]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR middle-end/53153 (ice in tree_low_cst, at tree.c:6569)
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
eb5bb0fd 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72 54#define TARGET_AVX OPTION_ISA_AVX
7afac110 55#define TARGET_AVX2 OPTION_ISA_AVX2
95879c72 56#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 57#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 58#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 59#define TARGET_XOP OPTION_ISA_XOP
3e901069 60#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 61#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7 62#define TARGET_ABM OPTION_ISA_ABM
91afcfa3 63#define TARGET_BMI OPTION_ISA_BMI
82feeb8d 64#define TARGET_BMI2 OPTION_ISA_BMI2
5fcafa60 65#define TARGET_LZCNT OPTION_ISA_LZCNT
94d13ad1 66#define TARGET_TBM OPTION_ISA_TBM
ab442df7
MM
67#define TARGET_POPCNT OPTION_ISA_POPCNT
68#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 69#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 70#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
71#define TARGET_AES OPTION_ISA_AES
72#define TARGET_PCLMUL OPTION_ISA_PCLMUL
73#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
74#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
75#define TARGET_RDRND OPTION_ISA_RDRND
76#define TARGET_F16C OPTION_ISA_F16C
bf2eaa3f 77#define TARGET_RTM OPTION_ISA_RTM
ab442df7 78
1ab8b791
L
79#define TARGET_LP64 OPTION_ABI_64
80#define TARGET_X32 OPTION_ABI_X32
04e1d06b 81
cbf2e4d4
HJ
82/* SSE4.1 defines round instructions */
83#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 84#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 85
26b5109f
RS
86#include "config/vxworks-dummy.h"
87
7eb68c06 88#include "config/i386/i386-opts.h"
ccf8e764 89
c69fa2d4 90#define MAX_STRINGOP_ALGS 4
ccf8e764 91
8c996513
JH
92/* Specify what algorithm to use for stringops on known size.
93 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
94 known at compile time or estimated via feedback, the SIZE array
95 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 96 means infinity). Corresponding ALG is used then.
8c996513 97 For example initializer:
4f3f76e6 98 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 99 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 100 be used otherwise. */
8c996513
JH
101struct stringop_algs
102{
103 const enum stringop_alg unknown_size;
104 const struct stringop_strategy {
105 const int max;
106 const enum stringop_alg alg;
c69fa2d4 107 } size [MAX_STRINGOP_ALGS];
8c996513
JH
108};
109
d4ba09c0
SC
110/* Define the specific costs for a given cpu */
111
112struct processor_costs {
8b60264b
KG
113 const int add; /* cost of an add instruction */
114 const int lea; /* cost of a lea instruction */
115 const int shift_var; /* variable shift costs */
116 const int shift_const; /* constant shift costs */
f676971a 117 const int mult_init[5]; /* cost of starting a multiply
4977bab6 118 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 119 const int mult_bit; /* cost of multiply per each bit set */
f676971a 120 const int divide[5]; /* cost of a divide/mod
4977bab6 121 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
122 int movsx; /* The cost of movsx operation. */
123 int movzx; /* The cost of movzx operation. */
8b60264b
KG
124 const int large_insn; /* insns larger than this cost more */
125 const int move_ratio; /* The threshold of number of scalar
ac775968 126 memory-to-memory move insns. */
8b60264b
KG
127 const int movzbl_load; /* cost of loading using movzbl */
128 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
129 in QImode, HImode and SImode relative
130 to reg-reg move (2). */
8b60264b 131 const int int_store[3]; /* cost of storing integer register
96e7ae40 132 in QImode, HImode and SImode */
8b60264b
KG
133 const int fp_move; /* cost of reg,reg fld/fst */
134 const int fp_load[3]; /* cost of loading FP register
96e7ae40 135 in SFmode, DFmode and XFmode */
8b60264b 136 const int fp_store[3]; /* cost of storing FP register
96e7ae40 137 in SFmode, DFmode and XFmode */
8b60264b
KG
138 const int mmx_move; /* cost of moving MMX register. */
139 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 140 in SImode and DImode */
8b60264b 141 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 142 in SImode and DImode */
8b60264b
KG
143 const int sse_move; /* cost of moving SSE register. */
144 const int sse_load[3]; /* cost of loading SSE register
fa79946e 145 in SImode, DImode and TImode*/
8b60264b 146 const int sse_store[3]; /* cost of storing SSE register
fa79946e 147 in SImode, DImode and TImode*/
8b60264b 148 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 149 integer and vice versa. */
46cb0441
ZD
150 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
151 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
152 const int prefetch_block; /* bytes moved to cache for prefetch. */
153 const int simultaneous_prefetches; /* number of parallel prefetch
154 operations. */
4977bab6 155 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
156 const int fadd; /* cost of FADD and FSUB instructions. */
157 const int fmul; /* cost of FMUL instruction. */
158 const int fdiv; /* cost of FDIV instruction. */
159 const int fabs; /* cost of FABS instruction. */
160 const int fchs; /* cost of FCHS instruction. */
161 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 162 /* Specify what algorithm
bee51209
L
163 to use for stringops on unknown size. */
164 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
165 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
166 load and store. */
167 const int scalar_load_cost; /* Cost of scalar load. */
168 const int scalar_store_cost; /* Cost of scalar store. */
169 const int vec_stmt_cost; /* Cost of any vector operation, excluding
170 load, store, vector-to-scalar and
171 scalar-to-vector operation. */
172 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
173 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 174 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
175 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
176 const int vec_store_cost; /* Cost of vector store. */
177 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
178 cost model. */
179 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
180 vectorizer cost model. */
d4ba09c0
SC
181};
182
8b60264b 183extern const struct processor_costs *ix86_cost;
b2077fd2
JH
184extern const struct processor_costs ix86_size_cost;
185
186#define ix86_cur_cost() \
187 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 188
c98f8742
JVA
189/* Macros used in the machine description to test the flags. */
190
ddd5a7c1 191/* configure can arrange to make this 2, to force a 486. */
e075ae69 192
35b528be 193#ifndef TARGET_CPU_DEFAULT
d326eaf0 194#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 195#endif
35b528be 196
004d3859
GK
197#ifndef TARGET_FPMATH_DEFAULT
198#define TARGET_FPMATH_DEFAULT \
199 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
200#endif
201
6ac49599 202#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 203
5791cc29
JT
204/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
205 compile-time constant. */
206#ifdef IN_LIBGCC2
6ac49599 207#undef TARGET_64BIT
5791cc29
JT
208#ifdef __x86_64__
209#define TARGET_64BIT 1
210#else
211#define TARGET_64BIT 0
212#endif
213#else
6ac49599
RS
214#ifndef TARGET_BI_ARCH
215#undef TARGET_64BIT
67adf6a9 216#if TARGET_64BIT_DEFAULT
0c2dc519
JH
217#define TARGET_64BIT 1
218#else
219#define TARGET_64BIT 0
220#endif
221#endif
5791cc29 222#endif
25f94bb5 223
750054a2
CT
224#define HAS_LONG_COND_BRANCH 1
225#define HAS_LONG_UNCOND_BRANCH 1
226
9e555526
RH
227#define TARGET_386 (ix86_tune == PROCESSOR_I386)
228#define TARGET_486 (ix86_tune == PROCESSOR_I486)
229#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
230#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 231#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
232#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
233#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
234#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
235#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 236#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 237#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
ab247762
MK
238#define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
239#define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
240#define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
b2b01543
BS
241#define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
242#define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
243#define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
d326eaf0
JH
244#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
245#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
246#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 247#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 248#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 249#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
14b52538 250#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
b6837b94 251#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 252
80fd744f
RH
253/* Feature tests against the various tunings. */
254enum ix86_tune_indices {
255 X86_TUNE_USE_LEAVE,
256 X86_TUNE_PUSH_MEMORY,
257 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 258 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
259 X86_TUNE_BRANCH_PREDICTION_HINTS,
260 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 261 X86_TUNE_USE_SAHF,
80fd744f
RH
262 X86_TUNE_MOVX,
263 X86_TUNE_PARTIAL_REG_STALL,
264 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 265 X86_TUNE_LCP_STALL,
80fd744f
RH
266 X86_TUNE_USE_HIMODE_FIOP,
267 X86_TUNE_USE_SIMODE_FIOP,
268 X86_TUNE_USE_MOV0,
269 X86_TUNE_USE_CLTD,
270 X86_TUNE_USE_XCHGB,
271 X86_TUNE_SPLIT_LONG_MOVES,
272 X86_TUNE_READ_MODIFY_WRITE,
273 X86_TUNE_READ_MODIFY,
274 X86_TUNE_PROMOTE_QIMODE,
275 X86_TUNE_FAST_PREFIX,
276 X86_TUNE_SINGLE_STRINGOP,
277 X86_TUNE_QIMODE_MATH,
278 X86_TUNE_HIMODE_MATH,
279 X86_TUNE_PROMOTE_QI_REGS,
280 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
281 X86_TUNE_SINGLE_POP,
282 X86_TUNE_DOUBLE_POP,
283 X86_TUNE_SINGLE_PUSH,
284 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
285 X86_TUNE_INTEGER_DFMODE_MOVES,
286 X86_TUNE_PARTIAL_REG_DEPENDENCY,
287 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
288 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
289 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
290 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
291 X86_TUNE_SSE_SPLIT_REGS,
292 X86_TUNE_SSE_TYPELESS_STORES,
293 X86_TUNE_SSE_LOAD0_BY_PXOR,
294 X86_TUNE_MEMORY_MISMATCH_STALL,
295 X86_TUNE_PROLOGUE_USING_MOVE,
296 X86_TUNE_EPILOGUE_USING_MOVE,
297 X86_TUNE_SHIFT1,
298 X86_TUNE_USE_FFREEP,
299 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 300 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
301 X86_TUNE_FOUR_JUMP_LIMIT,
302 X86_TUNE_SCHEDULE,
303 X86_TUNE_USE_BT,
304 X86_TUNE_USE_INCDEC,
305 X86_TUNE_PAD_RETURNS,
e7ed95a2 306 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 307 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
308 X86_TUNE_SHORTEN_X87_SSE,
309 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 310 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
311 X86_TUNE_SLOW_IMUL_IMM32_MEM,
312 X86_TUNE_SLOW_IMUL_IMM8,
313 X86_TUNE_MOVE_M1_VIA_OR,
314 X86_TUNE_NOT_UNPAIRABLE,
315 X86_TUNE_NOT_VECTORMODE,
54723b46 316 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 317 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 318 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 319 X86_TUNE_OPT_AGU,
e72eba85 320 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 321 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 322 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
323 X86_TUNE_REASSOC_INT_TO_PARALLEL,
324 X86_TUNE_REASSOC_FP_TO_PARALLEL,
80fd744f
RH
325
326 X86_TUNE_LAST
327};
328
ab442df7 329extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
330
331#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
332#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
333#define TARGET_ZERO_EXTEND_WITH_AND \
334 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 335#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
336#define TARGET_BRANCH_PREDICTION_HINTS \
337 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
338#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
339#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
340#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
341#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
342#define TARGET_PARTIAL_FLAG_REG_STALL \
343 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
344#define TARGET_LCP_STALL \
345 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
346#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
347#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
348#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
349#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
350#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
351#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
352#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
353#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
354#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
355#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
356#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
357#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
358#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
359#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
360#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
361#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
362#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
363#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
364#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
365#define TARGET_INTEGER_DFMODE_MOVES \
366 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
367#define TARGET_PARTIAL_REG_DEPENDENCY \
368 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
369#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
370 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
371#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
372 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
373#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
374 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
375#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
376 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
377#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
378#define TARGET_SSE_TYPELESS_STORES \
379 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
380#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
381#define TARGET_MEMORY_MISMATCH_STALL \
382 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
383#define TARGET_PROLOGUE_USING_MOVE \
384 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
385#define TARGET_EPILOGUE_USING_MOVE \
386 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
387#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
388#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
389#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
390#define TARGET_INTER_UNIT_CONVERSIONS\
391 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
392#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
393#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
394#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
395#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
396#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
397#define TARGET_PAD_SHORT_FUNCTION \
398 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
399#define TARGET_EXT_80387_CONSTANTS \
400 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
401#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
402#define TARGET_AVOID_VECTOR_DECODE \
403 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
404#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
405 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
406#define TARGET_SLOW_IMUL_IMM32_MEM \
407 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
408#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
409#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
410#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
411#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
412#define TARGET_USE_VECTOR_FP_CONVERTS \
413 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
414#define TARGET_USE_VECTOR_CONVERTS \
415 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
416#define TARGET_FUSE_CMP_AND_BRANCH \
417 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 418#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
419#define TARGET_VECTORIZE_DOUBLE \
420 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
421#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
422 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
423#define TARGET_AVX128_OPTIMAL \
424 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
425#define TARGET_REASSOC_INT_TO_PARALLEL \
426 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
427#define TARGET_REASSOC_FP_TO_PARALLEL \
428 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
429
80fd744f
RH
430/* Feature tests against the various architecture variations. */
431enum ix86_arch_indices {
432 X86_ARCH_CMOVE, /* || TARGET_SSE */
433 X86_ARCH_CMPXCHG,
434 X86_ARCH_CMPXCHG8B,
435 X86_ARCH_XADD,
436 X86_ARCH_BSWAP,
437
438 X86_ARCH_LAST
439};
4f3f76e6 440
ab442df7 441extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
442
443#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
444#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
445#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
446#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
447#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
448
449#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
450
451extern int x86_prefetch_sse;
0a1c5e55 452
80fd744f
RH
453#define TARGET_PREFETCH_SSE x86_prefetch_sse
454
80fd744f
RH
455#define ASSEMBLER_DIALECT (ix86_asm_dialect)
456
457#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
458#define TARGET_MIX_SSE_I387 \
459 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
460
461#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
462#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
463#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 464#define TARGET_SUN_TLS 0
1ef45b77 465
67adf6a9
RH
466#ifndef TARGET_64BIT_DEFAULT
467#define TARGET_64BIT_DEFAULT 0
25f94bb5 468#endif
74dc3e94
RH
469#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
470#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
471#endif
25f94bb5 472
79f5e442
ZD
473/* Fence to use after loop using storent. */
474
475extern tree x86_mfence;
476#define FENCE_FOLLOWING_MOVNT x86_mfence
477
0ed4a390
JL
478/* Once GDB has been enhanced to deal with functions without frame
479 pointers, we can change this to allow for elimination of
480 the frame pointer in leaf functions. */
481#define TARGET_DEFAULT 0
67adf6a9 482
0a1c5e55
UB
483/* Extra bits to force. */
484#define TARGET_SUBTARGET_DEFAULT 0
485#define TARGET_SUBTARGET_ISA_DEFAULT 0
486
487/* Extra bits to force on w/ 32-bit mode. */
488#define TARGET_SUBTARGET32_DEFAULT 0
489#define TARGET_SUBTARGET32_ISA_DEFAULT 0
490
ccf8e764
RH
491/* Extra bits to force on w/ 64-bit mode. */
492#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 493#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 494
fee3eacd
IS
495/* Replace MACH-O, ifdefs by in-line tests, where possible.
496 (a) Macros defined in config/i386/darwin.h */
b069de3b 497#define TARGET_MACHO 0
9005471b 498#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
499#define MACHOPIC_ATT_STUB 0
500/* (b) Macros defined in config/darwin.h */
501#define MACHO_DYNAMIC_NO_PIC_P 0
502#define MACHOPIC_INDIRECT 0
503#define MACHOPIC_PURE 0
9005471b
IS
504
505/* For the Windows 64-bit ABI. */
7c800926
KT
506#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
507
6510e8bb
KT
508/* For the Windows 32-bit ABI. */
509#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
510
f81c9774
RH
511/* This is re-defined by cygming.h. */
512#define TARGET_SEH 0
513
51212b32 514/* The default abi used by target. */
7c800926 515#define DEFAULT_ABI SYSV_ABI
ccf8e764 516
cc69336f
RH
517/* Subtargets may reset this to 1 in order to enable 96-bit long double
518 with the rounding mode forced to 53 bits. */
519#define TARGET_96_ROUND_53_LONG_DOUBLE 0
520
682cd442
GK
521/* -march=native handling only makes sense with compiler running on
522 an x86 or x86_64 chip. If changing this condition, also change
523 the condition in driver-i386.c. */
524#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
525/* In driver-i386.c. */
526extern const char *host_detect_local_cpu (int argc, const char **argv);
527#define EXTRA_SPEC_FUNCTIONS \
528 { "local_cpu_detect", host_detect_local_cpu },
682cd442 529#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
530#endif
531
8981c15b
JM
532#if TARGET_64BIT_DEFAULT
533#define OPT_ARCH64 "!m32"
534#define OPT_ARCH32 "m32"
535#else
f0ea7581
L
536#define OPT_ARCH64 "m64|mx32"
537#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
538#endif
539
1cba2b96
EC
540/* Support for configure-time defaults of some command line options.
541 The order here is important so that -march doesn't squash the
542 tune or cpu values. */
ce998900 543#define OPTION_DEFAULT_SPECS \
da2d4c01 544 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
545 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
546 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 547 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
548 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
549 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
550 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
551 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
552 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 553
241e1a89
SC
554/* Specs for the compiler proper */
555
628714d8 556#ifndef CC1_CPU_SPEC
eb5bb0fd 557#define CC1_CPU_SPEC_1 ""
fa959ce4 558
682cd442 559#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
560#define CC1_CPU_SPEC CC1_CPU_SPEC_1
561#else
562#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
563"%{march=native:%>march=native %:local_cpu_detect(arch) \
564 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
565%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 566#endif
241e1a89 567#endif
c98f8742 568\f
30efe578 569/* Target CPU builtins. */
ab442df7
MM
570#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
571
572/* Target Pragmas. */
573#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 574
c2f17e19
UB
575enum target_cpu_default
576{
577 TARGET_CPU_DEFAULT_generic = 0,
578
579 TARGET_CPU_DEFAULT_i386,
580 TARGET_CPU_DEFAULT_i486,
581 TARGET_CPU_DEFAULT_pentium,
582 TARGET_CPU_DEFAULT_pentium_mmx,
583 TARGET_CPU_DEFAULT_pentiumpro,
584 TARGET_CPU_DEFAULT_pentium2,
585 TARGET_CPU_DEFAULT_pentium3,
586 TARGET_CPU_DEFAULT_pentium4,
587 TARGET_CPU_DEFAULT_pentium_m,
588 TARGET_CPU_DEFAULT_prescott,
589 TARGET_CPU_DEFAULT_nocona,
590 TARGET_CPU_DEFAULT_core2,
9d8477b6 591 TARGET_CPU_DEFAULT_corei7,
b6837b94 592 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
593
594 TARGET_CPU_DEFAULT_geode,
595 TARGET_CPU_DEFAULT_k6,
596 TARGET_CPU_DEFAULT_k6_2,
597 TARGET_CPU_DEFAULT_k6_3,
598 TARGET_CPU_DEFAULT_athlon,
599 TARGET_CPU_DEFAULT_athlon_sse,
600 TARGET_CPU_DEFAULT_k8,
601 TARGET_CPU_DEFAULT_amdfam10,
1133125e 602 TARGET_CPU_DEFAULT_bdver1,
4d652a18 603 TARGET_CPU_DEFAULT_bdver2,
14b52538 604 TARGET_CPU_DEFAULT_btver1,
c2f17e19
UB
605
606 TARGET_CPU_DEFAULT_max
607};
0c2dc519 608
628714d8 609#ifndef CC1_SPEC
8015b78d 610#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
611#endif
612
613/* This macro defines names of additional specifications to put in the
614 specs that can be used in various specifications like CC1_SPEC. Its
615 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
616
617 Each subgrouping contains a string constant, that defines the
188fc5b5 618 specification name, and a string constant that used by the GCC driver
bcd86433
SC
619 program.
620
621 Do not define this macro if it does not need to do anything. */
622
623#ifndef SUBTARGET_EXTRA_SPECS
624#define SUBTARGET_EXTRA_SPECS
625#endif
626
627#define EXTRA_SPECS \
628714d8 628 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
629 SUBTARGET_EXTRA_SPECS
630\f
ce998900 631
d57a4b98
RH
632/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
633 FPU, assume that the fpcw is set to extended precision; when using
634 only SSE, rounding is correct; when using both SSE and the FPU,
635 the rounding precision is indeterminate, since either may be chosen
636 apparently at random. */
637#define TARGET_FLT_EVAL_METHOD \
5ccd517a 638 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 639
8ce94e44
JM
640/* Whether to allow x87 floating-point arithmetic on MODE (one of
641 SFmode, DFmode and XFmode) in the current excess precision
642 configuration. */
643#define X87_ENABLE_ARITH(MODE) \
644 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
645
646/* Likewise, whether to allow direct conversions from integer mode
647 IMODE (HImode, SImode or DImode) to MODE. */
648#define X87_ENABLE_FLOAT(MODE, IMODE) \
649 (flag_excess_precision == EXCESS_PRECISION_FAST \
650 || (MODE) == XFmode \
651 || ((MODE) == DFmode && (IMODE) == SImode) \
652 || (IMODE) == HImode)
653
979c67a5
UB
654/* target machine storage layout */
655
65d9c0ab
JH
656#define SHORT_TYPE_SIZE 16
657#define INT_TYPE_SIZE 32
f0ea7581
L
658#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
659#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 660#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 661#define FLOAT_TYPE_SIZE 32
65d9c0ab 662#define DOUBLE_TYPE_SIZE 64
979c67a5
UB
663#define LONG_DOUBLE_TYPE_SIZE 80
664
665#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 666
67adf6a9 667#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 668#define MAX_BITS_PER_WORD 64
0c2dc519
JH
669#else
670#define MAX_BITS_PER_WORD 32
0c2dc519
JH
671#endif
672
c98f8742
JVA
673/* Define this if most significant byte of a word is the lowest numbered. */
674/* That is true on the 80386. */
675
676#define BITS_BIG_ENDIAN 0
677
678/* Define this if most significant byte of a word is the lowest numbered. */
679/* That is not true on the 80386. */
680#define BYTES_BIG_ENDIAN 0
681
682/* Define this if most significant word of a multiword number is the lowest
683 numbered. */
684/* Not true for 80386 */
685#define WORDS_BIG_ENDIAN 0
686
c98f8742 687/* Width of a word, in units (bytes). */
4ae8027b 688#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
689
690#ifndef IN_LIBGCC2
2e64c636
JH
691#define MIN_UNITS_PER_WORD 4
692#endif
c98f8742 693
c98f8742 694/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 695#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 696
e075ae69 697/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 698#define STACK_BOUNDARY \
51212b32 699 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 700
2e3f842f
L
701/* Stack boundary of the main function guaranteed by OS. */
702#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
703
de1132d1
L
704/* Minimum stack boundary. */
705#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 706
d1f87653 707/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 708 aligned; the compiler cannot rely on having this alignment. */
e075ae69 709#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 710
de1132d1 711/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
712 both 32bit and 64bit, to support codes that need 128 bit stack
713 alignment for SSE instructions, but can't realign the stack. */
714#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
715
716/* 1 if -mstackrealign should be turned on by default. It will
717 generate an alternate prologue and epilogue that realigns the
718 runtime stack if nessary. This supports mixing codes that keep a
719 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 720 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
721#define STACK_REALIGN_DEFAULT 0
722
723/* Boundary (in *bits*) on which the incoming stack is aligned. */
724#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 725
ebff937c
SH
726/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
727 mandatory for the 64-bit ABI, and may or may not be true for other
728 operating systems. */
729#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
730
f963b5d9
RS
731/* Minimum allocation boundary for the code of a function. */
732#define FUNCTION_BOUNDARY 8
733
734/* C++ stores the virtual bit in the lowest bit of function pointers. */
735#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 736
c98f8742
JVA
737/* Minimum size in bits of the largest boundary to which any
738 and all fundamental data types supported by the hardware
739 might need to be aligned. No data type wants to be aligned
17f24ff0 740 rounder than this.
fce5a9f2 741
d1f87653 742 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
743 and Pentium Pro XFmode values at 128 bit boundaries. */
744
2824d6e5 745#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 746
2e3f842f
L
747/* Maximum stack alignment. */
748#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
749
6e4f1168
L
750/* Alignment value for attribute ((aligned)). It is a constant since
751 it is the part of the ABI. We shouldn't change it with -mavx. */
752#define ATTRIBUTE_ALIGNED_VALUE 128
753
822eda12 754/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 755#define ALIGN_MODE_128(MODE) \
4501d314 756 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 757
17f24ff0 758/* The published ABIs say that doubles should be aligned on word
d1f87653 759 boundaries, so lower the alignment for structure fields unless
6fc605d8 760 -malign-double is set. */
e932b21b 761
e83f3cff
RH
762/* ??? Blah -- this macro is used directly by libobjc. Since it
763 supports no vector modes, cut out the complexity and fall back
764 on BIGGEST_FIELD_ALIGNMENT. */
765#ifdef IN_TARGET_LIBS
ef49d42e
JH
766#ifdef __x86_64__
767#define BIGGEST_FIELD_ALIGNMENT 128
768#else
e83f3cff 769#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 770#endif
e83f3cff 771#else
e932b21b
JH
772#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
773 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 774#endif
c98f8742 775
e5e8a8bf 776/* If defined, a C expression to compute the alignment given to a
a7180f70 777 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
778 and ALIGN is the alignment that the object would ordinarily have.
779 The value of this macro is used instead of that alignment to align
780 the object.
781
782 If this macro is not defined, then ALIGN is used.
783
784 The typical use of this macro is to increase alignment for string
785 constants to be word aligned so that `strcpy' calls that copy
786 constants can be done inline. */
787
d9a5f180 788#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 789
8a022443
JW
790/* If defined, a C expression to compute the alignment for a static
791 variable. TYPE is the data type, and ALIGN is the alignment that
792 the object would ordinarily have. The value of this macro is used
793 instead of that alignment to align the object.
794
795 If this macro is not defined, then ALIGN is used.
796
797 One use of this macro is to increase alignment of medium-size
798 data to make it all fit in fewer cache lines. Another is to
799 cause character arrays to be word-aligned so that `strcpy' calls
800 that copy constants to character arrays can be done inline. */
801
d9a5f180 802#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
803
804/* If defined, a C expression to compute the alignment for a local
805 variable. TYPE is the data type, and ALIGN is the alignment that
806 the object would ordinarily have. The value of this macro is used
807 instead of that alignment to align the object.
808
809 If this macro is not defined, then ALIGN is used.
810
811 One use of this macro is to increase alignment of medium-size
812 data to make it all fit in fewer cache lines. */
813
76fe54f0
L
814#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
815 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
816
817/* If defined, a C expression to compute the alignment for stack slot.
818 TYPE is the data type, MODE is the widest mode available, and ALIGN
819 is the alignment that the slot would ordinarily have. The value of
820 this macro is used instead of that alignment to align the slot.
821
822 If this macro is not defined, then ALIGN is used when TYPE is NULL,
823 Otherwise, LOCAL_ALIGNMENT will be used.
824
825 One use of this macro is to set alignment of stack slot to the
826 maximum alignment of all possible modes which the slot may have. */
827
828#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
829 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 830
9bfaf89d
JJ
831/* If defined, a C expression to compute the alignment for a local
832 variable DECL.
833
834 If this macro is not defined, then
835 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
836
837 One use of this macro is to increase alignment of medium-size
838 data to make it all fit in fewer cache lines. */
839
840#define LOCAL_DECL_ALIGNMENT(DECL) \
841 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
842
ae58e548
JJ
843/* If defined, a C expression to compute the minimum required alignment
844 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
845 MODE, assuming normal alignment ALIGN.
846
847 If this macro is not defined, then (ALIGN) will be used. */
848
849#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
850 ix86_minimum_alignment (EXP, MODE, ALIGN)
851
9bfaf89d 852
9cd10576 853/* Set this nonzero if move instructions will actually fail to work
c98f8742 854 when given unaligned data. */
b4ac57ab 855#define STRICT_ALIGNMENT 0
c98f8742
JVA
856
857/* If bit field type is int, don't let it cross an int,
858 and give entire struct the alignment of an int. */
43a88a8c 859/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 860#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
861\f
862/* Standard register usage. */
863
864/* This processor has special stack-like registers. See reg-stack.c
892a2d68 865 for details. */
c98f8742
JVA
866
867#define STACK_REGS
ce998900 868
d9a5f180 869#define IS_STACK_MODE(MODE) \
63001560
UB
870 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
871 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 872 || (MODE) == XFmode)
c98f8742
JVA
873
874/* Number of actual hardware registers.
875 The hardware registers are assigned numbers for the compiler
876 from 0 to just below FIRST_PSEUDO_REGISTER.
877 All registers that the compiler knows about must be given numbers,
878 even those that are not normally considered general registers.
879
880 In the 80386 we give the 8 general purpose registers the numbers 0-7.
881 We number the floating point registers 8-15.
882 Note that registers 0-7 can be accessed as a short or int,
883 while only 0-3 may be used with byte `mov' instructions.
884
885 Reg 16 does not correspond to any hardware register, but instead
886 appears in the RTL as an argument pointer prior to reload, and is
887 eliminated during reloading in favor of either the stack or frame
892a2d68 888 pointer. */
c98f8742 889
b0d95de8 890#define FIRST_PSEUDO_REGISTER 53
c98f8742 891
3073d01c
ML
892/* Number of hardware registers that go into the DWARF-2 unwind info.
893 If not defined, equals FIRST_PSEUDO_REGISTER. */
894
895#define DWARF_FRAME_REGISTERS 17
896
c98f8742
JVA
897/* 1 for registers that have pervasive standard uses
898 and are not available for the register allocator.
3f3f2124 899 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 900
3a4416fb
RS
901 The value is zero if the register is not fixed on either 32 or
902 64 bit targets, one if the register if fixed on both 32 and 64
903 bit targets, two if it is only fixed on 32bit targets and three
904 if its only fixed on 64bit targets.
5efd84c5 905 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
3f3f2124 906 */
a7180f70
BS
907#define FIXED_REGISTERS \
908/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 909{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
910/*arg,flags,fpsr,fpcr,frame*/ \
911 1, 1, 1, 1, 1, \
a7180f70
BS
912/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
913 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 914/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
915 0, 0, 0, 0, 0, 0, 0, 0, \
916/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 917 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 918/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 919 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 920
c98f8742
JVA
921
922/* 1 for registers not available across function calls.
923 These must include the FIXED_REGISTERS and also any
924 registers that can be used without being saved.
925 The latter must include the registers where values are returned
926 and the register where structure-value addresses are passed.
fce5a9f2
EC
927 Aside from that, you can include as many other registers as you like.
928
9d72d996
JJ
929 The value is zero if the register is not call used on either 32 or
930 64 bit targets, one if the register if call used on both 32 and 64
931 bit targets, two if it is only call used on 32bit targets and three
932 if its only call used on 64bit targets.
5efd84c5 933 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
3f3f2124 934*/
a7180f70
BS
935#define CALL_USED_REGISTERS \
936/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 937{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
938/*arg,flags,fpsr,fpcr,frame*/ \
939 1, 1, 1, 1, 1, \
a7180f70 940/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 941 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 942/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 943 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 944/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 945 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 946/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 947 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 948
3b3c6a3f
MM
949/* Order in which to allocate registers. Each register must be
950 listed once, even those in FIXED_REGISTERS. List frame pointer
951 late and fixed registers last. Note that, in general, we prefer
952 registers listed in CALL_USED_REGISTERS, keeping the others
953 available for storage of persistent values.
954
5a733826 955 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 956 so this is just empty initializer for array. */
3b3c6a3f 957
162f023b
JH
958#define REG_ALLOC_ORDER \
959{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
960 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
961 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 962 48, 49, 50, 51, 52 }
3b3c6a3f 963
5a733826 964/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 965 to be rearranged based on a particular function. When using sse math,
03c259ad 966 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 967
5a733826 968#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 969
f5316dfe 970
7c800926
KT
971#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
972
c98f8742
JVA
973/* Return number of consecutive hard regs needed starting at reg REGNO
974 to hold something of mode MODE.
975 This is ordinarily the length in words of a value of mode MODE
976 but can be less for certain modes in special long registers.
977
fce5a9f2 978 Actually there are no two word move instructions for consecutive
c98f8742 979 registers. And only registers 0-3 may have mov byte instructions
63001560 980 applied to them. */
c98f8742 981
ce998900 982#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
983 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
984 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 985 : ((MODE) == XFmode \
92d0fb09 986 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 987 : (MODE) == XCmode \
92d0fb09 988 ? (TARGET_64BIT ? 4 : 6) \
2b589241 989 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 990
8521c414
JM
991#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
992 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
993 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
994 ? 0 \
995 : ((MODE) == XFmode || (MODE) == XCmode)) \
996 : 0)
997
998#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
999
95879c72
L
1000#define VALID_AVX256_REG_MODE(MODE) \
1001 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1002 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1003 || (MODE) == V4DFmode)
95879c72 1004
ce998900
UB
1005#define VALID_SSE2_REG_MODE(MODE) \
1006 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1007 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1008
d9a5f180 1009#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1010 ((MODE) == V1TImode || (MODE) == TImode \
1011 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1012 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1013
47f339cf 1014#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1015 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1016
d9a5f180 1017#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1018 ((MODE == V1DImode) || (MODE) == DImode \
1019 || (MODE) == V2SImode || (MODE) == SImode \
1020 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1021
ce998900
UB
1022#define VALID_DFP_MODE_P(MODE) \
1023 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1024
d9a5f180 1025#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1026 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1027 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1028
d9a5f180 1029#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1030 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1031 || (MODE) == DImode \
1032 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1033 || (MODE) == CDImode \
1034 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1035 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1036
822eda12 1037/* Return true for modes passed in SSE registers. */
ce998900 1038#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1039 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1040 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1041 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1042 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1043 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1044 || (MODE) == V2TImode)
822eda12 1045
e075ae69 1046/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1047
a946dd00 1048#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1049 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1050
1051/* Value is 1 if it is a good idea to tie two pseudo registers
1052 when one has mode MODE1 and one has mode MODE2.
1053 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1054 for any hard reg, then this must be 0 for correct output. */
1055
c1c5b5e3 1056#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1057
ff25ef99
ZD
1058/* It is possible to write patterns to move flags; but until someone
1059 does it, */
1060#define AVOID_CCMODE_COPIES
c98f8742 1061
e075ae69 1062/* Specify the modes required to caller save a given hard regno.
787dc842 1063 We do this on i386 to prevent flags from being saved at all.
e075ae69 1064
787dc842
JH
1065 Kill any attempts to combine saving of modes. */
1066
d9a5f180
GS
1067#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1068 (CC_REGNO_P (REGNO) ? VOIDmode \
1069 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1070 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1071 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1072 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1073 : (MODE))
ce998900 1074
51ba747a
RH
1075/* The only ABI that saves SSE registers across calls is Win64 (thus no
1076 need to check the current ABI here), and with AVX enabled Win64 only
1077 guarantees that the low 16 bytes are saved. */
1078#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1079 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1080
c98f8742
JVA
1081/* Specify the registers used for certain standard purposes.
1082 The values of these macros are register numbers. */
1083
1084/* on the 386 the pc register is %eip, and is not usable as a general
1085 register. The ordinary mov instructions won't work */
1086/* #define PC_REGNUM */
1087
1088/* Register to use for pushing function arguments. */
1089#define STACK_POINTER_REGNUM 7
1090
1091/* Base register for access to local variables of the function. */
564d80f4
JH
1092#define HARD_FRAME_POINTER_REGNUM 6
1093
1094/* Base register for access to local variables of the function. */
b0d95de8 1095#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1096
1097/* First floating point reg */
1098#define FIRST_FLOAT_REG 8
1099
1100/* First & last stack-like regs */
1101#define FIRST_STACK_REG FIRST_FLOAT_REG
1102#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1103
a7180f70
BS
1104#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1105#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1106
a7180f70
BS
1107#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1108#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1109
3f3f2124
JH
1110#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1111#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1112
1113#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1114#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1115
aabcd309 1116/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1117 requiring a frame pointer. */
1118#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1119#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1120#endif
1121
1122/* Make sure we can access arbitrary call frames. */
1123#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1124
1125/* Base register for access to arguments of the function. */
1126#define ARG_POINTER_REGNUM 16
1127
c98f8742 1128/* Register to hold the addressing base for position independent
5b43fed1
RH
1129 code access to data items. We don't use PIC pointer for 64bit
1130 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1131 pessimizing code dealing with EBX.
bd09bdeb
RH
1132
1133 To avoid clobbering a call-saved register unnecessarily, we renumber
1134 the pic register when possible. The change is visible after the
1135 prologue has been emitted. */
1136
2e3f842f 1137#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1138
1139#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1140 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1141 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1142 : reload_completed ? REGNO (pic_offset_table_rtx) \
1143 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1144
5fc0e5df
KW
1145#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1146
c51e6d85 1147/* This is overridden by <cygwin.h>. */
5e062767
DS
1148#define MS_AGGREGATE_RETURN 0
1149
61fec9ff 1150#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1151\f
1152/* Define the classes of registers for register constraints in the
1153 machine description. Also define ranges of constants.
1154
1155 One of the classes must always be named ALL_REGS and include all hard regs.
1156 If there is more than one class, another class must be named NO_REGS
1157 and contain no registers.
1158
1159 The name GENERAL_REGS must be the name of a class (or an alias for
1160 another name such as ALL_REGS). This is the class of registers
1161 that is allowed by "g" or "r" in a register constraint.
1162 Also, registers outside this class are allocated only when
1163 instructions express preferences for them.
1164
1165 The classes must be numbered in nondecreasing order; that is,
1166 a larger-numbered class must never be contained completely
1167 in a smaller-numbered class.
1168
1169 For any two classes, it is very desirable that there be another
ab408a86
JVA
1170 class that represents their union.
1171
1172 It might seem that class BREG is unnecessary, since no useful 386
1173 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1174 and the "b" register constraint is useful in asms for syscalls.
1175
03c259ad 1176 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1177
1178enum reg_class
1179{
1180 NO_REGS,
e075ae69 1181 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1182 AD_REGS, /* %eax/%edx for DImode */
ac2e563f 1183 CLOBBERED_REGS, /* call-clobbered integers */
c98f8742 1184 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1185 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1186 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1187 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1188 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1189 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1190 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1191 FLOAT_REGS,
06f4e35d 1192 SSE_FIRST_REG,
a7180f70
BS
1193 SSE_REGS,
1194 MMX_REGS,
446988df
JH
1195 FP_TOP_SSE_REGS,
1196 FP_SECOND_SSE_REGS,
1197 FLOAT_SSE_REGS,
1198 FLOAT_INT_REGS,
1199 INT_SSE_REGS,
1200 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1201 ALL_REGS, LIM_REG_CLASSES
1202};
1203
d9a5f180
GS
1204#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1205
1206#define INTEGER_CLASS_P(CLASS) \
1207 reg_class_subset_p ((CLASS), GENERAL_REGS)
1208#define FLOAT_CLASS_P(CLASS) \
1209 reg_class_subset_p ((CLASS), FLOAT_REGS)
1210#define SSE_CLASS_P(CLASS) \
06f4e35d 1211 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1212#define MMX_CLASS_P(CLASS) \
f75959a6 1213 ((CLASS) == MMX_REGS)
d9a5f180
GS
1214#define MAYBE_INTEGER_CLASS_P(CLASS) \
1215 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1216#define MAYBE_FLOAT_CLASS_P(CLASS) \
1217 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1218#define MAYBE_SSE_CLASS_P(CLASS) \
1219 reg_classes_intersect_p (SSE_REGS, (CLASS))
1220#define MAYBE_MMX_CLASS_P(CLASS) \
1221 reg_classes_intersect_p (MMX_REGS, (CLASS))
1222
1223#define Q_CLASS_P(CLASS) \
1224 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1225
43f3a59d 1226/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1227
1228#define REG_CLASS_NAMES \
1229{ "NO_REGS", \
ab408a86 1230 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1231 "SIREG", "DIREG", \
e075ae69 1232 "AD_REGS", \
ac2e563f 1233 "CLOBBERED_REGS", \
e075ae69 1234 "Q_REGS", "NON_Q_REGS", \
c98f8742 1235 "INDEX_REGS", \
3f3f2124 1236 "LEGACY_REGS", \
c98f8742
JVA
1237 "GENERAL_REGS", \
1238 "FP_TOP_REG", "FP_SECOND_REG", \
1239 "FLOAT_REGS", \
cb482895 1240 "SSE_FIRST_REG", \
a7180f70
BS
1241 "SSE_REGS", \
1242 "MMX_REGS", \
446988df
JH
1243 "FP_TOP_SSE_REGS", \
1244 "FP_SECOND_SSE_REGS", \
1245 "FLOAT_SSE_REGS", \
8fcaaa80 1246 "FLOAT_INT_REGS", \
446988df
JH
1247 "INT_SSE_REGS", \
1248 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1249 "ALL_REGS" }
1250
ac2e563f
RH
1251/* Define which registers fit in which classes. This is an initializer
1252 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1253
1254 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
5efd84c5
NF
1255 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1256 in effect. */
c98f8742 1257
a7180f70 1258#define REG_CLASS_CONTENTS \
3f3f2124
JH
1259{ { 0x00, 0x0 }, \
1260 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1261 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1262 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1263 { 0x03, 0x0 }, /* AD_REGS */ \
ac2e563f 1264 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
3f3f2124 1265 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1266 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1267 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1268 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1269 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1270 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1271 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1272 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1273{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1274{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1275{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1276{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1277{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b0d95de8
UB
1278 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1279{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1280{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1281{ 0xffffffff,0x1fffff } \
e075ae69 1282}
c98f8742
JVA
1283
1284/* The same information, inverted:
1285 Return the class number of the smallest class containing
1286 reg number REGNO. This could be a conditional expression
1287 or could index an array. */
1288
c98f8742
JVA
1289#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1290
42db504c
SB
1291/* When this hook returns true for MODE, the compiler allows
1292 registers explicitly used in the rtl to be used as spill registers
1293 but prevents the compiler from extending the lifetime of these
1294 registers. */
1295#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1296
6c6094f1 1297#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1298
d9a5f180 1299#define GENERAL_REGNO_P(N) \
fb84c7a0 1300 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1301
1302#define GENERAL_REG_P(X) \
6189a572 1303 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1304
1305#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1306
fb84c7a0
UB
1307#define REX_INT_REGNO_P(N) \
1308 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1309#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1310
c98f8742 1311#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1312#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1313#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1314#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1315
54a88090 1316#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1317 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1318
fb84c7a0
UB
1319#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1320#define SSE_REGNO_P(N) \
1321 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1322 || REX_SSE_REGNO_P (N))
3f3f2124 1323
4977bab6 1324#define REX_SSE_REGNO_P(N) \
fb84c7a0 1325 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1326
d9a5f180
GS
1327#define SSE_REGNO(N) \
1328 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1329
d9a5f180 1330#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1331 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1332
cbf2e4d4
HJ
1333#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1334 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1335 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1336
d9a5f180 1337#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1338#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1339
fb84c7a0 1340#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1341#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1342
d9a5f180 1343#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1344
e075ae69
RH
1345#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1346#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1347
c98f8742
JVA
1348/* The class value for index registers, and the one for base regs. */
1349
1350#define INDEX_REG_CLASS INDEX_REGS
1351#define BASE_REG_CLASS GENERAL_REGS
1352
c98f8742 1353/* Place additional restrictions on the register class to use when it
4cbb525c 1354 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1355 register for which class CLASS would ordinarily be used. */
c98f8742 1356
d2836273
JH
1357#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1358 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1359 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1360 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1361 ? Q_REGS : (CLASS))
1362
85ff473e 1363/* If we are copying between general and FP registers, we need a memory
f84aa48a 1364 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1365#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1366 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1367
c62b3659
UB
1368/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1369 There is no need to emit full 64 bit move on 64 bit targets
1370 for integral modes that can be moved using 32 bit move. */
1371#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1372 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1373 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1374 : MODE)
1375
1272914c
RH
1376/* Return a class of registers that cannot change FROM mode to TO mode. */
1377
1378#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1379 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1380\f
1381/* Stack layout; function entry, exit and calling. */
1382
1383/* Define this if pushing a word on the stack
1384 makes the stack pointer a smaller address. */
1385#define STACK_GROWS_DOWNWARD
1386
a4d05547 1387/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1388 is at the high-address end of the local variables;
1389 that is, each additional local variable allocated
1390 goes at a more negative offset in the frame. */
f62c8a5c 1391#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1392
1393/* Offset within stack frame to start allocating local variables at.
1394 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1395 first local allocated. Otherwise, it is the offset to the BEGINNING
1396 of the first local allocated. */
1397#define STARTING_FRAME_OFFSET 0
1398
8c2b2fae
UB
1399/* If we generate an insn to push BYTES bytes, this says how many the stack
1400 pointer really advances by. On 386, we have pushw instruction that
1401 decrements by exactly 2 no matter what the position was, there is no pushb.
1402
1403 But as CIE data alignment factor on this arch is -4 for 32bit targets
1404 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1405 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1406
d2836273 1407#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1408 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1409
1410/* If defined, the maximum amount of space required for outgoing arguments
1411 will be computed and placed into the variable `crtl->outgoing_args_size'.
1412 No space will be pushed onto the stack for each call; instead, the
1413 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1414
6510e8bb
KT
1415 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1416 function prologue and apilogue. This is not possible without
9aa5c1b2 1417 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1418
6c6094f1 1419#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1420 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1421
1422/* If defined, a C expression whose value is nonzero when we want to use PUSH
1423 instructions to pass outgoing arguments. */
1424
1425#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1426
2da4124d
L
1427/* We want the stack and args grow in opposite directions, even if
1428 PUSH_ARGS is 0. */
1429#define PUSH_ARGS_REVERSED 1
1430
c98f8742
JVA
1431/* Offset of first parameter from the argument pointer register value. */
1432#define FIRST_PARM_OFFSET(FNDECL) 0
1433
a7180f70
BS
1434/* Define this macro if functions should assume that stack space has been
1435 allocated for arguments even when their values are passed in registers.
1436
1437 The value of this macro is the size, in bytes, of the area reserved for
1438 arguments passed in registers for the function represented by FNDECL.
1439
1440 This space can be allocated by the caller, or be a part of the
1441 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1442 which. */
7c800926
KT
1443#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1444
4ae8027b 1445#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1446 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1447
c98f8742
JVA
1448/* Define how to find the value returned by a library function
1449 assuming the value has mode MODE. */
1450
4ae8027b 1451#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1452
e9125c09
TW
1453/* Define the size of the result block used for communication between
1454 untyped_call and untyped_return. The block contains a DImode value
1455 followed by the block used by fnsave and frstor. */
1456
1457#define APPLY_RESULT_SIZE (8+108)
1458
b08de47e 1459/* 1 if N is a possible register number for function argument passing. */
53c17031 1460#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1461
1462/* Define a data type for recording info about an argument list
1463 during the scan of that argument list. This data type should
1464 hold all necessary information about the function itself
1465 and about the args processed so far, enough to enable macros
b08de47e 1466 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1467
e075ae69 1468typedef struct ix86_args {
fa283935 1469 int words; /* # words passed so far */
b08de47e
MM
1470 int nregs; /* # registers available for passing */
1471 int regno; /* next available register number */
3e65f251
KT
1472 int fastcall; /* fastcall or thiscall calling convention
1473 is used */
fa283935 1474 int sse_words; /* # sse words passed so far */
a7180f70 1475 int sse_nregs; /* # sse registers available for passing */
95879c72 1476 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1477 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1478 int warn_mmx; /* True when we want to warn about MMX ABI. */
1479 int sse_regno; /* next available sse register number */
1480 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1481 int mmx_nregs; /* # mmx registers available for passing */
1482 int mmx_regno; /* next available mmx register number */
892a2d68 1483 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1484 int caller; /* true if it is caller. */
2824d6e5
UB
1485 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1486 SFmode/DFmode arguments should be passed
1487 in SSE registers. Otherwise 0. */
51212b32 1488 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1489 MS_ABI for ms abi. */
b08de47e 1490} CUMULATIVE_ARGS;
c98f8742
JVA
1491
1492/* Initialize a variable CUM of type CUMULATIVE_ARGS
1493 for a call to a function whose data type is FNTYPE.
b08de47e 1494 For a library call, FNTYPE is 0. */
c98f8742 1495
0f6937fe 1496#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1497 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1498 (N_NAMED_ARGS) != -1)
c98f8742 1499
c98f8742
JVA
1500/* Output assembler code to FILE to increment profiler label # LABELNO
1501 for profiling a function entry. */
1502
a5fa1ecd
JH
1503#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1504
1505#define MCOUNT_NAME "_mcount"
1506
3c5273a9
KT
1507#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1508
a5fa1ecd 1509#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1510
1511/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1512 the stack pointer does not matter. The value is tested only in
1513 functions that have frame pointers.
1514 No definition is equivalent to always zero. */
fce5a9f2 1515/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1516 we have to restore it ourselves from the frame pointer, in order to
1517 use pop */
1518
1519#define EXIT_IGNORE_STACK 1
1520
c98f8742
JVA
1521/* Output assembler code for a block containing the constant parts
1522 of a trampoline, leaving space for the variable parts. */
1523
a269a03c 1524/* On the 386, the trampoline contains two instructions:
c98f8742 1525 mov #STATIC,ecx
a269a03c
JC
1526 jmp FUNCTION
1527 The trampoline is generated entirely at runtime. The operand of JMP
1528 is the address of FUNCTION relative to the instruction following the
1529 JMP (which is 5 bytes long). */
c98f8742
JVA
1530
1531/* Length in units of the trampoline for entering a nested function. */
1532
3452586b 1533#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1534\f
1535/* Definitions for register eliminations.
1536
1537 This is an array of structures. Each structure initializes one pair
1538 of eliminable registers. The "from" register number is given first,
1539 followed by "to". Eliminations of the same "from" register are listed
1540 in order of preference.
1541
afc2cd05
NC
1542 There are two registers that can always be eliminated on the i386.
1543 The frame pointer and the arg pointer can be replaced by either the
1544 hard frame pointer or to the stack pointer, depending upon the
1545 circumstances. The hard frame pointer is not used before reload and
1546 so it is not eligible for elimination. */
c98f8742 1547
564d80f4
JH
1548#define ELIMINABLE_REGS \
1549{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1550 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1551 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1552 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1553
c98f8742
JVA
1554/* Define the offset between two registers, one to be eliminated, and the other
1555 its replacement, at the start of a routine. */
1556
d9a5f180
GS
1557#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1558 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1559\f
1560/* Addressing modes, and classification of registers for them. */
1561
c98f8742
JVA
1562/* Macros to check register numbers against specific register classes. */
1563
1564/* These assume that REGNO is a hard or pseudo reg number.
1565 They give nonzero only if REGNO is a hard reg of the suitable class
1566 or a pseudo reg currently allocated to a suitable hard reg.
1567 Since they use reg_renumber, they are safe only once reg_renumber
1568 has been allocated, which happens in local-alloc.c. */
1569
3f3f2124
JH
1570#define REGNO_OK_FOR_INDEX_P(REGNO) \
1571 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1572 || REX_INT_REGNO_P (REGNO) \
1573 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1574 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1575
3f3f2124 1576#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1577 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1578 || (REGNO) == ARG_POINTER_REGNUM \
1579 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1580 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1581
c98f8742
JVA
1582/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1583 and check its validity for a certain class.
1584 We have two alternate definitions for each of them.
1585 The usual definition accepts all pseudo regs; the other rejects
1586 them unless they have been allocated suitable hard regs.
1587 The symbol REG_OK_STRICT causes the latter definition to be used.
1588
1589 Most source files want to accept pseudo regs in the hope that
1590 they will get allocated to the class that the insn wants them to be in.
1591 Source files for reload pass need to be strict.
1592 After reload, it makes no difference, since pseudo regs have
1593 been eliminated by then. */
1594
c98f8742 1595
ff482c8d 1596/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1597#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1598 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1599 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1600 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1601
3b3c6a3f 1602#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1603 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1604 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1605 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1606 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1607
3b3c6a3f
MM
1608/* Strict versions, hard registers only */
1609#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1610#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1611
3b3c6a3f 1612#ifndef REG_OK_STRICT
d9a5f180
GS
1613#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1614#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1615
1616#else
d9a5f180
GS
1617#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1618#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1619#endif
1620
331d9186 1621/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1622 that is a valid memory address for an instruction.
1623 The MODE argument is the machine mode for the MEM expression
1624 that wants to use this address.
1625
331d9186 1626 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1627 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1628
1629 See legitimize_pic_address in i386.c for details as to what
1630 constitutes a legitimate address when -fpic is used. */
1631
1632#define MAX_REGS_PER_ADDRESS 2
1633
f996902d 1634#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1635
ae1547cc
UB
1636/* Try a machine-dependent way of reloading an illegitimate address
1637 operand. If we find one, push the reload and jump to WIN. This
1638 macro is used in only one place: `find_reloads_address' in reload.c. */
1639
1640#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1641do { \
1642 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1643 (int)(TYPE), (INDL))) \
1644 goto WIN; \
1645} while (0)
1646
b949ea8b
JW
1647/* If defined, a C expression to determine the base term of address X.
1648 This macro is used in only one place: `find_base_term' in alias.c.
1649
1650 It is always safe for this macro to not be defined. It exists so
1651 that alias analysis can understand machine-dependent addresses.
1652
1653 The typical use of this macro is to handle addresses containing
1654 a label_ref or symbol_ref within an UNSPEC. */
1655
d9a5f180 1656#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1657
c98f8742 1658/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1659 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1660 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1661
f996902d 1662#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1663
1664#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1665 (GET_CODE (X) == SYMBOL_REF \
1666 || GET_CODE (X) == LABEL_REF \
1667 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1668\f
b08de47e
MM
1669/* Max number of args passed in registers. If this is more than 3, we will
1670 have problems with ebx (register #4), since it is a caller save register and
1671 is also used as the pic register in ELF. So for now, don't allow more than
1672 3 registers to be passed in registers. */
1673
7c800926
KT
1674/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1675#define X86_64_REGPARM_MAX 6
72fa3605 1676#define X86_64_MS_REGPARM_MAX 4
7c800926 1677
72fa3605 1678#define X86_32_REGPARM_MAX 3
7c800926 1679
4ae8027b 1680#define REGPARM_MAX \
2824d6e5
UB
1681 (TARGET_64BIT \
1682 ? (TARGET_64BIT_MS_ABI \
1683 ? X86_64_MS_REGPARM_MAX \
1684 : X86_64_REGPARM_MAX) \
4ae8027b 1685 : X86_32_REGPARM_MAX)
d2836273 1686
72fa3605
UB
1687#define X86_64_SSE_REGPARM_MAX 8
1688#define X86_64_MS_SSE_REGPARM_MAX 4
1689
b6010cab 1690#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1691
4ae8027b 1692#define SSE_REGPARM_MAX \
2824d6e5
UB
1693 (TARGET_64BIT \
1694 ? (TARGET_64BIT_MS_ABI \
1695 ? X86_64_MS_SSE_REGPARM_MAX \
1696 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1697 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1698
1699#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1700\f
1701/* Specify the machine mode that this machine uses
1702 for the index in the tablejump instruction. */
dc4d7240 1703#define CASE_VECTOR_MODE \
6025b127 1704 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1705
c98f8742
JVA
1706/* Define this as 1 if `char' should by default be signed; else as 0. */
1707#define DEFAULT_SIGNED_CHAR 1
1708
1709/* Max number of bytes we can move from memory to memory
1710 in one reasonably fast instruction. */
65d9c0ab
JH
1711#define MOVE_MAX 16
1712
1713/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1714 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1715 number of bytes we can move with a single instruction. */
63001560 1716#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1717
7e24ffc9 1718/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1719 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1720 Increasing the value will always make code faster, but eventually
1721 incurs high cost in increased code size.
c98f8742 1722
e2e52e1b 1723 If you don't define this, a reasonable default is used. */
c98f8742 1724
e04ad03d 1725#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1726
45d78e7f
JJ
1727/* If a clear memory operation would take CLEAR_RATIO or more simple
1728 move-instruction sequences, we will do a clrmem or libcall instead. */
1729
e04ad03d 1730#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1731
53f00dde
UB
1732/* Define if shifts truncate the shift count which implies one can
1733 omit a sign-extension or zero-extension of a shift count.
1734
1735 On i386, shifts do truncate the count. But bit test instructions
1736 take the modulo of the bit offset operand. */
c98f8742
JVA
1737
1738/* #define SHIFT_COUNT_TRUNCATED */
1739
1740/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1741 is done just by pretending it is already truncated. */
1742#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1743
d9f32422
JH
1744/* A macro to update M and UNSIGNEDP when an object whose type is
1745 TYPE and which has the specified mode and signedness is to be
1746 stored in a register. This macro is only called when TYPE is a
1747 scalar type.
1748
f710504c 1749 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1750 quantities to SImode. The choice depends on target type. */
1751
1752#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1753do { \
d9f32422
JH
1754 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1755 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1756 (MODE) = SImode; \
1757} while (0)
d9f32422 1758
c98f8742
JVA
1759/* Specify the machine mode that pointers have.
1760 After generation of rtl, the compiler makes no further distinction
1761 between pointers and any other objects of this machine mode. */
28968d91 1762#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1763
f0ea7581
L
1764/* A C expression whose value is zero if pointers that need to be extended
1765 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1766 greater then zero if they are zero-extended and less then zero if the
1767 ptr_extend instruction should be used. */
1768
1769#define POINTERS_EXTEND_UNSIGNED 1
1770
c98f8742
JVA
1771/* A function address in a call instruction
1772 is a byte address (for indexing purposes)
1773 so give the MEM rtx a byte's mode. */
1774#define FUNCTION_MODE QImode
d4ba09c0 1775\f
d4ba09c0 1776
d4ba09c0
SC
1777/* A C expression for the cost of a branch instruction. A value of 1
1778 is the default; other values are interpreted relative to that. */
1779
3a4fd356
JH
1780#define BRANCH_COST(speed_p, predictable_p) \
1781 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1782
1783/* Define this macro as a C expression which is nonzero if accessing
1784 less than a word of memory (i.e. a `char' or a `short') is no
1785 faster than accessing a word of memory, i.e., if such access
1786 require more than one instruction or if there is no difference in
1787 cost between byte and (aligned) word loads.
1788
1789 When this macro is not defined, the compiler will access a field by
1790 finding the smallest containing object; when it is defined, a
1791 fullword load will be used if alignment permits. Unless bytes
1792 accesses are faster than word accesses, using word accesses is
1793 preferable since it may eliminate subsequent memory access if
1794 subsequent accesses occur to other fields in the same word of the
1795 structure, but to different bytes. */
1796
1797#define SLOW_BYTE_ACCESS 0
1798
1799/* Nonzero if access to memory by shorts is slow and undesirable. */
1800#define SLOW_SHORT_ACCESS 0
1801
d4ba09c0
SC
1802/* Define this macro to be the value 1 if unaligned accesses have a
1803 cost many times greater than aligned accesses, for example if they
1804 are emulated in a trap handler.
1805
9cd10576
KH
1806 When this macro is nonzero, the compiler will act as if
1807 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1808 moves. This can cause significantly more instructions to be
9cd10576 1809 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1810 accesses only add a cycle or two to the time for a memory access.
1811
1812 If the value of this macro is always zero, it need not be defined. */
1813
e1565e65 1814/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1815
d4ba09c0
SC
1816/* Define this macro if it is as good or better to call a constant
1817 function address than to call an address kept in a register.
1818
1819 Desirable on the 386 because a CALL with a constant address is
1820 faster than one with a register address. */
1821
1822#define NO_FUNCTION_CSE
c98f8742 1823\f
c572e5ba
JVA
1824/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1825 return the mode to be used for the comparison.
1826
1827 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1828 VOIDmode should be used in all other cases.
c572e5ba 1829
16189740 1830 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1831 possible, to allow for more combinations. */
c98f8742 1832
d9a5f180 1833#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1834
9cd10576 1835/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1836 reversed. */
1837
1838#define REVERSIBLE_CC_MODE(MODE) 1
1839
1840/* A C expression whose value is reversed condition code of the CODE for
1841 comparison done in CC_MODE mode. */
3c5cb3e4 1842#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1843
c98f8742
JVA
1844\f
1845/* Control the assembler format that we output, to the extent
1846 this does not vary between assemblers. */
1847
1848/* How to refer to registers in assembler output.
892a2d68 1849 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1850
a7b376ee 1851/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1852 For non floating point regs, the following are the HImode names.
1853
1854 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1855 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1856 "y" code. */
c98f8742 1857
a7180f70
BS
1858#define HI_REGISTER_NAMES \
1859{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1860 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1861 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1862 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1863 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1864 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1865 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1866
c98f8742
JVA
1867#define REGISTER_NAMES HI_REGISTER_NAMES
1868
1869/* Table of additional register names to use in user input. */
1870
1871#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1872{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1873 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1874 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1875 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1876 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1877 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1878
1879/* Note we are omitting these since currently I don't know how
1880to get gcc to use these, since they want the same but different
1881number as al, and ax.
1882*/
1883
c98f8742 1884#define QI_REGISTER_NAMES \
3f3f2124 1885{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1886
1887/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1888 of regs 0 through 3. */
c98f8742
JVA
1889
1890#define QI_HIGH_REGISTER_NAMES \
1891{"ah", "dh", "ch", "bh", }
1892
1893/* How to renumber registers for dbx and gdb. */
1894
d9a5f180
GS
1895#define DBX_REGISTER_NUMBER(N) \
1896 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1897
9a82e702
MS
1898extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1899extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1900extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1901
469ac993
JM
1902/* Before the prologue, RA is at 0(%esp). */
1903#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1904 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1905
e414ab29 1906/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1907#define RETURN_ADDR_RTX(COUNT, FRAME) \
1908 ((COUNT) == 0 \
1909 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1910 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1911
892a2d68 1912/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1913#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1914
a6ab3aad 1915/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1916#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1917
1020a5ab 1918/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1919#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1920#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1921
ad919812 1922
e4c4ebeb
RH
1923/* Select a format to encode pointers in exception handling data. CODE
1924 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1925 true if the symbol may be affected by dynamic relocations.
1926
1927 ??? All x86 object file formats are capable of representing this.
1928 After all, the relocation needed is the same as for the call insn.
1929 Whether or not a particular assembler allows us to enter such, I
1930 guess we'll have to see. */
d9a5f180 1931#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1932 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1933
c98f8742
JVA
1934/* This is how to output an insn to push a register on the stack.
1935 It need not be very fast code. */
1936
d9a5f180 1937#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1938do { \
1939 if (TARGET_64BIT) \
1940 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1941 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1942 else \
1943 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1944} while (0)
c98f8742
JVA
1945
1946/* This is how to output an insn to pop a register from the stack.
1947 It need not be very fast code. */
1948
d9a5f180 1949#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1950do { \
1951 if (TARGET_64BIT) \
1952 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1953 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1954 else \
1955 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1956} while (0)
c98f8742 1957
f88c65f7 1958/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
1959
1960#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 1961 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 1962
f88c65f7 1963/* This is how to output an element of a case-vector that is relative. */
c98f8742 1964
33f7f353 1965#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 1966 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 1967
63001560 1968/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
1969
1970#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1971{ \
1972 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 1973 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
1974}
1975
1976/* A C statement or statements which output an assembler instruction
1977 opcode to the stdio stream STREAM. The macro-operand PTR is a
1978 variable of type `char *' which points to the opcode name in
1979 its "internal" form--the form that is written in the machine
1980 description. */
1981
1982#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1983 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1984
6a90d232
L
1985/* A C statement to output to the stdio stream FILE an assembler
1986 command to pad the location counter to a multiple of 1<<LOG
1987 bytes if it is within MAX_SKIP bytes. */
1988
1989#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1990#undef ASM_OUTPUT_MAX_SKIP_PAD
1991#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
1992 if ((LOG) != 0) \
1993 { \
1994 if ((MAX_SKIP) == 0) \
1995 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
1996 else \
1997 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
1998 }
1999#endif
2000
135a687e
KT
2001/* Write the extra assembler code needed to declare a function
2002 properly. */
2003
2004#undef ASM_OUTPUT_FUNCTION_LABEL
2005#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2006 ix86_asm_output_function_label (FILE, NAME, DECL)
2007
f7288899
EC
2008/* Under some conditions we need jump tables in the text section,
2009 because the assembler cannot handle label differences between
2010 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2011
2012#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2013 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2014 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2015
cea3bd3e
RH
2016/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2017 and switch back. For x86 we do this only to save a few bytes that
2018 would otherwise be unused in the text section. */
ad211091
KT
2019#define CRT_MKSTR2(VAL) #VAL
2020#define CRT_MKSTR(x) CRT_MKSTR2(x)
2021
2022#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2023 asm (SECTION_OP "\n\t" \
2024 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2025 TEXT_SECTION_ASM_OP);
74b42c8b 2026\f
b2b01543 2027/* Which processor to tune code generation for. */
5bf0ebab
RH
2028
2029enum processor_type
2030{
8383d43c 2031 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2032 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2033 PROCESSOR_PENTIUM,
2034 PROCESSOR_PENTIUMPRO,
cfe1b18f 2035 PROCESSOR_GEODE,
5bf0ebab
RH
2036 PROCESSOR_K6,
2037 PROCESSOR_ATHLON,
2038 PROCESSOR_PENTIUM4,
4977bab6 2039 PROCESSOR_K8,
89c43c0a 2040 PROCESSOR_NOCONA,
ab247762
MK
2041 PROCESSOR_CORE2_32,
2042 PROCESSOR_CORE2_64,
b2b01543
BS
2043 PROCESSOR_COREI7_32,
2044 PROCESSOR_COREI7_64,
d326eaf0
JH
2045 PROCESSOR_GENERIC32,
2046 PROCESSOR_GENERIC64,
21efb4d4 2047 PROCESSOR_AMDFAM10,
1133125e 2048 PROCESSOR_BDVER1,
4d652a18 2049 PROCESSOR_BDVER2,
14b52538 2050 PROCESSOR_BTVER1,
b6837b94 2051 PROCESSOR_ATOM,
5bf0ebab
RH
2052 PROCESSOR_max
2053};
2054
9e555526 2055extern enum processor_type ix86_tune;
5bf0ebab 2056extern enum processor_type ix86_arch;
5bf0ebab 2057
8362f420
JH
2058/* Size of the RED_ZONE area. */
2059#define RED_ZONE_SIZE 128
2060/* Reserved area of the red zone for temporaries. */
2061#define RED_ZONE_RESERVE 8
c93e80a5 2062
95899b34 2063extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2064extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2065
2066/* Smallest class containing REGNO. */
2067extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2068
0948ccb2
PB
2069enum ix86_fpcmp_strategy {
2070 IX86_FPCMP_SAHF,
2071 IX86_FPCMP_COMI,
2072 IX86_FPCMP_ARITH
2073};
22fb740d
JH
2074\f
2075/* To properly truncate FP values into integers, we need to set i387 control
2076 word. We can't emit proper mode switching code before reload, as spills
2077 generated by reload may truncate values incorrectly, but we still can avoid
2078 redundant computation of new control word by the mode switching pass.
2079 The fldcw instructions are still emitted redundantly, but this is probably
2080 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2081 the sequence.
22fb740d
JH
2082
2083 The machinery is to emit simple truncation instructions and split them
2084 before reload to instructions having USEs of two memory locations that
2085 are filled by this code to old and new control word.
fce5a9f2 2086
22fb740d
JH
2087 Post-reload pass may be later used to eliminate the redundant fildcw if
2088 needed. */
2089
ff680eb1
UB
2090enum ix86_entity
2091{
2092 I387_TRUNC = 0,
2093 I387_FLOOR,
2094 I387_CEIL,
2095 I387_MASK_PM,
2096 MAX_386_ENTITIES
2097};
2098
1cba2b96 2099enum ix86_stack_slot
ff680eb1 2100{
80dcd3aa
UB
2101 SLOT_VIRTUAL = 0,
2102 SLOT_TEMP,
ff680eb1
UB
2103 SLOT_CW_STORED,
2104 SLOT_CW_TRUNC,
2105 SLOT_CW_FLOOR,
2106 SLOT_CW_CEIL,
2107 SLOT_CW_MASK_PM,
2108 MAX_386_STACK_LOCALS
2109};
22fb740d
JH
2110
2111/* Define this macro if the port needs extra instructions inserted
2112 for mode switching in an optimizing compilation. */
2113
ff680eb1
UB
2114#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2115 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2116
2117/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2118 initializer for an array of integers. Each initializer element N
2119 refers to an entity that needs mode switching, and specifies the
2120 number of different modes that might need to be set for this
2121 entity. The position of the initializer in the initializer -
2122 starting counting at zero - determines the integer that is used to
2123 refer to the mode-switched entity in question. */
2124
ff680eb1
UB
2125#define NUM_MODES_FOR_MODE_SWITCHING \
2126 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2127
2128/* ENTITY is an integer specifying a mode-switched entity. If
2129 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2130 return an integer value not larger than the corresponding element
2131 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2132 must be switched into prior to the execution of INSN. */
2133
2134#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2135
2136/* This macro specifies the order in which modes for ENTITY are
2137 processed. 0 is the highest priority. */
2138
d9a5f180 2139#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2140
2141/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2142 is the set of hard registers live at the point where the insn(s)
2143 are to be inserted. */
2144
2145#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2146 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2147 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2148 : 0)
ff680eb1 2149
0f0138b6
JH
2150\f
2151/* Avoid renaming of stack registers, as doing so in combination with
2152 scheduling just increases amount of live registers at time and in
2153 the turn amount of fxch instructions needed.
2154
43f3a59d 2155 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2156
d9a5f180 2157#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2158 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2159
3b3c6a3f 2160\f
e91f04de 2161#define FASTCALL_PREFIX '@'
fa1a0d02 2162\f
ec7ded37 2163/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2164
604a6be9 2165#ifndef USED_FOR_TARGET
ec7ded37 2166struct GTY(()) machine_frame_state
cd9c1ca8 2167{
ec7ded37
RH
2168 /* This pair tracks the currently active CFA as reg+offset. When reg
2169 is drap_reg, we don't bother trying to record here the real CFA when
2170 it might really be a DW_CFA_def_cfa_expression. */
2171 rtx cfa_reg;
2172 HOST_WIDE_INT cfa_offset;
2173
2174 /* The current offset (canonically from the CFA) of ESP and EBP.
2175 When stack frame re-alignment is active, these may not be relative
2176 to the CFA. However, in all cases they are relative to the offsets
2177 of the saved registers stored in ix86_frame. */
2178 HOST_WIDE_INT sp_offset;
2179 HOST_WIDE_INT fp_offset;
2180
2181 /* The size of the red-zone that may be assumed for the purposes of
2182 eliding register restore notes in the epilogue. This may be zero
2183 if no red-zone is in effect, or may be reduced from the real
2184 red-zone value by a maximum runtime stack re-alignment value. */
2185 int red_zone_offset;
2186
2187 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2188 value within the frame. If false then the offset above should be
2189 ignored. Note that DRAP, if valid, *always* points to the CFA and
2190 thus has an offset of zero. */
2191 BOOL_BITFIELD sp_valid : 1;
2192 BOOL_BITFIELD fp_valid : 1;
2193 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2194
2195 /* Indicate whether the local stack frame has been re-aligned. When
2196 set, the SP/FP offsets above are relative to the aligned frame
2197 and not the CFA. */
2198 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2199};
2200
f81c9774
RH
2201/* Private to winnt.c. */
2202struct seh_frame_state;
2203
d1b38208 2204struct GTY(()) machine_function {
fa1a0d02
JH
2205 struct stack_local_entry *stack_locals;
2206 const char *some_ld_name;
4aab97f9
L
2207 int varargs_gpr_size;
2208 int varargs_fpr_size;
ff680eb1 2209 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2210
2211 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2212 has been computed for. */
2213 int use_fast_prologue_epilogue_nregs;
2214
7458026b
ILT
2215 /* For -fsplit-stack support: A stack local which holds a pointer to
2216 the stack arguments for a function with a variable number of
2217 arguments. This is set at the start of the function and is used
2218 to initialize the overflow_arg_area field of the va_list
2219 structure. */
2220 rtx split_stack_varargs_pointer;
2221
3452586b
RH
2222 /* This value is used for amd64 targets and specifies the current abi
2223 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2224 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2225
2226 /* Nonzero if the function accesses a previous frame. */
2227 BOOL_BITFIELD accesses_prev_frame : 1;
2228
2229 /* Nonzero if the function requires a CLD in the prologue. */
2230 BOOL_BITFIELD needs_cld : 1;
2231
922e3e33
UB
2232 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2233 expander to determine the style used. */
3452586b
RH
2234 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2235
5bf5a10b
AO
2236 /* If true, the current function needs the default PIC register, not
2237 an alternate register (on x86) and must not use the red zone (on
2238 x86_64), even if it's a leaf function. We don't want the
2239 function to be regarded as non-leaf because TLS calls need not
2240 affect register allocation. This flag is set when a TLS call
2241 instruction is expanded within a function, and never reset, even
2242 if all such instructions are optimized away. Use the
2243 ix86_current_function_calls_tls_descriptor macro for a better
2244 approximation. */
3452586b
RH
2245 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2246
2247 /* If true, the current function has a STATIC_CHAIN is placed on the
2248 stack below the return address. */
2249 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2250
2767a7f2
L
2251 /* Nonzero if caller passes 256bit AVX modes. */
2252 BOOL_BITFIELD caller_pass_avx256_p : 1;
2253
2254 /* Nonzero if caller returns 256bit AVX modes. */
2255 BOOL_BITFIELD caller_return_avx256_p : 1;
2256
2257 /* Nonzero if the current callee passes 256bit AVX modes. */
2258 BOOL_BITFIELD callee_pass_avx256_p : 1;
2259
2260 /* Nonzero if the current callee returns 256bit AVX modes. */
2261 BOOL_BITFIELD callee_return_avx256_p : 1;
2262
617e6634
L
2263 /* Nonzero if rescan vzerouppers in the current function is needed. */
2264 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2265
ec7ded37
RH
2266 /* During prologue/epilogue generation, the current frame state.
2267 Otherwise, the frame state at the end of the prologue. */
2268 struct machine_frame_state fs;
f81c9774
RH
2269
2270 /* During SEH output, this is non-null. */
2271 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2272};
cd9c1ca8 2273#endif
fa1a0d02
JH
2274
2275#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2276#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2277#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2278#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2279#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2280#define ix86_tls_descriptor_calls_expanded_in_cfun \
2281 (cfun->machine->tls_descriptor_call_expanded_p)
2282/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2283 calls are optimized away, we try to detect cases in which it was
2284 optimized away. Since such instructions (use (reg REG_SP)), we can
2285 verify whether there's any such instruction live by testing that
2286 REG_SP is live. */
2287#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2288 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2289#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2290
1bc7c5b6
ZW
2291/* Control behavior of x86_file_start. */
2292#define X86_FILE_START_VERSION_DIRECTIVE false
2293#define X86_FILE_START_FLTUSED false
2294
7dcbf659
JH
2295/* Flag to mark data that is in the large address area. */
2296#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2297#define SYMBOL_REF_FAR_ADDR_P(X) \
2298 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2299
2300/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2301 have defined always, to avoid ifdefing. */
2302#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2303#define SYMBOL_REF_DLLIMPORT_P(X) \
2304 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2305
2306#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2307#define SYMBOL_REF_DLLEXPORT_P(X) \
2308 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2309
7942e47e
RY
2310extern void debug_ready_dispatch (void);
2311extern void debug_dispatch_window (int);
2312
91afcfa3
QN
2313/* The value at zero is only defined for the BMI instructions
2314 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2315#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2316 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2317#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2318 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2319
2320
b8ce4e94
KT
2321/* Flags returned by ix86_get_callcvt (). */
2322#define IX86_CALLCVT_CDECL 0x1
2323#define IX86_CALLCVT_STDCALL 0x2
2324#define IX86_CALLCVT_FASTCALL 0x4
2325#define IX86_CALLCVT_THISCALL 0x8
2326#define IX86_CALLCVT_REGPARM 0x10
2327#define IX86_CALLCVT_SSEREGPARM 0x20
2328
2329#define IX86_BASE_CALLCVT(FLAGS) \
2330 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2331 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2332
b86b9f44
MM
2333#define RECIP_MASK_NONE 0x00
2334#define RECIP_MASK_DIV 0x01
2335#define RECIP_MASK_SQRT 0x02
2336#define RECIP_MASK_VEC_DIV 0x04
2337#define RECIP_MASK_VEC_SQRT 0x08
2338#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2339 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2340#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2341
2342#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2343#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2344#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2345#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2346
c98f8742
JVA
2347/*
2348Local variables:
2349version-control: t
2350End:
2351*/