]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
configure.in: FORBUILD when build!=host changed from ../$build-alias to ../build...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
e075ae69 1/* Definitions of target machine for GNU compiler for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d9a5f180 3 2001, 2002 Free Software Foundation, Inc.
c98f8742
JVA
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
97aadbb9 19the Free Software Foundation, 59 Temple Place - Suite 330,
892a2d68 20Boston, MA 02111-1307, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
4977bab6
ZW
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 46 const int mult_bit; /* cost of multiply per each bit set */
4977bab6
ZW
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
8b60264b
KG
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
ac775968 53 memory-to-memory move insns. */
8b60264b
KG
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
8b60264b 58 const int int_store[3]; /* cost of storing integer register
96e7ae40 59 in QImode, HImode and SImode */
8b60264b
KG
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b 63 const int fp_store[3]; /* cost of storing FP register
96e7ae40 64 in SFmode, DFmode and XFmode */
8b60264b
KG
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 67 in SImode and DImode */
8b60264b 68 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 69 in SImode and DImode */
8b60264b
KG
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int sse_store[3]; /* cost of storing SSE register
fa79946e 74 in SImode, DImode and TImode*/
8b60264b 75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 76 integer and vice versa. */
f4365627
JH
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
4977bab6 80 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
d4ba09c0
SC
87};
88
8b60264b 89extern const struct processor_costs *ix86_cost;
d4ba09c0 90
c98f8742
JVA
91/* Run-time compilation parameters selecting different hardware subsets. */
92
93extern int target_flags;
94
95/* Macros used in the machine description to test the flags. */
96
ddd5a7c1 97/* configure can arrange to make this 2, to force a 486. */
e075ae69 98
35b528be
RS
99#ifndef TARGET_CPU_DEFAULT
100#define TARGET_CPU_DEFAULT 0
101#endif
102
3b3c6a3f 103/* Masks for the -m switches */
e075ae69
RH
104#define MASK_80387 0x00000001 /* Hardware floating point */
105#define MASK_RTD 0x00000002 /* Use ret that pops args */
106#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
0dd0e980
JH
113#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
9ef1b13a
RH
117#define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118#define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119#define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120#define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121#define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122#define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123#define MASK_64BIT 0x00080000 /* Produce 64bit code */
4977bab6 124#define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
9ef1b13a 125
4977bab6 126/* Unused: 0x03e0000 */
9ef1b13a 127
c93e80a5
JH
128/* ... overlap with subtarget options starts by 0x04000000. */
129#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
3b3c6a3f
MM
130
131/* Use the floating point instructions */
132#define TARGET_80387 (target_flags & MASK_80387)
133
c98f8742
JVA
134/* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
fce5a9f2 136 for all functions that can take varying numbers of args. */
3b3c6a3f
MM
137#define TARGET_RTD (target_flags & MASK_RTD)
138
b08de47e
MM
139/* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
c98f8742 143
f73ad30e
JH
144/* Use push instructions to save outgoing args. */
145#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147/* Accumulate stack adjustments to prologue/epilogue. */
148#define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
d7cd15e9
RS
151/* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
3b3c6a3f 153#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
d7cd15e9 154
c572e5ba
JVA
155/* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
3b3c6a3f 158#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
c572e5ba 159
8c2bf92a
JVA
160/* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
892a2d68 162 the 387 to be used, which is compatible with most calling conventions. */
3b3c6a3f 163#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
8c2bf92a 164
2b589241 165/* Long double is 128bit instead of 96bit, even when only 80bits are used.
f5143c46 166 This mode wastes cache, but avoid misaligned data accesses and simplifies
2b589241
JH
167 address calculations. */
168#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
099800e3
RK
170/* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
3b3c6a3f
MM
172#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
2f2fa5b1 174/* Don't create frame pointers for leaf functions */
e075ae69
RH
175#define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
f6f58ba3 177
3b3c6a3f 178/* Debug GO_IF_LEGITIMATE_ADDRESS */
c93e80a5 179#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
3b3c6a3f 180
b08de47e 181/* Debug FUNCTION_ARG macros */
c93e80a5 182#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
b08de47e 183
5791cc29
JT
184/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186#ifdef IN_LIBGCC2
187#ifdef __x86_64__
188#define TARGET_64BIT 1
189#else
190#define TARGET_64BIT 0
191#endif
192#else
0c2dc519 193#ifdef TARGET_BI_ARCH
25f94bb5 194#define TARGET_64BIT (target_flags & MASK_64BIT)
0c2dc519 195#else
67adf6a9 196#if TARGET_64BIT_DEFAULT
0c2dc519
JH
197#define TARGET_64BIT 1
198#else
199#define TARGET_64BIT 0
200#endif
201#endif
5791cc29 202#endif
25f94bb5 203
f7746310
SC
204#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
205#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
206#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
3a0433fd 207#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
a269a03c 208#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
309ada50 209#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
b4e89e2d 210#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
4977bab6
ZW
211#define TARGET_K8 (ix86_cpu == PROCESSOR_K8)
212#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
a269a03c
JC
213
214#define CPUMASK (1 << ix86_cpu)
215extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 217extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69
RH
218extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220extern const int x86_use_cltd, x86_read_modify_write;
221extern const int x86_read_modify, x86_split_long_moves;
285464d0 222extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 223extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 224extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 225extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 226extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 227extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 228extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 229extern const int x86_arch_always_fancy_math_387, x86_shift1;
4977bab6
ZW
230extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
f4365627 233extern int x86_prefetch_sse;
a269a03c
JC
234
235#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
236#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
237#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
238#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
239#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
0644b628
JH
240/* For sane SSE instruction set generation we need fcomi instruction. It is
241 safe to enable all CMOVE instructions. */
242#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
a269a03c 243#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
ef6257cd 244#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
a269a03c 245#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
0d7d98ee 246#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
e075ae69
RH
247#define TARGET_MOVX (x86_movx & CPUMASK)
248#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
249#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
250#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
251#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
252#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
253#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
254#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
255#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
e9e80858 256#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
285464d0 257#define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
f90800f8 258#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
d9f32422
JH
259#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
260#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
261#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
262#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
bdeb029c
JH
263#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
264#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
265#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
266#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
0b5107cf
JH
267#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
268#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
4977bab6
ZW
269#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
270 (x86_sse_partial_reg_dependency & CPUMASK)
271#define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & CPUMASK)
272#define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
273 (x86_sse_partial_regs_for_cvtsd2ss & CPUMASK)
274#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & CPUMASK)
275#define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & CPUMASK)
276#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & CPUMASK)
0b5107cf 277#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
c6036a37
JH
278#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
279#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
b972dd02 280#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
f4365627 281#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
495333a6 282#define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
4977bab6
ZW
283#define TARGET_USE_FFREEP (x86_use_ffreep & CPUMASK)
284#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & CPUMASK)
a269a03c 285
8c9be447 286#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
3b3c6a3f 287
79f05c19
JH
288#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
289#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
290
c93e80a5 291#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 292
446988df
JH
293#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
294#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
965f5423
JH
295#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
296#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
297 && (ix86_fpmath & FPMATH_387))
a7180f70 298#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
47f339cf
BS
299#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
300#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
a7180f70 301
8362f420
JH
302#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
303
4977bab6
ZW
304#define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
305
f996902d
RH
306#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
307#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
308
a5d17ff3
PT
309/* WARNING: Do not mark empty strings for translation, as calling
310 gettext on an empty string does NOT return an empty
311 string. */
312
313
e075ae69 314#define TARGET_SWITCHES \
047142d3
PT
315{ { "80387", MASK_80387, N_("Use hardware fp") }, \
316 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
317 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
318 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
a5d17ff3
PT
320 { "386", 0, "" /*Deprecated.*/}, \
321 { "486", 0, "" /*Deprecated.*/}, \
322 { "pentium", 0, "" /*Deprecated.*/}, \
323 { "pentiumpro", 0, "" /*Deprecated.*/}, \
324 { "intel-syntax", 0, "" /*Deprecated.*/}, \
325 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
047142d3
PT
326 { "rtd", MASK_RTD, \
327 N_("Alternate calling convention") }, \
328 { "no-rtd", -MASK_RTD, \
329 N_("Use normal calling convention") }, \
e075ae69 330 { "align-double", MASK_ALIGN_DOUBLE, \
047142d3 331 N_("Align some doubles on dword boundary") }, \
e075ae69 332 { "no-align-double", -MASK_ALIGN_DOUBLE, \
047142d3 333 N_("Align doubles on word boundary") }, \
e075ae69 334 { "svr3-shlib", MASK_SVR3_SHLIB, \
047142d3 335 N_("Uninitialized locals in .bss") }, \
e075ae69 336 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
047142d3 337 N_("Uninitialized locals in .data") }, \
e075ae69 338 { "ieee-fp", MASK_IEEE_FP, \
047142d3 339 N_("Use IEEE math for fp comparisons") }, \
e075ae69 340 { "no-ieee-fp", -MASK_IEEE_FP, \
047142d3 341 N_("Do not use IEEE math for fp comparisons") }, \
e075ae69 342 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
047142d3 343 N_("Return values of functions in FPU registers") }, \
e075ae69 344 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
047142d3 345 N_("Do not return values of functions in FPU registers")}, \
e075ae69 346 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
047142d3 347 N_("Do not generate sin, cos, sqrt for FPU") }, \
e075ae69 348 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
047142d3 349 N_("Generate sin, cos, sqrt for FPU")}, \
e075ae69 350 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
047142d3 351 N_("Omit the frame pointer in leaf functions") }, \
e075ae69 352 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
047142d3
PT
353 { "stack-arg-probe", MASK_STACK_PROBE, \
354 N_("Enable stack probing") }, \
e075ae69
RH
355 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
356 { "windows", 0, 0 /* undocumented */ }, \
357 { "dll", 0, 0 /* undocumented */ }, \
79f05c19 358 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
047142d3 359 N_("Align destination of the string operations") }, \
79f05c19 360 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
047142d3 361 N_("Do not align destination of the string operations") }, \
4be2e5d9 362 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
047142d3 363 N_("Inline all known string operations") }, \
79f05c19 364 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
047142d3 365 N_("Do not inline all known string operations") }, \
f73ad30e 366 { "push-args", -MASK_NO_PUSH_ARGS, \
047142d3 367 N_("Use push instructions to save outgoing arguments") }, \
053f1126 368 { "no-push-args", MASK_NO_PUSH_ARGS, \
047142d3 369 N_("Do not use push instructions to save outgoing arguments") }, \
9ef1b13a 370 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
047142d3 371 N_("Use push instructions to save outgoing arguments") }, \
9ef1b13a 372 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
047142d3 373 N_("Do not use push instructions to save outgoing arguments") }, \
9ef1b13a 374 { "mmx", MASK_MMX, \
b0287a90 375 N_("Support MMX built-in functions") }, \
0dd0e980 376 { "no-mmx", -MASK_MMX, \
b0287a90 377 N_("Do not support MMX built-in functions") }, \
9ef1b13a 378 { "3dnow", MASK_3DNOW, \
b0287a90 379 N_("Support 3DNow! built-in functions") }, \
9ef1b13a 380 { "no-3dnow", -MASK_3DNOW, \
b0287a90 381 N_("Do not support 3DNow! built-in functions") }, \
9ef1b13a 382 { "sse", MASK_SSE, \
b0287a90 383 N_("Support MMX and SSE built-in functions and code generation") }, \
9ef1b13a 384 { "no-sse", -MASK_SSE, \
b0287a90 385 N_("Do not support MMX and SSE built-in functions and code generation") },\
9ef1b13a 386 { "sse2", MASK_SSE2, \
b0287a90 387 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
9ef1b13a 388 { "no-sse2", -MASK_SSE2, \
b0287a90 389 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
2b589241 390 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
c725bd79 391 N_("sizeof(long double) is 16") }, \
2b589241 392 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
c725bd79 393 N_("sizeof(long double) is 12") }, \
25f94bb5
JH
394 { "64", MASK_64BIT, \
395 N_("Generate 64bit x86-64 code") }, \
396 { "32", -MASK_64BIT, \
397 N_("Generate 32bit i386 code") }, \
4977bab6
ZW
398 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
399 N_("Use native (MS) bitfield layout") }, \
400 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use gcc default bitfield layout") }, \
8362f420
JH
402 { "red-zone", -MASK_NO_RED_ZONE, \
403 N_("Use red-zone in the x86-64 code") }, \
404 { "no-red-zone", MASK_NO_RED_ZONE, \
4cba3b67 405 N_("Do not use red-zone in the x86-64 code") }, \
e075ae69 406 SUBTARGET_SWITCHES \
67adf6a9 407 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
241e1a89 408
67adf6a9
RH
409#ifndef TARGET_64BIT_DEFAULT
410#define TARGET_64BIT_DEFAULT 0
25f94bb5
JH
411#endif
412
0ed4a390
JL
413/* Once GDB has been enhanced to deal with functions without frame
414 pointers, we can change this to allow for elimination of
415 the frame pointer in leaf functions. */
416#define TARGET_DEFAULT 0
67adf6a9 417
b069de3b
SS
418/* This is not really a target flag, but is done this way so that
419 it's analogous to similar code for Mach-O on PowerPC. darwin.h
420 redefines this to 1. */
421#define TARGET_MACHO 0
422
f5316dfe
MM
423/* This macro is similar to `TARGET_SWITCHES' but defines names of
424 command options that have values. Its definition is an
425 initializer with a subgrouping for each command option.
426
427 Each subgrouping contains a string constant, that defines the
428 fixed part of the option name, and the address of a variable. The
429 variable, type `char *', is set to the variable part of the given
430 option if the fixed part matches. The actual option name is made
431 by appending `-m' to the specified name. */
e075ae69
RH
432#define TARGET_OPTIONS \
433{ { "cpu=", &ix86_cpu_string, \
047142d3 434 N_("Schedule code for given CPU")}, \
965f5423
JH
435 { "fpmath=", &ix86_fpmath_string, \
436 N_("Generate floating point mathematics using given instruction set")},\
e075ae69 437 { "arch=", &ix86_arch_string, \
047142d3 438 N_("Generate code for given CPU")}, \
e075ae69 439 { "regparm=", &ix86_regparm_string, \
047142d3 440 N_("Number of registers used to pass integer arguments") }, \
e075ae69 441 { "align-loops=", &ix86_align_loops_string, \
047142d3 442 N_("Loop code aligned to this power of 2") }, \
e075ae69 443 { "align-jumps=", &ix86_align_jumps_string, \
047142d3 444 N_("Jump targets are aligned to this power of 2") }, \
e075ae69 445 { "align-functions=", &ix86_align_funcs_string, \
047142d3 446 N_("Function starts are aligned to this power of 2") }, \
e075ae69
RH
447 { "preferred-stack-boundary=", \
448 &ix86_preferred_stack_boundary_string, \
047142d3 449 N_("Attempt to keep stack aligned to this power of 2") }, \
e075ae69 450 { "branch-cost=", &ix86_branch_cost_string, \
047142d3 451 N_("Branches are this expensive (1-5, arbitrary units)") }, \
6189a572
JH
452 { "cmodel=", &ix86_cmodel_string, \
453 N_("Use given x86-64 code model") }, \
c93e80a5 454 { "debug-arg", &ix86_debug_arg_string, \
a5d17ff3 455 "" /* Undocumented. */ }, \
c93e80a5 456 { "debug-addr", &ix86_debug_addr_string, \
a5d17ff3 457 "" /* Undocumented. */ }, \
c93e80a5
JH
458 { "asm=", &ix86_asm_string, \
459 N_("Use given assembler dialect") }, \
f996902d
RH
460 { "tls-dialect=", &ix86_tls_dialect_string, \
461 N_("Use given thread-local storage dialect") }, \
e075ae69 462 SUBTARGET_OPTIONS \
b08de47e 463}
f5316dfe
MM
464
465/* Sometimes certain combinations of command options do not make
466 sense on a particular target machine. You can define a macro
467 `OVERRIDE_OPTIONS' to take account of this. This macro, if
468 defined, is executed once just after all the command options have
469 been parsed.
470
471 Don't use this macro to turn on various extra optimizations for
472 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
473
474#define OVERRIDE_OPTIONS override_options ()
475
476/* These are meant to be redefined in the host dependent files */
95393dfd 477#define SUBTARGET_SWITCHES
f5316dfe 478#define SUBTARGET_OPTIONS
95393dfd 479
d4ba09c0 480/* Define this to change the optimizations performed by default. */
d9a5f180
GS
481#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
482 optimization_options ((LEVEL), (SIZE))
d4ba09c0 483
241e1a89
SC
484/* Specs for the compiler proper */
485
628714d8
RK
486#ifndef CC1_CPU_SPEC
487#define CC1_CPU_SPEC "\
241e1a89 488%{!mcpu*: \
4a88a060 489%{m386:-mcpu=i386 \
3f0e0fa2 490%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
4a88a060 491%{m486:-mcpu=i486 \
3f0e0fa2 492%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
4a88a060 493%{mpentium:-mcpu=pentium \
3f0e0fa2 494%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
4a88a060 495%{mpentiumpro:-mcpu=pentiumpro \
c93e80a5
JH
496%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
497%{mintel-syntax:-masm=intel \
498%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
499%{mno-intel-syntax:-masm=att \
500%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
241e1a89 501#endif
c98f8742 502\f
30efe578 503/* Target CPU builtins. */
1ba7b414
NB
504#define TARGET_CPU_CPP_BUILTINS() \
505 do \
506 { \
507 size_t arch_len = strlen (ix86_arch_string); \
508 size_t cpu_len = strlen (ix86_cpu_string); \
509 int last_arch_char = ix86_arch_string[arch_len - 1]; \
510 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
511 \
512 if (TARGET_64BIT) \
513 { \
514 builtin_assert ("cpu=x86_64"); \
515 builtin_assert ("machine=x86_64"); \
516 builtin_define ("__x86_64"); \
517 builtin_define ("__x86_64__"); \
518 } \
519 else \
520 { \
521 builtin_assert ("cpu=i386"); \
522 builtin_assert ("machine=i386"); \
523 builtin_define_std ("i386"); \
524 } \
525 \
526 /* Built-ins based on -mcpu= (or -march= if no \
527 CPU given). */ \
528 if (TARGET_386) \
529 builtin_define ("__tune_i386__"); \
530 else if (TARGET_486) \
531 builtin_define ("__tune_i486__"); \
532 else if (TARGET_PENTIUM) \
533 { \
534 builtin_define ("__tune_i586__"); \
535 builtin_define ("__tune_pentium__"); \
536 if (last_cpu_char == 'x') \
537 builtin_define ("__tune_pentium_mmx__"); \
538 } \
539 else if (TARGET_PENTIUMPRO) \
540 { \
541 builtin_define ("__tune_i686__"); \
542 builtin_define ("__tune_pentiumpro__"); \
2e37b0ce
RH
543 switch (last_cpu_char) \
544 { \
545 case '3': \
546 builtin_define ("__tune_pentium3__"); \
547 /* FALLTHRU */ \
548 case '2': \
549 builtin_define ("__tune_pentium2__"); \
550 break; \
551 } \
1ba7b414
NB
552 } \
553 else if (TARGET_K6) \
554 { \
555 builtin_define ("__tune_k6__"); \
556 if (last_cpu_char == '2') \
557 builtin_define ("__tune_k6_2__"); \
558 else if (last_cpu_char == '3') \
559 builtin_define ("__tune_k6_3__"); \
560 } \
561 else if (TARGET_ATHLON) \
562 { \
563 builtin_define ("__tune_athlon__"); \
564 /* Only plain "athlon" lacks SSE. */ \
565 if (last_cpu_char != 'n') \
566 builtin_define ("__tune_athlon_sse__"); \
567 } \
4977bab6
ZW
568 else if (TARGET_K8) \
569 builtin_define ("__tune_k8__"); \
1ba7b414
NB
570 else if (TARGET_PENTIUM4) \
571 builtin_define ("__tune_pentium4__"); \
572 \
573 if (TARGET_MMX) \
574 builtin_define ("__MMX__"); \
575 if (TARGET_3DNOW) \
576 builtin_define ("__3dNOW__"); \
577 if (TARGET_3DNOW_A) \
578 builtin_define ("__3dNOW_A__"); \
579 if (TARGET_SSE) \
580 builtin_define ("__SSE__"); \
581 if (TARGET_SSE2) \
582 builtin_define ("__SSE2__"); \
48ddd46c
JH
583 if (TARGET_SSE_MATH && TARGET_SSE) \
584 builtin_define ("__SSE_MATH__"); \
585 if (TARGET_SSE_MATH && TARGET_SSE2) \
586 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
587 \
588 /* Built-ins based on -march=. */ \
589 if (ix86_arch == PROCESSOR_I486) \
590 { \
591 builtin_define ("__i486"); \
592 builtin_define ("__i486__"); \
593 } \
594 else if (ix86_arch == PROCESSOR_PENTIUM) \
595 { \
596 builtin_define ("__i586"); \
597 builtin_define ("__i586__"); \
598 builtin_define ("__pentium"); \
599 builtin_define ("__pentium__"); \
600 if (last_arch_char == 'x') \
601 builtin_define ("__pentium_mmx__"); \
602 } \
603 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
604 { \
605 builtin_define ("__i686"); \
606 builtin_define ("__i686__"); \
607 builtin_define ("__pentiumpro"); \
608 builtin_define ("__pentiumpro__"); \
609 } \
610 else if (ix86_arch == PROCESSOR_K6) \
611 { \
612 \
613 builtin_define ("__k6"); \
614 builtin_define ("__k6__"); \
615 if (last_arch_char == '2') \
616 builtin_define ("__k6_2__"); \
617 else if (last_arch_char == '3') \
618 builtin_define ("__k6_3__"); \
619 } \
620 else if (ix86_arch == PROCESSOR_ATHLON) \
621 { \
622 builtin_define ("__athlon"); \
623 builtin_define ("__athlon__"); \
624 /* Only plain "athlon" lacks SSE. */ \
625 if (last_arch_char != 'n') \
626 builtin_define ("__athlon_sse__"); \
627 } \
4977bab6
ZW
628 else if (ix86_arch == PROCESSOR_K8) \
629 { \
630 builtin_define ("__k8"); \
631 builtin_define ("__k8__"); \
632 } \
1ba7b414
NB
633 else if (ix86_arch == PROCESSOR_PENTIUM4) \
634 { \
635 builtin_define ("__pentium4"); \
636 builtin_define ("__pentium4__"); \
637 } \
638 } \
30efe578
NB
639 while (0)
640
f4365627
JH
641#define TARGET_CPU_DEFAULT_i386 0
642#define TARGET_CPU_DEFAULT_i486 1
643#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
644#define TARGET_CPU_DEFAULT_pentium_mmx 3
645#define TARGET_CPU_DEFAULT_pentiumpro 4
646#define TARGET_CPU_DEFAULT_pentium2 5
647#define TARGET_CPU_DEFAULT_pentium3 6
648#define TARGET_CPU_DEFAULT_pentium4 7
649#define TARGET_CPU_DEFAULT_k6 8
650#define TARGET_CPU_DEFAULT_k6_2 9
651#define TARGET_CPU_DEFAULT_k6_3 10
652#define TARGET_CPU_DEFAULT_athlon 11
653#define TARGET_CPU_DEFAULT_athlon_sse 12
4977bab6 654#define TARGET_CPU_DEFAULT_k8 13
f4365627
JH
655
656#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
657 "pentiumpro", "pentium2", "pentium3", \
658 "pentium4", "k6", "k6-2", "k6-3",\
4977bab6 659 "athlon", "athlon-4", "k8"}
0c2dc519 660
628714d8 661#ifndef CC1_SPEC
8015b78d 662#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
663#endif
664
665/* This macro defines names of additional specifications to put in the
666 specs that can be used in various specifications like CC1_SPEC. Its
667 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
668
669 Each subgrouping contains a string constant, that defines the
670 specification name, and a string constant that used by the GNU CC driver
671 program.
672
673 Do not define this macro if it does not need to do anything. */
674
675#ifndef SUBTARGET_EXTRA_SPECS
676#define SUBTARGET_EXTRA_SPECS
677#endif
678
679#define EXTRA_SPECS \
628714d8 680 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
681 SUBTARGET_EXTRA_SPECS
682\f
c98f8742
JVA
683/* target machine storage layout */
684
2b589241 685/* Define for XFmode or TFmode extended real floating point support.
2b589241 686 The XFmode is specified by i386 ABI, while TFmode may be faster
3dc85dfb 687 due to alignment and simplifications in the address calculations. */
2b589241
JH
688#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
689#define MAX_LONG_DOUBLE_TYPE_SIZE 128
65d9c0ab
JH
690#ifdef __x86_64__
691#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
692#else
693#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
694#endif
2b589241 695
d57a4b98
RH
696/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
697 FPU, assume that the fpcw is set to extended precision; when using
698 only SSE, rounding is correct; when using both SSE and the FPU,
699 the rounding precision is indeterminate, since either may be chosen
700 apparently at random. */
701#define TARGET_FLT_EVAL_METHOD \
702 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
0038aea6 703
65d9c0ab
JH
704#define SHORT_TYPE_SIZE 16
705#define INT_TYPE_SIZE 32
706#define FLOAT_TYPE_SIZE 32
707#define LONG_TYPE_SIZE BITS_PER_WORD
2faf6b96 708#define MAX_WCHAR_TYPE_SIZE 32
65d9c0ab
JH
709#define DOUBLE_TYPE_SIZE 64
710#define LONG_LONG_TYPE_SIZE 64
711
67adf6a9 712#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519
JH
713#define MAX_BITS_PER_WORD 64
714#define MAX_LONG_TYPE_SIZE 64
715#else
716#define MAX_BITS_PER_WORD 32
717#define MAX_LONG_TYPE_SIZE 32
718#endif
719
c98f8742
JVA
720/* Define this if most significant byte of a word is the lowest numbered. */
721/* That is true on the 80386. */
722
723#define BITS_BIG_ENDIAN 0
724
725/* Define this if most significant byte of a word is the lowest numbered. */
726/* That is not true on the 80386. */
727#define BYTES_BIG_ENDIAN 0
728
729/* Define this if most significant word of a multiword number is the lowest
730 numbered. */
731/* Not true for 80386 */
732#define WORDS_BIG_ENDIAN 0
733
c98f8742 734/* Width of a word, in units (bytes). */
65d9c0ab 735#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
736#ifdef IN_LIBGCC2
737#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
738#else
739#define MIN_UNITS_PER_WORD 4
740#endif
c98f8742 741
c98f8742 742/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 743#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 744
e075ae69 745/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 746#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 747
3af4bd89
JH
748/* Boundary (in *bits*) on which the stack pointer preferrs to be
749 aligned; the compiler cannot rely on having this alignment. */
e075ae69 750#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 751
1d482056
RH
752/* As of July 2001, many runtimes to not align the stack properly when
753 entering main. This causes expand_main_function to forcably align
754 the stack, which results in aligned frames for functions called from
755 main, though it does nothing for the alignment of main itself. */
756#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 757 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 758
f963b5d9
RS
759/* Minimum allocation boundary for the code of a function. */
760#define FUNCTION_BOUNDARY 8
761
762/* C++ stores the virtual bit in the lowest bit of function pointers. */
763#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 764
892a2d68 765/* Alignment of field after `int : 0' in a structure. */
c98f8742 766
65d9c0ab 767#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
768
769/* Minimum size in bits of the largest boundary to which any
770 and all fundamental data types supported by the hardware
771 might need to be aligned. No data type wants to be aligned
17f24ff0 772 rounder than this.
fce5a9f2 773
3e18fdf6 774 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
775 and Pentium Pro XFmode values at 128 bit boundaries. */
776
777#define BIGGEST_ALIGNMENT 128
778
822eda12 779/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 780#define ALIGN_MODE_128(MODE) \
822eda12 781 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
a7180f70 782
17f24ff0 783/* The published ABIs say that doubles should be aligned on word
6fc605d8
ZW
784 boundaries, so lower the aligment for structure fields unless
785 -malign-double is set. */
e932b21b 786
e83f3cff
RH
787/* ??? Blah -- this macro is used directly by libobjc. Since it
788 supports no vector modes, cut out the complexity and fall back
789 on BIGGEST_FIELD_ALIGNMENT. */
790#ifdef IN_TARGET_LIBS
ef49d42e
JH
791#ifdef __x86_64__
792#define BIGGEST_FIELD_ALIGNMENT 128
793#else
e83f3cff 794#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 795#endif
e83f3cff 796#else
e932b21b
JH
797#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
798 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 799#endif
c98f8742 800
e5e8a8bf 801/* If defined, a C expression to compute the alignment given to a
a7180f70 802 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
803 and ALIGN is the alignment that the object would ordinarily have.
804 The value of this macro is used instead of that alignment to align
805 the object.
806
807 If this macro is not defined, then ALIGN is used.
808
809 The typical use of this macro is to increase alignment for string
810 constants to be word aligned so that `strcpy' calls that copy
811 constants can be done inline. */
812
d9a5f180 813#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 814
8a022443
JW
815/* If defined, a C expression to compute the alignment for a static
816 variable. TYPE is the data type, and ALIGN is the alignment that
817 the object would ordinarily have. The value of this macro is used
818 instead of that alignment to align the object.
819
820 If this macro is not defined, then ALIGN is used.
821
822 One use of this macro is to increase alignment of medium-size
823 data to make it all fit in fewer cache lines. Another is to
824 cause character arrays to be word-aligned so that `strcpy' calls
825 that copy constants to character arrays can be done inline. */
826
d9a5f180 827#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
828
829/* If defined, a C expression to compute the alignment for a local
830 variable. TYPE is the data type, and ALIGN is the alignment that
831 the object would ordinarily have. The value of this macro is used
832 instead of that alignment to align the object.
833
834 If this macro is not defined, then ALIGN is used.
835
836 One use of this macro is to increase alignment of medium-size
837 data to make it all fit in fewer cache lines. */
838
d9a5f180 839#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 840
53c17031
JH
841/* If defined, a C expression that gives the alignment boundary, in
842 bits, of an argument with the specified mode and type. If it is
843 not defined, `PARM_BOUNDARY' is used for all arguments. */
844
d9a5f180
GS
845#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
846 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 847
9cd10576 848/* Set this nonzero if move instructions will actually fail to work
c98f8742 849 when given unaligned data. */
b4ac57ab 850#define STRICT_ALIGNMENT 0
c98f8742
JVA
851
852/* If bit field type is int, don't let it cross an int,
853 and give entire struct the alignment of an int. */
43a88a8c 854/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 855#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
856\f
857/* Standard register usage. */
858
859/* This processor has special stack-like registers. See reg-stack.c
892a2d68 860 for details. */
c98f8742
JVA
861
862#define STACK_REGS
d9a5f180
GS
863#define IS_STACK_MODE(MODE) \
864 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
865 || (MODE) == TFmode)
c98f8742
JVA
866
867/* Number of actual hardware registers.
868 The hardware registers are assigned numbers for the compiler
869 from 0 to just below FIRST_PSEUDO_REGISTER.
870 All registers that the compiler knows about must be given numbers,
871 even those that are not normally considered general registers.
872
873 In the 80386 we give the 8 general purpose registers the numbers 0-7.
874 We number the floating point registers 8-15.
875 Note that registers 0-7 can be accessed as a short or int,
876 while only 0-3 may be used with byte `mov' instructions.
877
878 Reg 16 does not correspond to any hardware register, but instead
879 appears in the RTL as an argument pointer prior to reload, and is
880 eliminated during reloading in favor of either the stack or frame
892a2d68 881 pointer. */
c98f8742 882
3f3f2124 883#define FIRST_PSEUDO_REGISTER 53
c98f8742 884
3073d01c
ML
885/* Number of hardware registers that go into the DWARF-2 unwind info.
886 If not defined, equals FIRST_PSEUDO_REGISTER. */
887
888#define DWARF_FRAME_REGISTERS 17
889
c98f8742
JVA
890/* 1 for registers that have pervasive standard uses
891 and are not available for the register allocator.
3f3f2124 892 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 893
3f3f2124
JH
894 The value is an mask - bit 1 is set for fixed registers
895 for 32bit target, while 2 is set for fixed registers for 64bit.
896 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
897 */
a7180f70
BS
898#define FIXED_REGISTERS \
899/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 900{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
a7180f70 901/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 902 3, 3, 3, 3, 3, \
a7180f70
BS
903/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
904 0, 0, 0, 0, 0, 0, 0, 0, \
905/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
906 0, 0, 0, 0, 0, 0, 0, 0, \
907/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
908 1, 1, 1, 1, 1, 1, 1, 1, \
909/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
910 1, 1, 1, 1, 1, 1, 1, 1}
fce5a9f2 911
c98f8742
JVA
912
913/* 1 for registers not available across function calls.
914 These must include the FIXED_REGISTERS and also any
915 registers that can be used without being saved.
916 The latter must include the registers where values are returned
917 and the register where structure-value addresses are passed.
fce5a9f2
EC
918 Aside from that, you can include as many other registers as you like.
919
3f3f2124
JH
920 The value is an mask - bit 1 is set for call used
921 for 32bit target, while 2 is set for call used for 64bit.
922 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
923*/
a7180f70
BS
924#define CALL_USED_REGISTERS \
925/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 926{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 927/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 928 3, 3, 3, 3, 3, \
a7180f70 929/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3f3f2124 930 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 931/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
932 3, 3, 3, 3, 3, 3, 3, 3, \
933/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
934 3, 3, 3, 3, 1, 1, 1, 1, \
935/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
936 3, 3, 3, 3, 3, 3, 3, 3} \
c98f8742 937
3b3c6a3f
MM
938/* Order in which to allocate registers. Each register must be
939 listed once, even those in FIXED_REGISTERS. List frame pointer
940 late and fixed registers last. Note that, in general, we prefer
941 registers listed in CALL_USED_REGISTERS, keeping the others
942 available for storage of persistent values.
943
162f023b
JH
944 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
945 so this is just empty initializer for array. */
3b3c6a3f 946
162f023b
JH
947#define REG_ALLOC_ORDER \
948{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
949 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
950 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
951 48, 49, 50, 51, 52 }
3b3c6a3f 952
162f023b
JH
953/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
954 to be rearranged based on a particular function. When using sse math,
955 we want to allocase SSE before x87 registers and vice vera. */
3b3c6a3f 956
162f023b 957#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 958
f5316dfe 959
c98f8742 960/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 961#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 962do { \
3f3f2124
JH
963 int i; \
964 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
965 { \
966 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
967 call_used_regs[i] = (call_used_regs[i] \
968 & (TARGET_64BIT ? 2 : 1)) != 0; \
969 } \
5b43fed1 970 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
971 { \
972 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
973 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
974 } \
975 if (! TARGET_MMX) \
976 { \
977 int i; \
978 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
979 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
980 fixed_regs[i] = call_used_regs[i] = 1; \
981 } \
982 if (! TARGET_SSE) \
983 { \
984 int i; \
985 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
986 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
987 fixed_regs[i] = call_used_regs[i] = 1; \
988 } \
989 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
990 { \
991 int i; \
992 HARD_REG_SET x; \
993 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
994 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
995 if (TEST_HARD_REG_BIT (x, i)) \
996 fixed_regs[i] = call_used_regs[i] = 1; \
997 } \
d9a5f180 998 } while (0)
c98f8742
JVA
999
1000/* Return number of consecutive hard regs needed starting at reg REGNO
1001 to hold something of mode MODE.
1002 This is ordinarily the length in words of a value of mode MODE
1003 but can be less for certain modes in special long registers.
1004
fce5a9f2 1005 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1006 registers. And only registers 0-3 may have mov byte instructions
1007 applied to them.
1008 */
1009
1010#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1011 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1012 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
d9a5f180 1013 : ((MODE) == TFmode \
92d0fb09 1014 ? (TARGET_64BIT ? 2 : 3) \
d9a5f180 1015 : (MODE) == TCmode \
92d0fb09 1016 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1017 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1018
fbe5eb6d
BS
1019#define VALID_SSE2_REG_MODE(MODE) \
1020 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1021 || (MODE) == V2DImode)
1022
d9a5f180
GS
1023#define VALID_SSE_REG_MODE(MODE) \
1024 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1025 || (MODE) == SFmode \
fbe5eb6d
BS
1026 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1027 || VALID_SSE2_REG_MODE (MODE) \
141e454b 1028 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
a7180f70 1029
47f339cf
BS
1030#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1031 ((MODE) == V2SFmode || (MODE) == SFmode)
1032
d9a5f180
GS
1033#define VALID_MMX_REG_MODE(MODE) \
1034 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
1035 || (MODE) == V2SImode || (MODE) == SImode)
1036
1037#define VECTOR_MODE_SUPPORTED_P(MODE) \
1038 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
47f339cf
BS
1039 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1040 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
a7180f70 1041
d9a5f180
GS
1042#define VALID_FP_MODE_P(MODE) \
1043 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1044 || (!TARGET_64BIT && (MODE) == XFmode) \
1045 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1046 || (!TARGET_64BIT && (MODE) == XCmode))
a946dd00 1047
d9a5f180
GS
1048#define VALID_INT_MODE_P(MODE) \
1049 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1050 || (MODE) == DImode \
1051 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1052 || (MODE) == CDImode \
1053 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
a946dd00 1054
822eda12
JH
1055/* Return true for modes passed in SSE registers. */
1056#define SSE_REG_MODE_P(MODE) \
1057 ((MODE) == TImode || (MODE) == V16QImode \
1058 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1059 || (MODE) == V4SFmode || (MODE) == V4SImode)
1060
1061/* Return true for modes passed in MMX registers. */
1062#define MMX_REG_MODE_P(MODE) \
1063 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1064 || (MODE) == V2SFmode)
1065
e075ae69 1066/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1067
a946dd00 1068#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1070
1071/* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
95912252
RH
1076#define MODES_TIEABLE_P(MODE1, MODE2) \
1077 ((MODE1) == (MODE2) \
d2836273
JH
1078 || (((MODE1) == HImode || (MODE1) == SImode \
1079 || ((MODE1) == QImode \
1080 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1081 || ((MODE1) == DImode && TARGET_64BIT)) \
1082 && ((MODE2) == HImode || (MODE2) == SImode \
1083 || ((MODE1) == QImode \
1084 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1085 || ((MODE2) == DImode && TARGET_64BIT))))
1086
c98f8742 1087
e075ae69 1088/* Specify the modes required to caller save a given hard regno.
787dc842 1089 We do this on i386 to prevent flags from being saved at all.
e075ae69 1090
787dc842
JH
1091 Kill any attempts to combine saving of modes. */
1092
d9a5f180
GS
1093#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1094 (CC_REGNO_P (REGNO) ? VOIDmode \
1095 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1096 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1097 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1098 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1099 : (MODE))
c98f8742
JVA
1100/* Specify the registers used for certain standard purposes.
1101 The values of these macros are register numbers. */
1102
1103/* on the 386 the pc register is %eip, and is not usable as a general
1104 register. The ordinary mov instructions won't work */
1105/* #define PC_REGNUM */
1106
1107/* Register to use for pushing function arguments. */
1108#define STACK_POINTER_REGNUM 7
1109
1110/* Base register for access to local variables of the function. */
564d80f4
JH
1111#define HARD_FRAME_POINTER_REGNUM 6
1112
1113/* Base register for access to local variables of the function. */
1114#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1115
1116/* First floating point reg */
1117#define FIRST_FLOAT_REG 8
1118
1119/* First & last stack-like regs */
1120#define FIRST_STACK_REG FIRST_FLOAT_REG
1121#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1122
e075ae69
RH
1123#define FLAGS_REG 17
1124#define FPSR_REG 18
7c7ef435 1125#define DIRFLAG_REG 19
e075ae69 1126
a7180f70
BS
1127#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1128#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1129
a7180f70
BS
1130#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1131#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1132
3f3f2124
JH
1133#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1134#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1135
1136#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1137#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1138
c98f8742
JVA
1139/* Value should be nonzero if functions must have frame pointers.
1140 Zero means the frame pointer need not be set up (and parms
1141 may be accessed via the stack pointer) in functions that seem suitable.
1142 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1143#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1144
1145/* Override this in other tm.h files to cope with various OS losage
1146 requiring a frame pointer. */
1147#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1148#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1149#endif
1150
1151/* Make sure we can access arbitrary call frames. */
1152#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1153
1154/* Base register for access to arguments of the function. */
1155#define ARG_POINTER_REGNUM 16
1156
d2836273
JH
1157/* Register in which static-chain is passed to a function.
1158 We do use ECX as static chain register for 32 bit ABI. On the
1159 64bit ABI, ECX is an argument register, so we use R10 instead. */
1160#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1161
1162/* Register to hold the addressing base for position independent
5b43fed1
RH
1163 code access to data items. We don't use PIC pointer for 64bit
1164 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1165 pessimizing code dealing with EBX.
bd09bdeb
RH
1166
1167 To avoid clobbering a call-saved register unnecessarily, we renumber
1168 the pic register when possible. The change is visible after the
1169 prologue has been emitted. */
1170
1171#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1172
1173#define PIC_OFFSET_TABLE_REGNUM \
1174 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1175 : reload_completed ? REGNO (pic_offset_table_rtx) \
1176 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1177
5fc0e5df
KW
1178#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1179
c98f8742
JVA
1180/* Register in which address to store a structure value
1181 arrives in the function. On the 386, the prologue
1182 copies this from the stack to register %eax. */
1183#define STRUCT_VALUE_INCOMING 0
1184
1185/* Place in which caller passes the structure value address.
1186 0 means push the value on the stack like an argument. */
1187#define STRUCT_VALUE 0
713225d4
MM
1188
1189/* A C expression which can inhibit the returning of certain function
1190 values in registers, based on the type of value. A nonzero value
1191 says to return the function value in memory, just as large
1192 structures are always returned. Here TYPE will be a C expression
1193 of type `tree', representing the data type of the value.
1194
1195 Note that values of mode `BLKmode' must be explicitly handled by
1196 this macro. Also, the option `-fpcc-struct-return' takes effect
1197 regardless of this macro. On most systems, it is possible to
1198 leave the macro undefined; this causes a default definition to be
1199 used, whose value is the constant 1 for `BLKmode' values, and 0
1200 otherwise.
1201
1202 Do not use this macro to indicate that structures and unions
1203 should always be returned in memory. You should instead use
1204 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1205
d9a5f180 1206#define RETURN_IN_MEMORY(TYPE) \
53c17031 1207 ix86_return_in_memory (TYPE)
713225d4 1208
c98f8742
JVA
1209\f
1210/* Define the classes of registers for register constraints in the
1211 machine description. Also define ranges of constants.
1212
1213 One of the classes must always be named ALL_REGS and include all hard regs.
1214 If there is more than one class, another class must be named NO_REGS
1215 and contain no registers.
1216
1217 The name GENERAL_REGS must be the name of a class (or an alias for
1218 another name such as ALL_REGS). This is the class of registers
1219 that is allowed by "g" or "r" in a register constraint.
1220 Also, registers outside this class are allocated only when
1221 instructions express preferences for them.
1222
1223 The classes must be numbered in nondecreasing order; that is,
1224 a larger-numbered class must never be contained completely
1225 in a smaller-numbered class.
1226
1227 For any two classes, it is very desirable that there be another
ab408a86
JVA
1228 class that represents their union.
1229
1230 It might seem that class BREG is unnecessary, since no useful 386
1231 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1232 and the "b" register constraint is useful in asms for syscalls.
1233
1234 The flags and fpsr registers are in no class. */
c98f8742
JVA
1235
1236enum reg_class
1237{
1238 NO_REGS,
e075ae69 1239 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1240 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1241 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1242 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1243 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1244 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1245 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1246 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1247 FLOAT_REGS,
a7180f70
BS
1248 SSE_REGS,
1249 MMX_REGS,
446988df
JH
1250 FP_TOP_SSE_REGS,
1251 FP_SECOND_SSE_REGS,
1252 FLOAT_SSE_REGS,
1253 FLOAT_INT_REGS,
1254 INT_SSE_REGS,
1255 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1256 ALL_REGS, LIM_REG_CLASSES
1257};
1258
d9a5f180
GS
1259#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1260
1261#define INTEGER_CLASS_P(CLASS) \
1262 reg_class_subset_p ((CLASS), GENERAL_REGS)
1263#define FLOAT_CLASS_P(CLASS) \
1264 reg_class_subset_p ((CLASS), FLOAT_REGS)
1265#define SSE_CLASS_P(CLASS) \
1266 reg_class_subset_p ((CLASS), SSE_REGS)
1267#define MMX_CLASS_P(CLASS) \
1268 reg_class_subset_p ((CLASS), MMX_REGS)
1269#define MAYBE_INTEGER_CLASS_P(CLASS) \
1270 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1271#define MAYBE_FLOAT_CLASS_P(CLASS) \
1272 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1273#define MAYBE_SSE_CLASS_P(CLASS) \
1274 reg_classes_intersect_p (SSE_REGS, (CLASS))
1275#define MAYBE_MMX_CLASS_P(CLASS) \
1276 reg_classes_intersect_p (MMX_REGS, (CLASS))
1277
1278#define Q_CLASS_P(CLASS) \
1279 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1280
c98f8742
JVA
1281/* Give names of register classes as strings for dump file. */
1282
1283#define REG_CLASS_NAMES \
1284{ "NO_REGS", \
ab408a86 1285 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1286 "SIREG", "DIREG", \
e075ae69
RH
1287 "AD_REGS", \
1288 "Q_REGS", "NON_Q_REGS", \
c98f8742 1289 "INDEX_REGS", \
3f3f2124 1290 "LEGACY_REGS", \
c98f8742
JVA
1291 "GENERAL_REGS", \
1292 "FP_TOP_REG", "FP_SECOND_REG", \
1293 "FLOAT_REGS", \
a7180f70
BS
1294 "SSE_REGS", \
1295 "MMX_REGS", \
446988df
JH
1296 "FP_TOP_SSE_REGS", \
1297 "FP_SECOND_SSE_REGS", \
1298 "FLOAT_SSE_REGS", \
8fcaaa80 1299 "FLOAT_INT_REGS", \
446988df
JH
1300 "INT_SSE_REGS", \
1301 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1302 "ALL_REGS" }
1303
1304/* Define which registers fit in which classes.
1305 This is an initializer for a vector of HARD_REG_SET
1306 of length N_REG_CLASSES. */
1307
a7180f70 1308#define REG_CLASS_CONTENTS \
3f3f2124
JH
1309{ { 0x00, 0x0 }, \
1310 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1311 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1312 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1313 { 0x03, 0x0 }, /* AD_REGS */ \
1314 { 0x0f, 0x0 }, /* Q_REGS */ \
1315 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1316 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1317 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1318 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1319 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1320 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1321{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1322{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1323{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1324{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1325{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1326 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1327{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1328{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1329{ 0xffffffff,0x1fffff } \
e075ae69 1330}
c98f8742
JVA
1331
1332/* The same information, inverted:
1333 Return the class number of the smallest class containing
1334 reg number REGNO. This could be a conditional expression
1335 or could index an array. */
1336
c98f8742
JVA
1337#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1338
1339/* When defined, the compiler allows registers explicitly used in the
1340 rtl to be used as spill registers but prevents the compiler from
892a2d68 1341 extending the lifetime of these registers. */
c98f8742 1342
2922fe9e 1343#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1344
1345#define QI_REG_P(X) \
1346 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1347
d9a5f180
GS
1348#define GENERAL_REGNO_P(N) \
1349 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1350
1351#define GENERAL_REG_P(X) \
6189a572 1352 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1353
1354#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1355
c98f8742
JVA
1356#define NON_QI_REG_P(X) \
1357 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1358
d9a5f180 1359#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1360#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1361
c98f8742 1362#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1363#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1364#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1365#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1366
d9a5f180
GS
1367#define SSE_REGNO_P(N) \
1368 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1369 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1370
4977bab6
ZW
1371#define REX_SSE_REGNO_P(N) \
1372 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1373
d9a5f180
GS
1374#define SSE_REGNO(N) \
1375 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1376#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1377
d9a5f180 1378#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1379 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1380
d9a5f180
GS
1381#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1382#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fce5a9f2 1383
d9a5f180
GS
1384#define STACK_REG_P(XOP) \
1385 (REG_P (XOP) && \
1386 REGNO (XOP) >= FIRST_STACK_REG && \
1387 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1388
d9a5f180 1389#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1390
d9a5f180 1391#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1392
e075ae69
RH
1393#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1394#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1395
cdbca172
JO
1396/* Indicate whether hard register numbered REG_NO should be converted
1397 to SSA form. */
1398#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
d9a5f180 1399 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
cdbca172 1400
c98f8742
JVA
1401/* The class value for index registers, and the one for base regs. */
1402
1403#define INDEX_REG_CLASS INDEX_REGS
1404#define BASE_REG_CLASS GENERAL_REGS
1405
1406/* Get reg_class from a letter such as appears in the machine description. */
1407
1408#define REG_CLASS_FROM_LETTER(C) \
8c2bf92a 1409 ((C) == 'r' ? GENERAL_REGS : \
3f3f2124
JH
1410 (C) == 'R' ? LEGACY_REGS : \
1411 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1412 (C) == 'Q' ? Q_REGS : \
8c2bf92a
JVA
1413 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1414 ? FLOAT_REGS \
1415 : NO_REGS) : \
1416 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1417 ? FP_TOP_REG \
1418 : NO_REGS) : \
1419 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1420 ? FP_SECOND_REG \
1421 : NO_REGS) : \
1422 (C) == 'a' ? AREG : \
1423 (C) == 'b' ? BREG : \
1424 (C) == 'c' ? CREG : \
1425 (C) == 'd' ? DREG : \
446988df
JH
1426 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1427 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1428 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
4b71cd6e 1429 (C) == 'A' ? AD_REGS : \
8c2bf92a 1430 (C) == 'D' ? DIREG : \
c98f8742
JVA
1431 (C) == 'S' ? SIREG : NO_REGS)
1432
1433/* The letters I, J, K, L and M in a register constraint string
1434 can be used to stand for particular ranges of immediate operands.
1435 This macro defines what the ranges are.
1436 C is the letter, and VALUE is a constant value.
1437 Return 1 if VALUE is in the range specified by C.
1438
1439 I is for non-DImode shifts.
1440 J is for DImode shifts.
e075ae69
RH
1441 K is for signed imm8 operands.
1442 L is for andsi as zero-extending move.
c98f8742 1443 M is for shifts that can be executed by the "lea" opcode.
1aa9fd24 1444 N is for immedaite operands for out/in instructions (0-255)
c98f8742
JVA
1445 */
1446
e075ae69
RH
1447#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1448 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1449 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1450 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1451 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1452 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1aa9fd24 1453 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
e075ae69 1454 : 0)
c98f8742
JVA
1455
1456/* Similar, but for floating constants, and defining letters G and H.
b4ac57ab
RS
1457 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1458 TARGET_387 isn't set, because the stack register converter may need to
c47f5ea5 1459 load 0.0 into the function value register. */
c98f8742
JVA
1460
1461#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2b04e52b 1462 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
f8ca7923 1463 : 0)
c98f8742 1464
6189a572
JH
1465/* A C expression that defines the optional machine-dependent
1466 constraint letters that can be used to segregate specific types of
1467 operands, usually memory references, for the target machine. Any
1468 letter that is not elsewhere defined and not matched by
1469 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1470 be defined.
1471
1472 If it is required for a particular target machine, it should
1473 return 1 if VALUE corresponds to the operand type represented by
1474 the constraint letter C. If C is not defined as an extra
1475 constraint, the value returned should be 0 regardless of VALUE. */
1476
0e67d460 1477#define EXTRA_CONSTRAINT(VALUE, D) \
c05dbe81 1478 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
0e67d460
JH
1479 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1480 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
6189a572
JH
1481 : 0)
1482
c98f8742 1483/* Place additional restrictions on the register class to use when it
4cbb525c 1484 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1485 register for which class CLASS would ordinarily be used. */
c98f8742 1486
d2836273
JH
1487#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1488 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1489 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1490 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1491 ? Q_REGS : (CLASS))
1492
1493/* Given an rtx X being reloaded into a reg required to be
1494 in class CLASS, return the class of reg to actually use.
1495 In general this is just CLASS; but on some machines
1496 in some cases it is preferable to use a more restrictive class.
1497 On the 80386 series, we prevent floating constants from being
1498 reloaded into floating registers (since no move-insn can do that)
1499 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1500
d398b3b1 1501/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1502 QImode must go into class Q_REGS.
d398b3b1 1503 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1504 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1505
d9a5f180
GS
1506#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1507 ix86_preferred_reload_class ((X), (CLASS))
85ff473e
JVA
1508
1509/* If we are copying between general and FP registers, we need a memory
f84aa48a 1510 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1511#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1512 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1513
1514/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1515 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1516 pseudo. */
1517
d9a5f180 1518#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1519 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1520 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1521 ? Q_REGS : NO_REGS)
c98f8742
JVA
1522
1523/* Return the maximum number of consecutive registers
1524 needed to represent mode MODE in a register of class CLASS. */
1525/* On the 80386, this is the size of MODE in words,
92d0fb09
JH
1526 except in the FP regs, where a single reg is always enough.
1527 The TFmodes are really just 80bit values, so we use only 3 registers
1528 to hold them, instead of 4, as the size would suggest.
1529 */
a7180f70 1530#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1531 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1532 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1533 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1534 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1535
1536/* A C expression whose value is nonzero if pseudos that have been
1537 assigned to registers of class CLASS would likely be spilled
1538 because registers of CLASS are needed for spill registers.
1539
1540 The default value of this macro returns 1 if CLASS has exactly one
1541 register and zero otherwise. On most machines, this default
1542 should be used. Only define this macro to some other expression
1543 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1544 their hard registers were needed for spill registers. If this
f5316dfe
MM
1545 macro returns nonzero for those classes, those pseudos will only
1546 be allocated by `global.c', which knows how to reallocate the
1547 pseudo to another register. If there would not be another
1548 register available for reallocation, you should not change the
1549 definition of this macro since the only effect of such a
1550 definition would be to slow down register allocation. */
1551
1552#define CLASS_LIKELY_SPILLED_P(CLASS) \
1553 (((CLASS) == AREG) \
1554 || ((CLASS) == DREG) \
1555 || ((CLASS) == CREG) \
1556 || ((CLASS) == BREG) \
1557 || ((CLASS) == AD_REGS) \
1558 || ((CLASS) == SIREG) \
1559 || ((CLASS) == DIREG))
1560
e075ae69 1561/* A C statement that adds to CLOBBERS any hard regs the port wishes
fce5a9f2 1562 to automatically clobber for all asms.
e075ae69
RH
1563
1564 We do this in the new i386 backend to maintain source compatibility
1565 with the old cc0-based compiler. */
1566
d9a5f180
GS
1567#define MD_ASM_CLOBBERS(CLOBBERS) \
1568 do { \
1569 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1570 (CLOBBERS)); \
1571 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1572 (CLOBBERS)); \
1573 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1574 (CLOBBERS)); \
e075ae69 1575 } while (0)
c98f8742
JVA
1576\f
1577/* Stack layout; function entry, exit and calling. */
1578
1579/* Define this if pushing a word on the stack
1580 makes the stack pointer a smaller address. */
1581#define STACK_GROWS_DOWNWARD
1582
1583/* Define this if the nominal address of the stack frame
1584 is at the high-address end of the local variables;
1585 that is, each additional local variable allocated
1586 goes at a more negative offset in the frame. */
1587#define FRAME_GROWS_DOWNWARD
1588
1589/* Offset within stack frame to start allocating local variables at.
1590 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1591 first local allocated. Otherwise, it is the offset to the BEGINNING
1592 of the first local allocated. */
1593#define STARTING_FRAME_OFFSET 0
1594
1595/* If we generate an insn to push BYTES bytes,
1596 this says how many the stack pointer really advances by.
1597 On 386 pushw decrements by exactly 2 no matter what the position was.
1598 On the 386 there is no pushb; we use pushw instead, and this
d2836273 1599 has the effect of rounding up to 2.
fce5a9f2 1600
d2836273
JH
1601 For 64bit ABI we round up to 8 bytes.
1602 */
c98f8742 1603
d2836273
JH
1604#define PUSH_ROUNDING(BYTES) \
1605 (TARGET_64BIT \
1606 ? (((BYTES) + 7) & (-8)) \
1607 : (((BYTES) + 1) & (-2)))
c98f8742 1608
f73ad30e
JH
1609/* If defined, the maximum amount of space required for outgoing arguments will
1610 be computed and placed into the variable
1611 `current_function_outgoing_args_size'. No space will be pushed onto the
1612 stack for each call; instead, the function prologue should increase the stack
1613 frame size by this amount. */
1614
1615#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1616
1617/* If defined, a C expression whose value is nonzero when we want to use PUSH
1618 instructions to pass outgoing arguments. */
1619
1620#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1621
2da4124d
L
1622/* We want the stack and args grow in opposite directions, even if
1623 PUSH_ARGS is 0. */
1624#define PUSH_ARGS_REVERSED 1
1625
c98f8742
JVA
1626/* Offset of first parameter from the argument pointer register value. */
1627#define FIRST_PARM_OFFSET(FNDECL) 0
1628
a7180f70
BS
1629/* Define this macro if functions should assume that stack space has been
1630 allocated for arguments even when their values are passed in registers.
1631
1632 The value of this macro is the size, in bytes, of the area reserved for
1633 arguments passed in registers for the function represented by FNDECL.
1634
1635 This space can be allocated by the caller, or be a part of the
1636 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1637 which. */
1638#define REG_PARM_STACK_SPACE(FNDECL) 0
1639
1640/* Define as a C expression that evaluates to nonzero if we do not know how
1641 to pass TYPE solely in registers. The file expr.h defines a
1642 definition that is usually appropriate, refer to expr.h for additional
1643 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1644 computed in the stack and then loaded into a register. */
d9a5f180
GS
1645#define MUST_PASS_IN_STACK(MODE, TYPE) \
1646 ((TYPE) != 0 \
1647 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1648 || TREE_ADDRESSABLE (TYPE) \
1649 || ((MODE) == TImode) \
1650 || ((MODE) == BLKmode \
1651 && ! ((TYPE) != 0 \
1652 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1653 && 0 == (int_size_in_bytes (TYPE) \
1654 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1655 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
a7180f70
BS
1656 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1657
c98f8742
JVA
1658/* Value is the number of bytes of arguments automatically
1659 popped when returning from a subroutine call.
8b109b37 1660 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1661 FUNTYPE is the data type of the function (as a tree),
1662 or for a library call it is an identifier node for the subroutine name.
1663 SIZE is the number of bytes of arguments passed on the stack.
1664
1665 On the 80386, the RTD insn may be used to pop them if the number
1666 of args is fixed, but if the number is variable then the caller
1667 must pop them all. RTD can't be used for library calls now
1668 because the library is compiled with the Unix compiler.
1669 Use of RTD is a selectable option, since it is incompatible with
1670 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1671 the caller must always pop the args.
1672
1673 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1674
d9a5f180
GS
1675#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1676 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1677
8c2bf92a
JVA
1678/* Define how to find the value returned by a function.
1679 VALTYPE is the data type of the value (as a tree).
1680 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1681 otherwise, FUNC is 0. */
c98f8742 1682#define FUNCTION_VALUE(VALTYPE, FUNC) \
53c17031
JH
1683 ix86_function_value (VALTYPE)
1684
1685#define FUNCTION_VALUE_REGNO_P(N) \
1686 ix86_function_value_regno_p (N)
c98f8742
JVA
1687
1688/* Define how to find the value returned by a library function
1689 assuming the value has mode MODE. */
1690
1691#define LIBCALL_VALUE(MODE) \
53c17031 1692 ix86_libcall_value (MODE)
c98f8742 1693
e9125c09
TW
1694/* Define the size of the result block used for communication between
1695 untyped_call and untyped_return. The block contains a DImode value
1696 followed by the block used by fnsave and frstor. */
1697
1698#define APPLY_RESULT_SIZE (8+108)
1699
b08de47e 1700/* 1 if N is a possible register number for function argument passing. */
53c17031 1701#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1702
1703/* Define a data type for recording info about an argument list
1704 during the scan of that argument list. This data type should
1705 hold all necessary information about the function itself
1706 and about the args processed so far, enough to enable macros
b08de47e 1707 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1708
e075ae69 1709typedef struct ix86_args {
b08de47e
MM
1710 int words; /* # words passed so far */
1711 int nregs; /* # registers available for passing */
1712 int regno; /* next available register number */
a7180f70
BS
1713 int sse_words; /* # sse words passed so far */
1714 int sse_nregs; /* # sse registers available for passing */
1715 int sse_regno; /* next available sse register number */
892a2d68 1716 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
b08de47e 1717} CUMULATIVE_ARGS;
c98f8742
JVA
1718
1719/* Initialize a variable CUM of type CUMULATIVE_ARGS
1720 for a call to a function whose data type is FNTYPE.
b08de47e 1721 For a library call, FNTYPE is 0. */
c98f8742 1722
d9a5f180
GS
1723#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1724 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
c98f8742
JVA
1725
1726/* Update the data in CUM to advance over an argument
1727 of mode MODE and data type TYPE.
1728 (TYPE is null for libcalls where that information may not be available.) */
1729
d9a5f180
GS
1730#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1731 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1732
1733/* Define where to put the arguments to a function.
1734 Value is zero to push the argument on the stack,
1735 or a hard register in which to store the argument.
1736
1737 MODE is the argument's machine mode.
1738 TYPE is the data type of the argument (as a tree).
1739 This is null for libcalls where that information may
1740 not be available.
1741 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1742 the preceding args and about the function being called.
1743 NAMED is nonzero if this argument is a named parameter
1744 (otherwise it is an extra parameter matching an ellipsis). */
1745
c98f8742 1746#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1747 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1748
1749/* For an arg passed partly in registers and partly in memory,
1750 this is the number of registers used.
1751 For args passed entirely in registers or entirely in memory, zero. */
1752
e075ae69 1753#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
c98f8742 1754
ad919812
JH
1755/* Perform any needed actions needed for a function that is receiving a
1756 variable number of arguments.
1757
1758 CUM is as above.
1759
1760 MODE and TYPE are the mode and type of the current parameter.
1761
1762 PRETEND_SIZE is a variable that should be set to the amount of stack
1763 that must be pushed by the prolog to pretend that our caller pushed
1764 it.
1765
1766 Normally, this macro will push all remaining incoming registers on the
1767 stack and set PRETEND_SIZE to the length of the registers pushed. */
1768
d9a5f180
GS
1769#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1770 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1771 (NO_RTL))
ad919812
JH
1772
1773/* Define the `__builtin_va_list' type for the ABI. */
1774#define BUILD_VA_LIST_TYPE(VALIST) \
d9a5f180 1775 ((VALIST) = ix86_build_va_list ())
ad919812
JH
1776
1777/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1778#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1779 ix86_va_start (VALIST, NEXTARG)
ad919812
JH
1780
1781/* Implement `va_arg'. */
d9a5f180
GS
1782#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1783 ix86_va_arg ((VALIST), (TYPE))
ad919812 1784
4cf12e7e
RH
1785/* This macro is invoked at the end of compilation. It is used here to
1786 output code for -fpic that will load the return address into %ebx. */
3a0433fd 1787
4cf12e7e
RH
1788#undef ASM_FILE_END
1789#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
3a0433fd 1790
c98f8742
JVA
1791/* Output assembler code to FILE to increment profiler label # LABELNO
1792 for profiling a function entry. */
1793
a5fa1ecd
JH
1794#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1795
1796#define MCOUNT_NAME "_mcount"
1797
1798#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1799
1800/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1801 the stack pointer does not matter. The value is tested only in
1802 functions that have frame pointers.
1803 No definition is equivalent to always zero. */
fce5a9f2 1804/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1805 we have to restore it ourselves from the frame pointer, in order to
1806 use pop */
1807
1808#define EXIT_IGNORE_STACK 1
1809
c98f8742
JVA
1810/* Output assembler code for a block containing the constant parts
1811 of a trampoline, leaving space for the variable parts. */
1812
a269a03c 1813/* On the 386, the trampoline contains two instructions:
c98f8742 1814 mov #STATIC,ecx
a269a03c
JC
1815 jmp FUNCTION
1816 The trampoline is generated entirely at runtime. The operand of JMP
1817 is the address of FUNCTION relative to the instruction following the
1818 JMP (which is 5 bytes long). */
c98f8742
JVA
1819
1820/* Length in units of the trampoline for entering a nested function. */
1821
39d04363 1822#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1823
1824/* Emit RTL insns to initialize the variable parts of a trampoline.
1825 FNADDR is an RTX for the address of the function's pure code.
1826 CXT is an RTX for the static chain value for the function. */
1827
d9a5f180
GS
1828#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1829 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1830\f
1831/* Definitions for register eliminations.
1832
1833 This is an array of structures. Each structure initializes one pair
1834 of eliminable registers. The "from" register number is given first,
1835 followed by "to". Eliminations of the same "from" register are listed
1836 in order of preference.
1837
afc2cd05
NC
1838 There are two registers that can always be eliminated on the i386.
1839 The frame pointer and the arg pointer can be replaced by either the
1840 hard frame pointer or to the stack pointer, depending upon the
1841 circumstances. The hard frame pointer is not used before reload and
1842 so it is not eligible for elimination. */
c98f8742 1843
564d80f4
JH
1844#define ELIMINABLE_REGS \
1845{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1846 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1847 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1848 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1849
2c5a510c
RH
1850/* Given FROM and TO register numbers, say whether this elimination is
1851 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1852
1853 All other eliminations are valid. */
1854
2c5a510c
RH
1855#define CAN_ELIMINATE(FROM, TO) \
1856 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1857
1858/* Define the offset between two registers, one to be eliminated, and the other
1859 its replacement, at the start of a routine. */
1860
d9a5f180
GS
1861#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1862 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1863\f
1864/* Addressing modes, and classification of registers for them. */
1865
c98f8742
JVA
1866/* Macros to check register numbers against specific register classes. */
1867
1868/* These assume that REGNO is a hard or pseudo reg number.
1869 They give nonzero only if REGNO is a hard reg of the suitable class
1870 or a pseudo reg currently allocated to a suitable hard reg.
1871 Since they use reg_renumber, they are safe only once reg_renumber
1872 has been allocated, which happens in local-alloc.c. */
1873
3f3f2124
JH
1874#define REGNO_OK_FOR_INDEX_P(REGNO) \
1875 ((REGNO) < STACK_POINTER_REGNUM \
1876 || (REGNO >= FIRST_REX_INT_REG \
1877 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1878 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1879 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1880 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1881
3f3f2124
JH
1882#define REGNO_OK_FOR_BASE_P(REGNO) \
1883 ((REGNO) <= STACK_POINTER_REGNUM \
1884 || (REGNO) == ARG_POINTER_REGNUM \
1885 || (REGNO) == FRAME_POINTER_REGNUM \
1886 || (REGNO >= FIRST_REX_INT_REG \
1887 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1888 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1889 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1890 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1891
d9a5f180
GS
1892#define REGNO_OK_FOR_SIREG_P(REGNO) \
1893 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1894#define REGNO_OK_FOR_DIREG_P(REGNO) \
1895 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1896
1897/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1898 and check its validity for a certain class.
1899 We have two alternate definitions for each of them.
1900 The usual definition accepts all pseudo regs; the other rejects
1901 them unless they have been allocated suitable hard regs.
1902 The symbol REG_OK_STRICT causes the latter definition to be used.
1903
1904 Most source files want to accept pseudo regs in the hope that
1905 they will get allocated to the class that the insn wants them to be in.
1906 Source files for reload pass need to be strict.
1907 After reload, it makes no difference, since pseudo regs have
1908 been eliminated by then. */
1909
c98f8742 1910
3b3c6a3f
MM
1911/* Non strict versions, pseudos are ok */
1912#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1913 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1914 || (REGNO (X) >= FIRST_REX_INT_REG \
1915 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1916 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1917
3b3c6a3f
MM
1918#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1919 (REGNO (X) <= STACK_POINTER_REGNUM \
1920 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1921 || REGNO (X) == FRAME_POINTER_REGNUM \
1922 || (REGNO (X) >= FIRST_REX_INT_REG \
1923 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1924 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1925
3b3c6a3f
MM
1926/* Strict versions, hard registers only */
1927#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1928#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1929
3b3c6a3f 1930#ifndef REG_OK_STRICT
d9a5f180
GS
1931#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1932#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1933
1934#else
d9a5f180
GS
1935#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1936#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1937#endif
1938
1939/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1940 that is a valid memory address for an instruction.
1941 The MODE argument is the machine mode for the MEM expression
1942 that wants to use this address.
1943
1944 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1945 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1946
1947 See legitimize_pic_address in i386.c for details as to what
1948 constitutes a legitimate address when -fpic is used. */
1949
1950#define MAX_REGS_PER_ADDRESS 2
1951
f996902d 1952#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1953
1954/* Nonzero if the constant value X is a legitimate general operand.
1955 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1956
f996902d 1957#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1958
3b3c6a3f
MM
1959#ifdef REG_OK_STRICT
1960#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1961do { \
1962 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1963 goto ADDR; \
d9a5f180 1964} while (0)
c98f8742 1965
3b3c6a3f
MM
1966#else
1967#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1968do { \
1969 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1970 goto ADDR; \
d9a5f180 1971} while (0)
c98f8742 1972
3b3c6a3f
MM
1973#endif
1974
b949ea8b
JW
1975/* If defined, a C expression to determine the base term of address X.
1976 This macro is used in only one place: `find_base_term' in alias.c.
1977
1978 It is always safe for this macro to not be defined. It exists so
1979 that alias analysis can understand machine-dependent addresses.
1980
1981 The typical use of this macro is to handle addresses containing
1982 a label_ref or symbol_ref within an UNSPEC. */
1983
d9a5f180 1984#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1985
c98f8742
JVA
1986/* Try machine-dependent ways of modifying an illegitimate address
1987 to be legitimate. If we find one, return the new, valid address.
1988 This macro is used in only one place: `memory_address' in explow.c.
1989
1990 OLDX is the address as it was before break_out_memory_refs was called.
1991 In some cases it is useful to look at this to decide what needs to be done.
1992
1993 MODE and WIN are passed so that this macro can use
1994 GO_IF_LEGITIMATE_ADDRESS.
1995
1996 It is always safe for this macro to do nothing. It exists to recognize
1997 opportunities to optimize the output.
1998
1999 For the 80386, we handle X+REG by loading X into a register R and
2000 using R+REG. R will go in a general reg and indexing will be used.
2001 However, if REG is a broken-out memory address or multiplication,
2002 nothing needs to be done because REG can certainly go in a general reg.
2003
2004 When -fpic is used, special handling is needed for symbolic references.
2005 See comments by legitimize_pic_address in i386.c for details. */
2006
3b3c6a3f 2007#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
2008do { \
2009 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2010 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 2011 goto WIN; \
d9a5f180 2012} while (0)
c98f8742 2013
d9a5f180 2014#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 2015
c98f8742 2016/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 2017 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
2018 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2019
f996902d 2020#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
2021
2022#define SYMBOLIC_CONST(X) \
d9a5f180
GS
2023 (GET_CODE (X) == SYMBOL_REF \
2024 || GET_CODE (X) == LABEL_REF \
2025 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
2026
2027/* Go to LABEL if ADDR (a legitimate address expression)
2028 has an effect that depends on the machine mode it is used for.
2029 On the 80386, only postdecrement and postincrement address depend thus
2030 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
2031#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2032do { \
2033 if (GET_CODE (ADDR) == POST_INC \
2034 || GET_CODE (ADDR) == POST_DEC) \
2035 goto LABEL; \
2036} while (0)
c98f8742 2037\f
bd793c65
BS
2038/* Codes for all the SSE/MMX builtins. */
2039enum ix86_builtins
2040{
2041 IX86_BUILTIN_ADDPS,
2042 IX86_BUILTIN_ADDSS,
2043 IX86_BUILTIN_DIVPS,
2044 IX86_BUILTIN_DIVSS,
2045 IX86_BUILTIN_MULPS,
2046 IX86_BUILTIN_MULSS,
2047 IX86_BUILTIN_SUBPS,
2048 IX86_BUILTIN_SUBSS,
2049
2050 IX86_BUILTIN_CMPEQPS,
2051 IX86_BUILTIN_CMPLTPS,
2052 IX86_BUILTIN_CMPLEPS,
2053 IX86_BUILTIN_CMPGTPS,
2054 IX86_BUILTIN_CMPGEPS,
2055 IX86_BUILTIN_CMPNEQPS,
2056 IX86_BUILTIN_CMPNLTPS,
2057 IX86_BUILTIN_CMPNLEPS,
2058 IX86_BUILTIN_CMPNGTPS,
2059 IX86_BUILTIN_CMPNGEPS,
2060 IX86_BUILTIN_CMPORDPS,
2061 IX86_BUILTIN_CMPUNORDPS,
2062 IX86_BUILTIN_CMPNEPS,
2063 IX86_BUILTIN_CMPEQSS,
2064 IX86_BUILTIN_CMPLTSS,
2065 IX86_BUILTIN_CMPLESS,
bd793c65
BS
2066 IX86_BUILTIN_CMPNEQSS,
2067 IX86_BUILTIN_CMPNLTSS,
2068 IX86_BUILTIN_CMPNLESS,
bd793c65
BS
2069 IX86_BUILTIN_CMPORDSS,
2070 IX86_BUILTIN_CMPUNORDSS,
2071 IX86_BUILTIN_CMPNESS,
2072
2073 IX86_BUILTIN_COMIEQSS,
2074 IX86_BUILTIN_COMILTSS,
2075 IX86_BUILTIN_COMILESS,
2076 IX86_BUILTIN_COMIGTSS,
2077 IX86_BUILTIN_COMIGESS,
2078 IX86_BUILTIN_COMINEQSS,
2079 IX86_BUILTIN_UCOMIEQSS,
2080 IX86_BUILTIN_UCOMILTSS,
2081 IX86_BUILTIN_UCOMILESS,
2082 IX86_BUILTIN_UCOMIGTSS,
2083 IX86_BUILTIN_UCOMIGESS,
2084 IX86_BUILTIN_UCOMINEQSS,
2085
2086 IX86_BUILTIN_CVTPI2PS,
2087 IX86_BUILTIN_CVTPS2PI,
2088 IX86_BUILTIN_CVTSI2SS,
2089 IX86_BUILTIN_CVTSS2SI,
2090 IX86_BUILTIN_CVTTPS2PI,
2091 IX86_BUILTIN_CVTTSS2SI,
bd793c65
BS
2092
2093 IX86_BUILTIN_MAXPS,
2094 IX86_BUILTIN_MAXSS,
2095 IX86_BUILTIN_MINPS,
2096 IX86_BUILTIN_MINSS,
2097
2098 IX86_BUILTIN_LOADAPS,
2099 IX86_BUILTIN_LOADUPS,
2100 IX86_BUILTIN_STOREAPS,
2101 IX86_BUILTIN_STOREUPS,
2102 IX86_BUILTIN_LOADSS,
2103 IX86_BUILTIN_STORESS,
2104 IX86_BUILTIN_MOVSS,
2105
2106 IX86_BUILTIN_MOVHLPS,
2107 IX86_BUILTIN_MOVLHPS,
2108 IX86_BUILTIN_LOADHPS,
2109 IX86_BUILTIN_LOADLPS,
2110 IX86_BUILTIN_STOREHPS,
2111 IX86_BUILTIN_STORELPS,
2112
2113 IX86_BUILTIN_MASKMOVQ,
2114 IX86_BUILTIN_MOVMSKPS,
2115 IX86_BUILTIN_PMOVMSKB,
2116
2117 IX86_BUILTIN_MOVNTPS,
2118 IX86_BUILTIN_MOVNTQ,
2119
f02e1358
JH
2120 IX86_BUILTIN_LOADDQA,
2121 IX86_BUILTIN_LOADDQU,
2122 IX86_BUILTIN_STOREDQA,
2123 IX86_BUILTIN_STOREDQU,
2124 IX86_BUILTIN_MOVQ,
2125 IX86_BUILTIN_LOADD,
2126 IX86_BUILTIN_STORED,
2127
2128 IX86_BUILTIN_CLRTI,
2129
bd793c65
BS
2130 IX86_BUILTIN_PACKSSWB,
2131 IX86_BUILTIN_PACKSSDW,
2132 IX86_BUILTIN_PACKUSWB,
2133
2134 IX86_BUILTIN_PADDB,
2135 IX86_BUILTIN_PADDW,
2136 IX86_BUILTIN_PADDD,
2137 IX86_BUILTIN_PADDSB,
2138 IX86_BUILTIN_PADDSW,
2139 IX86_BUILTIN_PADDUSB,
2140 IX86_BUILTIN_PADDUSW,
2141 IX86_BUILTIN_PSUBB,
2142 IX86_BUILTIN_PSUBW,
2143 IX86_BUILTIN_PSUBD,
2144 IX86_BUILTIN_PSUBSB,
2145 IX86_BUILTIN_PSUBSW,
2146 IX86_BUILTIN_PSUBUSB,
2147 IX86_BUILTIN_PSUBUSW,
2148
2149 IX86_BUILTIN_PAND,
2150 IX86_BUILTIN_PANDN,
2151 IX86_BUILTIN_POR,
2152 IX86_BUILTIN_PXOR,
2153
2154 IX86_BUILTIN_PAVGB,
2155 IX86_BUILTIN_PAVGW,
2156
2157 IX86_BUILTIN_PCMPEQB,
2158 IX86_BUILTIN_PCMPEQW,
2159 IX86_BUILTIN_PCMPEQD,
2160 IX86_BUILTIN_PCMPGTB,
2161 IX86_BUILTIN_PCMPGTW,
2162 IX86_BUILTIN_PCMPGTD,
2163
2164 IX86_BUILTIN_PEXTRW,
2165 IX86_BUILTIN_PINSRW,
2166
2167 IX86_BUILTIN_PMADDWD,
2168
2169 IX86_BUILTIN_PMAXSW,
2170 IX86_BUILTIN_PMAXUB,
2171 IX86_BUILTIN_PMINSW,
2172 IX86_BUILTIN_PMINUB,
2173
2174 IX86_BUILTIN_PMULHUW,
2175 IX86_BUILTIN_PMULHW,
2176 IX86_BUILTIN_PMULLW,
2177
2178 IX86_BUILTIN_PSADBW,
2179 IX86_BUILTIN_PSHUFW,
2180
2181 IX86_BUILTIN_PSLLW,
2182 IX86_BUILTIN_PSLLD,
2183 IX86_BUILTIN_PSLLQ,
2184 IX86_BUILTIN_PSRAW,
2185 IX86_BUILTIN_PSRAD,
2186 IX86_BUILTIN_PSRLW,
2187 IX86_BUILTIN_PSRLD,
2188 IX86_BUILTIN_PSRLQ,
2189 IX86_BUILTIN_PSLLWI,
2190 IX86_BUILTIN_PSLLDI,
2191 IX86_BUILTIN_PSLLQI,
2192 IX86_BUILTIN_PSRAWI,
2193 IX86_BUILTIN_PSRADI,
2194 IX86_BUILTIN_PSRLWI,
2195 IX86_BUILTIN_PSRLDI,
2196 IX86_BUILTIN_PSRLQI,
2197
2198 IX86_BUILTIN_PUNPCKHBW,
2199 IX86_BUILTIN_PUNPCKHWD,
2200 IX86_BUILTIN_PUNPCKHDQ,
2201 IX86_BUILTIN_PUNPCKLBW,
2202 IX86_BUILTIN_PUNPCKLWD,
2203 IX86_BUILTIN_PUNPCKLDQ,
2204
2205 IX86_BUILTIN_SHUFPS,
2206
2207 IX86_BUILTIN_RCPPS,
2208 IX86_BUILTIN_RCPSS,
2209 IX86_BUILTIN_RSQRTPS,
2210 IX86_BUILTIN_RSQRTSS,
2211 IX86_BUILTIN_SQRTPS,
2212 IX86_BUILTIN_SQRTSS,
fce5a9f2 2213
bd793c65
BS
2214 IX86_BUILTIN_UNPCKHPS,
2215 IX86_BUILTIN_UNPCKLPS,
2216
2217 IX86_BUILTIN_ANDPS,
2218 IX86_BUILTIN_ANDNPS,
2219 IX86_BUILTIN_ORPS,
2220 IX86_BUILTIN_XORPS,
2221
2222 IX86_BUILTIN_EMMS,
2223 IX86_BUILTIN_LDMXCSR,
2224 IX86_BUILTIN_STMXCSR,
2225 IX86_BUILTIN_SFENCE,
bd793c65 2226
47f339cf
BS
2227 /* 3DNow! Original */
2228 IX86_BUILTIN_FEMMS,
2229 IX86_BUILTIN_PAVGUSB,
2230 IX86_BUILTIN_PF2ID,
2231 IX86_BUILTIN_PFACC,
2232 IX86_BUILTIN_PFADD,
2233 IX86_BUILTIN_PFCMPEQ,
2234 IX86_BUILTIN_PFCMPGE,
2235 IX86_BUILTIN_PFCMPGT,
2236 IX86_BUILTIN_PFMAX,
2237 IX86_BUILTIN_PFMIN,
2238 IX86_BUILTIN_PFMUL,
2239 IX86_BUILTIN_PFRCP,
2240 IX86_BUILTIN_PFRCPIT1,
2241 IX86_BUILTIN_PFRCPIT2,
2242 IX86_BUILTIN_PFRSQIT1,
2243 IX86_BUILTIN_PFRSQRT,
2244 IX86_BUILTIN_PFSUB,
2245 IX86_BUILTIN_PFSUBR,
2246 IX86_BUILTIN_PI2FD,
2247 IX86_BUILTIN_PMULHRW,
47f339cf
BS
2248
2249 /* 3DNow! Athlon Extensions */
2250 IX86_BUILTIN_PF2IW,
2251 IX86_BUILTIN_PFNACC,
2252 IX86_BUILTIN_PFPNACC,
2253 IX86_BUILTIN_PI2FW,
2254 IX86_BUILTIN_PSWAPDSI,
2255 IX86_BUILTIN_PSWAPDSF,
2256
e37af218 2257 IX86_BUILTIN_SSE_ZERO,
bd793c65
BS
2258 IX86_BUILTIN_MMX_ZERO,
2259
fbe5eb6d
BS
2260 /* SSE2 */
2261 IX86_BUILTIN_ADDPD,
2262 IX86_BUILTIN_ADDSD,
2263 IX86_BUILTIN_DIVPD,
2264 IX86_BUILTIN_DIVSD,
2265 IX86_BUILTIN_MULPD,
2266 IX86_BUILTIN_MULSD,
2267 IX86_BUILTIN_SUBPD,
2268 IX86_BUILTIN_SUBSD,
2269
2270 IX86_BUILTIN_CMPEQPD,
2271 IX86_BUILTIN_CMPLTPD,
2272 IX86_BUILTIN_CMPLEPD,
2273 IX86_BUILTIN_CMPGTPD,
2274 IX86_BUILTIN_CMPGEPD,
2275 IX86_BUILTIN_CMPNEQPD,
2276 IX86_BUILTIN_CMPNLTPD,
2277 IX86_BUILTIN_CMPNLEPD,
2278 IX86_BUILTIN_CMPNGTPD,
2279 IX86_BUILTIN_CMPNGEPD,
2280 IX86_BUILTIN_CMPORDPD,
2281 IX86_BUILTIN_CMPUNORDPD,
2282 IX86_BUILTIN_CMPNEPD,
2283 IX86_BUILTIN_CMPEQSD,
2284 IX86_BUILTIN_CMPLTSD,
2285 IX86_BUILTIN_CMPLESD,
fbe5eb6d
BS
2286 IX86_BUILTIN_CMPNEQSD,
2287 IX86_BUILTIN_CMPNLTSD,
2288 IX86_BUILTIN_CMPNLESD,
fbe5eb6d
BS
2289 IX86_BUILTIN_CMPORDSD,
2290 IX86_BUILTIN_CMPUNORDSD,
2291 IX86_BUILTIN_CMPNESD,
2292
2293 IX86_BUILTIN_COMIEQSD,
2294 IX86_BUILTIN_COMILTSD,
2295 IX86_BUILTIN_COMILESD,
2296 IX86_BUILTIN_COMIGTSD,
2297 IX86_BUILTIN_COMIGESD,
2298 IX86_BUILTIN_COMINEQSD,
2299 IX86_BUILTIN_UCOMIEQSD,
2300 IX86_BUILTIN_UCOMILTSD,
2301 IX86_BUILTIN_UCOMILESD,
2302 IX86_BUILTIN_UCOMIGTSD,
2303 IX86_BUILTIN_UCOMIGESD,
2304 IX86_BUILTIN_UCOMINEQSD,
2305
2306 IX86_BUILTIN_MAXPD,
2307 IX86_BUILTIN_MAXSD,
2308 IX86_BUILTIN_MINPD,
2309 IX86_BUILTIN_MINSD,
2310
2311 IX86_BUILTIN_ANDPD,
2312 IX86_BUILTIN_ANDNPD,
2313 IX86_BUILTIN_ORPD,
2314 IX86_BUILTIN_XORPD,
2315
2316 IX86_BUILTIN_SQRTPD,
2317 IX86_BUILTIN_SQRTSD,
2318
2319 IX86_BUILTIN_UNPCKHPD,
2320 IX86_BUILTIN_UNPCKLPD,
2321
2322 IX86_BUILTIN_SHUFPD,
2323
2324 IX86_BUILTIN_LOADAPD,
2325 IX86_BUILTIN_LOADUPD,
2326 IX86_BUILTIN_STOREAPD,
2327 IX86_BUILTIN_STOREUPD,
2328 IX86_BUILTIN_LOADSD,
2329 IX86_BUILTIN_STORESD,
2330 IX86_BUILTIN_MOVSD,
2331
2332 IX86_BUILTIN_LOADHPD,
2333 IX86_BUILTIN_LOADLPD,
2334 IX86_BUILTIN_STOREHPD,
2335 IX86_BUILTIN_STORELPD,
2336
2337 IX86_BUILTIN_CVTDQ2PD,
2338 IX86_BUILTIN_CVTDQ2PS,
2339
2340 IX86_BUILTIN_CVTPD2DQ,
2341 IX86_BUILTIN_CVTPD2PI,
2342 IX86_BUILTIN_CVTPD2PS,
2343 IX86_BUILTIN_CVTTPD2DQ,
2344 IX86_BUILTIN_CVTTPD2PI,
2345
2346 IX86_BUILTIN_CVTPI2PD,
2347 IX86_BUILTIN_CVTSI2SD,
2348
2349 IX86_BUILTIN_CVTSD2SI,
2350 IX86_BUILTIN_CVTSD2SS,
2351 IX86_BUILTIN_CVTSS2SD,
2352 IX86_BUILTIN_CVTTSD2SI,
2353
2354 IX86_BUILTIN_CVTPS2DQ,
2355 IX86_BUILTIN_CVTPS2PD,
2356 IX86_BUILTIN_CVTTPS2DQ,
2357
2358 IX86_BUILTIN_MOVNTI,
2359 IX86_BUILTIN_MOVNTPD,
2360 IX86_BUILTIN_MOVNTDQ,
2361
2362 IX86_BUILTIN_SETPD1,
2363 IX86_BUILTIN_SETPD,
2364 IX86_BUILTIN_CLRPD,
2365 IX86_BUILTIN_SETRPD,
2366 IX86_BUILTIN_LOADPD1,
2367 IX86_BUILTIN_LOADRPD,
2368 IX86_BUILTIN_STOREPD1,
2369 IX86_BUILTIN_STORERPD,
2370
2371 /* SSE2 MMX */
2372 IX86_BUILTIN_MASKMOVDQU,
2373 IX86_BUILTIN_MOVMSKPD,
2374 IX86_BUILTIN_PMOVMSKB128,
2375 IX86_BUILTIN_MOVQ2DQ,
f02e1358 2376 IX86_BUILTIN_MOVDQ2Q,
fbe5eb6d
BS
2377
2378 IX86_BUILTIN_PACKSSWB128,
2379 IX86_BUILTIN_PACKSSDW128,
2380 IX86_BUILTIN_PACKUSWB128,
2381
2382 IX86_BUILTIN_PADDB128,
2383 IX86_BUILTIN_PADDW128,
2384 IX86_BUILTIN_PADDD128,
2385 IX86_BUILTIN_PADDQ128,
2386 IX86_BUILTIN_PADDSB128,
2387 IX86_BUILTIN_PADDSW128,
2388 IX86_BUILTIN_PADDUSB128,
2389 IX86_BUILTIN_PADDUSW128,
2390 IX86_BUILTIN_PSUBB128,
2391 IX86_BUILTIN_PSUBW128,
2392 IX86_BUILTIN_PSUBD128,
2393 IX86_BUILTIN_PSUBQ128,
2394 IX86_BUILTIN_PSUBSB128,
2395 IX86_BUILTIN_PSUBSW128,
2396 IX86_BUILTIN_PSUBUSB128,
2397 IX86_BUILTIN_PSUBUSW128,
2398
2399 IX86_BUILTIN_PAND128,
2400 IX86_BUILTIN_PANDN128,
2401 IX86_BUILTIN_POR128,
2402 IX86_BUILTIN_PXOR128,
2403
2404 IX86_BUILTIN_PAVGB128,
2405 IX86_BUILTIN_PAVGW128,
2406
2407 IX86_BUILTIN_PCMPEQB128,
2408 IX86_BUILTIN_PCMPEQW128,
2409 IX86_BUILTIN_PCMPEQD128,
2410 IX86_BUILTIN_PCMPGTB128,
2411 IX86_BUILTIN_PCMPGTW128,
2412 IX86_BUILTIN_PCMPGTD128,
2413
2414 IX86_BUILTIN_PEXTRW128,
2415 IX86_BUILTIN_PINSRW128,
2416
2417 IX86_BUILTIN_PMADDWD128,
2418
2419 IX86_BUILTIN_PMAXSW128,
2420 IX86_BUILTIN_PMAXUB128,
2421 IX86_BUILTIN_PMINSW128,
2422 IX86_BUILTIN_PMINUB128,
2423
2424 IX86_BUILTIN_PMULUDQ,
2425 IX86_BUILTIN_PMULUDQ128,
2426 IX86_BUILTIN_PMULHUW128,
2427 IX86_BUILTIN_PMULHW128,
2428 IX86_BUILTIN_PMULLW128,
2429
2430 IX86_BUILTIN_PSADBW128,
2431 IX86_BUILTIN_PSHUFHW,
2432 IX86_BUILTIN_PSHUFLW,
2433 IX86_BUILTIN_PSHUFD,
2434
2435 IX86_BUILTIN_PSLLW128,
2436 IX86_BUILTIN_PSLLD128,
2437 IX86_BUILTIN_PSLLQ128,
2438 IX86_BUILTIN_PSRAW128,
2439 IX86_BUILTIN_PSRAD128,
2440 IX86_BUILTIN_PSRLW128,
2441 IX86_BUILTIN_PSRLD128,
2442 IX86_BUILTIN_PSRLQ128,
ab3146fd 2443 IX86_BUILTIN_PSLLDQI128,
fbe5eb6d
BS
2444 IX86_BUILTIN_PSLLWI128,
2445 IX86_BUILTIN_PSLLDI128,
2446 IX86_BUILTIN_PSLLQI128,
2447 IX86_BUILTIN_PSRAWI128,
2448 IX86_BUILTIN_PSRADI128,
ab3146fd 2449 IX86_BUILTIN_PSRLDQI128,
fbe5eb6d
BS
2450 IX86_BUILTIN_PSRLWI128,
2451 IX86_BUILTIN_PSRLDI128,
2452 IX86_BUILTIN_PSRLQI128,
2453
2454 IX86_BUILTIN_PUNPCKHBW128,
2455 IX86_BUILTIN_PUNPCKHWD128,
2456 IX86_BUILTIN_PUNPCKHDQ128,
077084dd 2457 IX86_BUILTIN_PUNPCKHQDQ128,
fbe5eb6d
BS
2458 IX86_BUILTIN_PUNPCKLBW128,
2459 IX86_BUILTIN_PUNPCKLWD128,
2460 IX86_BUILTIN_PUNPCKLDQ128,
f02e1358 2461 IX86_BUILTIN_PUNPCKLQDQ128,
fbe5eb6d
BS
2462
2463 IX86_BUILTIN_CLFLUSH,
2464 IX86_BUILTIN_MFENCE,
2465 IX86_BUILTIN_LFENCE,
2466
bd793c65
BS
2467 IX86_BUILTIN_MAX
2468};
bd793c65 2469\f
f996902d
RH
2470#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2471#define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2472
2473#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2474 do { \
2475 const char *xname = (NAME); \
2476 if (xname[0] == '%') \
2477 xname += 2; \
2478 if (xname[0] == '*') \
2479 xname += 1; \
2480 else \
2481 fputs (user_label_prefix, FILE); \
2482 fputs (xname, FILE); \
2483 } while (0)
b08de47e 2484\f
b08de47e
MM
2485/* Max number of args passed in registers. If this is more than 3, we will
2486 have problems with ebx (register #4), since it is a caller save register and
2487 is also used as the pic register in ELF. So for now, don't allow more than
2488 3 registers to be passed in registers. */
2489
d2836273
JH
2490#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2491
df4e780e 2492#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
b08de47e 2493
c98f8742
JVA
2494\f
2495/* Specify the machine mode that this machine uses
2496 for the index in the tablejump instruction. */
6eb791fc 2497#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 2498
18543a22
ILT
2499/* Define as C expression which evaluates to nonzero if the tablejump
2500 instruction expects the table to contain offsets from the address of the
2501 table.
892a2d68 2502 Do not define this if the table should contain absolute addresses. */
18543a22 2503/* #define CASE_VECTOR_PC_RELATIVE 1 */
c98f8742 2504
c98f8742
JVA
2505/* Define this as 1 if `char' should by default be signed; else as 0. */
2506#define DEFAULT_SIGNED_CHAR 1
2507
f4365627
JH
2508/* Number of bytes moved into a data cache for a single prefetch operation. */
2509#define PREFETCH_BLOCK ix86_cost->prefetch_block
2510
2511/* Number of prefetch operations that can be done in parallel. */
2512#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2513
c98f8742
JVA
2514/* Max number of bytes we can move from memory to memory
2515 in one reasonably fast instruction. */
65d9c0ab
JH
2516#define MOVE_MAX 16
2517
2518/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2519 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 2520 number of bytes we can move with a single instruction. */
65d9c0ab 2521#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 2522
7e24ffc9
HPN
2523/* If a memory-to-memory move would take MOVE_RATIO or more simple
2524 move-instruction pairs, we will do a movstr or libcall instead.
2525 Increasing the value will always make code faster, but eventually
2526 incurs high cost in increased code size.
c98f8742 2527
e2e52e1b 2528 If you don't define this, a reasonable default is used. */
c98f8742 2529
e2e52e1b 2530#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742
JVA
2531
2532/* Define if shifts truncate the shift count
2533 which implies one can omit a sign-extension or zero-extension
2534 of a shift count. */
892a2d68 2535/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
2536
2537/* #define SHIFT_COUNT_TRUNCATED */
2538
2539/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2540 is done just by pretending it is already truncated. */
2541#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2542
2543/* We assume that the store-condition-codes instructions store 0 for false
2544 and some other value for true. This is the value stored for true. */
2545
2546#define STORE_FLAG_VALUE 1
2547
2548/* When a prototype says `char' or `short', really pass an `int'.
2549 (The 386 can't easily push less than an int.) */
2550
cb560352 2551#define PROMOTE_PROTOTYPES 1
c98f8742 2552
d9f32422
JH
2553/* A macro to update M and UNSIGNEDP when an object whose type is
2554 TYPE and which has the specified mode and signedness is to be
2555 stored in a register. This macro is only called when TYPE is a
2556 scalar type.
2557
f710504c 2558 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2559 quantities to SImode. The choice depends on target type. */
2560
2561#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2562do { \
d9f32422
JH
2563 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2564 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2565 (MODE) = SImode; \
2566} while (0)
d9f32422 2567
c98f8742
JVA
2568/* Specify the machine mode that pointers have.
2569 After generation of rtl, the compiler makes no further distinction
2570 between pointers and any other objects of this machine mode. */
65d9c0ab 2571#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2572
2573/* A function address in a call instruction
2574 is a byte address (for indexing purposes)
2575 so give the MEM rtx a byte's mode. */
2576#define FUNCTION_MODE QImode
d4ba09c0
SC
2577\f
2578/* A part of a C `switch' statement that describes the relative costs
2579 of constant RTL expressions. It must contain `case' labels for
2580 expression codes `const_int', `const', `symbol_ref', `label_ref'
2581 and `const_double'. Each case must ultimately reach a `return'
2582 statement to return the relative cost of the use of that kind of
2583 constant value in an expression. The cost may depend on the
2584 precise value of the constant, which is available for examination
2585 in X, and the rtx code of the expression in which it is contained,
2586 found in OUTER_CODE.
fce5a9f2 2587
d4ba09c0
SC
2588 CODE is the expression code--redundant, since it can be obtained
2589 with `GET_CODE (X)'. */
c98f8742 2590
d9a5f180 2591#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
c98f8742
JVA
2592 case CONST_INT: \
2593 case CONST: \
2594 case LABEL_REF: \
2595 case SYMBOL_REF: \
c05dbe81 2596 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
44cf5b6a
JH
2597 return 3; \
2598 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2599 return 2; \
1acc845e 2600 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
d4ba09c0 2601 \
c98f8742 2602 case CONST_DOUBLE: \
51286de6
RH
2603 if (GET_MODE (RTX) == VOIDmode) \
2604 return 0; \
2605 switch (standard_80387_constant_p (RTX)) \
2606 { \
2607 case 1: /* 0.0 */ \
2608 return 1; \
2609 case 2: /* 1.0 */ \
2610 return 2; \
2611 default: \
2612 /* Start with (MEM (SYMBOL_REF)), since that's where \
2613 it'll probably end up. Add a penalty for size. */ \
2614 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2615 + (GET_MODE (RTX) == SFmode ? 0 \
2616 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2617 }
c98f8742 2618
76565a24 2619/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
e075ae69
RH
2620#define TOPLEVEL_COSTS_N_INSNS(N) \
2621 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
76565a24 2622
4977bab6
ZW
2623/* Return index of given mode in mult and division cost tables. */
2624#define MODE_INDEX(mode) \
2625 ((mode) == QImode ? 0 \
2626 : (mode) == HImode ? 1 \
2627 : (mode) == SImode ? 2 \
2628 : (mode) == DImode ? 3 \
2629 : 4)
2630
d4ba09c0
SC
2631/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2632 This can be used, for example, to indicate how costly a multiply
2633 instruction is. In writing this macro, you can use the construct
2634 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2635 instructions. OUTER_CODE is the code of the expression in which X
2636 is contained.
2637
2638 This macro is optional; do not define it if the default cost
2639 assumptions are adequate for the target machine. */
2640
d9a5f180 2641#define RTX_COSTS(X, CODE, OUTER_CODE) \
44cf5b6a
JH
2642 case ZERO_EXTEND: \
2643 /* The zero extensions is often completely free on x86_64, so make \
2644 it as cheap as possible. */ \
2645 if (TARGET_64BIT && GET_MODE (X) == DImode \
2646 && GET_MODE (XEXP (X, 0)) == SImode) \
2647 { \
2648 total = 1; goto egress_rtx_costs; \
2649 } \
2650 else \
2651 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2652 ix86_cost->add : ix86_cost->movzx); \
2653 break; \
2654 case SIGN_EXTEND: \
2655 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2656 break; \
d4ba09c0
SC
2657 case ASHIFT: \
2658 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
44cf5b6a 2659 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
d4ba09c0
SC
2660 { \
2661 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
d4ba09c0 2662 if (value == 1) \
e075ae69 2663 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
b972dd02
JH
2664 if ((value == 2 || value == 3) \
2665 && !TARGET_DECOMPOSE_LEA \
2666 && ix86_cost->lea <= ix86_cost->shift_const) \
e075ae69 2667 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
d4ba09c0
SC
2668 } \
2669 /* fall through */ \
2670 \
2671 case ROTATE: \
2672 case ASHIFTRT: \
2673 case LSHIFTRT: \
2674 case ROTATERT: \
44cf5b6a 2675 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
76565a24
SC
2676 { \
2677 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
54d26233
MH
2678 { \
2679 if (INTVAL (XEXP (X, 1)) > 32) \
e075ae69
RH
2680 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2681 else \
2682 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2683 } \
2684 else \
2685 { \
2686 if (GET_CODE (XEXP (X, 1)) == AND) \
2687 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2688 else \
2689 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
54d26233 2690 } \
76565a24 2691 } \
e075ae69
RH
2692 else \
2693 { \
2694 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2695 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2696 else \
2697 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2698 } \
2699 break; \
d4ba09c0
SC
2700 \
2701 case MULT: \
229b303a
RS
2702 if (FLOAT_MODE_P (GET_MODE (X))) \
2703 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul); \
2704 else if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
d4ba09c0
SC
2705 { \
2706 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2707 int nbits = 0; \
2708 \
2709 while (value != 0) \
2710 { \
2711 nbits++; \
2712 value >>= 1; \
2713 } \
2714 \
630c79be 2715 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
4977bab6 2716 [MODE_INDEX (GET_MODE (X))] \
630c79be 2717 + nbits * ix86_cost->mult_bit); \
d4ba09c0 2718 } \
d4ba09c0 2719 else /* This is arbitrary */ \
76565a24 2720 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
4977bab6 2721 [MODE_INDEX (GET_MODE (X))] \
76565a24 2722 + 7 * ix86_cost->mult_bit); \
d4ba09c0
SC
2723 \
2724 case DIV: \
2725 case UDIV: \
2726 case MOD: \
2727 case UMOD: \
229b303a
RS
2728 if (FLOAT_MODE_P (GET_MODE (X))) \
2729 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv); \
2730 else \
4977bab6
ZW
2731 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide \
2732 [MODE_INDEX (GET_MODE (X))]); \
229b303a 2733 break; \
d4ba09c0
SC
2734 \
2735 case PLUS: \
229b303a
RS
2736 if (FLOAT_MODE_P (GET_MODE (X))) \
2737 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2738 else if (!TARGET_DECOMPOSE_LEA \
b972dd02
JH
2739 && INTEGRAL_MODE_P (GET_MODE (X)) \
2740 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
e075ae69 2741 { \
b972dd02
JH
2742 if (GET_CODE (XEXP (X, 0)) == PLUS \
2743 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2744 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2745 && CONSTANT_P (XEXP (X, 1))) \
e075ae69 2746 { \
b972dd02
JH
2747 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2748 if (val == 2 || val == 4 || val == 8) \
2749 { \
2750 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2751 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2752 (OUTER_CODE)) \
2753 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2754 (OUTER_CODE)) \
2755 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02 2756 } \
e075ae69 2757 } \
b972dd02
JH
2758 else if (GET_CODE (XEXP (X, 0)) == MULT \
2759 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2760 { \
2761 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2762 if (val == 2 || val == 4 || val == 8) \
2763 { \
2764 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2765 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2766 (OUTER_CODE)) \
2767 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02
JH
2768 } \
2769 } \
2770 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
e075ae69
RH
2771 { \
2772 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2773 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2774 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2775 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
e075ae69 2776 } \
e075ae69 2777 } \
229b303a 2778 /* fall through */ \
d4ba09c0 2779 \
229b303a
RS
2780 case MINUS: \
2781 if (FLOAT_MODE_P (GET_MODE (X))) \
2782 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
d4ba09c0 2783 /* fall through */ \
229b303a 2784 \
d4ba09c0
SC
2785 case AND: \
2786 case IOR: \
2787 case XOR: \
44cf5b6a 2788 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69 2789 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
d9a5f180 2790 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
e075ae69 2791 << (GET_MODE (XEXP (X, 0)) != DImode)) \
d9a5f180 2792 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
e075ae69 2793 << (GET_MODE (XEXP (X, 1)) != DImode))); \
e075ae69 2794 /* fall through */ \
229b303a 2795 \
d4ba09c0 2796 case NEG: \
229b303a
RS
2797 if (FLOAT_MODE_P (GET_MODE (X))) \
2798 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs); \
2799 /* fall through */ \
2800 \
d4ba09c0 2801 case NOT: \
44cf5b6a 2802 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69
RH
2803 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2804 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2805 \
51286de6 2806 case FLOAT_EXTEND: \
285464d0
JH
2807 if (!TARGET_SSE_MATH \
2808 || !VALID_SSE_REG_MODE (GET_MODE (X))) \
2809 TOPLEVEL_COSTS_N_INSNS (0); \
2810 break; \
51286de6 2811 \
229b303a
RS
2812 case ABS: \
2813 if (FLOAT_MODE_P (GET_MODE (X))) \
2814 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs); \
2815 break; \
2816 \
2817 case SQRT: \
2818 if (FLOAT_MODE_P (GET_MODE (X))) \
2819 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt); \
2820 break; \
2821 \
e075ae69
RH
2822 egress_rtx_costs: \
2823 break;
d4ba09c0
SC
2824
2825
2826/* An expression giving the cost of an addressing mode that contains
2827 ADDRESS. If not defined, the cost is computed from the ADDRESS
2828 expression and the `CONST_COSTS' values.
2829
2830 For most CISC machines, the default cost is a good approximation
2831 of the true cost of the addressing mode. However, on RISC
2832 machines, all instructions normally have the same length and
2833 execution time. Hence all addresses will have equal costs.
2834
2835 In cases where more than one form of an address is known, the form
2836 with the lowest cost will be used. If multiple forms have the
2837 same, lowest, cost, the one that is the most complex will be used.
2838
2839 For example, suppose an address that is equal to the sum of a
2840 register and a constant is used twice in the same basic block.
2841 When this macro is not defined, the address will be computed in a
2842 register and memory references will be indirect through that
2843 register. On machines where the cost of the addressing mode
2844 containing the sum is no higher than that of a simple indirect
2845 reference, this will produce an additional instruction and
2846 possibly require an additional register. Proper specification of
2847 this macro eliminates this overhead for such machines.
2848
2849 Similar use of this macro is made in strength reduction of loops.
2850
2851 ADDRESS need not be valid as an address. In such a case, the cost
2852 is not relevant and can be any value; invalid addresses need not be
2853 assigned a different cost.
2854
2855 On machines where an address involving more than one register is as
2856 cheap as an address computation involving only one register,
2857 defining `ADDRESS_COST' to reflect this can cause two registers to
2858 be live over a region of code where only one would have been if
2859 `ADDRESS_COST' were not defined in that manner. This effect should
2860 be considered in the definition of this macro. Equivalent costs
2861 should probably only be given to addresses with different numbers
2862 of registers on machines with lots of registers.
2863
2864 This macro will normally either not be defined or be defined as a
2865 constant.
c98f8742
JVA
2866
2867 For i386, it is better to use a complex address than let gcc copy
2868 the address into a reg and make a new pseudo. But not if the address
2869 requires to two regs - that would mean more pseudos with longer
2870 lifetimes. */
2871
2872#define ADDRESS_COST(RTX) \
0806f95f 2873 ix86_address_cost (RTX)
d4ba09c0 2874
96e7ae40
JH
2875/* A C expression for the cost of moving data from a register in class FROM to
2876 one in class TO. The classes are expressed using the enumeration values
2877 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2878 interpreted relative to that.
d4ba09c0 2879
96e7ae40
JH
2880 It is not required that the cost always equal 2 when FROM is the same as TO;
2881 on some machines it is expensive to move between registers if they are not
f84aa48a 2882 general registers. */
d4ba09c0 2883
f84aa48a 2884#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2885 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2886
2887/* A C expression for the cost of moving data of mode M between a
2888 register and memory. A value of 2 is the default; this cost is
2889 relative to those in `REGISTER_MOVE_COST'.
2890
2891 If moving between registers and memory is more expensive than
2892 between two registers, you should define this macro to express the
fa79946e 2893 relative cost. */
d4ba09c0 2894
d9a5f180
GS
2895#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2896 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2897
2898/* A C expression for the cost of a branch instruction. A value of 1
2899 is the default; other values are interpreted relative to that. */
2900
e075ae69 2901#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2902
2903/* Define this macro as a C expression which is nonzero if accessing
2904 less than a word of memory (i.e. a `char' or a `short') is no
2905 faster than accessing a word of memory, i.e., if such access
2906 require more than one instruction or if there is no difference in
2907 cost between byte and (aligned) word loads.
2908
2909 When this macro is not defined, the compiler will access a field by
2910 finding the smallest containing object; when it is defined, a
2911 fullword load will be used if alignment permits. Unless bytes
2912 accesses are faster than word accesses, using word accesses is
2913 preferable since it may eliminate subsequent memory access if
2914 subsequent accesses occur to other fields in the same word of the
2915 structure, but to different bytes. */
2916
2917#define SLOW_BYTE_ACCESS 0
2918
2919/* Nonzero if access to memory by shorts is slow and undesirable. */
2920#define SLOW_SHORT_ACCESS 0
2921
d4ba09c0
SC
2922/* Define this macro to be the value 1 if unaligned accesses have a
2923 cost many times greater than aligned accesses, for example if they
2924 are emulated in a trap handler.
2925
9cd10576
KH
2926 When this macro is nonzero, the compiler will act as if
2927 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2928 moves. This can cause significantly more instructions to be
9cd10576 2929 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2930 accesses only add a cycle or two to the time for a memory access.
2931
2932 If the value of this macro is always zero, it need not be defined. */
2933
e1565e65 2934/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0
SC
2935
2936/* Define this macro to inhibit strength reduction of memory
2937 addresses. (On some machines, such strength reduction seems to do
2938 harm rather than good.) */
2939
2940/* #define DONT_REDUCE_ADDR */
2941
2942/* Define this macro if it is as good or better to call a constant
2943 function address than to call an address kept in a register.
2944
2945 Desirable on the 386 because a CALL with a constant address is
2946 faster than one with a register address. */
2947
2948#define NO_FUNCTION_CSE
2949
2950/* Define this macro if it is as good or better for a function to call
2951 itself with an explicit address than to call an address kept in a
2952 register. */
2953
2954#define NO_RECURSIVE_FUNCTION_CSE
c98f8742 2955\f
c572e5ba
JVA
2956/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2957 return the mode to be used for the comparison.
2958
2959 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2960 VOIDmode should be used in all other cases.
c572e5ba 2961
16189740 2962 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2963 possible, to allow for more combinations. */
c98f8742 2964
d9a5f180 2965#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2966
9cd10576 2967/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2968 reversed. */
2969
2970#define REVERSIBLE_CC_MODE(MODE) 1
2971
2972/* A C expression whose value is reversed condition code of the CODE for
2973 comparison done in CC_MODE mode. */
2974#define REVERSE_CONDITION(CODE, MODE) \
2975 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2976 : reverse_condition_maybe_unordered (CODE))
2977
c98f8742
JVA
2978\f
2979/* Control the assembler format that we output, to the extent
2980 this does not vary between assemblers. */
2981
2982/* How to refer to registers in assembler output.
892a2d68 2983 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742
JVA
2984
2985/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2986 For non floating point regs, the following are the HImode names.
2987
2988 For float regs, the stack top is sometimes referred to as "%st(0)"
9e06e321 2989 instead of just "%st". PRINT_REG handles this with the "y" code. */
c98f8742 2990
fce5a9f2 2991#undef HI_REGISTER_NAMES
a7180f70
BS
2992#define HI_REGISTER_NAMES \
2993{"ax","dx","cx","bx","si","di","bp","sp", \
2994 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2995 "flags","fpsr", "dirflag", "frame", \
2996 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
3f3f2124
JH
2997 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2998 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2999 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 3000
c98f8742
JVA
3001#define REGISTER_NAMES HI_REGISTER_NAMES
3002
3003/* Table of additional register names to use in user input. */
3004
3005#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
3006{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
3007 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
3008 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
3009 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 3010 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
a7180f70
BS
3011 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
3012 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
3013 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
c98f8742
JVA
3014
3015/* Note we are omitting these since currently I don't know how
3016to get gcc to use these, since they want the same but different
3017number as al, and ax.
3018*/
3019
c98f8742 3020#define QI_REGISTER_NAMES \
3f3f2124 3021{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
3022
3023/* These parallel the array above, and can be used to access bits 8:15
892a2d68 3024 of regs 0 through 3. */
c98f8742
JVA
3025
3026#define QI_HIGH_REGISTER_NAMES \
3027{"ah", "dh", "ch", "bh", }
3028
3029/* How to renumber registers for dbx and gdb. */
3030
d9a5f180
GS
3031#define DBX_REGISTER_NUMBER(N) \
3032 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849
RH
3033
3034extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
0f7fa3d0 3035extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
83774849 3036extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 3037
469ac993
JM
3038/* Before the prologue, RA is at 0(%esp). */
3039#define INCOMING_RETURN_ADDR_RTX \
f64cecad 3040 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 3041
e414ab29 3042/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
3043#define RETURN_ADDR_RTX(COUNT, FRAME) \
3044 ((COUNT) == 0 \
3045 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3046 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 3047
892a2d68 3048/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 3049#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 3050
a6ab3aad 3051/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 3052#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 3053
1020a5ab
RH
3054/* Describe how we implement __builtin_eh_return. */
3055#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
3056#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
3057
ad919812 3058
e4c4ebeb
RH
3059/* Select a format to encode pointers in exception handling data. CODE
3060 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
3061 true if the symbol may be affected by dynamic relocations.
3062
3063 ??? All x86 object file formats are capable of representing this.
3064 After all, the relocation needed is the same as for the call insn.
3065 Whether or not a particular assembler allows us to enter such, I
3066 guess we'll have to see. */
d9a5f180 3067#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
b932f770 3068 (flag_pic \
d9a5f180 3069 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
e4c4ebeb
RH
3070 : DW_EH_PE_absptr)
3071
c98f8742
JVA
3072/* This is how to output an insn to push a register on the stack.
3073 It need not be very fast code. */
3074
d9a5f180 3075#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
3076do { \
3077 if (TARGET_64BIT) \
3078 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
3079 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3080 else \
3081 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
3082} while (0)
c98f8742
JVA
3083
3084/* This is how to output an insn to pop a register from the stack.
3085 It need not be very fast code. */
3086
d9a5f180 3087#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
3088do { \
3089 if (TARGET_64BIT) \
3090 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
3091 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3092 else \
3093 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
3094} while (0)
c98f8742 3095
f88c65f7 3096/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
3097
3098#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 3099 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 3100
f88c65f7 3101/* This is how to output an element of a case-vector that is relative. */
c98f8742 3102
33f7f353 3103#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 3104 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7
RH
3105
3106/* Under some conditions we need jump tables in the text section, because
3107 the assembler cannot handle label differences between sections. */
3108
3109#define JUMP_TABLES_IN_TEXT_SECTION \
3110 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
c98f8742 3111
fce5a9f2 3112/* A C statement that outputs an address constant appropriate to
1865dbb5
JM
3113 for DWARF debugging. */
3114
d9a5f180
GS
3115#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3116 i386_dwarf_output_addr_const ((FILE), (X))
1865dbb5
JM
3117
3118/* Either simplify a location expression, or return the original. */
3119
3120#define ASM_SIMPLIFY_DWARF_ADDR(X) \
d9a5f180 3121 i386_simplify_dwarf_addr (X)
cea3bd3e 3122
b9203463
RH
3123/* Emit a dtp-relative reference to a TLS variable. */
3124
3125#ifdef HAVE_AS_TLS
3126#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3127 i386_output_dwarf_dtprel (FILE, SIZE, X)
3128#endif
3129
cea3bd3e
RH
3130/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3131 and switch back. For x86 we do this only to save a few bytes that
3132 would otherwise be unused in the text section. */
3133#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3134 asm (SECTION_OP "\n\t" \
3135 "call " USER_LABEL_PREFIX #FUNC "\n" \
3136 TEXT_SECTION_ASM_OP);
74b42c8b 3137\f
c98f8742
JVA
3138/* Print operand X (an rtx) in assembler syntax to file FILE.
3139 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
3140 Effect of various CODE letters is described in i386.c near
3141 print_operand function. */
c98f8742 3142
d9a5f180 3143#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 3144 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742 3145
74b42c8b
RS
3146/* Print the name of a register based on its machine mode and number.
3147 If CODE is 'w', pretend the mode is HImode.
3148 If CODE is 'b', pretend the mode is QImode.
3149 If CODE is 'k', pretend the mode is SImode.
ef6257cd 3150 If CODE is 'q', pretend the mode is DImode.
74b42c8b 3151 If CODE is 'h', pretend the reg is the `high' byte register.
ef6257cd 3152 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
74b42c8b 3153
e075ae69 3154#define PRINT_REG(X, CODE, FILE) \
d9a5f180 3155 print_reg ((X), (CODE), (FILE))
74b42c8b 3156
c98f8742 3157#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 3158 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
3159
3160#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 3161 print_operand_address ((FILE), (ADDR))
c98f8742 3162
f996902d
RH
3163#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3164do { \
3165 if (! output_addr_const_extra (FILE, (X))) \
3166 goto FAIL; \
3167} while (0);
3168
aa3e8d2a
JVA
3169/* Print the name of a register for based on its machine mode and number.
3170 This macro is used to print debugging output.
3171 This macro is different from PRINT_REG in that it may be used in
3172 programs that are not linked with aux-output.o. */
3173
e075ae69 3174#define DEBUG_PRINT_REG(X, CODE, FILE) \
69ddee61
KG
3175 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3176 static const char * const qi_name[] = QI_REGISTER_NAMES; \
d9a5f180 3177 fprintf ((FILE), "%d ", REGNO (X)); \
e075ae69 3178 if (REGNO (X) == FLAGS_REG) \
d9a5f180 3179 { fputs ("flags", (FILE)); break; } \
7c7ef435 3180 if (REGNO (X) == DIRFLAG_REG) \
d9a5f180 3181 { fputs ("dirflag", (FILE)); break; } \
e075ae69 3182 if (REGNO (X) == FPSR_REG) \
d9a5f180 3183 { fputs ("fpsr", (FILE)); break; } \
aa3e8d2a 3184 if (REGNO (X) == ARG_POINTER_REGNUM) \
d9a5f180 3185 { fputs ("argp", (FILE)); break; } \
564d80f4 3186 if (REGNO (X) == FRAME_POINTER_REGNUM) \
d9a5f180 3187 { fputs ("frame", (FILE)); break; } \
aa3e8d2a 3188 if (STACK_TOP_P (X)) \
d9a5f180 3189 { fputs ("st(0)", (FILE)); break; } \
b0ceea8c 3190 if (FP_REG_P (X)) \
d9a5f180 3191 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3f3f2124
JH
3192 if (REX_INT_REG_P (X)) \
3193 { \
3194 switch (GET_MODE_SIZE (GET_MODE (X))) \
3195 { \
3196 default: \
3197 case 8: \
d9a5f180 3198 fprintf ((FILE), "r%i", REGNO (X) \
3f3f2124
JH
3199 - FIRST_REX_INT_REG + 8); \
3200 break; \
3201 case 4: \
d9a5f180 3202 fprintf ((FILE), "r%id", REGNO (X) \
3f3f2124
JH
3203 - FIRST_REX_INT_REG + 8); \
3204 break; \
3205 case 2: \
d9a5f180 3206 fprintf ((FILE), "r%iw", REGNO (X) \
3f3f2124
JH
3207 - FIRST_REX_INT_REG + 8); \
3208 break; \
3209 case 1: \
d9a5f180 3210 fprintf ((FILE), "r%ib", REGNO (X) \
3f3f2124
JH
3211 - FIRST_REX_INT_REG + 8); \
3212 break; \
3213 } \
3214 break; \
3215 } \
aa3e8d2a
JVA
3216 switch (GET_MODE_SIZE (GET_MODE (X))) \
3217 { \
3f3f2124 3218 case 8: \
d9a5f180
GS
3219 fputs ("r", (FILE)); \
3220 fputs (hi_name[REGNO (X)], (FILE)); \
3f3f2124 3221 break; \
b0ceea8c 3222 default: \
d9a5f180 3223 fputs ("e", (FILE)); \
aa3e8d2a 3224 case 2: \
d9a5f180 3225 fputs (hi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3226 break; \
3227 case 1: \
d9a5f180 3228 fputs (qi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3229 break; \
3230 } \
3231 } while (0)
3232
c98f8742
JVA
3233/* a letter which is not needed by the normal asm syntax, which
3234 we can use for operand syntax in the extended asm */
3235
3236#define ASM_OPERAND_LETTER '#'
c98f8742 3237#define RET return ""
d9a5f180 3238#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 3239\f
e075ae69
RH
3240/* Define the codes that are matched by predicates in i386.c. */
3241
3242#define PREDICATE_CODES \
7dd4b4a3
JH
3243 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3244 SYMBOL_REF, LABEL_REF, CONST}}, \
3245 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3246 SYMBOL_REF, LABEL_REF, CONST}}, \
3247 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3248 SYMBOL_REF, LABEL_REF, CONST}}, \
3249 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3250 SYMBOL_REF, LABEL_REF, CONST}}, \
3251 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3252 SYMBOL_REF, LABEL_REF, CONST}}, \
3253 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3254 SYMBOL_REF, LABEL_REF, CONST}}, \
3255 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3256 SYMBOL_REF, LABEL_REF}}, \
371bc54b 3257 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
8bad7136 3258 {"const_int_1_operand", {CONST_INT}}, \
794a292d 3259 {"const_int_1_31_operand", {CONST_INT}}, \
e075ae69 3260 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2247f6ed
JH
3261 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3262 LABEL_REF, SUBREG, REG, MEM}}, \
e075ae69 3263 {"pic_symbolic_operand", {CONST}}, \
e1ff012c 3264 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
4977bab6 3265 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
eaf19aba 3266 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
e075ae69
RH
3267 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3268 {"const1_operand", {CONST_INT}}, \
3269 {"const248_operand", {CONST_INT}}, \
3270 {"incdec_operand", {CONST_INT}}, \
915119a5 3271 {"mmx_reg_operand", {REG}}, \
e075ae69 3272 {"reg_no_sp_operand", {SUBREG, REG}}, \
2c5a510c
RH
3273 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3274 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3275 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
7ec70495 3276 {"index_register_operand", {SUBREG, REG}}, \
4977bab6 3277 {"flags_reg_operand", {REG}}, \
e075ae69
RH
3278 {"q_regs_operand", {SUBREG, REG}}, \
3279 {"non_q_regs_operand", {SUBREG, REG}}, \
9e7adcb3
JH
3280 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3281 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3282 GE, UNGE, LTGT, UNEQ}}, \
bf71a4f8
JH
3283 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3284 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3285 }}, \
9076b9c1 3286 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
9e7adcb3
JH
3287 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3288 UNGE, UNGT, LTGT, UNEQ }}, \
e075ae69
RH
3289 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3290 {"ext_register_operand", {SUBREG, REG}}, \
3291 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3292 {"mult_operator", {MULT}}, \
3293 {"div_operator", {DIV}}, \
3294 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3295 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3296 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3297 LSHIFTRT, ROTATERT}}, \
e9e80858 3298 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
e075ae69
RH
3299 {"memory_displacement_operand", {MEM}}, \
3300 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
6343a50e 3301 LABEL_REF, SUBREG, REG, MEM, AND}}, \
f996902d
RH
3302 {"long_memory_operand", {MEM}}, \
3303 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3304 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3305 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3306 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
c3c637e3
GS
3307 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3308 {"any_fp_register_operand", {REG}}, \
3309 {"register_and_not_any_fp_reg_operand", {REG}}, \
3310 {"fp_register_operand", {REG}}, \
3311 {"register_and_not_fp_reg_operand", {REG}}, \
4977bab6 3312 {"zero_extended_scalar_load_operand", {MEM}}, \
c76aab11
RH
3313
3314/* A list of predicates that do special things with modes, and so
3315 should not elicit warnings for VOIDmode match_operand. */
3316
3317#define SPECIAL_MODE_PREDICATES \
3318 "ext_register_operand",
c98f8742 3319\f
5bf0ebab
RH
3320/* Which processor to schedule for. The cpu attribute defines a list that
3321 mirrors this list, so changes to i386.md must be made at the same time. */
3322
3323enum processor_type
3324{
3325 PROCESSOR_I386, /* 80386 */
3326 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3327 PROCESSOR_PENTIUM,
3328 PROCESSOR_PENTIUMPRO,
3329 PROCESSOR_K6,
3330 PROCESSOR_ATHLON,
3331 PROCESSOR_PENTIUM4,
4977bab6 3332 PROCESSOR_K8,
5bf0ebab
RH
3333 PROCESSOR_max
3334};
3335
3336extern enum processor_type ix86_cpu;
3337extern const char *ix86_cpu_string;
3338
3339extern enum processor_type ix86_arch;
3340extern const char *ix86_arch_string;
3341
3342enum fpmath_unit
3343{
3344 FPMATH_387 = 1,
3345 FPMATH_SSE = 2
3346};
3347
3348extern enum fpmath_unit ix86_fpmath;
3349extern const char *ix86_fpmath_string;
3350
f996902d
RH
3351enum tls_dialect
3352{
3353 TLS_DIALECT_GNU,
3354 TLS_DIALECT_SUN
3355};
3356
3357extern enum tls_dialect ix86_tls_dialect;
3358extern const char *ix86_tls_dialect_string;
3359
6189a572 3360enum cmodel {
5bf0ebab
RH
3361 CM_32, /* The traditional 32-bit ABI. */
3362 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3363 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3364 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3365 CM_LARGE, /* No assumptions. */
3366 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
6189a572
JH
3367};
3368
5bf0ebab
RH
3369extern enum cmodel ix86_cmodel;
3370extern const char *ix86_cmodel_string;
3371
8362f420
JH
3372/* Size of the RED_ZONE area. */
3373#define RED_ZONE_SIZE 128
3374/* Reserved area of the red zone for temporaries. */
3375#define RED_ZONE_RESERVE 8
c93e80a5
JH
3376
3377enum asm_dialect {
3378 ASM_ATT,
3379 ASM_INTEL
3380};
5bf0ebab 3381
c93e80a5 3382extern const char *ix86_asm_string;
80f33d06 3383extern enum asm_dialect ix86_asm_dialect;
5bf0ebab
RH
3384
3385extern int ix86_regparm;
fce5a9f2 3386extern const char *ix86_regparm_string;
5bf0ebab
RH
3387
3388extern int ix86_preferred_stack_boundary;
3389extern const char *ix86_preferred_stack_boundary_string;
3390
3391extern int ix86_branch_cost;
3392extern const char *ix86_branch_cost_string;
3393
3394extern const char *ix86_debug_arg_string;
3395extern const char *ix86_debug_addr_string;
3396
3397/* Obsoleted by -f options. Remove before 3.2 ships. */
3398extern const char *ix86_align_loops_string;
3399extern const char *ix86_align_jumps_string;
3400extern const char *ix86_align_funcs_string;
3401
3402/* Smallest class containing REGNO. */
3403extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3404
d9a5f180
GS
3405extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3406extern rtx ix86_compare_op1; /* operand 1 for comparisons */
22fb740d
JH
3407\f
3408/* To properly truncate FP values into integers, we need to set i387 control
3409 word. We can't emit proper mode switching code before reload, as spills
3410 generated by reload may truncate values incorrectly, but we still can avoid
3411 redundant computation of new control word by the mode switching pass.
3412 The fldcw instructions are still emitted redundantly, but this is probably
3413 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 3414 the sequence.
22fb740d
JH
3415
3416 The machinery is to emit simple truncation instructions and split them
3417 before reload to instructions having USEs of two memory locations that
3418 are filled by this code to old and new control word.
fce5a9f2 3419
22fb740d
JH
3420 Post-reload pass may be later used to eliminate the redundant fildcw if
3421 needed. */
3422
3423enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3424
3425/* Define this macro if the port needs extra instructions inserted
3426 for mode switching in an optimizing compilation. */
3427
3428#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3429
3430/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3431 initializer for an array of integers. Each initializer element N
3432 refers to an entity that needs mode switching, and specifies the
3433 number of different modes that might need to be set for this
3434 entity. The position of the initializer in the initializer -
3435 starting counting at zero - determines the integer that is used to
3436 refer to the mode-switched entity in question. */
3437
3438#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3439
3440/* ENTITY is an integer specifying a mode-switched entity. If
3441 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3442 return an integer value not larger than the corresponding element
3443 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3444 must be switched into prior to the execution of INSN. */
3445
3446#define MODE_NEEDED(ENTITY, I) \
3447 (GET_CODE (I) == CALL_INSN \
3448 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3449 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3450 ? FP_CW_UNINITIALIZED \
3451 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3452 ? FP_CW_ANY \
3453 : FP_CW_STORED)
3454
3455/* This macro specifies the order in which modes for ENTITY are
3456 processed. 0 is the highest priority. */
3457
d9a5f180 3458#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
3459
3460/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3461 is the set of hard registers live at the point where the insn(s)
3462 are to be inserted. */
3463
3464#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
d9a5f180 3465 ((MODE) == FP_CW_STORED \
22fb740d
JH
3466 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3467 assign_386_stack_local (HImode, 2)), 0\
3468 : 0)
0f0138b6
JH
3469\f
3470/* Avoid renaming of stack registers, as doing so in combination with
3471 scheduling just increases amount of live registers at time and in
3472 the turn amount of fxch instructions needed.
3473
3474 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3475
d9a5f180
GS
3476#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3477 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 3478
3b3c6a3f 3479\f
2a500b9e 3480#define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
249e6b63
CH
3481
3482#define DLL_IMPORT_EXPORT_PREFIX '@'
3483
c98f8742
JVA
3484/*
3485Local variables:
3486version-control: t
3487End:
3488*/