]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR ipa/67811 ([TM] ICE with try-block in transaction)
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
5624e564 2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
90922d36 84#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 85#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 86#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 87#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 88#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 89#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 90#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 91#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 92#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 93#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
94#define TARGET_ROUND TARGET_ISA_ROUND
95#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 96#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 97#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 98#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 99#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 100#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 101#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 102#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 103#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 104#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 105#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 106#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 107#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 108#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 109#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 110#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 111#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 112#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 113#define TARGET_AES TARGET_ISA_AES
bf7b5747 114#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
115#define TARGET_SHA TARGET_ISA_SHA
116#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
117#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
119#define TARGET_CLZERO TARGET_ISA_CLZERO
120#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
121#define TARGET_XSAVEC TARGET_ISA_XSAVEC
122#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
123#define TARGET_XSAVES TARGET_ISA_XSAVES
124#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 125#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 126#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
127#define TARGET_CMPXCHG16B TARGET_ISA_CX16
128#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 129#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 130#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 131#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 132#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 133#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 134#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
135#define TARGET_RTM TARGET_ISA_RTM
136#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 137#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 138#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 139#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 140#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 141#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 142#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 143#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 144#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 145#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 146#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 147#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 148#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 149#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 150#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
151#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
152#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
153#define TARGET_MPX TARGET_ISA_MPX
154#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
36e9b73e
IT
155#define TARGET_PCOMMIT TARGET_ISA_PCOMMIT
156#define TARGET_PCOMMIT_P(x) TARGET_ISA_PCOMMIT_P(x)
9c3bca11
IT
157#define TARGET_CLWB TARGET_ISA_CLWB
158#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
159#define TARGET_MWAITX TARGET_ISA_MWAITX
160#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
ab442df7 161
90922d36 162#define TARGET_LP64 TARGET_ABI_64
bf7b5747 163#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 164#define TARGET_X32 TARGET_ABI_X32
bf7b5747 165#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
166#define TARGET_16BIT TARGET_CODE16
167#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 168
cbf2e4d4
HJ
169/* SSE4.1 defines round instructions */
170#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 171#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 172
26b5109f
RS
173#include "config/vxworks-dummy.h"
174
7eb68c06 175#include "config/i386/i386-opts.h"
ccf8e764 176
c69fa2d4 177#define MAX_STRINGOP_ALGS 4
ccf8e764 178
8c996513
JH
179/* Specify what algorithm to use for stringops on known size.
180 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
181 known at compile time or estimated via feedback, the SIZE array
182 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 183 means infinity). Corresponding ALG is used then.
340ef734
JH
184 When NOALIGN is true the code guaranting the alignment of the memory
185 block is skipped.
186
8c996513 187 For example initializer:
4f3f76e6 188 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 189 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 190 be used otherwise. */
8c996513
JH
191struct stringop_algs
192{
193 const enum stringop_alg unknown_size;
194 const struct stringop_strategy {
195 const int max;
196 const enum stringop_alg alg;
340ef734 197 int noalign;
c69fa2d4 198 } size [MAX_STRINGOP_ALGS];
8c996513
JH
199};
200
d4ba09c0
SC
201/* Define the specific costs for a given cpu */
202
203struct processor_costs {
8b60264b
KG
204 const int add; /* cost of an add instruction */
205 const int lea; /* cost of a lea instruction */
206 const int shift_var; /* variable shift costs */
207 const int shift_const; /* constant shift costs */
f676971a 208 const int mult_init[5]; /* cost of starting a multiply
4977bab6 209 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 210 const int mult_bit; /* cost of multiply per each bit set */
f676971a 211 const int divide[5]; /* cost of a divide/mod
4977bab6 212 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
213 int movsx; /* The cost of movsx operation. */
214 int movzx; /* The cost of movzx operation. */
8b60264b
KG
215 const int large_insn; /* insns larger than this cost more */
216 const int move_ratio; /* The threshold of number of scalar
ac775968 217 memory-to-memory move insns. */
8b60264b
KG
218 const int movzbl_load; /* cost of loading using movzbl */
219 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
220 in QImode, HImode and SImode relative
221 to reg-reg move (2). */
8b60264b 222 const int int_store[3]; /* cost of storing integer register
96e7ae40 223 in QImode, HImode and SImode */
8b60264b
KG
224 const int fp_move; /* cost of reg,reg fld/fst */
225 const int fp_load[3]; /* cost of loading FP register
96e7ae40 226 in SFmode, DFmode and XFmode */
8b60264b 227 const int fp_store[3]; /* cost of storing FP register
96e7ae40 228 in SFmode, DFmode and XFmode */
8b60264b
KG
229 const int mmx_move; /* cost of moving MMX register. */
230 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 231 in SImode and DImode */
8b60264b 232 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 233 in SImode and DImode */
8b60264b
KG
234 const int sse_move; /* cost of moving SSE register. */
235 const int sse_load[3]; /* cost of loading SSE register
fa79946e 236 in SImode, DImode and TImode*/
8b60264b 237 const int sse_store[3]; /* cost of storing SSE register
fa79946e 238 in SImode, DImode and TImode*/
8b60264b 239 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 240 integer and vice versa. */
46cb0441
ZD
241 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
242 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
243 const int prefetch_block; /* bytes moved to cache for prefetch. */
244 const int simultaneous_prefetches; /* number of parallel prefetch
245 operations. */
4977bab6 246 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
247 const int fadd; /* cost of FADD and FSUB instructions. */
248 const int fmul; /* cost of FMUL instruction. */
249 const int fdiv; /* cost of FDIV instruction. */
250 const int fabs; /* cost of FABS instruction. */
251 const int fchs; /* cost of FCHS instruction. */
252 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 253 /* Specify what algorithm
bee51209 254 to use for stringops on unknown size. */
ad83025e 255 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
256 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
257 load and store. */
258 const int scalar_load_cost; /* Cost of scalar load. */
259 const int scalar_store_cost; /* Cost of scalar store. */
260 const int vec_stmt_cost; /* Cost of any vector operation, excluding
261 load, store, vector-to-scalar and
262 scalar-to-vector operation. */
263 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
264 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 265 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
266 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
267 const int vec_store_cost; /* Cost of vector store. */
268 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
269 cost model. */
270 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
271 vectorizer cost model. */
d4ba09c0
SC
272};
273
8b60264b 274extern const struct processor_costs *ix86_cost;
b2077fd2
JH
275extern const struct processor_costs ix86_size_cost;
276
277#define ix86_cur_cost() \
278 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 279
c98f8742
JVA
280/* Macros used in the machine description to test the flags. */
281
b97de419 282/* configure can arrange to change it. */
e075ae69 283
35b528be 284#ifndef TARGET_CPU_DEFAULT
b97de419 285#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 286#endif
35b528be 287
004d3859
GK
288#ifndef TARGET_FPMATH_DEFAULT
289#define TARGET_FPMATH_DEFAULT \
290 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
291#endif
292
bf7b5747
ST
293#ifndef TARGET_FPMATH_DEFAULT_P
294#define TARGET_FPMATH_DEFAULT_P(x) \
295 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
296#endif
297
c207fd99
L
298/* If the i387 is disabled or -miamcu is used , then do not return
299 values in it. */
300#define TARGET_FLOAT_RETURNS_IN_80387 \
301 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
302#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
303 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 304
5791cc29
JT
305/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
306 compile-time constant. */
307#ifdef IN_LIBGCC2
6ac49599 308#undef TARGET_64BIT
5791cc29
JT
309#ifdef __x86_64__
310#define TARGET_64BIT 1
311#else
312#define TARGET_64BIT 0
313#endif
314#else
6ac49599
RS
315#ifndef TARGET_BI_ARCH
316#undef TARGET_64BIT
e49080ec 317#undef TARGET_64BIT_P
67adf6a9 318#if TARGET_64BIT_DEFAULT
0c2dc519 319#define TARGET_64BIT 1
e49080ec 320#define TARGET_64BIT_P(x) 1
0c2dc519
JH
321#else
322#define TARGET_64BIT 0
e49080ec 323#define TARGET_64BIT_P(x) 0
0c2dc519
JH
324#endif
325#endif
5791cc29 326#endif
25f94bb5 327
750054a2
CT
328#define HAS_LONG_COND_BRANCH 1
329#define HAS_LONG_UNCOND_BRANCH 1
330
9e555526
RH
331#define TARGET_386 (ix86_tune == PROCESSOR_I386)
332#define TARGET_486 (ix86_tune == PROCESSOR_I486)
333#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
334#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 335#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
336#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
337#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
338#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
339#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 340#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 341#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 342#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
343#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
344#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 345#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
346#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
347#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 348#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
06caf59d 349#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 350#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 351#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 352#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 353#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 354#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 355#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 356#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 357#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 358#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 359#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 360
80fd744f
RH
361/* Feature tests against the various tunings. */
362enum ix86_tune_indices {
4b8bc035 363#undef DEF_TUNE
3ad20bd4 364#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
365#include "x86-tune.def"
366#undef DEF_TUNE
367X86_TUNE_LAST
80fd744f
RH
368};
369
ab442df7 370extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
371
372#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
373#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
374#define TARGET_ZERO_EXTEND_WITH_AND \
375 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 376#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
377#define TARGET_BRANCH_PREDICTION_HINTS \
378 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
379#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
380#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
381#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
382#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
383#define TARGET_PARTIAL_FLAG_REG_STALL \
384 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
385#define TARGET_LCP_STALL \
386 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
387#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
388#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
389#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
390#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
391#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
392#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
393#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
394#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
395#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
396#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
397#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
398#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
399 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
400#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
401#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
402#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
403#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
404#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
405#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
406#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
407#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
408#define TARGET_INTEGER_DFMODE_MOVES \
409 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
410#define TARGET_PARTIAL_REG_DEPENDENCY \
411 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
412#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
413 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
414#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
415 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
416#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
417 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
418#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
419 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
420#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
421#define TARGET_SSE_TYPELESS_STORES \
422 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
423#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
424#define TARGET_MEMORY_MISMATCH_STALL \
425 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
426#define TARGET_PROLOGUE_USING_MOVE \
427 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
428#define TARGET_EPILOGUE_USING_MOVE \
429 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
430#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
431#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
432#define TARGET_INTER_UNIT_MOVES_TO_VEC \
433 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
434#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
435 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
436#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 437 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
438#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
439#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
440#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
441#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
442#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
443#define TARGET_PAD_SHORT_FUNCTION \
444 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
445#define TARGET_EXT_80387_CONSTANTS \
446 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
447#define TARGET_AVOID_VECTOR_DECODE \
448 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
449#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
450 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
451#define TARGET_SLOW_IMUL_IMM32_MEM \
452 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
453#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
454#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
455#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
456#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
457#define TARGET_USE_VECTOR_FP_CONVERTS \
458 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
459#define TARGET_USE_VECTOR_CONVERTS \
460 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
461#define TARGET_SLOW_PSHUFB \
462 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
463#define TARGET_VECTOR_PARALLEL_EXECUTION \
464 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
465#define TARGET_FUSE_CMP_AND_BRANCH_32 \
466 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
467#define TARGET_FUSE_CMP_AND_BRANCH_64 \
468 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 469#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
470 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
471 : TARGET_FUSE_CMP_AND_BRANCH_32)
472#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
473 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
474#define TARGET_FUSE_ALU_AND_BRANCH \
475 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 476#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
477#define TARGET_AVOID_LEA_FOR_ADDR \
478 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
479#define TARGET_VECTORIZE_DOUBLE \
480 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
481#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
482 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
483#define TARGET_AVX128_OPTIMAL \
484 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
485#define TARGET_REASSOC_INT_TO_PARALLEL \
486 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
487#define TARGET_REASSOC_FP_TO_PARALLEL \
488 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
489#define TARGET_GENERAL_REGS_SSE_SPILL \
490 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
491#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
492 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 493#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 494 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
495#define TARGET_ADJUST_UNROLL \
496 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
497#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
498 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 499
80fd744f
RH
500/* Feature tests against the various architecture variations. */
501enum ix86_arch_indices {
cef31f9c 502 X86_ARCH_CMOV,
80fd744f
RH
503 X86_ARCH_CMPXCHG,
504 X86_ARCH_CMPXCHG8B,
505 X86_ARCH_XADD,
506 X86_ARCH_BSWAP,
507
508 X86_ARCH_LAST
509};
4f3f76e6 510
ab442df7 511extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 512
cef31f9c 513#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
514#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
515#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
516#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
517#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
518
cef31f9c
UB
519/* For sane SSE instruction set generation we need fcomi instruction.
520 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
521 expands to a sequence that includes conditional move. */
522#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
523
80fd744f
RH
524#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
525
cb261eb7 526extern unsigned char x86_prefetch_sse;
80fd744f
RH
527#define TARGET_PREFETCH_SSE x86_prefetch_sse
528
80fd744f
RH
529#define ASSEMBLER_DIALECT (ix86_asm_dialect)
530
531#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
532#define TARGET_MIX_SSE_I387 \
533 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
534
5fa578f0
UB
535#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
536#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
537#define TARGET_HARD_XF_REGS (TARGET_80387)
538
80fd744f
RH
539#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
540#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
541#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 542#define TARGET_SUN_TLS 0
1ef45b77 543
67adf6a9
RH
544#ifndef TARGET_64BIT_DEFAULT
545#define TARGET_64BIT_DEFAULT 0
25f94bb5 546#endif
74dc3e94
RH
547#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
548#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
549#endif
25f94bb5 550
e0ea8797
AH
551#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
552#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
553
79f5e442
ZD
554/* Fence to use after loop using storent. */
555
556extern tree x86_mfence;
557#define FENCE_FOLLOWING_MOVNT x86_mfence
558
0ed4a390
JL
559/* Once GDB has been enhanced to deal with functions without frame
560 pointers, we can change this to allow for elimination of
561 the frame pointer in leaf functions. */
562#define TARGET_DEFAULT 0
67adf6a9 563
0a1c5e55
UB
564/* Extra bits to force. */
565#define TARGET_SUBTARGET_DEFAULT 0
566#define TARGET_SUBTARGET_ISA_DEFAULT 0
567
568/* Extra bits to force on w/ 32-bit mode. */
569#define TARGET_SUBTARGET32_DEFAULT 0
570#define TARGET_SUBTARGET32_ISA_DEFAULT 0
571
ccf8e764
RH
572/* Extra bits to force on w/ 64-bit mode. */
573#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 574#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 575
fee3eacd
IS
576/* Replace MACH-O, ifdefs by in-line tests, where possible.
577 (a) Macros defined in config/i386/darwin.h */
b069de3b 578#define TARGET_MACHO 0
9005471b 579#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
580#define MACHOPIC_ATT_STUB 0
581/* (b) Macros defined in config/darwin.h */
582#define MACHO_DYNAMIC_NO_PIC_P 0
583#define MACHOPIC_INDIRECT 0
584#define MACHOPIC_PURE 0
9005471b 585
5a579c3b
LE
586/* For the RDOS */
587#define TARGET_RDOS 0
588
9005471b 589/* For the Windows 64-bit ABI. */
7c800926
KT
590#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
591
6510e8bb
KT
592/* For the Windows 32-bit ABI. */
593#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
594
f81c9774
RH
595/* This is re-defined by cygming.h. */
596#define TARGET_SEH 0
597
51212b32 598/* The default abi used by target. */
7c800926 599#define DEFAULT_ABI SYSV_ABI
ccf8e764 600
b8b3f0ca 601/* The default TLS segment register used by target. */
00402c94
RH
602#define DEFAULT_TLS_SEG_REG \
603 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 604
cc69336f
RH
605/* Subtargets may reset this to 1 in order to enable 96-bit long double
606 with the rounding mode forced to 53 bits. */
607#define TARGET_96_ROUND_53_LONG_DOUBLE 0
608
682cd442
GK
609/* -march=native handling only makes sense with compiler running on
610 an x86 or x86_64 chip. If changing this condition, also change
611 the condition in driver-i386.c. */
612#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
613/* In driver-i386.c. */
614extern const char *host_detect_local_cpu (int argc, const char **argv);
615#define EXTRA_SPEC_FUNCTIONS \
616 { "local_cpu_detect", host_detect_local_cpu },
682cd442 617#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
618#endif
619
8981c15b
JM
620#if TARGET_64BIT_DEFAULT
621#define OPT_ARCH64 "!m32"
622#define OPT_ARCH32 "m32"
623#else
f0ea7581
L
624#define OPT_ARCH64 "m64|mx32"
625#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
626#endif
627
1cba2b96
EC
628/* Support for configure-time defaults of some command line options.
629 The order here is important so that -march doesn't squash the
630 tune or cpu values. */
ce998900 631#define OPTION_DEFAULT_SPECS \
da2d4c01 632 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
633 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
634 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 635 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
636 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
637 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
638 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
639 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
640 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 641
241e1a89
SC
642/* Specs for the compiler proper */
643
628714d8 644#ifndef CC1_CPU_SPEC
eb5bb0fd 645#define CC1_CPU_SPEC_1 ""
fa959ce4 646
682cd442 647#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
648#define CC1_CPU_SPEC CC1_CPU_SPEC_1
649#else
650#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
651"%{march=native:%>march=native %:local_cpu_detect(arch) \
652 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
653%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 654#endif
241e1a89 655#endif
c98f8742 656\f
30efe578 657/* Target CPU builtins. */
ab442df7
MM
658#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
659
660/* Target Pragmas. */
661#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 662
628714d8 663#ifndef CC1_SPEC
8015b78d 664#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
665#endif
666
667/* This macro defines names of additional specifications to put in the
668 specs that can be used in various specifications like CC1_SPEC. Its
669 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
670
671 Each subgrouping contains a string constant, that defines the
188fc5b5 672 specification name, and a string constant that used by the GCC driver
bcd86433
SC
673 program.
674
675 Do not define this macro if it does not need to do anything. */
676
677#ifndef SUBTARGET_EXTRA_SPECS
678#define SUBTARGET_EXTRA_SPECS
679#endif
680
681#define EXTRA_SPECS \
628714d8 682 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
683 SUBTARGET_EXTRA_SPECS
684\f
ce998900 685
d57a4b98
RH
686/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
687 FPU, assume that the fpcw is set to extended precision; when using
688 only SSE, rounding is correct; when using both SSE and the FPU,
689 the rounding precision is indeterminate, since either may be chosen
690 apparently at random. */
691#define TARGET_FLT_EVAL_METHOD \
5ccd517a 692 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 693
8ce94e44
JM
694/* Whether to allow x87 floating-point arithmetic on MODE (one of
695 SFmode, DFmode and XFmode) in the current excess precision
696 configuration. */
697#define X87_ENABLE_ARITH(MODE) \
698 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
699
700/* Likewise, whether to allow direct conversions from integer mode
701 IMODE (HImode, SImode or DImode) to MODE. */
702#define X87_ENABLE_FLOAT(MODE, IMODE) \
703 (flag_excess_precision == EXCESS_PRECISION_FAST \
704 || (MODE) == XFmode \
705 || ((MODE) == DFmode && (IMODE) == SImode) \
706 || (IMODE) == HImode)
707
979c67a5
UB
708/* target machine storage layout */
709
65d9c0ab
JH
710#define SHORT_TYPE_SIZE 16
711#define INT_TYPE_SIZE 32
f0ea7581
L
712#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
713#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 714#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 715#define FLOAT_TYPE_SIZE 32
65d9c0ab 716#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
717#define LONG_DOUBLE_TYPE_SIZE \
718 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 719
c637141a 720#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 721
67adf6a9 722#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 723#define MAX_BITS_PER_WORD 64
0c2dc519
JH
724#else
725#define MAX_BITS_PER_WORD 32
0c2dc519
JH
726#endif
727
c98f8742
JVA
728/* Define this if most significant byte of a word is the lowest numbered. */
729/* That is true on the 80386. */
730
731#define BITS_BIG_ENDIAN 0
732
733/* Define this if most significant byte of a word is the lowest numbered. */
734/* That is not true on the 80386. */
735#define BYTES_BIG_ENDIAN 0
736
737/* Define this if most significant word of a multiword number is the lowest
738 numbered. */
739/* Not true for 80386 */
740#define WORDS_BIG_ENDIAN 0
741
c98f8742 742/* Width of a word, in units (bytes). */
4ae8027b 743#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
744
745#ifndef IN_LIBGCC2
2e64c636
JH
746#define MIN_UNITS_PER_WORD 4
747#endif
c98f8742 748
c98f8742 749/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 750#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 751
e075ae69 752/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 753#define STACK_BOUNDARY \
51212b32 754 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 755
2e3f842f
L
756/* Stack boundary of the main function guaranteed by OS. */
757#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
758
de1132d1 759/* Minimum stack boundary. */
cba9c789 760#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 761
d1f87653 762/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 763 aligned; the compiler cannot rely on having this alignment. */
e075ae69 764#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 765
de1132d1 766/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
767 both 32bit and 64bit, to support codes that need 128 bit stack
768 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
769#define PREFERRED_STACK_BOUNDARY_DEFAULT \
770 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
771
772/* 1 if -mstackrealign should be turned on by default. It will
773 generate an alternate prologue and epilogue that realigns the
774 runtime stack if nessary. This supports mixing codes that keep a
775 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 776 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
777#define STACK_REALIGN_DEFAULT 0
778
779/* Boundary (in *bits*) on which the incoming stack is aligned. */
780#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 781
a2851b75
TG
782/* According to Windows x64 software convention, the maximum stack allocatable
783 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
784 instructions allowed to adjust the stack pointer in the epilog, forcing the
785 use of frame pointer for frames larger than 2 GB. This theorical limit
786 is reduced by 256, an over-estimated upper bound for the stack use by the
787 prologue.
788 We define only one threshold for both the prolog and the epilog. When the
4e523f33 789 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
790 regs, then save them, and then allocate the remaining. There is no SEH
791 unwind info for this later allocation. */
792#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
793
ebff937c
SH
794/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
795 mandatory for the 64-bit ABI, and may or may not be true for other
796 operating systems. */
797#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
798
f963b5d9
RS
799/* Minimum allocation boundary for the code of a function. */
800#define FUNCTION_BOUNDARY 8
801
802/* C++ stores the virtual bit in the lowest bit of function pointers. */
803#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 804
c98f8742
JVA
805/* Minimum size in bits of the largest boundary to which any
806 and all fundamental data types supported by the hardware
807 might need to be aligned. No data type wants to be aligned
17f24ff0 808 rounder than this.
fce5a9f2 809
d1f87653 810 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
811 and Pentium Pro XFmode values at 128 bit boundaries.
812
813 When increasing the maximum, also update
814 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 815
3f97cb0b 816#define BIGGEST_ALIGNMENT \
0076c82f 817 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 818
2e3f842f
L
819/* Maximum stack alignment. */
820#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
821
6e4f1168
L
822/* Alignment value for attribute ((aligned)). It is a constant since
823 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 824#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 825
822eda12 826/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 827#define ALIGN_MODE_128(MODE) \
4501d314 828 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 829
17f24ff0 830/* The published ABIs say that doubles should be aligned on word
d1f87653 831 boundaries, so lower the alignment for structure fields unless
6fc605d8 832 -malign-double is set. */
e932b21b 833
e83f3cff
RH
834/* ??? Blah -- this macro is used directly by libobjc. Since it
835 supports no vector modes, cut out the complexity and fall back
836 on BIGGEST_FIELD_ALIGNMENT. */
837#ifdef IN_TARGET_LIBS
ef49d42e
JH
838#ifdef __x86_64__
839#define BIGGEST_FIELD_ALIGNMENT 128
840#else
e83f3cff 841#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 842#endif
e83f3cff 843#else
e932b21b 844#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
1a6e82b8 845 x86_field_alignment ((FIELD), (COMPUTED))
e83f3cff 846#endif
c98f8742 847
e5e8a8bf 848/* If defined, a C expression to compute the alignment given to a
a7180f70 849 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
850 and ALIGN is the alignment that the object would ordinarily have.
851 The value of this macro is used instead of that alignment to align
852 the object.
853
854 If this macro is not defined, then ALIGN is used.
855
856 The typical use of this macro is to increase alignment for string
857 constants to be word aligned so that `strcpy' calls that copy
858 constants can be done inline. */
859
d9a5f180 860#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 861
8a022443
JW
862/* If defined, a C expression to compute the alignment for a static
863 variable. TYPE is the data type, and ALIGN is the alignment that
864 the object would ordinarily have. The value of this macro is used
865 instead of that alignment to align the object.
866
867 If this macro is not defined, then ALIGN is used.
868
869 One use of this macro is to increase alignment of medium-size
870 data to make it all fit in fewer cache lines. Another is to
871 cause character arrays to be word-aligned so that `strcpy' calls
872 that copy constants to character arrays can be done inline. */
873
df8a1d28
JJ
874#define DATA_ALIGNMENT(TYPE, ALIGN) \
875 ix86_data_alignment ((TYPE), (ALIGN), true)
876
877/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
878 some alignment increase, instead of optimization only purposes. E.g.
879 AMD x86-64 psABI says that variables with array type larger than 15 bytes
880 must be aligned to 16 byte boundaries.
881
882 If this macro is not defined, then ALIGN is used. */
883
884#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
885 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
886
887/* If defined, a C expression to compute the alignment for a local
888 variable. TYPE is the data type, and ALIGN is the alignment that
889 the object would ordinarily have. The value of this macro is used
890 instead of that alignment to align the object.
891
892 If this macro is not defined, then ALIGN is used.
893
894 One use of this macro is to increase alignment of medium-size
895 data to make it all fit in fewer cache lines. */
896
76fe54f0
L
897#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
898 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
899
900/* If defined, a C expression to compute the alignment for stack slot.
901 TYPE is the data type, MODE is the widest mode available, and ALIGN
902 is the alignment that the slot would ordinarily have. The value of
903 this macro is used instead of that alignment to align the slot.
904
905 If this macro is not defined, then ALIGN is used when TYPE is NULL,
906 Otherwise, LOCAL_ALIGNMENT will be used.
907
908 One use of this macro is to set alignment of stack slot to the
909 maximum alignment of all possible modes which the slot may have. */
910
911#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
912 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 913
9bfaf89d
JJ
914/* If defined, a C expression to compute the alignment for a local
915 variable DECL.
916
917 If this macro is not defined, then
918 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
919
920 One use of this macro is to increase alignment of medium-size
921 data to make it all fit in fewer cache lines. */
922
923#define LOCAL_DECL_ALIGNMENT(DECL) \
924 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
925
ae58e548
JJ
926/* If defined, a C expression to compute the minimum required alignment
927 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
928 MODE, assuming normal alignment ALIGN.
929
930 If this macro is not defined, then (ALIGN) will be used. */
931
932#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 933 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 934
9bfaf89d 935
9cd10576 936/* Set this nonzero if move instructions will actually fail to work
c98f8742 937 when given unaligned data. */
b4ac57ab 938#define STRICT_ALIGNMENT 0
c98f8742
JVA
939
940/* If bit field type is int, don't let it cross an int,
941 and give entire struct the alignment of an int. */
43a88a8c 942/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 943#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
944\f
945/* Standard register usage. */
946
947/* This processor has special stack-like registers. See reg-stack.c
892a2d68 948 for details. */
c98f8742
JVA
949
950#define STACK_REGS
ce998900 951
d9a5f180 952#define IS_STACK_MODE(MODE) \
63001560
UB
953 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
954 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 955 || (MODE) == XFmode)
c98f8742
JVA
956
957/* Number of actual hardware registers.
958 The hardware registers are assigned numbers for the compiler
959 from 0 to just below FIRST_PSEUDO_REGISTER.
960 All registers that the compiler knows about must be given numbers,
961 even those that are not normally considered general registers.
962
963 In the 80386 we give the 8 general purpose registers the numbers 0-7.
964 We number the floating point registers 8-15.
965 Note that registers 0-7 can be accessed as a short or int,
966 while only 0-3 may be used with byte `mov' instructions.
967
968 Reg 16 does not correspond to any hardware register, but instead
969 appears in the RTL as an argument pointer prior to reload, and is
970 eliminated during reloading in favor of either the stack or frame
892a2d68 971 pointer. */
c98f8742 972
05416670 973#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 974
3073d01c
ML
975/* Number of hardware registers that go into the DWARF-2 unwind info.
976 If not defined, equals FIRST_PSEUDO_REGISTER. */
977
978#define DWARF_FRAME_REGISTERS 17
979
c98f8742
JVA
980/* 1 for registers that have pervasive standard uses
981 and are not available for the register allocator.
3f3f2124 982 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 983
621bc046
UB
984 REX registers are disabled for 32bit targets in
985 TARGET_CONDITIONAL_REGISTER_USAGE. */
986
a7180f70
BS
987#define FIXED_REGISTERS \
988/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 989{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
990/*arg,flags,fpsr,fpcr,frame*/ \
991 1, 1, 1, 1, 1, \
a7180f70
BS
992/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
993 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 994/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
995 0, 0, 0, 0, 0, 0, 0, 0, \
996/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 997 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 998/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
999 0, 0, 0, 0, 0, 0, 0, 0, \
1000/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1001 0, 0, 0, 0, 0, 0, 0, 0, \
1002/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1003 0, 0, 0, 0, 0, 0, 0, 0, \
1004/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1005 0, 0, 0, 0, 0, 0, 0, 0, \
1006/* b0, b1, b2, b3*/ \
1007 0, 0, 0, 0 }
c98f8742
JVA
1008
1009/* 1 for registers not available across function calls.
1010 These must include the FIXED_REGISTERS and also any
1011 registers that can be used without being saved.
1012 The latter must include the registers where values are returned
1013 and the register where structure-value addresses are passed.
fce5a9f2
EC
1014 Aside from that, you can include as many other registers as you like.
1015
621bc046
UB
1016 Value is set to 1 if the register is call used unconditionally.
1017 Bit one is set if the register is call used on TARGET_32BIT ABI.
1018 Bit two is set if the register is call used on TARGET_64BIT ABI.
1019 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1020
1021 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1022
1f3ccbc8
L
1023#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1024 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1025
a7180f70
BS
1026#define CALL_USED_REGISTERS \
1027/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1028{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1029/*arg,flags,fpsr,fpcr,frame*/ \
1030 1, 1, 1, 1, 1, \
a7180f70 1031/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1032 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1033/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1034 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1035/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1036 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1037/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1038 6, 6, 6, 6, 6, 6, 6, 6, \
1039/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1040 6, 6, 6, 6, 6, 6, 6, 6, \
1041/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1042 6, 6, 6, 6, 6, 6, 6, 6, \
1043 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1044 1, 1, 1, 1, 1, 1, 1, 1, \
1045/* b0, b1, b2, b3*/ \
1046 1, 1, 1, 1 }
c98f8742 1047
3b3c6a3f
MM
1048/* Order in which to allocate registers. Each register must be
1049 listed once, even those in FIXED_REGISTERS. List frame pointer
1050 late and fixed registers last. Note that, in general, we prefer
1051 registers listed in CALL_USED_REGISTERS, keeping the others
1052 available for storage of persistent values.
1053
5a733826 1054 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1055 so this is just empty initializer for array. */
3b3c6a3f 1056
162f023b
JH
1057#define REG_ALLOC_ORDER \
1058{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1059 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1060 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1061 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1062 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1063 78, 79, 80 }
3b3c6a3f 1064
5a733826 1065/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1066 to be rearranged based on a particular function. When using sse math,
03c259ad 1067 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1068
5a733826 1069#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1070
f5316dfe 1071
7c800926
KT
1072#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1073
c98f8742
JVA
1074/* Return number of consecutive hard regs needed starting at reg REGNO
1075 to hold something of mode MODE.
1076 This is ordinarily the length in words of a value of mode MODE
1077 but can be less for certain modes in special long registers.
1078
fce5a9f2 1079 Actually there are no two word move instructions for consecutive
c98f8742 1080 registers. And only registers 0-3 may have mov byte instructions
63001560 1081 applied to them. */
c98f8742 1082
ce998900 1083#define HARD_REGNO_NREGS(REGNO, MODE) \
d5e254e1
IE
1084 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1085 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
92d0fb09 1086 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1087 : ((MODE) == XFmode \
92d0fb09 1088 ? (TARGET_64BIT ? 2 : 3) \
1a6e82b8
UB
1089 : ((MODE) == XCmode \
1090 ? (TARGET_64BIT ? 4 : 6) \
1091 : CEIL (GET_MODE_SIZE (MODE), UNITS_PER_WORD))))
c98f8742 1092
8521c414
JM
1093#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1094 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1095 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1096 ? 0 \
1097 : ((MODE) == XFmode || (MODE) == XCmode)) \
1098 : 0)
1099
1100#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1101
95879c72
L
1102#define VALID_AVX256_REG_MODE(MODE) \
1103 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1104 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1105 || (MODE) == V4DFmode)
95879c72 1106
4ac005ba 1107#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1108 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1109
3f97cb0b
AI
1110#define VALID_AVX512F_SCALAR_MODE(MODE) \
1111 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1112 || (MODE) == SFmode)
1113
1114#define VALID_AVX512F_REG_MODE(MODE) \
1115 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1116 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1117 || (MODE) == V4TImode)
1118
05416670 1119#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6
AI
1120 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1121 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1122
ce998900
UB
1123#define VALID_SSE2_REG_MODE(MODE) \
1124 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1125 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1126
d9a5f180 1127#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1128 ((MODE) == V1TImode || (MODE) == TImode \
1129 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1130 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1131
47f339cf 1132#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1133 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1134
d9a5f180 1135#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1136 ((MODE == V1DImode) || (MODE) == DImode \
1137 || (MODE) == V2SImode || (MODE) == SImode \
1138 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1139
05416670
UB
1140#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1141
1142#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1143
d5e254e1
IE
1144#define VALID_BND_REG_MODE(MODE) \
1145 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1146
ce998900
UB
1147#define VALID_DFP_MODE_P(MODE) \
1148 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1149
d9a5f180 1150#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1151 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1152 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1153
d9a5f180 1154#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1155 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1156 || (MODE) == DImode \
1157 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1158 || (MODE) == CDImode \
1159 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1160 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1161
822eda12 1162/* Return true for modes passed in SSE registers. */
ce998900 1163#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1164 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1165 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1166 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1167 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1168 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1169 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1170 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1171 || (MODE) == V16SFmode)
822eda12 1172
05416670
UB
1173#define X87_FLOAT_MODE_P(MODE) \
1174 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1175
05416670
UB
1176#define SSE_FLOAT_MODE_P(MODE) \
1177 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1178
1179#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1180 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1181 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1182
e075ae69 1183/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1184
a946dd00 1185#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1186 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1187
1188/* Value is 1 if it is a good idea to tie two pseudo registers
1189 when one has mode MODE1 and one has mode MODE2.
1190 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1191 for any hard reg, then this must be 0 for correct output. */
1192
1a6e82b8
UB
1193#define MODES_TIEABLE_P(MODE1, MODE2) \
1194 ix86_modes_tieable_p ((MODE1), (MODE2))
d2836273 1195
ff25ef99
ZD
1196/* It is possible to write patterns to move flags; but until someone
1197 does it, */
1198#define AVOID_CCMODE_COPIES
c98f8742 1199
e075ae69 1200/* Specify the modes required to caller save a given hard regno.
787dc842 1201 We do this on i386 to prevent flags from being saved at all.
e075ae69 1202
787dc842
JH
1203 Kill any attempts to combine saving of modes. */
1204
d9a5f180
GS
1205#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1206 (CC_REGNO_P (REGNO) ? VOIDmode \
1207 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1208 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1209 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1210 || MASK_REGNO_P (REGNO)) ? SImode \
1211 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1212 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1213 : (MODE))
ce998900 1214
51ba747a
RH
1215/* The only ABI that saves SSE registers across calls is Win64 (thus no
1216 need to check the current ABI here), and with AVX enabled Win64 only
1217 guarantees that the low 16 bytes are saved. */
1218#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1219 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1220
c98f8742
JVA
1221/* Specify the registers used for certain standard purposes.
1222 The values of these macros are register numbers. */
1223
1224/* on the 386 the pc register is %eip, and is not usable as a general
1225 register. The ordinary mov instructions won't work */
1226/* #define PC_REGNUM */
1227
05416670
UB
1228/* Base register for access to arguments of the function. */
1229#define ARG_POINTER_REGNUM ARGP_REG
1230
c98f8742 1231/* Register to use for pushing function arguments. */
05416670 1232#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1233
1234/* Base register for access to local variables of the function. */
05416670
UB
1235#define FRAME_POINTER_REGNUM FRAME_REG
1236#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1237
05416670
UB
1238#define FIRST_INT_REG AX_REG
1239#define LAST_INT_REG SP_REG
c98f8742 1240
05416670
UB
1241#define FIRST_QI_REG AX_REG
1242#define LAST_QI_REG BX_REG
c98f8742
JVA
1243
1244/* First & last stack-like regs */
05416670
UB
1245#define FIRST_STACK_REG ST0_REG
1246#define LAST_STACK_REG ST7_REG
c98f8742 1247
05416670
UB
1248#define FIRST_SSE_REG XMM0_REG
1249#define LAST_SSE_REG XMM7_REG
fce5a9f2 1250
05416670
UB
1251#define FIRST_MMX_REG MM0_REG
1252#define LAST_MMX_REG MM7_REG
a7180f70 1253
05416670
UB
1254#define FIRST_REX_INT_REG R8_REG
1255#define LAST_REX_INT_REG R15_REG
3f3f2124 1256
05416670
UB
1257#define FIRST_REX_SSE_REG XMM8_REG
1258#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1259
05416670
UB
1260#define FIRST_EXT_REX_SSE_REG XMM16_REG
1261#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1262
05416670
UB
1263#define FIRST_MASK_REG MASK0_REG
1264#define LAST_MASK_REG MASK7_REG
85a77221 1265
05416670
UB
1266#define FIRST_BND_REG BND0_REG
1267#define LAST_BND_REG BND3_REG
d5e254e1 1268
aabcd309 1269/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1270 requiring a frame pointer. */
1271#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1272#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1273#endif
1274
1275/* Make sure we can access arbitrary call frames. */
1276#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1277
c98f8742 1278/* Register to hold the addressing base for position independent
5b43fed1
RH
1279 code access to data items. We don't use PIC pointer for 64bit
1280 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1281 pessimizing code dealing with EBX.
bd09bdeb
RH
1282
1283 To avoid clobbering a call-saved register unnecessarily, we renumber
1284 the pic register when possible. The change is visible after the
1285 prologue has been emitted. */
1286
e8b5eb25 1287#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1288
bcb21886 1289#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1290 (ix86_use_pseudo_pic_reg () \
1291 ? (pic_offset_table_rtx \
1292 ? INVALID_REGNUM \
1293 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1294 : INVALID_REGNUM)
c98f8742 1295
5fc0e5df
KW
1296#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1297
c51e6d85 1298/* This is overridden by <cygwin.h>. */
5e062767
DS
1299#define MS_AGGREGATE_RETURN 0
1300
61fec9ff 1301#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1302\f
1303/* Define the classes of registers for register constraints in the
1304 machine description. Also define ranges of constants.
1305
1306 One of the classes must always be named ALL_REGS and include all hard regs.
1307 If there is more than one class, another class must be named NO_REGS
1308 and contain no registers.
1309
1310 The name GENERAL_REGS must be the name of a class (or an alias for
1311 another name such as ALL_REGS). This is the class of registers
1312 that is allowed by "g" or "r" in a register constraint.
1313 Also, registers outside this class are allocated only when
1314 instructions express preferences for them.
1315
1316 The classes must be numbered in nondecreasing order; that is,
1317 a larger-numbered class must never be contained completely
2e24efd3
AM
1318 in a smaller-numbered class. This is why CLOBBERED_REGS class
1319 is listed early, even though in 64-bit mode it contains more
1320 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1321
1322 For any two classes, it is very desirable that there be another
ab408a86
JVA
1323 class that represents their union.
1324
1325 It might seem that class BREG is unnecessary, since no useful 386
1326 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1327 and the "b" register constraint is useful in asms for syscalls.
1328
03c259ad 1329 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1330
1331enum reg_class
1332{
1333 NO_REGS,
e075ae69 1334 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1335 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1336 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1337 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1338 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1339 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1340 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1341 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1342 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1343 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1344 FLOAT_REGS,
06f4e35d 1345 SSE_FIRST_REG,
45392c76 1346 NO_REX_SSE_REGS,
a7180f70 1347 SSE_REGS,
3f97cb0b 1348 EVEX_SSE_REGS,
d5e254e1 1349 BND_REGS,
3f97cb0b 1350 ALL_SSE_REGS,
a7180f70 1351 MMX_REGS,
446988df
JH
1352 FP_TOP_SSE_REGS,
1353 FP_SECOND_SSE_REGS,
1354 FLOAT_SSE_REGS,
1355 FLOAT_INT_REGS,
1356 INT_SSE_REGS,
1357 FLOAT_INT_SSE_REGS,
85a77221
AI
1358 MASK_EVEX_REGS,
1359 MASK_REGS,
c98f8742
JVA
1360 ALL_REGS, LIM_REG_CLASSES
1361};
1362
d9a5f180
GS
1363#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1364
1365#define INTEGER_CLASS_P(CLASS) \
1366 reg_class_subset_p ((CLASS), GENERAL_REGS)
1367#define FLOAT_CLASS_P(CLASS) \
1368 reg_class_subset_p ((CLASS), FLOAT_REGS)
1369#define SSE_CLASS_P(CLASS) \
3f97cb0b 1370 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1371#define MMX_CLASS_P(CLASS) \
f75959a6 1372 ((CLASS) == MMX_REGS)
d9a5f180
GS
1373#define MAYBE_INTEGER_CLASS_P(CLASS) \
1374 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1375#define MAYBE_FLOAT_CLASS_P(CLASS) \
1376 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1377#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1378 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1379#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1380 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1381#define MAYBE_MASK_CLASS_P(CLASS) \
1382 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1383
1384#define Q_CLASS_P(CLASS) \
1385 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1386
0bd72901
UB
1387#define MAYBE_NON_Q_CLASS_P(CLASS) \
1388 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1389
43f3a59d 1390/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1391
1392#define REG_CLASS_NAMES \
1393{ "NO_REGS", \
ab408a86 1394 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1395 "SIREG", "DIREG", \
e075ae69 1396 "AD_REGS", \
2e24efd3 1397 "CLOBBERED_REGS", \
e075ae69 1398 "Q_REGS", "NON_Q_REGS", \
c98f8742 1399 "INDEX_REGS", \
3f3f2124 1400 "LEGACY_REGS", \
c98f8742
JVA
1401 "GENERAL_REGS", \
1402 "FP_TOP_REG", "FP_SECOND_REG", \
1403 "FLOAT_REGS", \
cb482895 1404 "SSE_FIRST_REG", \
45392c76 1405 "NO_REX_SSE_REGS", \
a7180f70 1406 "SSE_REGS", \
3f97cb0b 1407 "EVEX_SSE_REGS", \
d5e254e1 1408 "BND_REGS", \
3f97cb0b 1409 "ALL_SSE_REGS", \
a7180f70 1410 "MMX_REGS", \
446988df
JH
1411 "FP_TOP_SSE_REGS", \
1412 "FP_SECOND_SSE_REGS", \
1413 "FLOAT_SSE_REGS", \
8fcaaa80 1414 "FLOAT_INT_REGS", \
446988df
JH
1415 "INT_SSE_REGS", \
1416 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1417 "MASK_EVEX_REGS", \
1418 "MASK_REGS", \
c98f8742
JVA
1419 "ALL_REGS" }
1420
ac2e563f
RH
1421/* Define which registers fit in which classes. This is an initializer
1422 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1423
621bc046
UB
1424 Note that CLOBBERED_REGS are calculated by
1425 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1426
3f97cb0b 1427#define REG_CLASS_CONTENTS \
d5e254e1
IE
1428{ { 0x00, 0x0, 0x0 }, \
1429 { 0x01, 0x0, 0x0 }, /* AREG */ \
1430 { 0x02, 0x0, 0x0 }, /* DREG */ \
1431 { 0x04, 0x0, 0x0 }, /* CREG */ \
1432 { 0x08, 0x0, 0x0 }, /* BREG */ \
1433 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1434 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1435 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1436 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1437 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1438 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1439 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1440 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1441 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1442 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1443 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1444 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1445 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1446{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1447{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1448 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1449 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1450{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1451{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1452{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1453{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1454{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1455{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1456{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1457{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1458 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1459 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
d0470103 1460{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1461}
c98f8742
JVA
1462
1463/* The same information, inverted:
1464 Return the class number of the smallest class containing
1465 reg number REGNO. This could be a conditional expression
1466 or could index an array. */
1467
1a6e82b8 1468#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1469
42db504c
SB
1470/* When this hook returns true for MODE, the compiler allows
1471 registers explicitly used in the rtl to be used as spill registers
1472 but prevents the compiler from extending the lifetime of these
1473 registers. */
1474#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1475
fc27f749 1476#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1477#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1478
1479#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1480#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1481
1482#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1483#define REX_INT_REGNO_P(N) \
1484 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1485
58b0b34c 1486#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1487#define GENERAL_REGNO_P(N) \
58b0b34c 1488 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1489
fc27f749
UB
1490#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1491#define ANY_QI_REGNO_P(N) \
1492 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1493
66aaf16f
UB
1494#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1495#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1496
fc27f749 1497#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1498#define SSE_REGNO_P(N) \
1499 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1500 || REX_SSE_REGNO_P (N) \
1501 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1502
4977bab6 1503#define REX_SSE_REGNO_P(N) \
fb84c7a0 1504 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1505
0a48088a
IT
1506#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1507
3f97cb0b
AI
1508#define EXT_REX_SSE_REGNO_P(N) \
1509 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1510
05416670
UB
1511#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1512#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1513
9e4a4dd6 1514#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1515#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1516
fc27f749 1517#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1518#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1519
e075ae69
RH
1520#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1521#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1522
58b0b34c 1523#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1524#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1525
05416670
UB
1526/* First floating point reg */
1527#define FIRST_FLOAT_REG FIRST_STACK_REG
1528#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1529
1530#define SSE_REGNO(N) \
1531 ((N) < 8 ? FIRST_SSE_REG + (N) \
1532 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1533 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1534
c98f8742
JVA
1535/* The class value for index registers, and the one for base regs. */
1536
1537#define INDEX_REG_CLASS INDEX_REGS
1538#define BASE_REG_CLASS GENERAL_REGS
1539
c98f8742 1540/* Place additional restrictions on the register class to use when it
4cbb525c 1541 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1542 register for which class CLASS would ordinarily be used.
1543
1544 We avoid classes containing registers from multiple units due to
1545 the limitation in ix86_secondary_memory_needed. We limit these
1546 classes to their "natural mode" single unit register class, depending
1547 on the unit availability.
1548
1549 Please note that reg_class_subset_p is not commutative, so these
1550 conditions mean "... if (CLASS) includes ALL registers from the
1551 register set." */
1552
1553#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1554 (((MODE) == QImode && !TARGET_64BIT \
1555 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1556 : (((MODE) == SImode || (MODE) == DImode) \
1557 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1558 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1559 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1560 : (X87_FLOAT_MODE_P (MODE) \
1561 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1562 : (CLASS))
c98f8742 1563
85ff473e 1564/* If we are copying between general and FP registers, we need a memory
f84aa48a 1565 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1566#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1567 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1568
c62b3659
UB
1569/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1570 There is no need to emit full 64 bit move on 64 bit targets
1571 for integral modes that can be moved using 32 bit move. */
1572#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1573 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1574 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1575 : MODE)
1576
1272914c
RH
1577/* Return a class of registers that cannot change FROM mode to TO mode. */
1578
1579#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1580 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1581\f
1582/* Stack layout; function entry, exit and calling. */
1583
1584/* Define this if pushing a word on the stack
1585 makes the stack pointer a smaller address. */
62f9f30b 1586#define STACK_GROWS_DOWNWARD 1
c98f8742 1587
a4d05547 1588/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1589 is at the high-address end of the local variables;
1590 that is, each additional local variable allocated
1591 goes at a more negative offset in the frame. */
f62c8a5c 1592#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1593
1594/* Offset within stack frame to start allocating local variables at.
1595 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1596 first local allocated. Otherwise, it is the offset to the BEGINNING
1597 of the first local allocated. */
1598#define STARTING_FRAME_OFFSET 0
1599
8c2b2fae
UB
1600/* If we generate an insn to push BYTES bytes, this says how many the stack
1601 pointer really advances by. On 386, we have pushw instruction that
1602 decrements by exactly 2 no matter what the position was, there is no pushb.
1603
1604 But as CIE data alignment factor on this arch is -4 for 32bit targets
1605 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1606 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1607
1a6e82b8 1608#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1609
1610/* If defined, the maximum amount of space required for outgoing arguments
1611 will be computed and placed into the variable `crtl->outgoing_args_size'.
1612 No space will be pushed onto the stack for each call; instead, the
1613 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1614
1615 In 32bit mode enabling argument accumulation results in about 5% code size
1616 growth becuase move instructions are less compact than push. In 64bit
1617 mode the difference is less drastic but visible.
1618
1619 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1620 actually grow with accumulation. Is that because accumulated args
41ee845b 1621 unwind info became unnecesarily bloated?
f830ddc2
RH
1622
1623 With the 64-bit MS ABI, we can generate correct code with or without
1624 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1625 generated without accumulated args is terrible.
41ee845b
JH
1626
1627 If stack probes are required, the space used for large function
1628 arguments on the stack must also be probed, so enable
1629 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1630
6c6094f1 1631#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1632 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1633 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1634
1635/* If defined, a C expression whose value is nonzero when we want to use PUSH
1636 instructions to pass outgoing arguments. */
1637
1638#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1639
2da4124d
L
1640/* We want the stack and args grow in opposite directions, even if
1641 PUSH_ARGS is 0. */
1642#define PUSH_ARGS_REVERSED 1
1643
c98f8742
JVA
1644/* Offset of first parameter from the argument pointer register value. */
1645#define FIRST_PARM_OFFSET(FNDECL) 0
1646
a7180f70
BS
1647/* Define this macro if functions should assume that stack space has been
1648 allocated for arguments even when their values are passed in registers.
1649
1650 The value of this macro is the size, in bytes, of the area reserved for
1651 arguments passed in registers for the function represented by FNDECL.
1652
1653 This space can be allocated by the caller, or be a part of the
1654 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1655 which. */
7c800926
KT
1656#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1657
4ae8027b 1658#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1659 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1660
c98f8742
JVA
1661/* Define how to find the value returned by a library function
1662 assuming the value has mode MODE. */
1663
4ae8027b 1664#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1665
e9125c09
TW
1666/* Define the size of the result block used for communication between
1667 untyped_call and untyped_return. The block contains a DImode value
1668 followed by the block used by fnsave and frstor. */
1669
1670#define APPLY_RESULT_SIZE (8+108)
1671
b08de47e 1672/* 1 if N is a possible register number for function argument passing. */
53c17031 1673#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1674
1675/* Define a data type for recording info about an argument list
1676 during the scan of that argument list. This data type should
1677 hold all necessary information about the function itself
1678 and about the args processed so far, enough to enable macros
b08de47e 1679 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1680
e075ae69 1681typedef struct ix86_args {
fa283935 1682 int words; /* # words passed so far */
b08de47e
MM
1683 int nregs; /* # registers available for passing */
1684 int regno; /* next available register number */
3e65f251
KT
1685 int fastcall; /* fastcall or thiscall calling convention
1686 is used */
fa283935 1687 int sse_words; /* # sse words passed so far */
a7180f70 1688 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1689 int warn_avx512f; /* True when we want to warn
1690 about AVX512F ABI. */
95879c72 1691 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1692 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1693 int warn_mmx; /* True when we want to warn about MMX ABI. */
1694 int sse_regno; /* next available sse register number */
1695 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1696 int mmx_nregs; /* # mmx registers available for passing */
1697 int mmx_regno; /* next available mmx register number */
892a2d68 1698 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1699 int caller; /* true if it is caller. */
2824d6e5
UB
1700 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1701 SFmode/DFmode arguments should be passed
1702 in SSE registers. Otherwise 0. */
d5e254e1
IE
1703 int bnd_regno; /* next available bnd register number */
1704 int bnds_in_bt; /* number of bounds expected in BT. */
1705 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1706 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1707 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1708 MS_ABI for ms abi. */
e66fc623 1709 tree decl; /* Callee decl. */
b08de47e 1710} CUMULATIVE_ARGS;
c98f8742
JVA
1711
1712/* Initialize a variable CUM of type CUMULATIVE_ARGS
1713 for a call to a function whose data type is FNTYPE.
b08de47e 1714 For a library call, FNTYPE is 0. */
c98f8742 1715
0f6937fe 1716#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1717 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1718 (N_NAMED_ARGS) != -1)
c98f8742 1719
c98f8742
JVA
1720/* Output assembler code to FILE to increment profiler label # LABELNO
1721 for profiling a function entry. */
1722
1a6e82b8
UB
1723#define FUNCTION_PROFILER(FILE, LABELNO) \
1724 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1725
1726#define MCOUNT_NAME "_mcount"
1727
3c5273a9
KT
1728#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1729
a5fa1ecd 1730#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1731
1732/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1733 the stack pointer does not matter. The value is tested only in
1734 functions that have frame pointers.
1735 No definition is equivalent to always zero. */
fce5a9f2 1736/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1737 we have to restore it ourselves from the frame pointer, in order to
1738 use pop */
1739
1740#define EXIT_IGNORE_STACK 1
1741
c98f8742
JVA
1742/* Output assembler code for a block containing the constant parts
1743 of a trampoline, leaving space for the variable parts. */
1744
a269a03c 1745/* On the 386, the trampoline contains two instructions:
c98f8742 1746 mov #STATIC,ecx
a269a03c
JC
1747 jmp FUNCTION
1748 The trampoline is generated entirely at runtime. The operand of JMP
1749 is the address of FUNCTION relative to the instruction following the
1750 JMP (which is 5 bytes long). */
c98f8742
JVA
1751
1752/* Length in units of the trampoline for entering a nested function. */
1753
3452586b 1754#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1755\f
1756/* Definitions for register eliminations.
1757
1758 This is an array of structures. Each structure initializes one pair
1759 of eliminable registers. The "from" register number is given first,
1760 followed by "to". Eliminations of the same "from" register are listed
1761 in order of preference.
1762
afc2cd05
NC
1763 There are two registers that can always be eliminated on the i386.
1764 The frame pointer and the arg pointer can be replaced by either the
1765 hard frame pointer or to the stack pointer, depending upon the
1766 circumstances. The hard frame pointer is not used before reload and
1767 so it is not eligible for elimination. */
c98f8742 1768
564d80f4
JH
1769#define ELIMINABLE_REGS \
1770{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1771 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1772 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1773 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1774
c98f8742
JVA
1775/* Define the offset between two registers, one to be eliminated, and the other
1776 its replacement, at the start of a routine. */
1777
d9a5f180
GS
1778#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1779 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1780\f
1781/* Addressing modes, and classification of registers for them. */
1782
c98f8742
JVA
1783/* Macros to check register numbers against specific register classes. */
1784
1785/* These assume that REGNO is a hard or pseudo reg number.
1786 They give nonzero only if REGNO is a hard reg of the suitable class
1787 or a pseudo reg currently allocated to a suitable hard reg.
1788 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1789 has been allocated, which happens in reginfo.c during register
1790 allocation. */
c98f8742 1791
3f3f2124
JH
1792#define REGNO_OK_FOR_INDEX_P(REGNO) \
1793 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1794 || REX_INT_REGNO_P (REGNO) \
1795 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1796 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1797
3f3f2124 1798#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1799 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1800 || (REGNO) == ARG_POINTER_REGNUM \
1801 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1802 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1803
c98f8742
JVA
1804/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1805 and check its validity for a certain class.
1806 We have two alternate definitions for each of them.
1807 The usual definition accepts all pseudo regs; the other rejects
1808 them unless they have been allocated suitable hard regs.
1809 The symbol REG_OK_STRICT causes the latter definition to be used.
1810
1811 Most source files want to accept pseudo regs in the hope that
1812 they will get allocated to the class that the insn wants them to be in.
1813 Source files for reload pass need to be strict.
1814 After reload, it makes no difference, since pseudo regs have
1815 been eliminated by then. */
1816
c98f8742 1817
ff482c8d 1818/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1819#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1820 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1821 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1822 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1823
3b3c6a3f 1824#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1825 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1826 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1827 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1828 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1829
3b3c6a3f
MM
1830/* Strict versions, hard registers only */
1831#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1832#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1833
3b3c6a3f 1834#ifndef REG_OK_STRICT
d9a5f180
GS
1835#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1836#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1837
1838#else
d9a5f180
GS
1839#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1840#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1841#endif
1842
331d9186 1843/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1844 that is a valid memory address for an instruction.
1845 The MODE argument is the machine mode for the MEM expression
1846 that wants to use this address.
1847
331d9186 1848 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1849 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1850
1851 See legitimize_pic_address in i386.c for details as to what
1852 constitutes a legitimate address when -fpic is used. */
1853
1854#define MAX_REGS_PER_ADDRESS 2
1855
f996902d 1856#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1857
b949ea8b
JW
1858/* If defined, a C expression to determine the base term of address X.
1859 This macro is used in only one place: `find_base_term' in alias.c.
1860
1861 It is always safe for this macro to not be defined. It exists so
1862 that alias analysis can understand machine-dependent addresses.
1863
1864 The typical use of this macro is to handle addresses containing
1865 a label_ref or symbol_ref within an UNSPEC. */
1866
d9a5f180 1867#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1868
c98f8742 1869/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1870 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1871 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1872
f996902d 1873#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1874
1875#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1876 (GET_CODE (X) == SYMBOL_REF \
1877 || GET_CODE (X) == LABEL_REF \
1878 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1879\f
b08de47e
MM
1880/* Max number of args passed in registers. If this is more than 3, we will
1881 have problems with ebx (register #4), since it is a caller save register and
1882 is also used as the pic register in ELF. So for now, don't allow more than
1883 3 registers to be passed in registers. */
1884
7c800926
KT
1885/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1886#define X86_64_REGPARM_MAX 6
72fa3605 1887#define X86_64_MS_REGPARM_MAX 4
7c800926 1888
72fa3605 1889#define X86_32_REGPARM_MAX 3
7c800926 1890
4ae8027b 1891#define REGPARM_MAX \
2824d6e5
UB
1892 (TARGET_64BIT \
1893 ? (TARGET_64BIT_MS_ABI \
1894 ? X86_64_MS_REGPARM_MAX \
1895 : X86_64_REGPARM_MAX) \
4ae8027b 1896 : X86_32_REGPARM_MAX)
d2836273 1897
72fa3605
UB
1898#define X86_64_SSE_REGPARM_MAX 8
1899#define X86_64_MS_SSE_REGPARM_MAX 4
1900
b6010cab 1901#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1902
4ae8027b 1903#define SSE_REGPARM_MAX \
2824d6e5
UB
1904 (TARGET_64BIT \
1905 ? (TARGET_64BIT_MS_ABI \
1906 ? X86_64_MS_SSE_REGPARM_MAX \
1907 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1908 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1909
1910#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1911\f
1912/* Specify the machine mode that this machine uses
1913 for the index in the tablejump instruction. */
dc4d7240 1914#define CASE_VECTOR_MODE \
6025b127 1915 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1916
c98f8742
JVA
1917/* Define this as 1 if `char' should by default be signed; else as 0. */
1918#define DEFAULT_SIGNED_CHAR 1
1919
1920/* Max number of bytes we can move from memory to memory
1921 in one reasonably fast instruction. */
65d9c0ab
JH
1922#define MOVE_MAX 16
1923
1924/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1925 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1926 number of bytes we can move with a single instruction. */
63001560 1927#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1928
7e24ffc9 1929/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1930 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1931 Increasing the value will always make code faster, but eventually
1932 incurs high cost in increased code size.
c98f8742 1933
e2e52e1b 1934 If you don't define this, a reasonable default is used. */
c98f8742 1935
e04ad03d 1936#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1937
45d78e7f
JJ
1938/* If a clear memory operation would take CLEAR_RATIO or more simple
1939 move-instruction sequences, we will do a clrmem or libcall instead. */
1940
e04ad03d 1941#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1942
53f00dde
UB
1943/* Define if shifts truncate the shift count which implies one can
1944 omit a sign-extension or zero-extension of a shift count.
1945
1946 On i386, shifts do truncate the count. But bit test instructions
1947 take the modulo of the bit offset operand. */
c98f8742
JVA
1948
1949/* #define SHIFT_COUNT_TRUNCATED */
1950
1951/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1952 is done just by pretending it is already truncated. */
1953#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1954
d9f32422
JH
1955/* A macro to update M and UNSIGNEDP when an object whose type is
1956 TYPE and which has the specified mode and signedness is to be
1957 stored in a register. This macro is only called when TYPE is a
1958 scalar type.
1959
f710504c 1960 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1961 quantities to SImode. The choice depends on target type. */
1962
1963#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1964do { \
d9f32422
JH
1965 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1966 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1967 (MODE) = SImode; \
1968} while (0)
d9f32422 1969
c98f8742
JVA
1970/* Specify the machine mode that pointers have.
1971 After generation of rtl, the compiler makes no further distinction
1972 between pointers and any other objects of this machine mode. */
28968d91 1973#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1974
d5e254e1
IE
1975/* Specify the machine mode that bounds have. */
1976#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1977
f0ea7581
L
1978/* A C expression whose value is zero if pointers that need to be extended
1979 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1980 greater then zero if they are zero-extended and less then zero if the
1981 ptr_extend instruction should be used. */
1982
1983#define POINTERS_EXTEND_UNSIGNED 1
1984
c98f8742
JVA
1985/* A function address in a call instruction
1986 is a byte address (for indexing purposes)
1987 so give the MEM rtx a byte's mode. */
1988#define FUNCTION_MODE QImode
d4ba09c0 1989\f
d4ba09c0 1990
d4ba09c0
SC
1991/* A C expression for the cost of a branch instruction. A value of 1
1992 is the default; other values are interpreted relative to that. */
1993
3a4fd356
JH
1994#define BRANCH_COST(speed_p, predictable_p) \
1995 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1996
e327d1a3
L
1997/* An integer expression for the size in bits of the largest integer machine
1998 mode that should actually be used. We allow pairs of registers. */
1999#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2000
d4ba09c0
SC
2001/* Define this macro as a C expression which is nonzero if accessing
2002 less than a word of memory (i.e. a `char' or a `short') is no
2003 faster than accessing a word of memory, i.e., if such access
2004 require more than one instruction or if there is no difference in
2005 cost between byte and (aligned) word loads.
2006
2007 When this macro is not defined, the compiler will access a field by
2008 finding the smallest containing object; when it is defined, a
2009 fullword load will be used if alignment permits. Unless bytes
2010 accesses are faster than word accesses, using word accesses is
2011 preferable since it may eliminate subsequent memory access if
2012 subsequent accesses occur to other fields in the same word of the
2013 structure, but to different bytes. */
2014
2015#define SLOW_BYTE_ACCESS 0
2016
2017/* Nonzero if access to memory by shorts is slow and undesirable. */
2018#define SLOW_SHORT_ACCESS 0
2019
d4ba09c0
SC
2020/* Define this macro to be the value 1 if unaligned accesses have a
2021 cost many times greater than aligned accesses, for example if they
2022 are emulated in a trap handler.
2023
9cd10576
KH
2024 When this macro is nonzero, the compiler will act as if
2025 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2026 moves. This can cause significantly more instructions to be
9cd10576 2027 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2028 accesses only add a cycle or two to the time for a memory access.
2029
2030 If the value of this macro is always zero, it need not be defined. */
2031
e1565e65 2032/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2033
d4ba09c0
SC
2034/* Define this macro if it is as good or better to call a constant
2035 function address than to call an address kept in a register.
2036
2037 Desirable on the 386 because a CALL with a constant address is
2038 faster than one with a register address. */
2039
1e8552c2 2040#define NO_FUNCTION_CSE 1
c98f8742 2041\f
c572e5ba
JVA
2042/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2043 return the mode to be used for the comparison.
2044
2045 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2046 VOIDmode should be used in all other cases.
c572e5ba 2047
16189740 2048 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2049 possible, to allow for more combinations. */
c98f8742 2050
d9a5f180 2051#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2052
9cd10576 2053/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2054 reversed. */
2055
2056#define REVERSIBLE_CC_MODE(MODE) 1
2057
2058/* A C expression whose value is reversed condition code of the CODE for
2059 comparison done in CC_MODE mode. */
3c5cb3e4 2060#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2061
c98f8742
JVA
2062\f
2063/* Control the assembler format that we output, to the extent
2064 this does not vary between assemblers. */
2065
2066/* How to refer to registers in assembler output.
892a2d68 2067 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2068
a7b376ee 2069/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2070 For non floating point regs, the following are the HImode names.
2071
2072 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2073 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2074 "y" code. */
c98f8742 2075
a7180f70
BS
2076#define HI_REGISTER_NAMES \
2077{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2078 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2079 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2080 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2081 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2082 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2083 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2084 "xmm16", "xmm17", "xmm18", "xmm19", \
2085 "xmm20", "xmm21", "xmm22", "xmm23", \
2086 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2087 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2088 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2089 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2090
c98f8742
JVA
2091#define REGISTER_NAMES HI_REGISTER_NAMES
2092
2093/* Table of additional register names to use in user input. */
2094
2095#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2096{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2097 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2098 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2099 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2100 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2101 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2102 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2103 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2104 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2105 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2106 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2107 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2108 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2109 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2110 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2111 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2112 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2113 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2114 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2115 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2116 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2117 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2118
2119/* Note we are omitting these since currently I don't know how
2120to get gcc to use these, since they want the same but different
2121number as al, and ax.
2122*/
2123
c98f8742 2124#define QI_REGISTER_NAMES \
3f3f2124 2125{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2126
2127/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2128 of regs 0 through 3. */
c98f8742
JVA
2129
2130#define QI_HIGH_REGISTER_NAMES \
2131{"ah", "dh", "ch", "bh", }
2132
2133/* How to renumber registers for dbx and gdb. */
2134
d9a5f180
GS
2135#define DBX_REGISTER_NUMBER(N) \
2136 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2137
9a82e702
MS
2138extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2139extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2140extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2141
780a5b71
UB
2142extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2143
469ac993
JM
2144/* Before the prologue, RA is at 0(%esp). */
2145#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2146 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2147
e414ab29 2148/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2149#define RETURN_ADDR_RTX(COUNT, FRAME) \
2150 ((COUNT) == 0 \
2151 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2152 -UNITS_PER_WORD)) \
2153 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2154
892a2d68 2155/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2156#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2157
a6ab3aad 2158/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2159#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2160
1020a5ab 2161/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2162#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2163#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2164
ad919812 2165
e4c4ebeb
RH
2166/* Select a format to encode pointers in exception handling data. CODE
2167 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2168 true if the symbol may be affected by dynamic relocations.
2169
2170 ??? All x86 object file formats are capable of representing this.
2171 After all, the relocation needed is the same as for the call insn.
2172 Whether or not a particular assembler allows us to enter such, I
2173 guess we'll have to see. */
d9a5f180 2174#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2175 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2176
c98f8742
JVA
2177/* This is how to output an insn to push a register on the stack.
2178 It need not be very fast code. */
2179
d9a5f180 2180#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2181do { \
2182 if (TARGET_64BIT) \
2183 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2184 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2185 else \
2186 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2187} while (0)
c98f8742
JVA
2188
2189/* This is how to output an insn to pop a register from the stack.
2190 It need not be very fast code. */
2191
d9a5f180 2192#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2193do { \
2194 if (TARGET_64BIT) \
2195 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2196 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2197 else \
2198 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2199} while (0)
c98f8742 2200
f88c65f7 2201/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2202
2203#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2204 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2205
f88c65f7 2206/* This is how to output an element of a case-vector that is relative. */
c98f8742 2207
33f7f353 2208#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2209 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2210
63001560 2211/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2212
2213#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2214{ \
2215 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2216 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2217}
2218
2219/* A C statement or statements which output an assembler instruction
2220 opcode to the stdio stream STREAM. The macro-operand PTR is a
2221 variable of type `char *' which points to the opcode name in
2222 its "internal" form--the form that is written in the machine
2223 description. */
2224
2225#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2226 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2227
6a90d232
L
2228/* A C statement to output to the stdio stream FILE an assembler
2229 command to pad the location counter to a multiple of 1<<LOG
2230 bytes if it is within MAX_SKIP bytes. */
2231
2232#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2233#undef ASM_OUTPUT_MAX_SKIP_PAD
2234#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2235 if ((LOG) != 0) \
2236 { \
2237 if ((MAX_SKIP) == 0) \
2238 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2239 else \
2240 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2241 }
2242#endif
2243
135a687e
KT
2244/* Write the extra assembler code needed to declare a function
2245 properly. */
2246
2247#undef ASM_OUTPUT_FUNCTION_LABEL
2248#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2249 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2250
f7288899
EC
2251/* Under some conditions we need jump tables in the text section,
2252 because the assembler cannot handle label differences between
2253 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2254
2255#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2256 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2257 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2258
cea3bd3e
RH
2259/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2260 and switch back. For x86 we do this only to save a few bytes that
2261 would otherwise be unused in the text section. */
ad211091
KT
2262#define CRT_MKSTR2(VAL) #VAL
2263#define CRT_MKSTR(x) CRT_MKSTR2(x)
2264
2265#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2266 asm (SECTION_OP "\n\t" \
2267 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2268 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2269
2270/* Default threshold for putting data in large sections
2271 with x86-64 medium memory model */
2272#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2273
2274/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2275
2276#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2277do { \
2278 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2279 && get_attr_maybe_prefix_bnd (INSN)) \
2280 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2281} while (0)
74b42c8b 2282\f
b97de419
L
2283/* Which processor to tune code generation for. These must be in sync
2284 with processor_target_table in i386.c. */
5bf0ebab
RH
2285
2286enum processor_type
2287{
b97de419
L
2288 PROCESSOR_GENERIC = 0,
2289 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2290 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2291 PROCESSOR_PENTIUM,
2d6b2e28 2292 PROCESSOR_LAKEMONT,
5bf0ebab 2293 PROCESSOR_PENTIUMPRO,
5bf0ebab 2294 PROCESSOR_PENTIUM4,
89c43c0a 2295 PROCESSOR_NOCONA,
340ef734 2296 PROCESSOR_CORE2,
d3c11974
L
2297 PROCESSOR_NEHALEM,
2298 PROCESSOR_SANDYBRIDGE,
3a579e09 2299 PROCESSOR_HASWELL,
d3c11974
L
2300 PROCESSOR_BONNELL,
2301 PROCESSOR_SILVERMONT,
52747219 2302 PROCESSOR_KNL,
06caf59d 2303 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2304 PROCESSOR_INTEL,
b97de419
L
2305 PROCESSOR_GEODE,
2306 PROCESSOR_K6,
2307 PROCESSOR_ATHLON,
2308 PROCESSOR_K8,
21efb4d4 2309 PROCESSOR_AMDFAM10,
1133125e 2310 PROCESSOR_BDVER1,
4d652a18 2311 PROCESSOR_BDVER2,
eb2f2b44 2312 PROCESSOR_BDVER3,
ed97ad47 2313 PROCESSOR_BDVER4,
14b52538 2314 PROCESSOR_BTVER1,
e32bfc16 2315 PROCESSOR_BTVER2,
9ce29eb0 2316 PROCESSOR_ZNVER1,
5bf0ebab
RH
2317 PROCESSOR_max
2318};
2319
9e555526 2320extern enum processor_type ix86_tune;
5bf0ebab 2321extern enum processor_type ix86_arch;
5bf0ebab 2322
8362f420
JH
2323/* Size of the RED_ZONE area. */
2324#define RED_ZONE_SIZE 128
2325/* Reserved area of the red zone for temporaries. */
2326#define RED_ZONE_RESERVE 8
c93e80a5 2327
95899b34 2328extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2329extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2330
2331/* Smallest class containing REGNO. */
2332extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2333
0948ccb2
PB
2334enum ix86_fpcmp_strategy {
2335 IX86_FPCMP_SAHF,
2336 IX86_FPCMP_COMI,
2337 IX86_FPCMP_ARITH
2338};
22fb740d
JH
2339\f
2340/* To properly truncate FP values into integers, we need to set i387 control
2341 word. We can't emit proper mode switching code before reload, as spills
2342 generated by reload may truncate values incorrectly, but we still can avoid
2343 redundant computation of new control word by the mode switching pass.
2344 The fldcw instructions are still emitted redundantly, but this is probably
2345 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2346 the sequence.
22fb740d
JH
2347
2348 The machinery is to emit simple truncation instructions and split them
2349 before reload to instructions having USEs of two memory locations that
2350 are filled by this code to old and new control word.
fce5a9f2 2351
22fb740d
JH
2352 Post-reload pass may be later used to eliminate the redundant fildcw if
2353 needed. */
2354
ff680eb1
UB
2355enum ix86_entity
2356{
ff97910d
VY
2357 AVX_U128 = 0,
2358 I387_TRUNC,
ff680eb1
UB
2359 I387_FLOOR,
2360 I387_CEIL,
2361 I387_MASK_PM,
2362 MAX_386_ENTITIES
2363};
2364
1cba2b96 2365enum ix86_stack_slot
ff680eb1 2366{
443ca5fc 2367 SLOT_TEMP = 0,
ff680eb1
UB
2368 SLOT_CW_STORED,
2369 SLOT_CW_TRUNC,
2370 SLOT_CW_FLOOR,
2371 SLOT_CW_CEIL,
2372 SLOT_CW_MASK_PM,
2373 MAX_386_STACK_LOCALS
2374};
22fb740d 2375
ff97910d
VY
2376enum avx_u128_state
2377{
2378 AVX_U128_CLEAN,
2379 AVX_U128_DIRTY,
2380 AVX_U128_ANY
2381};
2382
22fb740d
JH
2383/* Define this macro if the port needs extra instructions inserted
2384 for mode switching in an optimizing compilation. */
2385
ff680eb1
UB
2386#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2387 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2388
2389/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2390 initializer for an array of integers. Each initializer element N
2391 refers to an entity that needs mode switching, and specifies the
2392 number of different modes that might need to be set for this
2393 entity. The position of the initializer in the initializer -
2394 starting counting at zero - determines the integer that is used to
2395 refer to the mode-switched entity in question. */
2396
ff680eb1 2397#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2398 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2399
0f0138b6
JH
2400\f
2401/* Avoid renaming of stack registers, as doing so in combination with
2402 scheduling just increases amount of live registers at time and in
2403 the turn amount of fxch instructions needed.
2404
3f97cb0b
AI
2405 ??? Maybe Pentium chips benefits from renaming, someone can try....
2406
2407 Don't rename evex to non-evex sse registers. */
0f0138b6 2408
1a6e82b8
UB
2409#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2410 (!STACK_REGNO_P (SRC) \
2411 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2412
3b3c6a3f 2413\f
e91f04de 2414#define FASTCALL_PREFIX '@'
fa1a0d02 2415\f
ec7ded37 2416/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2417
604a6be9 2418#ifndef USED_FOR_TARGET
ec7ded37 2419struct GTY(()) machine_frame_state
cd9c1ca8 2420{
ec7ded37
RH
2421 /* This pair tracks the currently active CFA as reg+offset. When reg
2422 is drap_reg, we don't bother trying to record here the real CFA when
2423 it might really be a DW_CFA_def_cfa_expression. */
2424 rtx cfa_reg;
2425 HOST_WIDE_INT cfa_offset;
2426
2427 /* The current offset (canonically from the CFA) of ESP and EBP.
2428 When stack frame re-alignment is active, these may not be relative
2429 to the CFA. However, in all cases they are relative to the offsets
2430 of the saved registers stored in ix86_frame. */
2431 HOST_WIDE_INT sp_offset;
2432 HOST_WIDE_INT fp_offset;
2433
2434 /* The size of the red-zone that may be assumed for the purposes of
2435 eliding register restore notes in the epilogue. This may be zero
2436 if no red-zone is in effect, or may be reduced from the real
2437 red-zone value by a maximum runtime stack re-alignment value. */
2438 int red_zone_offset;
2439
2440 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2441 value within the frame. If false then the offset above should be
2442 ignored. Note that DRAP, if valid, *always* points to the CFA and
2443 thus has an offset of zero. */
2444 BOOL_BITFIELD sp_valid : 1;
2445 BOOL_BITFIELD fp_valid : 1;
2446 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2447
2448 /* Indicate whether the local stack frame has been re-aligned. When
2449 set, the SP/FP offsets above are relative to the aligned frame
2450 and not the CFA. */
2451 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2452};
2453
f81c9774
RH
2454/* Private to winnt.c. */
2455struct seh_frame_state;
2456
d1b38208 2457struct GTY(()) machine_function {
fa1a0d02
JH
2458 struct stack_local_entry *stack_locals;
2459 const char *some_ld_name;
4aab97f9
L
2460 int varargs_gpr_size;
2461 int varargs_fpr_size;
ff680eb1 2462 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2463
2464 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2465 has been computed for. */
2466 int use_fast_prologue_epilogue_nregs;
2467
7458026b
ILT
2468 /* For -fsplit-stack support: A stack local which holds a pointer to
2469 the stack arguments for a function with a variable number of
2470 arguments. This is set at the start of the function and is used
2471 to initialize the overflow_arg_area field of the va_list
2472 structure. */
2473 rtx split_stack_varargs_pointer;
2474
3452586b
RH
2475 /* This value is used for amd64 targets and specifies the current abi
2476 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2477 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2478
2479 /* Nonzero if the function accesses a previous frame. */
2480 BOOL_BITFIELD accesses_prev_frame : 1;
2481
2482 /* Nonzero if the function requires a CLD in the prologue. */
2483 BOOL_BITFIELD needs_cld : 1;
2484
922e3e33
UB
2485 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2486 expander to determine the style used. */
3452586b
RH
2487 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2488
5bf5a10b
AO
2489 /* If true, the current function needs the default PIC register, not
2490 an alternate register (on x86) and must not use the red zone (on
2491 x86_64), even if it's a leaf function. We don't want the
2492 function to be regarded as non-leaf because TLS calls need not
2493 affect register allocation. This flag is set when a TLS call
2494 instruction is expanded within a function, and never reset, even
2495 if all such instructions are optimized away. Use the
2496 ix86_current_function_calls_tls_descriptor macro for a better
2497 approximation. */
3452586b
RH
2498 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2499
2500 /* If true, the current function has a STATIC_CHAIN is placed on the
2501 stack below the return address. */
2502 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2503
529a6471
JJ
2504 /* If true, it is safe to not save/restore DRAP register. */
2505 BOOL_BITFIELD no_drap_save_restore : 1;
2506
a0ff7835
L
2507 /* If true, there is register available for argument passing. This
2508 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2509 if there is scratch register available for indirect sibcall. In
2510 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2511 pass arguments and can be used for indirect sibcall. */
2512 BOOL_BITFIELD arg_reg_available : 1;
2513
ec7ded37
RH
2514 /* During prologue/epilogue generation, the current frame state.
2515 Otherwise, the frame state at the end of the prologue. */
2516 struct machine_frame_state fs;
f81c9774
RH
2517
2518 /* During SEH output, this is non-null. */
2519 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2520};
cd9c1ca8 2521#endif
fa1a0d02
JH
2522
2523#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2524#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2525#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2526#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2527#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2528#define ix86_tls_descriptor_calls_expanded_in_cfun \
2529 (cfun->machine->tls_descriptor_call_expanded_p)
2530/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2531 calls are optimized away, we try to detect cases in which it was
2532 optimized away. Since such instructions (use (reg REG_SP)), we can
2533 verify whether there's any such instruction live by testing that
2534 REG_SP is live. */
2535#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2536 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2537#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2538
1bc7c5b6
ZW
2539/* Control behavior of x86_file_start. */
2540#define X86_FILE_START_VERSION_DIRECTIVE false
2541#define X86_FILE_START_FLTUSED false
2542
7dcbf659
JH
2543/* Flag to mark data that is in the large address area. */
2544#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2545#define SYMBOL_REF_FAR_ADDR_P(X) \
2546 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2547
2548/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2549 have defined always, to avoid ifdefing. */
2550#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2551#define SYMBOL_REF_DLLIMPORT_P(X) \
2552 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2553
2554#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2555#define SYMBOL_REF_DLLEXPORT_P(X) \
2556 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2557
82c0e1a0
KT
2558#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2559#define SYMBOL_REF_STUBVAR_P(X) \
2560 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2561
7942e47e
RY
2562extern void debug_ready_dispatch (void);
2563extern void debug_dispatch_window (int);
2564
91afcfa3
QN
2565/* The value at zero is only defined for the BMI instructions
2566 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2567#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2568 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2569#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2570 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2571
2572
b8ce4e94
KT
2573/* Flags returned by ix86_get_callcvt (). */
2574#define IX86_CALLCVT_CDECL 0x1
2575#define IX86_CALLCVT_STDCALL 0x2
2576#define IX86_CALLCVT_FASTCALL 0x4
2577#define IX86_CALLCVT_THISCALL 0x8
2578#define IX86_CALLCVT_REGPARM 0x10
2579#define IX86_CALLCVT_SSEREGPARM 0x20
2580
2581#define IX86_BASE_CALLCVT(FLAGS) \
2582 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2583 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2584
b86b9f44
MM
2585#define RECIP_MASK_NONE 0x00
2586#define RECIP_MASK_DIV 0x01
2587#define RECIP_MASK_SQRT 0x02
2588#define RECIP_MASK_VEC_DIV 0x04
2589#define RECIP_MASK_VEC_SQRT 0x08
2590#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2591 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2592#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2593
2594#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2595#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2596#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2597#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2598
5dcfdccd
KY
2599#define IX86_HLE_ACQUIRE (1 << 16)
2600#define IX86_HLE_RELEASE (1 << 17)
2601
e83b8e2e
JJ
2602/* For switching between functions with different target attributes. */
2603#define SWITCHABLE_TARGET 1
2604
44d0de8d
UB
2605#define TARGET_SUPPORTS_WIDE_INT 1
2606
c98f8742
JVA
2607/*
2608Local variables:
2609version-control: t
2610End:
2611*/