]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
i386.c (return_in_memory_32): Add ATTRIBUTE_UNUSED.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2f83c7d6
NC
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
0a1c5e55 49#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
50#define TARGET_SSE5 OPTION_ISA_SSE5
51#define TARGET_ROUND OPTION_ISA_ROUND
52
53/* SSE5 and SSE4.1 define the same round instructions */
54#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
55#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 56
26b5109f
RS
57#include "config/vxworks-dummy.h"
58
8c996513
JH
59/* Algorithm to expand string function with. */
60enum stringop_alg
61{
62 no_stringop,
63 libcall,
64 rep_prefix_1_byte,
65 rep_prefix_4_byte,
66 rep_prefix_8_byte,
67 loop_1_byte,
68 loop,
69 unrolled_loop
70};
ccf8e764 71
8c996513 72#define NAX_STRINGOP_ALGS 4
ccf8e764 73
8c996513
JH
74/* Specify what algorithm to use for stringops on known size.
75 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
76 known at compile time or estimated via feedback, the SIZE array
77 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 78 means infinity). Corresponding ALG is used then.
8c996513 79 For example initializer:
4f3f76e6 80 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 81 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 82 be used otherwise. */
8c996513
JH
83struct stringop_algs
84{
85 const enum stringop_alg unknown_size;
86 const struct stringop_strategy {
87 const int max;
88 const enum stringop_alg alg;
89 } size [NAX_STRINGOP_ALGS];
90};
91
d4ba09c0
SC
92/* Define the specific costs for a given cpu */
93
94struct processor_costs {
8b60264b
KG
95 const int add; /* cost of an add instruction */
96 const int lea; /* cost of a lea instruction */
97 const int shift_var; /* variable shift costs */
98 const int shift_const; /* constant shift costs */
f676971a 99 const int mult_init[5]; /* cost of starting a multiply
4977bab6 100 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 101 const int mult_bit; /* cost of multiply per each bit set */
f676971a 102 const int divide[5]; /* cost of a divide/mod
4977bab6 103 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
104 int movsx; /* The cost of movsx operation. */
105 int movzx; /* The cost of movzx operation. */
8b60264b
KG
106 const int large_insn; /* insns larger than this cost more */
107 const int move_ratio; /* The threshold of number of scalar
ac775968 108 memory-to-memory move insns. */
8b60264b
KG
109 const int movzbl_load; /* cost of loading using movzbl */
110 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
111 in QImode, HImode and SImode relative
112 to reg-reg move (2). */
8b60264b 113 const int int_store[3]; /* cost of storing integer register
96e7ae40 114 in QImode, HImode and SImode */
8b60264b
KG
115 const int fp_move; /* cost of reg,reg fld/fst */
116 const int fp_load[3]; /* cost of loading FP register
96e7ae40 117 in SFmode, DFmode and XFmode */
8b60264b 118 const int fp_store[3]; /* cost of storing FP register
96e7ae40 119 in SFmode, DFmode and XFmode */
8b60264b
KG
120 const int mmx_move; /* cost of moving MMX register. */
121 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 122 in SImode and DImode */
8b60264b 123 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 124 in SImode and DImode */
8b60264b
KG
125 const int sse_move; /* cost of moving SSE register. */
126 const int sse_load[3]; /* cost of loading SSE register
fa79946e 127 in SImode, DImode and TImode*/
8b60264b 128 const int sse_store[3]; /* cost of storing SSE register
fa79946e 129 in SImode, DImode and TImode*/
8b60264b 130 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 131 integer and vice versa. */
46cb0441
ZD
132 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
133 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
134 const int prefetch_block; /* bytes moved to cache for prefetch. */
135 const int simultaneous_prefetches; /* number of parallel prefetch
136 operations. */
4977bab6 137 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
138 const int fadd; /* cost of FADD and FSUB instructions. */
139 const int fmul; /* cost of FMUL instruction. */
140 const int fdiv; /* cost of FDIV instruction. */
141 const int fabs; /* cost of FABS instruction. */
142 const int fchs; /* cost of FCHS instruction. */
143 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
144 /* Specify what algorithm
145 to use for stringops on unknown size. */
146 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
147 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
148 load and store. */
149 const int scalar_load_cost; /* Cost of scalar load. */
150 const int scalar_store_cost; /* Cost of scalar store. */
151 const int vec_stmt_cost; /* Cost of any vector operation, excluding
152 load, store, vector-to-scalar and
153 scalar-to-vector operation. */
154 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
155 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 156 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
157 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
158 const int vec_store_cost; /* Cost of vector store. */
159 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
160 cost model. */
161 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
162 vectorizer cost model. */
d4ba09c0
SC
163};
164
8b60264b 165extern const struct processor_costs *ix86_cost;
d4ba09c0 166
c98f8742
JVA
167/* Macros used in the machine description to test the flags. */
168
ddd5a7c1 169/* configure can arrange to make this 2, to force a 486. */
e075ae69 170
35b528be 171#ifndef TARGET_CPU_DEFAULT
d326eaf0 172#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 173#endif
35b528be 174
004d3859
GK
175#ifndef TARGET_FPMATH_DEFAULT
176#define TARGET_FPMATH_DEFAULT \
177 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
178#endif
179
6ac49599 180#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 181
5791cc29
JT
182/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
183 compile-time constant. */
184#ifdef IN_LIBGCC2
6ac49599 185#undef TARGET_64BIT
5791cc29
JT
186#ifdef __x86_64__
187#define TARGET_64BIT 1
188#else
189#define TARGET_64BIT 0
190#endif
191#else
6ac49599
RS
192#ifndef TARGET_BI_ARCH
193#undef TARGET_64BIT
67adf6a9 194#if TARGET_64BIT_DEFAULT
0c2dc519
JH
195#define TARGET_64BIT 1
196#else
197#define TARGET_64BIT 0
198#endif
199#endif
5791cc29 200#endif
25f94bb5 201
750054a2
CT
202#define HAS_LONG_COND_BRANCH 1
203#define HAS_LONG_UNCOND_BRANCH 1
204
9e555526
RH
205#define TARGET_386 (ix86_tune == PROCESSOR_I386)
206#define TARGET_486 (ix86_tune == PROCESSOR_I486)
207#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
208#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 209#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
210#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
211#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
212#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
213#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 214#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 215#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 216#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
217#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
218#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
219#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 220#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 221
80fd744f
RH
222/* Feature tests against the various tunings. */
223enum ix86_tune_indices {
224 X86_TUNE_USE_LEAVE,
225 X86_TUNE_PUSH_MEMORY,
226 X86_TUNE_ZERO_EXTEND_WITH_AND,
227 X86_TUNE_USE_BIT_TEST,
228 X86_TUNE_UNROLL_STRLEN,
229 X86_TUNE_DEEP_BRANCH_PREDICTION,
230 X86_TUNE_BRANCH_PREDICTION_HINTS,
231 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 232 X86_TUNE_USE_SAHF,
80fd744f
RH
233 X86_TUNE_MOVX,
234 X86_TUNE_PARTIAL_REG_STALL,
235 X86_TUNE_PARTIAL_FLAG_REG_STALL,
236 X86_TUNE_USE_HIMODE_FIOP,
237 X86_TUNE_USE_SIMODE_FIOP,
238 X86_TUNE_USE_MOV0,
239 X86_TUNE_USE_CLTD,
240 X86_TUNE_USE_XCHGB,
241 X86_TUNE_SPLIT_LONG_MOVES,
242 X86_TUNE_READ_MODIFY_WRITE,
243 X86_TUNE_READ_MODIFY,
244 X86_TUNE_PROMOTE_QIMODE,
245 X86_TUNE_FAST_PREFIX,
246 X86_TUNE_SINGLE_STRINGOP,
247 X86_TUNE_QIMODE_MATH,
248 X86_TUNE_HIMODE_MATH,
249 X86_TUNE_PROMOTE_QI_REGS,
250 X86_TUNE_PROMOTE_HI_REGS,
251 X86_TUNE_ADD_ESP_4,
252 X86_TUNE_ADD_ESP_8,
253 X86_TUNE_SUB_ESP_4,
254 X86_TUNE_SUB_ESP_8,
255 X86_TUNE_INTEGER_DFMODE_MOVES,
256 X86_TUNE_PARTIAL_REG_DEPENDENCY,
257 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
258 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
259 X86_TUNE_SSE_SPLIT_REGS,
260 X86_TUNE_SSE_TYPELESS_STORES,
261 X86_TUNE_SSE_LOAD0_BY_PXOR,
262 X86_TUNE_MEMORY_MISMATCH_STALL,
263 X86_TUNE_PROLOGUE_USING_MOVE,
264 X86_TUNE_EPILOGUE_USING_MOVE,
265 X86_TUNE_SHIFT1,
266 X86_TUNE_USE_FFREEP,
267 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 268 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
269 X86_TUNE_FOUR_JUMP_LIMIT,
270 X86_TUNE_SCHEDULE,
271 X86_TUNE_USE_BT,
272 X86_TUNE_USE_INCDEC,
273 X86_TUNE_PAD_RETURNS,
274 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
275 X86_TUNE_SHORTEN_X87_SSE,
276 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 277 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
278 X86_TUNE_SLOW_IMUL_IMM32_MEM,
279 X86_TUNE_SLOW_IMUL_IMM8,
280 X86_TUNE_MOVE_M1_VIA_OR,
281 X86_TUNE_NOT_UNPAIRABLE,
282 X86_TUNE_NOT_VECTORMODE,
4e9d897d 283 X86_TUNE_USE_VECTOR_CONVERTS,
80fd744f
RH
284
285 X86_TUNE_LAST
286};
287
288extern unsigned int ix86_tune_features[X86_TUNE_LAST];
289
290#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
291#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
292#define TARGET_ZERO_EXTEND_WITH_AND \
293 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
294#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
295#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
296#define TARGET_DEEP_BRANCH_PREDICTION \
297 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
298#define TARGET_BRANCH_PREDICTION_HINTS \
299 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
300#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
301#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
302#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
303#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
304#define TARGET_PARTIAL_FLAG_REG_STALL \
305 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
306#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
307#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
308#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
309#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
310#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
311#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
312#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
313#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
314#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
315#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
316#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
317#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
318#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
319#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
320#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
321#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
322#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
323#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
324#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
325#define TARGET_INTEGER_DFMODE_MOVES \
326 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
327#define TARGET_PARTIAL_REG_DEPENDENCY \
328 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
329#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
330 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
331#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
332 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
333#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
334#define TARGET_SSE_TYPELESS_STORES \
335 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
336#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
337#define TARGET_MEMORY_MISMATCH_STALL \
338 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
339#define TARGET_PROLOGUE_USING_MOVE \
340 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
341#define TARGET_EPILOGUE_USING_MOVE \
342 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
343#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
344#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
345#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
346#define TARGET_INTER_UNIT_CONVERSIONS\
347 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
348#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
349#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
350#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
351#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
352#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
353#define TARGET_EXT_80387_CONSTANTS \
354 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
355#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
356#define TARGET_AVOID_VECTOR_DECODE \
357 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
358#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
359 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
360#define TARGET_SLOW_IMUL_IMM32_MEM \
361 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
362#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
363#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
364#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
365#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
4e9d897d 366#define TARGET_USE_VECTOR_CONVERTS ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
80fd744f
RH
367
368/* Feature tests against the various architecture variations. */
369enum ix86_arch_indices {
370 X86_ARCH_CMOVE, /* || TARGET_SSE */
371 X86_ARCH_CMPXCHG,
372 X86_ARCH_CMPXCHG8B,
373 X86_ARCH_XADD,
374 X86_ARCH_BSWAP,
375
376 X86_ARCH_LAST
377};
4f3f76e6 378
80fd744f
RH
379extern unsigned int ix86_arch_features[X86_ARCH_LAST];
380
381#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
382#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
383#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
384#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
385#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
386
387#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
388
389extern int x86_prefetch_sse;
0a1c5e55
UB
390
391#define TARGET_ABM x86_abm
392#define TARGET_CMPXCHG16B x86_cmpxchg16b
393#define TARGET_POPCNT x86_popcnt
80fd744f 394#define TARGET_PREFETCH_SSE x86_prefetch_sse
0a1c5e55 395#define TARGET_SAHF x86_sahf
6b889d89 396#define TARGET_RECIP x86_recip
04e1d06b 397#define TARGET_FUSED_MADD x86_fused_muladd
8b96a312
L
398#define TARGET_AES (TARGET_SSE2 && x86_aes)
399#define TARGET_PCLMUL (TARGET_SSE2 && x86_pclmul)
80fd744f 400
80fd744f
RH
401#define ASSEMBLER_DIALECT (ix86_asm_dialect)
402
403#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
404#define TARGET_MIX_SSE_I387 \
405 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
406
407#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
408#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
409#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
410#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 411
0a1c5e55
UB
412extern int ix86_isa_flags;
413
67adf6a9
RH
414#ifndef TARGET_64BIT_DEFAULT
415#define TARGET_64BIT_DEFAULT 0
25f94bb5 416#endif
74dc3e94
RH
417#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
418#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
419#endif
25f94bb5 420
79f5e442
ZD
421/* Fence to use after loop using storent. */
422
423extern tree x86_mfence;
424#define FENCE_FOLLOWING_MOVNT x86_mfence
425
0ed4a390
JL
426/* Once GDB has been enhanced to deal with functions without frame
427 pointers, we can change this to allow for elimination of
428 the frame pointer in leaf functions. */
429#define TARGET_DEFAULT 0
67adf6a9 430
0a1c5e55
UB
431/* Extra bits to force. */
432#define TARGET_SUBTARGET_DEFAULT 0
433#define TARGET_SUBTARGET_ISA_DEFAULT 0
434
435/* Extra bits to force on w/ 32-bit mode. */
436#define TARGET_SUBTARGET32_DEFAULT 0
437#define TARGET_SUBTARGET32_ISA_DEFAULT 0
438
ccf8e764
RH
439/* Extra bits to force on w/ 64-bit mode. */
440#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 441#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 442
b069de3b
SS
443/* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446#define TARGET_MACHO 0
447
ccf8e764 448/* Likewise, for the Windows 64-bit ABI. */
d29899ba 449#define TARGET_64BIT_MS_ABI 0
ccf8e764 450
cc69336f
RH
451/* Subtargets may reset this to 1 in order to enable 96-bit long double
452 with the rounding mode forced to 53 bits. */
453#define TARGET_96_ROUND_53_LONG_DOUBLE 0
454
f5316dfe
MM
455/* Sometimes certain combinations of command options do not make
456 sense on a particular target machine. You can define a macro
457 `OVERRIDE_OPTIONS' to take account of this. This macro, if
458 defined, is executed once just after all the command options have
459 been parsed.
460
461 Don't use this macro to turn on various extra optimizations for
462 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
463
464#define OVERRIDE_OPTIONS override_options ()
465
d4ba09c0 466/* Define this to change the optimizations performed by default. */
d9a5f180
GS
467#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
468 optimization_options ((LEVEL), (SIZE))
d4ba09c0 469
682cd442
GK
470/* -march=native handling only makes sense with compiler running on
471 an x86 or x86_64 chip. If changing this condition, also change
472 the condition in driver-i386.c. */
473#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
474/* In driver-i386.c. */
475extern const char *host_detect_local_cpu (int argc, const char **argv);
476#define EXTRA_SPEC_FUNCTIONS \
477 { "local_cpu_detect", host_detect_local_cpu },
682cd442 478#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
479#endif
480
1cba2b96
EC
481/* Support for configure-time defaults of some command line options.
482 The order here is important so that -march doesn't squash the
483 tune or cpu values. */
ce998900 484#define OPTION_DEFAULT_SPECS \
da2d4c01 485 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
ce998900 486 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96 487 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 488
241e1a89
SC
489/* Specs for the compiler proper */
490
628714d8 491#ifndef CC1_CPU_SPEC
fa959ce4 492#define CC1_CPU_SPEC_1 "\
9d913bbf 493%{mcpu=*:-mtune=%* \
d347d4c7 494%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 495%<mcpu=* \
c93e80a5
JH
496%{mintel-syntax:-masm=intel \
497%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
498%{mno-intel-syntax:-masm=att \
499%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 500
682cd442 501#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
502#define CC1_CPU_SPEC CC1_CPU_SPEC_1
503#else
504#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
505"%{march=native:%<march=native %:local_cpu_detect(arch) \
506 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
507%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
508#endif
241e1a89 509#endif
c98f8742 510\f
30efe578 511/* Target CPU builtins. */
1ba7b414
NB
512#define TARGET_CPU_CPP_BUILTINS() \
513 do \
514 { \
515 size_t arch_len = strlen (ix86_arch_string); \
9e555526 516 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 517 int last_arch_char = ix86_arch_string[arch_len - 1]; \
7706ca5d 518 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
519 \
520 if (TARGET_64BIT) \
521 { \
522 builtin_assert ("cpu=x86_64"); \
26b0ad13 523 builtin_assert ("machine=x86_64"); \
97242ddc
JH
524 builtin_define ("__amd64"); \
525 builtin_define ("__amd64__"); \
1ba7b414
NB
526 builtin_define ("__x86_64"); \
527 builtin_define ("__x86_64__"); \
528 } \
529 else \
530 { \
531 builtin_assert ("cpu=i386"); \
532 builtin_assert ("machine=i386"); \
533 builtin_define_std ("i386"); \
534 } \
535 \
8383d43c
UB
536 /* Built-ins based on -march=. */ \
537 switch (ix86_arch) \
538 { \
539 case PROCESSOR_I386: \
540 break; \
541 case PROCESSOR_I486: \
542 builtin_define ("__i486"); \
543 builtin_define ("__i486__"); \
544 break; \
545 case PROCESSOR_PENTIUM: \
546 builtin_define ("__i586"); \
547 builtin_define ("__i586__"); \
548 builtin_define ("__pentium"); \
549 builtin_define ("__pentium__"); \
550 if (last_arch_char == 'x') \
551 builtin_define ("__pentium_mmx__"); \
552 break; \
553 case PROCESSOR_PENTIUMPRO: \
554 builtin_define ("__i686"); \
555 builtin_define ("__i686__"); \
556 builtin_define ("__pentiumpro"); \
557 builtin_define ("__pentiumpro__"); \
558 break; \
559 case PROCESSOR_GEODE: \
560 builtin_define ("__geode"); \
561 builtin_define ("__geode__"); \
562 break; \
563 case PROCESSOR_K6: \
564 builtin_define ("__k6"); \
565 builtin_define ("__k6__"); \
566 if (last_arch_char == '2') \
567 builtin_define ("__k6_2__"); \
568 else if (last_arch_char == '3') \
569 builtin_define ("__k6_3__"); \
570 break; \
571 case PROCESSOR_ATHLON: \
572 builtin_define ("__athlon"); \
573 builtin_define ("__athlon__"); \
574 /* Only plain "athlon" lacks SSE. */ \
575 if (last_arch_char != 'n') \
576 builtin_define ("__athlon_sse__"); \
577 break; \
578 case PROCESSOR_K8: \
579 builtin_define ("__k8"); \
580 builtin_define ("__k8__"); \
581 break; \
582 case PROCESSOR_AMDFAM10: \
583 builtin_define ("__amdfam10"); \
584 builtin_define ("__amdfam10__"); \
585 break; \
586 case PROCESSOR_PENTIUM4: \
587 builtin_define ("__pentium4"); \
588 builtin_define ("__pentium4__"); \
589 break; \
590 case PROCESSOR_NOCONA: \
591 builtin_define ("__nocona"); \
592 builtin_define ("__nocona__"); \
593 break; \
594 case PROCESSOR_CORE2: \
595 builtin_define ("__core2"); \
596 builtin_define ("__core2__"); \
597 break; \
598 case PROCESSOR_GENERIC32: \
599 case PROCESSOR_GENERIC64: \
600 case PROCESSOR_max: \
601 gcc_unreachable (); \
602 } \
603 \
604 /* Built-ins based on -mtune=. */ \
605 switch (ix86_tune) \
1ba7b414 606 { \
8383d43c
UB
607 case PROCESSOR_I386: \
608 builtin_define ("__tune_i386__"); \
609 break; \
610 case PROCESSOR_I486: \
611 builtin_define ("__tune_i486__"); \
612 break; \
613 case PROCESSOR_PENTIUM: \
1ba7b414
NB
614 builtin_define ("__tune_i586__"); \
615 builtin_define ("__tune_pentium__"); \
9e555526 616 if (last_tune_char == 'x') \
1ba7b414 617 builtin_define ("__tune_pentium_mmx__"); \
8383d43c
UB
618 break; \
619 case PROCESSOR_PENTIUMPRO: \
1ba7b414
NB
620 builtin_define ("__tune_i686__"); \
621 builtin_define ("__tune_pentiumpro__"); \
9e555526 622 switch (last_tune_char) \
2e37b0ce
RH
623 { \
624 case '3': \
625 builtin_define ("__tune_pentium3__"); \
5efb1046 626 /* FALLTHRU */ \
2e37b0ce
RH
627 case '2': \
628 builtin_define ("__tune_pentium2__"); \
629 break; \
630 } \
8383d43c
UB
631 break; \
632 case PROCESSOR_GEODE: \
cfe1b18f 633 builtin_define ("__tune_geode__"); \
8383d43c
UB
634 break; \
635 case PROCESSOR_K6: \
1ba7b414 636 builtin_define ("__tune_k6__"); \
9e555526 637 if (last_tune_char == '2') \
1ba7b414 638 builtin_define ("__tune_k6_2__"); \
9e555526 639 else if (last_tune_char == '3') \
1ba7b414 640 builtin_define ("__tune_k6_3__"); \
8383d43c
UB
641 break; \
642 case PROCESSOR_ATHLON: \
1ba7b414
NB
643 builtin_define ("__tune_athlon__"); \
644 /* Only plain "athlon" lacks SSE. */ \
9e555526 645 if (last_tune_char != 'n') \
1ba7b414 646 builtin_define ("__tune_athlon_sse__"); \
8383d43c
UB
647 break; \
648 case PROCESSOR_K8: \
649 builtin_define ("__tune_k8__"); \
650 break; \
651 case PROCESSOR_AMDFAM10: \
652 builtin_define ("__tune_amdfam10__"); \
653 break; \
654 case PROCESSOR_PENTIUM4: \
655 builtin_define ("__tune_pentium4__"); \
656 break; \
657 case PROCESSOR_NOCONA: \
658 builtin_define ("__tune_nocona__"); \
659 break; \
660 case PROCESSOR_CORE2: \
661 builtin_define ("__tune_core2__"); \
662 break; \
663 case PROCESSOR_GENERIC32: \
664 case PROCESSOR_GENERIC64: \
665 break; \
666 case PROCESSOR_max: \
667 gcc_unreachable (); \
1ba7b414 668 } \
1ba7b414
NB
669 \
670 if (TARGET_MMX) \
671 builtin_define ("__MMX__"); \
672 if (TARGET_3DNOW) \
673 builtin_define ("__3dNOW__"); \
674 if (TARGET_3DNOW_A) \
675 builtin_define ("__3dNOW_A__"); \
676 if (TARGET_SSE) \
677 builtin_define ("__SSE__"); \
678 if (TARGET_SSE2) \
679 builtin_define ("__SSE2__"); \
9e200aaf
KC
680 if (TARGET_SSE3) \
681 builtin_define ("__SSE3__"); \
b1875f52
L
682 if (TARGET_SSSE3) \
683 builtin_define ("__SSSE3__"); \
9a5cee02
L
684 if (TARGET_SSE4_1) \
685 builtin_define ("__SSE4_1__"); \
3b8dd071
L
686 if (TARGET_SSE4_2) \
687 builtin_define ("__SSE4_2__"); \
8b96a312
L
688 if (TARGET_AES) \
689 builtin_define ("__AES__"); \
690 if (TARGET_PCLMUL) \
691 builtin_define ("__PCLMUL__"); \
7706ca5d 692 if (TARGET_SSE4A) \
21efb4d4 693 builtin_define ("__SSE4A__"); \
04e1d06b
MM
694 if (TARGET_SSE5) \
695 builtin_define ("__SSE5__"); \
48ddd46c
JH
696 if (TARGET_SSE_MATH && TARGET_SSE) \
697 builtin_define ("__SSE_MATH__"); \
698 if (TARGET_SSE_MATH && TARGET_SSE2) \
699 builtin_define ("__SSE2_MATH__"); \
1ba7b414 700 } \
30efe578
NB
701 while (0)
702
c2f17e19
UB
703enum target_cpu_default
704{
705 TARGET_CPU_DEFAULT_generic = 0,
706
707 TARGET_CPU_DEFAULT_i386,
708 TARGET_CPU_DEFAULT_i486,
709 TARGET_CPU_DEFAULT_pentium,
710 TARGET_CPU_DEFAULT_pentium_mmx,
711 TARGET_CPU_DEFAULT_pentiumpro,
712 TARGET_CPU_DEFAULT_pentium2,
713 TARGET_CPU_DEFAULT_pentium3,
714 TARGET_CPU_DEFAULT_pentium4,
715 TARGET_CPU_DEFAULT_pentium_m,
716 TARGET_CPU_DEFAULT_prescott,
717 TARGET_CPU_DEFAULT_nocona,
718 TARGET_CPU_DEFAULT_core2,
719
720 TARGET_CPU_DEFAULT_geode,
721 TARGET_CPU_DEFAULT_k6,
722 TARGET_CPU_DEFAULT_k6_2,
723 TARGET_CPU_DEFAULT_k6_3,
724 TARGET_CPU_DEFAULT_athlon,
725 TARGET_CPU_DEFAULT_athlon_sse,
726 TARGET_CPU_DEFAULT_k8,
727 TARGET_CPU_DEFAULT_amdfam10,
728
729 TARGET_CPU_DEFAULT_max
730};
0c2dc519 731
628714d8 732#ifndef CC1_SPEC
8015b78d 733#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
734#endif
735
736/* This macro defines names of additional specifications to put in the
737 specs that can be used in various specifications like CC1_SPEC. Its
738 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
739
740 Each subgrouping contains a string constant, that defines the
188fc5b5 741 specification name, and a string constant that used by the GCC driver
bcd86433
SC
742 program.
743
744 Do not define this macro if it does not need to do anything. */
745
746#ifndef SUBTARGET_EXTRA_SPECS
747#define SUBTARGET_EXTRA_SPECS
748#endif
749
750#define EXTRA_SPECS \
628714d8 751 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
752 SUBTARGET_EXTRA_SPECS
753\f
ce998900 754
d57a4b98
RH
755/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
756 FPU, assume that the fpcw is set to extended precision; when using
757 only SSE, rounding is correct; when using both SSE and the FPU,
758 the rounding precision is indeterminate, since either may be chosen
759 apparently at random. */
760#define TARGET_FLT_EVAL_METHOD \
5ccd517a 761 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 762
979c67a5
UB
763/* target machine storage layout */
764
65d9c0ab
JH
765#define SHORT_TYPE_SIZE 16
766#define INT_TYPE_SIZE 32
767#define FLOAT_TYPE_SIZE 32
768#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
769#define DOUBLE_TYPE_SIZE 64
770#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
771#define LONG_DOUBLE_TYPE_SIZE 80
772
773#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 774
67adf6a9 775#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 776#define MAX_BITS_PER_WORD 64
0c2dc519
JH
777#else
778#define MAX_BITS_PER_WORD 32
0c2dc519
JH
779#endif
780
c98f8742
JVA
781/* Define this if most significant byte of a word is the lowest numbered. */
782/* That is true on the 80386. */
783
784#define BITS_BIG_ENDIAN 0
785
786/* Define this if most significant byte of a word is the lowest numbered. */
787/* That is not true on the 80386. */
788#define BYTES_BIG_ENDIAN 0
789
790/* Define this if most significant word of a multiword number is the lowest
791 numbered. */
792/* Not true for 80386 */
793#define WORDS_BIG_ENDIAN 0
794
c98f8742 795/* Width of a word, in units (bytes). */
65d9c0ab 796#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
797#ifdef IN_LIBGCC2
798#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
799#else
800#define MIN_UNITS_PER_WORD 4
801#endif
c98f8742 802
c98f8742 803/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 804#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 805
e075ae69 806/* Boundary (in *bits*) on which stack pointer should be aligned. */
d29899ba 807#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 808
d1f87653 809/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 810 aligned; the compiler cannot rely on having this alignment. */
e075ae69 811#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 812
ead903e9 813/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 814 entering main. This causes expand_main_function to forcibly align
1d482056
RH
815 the stack, which results in aligned frames for functions called from
816 main, though it does nothing for the alignment of main itself. */
817#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 818 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 819
ebff937c
SH
820/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
821 mandatory for the 64-bit ABI, and may or may not be true for other
822 operating systems. */
823#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
824
f963b5d9
RS
825/* Minimum allocation boundary for the code of a function. */
826#define FUNCTION_BOUNDARY 8
827
828/* C++ stores the virtual bit in the lowest bit of function pointers. */
829#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 830
892a2d68 831/* Alignment of field after `int : 0' in a structure. */
c98f8742 832
65d9c0ab 833#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
834
835/* Minimum size in bits of the largest boundary to which any
836 and all fundamental data types supported by the hardware
837 might need to be aligned. No data type wants to be aligned
17f24ff0 838 rounder than this.
fce5a9f2 839
d1f87653 840 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
841 and Pentium Pro XFmode values at 128 bit boundaries. */
842
843#define BIGGEST_ALIGNMENT 128
844
822eda12 845/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 846#define ALIGN_MODE_128(MODE) \
4501d314 847 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 848
17f24ff0 849/* The published ABIs say that doubles should be aligned on word
d1f87653 850 boundaries, so lower the alignment for structure fields unless
6fc605d8 851 -malign-double is set. */
e932b21b 852
e83f3cff
RH
853/* ??? Blah -- this macro is used directly by libobjc. Since it
854 supports no vector modes, cut out the complexity and fall back
855 on BIGGEST_FIELD_ALIGNMENT. */
856#ifdef IN_TARGET_LIBS
ef49d42e
JH
857#ifdef __x86_64__
858#define BIGGEST_FIELD_ALIGNMENT 128
859#else
e83f3cff 860#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 861#endif
e83f3cff 862#else
e932b21b
JH
863#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
864 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 865#endif
c98f8742 866
e5e8a8bf 867/* If defined, a C expression to compute the alignment given to a
a7180f70 868 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
869 and ALIGN is the alignment that the object would ordinarily have.
870 The value of this macro is used instead of that alignment to align
871 the object.
872
873 If this macro is not defined, then ALIGN is used.
874
875 The typical use of this macro is to increase alignment for string
876 constants to be word aligned so that `strcpy' calls that copy
877 constants can be done inline. */
878
d9a5f180 879#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 880
8a022443
JW
881/* If defined, a C expression to compute the alignment for a static
882 variable. TYPE is the data type, and ALIGN is the alignment that
883 the object would ordinarily have. The value of this macro is used
884 instead of that alignment to align the object.
885
886 If this macro is not defined, then ALIGN is used.
887
888 One use of this macro is to increase alignment of medium-size
889 data to make it all fit in fewer cache lines. Another is to
890 cause character arrays to be word-aligned so that `strcpy' calls
891 that copy constants to character arrays can be done inline. */
892
d9a5f180 893#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
894
895/* If defined, a C expression to compute the alignment for a local
896 variable. TYPE is the data type, and ALIGN is the alignment that
897 the object would ordinarily have. The value of this macro is used
898 instead of that alignment to align the object.
899
900 If this macro is not defined, then ALIGN is used.
901
902 One use of this macro is to increase alignment of medium-size
903 data to make it all fit in fewer cache lines. */
904
d9a5f180 905#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 906
53c17031
JH
907/* If defined, a C expression that gives the alignment boundary, in
908 bits, of an argument with the specified mode and type. If it is
909 not defined, `PARM_BOUNDARY' is used for all arguments. */
910
d9a5f180
GS
911#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
912 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 913
9cd10576 914/* Set this nonzero if move instructions will actually fail to work
c98f8742 915 when given unaligned data. */
b4ac57ab 916#define STRICT_ALIGNMENT 0
c98f8742
JVA
917
918/* If bit field type is int, don't let it cross an int,
919 and give entire struct the alignment of an int. */
43a88a8c 920/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 921#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
922\f
923/* Standard register usage. */
924
925/* This processor has special stack-like registers. See reg-stack.c
892a2d68 926 for details. */
c98f8742
JVA
927
928#define STACK_REGS
ce998900 929
d9a5f180 930#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
931 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
932 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
933 || (MODE) == XFmode)
c98f8742
JVA
934
935/* Number of actual hardware registers.
936 The hardware registers are assigned numbers for the compiler
937 from 0 to just below FIRST_PSEUDO_REGISTER.
938 All registers that the compiler knows about must be given numbers,
939 even those that are not normally considered general registers.
940
941 In the 80386 we give the 8 general purpose registers the numbers 0-7.
942 We number the floating point registers 8-15.
943 Note that registers 0-7 can be accessed as a short or int,
944 while only 0-3 may be used with byte `mov' instructions.
945
946 Reg 16 does not correspond to any hardware register, but instead
947 appears in the RTL as an argument pointer prior to reload, and is
948 eliminated during reloading in favor of either the stack or frame
892a2d68 949 pointer. */
c98f8742 950
b0d95de8 951#define FIRST_PSEUDO_REGISTER 53
c98f8742 952
3073d01c
ML
953/* Number of hardware registers that go into the DWARF-2 unwind info.
954 If not defined, equals FIRST_PSEUDO_REGISTER. */
955
956#define DWARF_FRAME_REGISTERS 17
957
c98f8742
JVA
958/* 1 for registers that have pervasive standard uses
959 and are not available for the register allocator.
3f3f2124 960 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 961
3a4416fb
RS
962 The value is zero if the register is not fixed on either 32 or
963 64 bit targets, one if the register if fixed on both 32 and 64
964 bit targets, two if it is only fixed on 32bit targets and three
965 if its only fixed on 64bit targets.
966 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 967 */
a7180f70
BS
968#define FIXED_REGISTERS \
969/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 970{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
971/*arg,flags,fpsr,fpcr,frame*/ \
972 1, 1, 1, 1, 1, \
a7180f70
BS
973/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
976 0, 0, 0, 0, 0, 0, 0, 0, \
977/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 978 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 979/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 980 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 981
c98f8742
JVA
982
983/* 1 for registers not available across function calls.
984 These must include the FIXED_REGISTERS and also any
985 registers that can be used without being saved.
986 The latter must include the registers where values are returned
987 and the register where structure-value addresses are passed.
fce5a9f2
EC
988 Aside from that, you can include as many other registers as you like.
989
9d72d996
JJ
990 The value is zero if the register is not call used on either 32 or
991 64 bit targets, one if the register if call used on both 32 and 64
992 bit targets, two if it is only call used on 32bit targets and three
993 if its only call used on 64bit targets.
3a4416fb 994 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 995*/
a7180f70
BS
996#define CALL_USED_REGISTERS \
997/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 998{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
999/*arg,flags,fpsr,fpcr,frame*/ \
1000 1, 1, 1, 1, 1, \
a7180f70 1001/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 1002 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 1003/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 1004 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1005/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1006 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1007/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 1008 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1009
3b3c6a3f
MM
1010/* Order in which to allocate registers. Each register must be
1011 listed once, even those in FIXED_REGISTERS. List frame pointer
1012 late and fixed registers last. Note that, in general, we prefer
1013 registers listed in CALL_USED_REGISTERS, keeping the others
1014 available for storage of persistent values.
1015
162f023b
JH
1016 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
1017 so this is just empty initializer for array. */
3b3c6a3f 1018
162f023b
JH
1019#define REG_ALLOC_ORDER \
1020{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1021 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1022 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 1023 48, 49, 50, 51, 52 }
3b3c6a3f 1024
162f023b
JH
1025/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1026 to be rearranged based on a particular function. When using sse math,
03c259ad 1027 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1028
162f023b 1029#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 1030
f5316dfe 1031
c98f8742 1032/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 1033#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 1034do { \
3f3f2124 1035 int i; \
b0fede98 1036 unsigned int j; \
3f3f2124
JH
1037 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1038 { \
3a4416fb
RS
1039 if (fixed_regs[i] > 1) \
1040 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1041 if (call_used_regs[i] > 1) \
1042 call_used_regs[i] = (call_used_regs[i] \
1043 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 1044 } \
b0fede98 1045 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 1046 if (j != INVALID_REGNUM) \
a7180f70 1047 { \
7706ca5d
L
1048 fixed_regs[j] = 1; \
1049 call_used_regs[j] = 1; \
a7180f70
BS
1050 } \
1051 if (! TARGET_MMX) \
1052 { \
1053 int i; \
1054 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1055 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 1056 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1057 } \
1058 if (! TARGET_SSE) \
1059 { \
1060 int i; \
1061 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1062 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 1063 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1064 } \
1065 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1066 { \
1067 int i; \
1068 HARD_REG_SET x; \
1069 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1070 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1071 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
1072 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1073 } \
1074 if (! TARGET_64BIT) \
1075 { \
1076 int i; \
1077 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1078 reg_names[i] = ""; \
1079 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1080 reg_names[i] = ""; \
a7180f70 1081 } \
d29899ba
KT
1082 if (TARGET_64BIT_MS_ABI) \
1083 { \
1084 call_used_regs[4 /*RSI*/] = 0; \
1085 call_used_regs[5 /*RDI*/] = 0; \
1086 } \
d9a5f180 1087 } while (0)
c98f8742
JVA
1088
1089/* Return number of consecutive hard regs needed starting at reg REGNO
1090 to hold something of mode MODE.
1091 This is ordinarily the length in words of a value of mode MODE
1092 but can be less for certain modes in special long registers.
1093
fce5a9f2 1094 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1095 registers. And only registers 0-3 may have mov byte instructions
1096 applied to them.
1097 */
1098
ce998900 1099#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1100 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1101 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1102 : ((MODE) == XFmode \
92d0fb09 1103 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1104 : (MODE) == XCmode \
92d0fb09 1105 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1106 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1107
8521c414
JM
1108#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1109 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1110 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1111 ? 0 \
1112 : ((MODE) == XFmode || (MODE) == XCmode)) \
1113 : 0)
1114
1115#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1116
ce998900
UB
1117#define VALID_SSE2_REG_MODE(MODE) \
1118 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1119 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1120
d9a5f180 1121#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1122 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1123 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1124
47f339cf 1125#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1126 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1127
d9a5f180 1128#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1129 ((MODE == V1DImode) || (MODE) == DImode \
1130 || (MODE) == V2SImode || (MODE) == SImode \
1131 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1132
accde4cf
RH
1133/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1134 place emms and femms instructions. */
9d3a9de1 1135#define UNITS_PER_SIMD_WORD(MODE) (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1136
ce998900
UB
1137#define VALID_DFP_MODE_P(MODE) \
1138 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1139
d9a5f180 1140#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1141 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1142 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1143
d9a5f180 1144#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1145 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1146 || (MODE) == DImode \
1147 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1148 || (MODE) == CDImode \
1149 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1150 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1151
822eda12 1152/* Return true for modes passed in SSE registers. */
ce998900
UB
1153#define SSE_REG_MODE_P(MODE) \
1154 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1155 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1156 || (MODE) == V4SFmode || (MODE) == V4SImode)
1157
e075ae69 1158/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1159
a946dd00 1160#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1161 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1162
1163/* Value is 1 if it is a good idea to tie two pseudo registers
1164 when one has mode MODE1 and one has mode MODE2.
1165 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1166 for any hard reg, then this must be 0 for correct output. */
1167
c1c5b5e3 1168#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1169
ff25ef99
ZD
1170/* It is possible to write patterns to move flags; but until someone
1171 does it, */
1172#define AVOID_CCMODE_COPIES
c98f8742 1173
e075ae69 1174/* Specify the modes required to caller save a given hard regno.
787dc842 1175 We do this on i386 to prevent flags from being saved at all.
e075ae69 1176
787dc842
JH
1177 Kill any attempts to combine saving of modes. */
1178
d9a5f180
GS
1179#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1180 (CC_REGNO_P (REGNO) ? VOIDmode \
1181 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1182 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180
GS
1183 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1184 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1185 : (MODE))
ce998900 1186
c98f8742
JVA
1187/* Specify the registers used for certain standard purposes.
1188 The values of these macros are register numbers. */
1189
1190/* on the 386 the pc register is %eip, and is not usable as a general
1191 register. The ordinary mov instructions won't work */
1192/* #define PC_REGNUM */
1193
1194/* Register to use for pushing function arguments. */
1195#define STACK_POINTER_REGNUM 7
1196
1197/* Base register for access to local variables of the function. */
564d80f4
JH
1198#define HARD_FRAME_POINTER_REGNUM 6
1199
1200/* Base register for access to local variables of the function. */
b0d95de8 1201#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1202
1203/* First floating point reg */
1204#define FIRST_FLOAT_REG 8
1205
1206/* First & last stack-like regs */
1207#define FIRST_STACK_REG FIRST_FLOAT_REG
1208#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1209
a7180f70
BS
1210#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1211#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1212
a7180f70
BS
1213#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1214#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1215
3f3f2124
JH
1216#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1217#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1218
1219#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1220#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1221
c98f8742
JVA
1222/* Value should be nonzero if functions must have frame pointers.
1223 Zero means the frame pointer need not be set up (and parms
1224 may be accessed via the stack pointer) in functions that seem suitable.
1225 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1226#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1227
aabcd309 1228/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1229 requiring a frame pointer. */
1230#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1231#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1232#endif
1233
1234/* Make sure we can access arbitrary call frames. */
1235#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1236
1237/* Base register for access to arguments of the function. */
1238#define ARG_POINTER_REGNUM 16
1239
d2836273
JH
1240/* Register in which static-chain is passed to a function.
1241 We do use ECX as static chain register for 32 bit ABI. On the
1242 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1243#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1244
1245/* Register to hold the addressing base for position independent
5b43fed1
RH
1246 code access to data items. We don't use PIC pointer for 64bit
1247 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1248 pessimizing code dealing with EBX.
bd09bdeb
RH
1249
1250 To avoid clobbering a call-saved register unnecessarily, we renumber
1251 the pic register when possible. The change is visible after the
1252 prologue has been emitted. */
1253
1254#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1255
1256#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1257 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1258 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1259 : reload_completed ? REGNO (pic_offset_table_rtx) \
1260 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1261
5fc0e5df
KW
1262#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1263
c51e6d85 1264/* This is overridden by <cygwin.h>. */
5e062767
DS
1265#define MS_AGGREGATE_RETURN 0
1266
61fec9ff
JB
1267/* This is overridden by <netware.h>. */
1268#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1269\f
1270/* Define the classes of registers for register constraints in the
1271 machine description. Also define ranges of constants.
1272
1273 One of the classes must always be named ALL_REGS and include all hard regs.
1274 If there is more than one class, another class must be named NO_REGS
1275 and contain no registers.
1276
1277 The name GENERAL_REGS must be the name of a class (or an alias for
1278 another name such as ALL_REGS). This is the class of registers
1279 that is allowed by "g" or "r" in a register constraint.
1280 Also, registers outside this class are allocated only when
1281 instructions express preferences for them.
1282
1283 The classes must be numbered in nondecreasing order; that is,
1284 a larger-numbered class must never be contained completely
1285 in a smaller-numbered class.
1286
1287 For any two classes, it is very desirable that there be another
ab408a86
JVA
1288 class that represents their union.
1289
1290 It might seem that class BREG is unnecessary, since no useful 386
1291 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1292 and the "b" register constraint is useful in asms for syscalls.
1293
03c259ad 1294 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1295
1296enum reg_class
1297{
1298 NO_REGS,
e075ae69 1299 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1300 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1301 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1302 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1303 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1304 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1305 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1306 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1307 FLOAT_REGS,
06f4e35d 1308 SSE_FIRST_REG,
a7180f70
BS
1309 SSE_REGS,
1310 MMX_REGS,
446988df
JH
1311 FP_TOP_SSE_REGS,
1312 FP_SECOND_SSE_REGS,
1313 FLOAT_SSE_REGS,
1314 FLOAT_INT_REGS,
1315 INT_SSE_REGS,
1316 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1317 ALL_REGS, LIM_REG_CLASSES
1318};
1319
d9a5f180
GS
1320#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1321
1322#define INTEGER_CLASS_P(CLASS) \
1323 reg_class_subset_p ((CLASS), GENERAL_REGS)
1324#define FLOAT_CLASS_P(CLASS) \
1325 reg_class_subset_p ((CLASS), FLOAT_REGS)
1326#define SSE_CLASS_P(CLASS) \
06f4e35d 1327 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1328#define MMX_CLASS_P(CLASS) \
f75959a6 1329 ((CLASS) == MMX_REGS)
d9a5f180
GS
1330#define MAYBE_INTEGER_CLASS_P(CLASS) \
1331 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1332#define MAYBE_FLOAT_CLASS_P(CLASS) \
1333 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1334#define MAYBE_SSE_CLASS_P(CLASS) \
1335 reg_classes_intersect_p (SSE_REGS, (CLASS))
1336#define MAYBE_MMX_CLASS_P(CLASS) \
1337 reg_classes_intersect_p (MMX_REGS, (CLASS))
1338
1339#define Q_CLASS_P(CLASS) \
1340 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1341
43f3a59d 1342/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1343
1344#define REG_CLASS_NAMES \
1345{ "NO_REGS", \
ab408a86 1346 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1347 "SIREG", "DIREG", \
e075ae69
RH
1348 "AD_REGS", \
1349 "Q_REGS", "NON_Q_REGS", \
c98f8742 1350 "INDEX_REGS", \
3f3f2124 1351 "LEGACY_REGS", \
c98f8742
JVA
1352 "GENERAL_REGS", \
1353 "FP_TOP_REG", "FP_SECOND_REG", \
1354 "FLOAT_REGS", \
cb482895 1355 "SSE_FIRST_REG", \
a7180f70
BS
1356 "SSE_REGS", \
1357 "MMX_REGS", \
446988df
JH
1358 "FP_TOP_SSE_REGS", \
1359 "FP_SECOND_SSE_REGS", \
1360 "FLOAT_SSE_REGS", \
8fcaaa80 1361 "FLOAT_INT_REGS", \
446988df
JH
1362 "INT_SSE_REGS", \
1363 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1364 "ALL_REGS" }
1365
1366/* Define which registers fit in which classes.
1367 This is an initializer for a vector of HARD_REG_SET
1368 of length N_REG_CLASSES. */
1369
a7180f70 1370#define REG_CLASS_CONTENTS \
3f3f2124
JH
1371{ { 0x00, 0x0 }, \
1372 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1373 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1374 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1375 { 0x03, 0x0 }, /* AD_REGS */ \
1376 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1377 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1378 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1379 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1380 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1381 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1382 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1383 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1384{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1385{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1386{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1387{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1388{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1389 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1390{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1391{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1392{ 0xffffffff,0x1fffff } \
e075ae69 1393}
c98f8742
JVA
1394
1395/* The same information, inverted:
1396 Return the class number of the smallest class containing
1397 reg number REGNO. This could be a conditional expression
1398 or could index an array. */
1399
c98f8742
JVA
1400#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1401
1402/* When defined, the compiler allows registers explicitly used in the
1403 rtl to be used as spill registers but prevents the compiler from
892a2d68 1404 extending the lifetime of these registers. */
c98f8742 1405
2922fe9e 1406#define SMALL_REGISTER_CLASSES 1
c98f8742 1407
fb84c7a0 1408#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1409
d9a5f180 1410#define GENERAL_REGNO_P(N) \
fb84c7a0 1411 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1412
1413#define GENERAL_REG_P(X) \
6189a572 1414 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1415
1416#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1417
fb84c7a0
UB
1418#define REX_INT_REGNO_P(N) \
1419 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1420#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1421
c98f8742 1422#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1423#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1424#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1425#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1426
54a88090 1427#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1428 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1429
fb84c7a0
UB
1430#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1431#define SSE_REGNO_P(N) \
1432 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1433 || REX_SSE_REGNO_P (N))
3f3f2124 1434
4977bab6 1435#define REX_SSE_REGNO_P(N) \
fb84c7a0 1436 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1437
d9a5f180
GS
1438#define SSE_REGNO(N) \
1439 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1440
d9a5f180 1441#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1442 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1443
d6023b50
UB
1444#define SSE_VEC_FLOAT_MODE_P(MODE) \
1445 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1446
d9a5f180 1447#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1448#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1449
fb84c7a0 1450#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1451#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1452
d9a5f180 1453#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1454
e075ae69
RH
1455#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1456#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1457
c98f8742
JVA
1458/* The class value for index registers, and the one for base regs. */
1459
1460#define INDEX_REG_CLASS INDEX_REGS
1461#define BASE_REG_CLASS GENERAL_REGS
1462
c98f8742 1463/* Place additional restrictions on the register class to use when it
4cbb525c 1464 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1465 register for which class CLASS would ordinarily be used. */
c98f8742 1466
d2836273
JH
1467#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1468 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1469 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1470 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1471 ? Q_REGS : (CLASS))
1472
1473/* Given an rtx X being reloaded into a reg required to be
1474 in class CLASS, return the class of reg to actually use.
1475 In general this is just CLASS; but on some machines
1476 in some cases it is preferable to use a more restrictive class.
1477 On the 80386 series, we prevent floating constants from being
1478 reloaded into floating registers (since no move-insn can do that)
1479 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1480
d398b3b1 1481/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1482 QImode must go into class Q_REGS.
d398b3b1 1483 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1484 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1485
d9a5f180
GS
1486#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1487 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1488
b5c82fa1
PB
1489/* Discourage putting floating-point values in SSE registers unless
1490 SSE math is being used, and likewise for the 387 registers. */
1491
1492#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1493 ix86_preferred_output_reload_class ((X), (CLASS))
1494
85ff473e 1495/* If we are copying between general and FP registers, we need a memory
f84aa48a 1496 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1497#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1498 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1499
c62b3659
UB
1500/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1501 There is no need to emit full 64 bit move on 64 bit targets
1502 for integral modes that can be moved using 32 bit move. */
1503#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1504 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1505 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1506 : MODE)
1507
c98f8742
JVA
1508/* Return the maximum number of consecutive registers
1509 needed to represent mode MODE in a register of class CLASS. */
1510/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1511 except in the FP regs, where a single reg is always enough. */
a7180f70 1512#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1513 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1514 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1515 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1516 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1517
1518/* A C expression whose value is nonzero if pseudos that have been
1519 assigned to registers of class CLASS would likely be spilled
1520 because registers of CLASS are needed for spill registers.
1521
1522 The default value of this macro returns 1 if CLASS has exactly one
1523 register and zero otherwise. On most machines, this default
1524 should be used. Only define this macro to some other expression
1525 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1526 their hard registers were needed for spill registers. If this
f5316dfe
MM
1527 macro returns nonzero for those classes, those pseudos will only
1528 be allocated by `global.c', which knows how to reallocate the
1529 pseudo to another register. If there would not be another
1530 register available for reallocation, you should not change the
1531 definition of this macro since the only effect of such a
1532 definition would be to slow down register allocation. */
1533
1534#define CLASS_LIKELY_SPILLED_P(CLASS) \
1535 (((CLASS) == AREG) \
1536 || ((CLASS) == DREG) \
1537 || ((CLASS) == CREG) \
1538 || ((CLASS) == BREG) \
1539 || ((CLASS) == AD_REGS) \
1540 || ((CLASS) == SIREG) \
b0af5c03
JH
1541 || ((CLASS) == DIREG) \
1542 || ((CLASS) == FP_TOP_REG) \
1543 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1544
1272914c
RH
1545/* Return a class of registers that cannot change FROM mode to TO mode. */
1546
1547#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1548 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1549\f
1550/* Stack layout; function entry, exit and calling. */
1551
1552/* Define this if pushing a word on the stack
1553 makes the stack pointer a smaller address. */
1554#define STACK_GROWS_DOWNWARD
1555
a4d05547 1556/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1557 is at the high-address end of the local variables;
1558 that is, each additional local variable allocated
1559 goes at a more negative offset in the frame. */
f62c8a5c 1560#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1561
1562/* Offset within stack frame to start allocating local variables at.
1563 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1564 first local allocated. Otherwise, it is the offset to the BEGINNING
1565 of the first local allocated. */
1566#define STARTING_FRAME_OFFSET 0
1567
1568/* If we generate an insn to push BYTES bytes,
1569 this says how many the stack pointer really advances by.
6541fe75
JJ
1570 On 386, we have pushw instruction that decrements by exactly 2 no
1571 matter what the position was, there is no pushb.
1572 But as CIE data alignment factor on this arch is -4, we need to make
1573 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1574
d2836273
JH
1575 For 64bit ABI we round up to 8 bytes.
1576 */
c98f8742 1577
d2836273
JH
1578#define PUSH_ROUNDING(BYTES) \
1579 (TARGET_64BIT \
1580 ? (((BYTES) + 7) & (-8)) \
6541fe75 1581 : (((BYTES) + 3) & (-4)))
c98f8742 1582
f73ad30e
JH
1583/* If defined, the maximum amount of space required for outgoing arguments will
1584 be computed and placed into the variable
38173d38 1585 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e
JH
1586 stack for each call; instead, the function prologue should increase the stack
1587 frame size by this amount. */
1588
1589#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1590
1591/* If defined, a C expression whose value is nonzero when we want to use PUSH
1592 instructions to pass outgoing arguments. */
1593
1594#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1595
2da4124d
L
1596/* We want the stack and args grow in opposite directions, even if
1597 PUSH_ARGS is 0. */
1598#define PUSH_ARGS_REVERSED 1
1599
c98f8742
JVA
1600/* Offset of first parameter from the argument pointer register value. */
1601#define FIRST_PARM_OFFSET(FNDECL) 0
1602
a7180f70
BS
1603/* Define this macro if functions should assume that stack space has been
1604 allocated for arguments even when their values are passed in registers.
1605
1606 The value of this macro is the size, in bytes, of the area reserved for
1607 arguments passed in registers for the function represented by FNDECL.
1608
1609 This space can be allocated by the caller, or be a part of the
1610 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1611 which. */
d29899ba 1612#define REG_PARM_STACK_SPACE(FNDECL) 0
a7180f70 1613
c98f8742
JVA
1614/* Value is the number of bytes of arguments automatically
1615 popped when returning from a subroutine call.
8b109b37 1616 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1617 FUNTYPE is the data type of the function (as a tree),
1618 or for a library call it is an identifier node for the subroutine name.
1619 SIZE is the number of bytes of arguments passed on the stack.
1620
1621 On the 80386, the RTD insn may be used to pop them if the number
1622 of args is fixed, but if the number is variable then the caller
1623 must pop them all. RTD can't be used for library calls now
1624 because the library is compiled with the Unix compiler.
1625 Use of RTD is a selectable option, since it is incompatible with
1626 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1627 the caller must always pop the args.
1628
1629 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1630
d9a5f180
GS
1631#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1632 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1633
53c17031
JH
1634#define FUNCTION_VALUE_REGNO_P(N) \
1635 ix86_function_value_regno_p (N)
c98f8742
JVA
1636
1637/* Define how to find the value returned by a library function
1638 assuming the value has mode MODE. */
1639
1640#define LIBCALL_VALUE(MODE) \
53c17031 1641 ix86_libcall_value (MODE)
c98f8742 1642
e9125c09
TW
1643/* Define the size of the result block used for communication between
1644 untyped_call and untyped_return. The block contains a DImode value
1645 followed by the block used by fnsave and frstor. */
1646
1647#define APPLY_RESULT_SIZE (8+108)
1648
b08de47e 1649/* 1 if N is a possible register number for function argument passing. */
53c17031 1650#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1651
1652/* Define a data type for recording info about an argument list
1653 during the scan of that argument list. This data type should
1654 hold all necessary information about the function itself
1655 and about the args processed so far, enough to enable macros
b08de47e 1656 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1657
e075ae69 1658typedef struct ix86_args {
fa283935 1659 int words; /* # words passed so far */
b08de47e
MM
1660 int nregs; /* # registers available for passing */
1661 int regno; /* next available register number */
9d72d996 1662 int fastcall; /* fastcall calling convention is used */
fa283935 1663 int sse_words; /* # sse words passed so far */
a7180f70 1664 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1665 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1666 int warn_mmx; /* True when we want to warn about MMX ABI. */
1667 int sse_regno; /* next available sse register number */
1668 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1669 int mmx_nregs; /* # mmx registers available for passing */
1670 int mmx_regno; /* next available mmx register number */
892a2d68 1671 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1672 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1673 be passed in SSE registers. Otherwise 0. */
b08de47e 1674} CUMULATIVE_ARGS;
c98f8742
JVA
1675
1676/* Initialize a variable CUM of type CUMULATIVE_ARGS
1677 for a call to a function whose data type is FNTYPE.
b08de47e 1678 For a library call, FNTYPE is 0. */
c98f8742 1679
0f6937fe 1680#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1681 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1682
1683/* Update the data in CUM to advance over an argument
1684 of mode MODE and data type TYPE.
1685 (TYPE is null for libcalls where that information may not be available.) */
1686
d9a5f180
GS
1687#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1688 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1689
1690/* Define where to put the arguments to a function.
1691 Value is zero to push the argument on the stack,
1692 or a hard register in which to store the argument.
1693
1694 MODE is the argument's machine mode.
1695 TYPE is the data type of the argument (as a tree).
1696 This is null for libcalls where that information may
1697 not be available.
1698 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1699 the preceding args and about the function being called.
1700 NAMED is nonzero if this argument is a named parameter
1701 (otherwise it is an extra parameter matching an ellipsis). */
1702
c98f8742 1703#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1704 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1705
a5fe455b
ZW
1706#define TARGET_ASM_FILE_END ix86_file_end
1707#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1708
c98f8742
JVA
1709/* Output assembler code to FILE to increment profiler label # LABELNO
1710 for profiling a function entry. */
1711
a5fa1ecd
JH
1712#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1713
1714#define MCOUNT_NAME "_mcount"
1715
1716#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1717
1718/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1719 the stack pointer does not matter. The value is tested only in
1720 functions that have frame pointers.
1721 No definition is equivalent to always zero. */
fce5a9f2 1722/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1723 we have to restore it ourselves from the frame pointer, in order to
1724 use pop */
1725
1726#define EXIT_IGNORE_STACK 1
1727
c98f8742
JVA
1728/* Output assembler code for a block containing the constant parts
1729 of a trampoline, leaving space for the variable parts. */
1730
a269a03c 1731/* On the 386, the trampoline contains two instructions:
c98f8742 1732 mov #STATIC,ecx
a269a03c
JC
1733 jmp FUNCTION
1734 The trampoline is generated entirely at runtime. The operand of JMP
1735 is the address of FUNCTION relative to the instruction following the
1736 JMP (which is 5 bytes long). */
c98f8742
JVA
1737
1738/* Length in units of the trampoline for entering a nested function. */
1739
39d04363 1740#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1741
1742/* Emit RTL insns to initialize the variable parts of a trampoline.
1743 FNADDR is an RTX for the address of the function's pure code.
1744 CXT is an RTX for the static chain value for the function. */
1745
d9a5f180
GS
1746#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1747 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1748\f
1749/* Definitions for register eliminations.
1750
1751 This is an array of structures. Each structure initializes one pair
1752 of eliminable registers. The "from" register number is given first,
1753 followed by "to". Eliminations of the same "from" register are listed
1754 in order of preference.
1755
afc2cd05
NC
1756 There are two registers that can always be eliminated on the i386.
1757 The frame pointer and the arg pointer can be replaced by either the
1758 hard frame pointer or to the stack pointer, depending upon the
1759 circumstances. The hard frame pointer is not used before reload and
1760 so it is not eligible for elimination. */
c98f8742 1761
564d80f4
JH
1762#define ELIMINABLE_REGS \
1763{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1764 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1765 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1766 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1767
2c5a510c
RH
1768/* Given FROM and TO register numbers, say whether this elimination is
1769 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1770
1771 All other eliminations are valid. */
1772
2c5a510c 1773#define CAN_ELIMINATE(FROM, TO) \
979c67a5 1774 ((TO) == STACK_POINTER_REGNUM ? !frame_pointer_needed : 1)
c98f8742
JVA
1775
1776/* Define the offset between two registers, one to be eliminated, and the other
1777 its replacement, at the start of a routine. */
1778
d9a5f180
GS
1779#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1780 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1781\f
1782/* Addressing modes, and classification of registers for them. */
1783
c98f8742
JVA
1784/* Macros to check register numbers against specific register classes. */
1785
1786/* These assume that REGNO is a hard or pseudo reg number.
1787 They give nonzero only if REGNO is a hard reg of the suitable class
1788 or a pseudo reg currently allocated to a suitable hard reg.
1789 Since they use reg_renumber, they are safe only once reg_renumber
1790 has been allocated, which happens in local-alloc.c. */
1791
3f3f2124
JH
1792#define REGNO_OK_FOR_INDEX_P(REGNO) \
1793 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1794 || REX_INT_REGNO_P (REGNO) \
1795 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1796 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1797
3f3f2124 1798#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1799 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1800 || (REGNO) == ARG_POINTER_REGNUM \
1801 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1802 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1803
c98f8742
JVA
1804/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1805 and check its validity for a certain class.
1806 We have two alternate definitions for each of them.
1807 The usual definition accepts all pseudo regs; the other rejects
1808 them unless they have been allocated suitable hard regs.
1809 The symbol REG_OK_STRICT causes the latter definition to be used.
1810
1811 Most source files want to accept pseudo regs in the hope that
1812 they will get allocated to the class that the insn wants them to be in.
1813 Source files for reload pass need to be strict.
1814 After reload, it makes no difference, since pseudo regs have
1815 been eliminated by then. */
1816
c98f8742 1817
ff482c8d 1818/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1819#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1820 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1821 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1822 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1823
3b3c6a3f 1824#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1825 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1826 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1827 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1828 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1829
3b3c6a3f
MM
1830/* Strict versions, hard registers only */
1831#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1832#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1833
3b3c6a3f 1834#ifndef REG_OK_STRICT
d9a5f180
GS
1835#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1836#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1837
1838#else
d9a5f180
GS
1839#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1840#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1841#endif
1842
1843/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1844 that is a valid memory address for an instruction.
1845 The MODE argument is the machine mode for the MEM expression
1846 that wants to use this address.
1847
1848 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1849 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1850
1851 See legitimize_pic_address in i386.c for details as to what
1852 constitutes a legitimate address when -fpic is used. */
1853
1854#define MAX_REGS_PER_ADDRESS 2
1855
f996902d 1856#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1857
1858/* Nonzero if the constant value X is a legitimate general operand.
1859 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1860
f996902d 1861#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1862
3b3c6a3f
MM
1863#ifdef REG_OK_STRICT
1864#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1865do { \
1866 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1867 goto ADDR; \
d9a5f180 1868} while (0)
c98f8742 1869
3b3c6a3f
MM
1870#else
1871#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1872do { \
1873 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1874 goto ADDR; \
d9a5f180 1875} while (0)
c98f8742 1876
3b3c6a3f
MM
1877#endif
1878
b949ea8b
JW
1879/* If defined, a C expression to determine the base term of address X.
1880 This macro is used in only one place: `find_base_term' in alias.c.
1881
1882 It is always safe for this macro to not be defined. It exists so
1883 that alias analysis can understand machine-dependent addresses.
1884
1885 The typical use of this macro is to handle addresses containing
1886 a label_ref or symbol_ref within an UNSPEC. */
1887
d9a5f180 1888#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1889
c98f8742
JVA
1890/* Try machine-dependent ways of modifying an illegitimate address
1891 to be legitimate. If we find one, return the new, valid address.
1892 This macro is used in only one place: `memory_address' in explow.c.
1893
1894 OLDX is the address as it was before break_out_memory_refs was called.
1895 In some cases it is useful to look at this to decide what needs to be done.
1896
1897 MODE and WIN are passed so that this macro can use
1898 GO_IF_LEGITIMATE_ADDRESS.
1899
1900 It is always safe for this macro to do nothing. It exists to recognize
1901 opportunities to optimize the output.
1902
1903 For the 80386, we handle X+REG by loading X into a register R and
1904 using R+REG. R will go in a general reg and indexing will be used.
1905 However, if REG is a broken-out memory address or multiplication,
1906 nothing needs to be done because REG can certainly go in a general reg.
1907
1908 When -fpic is used, special handling is needed for symbolic references.
1909 See comments by legitimize_pic_address in i386.c for details. */
1910
3b3c6a3f 1911#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1912do { \
1913 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1914 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1915 goto WIN; \
d9a5f180 1916} while (0)
c98f8742
JVA
1917
1918/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1919 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1920 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1921
f996902d 1922#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1923
1924#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1925 (GET_CODE (X) == SYMBOL_REF \
1926 || GET_CODE (X) == LABEL_REF \
1927 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1928
1929/* Go to LABEL if ADDR (a legitimate address expression)
1930 has an effect that depends on the machine mode it is used for.
1931 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1932 (the amount of decrement or increment being the length of the operand).
1933 These are now caught in recog.c. */
1934#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1935\f
b08de47e
MM
1936/* Max number of args passed in registers. If this is more than 3, we will
1937 have problems with ebx (register #4), since it is a caller save register and
1938 is also used as the pic register in ELF. So for now, don't allow more than
1939 3 registers to be passed in registers. */
1940
d2836273
JH
1941#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1942
bcf17554
JH
1943#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1944
1945#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1946
c98f8742
JVA
1947\f
1948/* Specify the machine mode that this machine uses
1949 for the index in the tablejump instruction. */
dc4d7240
JH
1950#define CASE_VECTOR_MODE \
1951 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1952
c98f8742
JVA
1953/* Define this as 1 if `char' should by default be signed; else as 0. */
1954#define DEFAULT_SIGNED_CHAR 1
1955
1956/* Max number of bytes we can move from memory to memory
1957 in one reasonably fast instruction. */
65d9c0ab
JH
1958#define MOVE_MAX 16
1959
1960/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1961 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1962 number of bytes we can move with a single instruction. */
65d9c0ab 1963#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1964
7e24ffc9 1965/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1966 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1967 Increasing the value will always make code faster, but eventually
1968 incurs high cost in increased code size.
c98f8742 1969
e2e52e1b 1970 If you don't define this, a reasonable default is used. */
c98f8742 1971
e2e52e1b 1972#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1973
45d78e7f
JJ
1974/* If a clear memory operation would take CLEAR_RATIO or more simple
1975 move-instruction sequences, we will do a clrmem or libcall instead. */
1976
979c67a5 1977#define CLEAR_RATIO (optimize_size ? 2 : MIN (6, ix86_cost->move_ratio))
45d78e7f 1978
c98f8742
JVA
1979/* Define if shifts truncate the shift count
1980 which implies one can omit a sign-extension or zero-extension
1981 of a shift count. */
892a2d68 1982/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1983
1984/* #define SHIFT_COUNT_TRUNCATED */
1985
1986/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1987 is done just by pretending it is already truncated. */
1988#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1989
d9f32422
JH
1990/* A macro to update M and UNSIGNEDP when an object whose type is
1991 TYPE and which has the specified mode and signedness is to be
1992 stored in a register. This macro is only called when TYPE is a
1993 scalar type.
1994
f710504c 1995 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1996 quantities to SImode. The choice depends on target type. */
1997
1998#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1999do { \
d9f32422
JH
2000 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2001 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2002 (MODE) = SImode; \
2003} while (0)
d9f32422 2004
c98f8742
JVA
2005/* Specify the machine mode that pointers have.
2006 After generation of rtl, the compiler makes no further distinction
2007 between pointers and any other objects of this machine mode. */
65d9c0ab 2008#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2009
2010/* A function address in a call instruction
2011 is a byte address (for indexing purposes)
2012 so give the MEM rtx a byte's mode. */
2013#define FUNCTION_MODE QImode
d4ba09c0 2014\f
96e7ae40
JH
2015/* A C expression for the cost of moving data from a register in class FROM to
2016 one in class TO. The classes are expressed using the enumeration values
2017 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2018 interpreted relative to that.
d4ba09c0 2019
96e7ae40
JH
2020 It is not required that the cost always equal 2 when FROM is the same as TO;
2021 on some machines it is expensive to move between registers if they are not
f84aa48a 2022 general registers. */
d4ba09c0 2023
f84aa48a 2024#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2025 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2026
2027/* A C expression for the cost of moving data of mode M between a
2028 register and memory. A value of 2 is the default; this cost is
2029 relative to those in `REGISTER_MOVE_COST'.
2030
2031 If moving between registers and memory is more expensive than
2032 between two registers, you should define this macro to express the
fa79946e 2033 relative cost. */
d4ba09c0 2034
d9a5f180
GS
2035#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2036 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2037
2038/* A C expression for the cost of a branch instruction. A value of 1
2039 is the default; other values are interpreted relative to that. */
2040
e075ae69 2041#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2042
2043/* Define this macro as a C expression which is nonzero if accessing
2044 less than a word of memory (i.e. a `char' or a `short') is no
2045 faster than accessing a word of memory, i.e., if such access
2046 require more than one instruction or if there is no difference in
2047 cost between byte and (aligned) word loads.
2048
2049 When this macro is not defined, the compiler will access a field by
2050 finding the smallest containing object; when it is defined, a
2051 fullword load will be used if alignment permits. Unless bytes
2052 accesses are faster than word accesses, using word accesses is
2053 preferable since it may eliminate subsequent memory access if
2054 subsequent accesses occur to other fields in the same word of the
2055 structure, but to different bytes. */
2056
2057#define SLOW_BYTE_ACCESS 0
2058
2059/* Nonzero if access to memory by shorts is slow and undesirable. */
2060#define SLOW_SHORT_ACCESS 0
2061
d4ba09c0
SC
2062/* Define this macro to be the value 1 if unaligned accesses have a
2063 cost many times greater than aligned accesses, for example if they
2064 are emulated in a trap handler.
2065
9cd10576
KH
2066 When this macro is nonzero, the compiler will act as if
2067 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2068 moves. This can cause significantly more instructions to be
9cd10576 2069 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2070 accesses only add a cycle or two to the time for a memory access.
2071
2072 If the value of this macro is always zero, it need not be defined. */
2073
e1565e65 2074/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2075
d4ba09c0
SC
2076/* Define this macro if it is as good or better to call a constant
2077 function address than to call an address kept in a register.
2078
2079 Desirable on the 386 because a CALL with a constant address is
2080 faster than one with a register address. */
2081
2082#define NO_FUNCTION_CSE
c98f8742 2083\f
c572e5ba
JVA
2084/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2085 return the mode to be used for the comparison.
2086
2087 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2088 VOIDmode should be used in all other cases.
c572e5ba 2089
16189740 2090 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2091 possible, to allow for more combinations. */
c98f8742 2092
d9a5f180 2093#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2094
9cd10576 2095/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2096 reversed. */
2097
2098#define REVERSIBLE_CC_MODE(MODE) 1
2099
2100/* A C expression whose value is reversed condition code of the CODE for
2101 comparison done in CC_MODE mode. */
3c5cb3e4 2102#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2103
c98f8742
JVA
2104\f
2105/* Control the assembler format that we output, to the extent
2106 this does not vary between assemblers. */
2107
2108/* How to refer to registers in assembler output.
892a2d68 2109 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2110
a7b376ee 2111/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2112 For non floating point regs, the following are the HImode names.
2113
2114 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2115 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2116
a7180f70
BS
2117#define HI_REGISTER_NAMES \
2118{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2119 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2120 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2121 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2122 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2123 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2124 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2125
c98f8742
JVA
2126#define REGISTER_NAMES HI_REGISTER_NAMES
2127
2128/* Table of additional register names to use in user input. */
2129
2130#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2131{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2132 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2133 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2134 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2135 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2136 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2137
2138/* Note we are omitting these since currently I don't know how
2139to get gcc to use these, since they want the same but different
2140number as al, and ax.
2141*/
2142
c98f8742 2143#define QI_REGISTER_NAMES \
3f3f2124 2144{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2145
2146/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2147 of regs 0 through 3. */
c98f8742
JVA
2148
2149#define QI_HIGH_REGISTER_NAMES \
2150{"ah", "dh", "ch", "bh", }
2151
2152/* How to renumber registers for dbx and gdb. */
2153
d9a5f180
GS
2154#define DBX_REGISTER_NUMBER(N) \
2155 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2156
9a82e702
MS
2157extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2158extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2159extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2160
469ac993
JM
2161/* Before the prologue, RA is at 0(%esp). */
2162#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2163 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2164
e414ab29 2165/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2166#define RETURN_ADDR_RTX(COUNT, FRAME) \
2167 ((COUNT) == 0 \
2168 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2169 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2170
892a2d68 2171/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2172#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2173
a6ab3aad 2174/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2175#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2176
1020a5ab
RH
2177/* Describe how we implement __builtin_eh_return. */
2178#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2179#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2180
ad919812 2181
e4c4ebeb
RH
2182/* Select a format to encode pointers in exception handling data. CODE
2183 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2184 true if the symbol may be affected by dynamic relocations.
2185
2186 ??? All x86 object file formats are capable of representing this.
2187 After all, the relocation needed is the same as for the call insn.
2188 Whether or not a particular assembler allows us to enter such, I
2189 guess we'll have to see. */
d9a5f180 2190#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2191 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2192
c98f8742
JVA
2193/* This is how to output an insn to push a register on the stack.
2194 It need not be very fast code. */
2195
d9a5f180 2196#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2197do { \
2198 if (TARGET_64BIT) \
2199 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2200 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2201 else \
2202 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2203} while (0)
c98f8742
JVA
2204
2205/* This is how to output an insn to pop a register from the stack.
2206 It need not be very fast code. */
2207
d9a5f180 2208#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2209do { \
2210 if (TARGET_64BIT) \
2211 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2212 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2213 else \
2214 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2215} while (0)
c98f8742 2216
f88c65f7 2217/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2218
2219#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2220 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2221
f88c65f7 2222/* This is how to output an element of a case-vector that is relative. */
c98f8742 2223
33f7f353 2224#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2225 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2226
f7288899
EC
2227/* Under some conditions we need jump tables in the text section,
2228 because the assembler cannot handle label differences between
2229 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2230
2231#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2232 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2233 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2234
cea3bd3e
RH
2235/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2236 and switch back. For x86 we do this only to save a few bytes that
2237 would otherwise be unused in the text section. */
2238#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2239 asm (SECTION_OP "\n\t" \
2240 "call " USER_LABEL_PREFIX #FUNC "\n" \
2241 TEXT_SECTION_ASM_OP);
74b42c8b 2242\f
c98f8742
JVA
2243/* Print operand X (an rtx) in assembler syntax to file FILE.
2244 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2245 Effect of various CODE letters is described in i386.c near
2246 print_operand function. */
c98f8742 2247
d9a5f180 2248#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2249 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2250
2251#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2252 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2253
2254#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2255 print_operand_address ((FILE), (ADDR))
c98f8742 2256
f996902d
RH
2257#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2258do { \
2259 if (! output_addr_const_extra (FILE, (X))) \
2260 goto FAIL; \
2261} while (0);
d4ba09c0 2262\f
5bf0ebab
RH
2263/* Which processor to schedule for. The cpu attribute defines a list that
2264 mirrors this list, so changes to i386.md must be made at the same time. */
2265
2266enum processor_type
2267{
8383d43c 2268 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2269 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2270 PROCESSOR_PENTIUM,
2271 PROCESSOR_PENTIUMPRO,
cfe1b18f 2272 PROCESSOR_GEODE,
5bf0ebab
RH
2273 PROCESSOR_K6,
2274 PROCESSOR_ATHLON,
2275 PROCESSOR_PENTIUM4,
4977bab6 2276 PROCESSOR_K8,
89c43c0a 2277 PROCESSOR_NOCONA,
05f85dbb 2278 PROCESSOR_CORE2,
d326eaf0
JH
2279 PROCESSOR_GENERIC32,
2280 PROCESSOR_GENERIC64,
21efb4d4 2281 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2282 PROCESSOR_max
2283};
2284
9e555526 2285extern enum processor_type ix86_tune;
5bf0ebab 2286extern enum processor_type ix86_arch;
5bf0ebab
RH
2287
2288enum fpmath_unit
2289{
2290 FPMATH_387 = 1,
2291 FPMATH_SSE = 2
2292};
2293
2294extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2295
f996902d
RH
2296enum tls_dialect
2297{
2298 TLS_DIALECT_GNU,
5bf5a10b 2299 TLS_DIALECT_GNU2,
f996902d
RH
2300 TLS_DIALECT_SUN
2301};
2302
2303extern enum tls_dialect ix86_tls_dialect;
f996902d 2304
6189a572 2305enum cmodel {
5bf0ebab
RH
2306 CM_32, /* The traditional 32-bit ABI. */
2307 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2308 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2309 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2310 CM_LARGE, /* No assumptions. */
7dcbf659 2311 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2312 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2313 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2314};
2315
5bf0ebab 2316extern enum cmodel ix86_cmodel;
5bf0ebab 2317
8362f420
JH
2318/* Size of the RED_ZONE area. */
2319#define RED_ZONE_SIZE 128
2320/* Reserved area of the red zone for temporaries. */
2321#define RED_ZONE_RESERVE 8
c93e80a5
JH
2322
2323enum asm_dialect {
2324 ASM_ATT,
2325 ASM_INTEL
2326};
5bf0ebab 2327
80f33d06 2328extern enum asm_dialect ix86_asm_dialect;
95899b34 2329extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2330extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2331
2332/* Smallest class containing REGNO. */
2333extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2334
d9a5f180
GS
2335extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2336extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2337extern rtx ix86_compare_emitted;
22fb740d
JH
2338\f
2339/* To properly truncate FP values into integers, we need to set i387 control
2340 word. We can't emit proper mode switching code before reload, as spills
2341 generated by reload may truncate values incorrectly, but we still can avoid
2342 redundant computation of new control word by the mode switching pass.
2343 The fldcw instructions are still emitted redundantly, but this is probably
2344 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2345 the sequence.
22fb740d
JH
2346
2347 The machinery is to emit simple truncation instructions and split them
2348 before reload to instructions having USEs of two memory locations that
2349 are filled by this code to old and new control word.
fce5a9f2 2350
22fb740d
JH
2351 Post-reload pass may be later used to eliminate the redundant fildcw if
2352 needed. */
2353
ff680eb1
UB
2354enum ix86_entity
2355{
2356 I387_TRUNC = 0,
2357 I387_FLOOR,
2358 I387_CEIL,
2359 I387_MASK_PM,
2360 MAX_386_ENTITIES
2361};
2362
1cba2b96 2363enum ix86_stack_slot
ff680eb1 2364{
80dcd3aa
UB
2365 SLOT_VIRTUAL = 0,
2366 SLOT_TEMP,
ff680eb1
UB
2367 SLOT_CW_STORED,
2368 SLOT_CW_TRUNC,
2369 SLOT_CW_FLOOR,
2370 SLOT_CW_CEIL,
2371 SLOT_CW_MASK_PM,
2372 MAX_386_STACK_LOCALS
2373};
22fb740d
JH
2374
2375/* Define this macro if the port needs extra instructions inserted
2376 for mode switching in an optimizing compilation. */
2377
ff680eb1
UB
2378#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2379 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2380
2381/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2382 initializer for an array of integers. Each initializer element N
2383 refers to an entity that needs mode switching, and specifies the
2384 number of different modes that might need to be set for this
2385 entity. The position of the initializer in the initializer -
2386 starting counting at zero - determines the integer that is used to
2387 refer to the mode-switched entity in question. */
2388
ff680eb1
UB
2389#define NUM_MODES_FOR_MODE_SWITCHING \
2390 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2391
2392/* ENTITY is an integer specifying a mode-switched entity. If
2393 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2394 return an integer value not larger than the corresponding element
2395 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2396 must be switched into prior to the execution of INSN. */
2397
2398#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2399
2400/* This macro specifies the order in which modes for ENTITY are
2401 processed. 0 is the highest priority. */
2402
d9a5f180 2403#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2404
2405/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2406 is the set of hard registers live at the point where the insn(s)
2407 are to be inserted. */
2408
2409#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2410 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2411 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2412 : 0)
ff680eb1 2413
0f0138b6
JH
2414\f
2415/* Avoid renaming of stack registers, as doing so in combination with
2416 scheduling just increases amount of live registers at time and in
2417 the turn amount of fxch instructions needed.
2418
43f3a59d 2419 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2420
d9a5f180 2421#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2422 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2423
3b3c6a3f 2424\f
e91f04de 2425#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2426\f
2427struct machine_function GTY(())
2428{
2429 struct stack_local_entry *stack_locals;
2430 const char *some_ld_name;
150cdc9e 2431 rtx force_align_arg_pointer;
fa1a0d02
JH
2432 int save_varrargs_registers;
2433 int accesses_prev_frame;
ff680eb1 2434 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2435 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2436 determine the style used. */
2437 int use_fast_prologue_epilogue;
d7394366
JH
2438 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2439 for. */
2440 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2441 /* If true, the current function needs the default PIC register, not
2442 an alternate register (on x86) and must not use the red zone (on
2443 x86_64), even if it's a leaf function. We don't want the
2444 function to be regarded as non-leaf because TLS calls need not
2445 affect register allocation. This flag is set when a TLS call
2446 instruction is expanded within a function, and never reset, even
2447 if all such instructions are optimized away. Use the
2448 ix86_current_function_calls_tls_descriptor macro for a better
2449 approximation. */
2450 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2451};
2452
2453#define ix86_stack_locals (cfun->machine->stack_locals)
2454#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2455#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2456#define ix86_tls_descriptor_calls_expanded_in_cfun \
2457 (cfun->machine->tls_descriptor_call_expanded_p)
2458/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2459 calls are optimized away, we try to detect cases in which it was
2460 optimized away. Since such instructions (use (reg REG_SP)), we can
2461 verify whether there's any such instruction live by testing that
2462 REG_SP is live. */
2463#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2464 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2465
1bc7c5b6
ZW
2466/* Control behavior of x86_file_start. */
2467#define X86_FILE_START_VERSION_DIRECTIVE false
2468#define X86_FILE_START_FLTUSED false
2469
7dcbf659
JH
2470/* Flag to mark data that is in the large address area. */
2471#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2472#define SYMBOL_REF_FAR_ADDR_P(X) \
2473 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2474
2475/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2476 have defined always, to avoid ifdefing. */
2477#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2478#define SYMBOL_REF_DLLIMPORT_P(X) \
2479 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2480
2481#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2482#define SYMBOL_REF_DLLEXPORT_P(X) \
2483 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2484
e70444a8
HJ
2485/* Model costs for vectorizer. */
2486
2487/* Cost of conditional branch. */
2488#undef TARG_COND_BRANCH_COST
2489#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2490
2491/* Cost of any scalar operation, excluding load and store. */
2492#undef TARG_SCALAR_STMT_COST
2493#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2494
2495/* Cost of scalar load. */
2496#undef TARG_SCALAR_LOAD_COST
2497#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2498
2499/* Cost of scalar store. */
2500#undef TARG_SCALAR_STORE_COST
2501#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2502
2503/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2504 operation. */
e70444a8
HJ
2505#undef TARG_VEC_STMT_COST
2506#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2507
2508/* Cost of vector to scalar operation. */
2509#undef TARG_VEC_TO_SCALAR_COST
2510#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2511
2512/* Cost of scalar to vector operation. */
2513#undef TARG_SCALAR_TO_VEC_COST
2514#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2515
2516/* Cost of aligned vector load. */
2517#undef TARG_VEC_LOAD_COST
2518#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2519
2520/* Cost of misaligned vector load. */
2521#undef TARG_VEC_UNALIGNED_LOAD_COST
2522#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2523
2524/* Cost of vector store. */
2525#undef TARG_VEC_STORE_COST
2526#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2527
2528/* Cost of conditional taken branch for vectorizer cost model. */
2529#undef TARG_COND_TAKEN_BRANCH_COST
2530#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2531
2532/* Cost of conditional not taken branch for vectorizer cost model. */
2533#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2534#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2535
c98f8742
JVA
2536/*
2537Local variables:
2538version-control: t
2539End:
2540*/