]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
c-lang.c (finish_file): Bracket declaration of static_ctors, static_dtors.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
8b109b37
RK
1/* Definitions of target machine for GNU compiler for Intel X86
2 (386, 486, Pentium).
c6aded7c 3 Copyright (C) 1988, 92, 94-97, 1998 Free Software Foundation, Inc.
c98f8742
JVA
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
97aadbb9 19the Free Software Foundation, 59 Temple Place - Suite 330,
d4ba09c0 20Boston, MA 02111-1307, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
36
37/* Names to predefine in the preprocessor for this target machine. */
38
39#define I386 1
40
95393dfd
CH
41/* Stubs for half-pic support if not OSF/1 reference platform. */
42
43#ifndef HALF_PIC_P
44#define HALF_PIC_P() 0
45#define HALF_PIC_NUMBER_PTRS 0
46#define HALF_PIC_NUMBER_REFS 0
47#define HALF_PIC_ENCODE(DECL)
48#define HALF_PIC_DECLARE(NAME)
49#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50#define HALF_PIC_ADDRESS_P(X) 0
51#define HALF_PIC_PTR(X) X
52#define HALF_PIC_FINISH(STREAM)
53#endif
54
d4ba09c0
SC
55/* Define the specific costs for a given cpu */
56
57struct processor_costs {
58 int add; /* cost of an add instruction */
59 int lea; /* cost of a lea instruction */
60 int shift_var; /* variable shift costs */
61 int shift_const; /* constant shift costs */
62 int mult_init; /* cost of starting a multiply */
63 int mult_bit; /* cost of multiply per each bit set */
64 int divide; /* cost of a divide/mod */
65};
66
67extern struct processor_costs *ix86_cost;
68
c98f8742
JVA
69/* Run-time compilation parameters selecting different hardware subsets. */
70
71extern int target_flags;
72
73/* Macros used in the machine description to test the flags. */
74
ddd5a7c1 75/* configure can arrange to make this 2, to force a 486. */
35b528be
RS
76#ifndef TARGET_CPU_DEFAULT
77#define TARGET_CPU_DEFAULT 0
78#endif
79
3b3c6a3f
MM
80/* Masks for the -m switches */
81#define MASK_80387 000000000001 /* Hardware floating point */
33c1d53a
SC
82#define MASK_NOTUSED1 000000000002 /* bit not currently used */
83#define MASK_NOTUSED2 000000000004 /* bit not currently used */
3b3c6a3f 84#define MASK_RTD 000000000010 /* Use ret that pops args */
b08de47e 85#define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
3b3c6a3f
MM
86#define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87#define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88#define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89#define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
2f2fa5b1 90#define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
3b3c6a3f
MM
91 /* Temporary codegen switches */
92#define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93#define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94#define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
d4ba09c0
SC
95#define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96#define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
f6f58ba3 97#define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
8c9be447 98#define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
3b3c6a3f
MM
99
100/* Use the floating point instructions */
101#define TARGET_80387 (target_flags & MASK_80387)
102
c98f8742
JVA
103/* Compile using ret insn that pops args.
104 This will not work unless you use prototypes at least
105 for all functions that can take varying numbers of args. */
3b3c6a3f
MM
106#define TARGET_RTD (target_flags & MASK_RTD)
107
b08de47e
MM
108/* Align doubles to a two word boundary. This breaks compatibility with
109 the published ABI's for structures containing doubles, but produces
110 faster code on the pentium. */
111#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
c98f8742 112
d7cd15e9
RS
113/* Put uninitialized locals into bss, not data.
114 Meaningful only on svr3. */
3b3c6a3f 115#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
d7cd15e9 116
c572e5ba
JVA
117/* Use IEEE floating point comparisons. These handle correctly the cases
118 where the result of a comparison is unordered. Normally SIGFPE is
119 generated in such cases, in which case this isn't needed. */
3b3c6a3f 120#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
c572e5ba 121
8c2bf92a
JVA
122/* Functions that return a floating point value may return that value
123 in the 387 FPU or in 386 integer registers. If set, this flag causes
124 the 387 to be used, which is compatible with most calling conventions. */
3b3c6a3f 125#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
8c2bf92a 126
099800e3
RK
127/* Disable generation of FP sin, cos and sqrt operations for 387.
128 This is because FreeBSD lacks these in the math-emulator-code */
3b3c6a3f
MM
129#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
130
2f2fa5b1
SC
131/* Don't create frame pointers for leaf functions */
132#define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
133
3b3c6a3f
MM
134/* Temporary switches for tuning code generation */
135
136/* Disable 32x32->64 bit multiplies that are used for long long multiplies
137 and division by constants, but sometimes cause reload problems. */
138#define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
139#define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
140
f6f58ba3
SC
141/* Emit/Don't emit prologue as rtl */
142#define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
143
3b3c6a3f
MM
144/* Debug GO_IF_LEGITIMATE_ADDRESS */
145#define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
146
b08de47e
MM
147/* Debug FUNCTION_ARG macros */
148#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
149
3b3c6a3f
MM
150/* Hack macros for tuning code generation */
151#define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
d4ba09c0
SC
152#define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
153
f7746310
SC
154#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
155#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
156#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
3a0433fd 157#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
f7746310 158#define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
241e1a89 159#define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
5bc7cd8e
SC
160#define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386 \
161 && ix86_cpu != PROCESSOR_PENTIUMPRO)
241e1a89 162#define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
f7746310
SC
163#define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
164#define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
3c67a76b
SC
165#define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM \
166 || ix86_cpu == PROCESSOR_PENTIUMPRO)
f7746310 167#define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
bcd86433 168#define TARGET_CMOVE (ix86_arch == PROCESSOR_PENTIUMPRO)
2f2fa5b1 169#define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
8c9be447 170#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
3b3c6a3f
MM
171
172#define TARGET_SWITCHES \
173{ { "80387", MASK_80387 }, \
174 { "no-80387", -MASK_80387 }, \
175 { "hard-float", MASK_80387 }, \
176 { "soft-float", -MASK_80387 }, \
177 { "no-soft-float", MASK_80387 }, \
241e1a89
SC
178 { "386", 0 }, \
179 { "no-386", 0 }, \
180 { "486", 0 }, \
181 { "no-486", 0 }, \
182 { "pentium", 0 }, \
183 { "pentiumpro", 0 }, \
3b3c6a3f
MM
184 { "rtd", MASK_RTD }, \
185 { "no-rtd", -MASK_RTD }, \
b08de47e
MM
186 { "align-double", MASK_ALIGN_DOUBLE }, \
187 { "no-align-double", -MASK_ALIGN_DOUBLE }, \
3b3c6a3f
MM
188 { "svr3-shlib", MASK_SVR3_SHLIB }, \
189 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
190 { "ieee-fp", MASK_IEEE_FP }, \
191 { "no-ieee-fp", -MASK_IEEE_FP }, \
192 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
193 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
194 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
195 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
2f2fa5b1
SC
196 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
197 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
3b3c6a3f
MM
198 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
199 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
f6f58ba3
SC
200 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
201 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
3b3c6a3f
MM
202 { "debug-addr", MASK_DEBUG_ADDR }, \
203 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
204 { "move", -MASK_NO_MOVE }, \
205 { "no-move", MASK_NO_MOVE }, \
b08de47e
MM
206 { "debug-arg", MASK_DEBUG_ARG }, \
207 { "no-debug-arg", -MASK_DEBUG_ARG }, \
8c9be447
RK
208 { "stack-arg-probe", MASK_STACK_PROBE }, \
209 { "no-stack-arg-probe", -MASK_STACK_PROBE }, \
956d6950
JL
210 { "windows", 0 }, \
211 { "dll", 0 }, \
3b3c6a3f 212 SUBTARGET_SWITCHES \
f6f58ba3 213 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
241e1a89 214
d4ba09c0
SC
215/* Which processor to schedule for. The cpu attribute defines a list that
216 mirrors this list, so changes to i386.md must be made at the same time. */
217
241e1a89
SC
218enum processor_type
219 {PROCESSOR_I386, /* 80386 */
220 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
221 PROCESSOR_PENTIUM,
222 PROCESSOR_PENTIUMPRO};
223
224#define PROCESSOR_I386_STRING "i386"
225#define PROCESSOR_I486_STRING "i486"
226#define PROCESSOR_I586_STRING "i586"
227#define PROCESSOR_PENTIUM_STRING "pentium"
228#define PROCESSOR_I686_STRING "i686"
229#define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
230
231extern enum processor_type ix86_cpu;
232
bcd86433 233extern int ix86_arch;
241e1a89
SC
234
235/* Define the default processor. This is overridden by other tm.h files. */
236#define PROCESSOR_DEFAULT \
237 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
238 ? PROCESSOR_I486 \
239 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
240 ? PROCESSOR_PENTIUM \
241 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
242 ? PROCESSOR_PENTIUMPRO \
243 : PROCESSOR_I386
244#define PROCESSOR_DEFAULT_STRING \
245 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
246 ? PROCESSOR_I486_STRING \
247 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
248 ? PROCESSOR_PENTIUM_STRING \
249 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
250 ? PROCESSOR_PENTIUMPRO_STRING \
251 : PROCESSOR_I386_STRING
95393dfd 252
f5316dfe
MM
253/* This macro is similar to `TARGET_SWITCHES' but defines names of
254 command options that have values. Its definition is an
255 initializer with a subgrouping for each command option.
256
257 Each subgrouping contains a string constant, that defines the
258 fixed part of the option name, and the address of a variable. The
259 variable, type `char *', is set to the variable part of the given
260 option if the fixed part matches. The actual option name is made
261 by appending `-m' to the specified name. */
262#define TARGET_OPTIONS \
241e1a89 263{ { "cpu=", &ix86_cpu_string}, \
bcd86433 264 { "arch=", &ix86_arch_string}, \
241e1a89 265 { "reg-alloc=", &i386_reg_alloc_order }, \
b08de47e
MM
266 { "regparm=", &i386_regparm_string }, \
267 { "align-loops=", &i386_align_loops_string }, \
268 { "align-jumps=", &i386_align_jumps_string }, \
269 { "align-functions=", &i386_align_funcs_string }, \
e2a606cb 270 { "branch-cost=", &i386_branch_cost_string }, \
b08de47e
MM
271 SUBTARGET_OPTIONS \
272}
f5316dfe
MM
273
274/* Sometimes certain combinations of command options do not make
275 sense on a particular target machine. You can define a macro
276 `OVERRIDE_OPTIONS' to take account of this. This macro, if
277 defined, is executed once just after all the command options have
278 been parsed.
279
280 Don't use this macro to turn on various extra optimizations for
281 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
282
283#define OVERRIDE_OPTIONS override_options ()
284
285/* These are meant to be redefined in the host dependent files */
95393dfd 286#define SUBTARGET_SWITCHES
f5316dfe 287#define SUBTARGET_OPTIONS
95393dfd 288
d4ba09c0 289/* Define this to change the optimizations performed by default. */
c6aded7c 290#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
d4ba09c0 291
241e1a89
SC
292/* Specs for the compiler proper */
293
628714d8
RK
294#ifndef CC1_CPU_SPEC
295#define CC1_CPU_SPEC "\
241e1a89 296%{!mcpu*: \
2f2fa5b1
SC
297%{m386:-mcpu=i386 -march=i386} \
298%{mno-486:-mcpu=i386 -march=i386} \
299%{m486:-mcpu=i486 -march=i486} \
300%{mno-386:-mcpu=i486 -march=i486} \
301%{mno-pentium:-mcpu=i486 -march=i486} \
241e1a89 302%{mpentium:-mcpu=pentium} \
2f2fa5b1 303%{mno-pentiumpro:-mcpu=pentium} \
241e1a89
SC
304%{mpentiumpro:-mcpu=pentiumpro}}"
305#endif
c98f8742 306\f
bcd86433 307#ifndef CPP_CPU_SPEC
33c1d53a 308#ifdef __STDC__
d5c65c96 309#if TARGET_CPU_DEFAULT == 1
33c1d53a 310#define CPP_CPU_DEFAULT "-Di486"
da594c94
JL
311#else
312#if TARGET_CPU_DEFAULT == 2
33c1d53a 313#define CPP_CPU_DEFAULT "-Di586"
da594c94
JL
314#else
315#if TARGET_CPU_DEFAULT == 3
33c1d53a 316#define CPP_CPU_DEFAULT "-Di686"
d5c65c96
SC
317#else
318#define CPP_CPU_DEFAULT ""
da594c94
JL
319#endif
320#endif
33c1d53a
SC
321#endif /* TARGET_CPU_DEFAULT */
322
323#define CPP_CPU_SPEC "\
324-Di386 " CPP_CPU_DEFAULT " -Asystem(unix) -Acpu(i386) -Amachine(i386) \
325%{mcpu=i486:-Di486} %{m486:-Di486} \
326%{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
327%{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686}"
328
329#else
bcd86433
SC
330#define CPP_CPU_SPEC "\
331-Di386 -Asystem(unix) -Acpu(i386) -Amachine(i386) \
332%{mcpu=i486:-Di486} %{m486:-Di486} \
333%{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
334%{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686}"
33c1d53a
SC
335#endif /* __STDC__ */
336#endif /* CPP_CPU_SPEC */
bcd86433 337
628714d8
RK
338#ifndef CC1_SPEC
339#define CC1_SPEC "%(cc1_spec) "
340#endif
341
342/* This macro defines names of additional specifications to put in the
343 specs that can be used in various specifications like CC1_SPEC. Its
344 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
345
346 Each subgrouping contains a string constant, that defines the
347 specification name, and a string constant that used by the GNU CC driver
348 program.
349
350 Do not define this macro if it does not need to do anything. */
351
352#ifndef SUBTARGET_EXTRA_SPECS
353#define SUBTARGET_EXTRA_SPECS
354#endif
355
356#define EXTRA_SPECS \
357 { "cpp_cpu", CPP_CPU_SPEC }, \
628714d8 358 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
359 SUBTARGET_EXTRA_SPECS
360\f
c98f8742
JVA
361/* target machine storage layout */
362
0038aea6
JVA
363/* Define for XFmode extended real floating point support.
364 This will automatically cause REAL_ARITHMETIC to be defined. */
365#define LONG_DOUBLE_TYPE_SIZE 96
366
367/* Define if you don't want extended real, but do want to use the
368 software floating point emulator for REAL_ARITHMETIC and
369 decimal <-> binary conversion. */
370/* #define REAL_ARITHMETIC */
371
c98f8742
JVA
372/* Define this if most significant byte of a word is the lowest numbered. */
373/* That is true on the 80386. */
374
375#define BITS_BIG_ENDIAN 0
376
377/* Define this if most significant byte of a word is the lowest numbered. */
378/* That is not true on the 80386. */
379#define BYTES_BIG_ENDIAN 0
380
381/* Define this if most significant word of a multiword number is the lowest
382 numbered. */
383/* Not true for 80386 */
384#define WORDS_BIG_ENDIAN 0
385
b4ac57ab 386/* number of bits in an addressable storage unit */
c98f8742
JVA
387#define BITS_PER_UNIT 8
388
389/* Width in bits of a "word", which is the contents of a machine register.
390 Note that this is not necessarily the width of data type `int';
391 if using 16-bit ints on a 80386, this would still be 32.
392 But on a machine with 16-bit registers, this would be 16. */
393#define BITS_PER_WORD 32
394
395/* Width of a word, in units (bytes). */
396#define UNITS_PER_WORD 4
397
398/* Width in bits of a pointer.
399 See also the macro `Pmode' defined below. */
400#define POINTER_SIZE 32
401
402/* Allocation boundary (in *bits*) for storing arguments in argument list. */
403#define PARM_BOUNDARY 32
404
405/* Boundary (in *bits*) on which stack pointer should be aligned. */
d5c65c96 406#define STACK_BOUNDARY 32
c98f8742
JVA
407
408/* Allocation boundary (in *bits*) for the code of a function.
409 For i486, we get better performance by aligning to a cache
410 line (i.e. 16 byte) boundary. */
b08de47e 411#define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
c98f8742
JVA
412
413/* Alignment of field after `int : 0' in a structure. */
414
415#define EMPTY_FIELD_BOUNDARY 32
416
417/* Minimum size in bits of the largest boundary to which any
418 and all fundamental data types supported by the hardware
419 might need to be aligned. No data type wants to be aligned
420 rounder than this. The i386 supports 64-bit floating point
b08de47e
MM
421 quantities, but these can be aligned on any 32-bit boundary.
422 The published ABIs say that doubles should be aligned on word
423 boundaries, but the Pentium gets better performance with them
424 aligned on 64 bit boundaries. */
425#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
c98f8742 426
d4ba09c0
SC
427/* align DFmode constants and nonaggregates */
428#define ALIGN_DFmode (!TARGET_386)
429
b4ac57ab 430/* Set this non-zero if move instructions will actually fail to work
c98f8742 431 when given unaligned data. */
b4ac57ab 432#define STRICT_ALIGNMENT 0
c98f8742
JVA
433
434/* If bit field type is int, don't let it cross an int,
435 and give entire struct the alignment of an int. */
436/* Required on the 386 since it doesn't have bitfield insns. */
437#define PCC_BITFIELD_TYPE_MATTERS 1
438
4bc679ad
SC
439/* An integer expression for the size in bits of the largest integer
440 machine mode that should actually be used. All integer machine modes of
441 this size or smaller can be used for structures and unions with the
442 appropriate sizes. */
443#define MAX_FIXED_MODE_SIZE 32
444
b08de47e
MM
445/* Maximum power of 2 that code can be aligned to. */
446#define MAX_CODE_ALIGN 6 /* 64 byte alignment */
447
c98f8742 448/* Align loop starts for optimal branching. */
b08de47e 449#define ASM_OUTPUT_LOOP_ALIGN(FILE) ASM_OUTPUT_ALIGN (FILE, i386_align_loops)
c98f8742
JVA
450
451/* This is how to align an instruction for optimal branching.
452 On i486 we'll get better performance by aligning on a
453 cache line (i.e. 16 byte) boundary. */
b08de47e
MM
454#define ASM_OUTPUT_ALIGN_CODE(FILE) ASM_OUTPUT_ALIGN ((FILE), i386_align_jumps)
455
c98f8742
JVA
456\f
457/* Standard register usage. */
458
459/* This processor has special stack-like registers. See reg-stack.c
460 for details. */
461
462#define STACK_REGS
d4ba09c0 463#define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
c98f8742
JVA
464
465/* Number of actual hardware registers.
466 The hardware registers are assigned numbers for the compiler
467 from 0 to just below FIRST_PSEUDO_REGISTER.
468 All registers that the compiler knows about must be given numbers,
469 even those that are not normally considered general registers.
470
471 In the 80386 we give the 8 general purpose registers the numbers 0-7.
472 We number the floating point registers 8-15.
473 Note that registers 0-7 can be accessed as a short or int,
474 while only 0-3 may be used with byte `mov' instructions.
475
476 Reg 16 does not correspond to any hardware register, but instead
477 appears in the RTL as an argument pointer prior to reload, and is
478 eliminated during reloading in favor of either the stack or frame
479 pointer. */
480
481#define FIRST_PSEUDO_REGISTER 17
482
483/* 1 for registers that have pervasive standard uses
484 and are not available for the register allocator.
485 On the 80386, the stack pointer is such, as is the arg pointer. */
486#define FIXED_REGISTERS \
487/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
488{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
489
490/* 1 for registers not available across function calls.
491 These must include the FIXED_REGISTERS and also any
492 registers that can be used without being saved.
493 The latter must include the registers where values are returned
494 and the register where structure-value addresses are passed.
495 Aside from that, you can include as many other registers as you like. */
496
497#define CALL_USED_REGISTERS \
498/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
499{ 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
500
3b3c6a3f
MM
501/* Order in which to allocate registers. Each register must be
502 listed once, even those in FIXED_REGISTERS. List frame pointer
503 late and fixed registers last. Note that, in general, we prefer
504 registers listed in CALL_USED_REGISTERS, keeping the others
505 available for storage of persistent values.
506
507 Three different versions of REG_ALLOC_ORDER have been tried:
508
509 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
510 but slower code on simple functions returning values in eax.
511
512 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
513 perl 4.036 due to not being able to create a DImode register (to hold a 2
514 word union).
515
516 If the order is eax, edx, ecx, ... it produces better code for simple
517 functions, and a slightly slower compiler. Users complained about the code
518 generated by allocating edx first, so restore the 'natural' order of things. */
519
184ff798 520#define REG_ALLOC_ORDER \
f5316dfe
MM
521/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
522{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
523
524/* A C statement (sans semicolon) to choose the order in which to
525 allocate hard registers for pseudo-registers local to a basic
526 block.
527
528 Store the desired register order in the array `reg_alloc_order'.
529 Element 0 should be the register to allocate first; element 1, the
530 next register; and so on.
531
532 The macro body should not assume anything about the contents of
533 `reg_alloc_order' before execution of the macro.
534
535 On most machines, it is not necessary to define this macro. */
536
537#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
184ff798 538
c98f8742
JVA
539/* Macro to conditionally modify fixed_regs/call_used_regs. */
540#define CONDITIONAL_REGISTER_USAGE \
541 { \
542 if (flag_pic) \
543 { \
544 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
545 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
546 } \
8c2bf92a
JVA
547 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
548 { \
549 int i; \
550 HARD_REG_SET x; \
551 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
552 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
553 if (TEST_HARD_REG_BIT (x, i)) \
554 fixed_regs[i] = call_used_regs[i] = 1; \
555 } \
c98f8742
JVA
556 }
557
558/* Return number of consecutive hard regs needed starting at reg REGNO
559 to hold something of mode MODE.
560 This is ordinarily the length in words of a value of mode MODE
561 but can be less for certain modes in special long registers.
562
563 Actually there are no two word move instructions for consecutive
564 registers. And only registers 0-3 may have mov byte instructions
565 applied to them.
566 */
567
568#define HARD_REGNO_NREGS(REGNO, MODE) \
569 (FP_REGNO_P (REGNO) ? 1 \
570 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
571
572/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
573 On the 80386, the first 4 cpu registers can hold any mode
574 while the floating point registers may hold only floating point.
575 Make it clear that the fp regs could not hold a 16-byte float. */
576
48227a2c
RS
577/* The casts to int placate a compiler on a microvax,
578 for cross-compiler testing. */
579
c98f8742 580#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1bbe49a6
JVA
581 ((REGNO) < 2 ? 1 \
582 : (REGNO) < 4 ? 1 \
0038aea6 583 : FP_REGNO_P (REGNO) \
48227a2c
RS
584 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
585 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
62acf5fd 586 && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
b73c3f2a
SC
587 : (int) (MODE) != (int) QImode ? 1 \
588 : (reload_in_progress | reload_completed) == 1)
c98f8742
JVA
589
590/* Value is 1 if it is a good idea to tie two pseudo registers
591 when one has mode MODE1 and one has mode MODE2.
592 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
593 for any hard reg, then this must be 0 for correct output. */
594
595#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
596
c98f8742
JVA
597/* Specify the registers used for certain standard purposes.
598 The values of these macros are register numbers. */
599
600/* on the 386 the pc register is %eip, and is not usable as a general
601 register. The ordinary mov instructions won't work */
602/* #define PC_REGNUM */
603
604/* Register to use for pushing function arguments. */
605#define STACK_POINTER_REGNUM 7
606
607/* Base register for access to local variables of the function. */
608#define FRAME_POINTER_REGNUM 6
609
610/* First floating point reg */
611#define FIRST_FLOAT_REG 8
612
613/* First & last stack-like regs */
614#define FIRST_STACK_REG FIRST_FLOAT_REG
615#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
616
617/* Value should be nonzero if functions must have frame pointers.
618 Zero means the frame pointer need not be set up (and parms
619 may be accessed via the stack pointer) in functions that seem suitable.
620 This is computed in `reload', in reload1.c. */
2f2fa5b1 621#define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
c98f8742
JVA
622
623/* Base register for access to arguments of the function. */
624#define ARG_POINTER_REGNUM 16
625
626/* Register in which static-chain is passed to a function. */
627#define STATIC_CHAIN_REGNUM 2
628
629/* Register to hold the addressing base for position independent
630 code access to data items. */
631#define PIC_OFFSET_TABLE_REGNUM 3
632
633/* Register in which address to store a structure value
634 arrives in the function. On the 386, the prologue
635 copies this from the stack to register %eax. */
636#define STRUCT_VALUE_INCOMING 0
637
638/* Place in which caller passes the structure value address.
639 0 means push the value on the stack like an argument. */
640#define STRUCT_VALUE 0
713225d4
MM
641
642/* A C expression which can inhibit the returning of certain function
643 values in registers, based on the type of value. A nonzero value
644 says to return the function value in memory, just as large
645 structures are always returned. Here TYPE will be a C expression
646 of type `tree', representing the data type of the value.
647
648 Note that values of mode `BLKmode' must be explicitly handled by
649 this macro. Also, the option `-fpcc-struct-return' takes effect
650 regardless of this macro. On most systems, it is possible to
651 leave the macro undefined; this causes a default definition to be
652 used, whose value is the constant 1 for `BLKmode' values, and 0
653 otherwise.
654
655 Do not use this macro to indicate that structures and unions
656 should always be returned in memory. You should instead use
657 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
658
659#define RETURN_IN_MEMORY(TYPE) \
660 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
661
c98f8742
JVA
662\f
663/* Define the classes of registers for register constraints in the
664 machine description. Also define ranges of constants.
665
666 One of the classes must always be named ALL_REGS and include all hard regs.
667 If there is more than one class, another class must be named NO_REGS
668 and contain no registers.
669
670 The name GENERAL_REGS must be the name of a class (or an alias for
671 another name such as ALL_REGS). This is the class of registers
672 that is allowed by "g" or "r" in a register constraint.
673 Also, registers outside this class are allocated only when
674 instructions express preferences for them.
675
676 The classes must be numbered in nondecreasing order; that is,
677 a larger-numbered class must never be contained completely
678 in a smaller-numbered class.
679
680 For any two classes, it is very desirable that there be another
ab408a86
JVA
681 class that represents their union.
682
683 It might seem that class BREG is unnecessary, since no useful 386
684 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
685 and the "b" register constraint is useful in asms for syscalls. */
c98f8742
JVA
686
687enum reg_class
688{
689 NO_REGS,
ab408a86 690 AREG, DREG, CREG, BREG,
4b71cd6e 691 AD_REGS, /* %eax/%edx for DImode */
c98f8742
JVA
692 Q_REGS, /* %eax %ebx %ecx %edx */
693 SIREG, DIREG,
694 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
695 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
696 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
697 FLOAT_REGS,
698 ALL_REGS, LIM_REG_CLASSES
699};
700
701#define N_REG_CLASSES (int) LIM_REG_CLASSES
702
4cbb525c
JVA
703#define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
704
c98f8742
JVA
705/* Give names of register classes as strings for dump file. */
706
707#define REG_CLASS_NAMES \
708{ "NO_REGS", \
ab408a86 709 "AREG", "DREG", "CREG", "BREG", \
4b71cd6e 710 "AD_REGS", \
c98f8742
JVA
711 "Q_REGS", \
712 "SIREG", "DIREG", \
713 "INDEX_REGS", \
714 "GENERAL_REGS", \
715 "FP_TOP_REG", "FP_SECOND_REG", \
716 "FLOAT_REGS", \
717 "ALL_REGS" }
718
719/* Define which registers fit in which classes.
720 This is an initializer for a vector of HARD_REG_SET
721 of length N_REG_CLASSES. */
722
723#define REG_CLASS_CONTENTS \
724{ 0, \
ab408a86 725 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
4b71cd6e 726 0x3, /* AD_REGS */ \
c98f8742
JVA
727 0xf, /* Q_REGS */ \
728 0x10, 0x20, /* SIREG, DIREG */ \
d4ba09c0 729 0x7f, /* INDEX_REGS */ \
c98f8742
JVA
730 0x100ff, /* GENERAL_REGS */ \
731 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
732 0xff00, /* FLOAT_REGS */ \
733 0x1ffff }
734
735/* The same information, inverted:
736 Return the class number of the smallest class containing
737 reg number REGNO. This could be a conditional expression
738 or could index an array. */
739
c98f8742
JVA
740#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
741
742/* When defined, the compiler allows registers explicitly used in the
743 rtl to be used as spill registers but prevents the compiler from
744 extending the lifetime of these registers. */
745
2922fe9e 746#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
747
748#define QI_REG_P(X) \
749 (REG_P (X) && REGNO (X) < 4)
750#define NON_QI_REG_P(X) \
751 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
752
753#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
754#define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
755
756#define STACK_REG_P(xop) (REG_P (xop) && \
757 REGNO (xop) >= FIRST_STACK_REG && \
758 REGNO (xop) <= LAST_STACK_REG)
759
760#define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
761
762#define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
763
764/* Try to maintain the accuracy of the death notes for regs satisfying the
765 following. Important for stack like regs, to know when to pop. */
766
767/* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
768
769/* 1 if register REGNO can magically overlap other regs.
770 Note that nonzero values work only in very special circumstances. */
771
772/* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
773
774/* The class value for index registers, and the one for base regs. */
775
776#define INDEX_REG_CLASS INDEX_REGS
777#define BASE_REG_CLASS GENERAL_REGS
778
779/* Get reg_class from a letter such as appears in the machine description. */
780
781#define REG_CLASS_FROM_LETTER(C) \
8c2bf92a
JVA
782 ((C) == 'r' ? GENERAL_REGS : \
783 (C) == 'q' ? Q_REGS : \
784 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
785 ? FLOAT_REGS \
786 : NO_REGS) : \
787 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
788 ? FP_TOP_REG \
789 : NO_REGS) : \
790 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
791 ? FP_SECOND_REG \
792 : NO_REGS) : \
793 (C) == 'a' ? AREG : \
794 (C) == 'b' ? BREG : \
795 (C) == 'c' ? CREG : \
796 (C) == 'd' ? DREG : \
4b71cd6e 797 (C) == 'A' ? AD_REGS : \
8c2bf92a 798 (C) == 'D' ? DIREG : \
c98f8742
JVA
799 (C) == 'S' ? SIREG : NO_REGS)
800
801/* The letters I, J, K, L and M in a register constraint string
802 can be used to stand for particular ranges of immediate operands.
803 This macro defines what the ranges are.
804 C is the letter, and VALUE is a constant value.
805 Return 1 if VALUE is in the range specified by C.
806
807 I is for non-DImode shifts.
808 J is for DImode shifts.
809 K and L are for an `andsi' optimization.
810 M is for shifts that can be executed by the "lea" opcode.
811 */
812
813#define CONST_OK_FOR_LETTER_P(VALUE, C) \
814 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
815 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
816 (C) == 'K' ? (VALUE) == 0xff : \
817 (C) == 'L' ? (VALUE) == 0xffff : \
818 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
b4232589 819 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
d4ba09c0 820 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
c98f8742
JVA
821 0)
822
823/* Similar, but for floating constants, and defining letters G and H.
b4ac57ab
RS
824 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
825 TARGET_387 isn't set, because the stack register converter may need to
826 load 0.0 into the function value register. */
c98f8742
JVA
827
828#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
b4ac57ab 829 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
c98f8742
JVA
830
831/* Place additional restrictions on the register class to use when it
4cbb525c
JVA
832 is necessary to be able to hold a value of mode MODE in a reload
833 register for which class CLASS would ordinarily be used. */
c98f8742
JVA
834
835#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
836 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
837 ? Q_REGS : (CLASS))
838
839/* Given an rtx X being reloaded into a reg required to be
840 in class CLASS, return the class of reg to actually use.
841 In general this is just CLASS; but on some machines
842 in some cases it is preferable to use a more restrictive class.
843 On the 80386 series, we prevent floating constants from being
844 reloaded into floating registers (since no move-insn can do that)
845 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
846
d398b3b1 847/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 848 QImode must go into class Q_REGS.
d398b3b1
JVA
849 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
850 movdf to do mem-to-mem moves through integer regs. */
c98f8742 851
7488be4e 852#define PREFERRED_RELOAD_CLASS(X,CLASS) \
85ff473e
JVA
853 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
854 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
d398b3b1
JVA
855 : ((CLASS) == ALL_REGS \
856 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
85ff473e
JVA
857 : (CLASS))
858
859/* If we are copying between general and FP registers, we need a memory
860 location. */
861
862#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
4cbb525c
JVA
863 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
864 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
c98f8742
JVA
865
866/* Return the maximum number of consecutive registers
867 needed to represent mode MODE in a register of class CLASS. */
868/* On the 80386, this is the size of MODE in words,
869 except in the FP regs, where a single reg is always enough. */
870#define CLASS_MAX_NREGS(CLASS, MODE) \
4cbb525c
JVA
871 (FLOAT_CLASS_P (CLASS) ? 1 : \
872 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
873
874/* A C expression whose value is nonzero if pseudos that have been
875 assigned to registers of class CLASS would likely be spilled
876 because registers of CLASS are needed for spill registers.
877
878 The default value of this macro returns 1 if CLASS has exactly one
879 register and zero otherwise. On most machines, this default
880 should be used. Only define this macro to some other expression
881 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 882 their hard registers were needed for spill registers. If this
f5316dfe
MM
883 macro returns nonzero for those classes, those pseudos will only
884 be allocated by `global.c', which knows how to reallocate the
885 pseudo to another register. If there would not be another
886 register available for reallocation, you should not change the
887 definition of this macro since the only effect of such a
888 definition would be to slow down register allocation. */
889
890#define CLASS_LIKELY_SPILLED_P(CLASS) \
891 (((CLASS) == AREG) \
892 || ((CLASS) == DREG) \
893 || ((CLASS) == CREG) \
894 || ((CLASS) == BREG) \
895 || ((CLASS) == AD_REGS) \
896 || ((CLASS) == SIREG) \
897 || ((CLASS) == DIREG))
898
c98f8742
JVA
899\f
900/* Stack layout; function entry, exit and calling. */
901
902/* Define this if pushing a word on the stack
903 makes the stack pointer a smaller address. */
904#define STACK_GROWS_DOWNWARD
905
906/* Define this if the nominal address of the stack frame
907 is at the high-address end of the local variables;
908 that is, each additional local variable allocated
909 goes at a more negative offset in the frame. */
910#define FRAME_GROWS_DOWNWARD
911
912/* Offset within stack frame to start allocating local variables at.
913 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
914 first local allocated. Otherwise, it is the offset to the BEGINNING
915 of the first local allocated. */
916#define STARTING_FRAME_OFFSET 0
917
918/* If we generate an insn to push BYTES bytes,
919 this says how many the stack pointer really advances by.
920 On 386 pushw decrements by exactly 2 no matter what the position was.
921 On the 386 there is no pushb; we use pushw instead, and this
922 has the effect of rounding up to 2. */
923
924#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
925
926/* Offset of first parameter from the argument pointer register value. */
927#define FIRST_PARM_OFFSET(FNDECL) 0
928
929/* Value is the number of bytes of arguments automatically
930 popped when returning from a subroutine call.
8b109b37 931 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
932 FUNTYPE is the data type of the function (as a tree),
933 or for a library call it is an identifier node for the subroutine name.
934 SIZE is the number of bytes of arguments passed on the stack.
935
936 On the 80386, the RTD insn may be used to pop them if the number
937 of args is fixed, but if the number is variable then the caller
938 must pop them all. RTD can't be used for library calls now
939 because the library is compiled with the Unix compiler.
940 Use of RTD is a selectable option, since it is incompatible with
941 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
942 the caller must always pop the args.
943
944 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 945
b08de47e
MM
946#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
947 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
c98f8742 948
8c2bf92a
JVA
949/* Define how to find the value returned by a function.
950 VALTYPE is the data type of the value (as a tree).
951 If the precise function being called is known, FUNC is its FUNCTION_DECL;
952 otherwise, FUNC is 0. */
c98f8742 953#define FUNCTION_VALUE(VALTYPE, FUNC) \
f64cecad 954 gen_rtx_REG (TYPE_MODE (VALTYPE), \
c98f8742
JVA
955 VALUE_REGNO (TYPE_MODE (VALTYPE)))
956
957/* Define how to find the value returned by a library function
958 assuming the value has mode MODE. */
959
960#define LIBCALL_VALUE(MODE) \
f64cecad 961 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
c98f8742 962
e9125c09
TW
963/* Define the size of the result block used for communication between
964 untyped_call and untyped_return. The block contains a DImode value
965 followed by the block used by fnsave and frstor. */
966
967#define APPLY_RESULT_SIZE (8+108)
968
b08de47e
MM
969/* 1 if N is a possible register number for function argument passing. */
970#define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
c98f8742
JVA
971
972/* Define a data type for recording info about an argument list
973 during the scan of that argument list. This data type should
974 hold all necessary information about the function itself
975 and about the args processed so far, enough to enable macros
b08de47e 976 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 977
b08de47e
MM
978typedef struct i386_args {
979 int words; /* # words passed so far */
980 int nregs; /* # registers available for passing */
981 int regno; /* next available register number */
982} CUMULATIVE_ARGS;
c98f8742
JVA
983
984/* Initialize a variable CUM of type CUMULATIVE_ARGS
985 for a call to a function whose data type is FNTYPE.
b08de47e 986 For a library call, FNTYPE is 0. */
c98f8742 987
2c7ee1a6 988#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
b08de47e 989 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
c98f8742
JVA
990
991/* Update the data in CUM to advance over an argument
992 of mode MODE and data type TYPE.
993 (TYPE is null for libcalls where that information may not be available.) */
994
995#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b08de47e 996 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
c98f8742
JVA
997
998/* Define where to put the arguments to a function.
999 Value is zero to push the argument on the stack,
1000 or a hard register in which to store the argument.
1001
1002 MODE is the argument's machine mode.
1003 TYPE is the data type of the argument (as a tree).
1004 This is null for libcalls where that information may
1005 not be available.
1006 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1007 the preceding args and about the function being called.
1008 NAMED is nonzero if this argument is a named parameter
1009 (otherwise it is an extra parameter matching an ellipsis). */
1010
c98f8742 1011#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b08de47e 1012 (function_arg (&CUM, MODE, TYPE, NAMED))
c98f8742
JVA
1013
1014/* For an arg passed partly in registers and partly in memory,
1015 this is the number of registers used.
1016 For args passed entirely in registers or entirely in memory, zero. */
1017
c98f8742 1018#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b08de47e 1019 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
c98f8742 1020
3a0433fd
SC
1021/* This macro is invoked just before the start of a function.
1022 It is used here to output code for -fpic that will load the
1023 return address into %ebx. */
1024
1025#undef ASM_OUTPUT_FUNCTION_PREFIX
1026#define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
1027 asm_output_function_prefix (FILE, FNNAME)
1028
c98f8742
JVA
1029/* This macro generates the assembly code for function entry.
1030 FILE is a stdio stream to output the code to.
1031 SIZE is an int: how many units of temporary storage to allocate.
1032 Refer to the array `regs_ever_live' to determine which registers
1033 to save; `regs_ever_live[I]' is nonzero if register number I
1034 is ever used in the function. This macro is responsible for
1035 knowing which registers should not be saved even if used. */
1036
1037#define FUNCTION_PROLOGUE(FILE, SIZE) \
1038 function_prologue (FILE, SIZE)
1039
1040/* Output assembler code to FILE to increment profiler label # LABELNO
1041 for profiling a function entry. */
1042
1043#define FUNCTION_PROFILER(FILE, LABELNO) \
1044{ \
1045 if (flag_pic) \
1046 { \
1047 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
1048 LPREFIX, (LABELNO)); \
1049 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
1050 } \
1051 else \
1052 { \
1053 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1054 fprintf (FILE, "\tcall _mcount\n"); \
1055 } \
1056}
1057
1cf5eda8 1058
6e753900
RK
1059/* There are three profiling modes for basic blocks available.
1060 The modes are selected at compile time by using the options
1061 -a or -ax of the gnu compiler.
1062 The variable `profile_block_flag' will be set according to the
1063 selected option.
1cf5eda8 1064
6e753900 1065 profile_block_flag == 0, no option used:
1cf5eda8 1066
6e753900 1067 No profiling done.
1cf5eda8 1068
6e753900
RK
1069 profile_block_flag == 1, -a option used.
1070
1071 Count frequency of execution of every basic block.
1072
1073 profile_block_flag == 2, -ax option used.
1074
1075 Generate code to allow several different profiling modes at run time.
1076 Available modes are:
1077 Produce a trace of all basic blocks.
1078 Count frequency of jump instructions executed.
1079 In every mode it is possible to start profiling upon entering
1080 certain functions and to disable profiling of some other functions.
1081
1082 The result of basic-block profiling will be written to a file `bb.out'.
1083 If the -ax option is used parameters for the profiling will be read
1084 from file `bb.in'.
1085
1086*/
1087
1088/* The following macro shall output assembler code to FILE
1089 to initialize basic-block profiling.
1090
1091 If profile_block_flag == 2
1092
1093 Output code to call the subroutine `__bb_init_trace_func'
1094 and pass two parameters to it. The first parameter is
1095 the address of a block allocated in the object module.
1096 The second parameter is the number of the first basic block
1097 of the function.
1098
1099 The name of the block is a local symbol made with this statement:
1100
1101 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1102
1103 Of course, since you are writing the definition of
1104 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1105 can take a short cut in the definition of this macro and use the
1106 name that you know will result.
1107
1108 The number of the first basic block of the function is
1109 passed to the macro in BLOCK_OR_LABEL.
1110
1111 If described in a virtual assembler language the code to be
1112 output looks like:
1113
1114 parameter1 <- LPBX0
1115 parameter2 <- BLOCK_OR_LABEL
1116 call __bb_init_trace_func
1117
1118 else if profile_block_flag != 0
1119
1120 Output code to call the subroutine `__bb_init_func'
1121 and pass one single parameter to it, which is the same
1122 as the first parameter to `__bb_init_trace_func'.
1123
1124 The first word of this parameter is a flag which will be nonzero if
1125 the object module has already been initialized. So test this word
1126 first, and do not call `__bb_init_func' if the flag is nonzero.
1127 Note: When profile_block_flag == 2 the test need not be done
1128 but `__bb_init_trace_func' *must* be called.
1129
1130 BLOCK_OR_LABEL may be used to generate a label number as a
1131 branch destination in case `__bb_init_func' will not be called.
1132
1133 If described in a virtual assembler language the code to be
1134 output looks like:
1135
1136 cmp (LPBX0),0
1137 jne local_label
1138 parameter1 <- LPBX0
1139 call __bb_init_func
1140local_label:
1141
1142*/
1cf5eda8
MM
1143
1144#undef FUNCTION_BLOCK_PROFILER
6e753900 1145#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1cf5eda8
MM
1146do \
1147 { \
1148 static int num_func = 0; \
8ecf187a 1149 rtx xops[8]; \
1cf5eda8
MM
1150 char block_table[80], false_label[80]; \
1151 \
1152 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1cf5eda8 1153 \
f64cecad 1154 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1cf5eda8 1155 xops[5] = stack_pointer_rtx; \
f64cecad 1156 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1cf5eda8
MM
1157 \
1158 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1cf5eda8 1159 \
6e753900 1160 switch (profile_block_flag) \
1cf5eda8 1161 { \
1cf5eda8 1162 \
6e753900
RK
1163 case 2: \
1164 \
1165 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
f64cecad 1166 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); \
6e753900
RK
1167 xops[6] = GEN_INT (8); \
1168 \
1169 output_asm_insn (AS1(push%L2,%2), xops); \
1170 if (!flag_pic) \
1171 output_asm_insn (AS1(push%L1,%1), xops); \
1172 else \
1173 { \
1174 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1175 output_asm_insn (AS1 (push%L7,%7), xops); \
1176 } \
1177 \
1178 output_asm_insn (AS1(call,%P3), xops); \
1179 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1180 \
1181 break; \
1182 \
1183 default: \
1184 \
1185 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1186 \
1187 xops[0] = const0_rtx; \
f64cecad
JC
1188 xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); \
1189 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); \
1190 xops[4] = gen_rtx_MEM (Pmode, xops[1]); \
6e753900
RK
1191 xops[6] = GEN_INT (4); \
1192 \
1193 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1194 \
1195 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1196 output_asm_insn (AS1(jne,%2), xops); \
1197 \
1198 if (!flag_pic) \
1199 output_asm_insn (AS1(push%L1,%1), xops); \
1200 else \
1201 { \
1202 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1203 output_asm_insn (AS1 (push%L7,%7), xops); \
1204 } \
1205 \
1206 output_asm_insn (AS1(call,%P3), xops); \
1207 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1208 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1209 num_func++; \
1210 \
1211 break; \
1212 \
1213 } \
1cf5eda8
MM
1214 } \
1215while (0)
1216
6e753900
RK
1217/* The following macro shall output assembler code to FILE
1218 to increment a counter associated with basic block number BLOCKNO.
1219
1220 If profile_block_flag == 2
1221
1222 Output code to initialize the global structure `__bb' and
1223 call the function `__bb_trace_func' which will increment the
1224 counter.
1225
1226 `__bb' consists of two words. In the first word the number
1227 of the basic block has to be stored. In the second word
1228 the address of a block allocated in the object module
1229 has to be stored.
1230
1231 The basic block number is given by BLOCKNO.
1232
1233 The address of the block is given by the label created with
1234
1235 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1236
1237 by FUNCTION_BLOCK_PROFILER.
1cf5eda8 1238
6e753900
RK
1239 Of course, since you are writing the definition of
1240 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1241 can take a short cut in the definition of this macro and use the
1242 name that you know will result.
1cf5eda8 1243
6e753900
RK
1244 If described in a virtual assembler language the code to be
1245 output looks like:
1cf5eda8 1246
6e753900
RK
1247 move BLOCKNO -> (__bb)
1248 move LPBX0 -> (__bb+4)
1249 call __bb_trace_func
1cf5eda8 1250
6e753900
RK
1251 Note that function `__bb_trace_func' must not change the
1252 machine state, especially the flag register. To grant
1253 this, you must output code to save and restore registers
1254 either in this macro or in the macros MACHINE_STATE_SAVE
1255 and MACHINE_STATE_RESTORE. The last two macros will be
1256 used in the function `__bb_trace_func', so you must make
1257 sure that the function prologue does not change any
1258 register prior to saving it with MACHINE_STATE_SAVE.
1259
1260 else if profile_block_flag != 0
1261
1262 Output code to increment the counter directly.
1263 Basic blocks are numbered separately from zero within each
1264 compiled object module. The count associated with block number
1265 BLOCKNO is at index BLOCKNO in an array of words; the name of
1266 this array is a local symbol made with this statement:
1267
1268 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1269
1270 Of course, since you are writing the definition of
1271 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1272 can take a short cut in the definition of this macro and use the
1273 name that you know will result.
1274
1275 If described in a virtual assembler language the code to be
1276 output looks like:
1277
1278 inc (LPBX2+4*BLOCKNO)
1279
1280*/
1281
1282#define BLOCK_PROFILER(FILE, BLOCKNO) \
1cf5eda8
MM
1283do \
1284 { \
6e753900 1285 rtx xops[8], cnt_rtx; \
1cf5eda8 1286 char counts[80]; \
6e753900
RK
1287 char *block_table = counts; \
1288 \
1289 switch (profile_block_flag) \
1290 { \
1291 \
1292 case 2: \
1293 \
1294 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1295 \
f64cecad 1296 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
6e753900 1297 xops[2] = GEN_INT ((BLOCKNO)); \
f64cecad
JC
1298 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); \
1299 xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); \
6e753900 1300 xops[5] = plus_constant (xops[4], 4); \
f64cecad
JC
1301 xops[0] = gen_rtx_MEM (SImode, xops[4]); \
1302 xops[6] = gen_rtx_MEM (SImode, xops[5]); \
6e753900
RK
1303 \
1304 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1305 \
1306 fprintf(FILE, "\tpushf\n"); \
1307 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1308 if (flag_pic) \
1309 { \
f64cecad 1310 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
6e753900
RK
1311 output_asm_insn (AS1(push%L7,%7), xops); \
1312 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1313 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1314 output_asm_insn (AS1(pop%L7,%7), xops); \
1315 } \
1316 else \
1317 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1318 output_asm_insn (AS1(call,%P3), xops); \
1319 fprintf(FILE, "\tpopf\n"); \
1320 \
1321 break; \
1322 \
1323 default: \
1324 \
1325 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
f64cecad 1326 cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); \
6e753900 1327 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1cf5eda8 1328 \
6e753900
RK
1329 if (BLOCKNO) \
1330 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1cf5eda8 1331 \
6e753900 1332 if (flag_pic) \
f64cecad 1333 cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); \
05ca35c7 1334 \
f64cecad 1335 xops[0] = gen_rtx_MEM (SImode, cnt_rtx); \
6e753900 1336 output_asm_insn (AS1(inc%L0,%0), xops); \
05ca35c7 1337 \
6e753900
RK
1338 break; \
1339 \
1340 } \
1cf5eda8
MM
1341 } \
1342while (0)
1343
6e753900
RK
1344/* The following macro shall output assembler code to FILE
1345 to indicate a return from function during basic-block profiling.
1346
1347 If profiling_block_flag == 2:
1348
1349 Output assembler code to call function `__bb_trace_ret'.
1350
1351 Note that function `__bb_trace_ret' must not change the
1352 machine state, especially the flag register. To grant
1353 this, you must output code to save and restore registers
1354 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1355 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1356 used in the function `__bb_trace_ret', so you must make
1357 sure that the function prologue does not change any
1358 register prior to saving it with MACHINE_STATE_SAVE_RET.
1359
1360 else if profiling_block_flag != 0:
1361
1362 The macro will not be used, so it need not distinguish
1363 these cases.
1364*/
1365
1366#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1367do \
1368 { \
1369 rtx xops[1]; \
1370 \
f64cecad 1371 xops[0] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")); \
6e753900
RK
1372 \
1373 output_asm_insn (AS1(call,%P0), xops); \
1374 \
1375 } \
1376while (0)
1377
1378/* The function `__bb_trace_func' is called in every basic block
1379 and is not allowed to change the machine state. Saving (restoring)
1380 the state can either be done in the BLOCK_PROFILER macro,
1381 before calling function (rsp. after returning from function)
1382 `__bb_trace_func', or it can be done inside the function by
1383 defining the macros:
1384
1385 MACHINE_STATE_SAVE(ID)
1386 MACHINE_STATE_RESTORE(ID)
1387
1388 In the latter case care must be taken, that the prologue code
1389 of function `__bb_trace_func' does not already change the
1390 state prior to saving it with MACHINE_STATE_SAVE.
1391
1392 The parameter `ID' is a string identifying a unique macro use.
1393
1394 On the i386 the initialization code at the begin of
1395 function `__bb_trace_func' contains a `sub' instruction
1396 therefore we handle save and restore of the flag register
1397 in the BLOCK_PROFILER macro. */
1398
1399#define MACHINE_STATE_SAVE(ID) \
1400 asm (" pushl %eax"); \
1401 asm (" pushl %ecx"); \
1402 asm (" pushl %edx"); \
1403 asm (" pushl %esi");
1404
1405#define MACHINE_STATE_RESTORE(ID) \
1406 asm (" popl %esi"); \
1407 asm (" popl %edx"); \
1408 asm (" popl %ecx"); \
1409 asm (" popl %eax");
1410
c98f8742
JVA
1411/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1412 the stack pointer does not matter. The value is tested only in
1413 functions that have frame pointers.
1414 No definition is equivalent to always zero. */
1415/* Note on the 386 it might be more efficient not to define this since
1416 we have to restore it ourselves from the frame pointer, in order to
1417 use pop */
1418
1419#define EXIT_IGNORE_STACK 1
1420
1421/* This macro generates the assembly code for function exit,
1422 on machines that need it. If FUNCTION_EPILOGUE is not defined
1423 then individual return instructions are generated for each
1424 return statement. Args are same as for FUNCTION_PROLOGUE.
1425
1426 The function epilogue should not depend on the current stack pointer!
1427 It should use the frame pointer only. This is mandatory because
1428 of alloca; we also take advantage of it to omit stack adjustments
1429 before returning.
1430
1431 If the last non-note insn in the function is a BARRIER, then there
1432 is no need to emit a function prologue, because control does not fall
1433 off the end. This happens if the function ends in an "exit" call, or
1434 if a `return' insn is emitted directly into the function. */
1435
2f2fa5b1
SC
1436#if 0
1437#define FUNCTION_BEGIN_EPILOGUE(FILE) \
c98f8742
JVA
1438do { \
1439 rtx last = get_last_insn (); \
1440 if (last && GET_CODE (last) == NOTE) \
1441 last = prev_nonnote_insn (last); \
2f2fa5b1
SC
1442/* if (! last || GET_CODE (last) != BARRIER) \
1443 function_epilogue (FILE, SIZE);*/ \
c98f8742 1444} while (0)
2f2fa5b1
SC
1445#endif
1446
1447#define FUNCTION_EPILOGUE(FILE, SIZE) \
1448 function_epilogue (FILE, SIZE)
c98f8742
JVA
1449
1450/* Output assembler code for a block containing the constant parts
1451 of a trampoline, leaving space for the variable parts. */
1452
1453/* On the 386, the trampoline contains three instructions:
1454 mov #STATIC,ecx
1455 mov #FUNCTION,eax
1456 jmp @eax */
8c2bf92a
JVA
1457#define TRAMPOLINE_TEMPLATE(FILE) \
1458{ \
1459 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
1460 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1461 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1462 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
1463 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1464 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1465 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
1466 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
c98f8742
JVA
1467}
1468
1469/* Length in units of the trampoline for entering a nested function. */
1470
1471#define TRAMPOLINE_SIZE 12
1472
1473/* Emit RTL insns to initialize the variable parts of a trampoline.
1474 FNADDR is an RTX for the address of the function's pure code.
1475 CXT is an RTX for the static chain value for the function. */
1476
1477#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1478{ \
f64cecad
JC
1479 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
1480 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), FNADDR); \
c98f8742
JVA
1481}
1482\f
1483/* Definitions for register eliminations.
1484
1485 This is an array of structures. Each structure initializes one pair
1486 of eliminable registers. The "from" register number is given first,
1487 followed by "to". Eliminations of the same "from" register are listed
1488 in order of preference.
1489
1490 We have two registers that can be eliminated on the i386. First, the
1491 frame pointer register can often be eliminated in favor of the stack
1492 pointer register. Secondly, the argument pointer register can always be
1493 eliminated; it is replaced with either the stack or frame pointer. */
1494
1495#define ELIMINABLE_REGS \
1496{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1497 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1498 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1499
1500/* Given FROM and TO register numbers, say whether this elimination is allowed.
1501 Frame pointer elimination is automatically handled.
1502
1503 For the i386, if frame pointer elimination is being done, we would like to
1504 convert ap into sp, not fp.
1505
1506 All other eliminations are valid. */
1507
1508#define CAN_ELIMINATE(FROM, TO) \
1509 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1510 ? ! frame_pointer_needed \
1511 : 1)
1512
1513/* Define the offset between two registers, one to be eliminated, and the other
1514 its replacement, at the start of a routine. */
1515
1516#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1517{ \
1518 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1519 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1520 else \
1521 { \
1522 int regno; \
1523 int offset = 0; \
1524 \
1525 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1526 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
6d8ccdbb
JL
1527 || ((current_function_uses_pic_offset_table \
1528 || current_function_uses_const_pool) \
1529 && flag_pic && regno == PIC_OFFSET_TABLE_REGNUM)) \
c98f8742
JVA
1530 offset += 4; \
1531 \
1532 (OFFSET) = offset + get_frame_size (); \
1533 \
1534 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1535 (OFFSET) += 4; /* Skip saved PC */ \
1536 } \
1537}
1538\f
1539/* Addressing modes, and classification of registers for them. */
1540
1541/* #define HAVE_POST_INCREMENT */
1542/* #define HAVE_POST_DECREMENT */
1543
1544/* #define HAVE_PRE_DECREMENT */
1545/* #define HAVE_PRE_INCREMENT */
1546
1547/* Macros to check register numbers against specific register classes. */
1548
1549/* These assume that REGNO is a hard or pseudo reg number.
1550 They give nonzero only if REGNO is a hard reg of the suitable class
1551 or a pseudo reg currently allocated to a suitable hard reg.
1552 Since they use reg_renumber, they are safe only once reg_renumber
1553 has been allocated, which happens in local-alloc.c. */
1554
1555#define REGNO_OK_FOR_INDEX_P(REGNO) \
1556 ((REGNO) < STACK_POINTER_REGNUM \
1557 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1558
1559#define REGNO_OK_FOR_BASE_P(REGNO) \
1560 ((REGNO) <= STACK_POINTER_REGNUM \
1561 || (REGNO) == ARG_POINTER_REGNUM \
1562 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1563
1564#define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1565#define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1566
1567/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1568 and check its validity for a certain class.
1569 We have two alternate definitions for each of them.
1570 The usual definition accepts all pseudo regs; the other rejects
1571 them unless they have been allocated suitable hard regs.
1572 The symbol REG_OK_STRICT causes the latter definition to be used.
1573
1574 Most source files want to accept pseudo regs in the hope that
1575 they will get allocated to the class that the insn wants them to be in.
1576 Source files for reload pass need to be strict.
1577 After reload, it makes no difference, since pseudo regs have
1578 been eliminated by then. */
1579
c98f8742 1580
3b3c6a3f
MM
1581/* Non strict versions, pseudos are ok */
1582#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1583 (REGNO (X) < STACK_POINTER_REGNUM \
c98f8742
JVA
1584 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1585
3b3c6a3f
MM
1586#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1587 (REGNO (X) <= STACK_POINTER_REGNUM \
1588 || REGNO (X) == ARG_POINTER_REGNUM \
1589 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1590
3b3c6a3f 1591#define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
c98f8742
JVA
1592 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1593
3b3c6a3f
MM
1594/* Strict versions, hard registers only */
1595#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1596#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1597#define REG_OK_FOR_STRREG_STRICT_P(X) \
c98f8742
JVA
1598 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1599
3b3c6a3f
MM
1600#ifndef REG_OK_STRICT
1601#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1602#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1603#define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1604
1605#else
1606#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1607#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1608#define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
c98f8742
JVA
1609#endif
1610
1611/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1612 that is a valid memory address for an instruction.
1613 The MODE argument is the machine mode for the MEM expression
1614 that wants to use this address.
1615
1616 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1617 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1618
1619 See legitimize_pic_address in i386.c for details as to what
1620 constitutes a legitimate address when -fpic is used. */
1621
1622#define MAX_REGS_PER_ADDRESS 2
1623
6eff269e
BK
1624#define CONSTANT_ADDRESS_P(X) \
1625 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1626 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1627 || GET_CODE (X) == HIGH)
c98f8742
JVA
1628
1629/* Nonzero if the constant value X is a legitimate general operand.
1630 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1631
1632#define LEGITIMATE_CONSTANT_P(X) 1
1633
3b3c6a3f
MM
1634#ifdef REG_OK_STRICT
1635#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1636{ \
1637 if (legitimate_address_p (MODE, X, 1)) \
1638 goto ADDR; \
1639}
c98f8742 1640
3b3c6a3f
MM
1641#else
1642#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
c98f8742 1643{ \
3b3c6a3f 1644 if (legitimate_address_p (MODE, X, 0)) \
c98f8742 1645 goto ADDR; \
c98f8742
JVA
1646}
1647
3b3c6a3f
MM
1648#endif
1649
c98f8742
JVA
1650/* Try machine-dependent ways of modifying an illegitimate address
1651 to be legitimate. If we find one, return the new, valid address.
1652 This macro is used in only one place: `memory_address' in explow.c.
1653
1654 OLDX is the address as it was before break_out_memory_refs was called.
1655 In some cases it is useful to look at this to decide what needs to be done.
1656
1657 MODE and WIN are passed so that this macro can use
1658 GO_IF_LEGITIMATE_ADDRESS.
1659
1660 It is always safe for this macro to do nothing. It exists to recognize
1661 opportunities to optimize the output.
1662
1663 For the 80386, we handle X+REG by loading X into a register R and
1664 using R+REG. R will go in a general reg and indexing will be used.
1665 However, if REG is a broken-out memory address or multiplication,
1666 nothing needs to be done because REG can certainly go in a general reg.
1667
1668 When -fpic is used, special handling is needed for symbolic references.
1669 See comments by legitimize_pic_address in i386.c for details. */
1670
3b3c6a3f
MM
1671#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1672{ \
1673 rtx orig_x = (X); \
1674 (X) = legitimize_address (X, OLDX, MODE); \
1675 if (memory_address_p (MODE, X)) \
1676 goto WIN; \
1677}
c98f8742 1678
d4ba09c0
SC
1679#define REWRITE_ADDRESS(x) rewrite_address(x)
1680
c98f8742
JVA
1681/* Nonzero if the constant value X is a legitimate general operand
1682 when generating PIC code. It is given that flag_pic is on and
1683 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1684
1685#define LEGITIMATE_PIC_OPERAND_P(X) \
1686 (! SYMBOLIC_CONST (X) \
1687 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1688
1689#define SYMBOLIC_CONST(X) \
1690(GET_CODE (X) == SYMBOL_REF \
1691 || GET_CODE (X) == LABEL_REF \
1692 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1693
1694/* Go to LABEL if ADDR (a legitimate address expression)
1695 has an effect that depends on the machine mode it is used for.
1696 On the 80386, only postdecrement and postincrement address depend thus
1697 (the amount of decrement or increment being the length of the operand). */
1698#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1699 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1700\f
1701/* Define this macro if references to a symbol must be treated
1702 differently depending on something about the variable or
1703 function named by the symbol (such as what section it is in).
1704
b4ac57ab 1705 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
c98f8742
JVA
1706 so that we may access it directly in the GOT. */
1707
1708#define ENCODE_SECTION_INFO(DECL) \
1709do \
1710 { \
1711 if (flag_pic) \
1712 { \
b4ac57ab
RS
1713 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1714 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
d4ba09c0
SC
1715 \
1716 if (TARGET_DEBUG_ADDR \
1717 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1718 { \
69d4ca36 1719 fprintf (stderr, "Encode %s, public = %d\n", \
d4ba09c0
SC
1720 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1721 TREE_PUBLIC (DECL)); \
1722 } \
1723 \
b4ac57ab
RS
1724 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1725 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1726 || ! TREE_PUBLIC (DECL)); \
c98f8742
JVA
1727 } \
1728 } \
1729while (0)
d398b3b1
JVA
1730
1731/* Initialize data used by insn expanders. This is called from
1732 init_emit, once for each function, before code is generated.
1733 For 386, clear stack slot assignments remembered from previous
1734 functions. */
1735
1736#define INIT_EXPANDERS clear_386_stack_locals ()
638b724c
MM
1737
1738/* The `FINALIZE_PIC' macro serves as a hook to emit these special
1739 codes once the function is being compiled into assembly code, but
1740 not before. (It is not done before, because in the case of
1741 compiling an inline function, it would lead to multiple PIC
1742 prologues being included in functions which used inline functions
1743 and were compiled to assembly language.) */
1744
1745#define FINALIZE_PIC \
1746do \
1747 { \
1748 extern int current_function_uses_pic_offset_table; \
1749 \
1750 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1751 } \
1752while (0)
1753
b08de47e
MM
1754\f
1755/* If defined, a C expression whose value is nonzero if IDENTIFIER
1756 with arguments ARGS is a valid machine specific attribute for DECL.
1757 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1758
7db4b149
RK
1759#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1760 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
b08de47e
MM
1761
1762/* If defined, a C expression whose value is nonzero if IDENTIFIER
1763 with arguments ARGS is a valid machine specific attribute for TYPE.
1764 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1765
7db4b149
RK
1766#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1767 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
b08de47e
MM
1768
1769/* If defined, a C expression whose value is zero if the attributes on
1770 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1771 two if they are nearly compatible (which causes a warning to be
1772 generated). */
1773
1774#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1775 (i386_comp_type_attributes (TYPE1, TYPE2))
1776
1777/* If defined, a C statement that assigns default attributes to newly
1778 defined TYPE. */
1779
1780/* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1781
1782/* Max number of args passed in registers. If this is more than 3, we will
1783 have problems with ebx (register #4), since it is a caller save register and
1784 is also used as the pic register in ELF. So for now, don't allow more than
1785 3 registers to be passed in registers. */
1786
1787#define REGPARM_MAX 3
1788
c98f8742
JVA
1789\f
1790/* Specify the machine mode that this machine uses
1791 for the index in the tablejump instruction. */
1792#define CASE_VECTOR_MODE Pmode
1793
18543a22
ILT
1794/* Define as C expression which evaluates to nonzero if the tablejump
1795 instruction expects the table to contain offsets from the address of the
1796 table.
1797 Do not define this if the table should contain absolute addresses. */
1798/* #define CASE_VECTOR_PC_RELATIVE 1 */
c98f8742
JVA
1799
1800/* Specify the tree operation to be used to convert reals to integers.
1801 This should be changed to take advantage of fist --wfs ??
1802 */
1803#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1804
1805/* This is the kind of divide that is easiest to do in the general case. */
1806#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1807
1808/* Define this as 1 if `char' should by default be signed; else as 0. */
1809#define DEFAULT_SIGNED_CHAR 1
1810
1811/* Max number of bytes we can move from memory to memory
1812 in one reasonably fast instruction. */
1813#define MOVE_MAX 4
1814
d4ba09c0
SC
1815/* The number of scalar move insns which should be generated instead
1816 of a string move insn or a library call. Increasing the value
1817 will always make code faster, but eventually incurs high cost in
1818 increased code size.
c98f8742 1819
d4ba09c0 1820 If you don't define this, a reasonable default is used.
c98f8742 1821
d4ba09c0
SC
1822 Make this large on i386, since the block move is very inefficient with small
1823 blocks, and the hard register needs of the block move require much reload
1824 work. */
1825
1826#define MOVE_RATIO 5
c98f8742
JVA
1827
1828/* Define if shifts truncate the shift count
1829 which implies one can omit a sign-extension or zero-extension
1830 of a shift count. */
241e1a89 1831/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1832
1833/* #define SHIFT_COUNT_TRUNCATED */
1834
1835/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1836 is done just by pretending it is already truncated. */
1837#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1838
1839/* We assume that the store-condition-codes instructions store 0 for false
1840 and some other value for true. This is the value stored for true. */
1841
1842#define STORE_FLAG_VALUE 1
1843
1844/* When a prototype says `char' or `short', really pass an `int'.
1845 (The 386 can't easily push less than an int.) */
1846
1847#define PROMOTE_PROTOTYPES
1848
1849/* Specify the machine mode that pointers have.
1850 After generation of rtl, the compiler makes no further distinction
1851 between pointers and any other objects of this machine mode. */
1852#define Pmode SImode
1853
1854/* A function address in a call instruction
1855 is a byte address (for indexing purposes)
1856 so give the MEM rtx a byte's mode. */
1857#define FUNCTION_MODE QImode
d4ba09c0
SC
1858\f
1859/* A part of a C `switch' statement that describes the relative costs
1860 of constant RTL expressions. It must contain `case' labels for
1861 expression codes `const_int', `const', `symbol_ref', `label_ref'
1862 and `const_double'. Each case must ultimately reach a `return'
1863 statement to return the relative cost of the use of that kind of
1864 constant value in an expression. The cost may depend on the
1865 precise value of the constant, which is available for examination
1866 in X, and the rtx code of the expression in which it is contained,
1867 found in OUTER_CODE.
1868
1869 CODE is the expression code--redundant, since it can be obtained
1870 with `GET_CODE (X)'. */
c98f8742 1871
3bb22aee 1872#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
c98f8742
JVA
1873 case CONST_INT: \
1874 case CONST: \
1875 case LABEL_REF: \
1876 case SYMBOL_REF: \
76565a24 1877 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
d4ba09c0 1878 \
c98f8742
JVA
1879 case CONST_DOUBLE: \
1880 { \
7488be4e
JVA
1881 int code; \
1882 if (GET_MODE (RTX) == VOIDmode) \
1883 return 2; \
d4ba09c0 1884 \
7488be4e 1885 code = standard_80387_constant_p (RTX); \
c98f8742
JVA
1886 return code == 1 ? 0 : \
1887 code == 2 ? 1 : \
1888 2; \
3bb22aee 1889 }
c98f8742 1890
76565a24
SC
1891/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
1892#define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
1893
d4ba09c0
SC
1894/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1895 This can be used, for example, to indicate how costly a multiply
1896 instruction is. In writing this macro, you can use the construct
1897 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1898 instructions. OUTER_CODE is the code of the expression in which X
1899 is contained.
1900
1901 This macro is optional; do not define it if the default cost
1902 assumptions are adequate for the target machine. */
1903
1904#define RTX_COSTS(X,CODE,OUTER_CODE) \
1905 case ASHIFT: \
1906 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1907 && GET_MODE (XEXP (X, 0)) == SImode) \
1908 { \
1909 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1910 \
1911 if (value == 1) \
66050251
SC
1912 return COSTS_N_INSNS (ix86_cost->add) \
1913 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
d4ba09c0
SC
1914 \
1915 if (value == 2 || value == 3) \
66050251
SC
1916 return COSTS_N_INSNS (ix86_cost->lea) \
1917 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
d4ba09c0
SC
1918 } \
1919 /* fall through */ \
1920 \
1921 case ROTATE: \
1922 case ASHIFTRT: \
1923 case LSHIFTRT: \
1924 case ROTATERT: \
76565a24
SC
1925 if (GET_MODE (XEXP (X, 0)) == DImode) \
1926 { \
1927 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1928 if (INTVAL (XEXP (X, 1)) > 32) \
1929 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
1930 else \
1931 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
1932 return ((GET_CODE (XEXP (X, 1)) == AND \
1933 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
1934 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
66050251 1935 + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
76565a24
SC
1936 } \
1937 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
1938 ? ix86_cost->shift_const \
1939 : ix86_cost->shift_var) \
66050251 1940 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
d4ba09c0
SC
1941 \
1942 case MULT: \
1943 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1944 { \
1945 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1946 int nbits = 0; \
1947 \
76565a24 1948 if (value == 2) \
66050251
SC
1949 return COSTS_N_INSNS (ix86_cost->add) \
1950 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
76565a24 1951 if (value == 4 || value == 8) \
66050251
SC
1952 return COSTS_N_INSNS (ix86_cost->lea) \
1953 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
76565a24 1954 \
d4ba09c0
SC
1955 while (value != 0) \
1956 { \
1957 nbits++; \
1958 value >>= 1; \
1959 } \
1960 \
76565a24
SC
1961 if (nbits == 1) \
1962 return COSTS_N_INSNS (ix86_cost->shift_const) \
66050251 1963 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
76565a24 1964 \
d4ba09c0 1965 return COSTS_N_INSNS (ix86_cost->mult_init \
76565a24 1966 + nbits * ix86_cost->mult_bit) \
66050251 1967 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
d4ba09c0
SC
1968 } \
1969 \
1970 else /* This is arbitrary */ \
76565a24
SC
1971 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
1972 + 7 * ix86_cost->mult_bit); \
d4ba09c0
SC
1973 \
1974 case DIV: \
1975 case UDIV: \
1976 case MOD: \
1977 case UMOD: \
76565a24 1978 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
d4ba09c0
SC
1979 \
1980 case PLUS: \
1981 if (GET_CODE (XEXP (X, 0)) == REG \
1982 && GET_MODE (XEXP (X, 0)) == SImode \
1983 && GET_CODE (XEXP (X, 1)) == PLUS) \
1984 return COSTS_N_INSNS (ix86_cost->lea); \
1985 \
1986 /* fall through */ \
1987 case AND: \
1988 case IOR: \
1989 case XOR: \
1990 case MINUS: \
76565a24
SC
1991 if (GET_MODE (X) == DImode) \
1992 return COSTS_N_INSNS (ix86_cost->add) * 2 \
66050251
SC
1993 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
1994 << (GET_MODE (XEXP (X, 0)) != DImode)) \
1995 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
1996 << (GET_MODE (XEXP (X, 1)) != DImode)); \
d4ba09c0
SC
1997 case NEG: \
1998 case NOT: \
76565a24
SC
1999 if (GET_MODE (X) == DImode) \
2000 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
2001 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
d4ba09c0
SC
2002
2003
2004/* An expression giving the cost of an addressing mode that contains
2005 ADDRESS. If not defined, the cost is computed from the ADDRESS
2006 expression and the `CONST_COSTS' values.
2007
2008 For most CISC machines, the default cost is a good approximation
2009 of the true cost of the addressing mode. However, on RISC
2010 machines, all instructions normally have the same length and
2011 execution time. Hence all addresses will have equal costs.
2012
2013 In cases where more than one form of an address is known, the form
2014 with the lowest cost will be used. If multiple forms have the
2015 same, lowest, cost, the one that is the most complex will be used.
2016
2017 For example, suppose an address that is equal to the sum of a
2018 register and a constant is used twice in the same basic block.
2019 When this macro is not defined, the address will be computed in a
2020 register and memory references will be indirect through that
2021 register. On machines where the cost of the addressing mode
2022 containing the sum is no higher than that of a simple indirect
2023 reference, this will produce an additional instruction and
2024 possibly require an additional register. Proper specification of
2025 this macro eliminates this overhead for such machines.
2026
2027 Similar use of this macro is made in strength reduction of loops.
2028
2029 ADDRESS need not be valid as an address. In such a case, the cost
2030 is not relevant and can be any value; invalid addresses need not be
2031 assigned a different cost.
2032
2033 On machines where an address involving more than one register is as
2034 cheap as an address computation involving only one register,
2035 defining `ADDRESS_COST' to reflect this can cause two registers to
2036 be live over a region of code where only one would have been if
2037 `ADDRESS_COST' were not defined in that manner. This effect should
2038 be considered in the definition of this macro. Equivalent costs
2039 should probably only be given to addresses with different numbers
2040 of registers on machines with lots of registers.
2041
2042 This macro will normally either not be defined or be defined as a
2043 constant.
c98f8742
JVA
2044
2045 For i386, it is better to use a complex address than let gcc copy
2046 the address into a reg and make a new pseudo. But not if the address
2047 requires to two regs - that would mean more pseudos with longer
2048 lifetimes. */
2049
2050#define ADDRESS_COST(RTX) \
2051 ((CONSTANT_P (RTX) \
2052 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
2053 && REG_P (XEXP (RTX, 0)))) ? 0 \
2054 : REG_P (RTX) ? 1 \
2055 : 2)
d4ba09c0
SC
2056
2057/* A C expression for the cost of moving data of mode M between a
2058 register and memory. A value of 2 is the default; this cost is
2059 relative to those in `REGISTER_MOVE_COST'.
2060
2061 If moving between registers and memory is more expensive than
2062 between two registers, you should define this macro to express the
2063 relative cost.
2064
2065 On the i386, copying between floating-point and fixed-point
2066 registers is expensive. */
2067
2068#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2069 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2070 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2071 : 2)
2072
2073
2074/* A C expression for the cost of moving data of mode M between a
2075 register and memory. A value of 2 is the default; this cost is
2076 relative to those in `REGISTER_MOVE_COST'.
2077
2078 If moving between registers and memory is more expensive than
2079 between two registers, you should define this macro to express the
2080 relative cost. */
2081
2082/* #define MEMORY_MOVE_COST(M) 2 */
2083
2084/* A C expression for the cost of a branch instruction. A value of 1
2085 is the default; other values are interpreted relative to that. */
2086
e2a606cb 2087#define BRANCH_COST i386_branch_cost
d4ba09c0
SC
2088
2089/* Define this macro as a C expression which is nonzero if accessing
2090 less than a word of memory (i.e. a `char' or a `short') is no
2091 faster than accessing a word of memory, i.e., if such access
2092 require more than one instruction or if there is no difference in
2093 cost between byte and (aligned) word loads.
2094
2095 When this macro is not defined, the compiler will access a field by
2096 finding the smallest containing object; when it is defined, a
2097 fullword load will be used if alignment permits. Unless bytes
2098 accesses are faster than word accesses, using word accesses is
2099 preferable since it may eliminate subsequent memory access if
2100 subsequent accesses occur to other fields in the same word of the
2101 structure, but to different bytes. */
2102
2103#define SLOW_BYTE_ACCESS 0
2104
2105/* Nonzero if access to memory by shorts is slow and undesirable. */
2106#define SLOW_SHORT_ACCESS 0
2107
2108/* Define this macro if zero-extension (of a `char' or `short' to an
2109 `int') can be done faster if the destination is a register that is
2110 known to be zero.
2111
2112 If you define this macro, you must have instruction patterns that
2113 recognize RTL structures like this:
2114
2115 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2116
2117 and likewise for `HImode'. */
2118
2119/* #define SLOW_ZERO_EXTEND */
2120
2121/* Define this macro to be the value 1 if unaligned accesses have a
2122 cost many times greater than aligned accesses, for example if they
2123 are emulated in a trap handler.
2124
2125 When this macro is non-zero, the compiler will act as if
2126 `STRICT_ALIGNMENT' were non-zero when generating code for block
2127 moves. This can cause significantly more instructions to be
2128 produced. Therefore, do not set this macro non-zero if unaligned
2129 accesses only add a cycle or two to the time for a memory access.
2130
2131 If the value of this macro is always zero, it need not be defined. */
2132
2133/* #define SLOW_UNALIGNED_ACCESS 0 */
2134
2135/* Define this macro to inhibit strength reduction of memory
2136 addresses. (On some machines, such strength reduction seems to do
2137 harm rather than good.) */
2138
2139/* #define DONT_REDUCE_ADDR */
2140
2141/* Define this macro if it is as good or better to call a constant
2142 function address than to call an address kept in a register.
2143
2144 Desirable on the 386 because a CALL with a constant address is
2145 faster than one with a register address. */
2146
2147#define NO_FUNCTION_CSE
2148
2149/* Define this macro if it is as good or better for a function to call
2150 itself with an explicit address than to call an address kept in a
2151 register. */
2152
2153#define NO_RECURSIVE_FUNCTION_CSE
2154
2155/* A C statement (sans semicolon) to update the integer variable COST
2156 based on the relationship between INSN that is dependent on
2157 DEP_INSN through the dependence LINK. The default is to make no
2158 adjustment to COST. This can be used for example to specify to
2159 the scheduler that an output- or anti-dependence does not incur
2160 the same cost as a data-dependence. */
2161
2162#define ADJUST_COST(insn,link,dep_insn,cost) \
2163 { \
2164 rtx next_inst; \
2165 if (GET_CODE (dep_insn) == CALL_INSN) \
2166 (cost) = 0; \
2167 \
2168 else if (GET_CODE (dep_insn) == INSN \
2169 && GET_CODE (PATTERN (dep_insn)) == SET \
2170 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
2171 && GET_CODE (insn) == INSN \
2172 && GET_CODE (PATTERN (insn)) == SET \
2173 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
2174 SET_SRC (PATTERN (insn)))) \
2175 { \
2176 (cost) = 0; \
2177 } \
2178 \
2179 else if (GET_CODE (insn) == JUMP_INSN) \
2180 { \
2181 (cost) = 0; \
2182 } \
2183 \
2184 if (TARGET_PENTIUM) \
2185 { \
2186 if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
2187 && !is_fp_dest (dep_insn)) \
2188 { \
2189 (cost) = 0; \
2190 } \
2191 \
2192 if (agi_dependent (insn, dep_insn)) \
2193 { \
2194 (cost) = 3; \
2195 } \
2196 else if (GET_CODE (insn) == INSN \
2197 && GET_CODE (PATTERN (insn)) == SET \
2198 && SET_DEST (PATTERN (insn)) == cc0_rtx \
2199 && (next_inst = next_nonnote_insn (insn)) \
2200 && GET_CODE (next_inst) == JUMP_INSN) \
2201 { /* compare probably paired with jump */ \
2202 (cost) = 0; \
2203 } \
2204 } \
2205 else \
2206 if (!is_fp_dest (dep_insn)) \
2207 { \
2208 if(!agi_dependent (insn, dep_insn)) \
2209 (cost) = 0; \
2210 else if (TARGET_486) \
2211 (cost) = 2; \
2212 } \
2213 else \
2214 if (is_fp_store (insn) && is_fp_insn (dep_insn) \
2215 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
2216 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
2217 && (GET_CODE (NEXT_INSN (insn)) == INSN) \
2218 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
2219 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
2220 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
2221 == NOTE_INSN_LOOP_END)) \
2222 { \
2223 (cost) = 3; \
2224 } \
2225 }
2226
2227
2228#define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2229{ \
2230 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2231 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2232 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2233 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2234 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2235 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2236 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2237 == NOTE_INSN_LOOP_END)) \
2238 { \
2239 (blockage) = 3; \
2240 } \
2241}
2242
c98f8742 2243\f
c572e5ba
JVA
2244/* Add any extra modes needed to represent the condition code.
2245
2246 For the i386, we need separate modes when floating-point equality
2247 comparisons are being done. */
2248
2249#define EXTRA_CC_MODES CCFPEQmode
2250
2251/* Define the names for the modes specified above. */
2252#define EXTRA_CC_NAMES "CCFPEQ"
2253
2254/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2255 return the mode to be used for the comparison.
2256
2257 For floating-point equality comparisons, CCFPEQmode should be used.
2258 VOIDmode should be used in all other cases. */
2259
b565a316 2260#define SELECT_CC_MODE(OP,X,Y) \
c572e5ba 2261 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
4cbb525c 2262 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
c572e5ba
JVA
2263
2264/* Define the information needed to generate branch and scc insns. This is
2265 stored from the compare operation. Note that we can't use "rtx" here
2266 since it hasn't been defined! */
2267
c572e5ba
JVA
2268extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
2269
c98f8742
JVA
2270/* Tell final.c how to eliminate redundant test instructions. */
2271
2272/* Here we define machine-dependent flags and fields in cc_status
2273 (see `conditions.h'). */
2274
62acf5fd 2275/* Set if the cc value was actually from the 80387 and
d4ba09c0
SC
2276 we are testing eax directly (i.e. no sahf) */
2277#define CC_TEST_AX 020000
2278
c98f8742
JVA
2279/* Set if the cc value is actually in the 80387, so a floating point
2280 conditional branch must be output. */
2281#define CC_IN_80387 04000
2282
2283/* Set if the CC value was stored in a nonstandard way, so that
2284 the state of equality is indicated by zero in the carry bit. */
2285#define CC_Z_IN_NOT_C 010000
2286
62acf5fd
SC
2287/* Set if the CC value was actually from the 80387 and loaded directly
2288 into the eflags instead of via eax/sahf. */
2289#define CC_FCOMI 040000
2290
c98f8742
JVA
2291/* Store in cc_status the expressions
2292 that the condition codes will describe
2293 after execution of an instruction whose pattern is EXP.
2294 Do not alter them if the instruction would not alter the cc's. */
2295
2296#define NOTICE_UPDATE_CC(EXP, INSN) \
2297 notice_update_cc((EXP))
2298
2299/* Output a signed jump insn. Use template NORMAL ordinarily, or
2300 FLOAT following a floating point comparison.
2301 Use NO_OV following an arithmetic insn that set the cc's
2302 before a test insn that was deleted.
2303 NO_OV may be zero, meaning final should reinsert the test insn
2304 because the jump cannot be handled properly without it. */
2305
2306#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2307{ \
2308 if (cc_prev_status.flags & CC_IN_80387) \
2309 return FLOAT; \
2310 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2311 return NO_OV; \
2312 return NORMAL; \
2313}
2314\f
2315/* Control the assembler format that we output, to the extent
2316 this does not vary between assemblers. */
2317
2318/* How to refer to registers in assembler output.
2319 This sequence is indexed by compiler's hard-register-number (see above). */
2320
2321/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2322 For non floating point regs, the following are the HImode names.
2323
2324 For float regs, the stack top is sometimes referred to as "%st(0)"
9e06e321 2325 instead of just "%st". PRINT_REG handles this with the "y" code. */
c98f8742
JVA
2326
2327#define HI_REGISTER_NAMES \
2328{"ax","dx","cx","bx","si","di","bp","sp", \
2329 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2330
2331#define REGISTER_NAMES HI_REGISTER_NAMES
2332
2333/* Table of additional register names to use in user input. */
2334
2335#define ADDITIONAL_REGISTER_NAMES \
2336{ "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \
2337 "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \
2338 "al", 0, "dl", 1, "cl", 2, "bl", 3, \
2339 "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
2340
2341/* Note we are omitting these since currently I don't know how
2342to get gcc to use these, since they want the same but different
2343number as al, and ax.
2344*/
2345
b4ac57ab 2346/* note the last four are not really qi_registers, but
c98f8742
JVA
2347 the md will have to never output movb into one of them
2348 only a movw . There is no movb into the last four regs */
2349
2350#define QI_REGISTER_NAMES \
2351{"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2352
2353/* These parallel the array above, and can be used to access bits 8:15
2354 of regs 0 through 3. */
2355
2356#define QI_HIGH_REGISTER_NAMES \
2357{"ah", "dh", "ch", "bh", }
2358
2359/* How to renumber registers for dbx and gdb. */
2360
2361/* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2362#define DBX_REGISTER_NUMBER(n) \
2363((n) == 0 ? 0 : \
2364 (n) == 1 ? 2 : \
2365 (n) == 2 ? 1 : \
2366 (n) == 3 ? 3 : \
2367 (n) == 4 ? 6 : \
2368 (n) == 5 ? 7 : \
2369 (n) == 6 ? 4 : \
2370 (n) == 7 ? 5 : \
2371 (n) + 4)
2372
469ac993
JM
2373/* Before the prologue, RA is at 0(%esp). */
2374#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2375 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
469ac993 2376
e414ab29
RH
2377/* After the prologue, RA is at -4(AP) in the current frame. */
2378#define RETURN_ADDR_RTX(COUNT, FRAME) \
2379 ((COUNT) == 0 \
f64cecad
JC
2380 ? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT(-4)))\
2381 : gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, (FRAME), GEN_INT(4))))
e414ab29 2382
469ac993
JM
2383/* PC is dbx register 8; let's use that column for RA. */
2384#define DWARF_FRAME_RETURN_COLUMN 8
2385
a6ab3aad
JM
2386/* Before the prologue, the top of the frame is at 4(%esp). */
2387#define INCOMING_FRAME_SP_OFFSET 4
2388
c98f8742
JVA
2389/* This is how to output the definition of a user-level label named NAME,
2390 such as the label on a static function or variable NAME. */
2391
2392#define ASM_OUTPUT_LABEL(FILE,NAME) \
2393 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2394
2395/* This is how to output an assembler line defining a `double' constant. */
2396
0038aea6
JVA
2397#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2398do { long l[2]; \
2399 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
f64cecad 2400 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
0038aea6 2401 } while (0)
c98f8742 2402
0038aea6
JVA
2403/* This is how to output a `long double' extended real constant. */
2404
2405#undef ASM_OUTPUT_LONG_DOUBLE
2406#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2407do { long l[3]; \
2408 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
f64cecad 2409 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
0038aea6 2410 } while (0)
c98f8742
JVA
2411
2412/* This is how to output an assembler line defining a `float' constant. */
2413
0038aea6
JVA
2414#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2415do { long l; \
2416 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
f64cecad 2417 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
c98f8742
JVA
2418 } while (0)
2419
c98f8742
JVA
2420/* Store in OUTPUT a string (made with alloca) containing
2421 an assembler-name for a local static variable named NAME.
2422 LABELNO is an integer which is different for each call. */
2423
2424#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2425( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2426 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2427
2428
2429
2430/* This is how to output an assembler line defining an `int' constant. */
2431
2432#define ASM_OUTPUT_INT(FILE,VALUE) \
2433( fprintf (FILE, "%s ", ASM_LONG), \
2434 output_addr_const (FILE,(VALUE)), \
2435 putc('\n',FILE))
2436
2437/* Likewise for `char' and `short' constants. */
2438/* is this supposed to do align too?? */
2439
2440#define ASM_OUTPUT_SHORT(FILE,VALUE) \
2441( fprintf (FILE, "%s ", ASM_SHORT), \
2442 output_addr_const (FILE,(VALUE)), \
2443 putc('\n',FILE))
2444
2445/*
2446#define ASM_OUTPUT_SHORT(FILE,VALUE) \
2447( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2448 output_addr_const (FILE,(VALUE)), \
2449 fputs (",", FILE), \
2450 output_addr_const (FILE,(VALUE)), \
2451 fputs (" >> 8\n",FILE))
2452*/
2453
2454
2455#define ASM_OUTPUT_CHAR(FILE,VALUE) \
2456( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2457 output_addr_const (FILE, (VALUE)), \
2458 putc ('\n', FILE))
2459
2460/* This is how to output an assembler line for a numeric constant byte. */
2461
2462#define ASM_OUTPUT_BYTE(FILE,VALUE) \
2463 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2464
2465/* This is how to output an insn to push a register on the stack.
2466 It need not be very fast code. */
2467
2468#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
b078c5c6 2469 fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
c98f8742
JVA
2470
2471/* This is how to output an insn to pop a register from the stack.
2472 It need not be very fast code. */
2473
2474#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
b078c5c6 2475 fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
c98f8742
JVA
2476
2477/* This is how to output an element of a case-vector that is absolute.
2478 */
2479
2480#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2481 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2482
2483/* This is how to output an element of a case-vector that is relative.
2484 We don't use these on the 386 yet, because the ATT assembler can't do
2485 forward reference the differences.
2486 */
2487
2488#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2489 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2490
2491/* Define the parentheses used to group arithmetic operations
2492 in assembler code. */
2493
2494#define ASM_OPEN_PAREN ""
2495#define ASM_CLOSE_PAREN ""
2496
2497/* Define results of standard character escape sequences. */
2498#define TARGET_BELL 007
2499#define TARGET_BS 010
2500#define TARGET_TAB 011
2501#define TARGET_NEWLINE 012
2502#define TARGET_VT 013
2503#define TARGET_FF 014
2504#define TARGET_CR 015
74b42c8b 2505\f
c98f8742
JVA
2506/* Print operand X (an rtx) in assembler syntax to file FILE.
2507 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2508 The CODE z takes the size of operand from the following digit, and
2509 outputs b,w,or l respectively.
2510
2511 On the 80386, we use several such letters:
2512 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
0038aea6 2513 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
c98f8742
JVA
2514 R -- print the prefix for register names.
2515 z -- print the opcode suffix for the size of the current operand.
2516 * -- print a star (in certain assembler syntax)
2517 w -- print the operand as if it's a "word" (HImode) even if it isn't.
2518 b -- print the operand as if it's a byte (QImode) even if it isn't.
2519 c -- don't print special prefixes before constant operands. */
2520
2521#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2522 ((CODE) == '*')
2523
74b42c8b
RS
2524/* Print the name of a register based on its machine mode and number.
2525 If CODE is 'w', pretend the mode is HImode.
2526 If CODE is 'b', pretend the mode is QImode.
2527 If CODE is 'k', pretend the mode is SImode.
2528 If CODE is 'h', pretend the reg is the `high' byte register.
2529 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2530
aa3e8d2a
JVA
2531extern char *hi_reg_name[];
2532extern char *qi_reg_name[];
2533extern char *qi_high_reg_name[];
2534
74b42c8b 2535#define PRINT_REG(X, CODE, FILE) \
aa3e8d2a
JVA
2536 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2537 abort (); \
74b42c8b
RS
2538 fprintf (FILE, "%s", RP); \
2539 switch ((CODE == 'w' ? 2 \
2540 : CODE == 'b' ? 1 \
2541 : CODE == 'k' ? 4 \
2542 : CODE == 'y' ? 3 \
2543 : CODE == 'h' ? 0 \
2544 : GET_MODE_SIZE (GET_MODE (X)))) \
2545 { \
2546 case 3: \
2547 if (STACK_TOP_P (X)) \
aa3e8d2a
JVA
2548 { \
2549 fputs ("st(0)", FILE); \
2550 break; \
2551 } \
2552 case 4: \
2553 case 8: \
0038aea6 2554 case 12: \
9e06e321 2555 if (! FP_REG_P (X)) fputs ("e", FILE); \
74b42c8b
RS
2556 case 2: \
2557 fputs (hi_reg_name[REGNO (X)], FILE); \
2558 break; \
2559 case 1: \
2560 fputs (qi_reg_name[REGNO (X)], FILE); \
2561 break; \
2562 case 0: \
2563 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2564 break; \
2565 } \
2566 } while (0)
2567
c98f8742
JVA
2568#define PRINT_OPERAND(FILE, X, CODE) \
2569 print_operand (FILE, X, CODE)
c98f8742
JVA
2570
2571#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2572 print_operand_address (FILE, ADDR)
2573
aa3e8d2a
JVA
2574/* Print the name of a register for based on its machine mode and number.
2575 This macro is used to print debugging output.
2576 This macro is different from PRINT_REG in that it may be used in
2577 programs that are not linked with aux-output.o. */
2578
2579#define DEBUG_PRINT_REG(X, CODE, FILE) \
2580 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2581 static char *qi_name[] = QI_REGISTER_NAMES; \
7488be4e 2582 fprintf (FILE, "%d %s", REGNO (X), RP); \
aa3e8d2a
JVA
2583 if (REGNO (X) == ARG_POINTER_REGNUM) \
2584 { fputs ("argp", FILE); break; } \
2585 if (STACK_TOP_P (X)) \
2586 { fputs ("st(0)", FILE); break; } \
b0ceea8c
RK
2587 if (FP_REG_P (X)) \
2588 { fputs (hi_name[REGNO(X)], FILE); break; } \
aa3e8d2a
JVA
2589 switch (GET_MODE_SIZE (GET_MODE (X))) \
2590 { \
b0ceea8c
RK
2591 default: \
2592 fputs ("e", FILE); \
aa3e8d2a
JVA
2593 case 2: \
2594 fputs (hi_name[REGNO (X)], FILE); \
2595 break; \
2596 case 1: \
2597 fputs (qi_name[REGNO (X)], FILE); \
2598 break; \
2599 } \
2600 } while (0)
2601
c98f8742
JVA
2602/* Output the prefix for an immediate operand, or for an offset operand. */
2603#define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2604#define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2605
2606/* Routines in libgcc that return floats must return them in an fp reg,
2607 just as other functions do which return such values.
2608 These macros make that happen. */
2609
2610#define FLOAT_VALUE_TYPE float
2611#define INTIFY(FLOATVAL) FLOATVAL
2612
2613/* Nonzero if INSN magically clobbers register REGNO. */
2614
2615/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2616 (FP_REGNO_P (REGNO) \
2617 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2618*/
2619
2620/* a letter which is not needed by the normal asm syntax, which
2621 we can use for operand syntax in the extended asm */
2622
2623#define ASM_OPERAND_LETTER '#'
c98f8742 2624#define RET return ""
f64cecad 2625#define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
d4ba09c0
SC
2626\f
2627/* Helper macros to expand a binary/unary operator if needed */
2628#define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2629do { \
2630 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2631 FAIL; \
2632} while (0)
2633
2634#define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2635do { \
2636 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2637 FAIL; \
2638} while (0)
2639
c98f8742 2640\f
3b3c6a3f 2641/* Functions in i386.c */
f5316dfe
MM
2642extern void override_options ();
2643extern void order_regs_for_local_alloc ();
d4ba09c0 2644extern char *output_strlen_unroll ();
5bc7cd8e
SC
2645extern struct rtx_def *i386_sext16_if_const ();
2646extern int i386_aligned_p ();
2647extern int i386_cc_probably_useless_p ();
b08de47e
MM
2648extern int i386_valid_decl_attribute_p ();
2649extern int i386_valid_type_attribute_p ();
2650extern int i386_return_pops_args ();
2651extern int i386_comp_type_attributes ();
2652extern void init_cumulative_args ();
2653extern void function_arg_advance ();
2654extern struct rtx_def *function_arg ();
2655extern int function_arg_partial_nregs ();
f7746310 2656extern char *output_strlen_unroll ();
3b3c6a3f
MM
2657extern void output_op_from_reg ();
2658extern void output_to_reg ();
2659extern char *singlemove_string ();
2660extern char *output_move_double ();
b840bfb0
MM
2661extern char *output_move_memory ();
2662extern char *output_move_pushmem ();
3b3c6a3f
MM
2663extern int standard_80387_constant_p ();
2664extern char *output_move_const_single ();
2665extern int symbolic_operand ();
2666extern int call_insn_operand ();
2667extern int expander_call_insn_operand ();
2668extern int symbolic_reference_mentioned_p ();
d4ba09c0
SC
2669extern int ix86_expand_binary_operator ();
2670extern int ix86_binary_operator_ok ();
2671extern int ix86_expand_unary_operator ();
2672extern int ix86_unary_operator_ok ();
3b3c6a3f
MM
2673extern void emit_pic_move ();
2674extern void function_prologue ();
2675extern int simple_386_epilogue ();
2676extern void function_epilogue ();
2677extern int legitimate_address_p ();
2678extern struct rtx_def *legitimize_pic_address ();
2679extern struct rtx_def *legitimize_address ();
2680extern void print_operand ();
2681extern void print_operand_address ();
2682extern void notice_update_cc ();
2683extern void split_di ();
2684extern int binary_387_op ();
2685extern int shift_op ();
2686extern int VOIDmode_compare_op ();
2687extern char *output_387_binary_op ();
2688extern char *output_fix_trunc ();
2689extern char *output_float_compare ();
2690extern char *output_fp_cc0_set ();
2691extern void save_386_machine_status ();
2692extern void restore_386_machine_status ();
2693extern void clear_386_stack_locals ();
2694extern struct rtx_def *assign_386_stack_local ();
d4ba09c0
SC
2695extern int is_mul ();
2696extern int is_div ();
2697extern int last_to_set_cc ();
2698extern int doesnt_set_condition_code ();
2699extern int sets_condition_code ();
2700extern int str_immediate_operand ();
2701extern int is_fp_insn ();
2702extern int is_fp_dest ();
2703extern int is_fp_store ();
2704extern int agi_dependent ();
2705extern int reg_mentioned_in_mem ();
2706
2707#ifdef NOTYET
2708extern struct rtx_def *copy_all_rtx ();
2709extern void rewrite_address ();
2710#endif
3b3c6a3f 2711
f5316dfe 2712/* Variables in i386.c */
241e1a89 2713extern char *ix86_cpu_string; /* for -mcpu=<xxx> */
bcd86433 2714extern char *ix86_arch_string; /* for -march=<xxx> */
f5316dfe 2715extern char *i386_reg_alloc_order; /* register allocation order */
b08de47e
MM
2716extern char *i386_regparm_string; /* # registers to use to pass args */
2717extern char *i386_align_loops_string; /* power of two alignment for loops */
2718extern char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
2719extern char *i386_align_funcs_string; /* power of two alignment for functions */
e2a606cb 2720extern char *i386_branch_cost_string; /* values 1-5: see jump.c */
b08de47e
MM
2721extern int i386_regparm; /* i386_regparm_string as a number */
2722extern int i386_align_loops; /* power of two alignment for loops */
2723extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
2724extern int i386_align_funcs; /* power of two alignment for functions */
e2a606cb 2725extern int i386_branch_cost; /* values 1-5: see jump.c */
f5316dfe
MM
2726extern char *hi_reg_name[]; /* names for 16 bit regs */
2727extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
2728extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
2729extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
2730extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
2731extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
2732
3b3c6a3f 2733/* External variables used */
d4ba09c0
SC
2734extern int optimize; /* optimization level */
2735extern int obey_regdecls; /* TRUE if stupid register allocation */
3b3c6a3f
MM
2736
2737/* External functions used */
2738extern struct rtx_def *force_operand ();
d4ba09c0 2739
3b3c6a3f 2740\f
c98f8742
JVA
2741/*
2742Local variables:
2743version-control: t
2744End:
2745*/