count. But bit test instructions
1905 take the modulo of the bit offset operand. */
c98f8742
JVA
1906
1907/* #define SHIFT_COUNT_TRUNCATED */
1908
d9f32422
JH
1909/* A macro to update M and UNSIGNEDP when an object whose type is
1910 TYPE and which has the specified mode and signedness is to be
1911 stored in a register. This macro is only called when TYPE is a
1912 scalar type.
1913
f710504c 1914 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1915 quantities to SImode. The choice depends on target type. */
1916
1917#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1918do { \
d9f32422
JH
1919 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1920 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1921 (MODE) = SImode; \
1922} while (0)
d9f32422 1923
c98f8742
JVA
1924/* Specify the machine mode that pointers have.
1925 After generation of rtl, the compiler makes no further distinction
1926 between pointers and any other objects of this machine mode. */
28968d91 1927#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1928
d5e254e1
IE
1929/* Specify the machine mode that bounds have. */
1930#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1931
f0ea7581
L
1932/* A C expression whose value is zero if pointers that need to be extended
1933 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1934 greater then zero if they are zero-extended and less then zero if the
1935 ptr_extend instruction should be used. */
1936
1937#define POINTERS_EXTEND_UNSIGNED 1
1938
c98f8742
JVA
1939/* A function address in a call instruction
1940 is a byte address (for indexing purposes)
1941 so give the MEM rtx a byte's mode. */
1942#define FUNCTION_MODE QImode
d4ba09c0 1943\f
d4ba09c0 1944
d4ba09c0
SC
1945/* A C expression for the cost of a branch instruction. A value of 1
1946 is the default; other values are interpreted relative to that. */
1947
3a4fd356
JH
1948#define BRANCH_COST(speed_p, predictable_p) \
1949 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1950
e327d1a3
L
1951/* An integer expression for the size in bits of the largest integer machine
1952 mode that should actually be used. We allow pairs of registers. */
1953#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1954
d4ba09c0
SC
1955/* Define this macro as a C expression which is nonzero if accessing
1956 less than a word of memory (i.e. a `char' or a `short') is no
1957 faster than accessing a word of memory, i.e., if such access
1958 require more than one instruction or if there is no difference in
1959 cost between byte and (aligned) word loads.
1960
1961 When this macro is not defined, the compiler will access a field by
1962 finding the smallest containing object; when it is defined, a
1963 fullword load will be used if alignment permits. Unless bytes
1964 accesses are faster than word accesses, using word accesses is
1965 preferable since it may eliminate subsequent memory access if
1966 subsequent accesses occur to other fields in the same word of the
1967 structure, but to different bytes. */
1968
1969#define SLOW_BYTE_ACCESS 0
1970
1971/* Nonzero if access to memory by shorts is slow and undesirable. */
1972#define SLOW_SHORT_ACCESS 0
1973
d4ba09c0
SC
1974/* Define this macro if it is as good or better to call a constant
1975 function address than to call an address kept in a register.
1976
1977 Desirable on the 386 because a CALL with a constant address is
1978 faster than one with a register address. */
1979
1e8552c2 1980#define NO_FUNCTION_CSE 1
c98f8742 1981\f
c572e5ba
JVA
1982/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1983 return the mode to be used for the comparison.
1984
1985 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1986 VOIDmode should be used in all other cases.
c572e5ba 1987
16189740 1988 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1989 possible, to allow for more combinations. */
c98f8742 1990
d9a5f180 1991#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1992
9cd10576 1993/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1994 reversed. */
1995
1996#define REVERSIBLE_CC_MODE(MODE) 1
1997
1998/* A C expression whose value is reversed condition code of the CODE for
1999 comparison done in CC_MODE mode. */
3c5cb3e4 2000#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2001
c98f8742
JVA
2002\f
2003/* Control the assembler format that we output, to the extent
2004 this does not vary between assemblers. */
2005
2006/* How to refer to registers in assembler output.
892a2d68 2007 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2008
a7b376ee 2009/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2010 For non floating point regs, the following are the HImode names.
2011
2012 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2013 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2014 "y" code. */
c98f8742 2015
a7180f70
BS
2016#define HI_REGISTER_NAMES \
2017{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2018 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2019 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2020 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2021 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2022 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2023 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2024 "xmm16", "xmm17", "xmm18", "xmm19", \
2025 "xmm20", "xmm21", "xmm22", "xmm23", \
2026 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2027 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2028 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2029 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2030
c98f8742
JVA
2031#define REGISTER_NAMES HI_REGISTER_NAMES
2032
2033/* Table of additional register names to use in user input. */
2034
2035#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2036{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2037 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2038 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2039 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2040 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2041 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2042 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2043 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2044 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2045 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2046 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2047 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2048 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2049 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2050 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2051 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2052 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2053 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2054 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2055 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2056 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2057 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2058
2059/* Note we are omitting these since currently I don't know how
2060to get gcc to use these, since they want the same but different
2061number as al, and ax.
2062*/
2063
c98f8742 2064#define QI_REGISTER_NAMES \
3f3f2124 2065{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2066
2067/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2068 of regs 0 through 3. */
c98f8742
JVA
2069
2070#define QI_HIGH_REGISTER_NAMES \
2071{"ah", "dh", "ch", "bh", }
2072
2073/* How to renumber registers for dbx and gdb. */
2074
d9a5f180
GS
2075#define DBX_REGISTER_NUMBER(N) \
2076 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2077
9a82e702
MS
2078extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2079extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2080extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2081
469ac993
JM
2082/* Before the prologue, RA is at 0(%esp). */
2083#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2084 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2085
e414ab29 2086/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2087#define RETURN_ADDR_RTX(COUNT, FRAME) \
2088 ((COUNT) == 0 \
2089 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2090 -UNITS_PER_WORD)) \
2091 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2092
892a2d68 2093/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2094#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2095
a10b3cf1
L
2096/* Before the prologue, there are return address and error code for
2097 exception handler on the top of the frame. */
2098#define INCOMING_FRAME_SP_OFFSET \
2099 (cfun->machine->func_type == TYPE_EXCEPTION \
2100 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2101
1020a5ab 2102/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2103#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2104#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2105
ad919812 2106
e4c4ebeb
RH
2107/* Select a format to encode pointers in exception handling data. CODE
2108 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2109 true if the symbol may be affected by dynamic relocations.
2110
2111 ??? All x86 object file formats are capable of representing this.
2112 After all, the relocation needed is the same as for the call insn.
2113 Whether or not a particular assembler allows us to enter such, I
2114 guess we'll have to see. */
d9a5f180 2115#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2116 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2117
ec1895c1
UB
2118/* These are a couple of extensions to the formats accepted
2119 by asm_fprintf:
2120 %z prints out opcode suffix for word-mode instruction
2121 %r prints out word-mode name for reg_names[arg] */
2122#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2123 case 'z': \
2124 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2125 break; \
2126 \
2127 case 'r': \
2128 { \
2129 unsigned int regno = va_arg ((ARGS), int); \
2130 if (LEGACY_INT_REGNO_P (regno)) \
2131 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2132 fputs (reg_names[regno], (FILE)); \
2133 break; \
2134 }
2135
2136/* This is how to output an insn to push a register on the stack. */
2137
2138#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2139 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2140
2141/* This is how to output an insn to pop a register from the stack. */
c98f8742 2142
d9a5f180 2143#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2144 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2145
f88c65f7 2146/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2147
2148#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2149 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2150
f88c65f7 2151/* This is how to output an element of a case-vector that is relative. */
c98f8742 2152
33f7f353 2153#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2154 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2155
63001560 2156/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2157
2158#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2159{ \
2160 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2161 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2162}
2163
2164/* A C statement or statements which output an assembler instruction
2165 opcode to the stdio stream STREAM. The macro-operand PTR is a
2166 variable of type `char *' which points to the opcode name in
2167 its "internal" form--the form that is written in the machine
2168 description. */
2169
2170#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2171 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2172
6a90d232
L
2173/* A C statement to output to the stdio stream FILE an assembler
2174 command to pad the location counter to a multiple of 1<<LOG
2175 bytes if it is within MAX_SKIP bytes. */
2176
2177#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2178#undef ASM_OUTPUT_MAX_SKIP_PAD
2179#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2180 if ((LOG) != 0) \
2181 { \
2182 if ((MAX_SKIP) == 0) \
2183 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2184 else \
2185 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2186 }
2187#endif
2188
135a687e
KT
2189/* Write the extra assembler code needed to declare a function
2190 properly. */
2191
2192#undef ASM_OUTPUT_FUNCTION_LABEL
2193#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2194 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2195
f7288899
EC
2196/* Under some conditions we need jump tables in the text section,
2197 because the assembler cannot handle label differences between
2198 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2199
2200#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2201 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2202 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2203
cea3bd3e
RH
2204/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2205 and switch back. For x86 we do this only to save a few bytes that
2206 would otherwise be unused in the text section. */
ad211091
KT
2207#define CRT_MKSTR2(VAL) #VAL
2208#define CRT_MKSTR(x) CRT_MKSTR2(x)
2209
2210#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2211 asm (SECTION_OP "\n\t" \
2212 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2213 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2214
2215/* Default threshold for putting data in large sections
2216 with x86-64 medium memory model */
2217#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2218
2219/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2220
2221#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2222do { \
2223 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2224 && get_attr_maybe_prefix_bnd (INSN)) \
2225 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2226} while (0)
74b42c8b 2227\f
b97de419
L
2228/* Which processor to tune code generation for. These must be in sync
2229 with processor_target_table in i386.c. */
5bf0ebab
RH
2230
2231enum processor_type
2232{
b97de419
L
2233 PROCESSOR_GENERIC = 0,
2234 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2235 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2236 PROCESSOR_PENTIUM,
2d6b2e28 2237 PROCESSOR_LAKEMONT,
5bf0ebab 2238 PROCESSOR_PENTIUMPRO,
5bf0ebab 2239 PROCESSOR_PENTIUM4,
89c43c0a 2240 PROCESSOR_NOCONA,
340ef734 2241 PROCESSOR_CORE2,
d3c11974
L
2242 PROCESSOR_NEHALEM,
2243 PROCESSOR_SANDYBRIDGE,
3a579e09 2244 PROCESSOR_HASWELL,
d3c11974
L
2245 PROCESSOR_BONNELL,
2246 PROCESSOR_SILVERMONT,
52747219 2247 PROCESSOR_KNL,
cace2309 2248 PROCESSOR_KNM,
06caf59d 2249 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2250 PROCESSOR_INTEL,
b97de419
L
2251 PROCESSOR_GEODE,
2252 PROCESSOR_K6,
2253 PROCESSOR_ATHLON,
2254 PROCESSOR_K8,
21efb4d4 2255 PROCESSOR_AMDFAM10,
1133125e 2256 PROCESSOR_BDVER1,
4d652a18 2257 PROCESSOR_BDVER2,
eb2f2b44 2258 PROCESSOR_BDVER3,
ed97ad47 2259 PROCESSOR_BDVER4,
14b52538 2260 PROCESSOR_BTVER1,
e32bfc16 2261 PROCESSOR_BTVER2,
9ce29eb0 2262 PROCESSOR_ZNVER1,
5bf0ebab
RH
2263 PROCESSOR_max
2264};
2265
9e555526 2266extern enum processor_type ix86_tune;
5bf0ebab 2267extern enum processor_type ix86_arch;
5bf0ebab 2268
8362f420
JH
2269/* Size of the RED_ZONE area. */
2270#define RED_ZONE_SIZE 128
2271/* Reserved area of the red zone for temporaries. */
2272#define RED_ZONE_RESERVE 8
c93e80a5 2273
95899b34 2274extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2275extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2276
2277/* Smallest class containing REGNO. */
2278extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2279
0948ccb2
PB
2280enum ix86_fpcmp_strategy {
2281 IX86_FPCMP_SAHF,
2282 IX86_FPCMP_COMI,
2283 IX86_FPCMP_ARITH
2284};
22fb740d
JH
2285\f
2286/* To properly truncate FP values into integers, we need to set i387 control
2287 word. We can't emit proper mode switching code before reload, as spills
2288 generated by reload may truncate values incorrectly, but we still can avoid
2289 redundant computation of new control word by the mode switching pass.
2290 The fldcw instructions are still emitted redundantly, but this is probably
2291 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2292 the sequence.
22fb740d
JH
2293
2294 The machinery is to emit simple truncation instructions and split them
2295 before reload to instructions having USEs of two memory locations that
2296 are filled by this code to old and new control word.
fce5a9f2 2297
22fb740d
JH
2298 Post-reload pass may be later used to eliminate the redundant fildcw if
2299 needed. */
2300
c7ca8ef8
UB
2301enum ix86_stack_slot
2302{
2303 SLOT_TEMP = 0,
2304 SLOT_CW_STORED,
2305 SLOT_CW_TRUNC,
2306 SLOT_CW_FLOOR,
2307 SLOT_CW_CEIL,
2308 SLOT_CW_MASK_PM,
80008279 2309 SLOT_STV_TEMP,
c7ca8ef8
UB
2310 MAX_386_STACK_LOCALS
2311};
2312
ff680eb1
UB
2313enum ix86_entity
2314{
c7ca8ef8
UB
2315 X86_DIRFLAG = 0,
2316 AVX_U128,
ff97910d 2317 I387_TRUNC,
ff680eb1
UB
2318 I387_FLOOR,
2319 I387_CEIL,
2320 I387_MASK_PM,
2321 MAX_386_ENTITIES
2322};
2323
c7ca8ef8 2324enum x86_dirflag_state
ff680eb1 2325{
c7ca8ef8
UB
2326 X86_DIRFLAG_RESET,
2327 X86_DIRFLAG_ANY
ff680eb1 2328};
22fb740d 2329
ff97910d
VY
2330enum avx_u128_state
2331{
2332 AVX_U128_CLEAN,
2333 AVX_U128_DIRTY,
2334 AVX_U128_ANY
2335};
2336
22fb740d
JH
2337/* Define this macro if the port needs extra instructions inserted
2338 for mode switching in an optimizing compilation. */
2339
ff680eb1
UB
2340#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2341 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2342
2343/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2344 initializer for an array of integers. Each initializer element N
2345 refers to an entity that needs mode switching, and specifies the
2346 number of different modes that might need to be set for this
2347 entity. The position of the initializer in the initializer -
2348 starting counting at zero - determines the integer that is used to
2349 refer to the mode-switched entity in question. */
2350
c7ca8ef8
UB
2351#define NUM_MODES_FOR_MODE_SWITCHING \
2352 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2353 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2354
0f0138b6
JH
2355\f
2356/* Avoid renaming of stack registers, as doing so in combination with
2357 scheduling just increases amount of live registers at time and in
2358 the turn amount of fxch instructions needed.
2359
3f97cb0b
AI
2360 ??? Maybe Pentium chips benefits from renaming, someone can try....
2361
2362 Don't rename evex to non-evex sse registers. */
0f0138b6 2363
1a6e82b8
UB
2364#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2365 (!STACK_REGNO_P (SRC) \
2366 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2367
3b3c6a3f 2368\f
e91f04de 2369#define FASTCALL_PREFIX '@'
fa1a0d02 2370\f
77560086
BE
2371#ifndef USED_FOR_TARGET
2372/* Structure describing stack frame layout.
2373 Stack grows downward:
2374
2375 [arguments]
2376 <- ARG_POINTER
2377 saved pc
2378
2379 saved static chain if ix86_static_chain_on_stack
2380
2381 saved frame pointer if frame_pointer_needed
2382 <- HARD_FRAME_POINTER
2383 [saved regs]
2384 <- reg_save_offset
2385 [padding0]
2386 <- stack_realign_offset
2387 [saved SSE regs]
2388 OR
2389 [stub-saved registers for ms x64 --> sysv clobbers
2390 <- Start of out-of-line, stub-saved/restored regs
2391 (see libgcc/config/i386/(sav|res)ms64*.S)
2392 [XMM6-15]
2393 [RSI]
2394 [RDI]
2395 [?RBX] only if RBX is clobbered
2396 [?RBP] only if RBP and RBX are clobbered
2397 [?R12] only if R12 and all previous regs are clobbered
2398 [?R13] only if R13 and all previous regs are clobbered
2399 [?R14] only if R14 and all previous regs are clobbered
2400 [?R15] only if R15 and all previous regs are clobbered
2401 <- end of stub-saved/restored regs
2402 [padding1]
2403 ]
5d9d834d 2404 <- sse_reg_save_offset
77560086
BE
2405 [padding2]
2406 | <- FRAME_POINTER
2407 [va_arg registers] |
2408 |
2409 [frame] |
2410 |
2411 [padding2] | = to_allocate
2412 <- STACK_POINTER
2413 */
2414struct GTY(()) ix86_frame
2415{
2416 int nsseregs;
2417 int nregs;
2418 int va_arg_size;
2419 int red_zone_size;
2420 int outgoing_arguments_size;
2421
2422 /* The offsets relative to ARG_POINTER. */
2423 HOST_WIDE_INT frame_pointer_offset;
2424 HOST_WIDE_INT hard_frame_pointer_offset;
2425 HOST_WIDE_INT stack_pointer_offset;
2426 HOST_WIDE_INT hfp_save_offset;
2427 HOST_WIDE_INT reg_save_offset;
122f9da1 2428 HOST_WIDE_INT stack_realign_allocate;
77560086 2429 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2430 HOST_WIDE_INT sse_reg_save_offset;
2431
2432 /* When save_regs_using_mov is set, emit prologue using
2433 move instead of push instructions. */
2434 bool save_regs_using_mov;
2435};
2436
122f9da1
DS
2437/* Machine specific frame tracking during prologue/epilogue generation. All
2438 values are positive, but since the x86 stack grows downward, are subtratced
2439 from the CFA to produce a valid address. */
cd9c1ca8 2440
ec7ded37 2441struct GTY(()) machine_frame_state
cd9c1ca8 2442{
ec7ded37
RH
2443 /* This pair tracks the currently active CFA as reg+offset. When reg
2444 is drap_reg, we don't bother trying to record here the real CFA when
2445 it might really be a DW_CFA_def_cfa_expression. */
2446 rtx cfa_reg;
2447 HOST_WIDE_INT cfa_offset;
2448
2449 /* The current offset (canonically from the CFA) of ESP and EBP.
2450 When stack frame re-alignment is active, these may not be relative
2451 to the CFA. However, in all cases they are relative to the offsets
2452 of the saved registers stored in ix86_frame. */
2453 HOST_WIDE_INT sp_offset;
2454 HOST_WIDE_INT fp_offset;
2455
2456 /* The size of the red-zone that may be assumed for the purposes of
2457 eliding register restore notes in the epilogue. This may be zero
2458 if no red-zone is in effect, or may be reduced from the real
2459 red-zone value by a maximum runtime stack re-alignment value. */
2460 int red_zone_offset;
2461
2462 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2463 value within the frame. If false then the offset above should be
2464 ignored. Note that DRAP, if valid, *always* points to the CFA and
2465 thus has an offset of zero. */
2466 BOOL_BITFIELD sp_valid : 1;
2467 BOOL_BITFIELD fp_valid : 1;
2468 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2469
2470 /* Indicate whether the local stack frame has been re-aligned. When
2471 set, the SP/FP offsets above are relative to the aligned frame
2472 and not the CFA. */
2473 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2474
2475 /* Indicates whether the stack pointer has been re-aligned. When set,
2476 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2477 should only be used for offsets > sp_realigned_offset, while
2478 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2479 The flags realigned and sp_realigned are mutually exclusive. */
2480 BOOL_BITFIELD sp_realigned : 1;
2481
122f9da1
DS
2482 /* If sp_realigned is set, this is the last valid offset from the CFA
2483 that can be used for access with the frame pointer. */
2484 HOST_WIDE_INT sp_realigned_fp_last;
2485
2486 /* If sp_realigned is set, this is the offset from the CFA that the stack
2487 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2488 Access via the stack pointer is only valid for offsets that are greater than
2489 this value. */
d6d4d770 2490 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2491};
2492
f81c9774
RH
2493/* Private to winnt.c. */
2494struct seh_frame_state;
2495
f8071c05
L
2496enum function_type
2497{
2498 TYPE_UNKNOWN = 0,
2499 TYPE_NORMAL,
2500 /* The current function is an interrupt service routine with a
2501 pointer argument as specified by the "interrupt" attribute. */
2502 TYPE_INTERRUPT,
2503 /* The current function is an interrupt service routine with a
2504 pointer argument and an integer argument as specified by the
2505 "interrupt" attribute. */
2506 TYPE_EXCEPTION
2507};
2508
d1b38208 2509struct GTY(()) machine_function {
fa1a0d02 2510 struct stack_local_entry *stack_locals;
4aab97f9
L
2511 int varargs_gpr_size;
2512 int varargs_fpr_size;
ff680eb1 2513 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2514
77560086
BE
2515 /* Cached initial frame layout for the current function. */
2516 struct ix86_frame frame;
3452586b 2517
7458026b
ILT
2518 /* For -fsplit-stack support: A stack local which holds a pointer to
2519 the stack arguments for a function with a variable number of
2520 arguments. This is set at the start of the function and is used
2521 to initialize the overflow_arg_area field of the va_list
2522 structure. */
2523 rtx split_stack_varargs_pointer;
2524
3452586b
RH
2525 /* This value is used for amd64 targets and specifies the current abi
2526 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2527 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2528
2529 /* Nonzero if the function accesses a previous frame. */
2530 BOOL_BITFIELD accesses_prev_frame : 1;
2531
922e3e33
UB
2532 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2533 expander to determine the style used. */
3452586b
RH
2534 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2535
1e4490dc
UB
2536 /* Nonzero if the current function calls pc thunk and
2537 must not use the red zone. */
2538 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2539
5bf5a10b
AO
2540 /* If true, the current function needs the default PIC register, not
2541 an alternate register (on x86) and must not use the red zone (on
2542 x86_64), even if it's a leaf function. We don't want the
2543 function to be regarded as non-leaf because TLS calls need not
2544 affect register allocation. This flag is set when a TLS call
2545 instruction is expanded within a function, and never reset, even
2546 if all such instructions are optimized away. Use the
2547 ix86_current_function_calls_tls_descriptor macro for a better
2548 approximation. */
3452586b
RH
2549 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2550
2551 /* If true, the current function has a STATIC_CHAIN is placed on the
2552 stack below the return address. */
2553 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2554
529a6471
JJ
2555 /* If true, it is safe to not save/restore DRAP register. */
2556 BOOL_BITFIELD no_drap_save_restore : 1;
2557
f8071c05
L
2558 /* Function type. */
2559 ENUM_BITFIELD(function_type) func_type : 2;
2560
2561 /* If true, the current function is a function specified with
2562 the "interrupt" or "no_caller_saved_registers" attribute. */
2563 BOOL_BITFIELD no_caller_saved_registers : 1;
2564
a0ff7835
L
2565 /* If true, there is register available for argument passing. This
2566 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2567 if there is scratch register available for indirect sibcall. In
2568 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2569 pass arguments and can be used for indirect sibcall. */
2570 BOOL_BITFIELD arg_reg_available : 1;
2571
d6d4d770 2572 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2573 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2574 BOOL_BITFIELD call_ms2sysv : 1;
2575
2576 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2577 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2578 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2579
d6d4d770
DS
2580 /* This is the number of extra registers saved by stub (valid range is
2581 0-6). Each additional register is only saved/restored by the stubs
2582 if all successive ones are. (Will always be zero when using a hard
2583 frame pointer.) */
2584 unsigned int call_ms2sysv_extra_regs:3;
2585
35c95658
L
2586 /* Nonzero if the function places outgoing arguments on stack. */
2587 BOOL_BITFIELD outgoing_args_on_stack : 1;
2588
ec7ded37
RH
2589 /* During prologue/epilogue generation, the current frame state.
2590 Otherwise, the frame state at the end of the prologue. */
2591 struct machine_frame_state fs;
f81c9774
RH
2592
2593 /* During SEH output, this is non-null. */
2594 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2595};
cd9c1ca8 2596#endif
fa1a0d02
JH
2597
2598#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2599#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2600#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2601#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2602#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2603#define ix86_tls_descriptor_calls_expanded_in_cfun \
2604 (cfun->machine->tls_descriptor_call_expanded_p)
2605/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2606 calls are optimized away, we try to detect cases in which it was
2607 optimized away. Since such instructions (use (reg REG_SP)), we can
2608 verify whether there's any such instruction live by testing that
2609 REG_SP is live. */
2610#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2611 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2612#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2613#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2614
1bc7c5b6
ZW
2615/* Control behavior of x86_file_start. */
2616#define X86_FILE_START_VERSION_DIRECTIVE false
2617#define X86_FILE_START_FLTUSED false
2618
7dcbf659
JH
2619/* Flag to mark data that is in the large address area. */
2620#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2621#define SYMBOL_REF_FAR_ADDR_P(X) \
2622 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2623
2624/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2625 have defined always, to avoid ifdefing. */
2626#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2627#define SYMBOL_REF_DLLIMPORT_P(X) \
2628 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2629
2630#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2631#define SYMBOL_REF_DLLEXPORT_P(X) \
2632 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2633
82c0e1a0
KT
2634#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2635#define SYMBOL_REF_STUBVAR_P(X) \
2636 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2637
7942e47e
RY
2638extern void debug_ready_dispatch (void);
2639extern void debug_dispatch_window (int);
2640
91afcfa3
QN
2641/* The value at zero is only defined for the BMI instructions
2642 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2643#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2644 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2645#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2646 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2647
2648
b8ce4e94
KT
2649/* Flags returned by ix86_get_callcvt (). */
2650#define IX86_CALLCVT_CDECL 0x1
2651#define IX86_CALLCVT_STDCALL 0x2
2652#define IX86_CALLCVT_FASTCALL 0x4
2653#define IX86_CALLCVT_THISCALL 0x8
2654#define IX86_CALLCVT_REGPARM 0x10
2655#define IX86_CALLCVT_SSEREGPARM 0x20
2656
2657#define IX86_BASE_CALLCVT(FLAGS) \
2658 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2659 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2660
b86b9f44
MM
2661#define RECIP_MASK_NONE 0x00
2662#define RECIP_MASK_DIV 0x01
2663#define RECIP_MASK_SQRT 0x02
2664#define RECIP_MASK_VEC_DIV 0x04
2665#define RECIP_MASK_VEC_SQRT 0x08
2666#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2667 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2668#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2669
2670#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2671#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2672#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2673#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2674
5dcfdccd
KY
2675#define IX86_HLE_ACQUIRE (1 << 16)
2676#define IX86_HLE_RELEASE (1 << 17)
2677
e83b8e2e
JJ
2678/* For switching between functions with different target attributes. */
2679#define SWITCHABLE_TARGET 1
2680
44d0de8d
UB
2681#define TARGET_SUPPORTS_WIDE_INT 1
2682
c98f8742
JVA
2683/*
2684Local variables:
2685version-control: t
2686End:
2687*/