]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR tree-optimization/85757 (tree optimizers fail to fully clean up fixed-size...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
85ec4feb 2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
90922d36 96#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 97#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 98#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 99#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 100#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 101#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 102#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 103#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 104#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 105#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 106#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 107#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
108#define TARGET_PCONFIG TARGET_ISA_PCONFIG
109#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
112#define TARGET_SGX TARGET_ISA_SGX
113#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
114#define TARGET_RDPID TARGET_ISA_RDPID
115#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
116#define TARGET_GFNI TARGET_ISA_GFNI
117#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
118#define TARGET_VAES TARGET_ISA_VAES
119#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
120#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 122#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 123#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 124#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 125#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 126#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 127#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 128#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 129#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 130#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 131#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 132#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 133#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 134#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 135#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 136#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 137#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 138#define TARGET_AES TARGET_ISA_AES
bf7b5747 139#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
140#define TARGET_SHA TARGET_ISA_SHA
141#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
142#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
144#define TARGET_CLZERO TARGET_ISA_CLZERO
145#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
146#define TARGET_XSAVEC TARGET_ISA_XSAVEC
147#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148#define TARGET_XSAVES TARGET_ISA_XSAVES
149#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 150#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 151#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
152#define TARGET_CMPXCHG16B TARGET_ISA_CX16
153#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 154#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 155#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 156#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 157#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 158#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 159#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
160#define TARGET_RTM TARGET_ISA_RTM
161#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 162#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 163#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 164#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 165#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 166#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 167#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 168#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 169#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 170#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 171#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 172#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 173#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 174#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 175#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
176#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
178#define TARGET_MPX TARGET_ISA_MPX
179#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
180#define TARGET_CLWB TARGET_ISA_CLWB
181#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
182#define TARGET_MWAITX TARGET_ISA_MWAITX
183#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
184#define TARGET_PKU TARGET_ISA_PKU
185#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
186#define TARGET_SHSTK TARGET_ISA_SHSTK
187#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
188#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
189#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
190#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
191#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
192#define TARGET_WAITPKG TARGET_ISA_WAITPKG
193#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
194#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
195#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41a4ef22 196
90922d36 197#define TARGET_LP64 TARGET_ABI_64
bf7b5747 198#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 199#define TARGET_X32 TARGET_ABI_X32
bf7b5747 200#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
201#define TARGET_16BIT TARGET_CODE16
202#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 203
26b5109f
RS
204#include "config/vxworks-dummy.h"
205
7eb68c06 206#include "config/i386/i386-opts.h"
ccf8e764 207
c69fa2d4 208#define MAX_STRINGOP_ALGS 4
ccf8e764 209
8c996513
JH
210/* Specify what algorithm to use for stringops on known size.
211 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
212 known at compile time or estimated via feedback, the SIZE array
213 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 214 means infinity). Corresponding ALG is used then.
340ef734
JH
215 When NOALIGN is true the code guaranting the alignment of the memory
216 block is skipped.
217
8c996513 218 For example initializer:
4f3f76e6 219 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 220 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 221 be used otherwise. */
8c996513
JH
222struct stringop_algs
223{
224 const enum stringop_alg unknown_size;
225 const struct stringop_strategy {
226 const int max;
227 const enum stringop_alg alg;
340ef734 228 int noalign;
c69fa2d4 229 } size [MAX_STRINGOP_ALGS];
8c996513
JH
230};
231
d4ba09c0
SC
232/* Define the specific costs for a given cpu */
233
234struct processor_costs {
8b60264b
KG
235 const int add; /* cost of an add instruction */
236 const int lea; /* cost of a lea instruction */
237 const int shift_var; /* variable shift costs */
238 const int shift_const; /* constant shift costs */
f676971a 239 const int mult_init[5]; /* cost of starting a multiply
4977bab6 240 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 241 const int mult_bit; /* cost of multiply per each bit set */
f676971a 242 const int divide[5]; /* cost of a divide/mod
4977bab6 243 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
244 int movsx; /* The cost of movsx operation. */
245 int movzx; /* The cost of movzx operation. */
8b60264b
KG
246 const int large_insn; /* insns larger than this cost more */
247 const int move_ratio; /* The threshold of number of scalar
ac775968 248 memory-to-memory move insns. */
8b60264b
KG
249 const int movzbl_load; /* cost of loading using movzbl */
250 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
251 in QImode, HImode and SImode relative
252 to reg-reg move (2). */
8b60264b 253 const int int_store[3]; /* cost of storing integer register
96e7ae40 254 in QImode, HImode and SImode */
8b60264b
KG
255 const int fp_move; /* cost of reg,reg fld/fst */
256 const int fp_load[3]; /* cost of loading FP register
96e7ae40 257 in SFmode, DFmode and XFmode */
8b60264b 258 const int fp_store[3]; /* cost of storing FP register
96e7ae40 259 in SFmode, DFmode and XFmode */
8b60264b
KG
260 const int mmx_move; /* cost of moving MMX register. */
261 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 262 in SImode and DImode */
8b60264b 263 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 264 in SImode and DImode */
df41dbaf
JH
265 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
266 zmm_move;
267 const int sse_load[5]; /* cost of loading SSE register
268 in 32bit, 64bit, 128bit, 256bit and 512bit */
269 const int sse_unaligned_load[5];/* cost of unaligned load. */
270 const int sse_store[5]; /* cost of storing SSE register
271 in SImode, DImode and TImode. */
272 const int sse_unaligned_store[5];/* cost of unaligned store. */
8b60264b 273 const int mmxsse_to_integer; /* cost of moving mmxsse register to
df41dbaf
JH
274 integer. */
275 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
a4fe6139
JH
276 const int gather_static, gather_per_elt; /* Cost of gather load is computed
277 as static + per_item * nelts. */
278 const int scatter_static, scatter_per_elt; /* Cost of gather store is
279 computed as static + per_item * nelts. */
46cb0441
ZD
280 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
281 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
282 const int prefetch_block; /* bytes moved to cache for prefetch. */
283 const int simultaneous_prefetches; /* number of parallel prefetch
284 operations. */
4977bab6 285 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
286 const int fadd; /* cost of FADD and FSUB instructions. */
287 const int fmul; /* cost of FMUL instruction. */
288 const int fdiv; /* cost of FDIV instruction. */
289 const int fabs; /* cost of FABS instruction. */
290 const int fchs; /* cost of FCHS instruction. */
291 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 292 /* Specify what algorithm
bee51209 293 to use for stringops on unknown size. */
c53c148c 294 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
295 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
296 const int mulss; /* cost of MULSS instructions. */
297 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
298 const int fmass; /* cost of FMASS instructions. */
299 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
300 const int divss; /* cost of DIVSS instructions. */
301 const int divsd; /* cost of DIVSD instructions. */
302 const int sqrtss; /* cost of SQRTSS instructions. */
303 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
304 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
305 /* Specify reassociation width for integer,
306 fp, vector integer and vector fp
307 operations. Generally should correspond
308 to number of instructions executed in
309 parallel. See also
310 ix86_reassociation_width. */
ad83025e 311 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
312 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
313 cost model. */
314 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
315 vectorizer cost model. */
d4ba09c0
SC
316};
317
8b60264b 318extern const struct processor_costs *ix86_cost;
b2077fd2
JH
319extern const struct processor_costs ix86_size_cost;
320
321#define ix86_cur_cost() \
322 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 323
c98f8742
JVA
324/* Macros used in the machine description to test the flags. */
325
b97de419 326/* configure can arrange to change it. */
e075ae69 327
35b528be 328#ifndef TARGET_CPU_DEFAULT
b97de419 329#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 330#endif
35b528be 331
004d3859
GK
332#ifndef TARGET_FPMATH_DEFAULT
333#define TARGET_FPMATH_DEFAULT \
334 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
335#endif
336
bf7b5747
ST
337#ifndef TARGET_FPMATH_DEFAULT_P
338#define TARGET_FPMATH_DEFAULT_P(x) \
339 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
340#endif
341
c207fd99
L
342/* If the i387 is disabled or -miamcu is used , then do not return
343 values in it. */
344#define TARGET_FLOAT_RETURNS_IN_80387 \
345 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
346#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
347 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 348
5791cc29
JT
349/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
350 compile-time constant. */
351#ifdef IN_LIBGCC2
6ac49599 352#undef TARGET_64BIT
5791cc29
JT
353#ifdef __x86_64__
354#define TARGET_64BIT 1
355#else
356#define TARGET_64BIT 0
357#endif
358#else
6ac49599
RS
359#ifndef TARGET_BI_ARCH
360#undef TARGET_64BIT
e49080ec 361#undef TARGET_64BIT_P
67adf6a9 362#if TARGET_64BIT_DEFAULT
0c2dc519 363#define TARGET_64BIT 1
e49080ec 364#define TARGET_64BIT_P(x) 1
0c2dc519
JH
365#else
366#define TARGET_64BIT 0
e49080ec 367#define TARGET_64BIT_P(x) 0
0c2dc519
JH
368#endif
369#endif
5791cc29 370#endif
25f94bb5 371
750054a2
CT
372#define HAS_LONG_COND_BRANCH 1
373#define HAS_LONG_UNCOND_BRANCH 1
374
9e555526
RH
375#define TARGET_386 (ix86_tune == PROCESSOR_I386)
376#define TARGET_486 (ix86_tune == PROCESSOR_I486)
377#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
378#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 379#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
380#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
381#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
382#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
383#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 384#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 385#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 386#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
387#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
388#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 389#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
390#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
391#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 392#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
52747219 393#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 394#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 395#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 396#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 397#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
398#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
399#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
9a7f94d7 400#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 401#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 402#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 403#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 404#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 405#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 406#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 407#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 408#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 409#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 410
80fd744f
RH
411/* Feature tests against the various tunings. */
412enum ix86_tune_indices {
4b8bc035 413#undef DEF_TUNE
3ad20bd4 414#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
415#include "x86-tune.def"
416#undef DEF_TUNE
417X86_TUNE_LAST
80fd744f
RH
418};
419
ab442df7 420extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
421
422#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
423#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
424#define TARGET_ZERO_EXTEND_WITH_AND \
425 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 426#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
427#define TARGET_BRANCH_PREDICTION_HINTS \
428 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
429#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
430#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
431#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
432#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
433#define TARGET_PARTIAL_FLAG_REG_STALL \
434 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
435#define TARGET_LCP_STALL \
436 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
437#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
438#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
439#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
440#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
441#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
442#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
443#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
444#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
445#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
446#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
447#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
448#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
449 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
450#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
451#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
452#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
453#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
454#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
455#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
456#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
457#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
458#define TARGET_INTEGER_DFMODE_MOVES \
459 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
460#define TARGET_PARTIAL_REG_DEPENDENCY \
461 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
462#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
463 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
464#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
465 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
466#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
467 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
468#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
469 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
470#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
471#define TARGET_SSE_TYPELESS_STORES \
472 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
473#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
474#define TARGET_MEMORY_MISMATCH_STALL \
475 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
476#define TARGET_PROLOGUE_USING_MOVE \
477 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
478#define TARGET_EPILOGUE_USING_MOVE \
479 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
480#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
481#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
482#define TARGET_INTER_UNIT_MOVES_TO_VEC \
483 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
484#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
485 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
486#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 487 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
488#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
489#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
490#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
491#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
492#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
493#define TARGET_PAD_SHORT_FUNCTION \
494 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
495#define TARGET_EXT_80387_CONSTANTS \
496 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
497#define TARGET_AVOID_VECTOR_DECODE \
498 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
499#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
500 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
501#define TARGET_SLOW_IMUL_IMM32_MEM \
502 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
503#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
504#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
505#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
506#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
507#define TARGET_USE_VECTOR_FP_CONVERTS \
508 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
509#define TARGET_USE_VECTOR_CONVERTS \
510 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
511#define TARGET_SLOW_PSHUFB \
512 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
513#define TARGET_AVOID_4BYTE_PREFIXES \
514 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
515#define TARGET_USE_GATHER \
516 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
517#define TARGET_FUSE_CMP_AND_BRANCH_32 \
518 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
519#define TARGET_FUSE_CMP_AND_BRANCH_64 \
520 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 521#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
522 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
523 : TARGET_FUSE_CMP_AND_BRANCH_32)
524#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
525 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
526#define TARGET_FUSE_ALU_AND_BRANCH \
527 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 528#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
529#define TARGET_AVOID_LEA_FOR_ADDR \
530 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
531#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
532 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
533#define TARGET_AVX128_OPTIMAL \
534 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
535#define TARGET_GENERAL_REGS_SSE_SPILL \
536 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
537#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
538 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 539#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 540 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
541#define TARGET_ADJUST_UNROLL \
542 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
543#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
544 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
545#define TARGET_ONE_IF_CONV_INSN \
546 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
547#define TARGET_EMIT_VZEROUPPER \
548 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 549
80fd744f
RH
550/* Feature tests against the various architecture variations. */
551enum ix86_arch_indices {
cef31f9c 552 X86_ARCH_CMOV,
80fd744f
RH
553 X86_ARCH_CMPXCHG,
554 X86_ARCH_CMPXCHG8B,
555 X86_ARCH_XADD,
556 X86_ARCH_BSWAP,
557
558 X86_ARCH_LAST
559};
4f3f76e6 560
ab442df7 561extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 562
cef31f9c 563#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
564#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
565#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
566#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
567#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
568
cef31f9c
UB
569/* For sane SSE instruction set generation we need fcomi instruction.
570 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
571 expands to a sequence that includes conditional move. */
572#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
573
80fd744f
RH
574#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
575
cb261eb7 576extern unsigned char x86_prefetch_sse;
80fd744f
RH
577#define TARGET_PREFETCH_SSE x86_prefetch_sse
578
80fd744f
RH
579#define ASSEMBLER_DIALECT (ix86_asm_dialect)
580
581#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
582#define TARGET_MIX_SSE_I387 \
583 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
584
5fa578f0
UB
585#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
586#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
587#define TARGET_HARD_XF_REGS (TARGET_80387)
588
80fd744f
RH
589#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
590#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
591#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 592#define TARGET_SUN_TLS 0
1ef45b77 593
67adf6a9
RH
594#ifndef TARGET_64BIT_DEFAULT
595#define TARGET_64BIT_DEFAULT 0
25f94bb5 596#endif
74dc3e94
RH
597#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
598#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
599#endif
25f94bb5 600
e0ea8797
AH
601#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
602#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
603
79f5e442
ZD
604/* Fence to use after loop using storent. */
605
606extern tree x86_mfence;
607#define FENCE_FOLLOWING_MOVNT x86_mfence
608
0ed4a390
JL
609/* Once GDB has been enhanced to deal with functions without frame
610 pointers, we can change this to allow for elimination of
611 the frame pointer in leaf functions. */
612#define TARGET_DEFAULT 0
67adf6a9 613
0a1c5e55
UB
614/* Extra bits to force. */
615#define TARGET_SUBTARGET_DEFAULT 0
616#define TARGET_SUBTARGET_ISA_DEFAULT 0
617
618/* Extra bits to force on w/ 32-bit mode. */
619#define TARGET_SUBTARGET32_DEFAULT 0
620#define TARGET_SUBTARGET32_ISA_DEFAULT 0
621
ccf8e764
RH
622/* Extra bits to force on w/ 64-bit mode. */
623#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 624#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 625
fee3eacd
IS
626/* Replace MACH-O, ifdefs by in-line tests, where possible.
627 (a) Macros defined in config/i386/darwin.h */
b069de3b 628#define TARGET_MACHO 0
9005471b 629#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
630#define MACHOPIC_ATT_STUB 0
631/* (b) Macros defined in config/darwin.h */
632#define MACHO_DYNAMIC_NO_PIC_P 0
633#define MACHOPIC_INDIRECT 0
634#define MACHOPIC_PURE 0
9005471b 635
5a579c3b
LE
636/* For the RDOS */
637#define TARGET_RDOS 0
638
9005471b 639/* For the Windows 64-bit ABI. */
7c800926
KT
640#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
641
6510e8bb
KT
642/* For the Windows 32-bit ABI. */
643#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
644
f81c9774
RH
645/* This is re-defined by cygming.h. */
646#define TARGET_SEH 0
647
51212b32 648/* The default abi used by target. */
7c800926 649#define DEFAULT_ABI SYSV_ABI
ccf8e764 650
b8b3f0ca 651/* The default TLS segment register used by target. */
00402c94
RH
652#define DEFAULT_TLS_SEG_REG \
653 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 654
cc69336f
RH
655/* Subtargets may reset this to 1 in order to enable 96-bit long double
656 with the rounding mode forced to 53 bits. */
657#define TARGET_96_ROUND_53_LONG_DOUBLE 0
658
682cd442
GK
659/* -march=native handling only makes sense with compiler running on
660 an x86 or x86_64 chip. If changing this condition, also change
661 the condition in driver-i386.c. */
662#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
663/* In driver-i386.c. */
664extern const char *host_detect_local_cpu (int argc, const char **argv);
665#define EXTRA_SPEC_FUNCTIONS \
666 { "local_cpu_detect", host_detect_local_cpu },
682cd442 667#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
668#endif
669
8981c15b
JM
670#if TARGET_64BIT_DEFAULT
671#define OPT_ARCH64 "!m32"
672#define OPT_ARCH32 "m32"
673#else
f0ea7581
L
674#define OPT_ARCH64 "m64|mx32"
675#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
676#endif
677
1cba2b96
EC
678/* Support for configure-time defaults of some command line options.
679 The order here is important so that -march doesn't squash the
680 tune or cpu values. */
ce998900 681#define OPTION_DEFAULT_SPECS \
da2d4c01 682 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
683 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
684 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 685 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
686 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
687 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
688 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
689 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
690 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 691
241e1a89
SC
692/* Specs for the compiler proper */
693
628714d8 694#ifndef CC1_CPU_SPEC
eb5bb0fd 695#define CC1_CPU_SPEC_1 ""
fa959ce4 696
682cd442 697#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
698#define CC1_CPU_SPEC CC1_CPU_SPEC_1
699#else
700#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
701"%{march=native:%>march=native %:local_cpu_detect(arch) \
702 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
703%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 704#endif
241e1a89 705#endif
c98f8742 706\f
30efe578 707/* Target CPU builtins. */
ab442df7
MM
708#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
709
710/* Target Pragmas. */
711#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 712
628714d8 713#ifndef CC1_SPEC
8015b78d 714#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
715#endif
716
717/* This macro defines names of additional specifications to put in the
718 specs that can be used in various specifications like CC1_SPEC. Its
719 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
720
721 Each subgrouping contains a string constant, that defines the
188fc5b5 722 specification name, and a string constant that used by the GCC driver
bcd86433
SC
723 program.
724
725 Do not define this macro if it does not need to do anything. */
726
727#ifndef SUBTARGET_EXTRA_SPECS
728#define SUBTARGET_EXTRA_SPECS
729#endif
730
731#define EXTRA_SPECS \
628714d8 732 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
733 SUBTARGET_EXTRA_SPECS
734\f
ce998900 735
8ce94e44
JM
736/* Whether to allow x87 floating-point arithmetic on MODE (one of
737 SFmode, DFmode and XFmode) in the current excess precision
738 configuration. */
b8cab8a5
UB
739#define X87_ENABLE_ARITH(MODE) \
740 (flag_unsafe_math_optimizations \
741 || flag_excess_precision == EXCESS_PRECISION_FAST \
742 || (MODE) == XFmode)
8ce94e44
JM
743
744/* Likewise, whether to allow direct conversions from integer mode
745 IMODE (HImode, SImode or DImode) to MODE. */
746#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
747 (flag_unsafe_math_optimizations \
748 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
749 || (MODE) == XFmode \
750 || ((MODE) == DFmode && (IMODE) == SImode) \
751 || (IMODE) == HImode)
752
979c67a5
UB
753/* target machine storage layout */
754
65d9c0ab
JH
755#define SHORT_TYPE_SIZE 16
756#define INT_TYPE_SIZE 32
f0ea7581
L
757#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
758#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 759#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 760#define FLOAT_TYPE_SIZE 32
65d9c0ab 761#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
762#define LONG_DOUBLE_TYPE_SIZE \
763 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 764
c637141a 765#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 766
67adf6a9 767#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 768#define MAX_BITS_PER_WORD 64
0c2dc519
JH
769#else
770#define MAX_BITS_PER_WORD 32
0c2dc519
JH
771#endif
772
c98f8742
JVA
773/* Define this if most significant byte of a word is the lowest numbered. */
774/* That is true on the 80386. */
775
776#define BITS_BIG_ENDIAN 0
777
778/* Define this if most significant byte of a word is the lowest numbered. */
779/* That is not true on the 80386. */
780#define BYTES_BIG_ENDIAN 0
781
782/* Define this if most significant word of a multiword number is the lowest
783 numbered. */
784/* Not true for 80386 */
785#define WORDS_BIG_ENDIAN 0
786
c98f8742 787/* Width of a word, in units (bytes). */
4ae8027b 788#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
789
790#ifndef IN_LIBGCC2
2e64c636
JH
791#define MIN_UNITS_PER_WORD 4
792#endif
c98f8742 793
c98f8742 794/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 795#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 796
e075ae69 797/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 798#define STACK_BOUNDARY \
51212b32 799 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 800
2e3f842f
L
801/* Stack boundary of the main function guaranteed by OS. */
802#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
803
de1132d1 804/* Minimum stack boundary. */
cba9c789 805#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 806
d1f87653 807/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 808 aligned; the compiler cannot rely on having this alignment. */
e075ae69 809#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 810
de1132d1 811/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
812 both 32bit and 64bit, to support codes that need 128 bit stack
813 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
814#define PREFERRED_STACK_BOUNDARY_DEFAULT \
815 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
816
817/* 1 if -mstackrealign should be turned on by default. It will
818 generate an alternate prologue and epilogue that realigns the
819 runtime stack if nessary. This supports mixing codes that keep a
820 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 821 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
822#define STACK_REALIGN_DEFAULT 0
823
824/* Boundary (in *bits*) on which the incoming stack is aligned. */
825#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 826
a2851b75
TG
827/* According to Windows x64 software convention, the maximum stack allocatable
828 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
829 instructions allowed to adjust the stack pointer in the epilog, forcing the
830 use of frame pointer for frames larger than 2 GB. This theorical limit
831 is reduced by 256, an over-estimated upper bound for the stack use by the
832 prologue.
833 We define only one threshold for both the prolog and the epilog. When the
4e523f33 834 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
835 regs, then save them, and then allocate the remaining. There is no SEH
836 unwind info for this later allocation. */
837#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
838
ebff937c
SH
839/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
840 mandatory for the 64-bit ABI, and may or may not be true for other
841 operating systems. */
842#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
843
f963b5d9
RS
844/* Minimum allocation boundary for the code of a function. */
845#define FUNCTION_BOUNDARY 8
846
847/* C++ stores the virtual bit in the lowest bit of function pointers. */
848#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 849
c98f8742
JVA
850/* Minimum size in bits of the largest boundary to which any
851 and all fundamental data types supported by the hardware
852 might need to be aligned. No data type wants to be aligned
17f24ff0 853 rounder than this.
fce5a9f2 854
d1f87653 855 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
856 and Pentium Pro XFmode values at 128 bit boundaries.
857
858 When increasing the maximum, also update
859 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 860
3f97cb0b 861#define BIGGEST_ALIGNMENT \
0076c82f 862 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 863
2e3f842f
L
864/* Maximum stack alignment. */
865#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
866
6e4f1168
L
867/* Alignment value for attribute ((aligned)). It is a constant since
868 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 869#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 870
822eda12 871/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 872#define ALIGN_MODE_128(MODE) \
4501d314 873 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 874
17f24ff0 875/* The published ABIs say that doubles should be aligned on word
d1f87653 876 boundaries, so lower the alignment for structure fields unless
6fc605d8 877 -malign-double is set. */
e932b21b 878
e83f3cff
RH
879/* ??? Blah -- this macro is used directly by libobjc. Since it
880 supports no vector modes, cut out the complexity and fall back
881 on BIGGEST_FIELD_ALIGNMENT. */
882#ifdef IN_TARGET_LIBS
ef49d42e
JH
883#ifdef __x86_64__
884#define BIGGEST_FIELD_ALIGNMENT 128
885#else
e83f3cff 886#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 887#endif
e83f3cff 888#else
a4cf4b64
RB
889#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
890 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 891#endif
c98f8742 892
8a022443
JW
893/* If defined, a C expression to compute the alignment for a static
894 variable. TYPE is the data type, and ALIGN is the alignment that
895 the object would ordinarily have. The value of this macro is used
896 instead of that alignment to align the object.
897
898 If this macro is not defined, then ALIGN is used.
899
900 One use of this macro is to increase alignment of medium-size
901 data to make it all fit in fewer cache lines. Another is to
902 cause character arrays to be word-aligned so that `strcpy' calls
903 that copy constants to character arrays can be done inline. */
904
df8a1d28
JJ
905#define DATA_ALIGNMENT(TYPE, ALIGN) \
906 ix86_data_alignment ((TYPE), (ALIGN), true)
907
908/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
909 some alignment increase, instead of optimization only purposes. E.g.
910 AMD x86-64 psABI says that variables with array type larger than 15 bytes
911 must be aligned to 16 byte boundaries.
912
913 If this macro is not defined, then ALIGN is used. */
914
915#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
916 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
917
918/* If defined, a C expression to compute the alignment for a local
919 variable. TYPE is the data type, and ALIGN is the alignment that
920 the object would ordinarily have. The value of this macro is used
921 instead of that alignment to align the object.
922
923 If this macro is not defined, then ALIGN is used.
924
925 One use of this macro is to increase alignment of medium-size
926 data to make it all fit in fewer cache lines. */
927
76fe54f0
L
928#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
929 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
930
931/* If defined, a C expression to compute the alignment for stack slot.
932 TYPE is the data type, MODE is the widest mode available, and ALIGN
933 is the alignment that the slot would ordinarily have. The value of
934 this macro is used instead of that alignment to align the slot.
935
936 If this macro is not defined, then ALIGN is used when TYPE is NULL,
937 Otherwise, LOCAL_ALIGNMENT will be used.
938
939 One use of this macro is to set alignment of stack slot to the
940 maximum alignment of all possible modes which the slot may have. */
941
942#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
943 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 944
9bfaf89d
JJ
945/* If defined, a C expression to compute the alignment for a local
946 variable DECL.
947
948 If this macro is not defined, then
949 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
950
951 One use of this macro is to increase alignment of medium-size
952 data to make it all fit in fewer cache lines. */
953
954#define LOCAL_DECL_ALIGNMENT(DECL) \
955 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
956
ae58e548
JJ
957/* If defined, a C expression to compute the minimum required alignment
958 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
959 MODE, assuming normal alignment ALIGN.
960
961 If this macro is not defined, then (ALIGN) will be used. */
962
963#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 964 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 965
9bfaf89d 966
9cd10576 967/* Set this nonzero if move instructions will actually fail to work
c98f8742 968 when given unaligned data. */
b4ac57ab 969#define STRICT_ALIGNMENT 0
c98f8742
JVA
970
971/* If bit field type is int, don't let it cross an int,
972 and give entire struct the alignment of an int. */
43a88a8c 973/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 974#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
975\f
976/* Standard register usage. */
977
978/* This processor has special stack-like registers. See reg-stack.c
892a2d68 979 for details. */
c98f8742
JVA
980
981#define STACK_REGS
ce998900 982
f48b4284
UB
983#define IS_STACK_MODE(MODE) \
984 (X87_FLOAT_MODE_P (MODE) \
985 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
986 || TARGET_MIX_SSE_I387))
c98f8742
JVA
987
988/* Number of actual hardware registers.
989 The hardware registers are assigned numbers for the compiler
990 from 0 to just below FIRST_PSEUDO_REGISTER.
991 All registers that the compiler knows about must be given numbers,
992 even those that are not normally considered general registers.
993
994 In the 80386 we give the 8 general purpose registers the numbers 0-7.
995 We number the floating point registers 8-15.
996 Note that registers 0-7 can be accessed as a short or int,
997 while only 0-3 may be used with byte `mov' instructions.
998
999 Reg 16 does not correspond to any hardware register, but instead
1000 appears in the RTL as an argument pointer prior to reload, and is
1001 eliminated during reloading in favor of either the stack or frame
892a2d68 1002 pointer. */
c98f8742 1003
05416670 1004#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1005
3073d01c
ML
1006/* Number of hardware registers that go into the DWARF-2 unwind info.
1007 If not defined, equals FIRST_PSEUDO_REGISTER. */
1008
1009#define DWARF_FRAME_REGISTERS 17
1010
c98f8742
JVA
1011/* 1 for registers that have pervasive standard uses
1012 and are not available for the register allocator.
3f3f2124 1013 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1014
621bc046
UB
1015 REX registers are disabled for 32bit targets in
1016 TARGET_CONDITIONAL_REGISTER_USAGE. */
1017
a7180f70
BS
1018#define FIXED_REGISTERS \
1019/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1020{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
1021/*arg,flags,fpsr,fpcr,frame*/ \
1022 1, 1, 1, 1, 1, \
a7180f70
BS
1023/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1024 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1025/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1026 0, 0, 0, 0, 0, 0, 0, 0, \
1027/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1028 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1029/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1030 0, 0, 0, 0, 0, 0, 0, 0, \
1031/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1032 0, 0, 0, 0, 0, 0, 0, 0, \
1033/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1034 0, 0, 0, 0, 0, 0, 0, 0, \
1035/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1036 0, 0, 0, 0, 0, 0, 0, 0, \
1037/* b0, b1, b2, b3*/ \
1038 0, 0, 0, 0 }
c98f8742
JVA
1039
1040/* 1 for registers not available across function calls.
1041 These must include the FIXED_REGISTERS and also any
1042 registers that can be used without being saved.
1043 The latter must include the registers where values are returned
1044 and the register where structure-value addresses are passed.
fce5a9f2
EC
1045 Aside from that, you can include as many other registers as you like.
1046
621bc046
UB
1047 Value is set to 1 if the register is call used unconditionally.
1048 Bit one is set if the register is call used on TARGET_32BIT ABI.
1049 Bit two is set if the register is call used on TARGET_64BIT ABI.
1050 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1051
1052 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1053
1f3ccbc8
L
1054#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1055 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1056
a7180f70
BS
1057#define CALL_USED_REGISTERS \
1058/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1059{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1060/*arg,flags,fpsr,fpcr,frame*/ \
1061 1, 1, 1, 1, 1, \
a7180f70 1062/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1063 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1064/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1065 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1066/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1067 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1068/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1069 6, 6, 6, 6, 6, 6, 6, 6, \
1070/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1071 6, 6, 6, 6, 6, 6, 6, 6, \
1072/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1073 6, 6, 6, 6, 6, 6, 6, 6, \
1074 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1075 1, 1, 1, 1, 1, 1, 1, 1, \
1076/* b0, b1, b2, b3*/ \
1077 1, 1, 1, 1 }
c98f8742 1078
3b3c6a3f
MM
1079/* Order in which to allocate registers. Each register must be
1080 listed once, even those in FIXED_REGISTERS. List frame pointer
1081 late and fixed registers last. Note that, in general, we prefer
1082 registers listed in CALL_USED_REGISTERS, keeping the others
1083 available for storage of persistent values.
1084
5a733826 1085 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1086 so this is just empty initializer for array. */
3b3c6a3f 1087
162f023b
JH
1088#define REG_ALLOC_ORDER \
1089{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1090 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1091 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1092 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1093 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1094 78, 79, 80 }
3b3c6a3f 1095
5a733826 1096/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1097 to be rearranged based on a particular function. When using sse math,
03c259ad 1098 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1099
5a733826 1100#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1101
f5316dfe 1102
7c800926
KT
1103#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1104
8521c414 1105#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1106 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1107 && GENERAL_REGNO_P (REGNO) \
1108 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1109
1110#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1111
95879c72
L
1112#define VALID_AVX256_REG_MODE(MODE) \
1113 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1114 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1115 || (MODE) == V4DFmode)
95879c72 1116
4ac005ba 1117#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1118 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1119
3f97cb0b
AI
1120#define VALID_AVX512F_SCALAR_MODE(MODE) \
1121 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1122 || (MODE) == SFmode)
1123
1124#define VALID_AVX512F_REG_MODE(MODE) \
1125 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1126 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1127 || (MODE) == V4TImode)
1128
e6f146d2
SP
1129#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1130 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1131
05416670 1132#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1133 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1134 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1135 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1136
ce998900
UB
1137#define VALID_SSE2_REG_MODE(MODE) \
1138 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1139 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1140
d9a5f180 1141#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1142 ((MODE) == V1TImode || (MODE) == TImode \
1143 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1144 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1145
47f339cf 1146#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1147 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1148
d9a5f180 1149#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1150 ((MODE == V1DImode) || (MODE) == DImode \
1151 || (MODE) == V2SImode || (MODE) == SImode \
1152 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1153
05416670
UB
1154#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1155
1156#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1157
d5e254e1
IE
1158#define VALID_BND_REG_MODE(MODE) \
1159 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1160
ce998900
UB
1161#define VALID_DFP_MODE_P(MODE) \
1162 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1163
d9a5f180 1164#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1165 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1166 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1167
d9a5f180 1168#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1169 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1170 || (MODE) == DImode \
1171 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1172 || (MODE) == CDImode \
1173 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1174 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1175
822eda12 1176/* Return true for modes passed in SSE registers. */
ce998900 1177#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1178 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1179 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1180 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1181 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1182 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1183 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1184 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1185 || (MODE) == V16SFmode)
822eda12 1186
05416670
UB
1187#define X87_FLOAT_MODE_P(MODE) \
1188 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1189
05416670
UB
1190#define SSE_FLOAT_MODE_P(MODE) \
1191 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1192
1193#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1194 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1195 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1196
ff25ef99
ZD
1197/* It is possible to write patterns to move flags; but until someone
1198 does it, */
1199#define AVOID_CCMODE_COPIES
c98f8742 1200
e075ae69 1201/* Specify the modes required to caller save a given hard regno.
787dc842 1202 We do this on i386 to prevent flags from being saved at all.
e075ae69 1203
787dc842
JH
1204 Kill any attempts to combine saving of modes. */
1205
d9a5f180
GS
1206#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1207 (CC_REGNO_P (REGNO) ? VOIDmode \
1208 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1209 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1210 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1211 && TARGET_PARTIAL_REG_STALL) \
85a77221 1212 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1213 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1214 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1215 : (MODE))
ce998900 1216
c98f8742
JVA
1217/* Specify the registers used for certain standard purposes.
1218 The values of these macros are register numbers. */
1219
1220/* on the 386 the pc register is %eip, and is not usable as a general
1221 register. The ordinary mov instructions won't work */
1222/* #define PC_REGNUM */
1223
05416670
UB
1224/* Base register for access to arguments of the function. */
1225#define ARG_POINTER_REGNUM ARGP_REG
1226
c98f8742 1227/* Register to use for pushing function arguments. */
05416670 1228#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1229
1230/* Base register for access to local variables of the function. */
05416670
UB
1231#define FRAME_POINTER_REGNUM FRAME_REG
1232#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1233
05416670
UB
1234#define FIRST_INT_REG AX_REG
1235#define LAST_INT_REG SP_REG
c98f8742 1236
05416670
UB
1237#define FIRST_QI_REG AX_REG
1238#define LAST_QI_REG BX_REG
c98f8742
JVA
1239
1240/* First & last stack-like regs */
05416670
UB
1241#define FIRST_STACK_REG ST0_REG
1242#define LAST_STACK_REG ST7_REG
c98f8742 1243
05416670
UB
1244#define FIRST_SSE_REG XMM0_REG
1245#define LAST_SSE_REG XMM7_REG
fce5a9f2 1246
05416670
UB
1247#define FIRST_MMX_REG MM0_REG
1248#define LAST_MMX_REG MM7_REG
a7180f70 1249
05416670
UB
1250#define FIRST_REX_INT_REG R8_REG
1251#define LAST_REX_INT_REG R15_REG
3f3f2124 1252
05416670
UB
1253#define FIRST_REX_SSE_REG XMM8_REG
1254#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1255
05416670
UB
1256#define FIRST_EXT_REX_SSE_REG XMM16_REG
1257#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1258
05416670
UB
1259#define FIRST_MASK_REG MASK0_REG
1260#define LAST_MASK_REG MASK7_REG
85a77221 1261
05416670
UB
1262#define FIRST_BND_REG BND0_REG
1263#define LAST_BND_REG BND3_REG
d5e254e1 1264
aabcd309 1265/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1266 requiring a frame pointer. */
1267#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1268#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1269#endif
1270
1271/* Make sure we can access arbitrary call frames. */
1272#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1273
c98f8742 1274/* Register to hold the addressing base for position independent
5b43fed1
RH
1275 code access to data items. We don't use PIC pointer for 64bit
1276 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1277 pessimizing code dealing with EBX.
bd09bdeb
RH
1278
1279 To avoid clobbering a call-saved register unnecessarily, we renumber
1280 the pic register when possible. The change is visible after the
1281 prologue has been emitted. */
1282
e8b5eb25 1283#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1284
bcb21886 1285#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1286 (ix86_use_pseudo_pic_reg () \
1287 ? (pic_offset_table_rtx \
1288 ? INVALID_REGNUM \
1289 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1290 : INVALID_REGNUM)
c98f8742 1291
5fc0e5df
KW
1292#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1293
c51e6d85 1294/* This is overridden by <cygwin.h>. */
5e062767
DS
1295#define MS_AGGREGATE_RETURN 0
1296
61fec9ff 1297#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1298\f
1299/* Define the classes of registers for register constraints in the
1300 machine description. Also define ranges of constants.
1301
1302 One of the classes must always be named ALL_REGS and include all hard regs.
1303 If there is more than one class, another class must be named NO_REGS
1304 and contain no registers.
1305
1306 The name GENERAL_REGS must be the name of a class (or an alias for
1307 another name such as ALL_REGS). This is the class of registers
1308 that is allowed by "g" or "r" in a register constraint.
1309 Also, registers outside this class are allocated only when
1310 instructions express preferences for them.
1311
1312 The classes must be numbered in nondecreasing order; that is,
1313 a larger-numbered class must never be contained completely
2e24efd3
AM
1314 in a smaller-numbered class. This is why CLOBBERED_REGS class
1315 is listed early, even though in 64-bit mode it contains more
1316 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1317
1318 For any two classes, it is very desirable that there be another
ab408a86
JVA
1319 class that represents their union.
1320
1321 It might seem that class BREG is unnecessary, since no useful 386
1322 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1323 and the "b" register constraint is useful in asms for syscalls.
1324
03c259ad 1325 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1326
1327enum reg_class
1328{
1329 NO_REGS,
e075ae69 1330 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1331 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1332 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1333 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1334 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1335 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1336 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1337 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1338 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1339 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1340 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1341 FLOAT_REGS,
06f4e35d 1342 SSE_FIRST_REG,
45392c76 1343 NO_REX_SSE_REGS,
a7180f70 1344 SSE_REGS,
3f97cb0b 1345 EVEX_SSE_REGS,
d5e254e1 1346 BND_REGS,
3f97cb0b 1347 ALL_SSE_REGS,
a7180f70 1348 MMX_REGS,
446988df
JH
1349 FP_TOP_SSE_REGS,
1350 FP_SECOND_SSE_REGS,
1351 FLOAT_SSE_REGS,
1352 FLOAT_INT_REGS,
1353 INT_SSE_REGS,
1354 FLOAT_INT_SSE_REGS,
85a77221
AI
1355 MASK_EVEX_REGS,
1356 MASK_REGS,
5fbb13a7 1357 MOD4_SSE_REGS,
c98f8742
JVA
1358 ALL_REGS, LIM_REG_CLASSES
1359};
1360
d9a5f180
GS
1361#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1362
1363#define INTEGER_CLASS_P(CLASS) \
1364 reg_class_subset_p ((CLASS), GENERAL_REGS)
1365#define FLOAT_CLASS_P(CLASS) \
1366 reg_class_subset_p ((CLASS), FLOAT_REGS)
1367#define SSE_CLASS_P(CLASS) \
3f97cb0b 1368 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1369#define MMX_CLASS_P(CLASS) \
f75959a6 1370 ((CLASS) == MMX_REGS)
4ed04e93
UB
1371#define MASK_CLASS_P(CLASS) \
1372 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1373#define MAYBE_INTEGER_CLASS_P(CLASS) \
1374 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1375#define MAYBE_FLOAT_CLASS_P(CLASS) \
1376 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1377#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1378 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1379#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1380 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1381#define MAYBE_MASK_CLASS_P(CLASS) \
1382 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1383
1384#define Q_CLASS_P(CLASS) \
1385 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1386
0bd72901
UB
1387#define MAYBE_NON_Q_CLASS_P(CLASS) \
1388 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1389
43f3a59d 1390/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1391
1392#define REG_CLASS_NAMES \
1393{ "NO_REGS", \
ab408a86 1394 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1395 "SIREG", "DIREG", \
e075ae69 1396 "AD_REGS", \
2e24efd3 1397 "CLOBBERED_REGS", \
e075ae69 1398 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1399 "TLS_GOTBASE_REGS", \
c98f8742 1400 "INDEX_REGS", \
3f3f2124 1401 "LEGACY_REGS", \
c98f8742
JVA
1402 "GENERAL_REGS", \
1403 "FP_TOP_REG", "FP_SECOND_REG", \
1404 "FLOAT_REGS", \
cb482895 1405 "SSE_FIRST_REG", \
45392c76 1406 "NO_REX_SSE_REGS", \
a7180f70 1407 "SSE_REGS", \
3f97cb0b 1408 "EVEX_SSE_REGS", \
d5e254e1 1409 "BND_REGS", \
3f97cb0b 1410 "ALL_SSE_REGS", \
a7180f70 1411 "MMX_REGS", \
446988df
JH
1412 "FP_TOP_SSE_REGS", \
1413 "FP_SECOND_SSE_REGS", \
1414 "FLOAT_SSE_REGS", \
8fcaaa80 1415 "FLOAT_INT_REGS", \
446988df
JH
1416 "INT_SSE_REGS", \
1417 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1418 "MASK_EVEX_REGS", \
1419 "MASK_REGS", \
cae67b80 1420 "MOD4_SSE_REGS", \
c98f8742
JVA
1421 "ALL_REGS" }
1422
ac2e563f
RH
1423/* Define which registers fit in which classes. This is an initializer
1424 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1425
621bc046
UB
1426 Note that CLOBBERED_REGS are calculated by
1427 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1428
3f97cb0b 1429#define REG_CLASS_CONTENTS \
d5e254e1
IE
1430{ { 0x00, 0x0, 0x0 }, \
1431 { 0x01, 0x0, 0x0 }, /* AREG */ \
1432 { 0x02, 0x0, 0x0 }, /* DREG */ \
1433 { 0x04, 0x0, 0x0 }, /* CREG */ \
1434 { 0x08, 0x0, 0x0 }, /* BREG */ \
1435 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1436 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1437 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1438 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1439 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1440 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1441 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1442 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1443 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1444 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1445 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1446 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1447 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1448 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1449{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1450{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1451 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1452 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1453{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1454{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1455{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1456{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1457{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1458{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1459{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1460{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1461 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1462 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1463{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1464{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1465}
c98f8742
JVA
1466
1467/* The same information, inverted:
1468 Return the class number of the smallest class containing
1469 reg number REGNO. This could be a conditional expression
1470 or could index an array. */
1471
1a6e82b8 1472#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1473
42db504c
SB
1474/* When this hook returns true for MODE, the compiler allows
1475 registers explicitly used in the rtl to be used as spill registers
1476 but prevents the compiler from extending the lifetime of these
1477 registers. */
1478#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1479
fc27f749 1480#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1481#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1482
1483#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1484#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1485
1486#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1487#define REX_INT_REGNO_P(N) \
1488 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1489
58b0b34c 1490#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1491#define GENERAL_REGNO_P(N) \
58b0b34c 1492 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1493
fc27f749
UB
1494#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1495#define ANY_QI_REGNO_P(N) \
1496 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1497
66aaf16f
UB
1498#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1499#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1500
fc27f749 1501#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1502#define SSE_REGNO_P(N) \
1503 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1504 || REX_SSE_REGNO_P (N) \
1505 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1506
4977bab6 1507#define REX_SSE_REGNO_P(N) \
fb84c7a0 1508 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1509
0a48088a
IT
1510#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1511
3f97cb0b
AI
1512#define EXT_REX_SSE_REGNO_P(N) \
1513 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1514
05416670
UB
1515#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1516#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1517
9e4a4dd6 1518#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1519#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1520
fc27f749 1521#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1522#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1523
e075ae69
RH
1524#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1525#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1526
58b0b34c 1527#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1528#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1529
5fbb13a7
KY
1530#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1531#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1532 || (N) == XMM4_REG \
1533 || (N) == XMM8_REG \
1534 || (N) == XMM12_REG \
1535 || (N) == XMM16_REG \
1536 || (N) == XMM20_REG \
1537 || (N) == XMM24_REG \
1538 || (N) == XMM28_REG)
1539
05416670
UB
1540/* First floating point reg */
1541#define FIRST_FLOAT_REG FIRST_STACK_REG
1542#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1543
1544#define SSE_REGNO(N) \
1545 ((N) < 8 ? FIRST_SSE_REG + (N) \
1546 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1547 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1548
c98f8742
JVA
1549/* The class value for index registers, and the one for base regs. */
1550
1551#define INDEX_REG_CLASS INDEX_REGS
1552#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1553\f
1554/* Stack layout; function entry, exit and calling. */
1555
1556/* Define this if pushing a word on the stack
1557 makes the stack pointer a smaller address. */
62f9f30b 1558#define STACK_GROWS_DOWNWARD 1
c98f8742 1559
a4d05547 1560/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1561 is at the high-address end of the local variables;
1562 that is, each additional local variable allocated
1563 goes at a more negative offset in the frame. */
f62c8a5c 1564#define FRAME_GROWS_DOWNWARD 1
c98f8742 1565
7b4df2bf 1566#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1567
1568/* If defined, the maximum amount of space required for outgoing arguments
1569 will be computed and placed into the variable `crtl->outgoing_args_size'.
1570 No space will be pushed onto the stack for each call; instead, the
1571 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1572
1573 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1574 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1575 mode the difference is less drastic but visible.
1576
1577 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1578 actually grow with accumulation. Is that because accumulated args
41ee845b 1579 unwind info became unnecesarily bloated?
f830ddc2
RH
1580
1581 With the 64-bit MS ABI, we can generate correct code with or without
1582 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1583 generated without accumulated args is terrible.
41ee845b
JH
1584
1585 If stack probes are required, the space used for large function
1586 arguments on the stack must also be probed, so enable
f8071c05
L
1587 -maccumulate-outgoing-args so this happens in the prologue.
1588
1589 We must use argument accumulation in interrupt function if stack
1590 may be realigned to avoid DRAP. */
f73ad30e 1591
6c6094f1 1592#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1593 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1594 && optimize_function_for_speed_p (cfun)) \
1595 || (cfun->machine->func_type != TYPE_NORMAL \
1596 && crtl->stack_realign_needed) \
1597 || TARGET_STACK_PROBE \
1598 || TARGET_64BIT_MS_ABI \
ff734e26 1599 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1600
1601/* If defined, a C expression whose value is nonzero when we want to use PUSH
1602 instructions to pass outgoing arguments. */
1603
1604#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1605
2da4124d
L
1606/* We want the stack and args grow in opposite directions, even if
1607 PUSH_ARGS is 0. */
1608#define PUSH_ARGS_REVERSED 1
1609
c98f8742
JVA
1610/* Offset of first parameter from the argument pointer register value. */
1611#define FIRST_PARM_OFFSET(FNDECL) 0
1612
a7180f70
BS
1613/* Define this macro if functions should assume that stack space has been
1614 allocated for arguments even when their values are passed in registers.
1615
1616 The value of this macro is the size, in bytes, of the area reserved for
1617 arguments passed in registers for the function represented by FNDECL.
1618
1619 This space can be allocated by the caller, or be a part of the
1620 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1621 which. */
7c800926
KT
1622#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1623
4ae8027b 1624#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1625 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1626
c98f8742
JVA
1627/* Define how to find the value returned by a library function
1628 assuming the value has mode MODE. */
1629
4ae8027b 1630#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1631
e9125c09
TW
1632/* Define the size of the result block used for communication between
1633 untyped_call and untyped_return. The block contains a DImode value
1634 followed by the block used by fnsave and frstor. */
1635
1636#define APPLY_RESULT_SIZE (8+108)
1637
b08de47e 1638/* 1 if N is a possible register number for function argument passing. */
53c17031 1639#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1640
1641/* Define a data type for recording info about an argument list
1642 during the scan of that argument list. This data type should
1643 hold all necessary information about the function itself
1644 and about the args processed so far, enough to enable macros
b08de47e 1645 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1646
e075ae69 1647typedef struct ix86_args {
fa283935 1648 int words; /* # words passed so far */
b08de47e
MM
1649 int nregs; /* # registers available for passing */
1650 int regno; /* next available register number */
3e65f251
KT
1651 int fastcall; /* fastcall or thiscall calling convention
1652 is used */
fa283935 1653 int sse_words; /* # sse words passed so far */
a7180f70 1654 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1655 int warn_avx512f; /* True when we want to warn
1656 about AVX512F ABI. */
95879c72 1657 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1658 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1659 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1660 int warn_empty; /* True when we want to warn about empty classes
1661 passing ABI change. */
fa283935
UB
1662 int sse_regno; /* next available sse register number */
1663 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1664 int mmx_nregs; /* # mmx registers available for passing */
1665 int mmx_regno; /* next available mmx register number */
892a2d68 1666 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1667 int caller; /* true if it is caller. */
2824d6e5
UB
1668 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1669 SFmode/DFmode arguments should be passed
1670 in SSE registers. Otherwise 0. */
d5e254e1
IE
1671 int bnd_regno; /* next available bnd register number */
1672 int bnds_in_bt; /* number of bounds expected in BT. */
1673 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1674 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1675 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1676 MS_ABI for ms abi. */
e66fc623 1677 tree decl; /* Callee decl. */
b08de47e 1678} CUMULATIVE_ARGS;
c98f8742
JVA
1679
1680/* Initialize a variable CUM of type CUMULATIVE_ARGS
1681 for a call to a function whose data type is FNTYPE.
b08de47e 1682 For a library call, FNTYPE is 0. */
c98f8742 1683
0f6937fe 1684#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1685 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1686 (N_NAMED_ARGS) != -1)
c98f8742 1687
c98f8742
JVA
1688/* Output assembler code to FILE to increment profiler label # LABELNO
1689 for profiling a function entry. */
1690
1a6e82b8
UB
1691#define FUNCTION_PROFILER(FILE, LABELNO) \
1692 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1693
1694#define MCOUNT_NAME "_mcount"
1695
3c5273a9
KT
1696#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1697
a5fa1ecd 1698#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1699
1700/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1701 the stack pointer does not matter. The value is tested only in
1702 functions that have frame pointers.
1703 No definition is equivalent to always zero. */
fce5a9f2 1704/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1705 we have to restore it ourselves from the frame pointer, in order to
1706 use pop */
1707
1708#define EXIT_IGNORE_STACK 1
1709
f8071c05
L
1710/* Define this macro as a C expression that is nonzero for registers
1711 used by the epilogue or the `return' pattern. */
1712
1713#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1714
c98f8742
JVA
1715/* Output assembler code for a block containing the constant parts
1716 of a trampoline, leaving space for the variable parts. */
1717
a269a03c 1718/* On the 386, the trampoline contains two instructions:
c98f8742 1719 mov #STATIC,ecx
a269a03c
JC
1720 jmp FUNCTION
1721 The trampoline is generated entirely at runtime. The operand of JMP
1722 is the address of FUNCTION relative to the instruction following the
1723 JMP (which is 5 bytes long). */
c98f8742
JVA
1724
1725/* Length in units of the trampoline for entering a nested function. */
1726
6514899f 1727#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1728\f
1729/* Definitions for register eliminations.
1730
1731 This is an array of structures. Each structure initializes one pair
1732 of eliminable registers. The "from" register number is given first,
1733 followed by "to". Eliminations of the same "from" register are listed
1734 in order of preference.
1735
afc2cd05
NC
1736 There are two registers that can always be eliminated on the i386.
1737 The frame pointer and the arg pointer can be replaced by either the
1738 hard frame pointer or to the stack pointer, depending upon the
1739 circumstances. The hard frame pointer is not used before reload and
1740 so it is not eligible for elimination. */
c98f8742 1741
564d80f4
JH
1742#define ELIMINABLE_REGS \
1743{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1744 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1745 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1746 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1747
c98f8742
JVA
1748/* Define the offset between two registers, one to be eliminated, and the other
1749 its replacement, at the start of a routine. */
1750
d9a5f180
GS
1751#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1752 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1753\f
1754/* Addressing modes, and classification of registers for them. */
1755
c98f8742
JVA
1756/* Macros to check register numbers against specific register classes. */
1757
1758/* These assume that REGNO is a hard or pseudo reg number.
1759 They give nonzero only if REGNO is a hard reg of the suitable class
1760 or a pseudo reg currently allocated to a suitable hard reg.
1761 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1762 has been allocated, which happens in reginfo.c during register
1763 allocation. */
c98f8742 1764
3f3f2124
JH
1765#define REGNO_OK_FOR_INDEX_P(REGNO) \
1766 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1767 || REX_INT_REGNO_P (REGNO) \
1768 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1769 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1770
3f3f2124 1771#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1772 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1773 || (REGNO) == ARG_POINTER_REGNUM \
1774 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1775 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1776
c98f8742
JVA
1777/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1778 and check its validity for a certain class.
1779 We have two alternate definitions for each of them.
1780 The usual definition accepts all pseudo regs; the other rejects
1781 them unless they have been allocated suitable hard regs.
1782 The symbol REG_OK_STRICT causes the latter definition to be used.
1783
1784 Most source files want to accept pseudo regs in the hope that
1785 they will get allocated to the class that the insn wants them to be in.
1786 Source files for reload pass need to be strict.
1787 After reload, it makes no difference, since pseudo regs have
1788 been eliminated by then. */
1789
c98f8742 1790
ff482c8d 1791/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1792#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1793 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1794 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1795 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1796
3b3c6a3f 1797#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1798 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1799 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1800 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1801 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1802
3b3c6a3f
MM
1803/* Strict versions, hard registers only */
1804#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1805#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1806
3b3c6a3f 1807#ifndef REG_OK_STRICT
d9a5f180
GS
1808#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1809#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1810
1811#else
d9a5f180
GS
1812#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1813#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1814#endif
1815
331d9186 1816/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1817 that is a valid memory address for an instruction.
1818 The MODE argument is the machine mode for the MEM expression
1819 that wants to use this address.
1820
331d9186 1821 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1822 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1823
1824 See legitimize_pic_address in i386.c for details as to what
1825 constitutes a legitimate address when -fpic is used. */
1826
1827#define MAX_REGS_PER_ADDRESS 2
1828
f996902d 1829#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1830
b949ea8b
JW
1831/* If defined, a C expression to determine the base term of address X.
1832 This macro is used in only one place: `find_base_term' in alias.c.
1833
1834 It is always safe for this macro to not be defined. It exists so
1835 that alias analysis can understand machine-dependent addresses.
1836
1837 The typical use of this macro is to handle addresses containing
1838 a label_ref or symbol_ref within an UNSPEC. */
1839
d9a5f180 1840#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1841
c98f8742 1842/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1843 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1844 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1845
f996902d 1846#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1847
1848#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1849 (GET_CODE (X) == SYMBOL_REF \
1850 || GET_CODE (X) == LABEL_REF \
1851 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1852\f
b08de47e
MM
1853/* Max number of args passed in registers. If this is more than 3, we will
1854 have problems with ebx (register #4), since it is a caller save register and
1855 is also used as the pic register in ELF. So for now, don't allow more than
1856 3 registers to be passed in registers. */
1857
7c800926
KT
1858/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1859#define X86_64_REGPARM_MAX 6
72fa3605 1860#define X86_64_MS_REGPARM_MAX 4
7c800926 1861
72fa3605 1862#define X86_32_REGPARM_MAX 3
7c800926 1863
4ae8027b 1864#define REGPARM_MAX \
2824d6e5
UB
1865 (TARGET_64BIT \
1866 ? (TARGET_64BIT_MS_ABI \
1867 ? X86_64_MS_REGPARM_MAX \
1868 : X86_64_REGPARM_MAX) \
4ae8027b 1869 : X86_32_REGPARM_MAX)
d2836273 1870
72fa3605
UB
1871#define X86_64_SSE_REGPARM_MAX 8
1872#define X86_64_MS_SSE_REGPARM_MAX 4
1873
b6010cab 1874#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1875
4ae8027b 1876#define SSE_REGPARM_MAX \
2824d6e5
UB
1877 (TARGET_64BIT \
1878 ? (TARGET_64BIT_MS_ABI \
1879 ? X86_64_MS_SSE_REGPARM_MAX \
1880 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1881 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1882
1883#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1884\f
1885/* Specify the machine mode that this machine uses
1886 for the index in the tablejump instruction. */
dc4d7240 1887#define CASE_VECTOR_MODE \
6025b127 1888 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1889
c98f8742
JVA
1890/* Define this as 1 if `char' should by default be signed; else as 0. */
1891#define DEFAULT_SIGNED_CHAR 1
1892
1893/* Max number of bytes we can move from memory to memory
1894 in one reasonably fast instruction. */
65d9c0ab
JH
1895#define MOVE_MAX 16
1896
1897/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1898 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1899 number of bytes we can move with a single instruction.
1900
1901 ??? We should use TImode in 32-bit mode and use OImode or XImode
1902 if they are available. But since by_pieces_ninsns determines the
1903 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1904 64-bit mode. */
1905#define MOVE_MAX_PIECES \
1906 ((TARGET_64BIT \
1907 && TARGET_SSE2 \
1908 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1909 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1910 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1911
7e24ffc9 1912/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1913 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1914 Increasing the value will always make code faster, but eventually
1915 incurs high cost in increased code size.
c98f8742 1916
e2e52e1b 1917 If you don't define this, a reasonable default is used. */
c98f8742 1918
e04ad03d 1919#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1920
45d78e7f
JJ
1921/* If a clear memory operation would take CLEAR_RATIO or more simple
1922 move-instruction sequences, we will do a clrmem or libcall instead. */
1923
e04ad03d 1924#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1925
53f00dde
UB
1926/* Define if shifts truncate the shift count which implies one can
1927 omit a sign-extension or zero-extension of a shift count.
1928
1929 On i386, shifts do truncate the count. But bit test instructions
1930 take the modulo of the bit offset operand. */
c98f8742
JVA
1931
1932/* #define SHIFT_COUNT_TRUNCATED */
1933
d9f32422
JH
1934/* A macro to update M and UNSIGNEDP when an object whose type is
1935 TYPE and which has the specified mode and signedness is to be
1936 stored in a register. This macro is only called when TYPE is a
1937 scalar type.
1938
f710504c 1939 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1940 quantities to SImode. The choice depends on target type. */
1941
1942#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1943do { \
d9f32422
JH
1944 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1945 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1946 (MODE) = SImode; \
1947} while (0)
d9f32422 1948
c98f8742
JVA
1949/* Specify the machine mode that pointers have.
1950 After generation of rtl, the compiler makes no further distinction
1951 between pointers and any other objects of this machine mode. */
28968d91 1952#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1953
5e1e91c4
L
1954/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1955 NONLOCAL needs space to save both shadow stack and stack pointers.
1956
1957 FIXME: We only need to save and restore stack pointer in ptr_mode.
1958 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1959 to save and restore stack pointer. See
1960 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1961 */
1962#define STACK_SAVEAREA_MODE(LEVEL) \
1963 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1964
d5e254e1
IE
1965/* Specify the machine mode that bounds have. */
1966#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1967
f0ea7581
L
1968/* A C expression whose value is zero if pointers that need to be extended
1969 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1970 greater then zero if they are zero-extended and less then zero if the
1971 ptr_extend instruction should be used. */
1972
1973#define POINTERS_EXTEND_UNSIGNED 1
1974
c98f8742
JVA
1975/* A function address in a call instruction
1976 is a byte address (for indexing purposes)
1977 so give the MEM rtx a byte's mode. */
1978#define FUNCTION_MODE QImode
d4ba09c0 1979\f
d4ba09c0 1980
d4ba09c0
SC
1981/* A C expression for the cost of a branch instruction. A value of 1
1982 is the default; other values are interpreted relative to that. */
1983
3a4fd356
JH
1984#define BRANCH_COST(speed_p, predictable_p) \
1985 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1986
e327d1a3
L
1987/* An integer expression for the size in bits of the largest integer machine
1988 mode that should actually be used. We allow pairs of registers. */
1989#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1990
d4ba09c0
SC
1991/* Define this macro as a C expression which is nonzero if accessing
1992 less than a word of memory (i.e. a `char' or a `short') is no
1993 faster than accessing a word of memory, i.e., if such access
1994 require more than one instruction or if there is no difference in
1995 cost between byte and (aligned) word loads.
1996
1997 When this macro is not defined, the compiler will access a field by
1998 finding the smallest containing object; when it is defined, a
1999 fullword load will be used if alignment permits. Unless bytes
2000 accesses are faster than word accesses, using word accesses is
2001 preferable since it may eliminate subsequent memory access if
2002 subsequent accesses occur to other fields in the same word of the
2003 structure, but to different bytes. */
2004
2005#define SLOW_BYTE_ACCESS 0
2006
2007/* Nonzero if access to memory by shorts is slow and undesirable. */
2008#define SLOW_SHORT_ACCESS 0
2009
d4ba09c0
SC
2010/* Define this macro if it is as good or better to call a constant
2011 function address than to call an address kept in a register.
2012
2013 Desirable on the 386 because a CALL with a constant address is
2014 faster than one with a register address. */
2015
1e8552c2 2016#define NO_FUNCTION_CSE 1
c98f8742 2017\f
c572e5ba
JVA
2018/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2019 return the mode to be used for the comparison.
2020
2021 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2022 VOIDmode should be used in all other cases.
c572e5ba 2023
16189740 2024 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2025 possible, to allow for more combinations. */
c98f8742 2026
d9a5f180 2027#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2028
9cd10576 2029/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2030 reversed. */
2031
2032#define REVERSIBLE_CC_MODE(MODE) 1
2033
2034/* A C expression whose value is reversed condition code of the CODE for
2035 comparison done in CC_MODE mode. */
3c5cb3e4 2036#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2037
c98f8742
JVA
2038\f
2039/* Control the assembler format that we output, to the extent
2040 this does not vary between assemblers. */
2041
2042/* How to refer to registers in assembler output.
892a2d68 2043 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2044
a7b376ee 2045/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2046 For non floating point regs, the following are the HImode names.
2047
2048 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2049 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2050 "y" code. */
c98f8742 2051
a7180f70
BS
2052#define HI_REGISTER_NAMES \
2053{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2054 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2055 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2056 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2057 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2058 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2059 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2060 "xmm16", "xmm17", "xmm18", "xmm19", \
2061 "xmm20", "xmm21", "xmm22", "xmm23", \
2062 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2063 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2064 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2065 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2066
c98f8742
JVA
2067#define REGISTER_NAMES HI_REGISTER_NAMES
2068
2069/* Table of additional register names to use in user input. */
2070
2071#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2072{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2073 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2074 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2075 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2076 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2077 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2078 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2079 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2080 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2081 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2082 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2083 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2084 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2085 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2086 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2087 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2088 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2089 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2090 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2091 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2092 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2093 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2094
2095/* Note we are omitting these since currently I don't know how
2096to get gcc to use these, since they want the same but different
2097number as al, and ax.
2098*/
2099
c98f8742 2100#define QI_REGISTER_NAMES \
3f3f2124 2101{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2102
2103/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2104 of regs 0 through 3. */
c98f8742
JVA
2105
2106#define QI_HIGH_REGISTER_NAMES \
2107{"ah", "dh", "ch", "bh", }
2108
2109/* How to renumber registers for dbx and gdb. */
2110
d9a5f180
GS
2111#define DBX_REGISTER_NUMBER(N) \
2112 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2113
9a82e702
MS
2114extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2115extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2116extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2117
469ac993
JM
2118/* Before the prologue, RA is at 0(%esp). */
2119#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2120 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2121
e414ab29 2122/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2123#define RETURN_ADDR_RTX(COUNT, FRAME) \
2124 ((COUNT) == 0 \
2125 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2126 -UNITS_PER_WORD)) \
2127 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2128
892a2d68 2129/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2130#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2131
a10b3cf1
L
2132/* Before the prologue, there are return address and error code for
2133 exception handler on the top of the frame. */
2134#define INCOMING_FRAME_SP_OFFSET \
2135 (cfun->machine->func_type == TYPE_EXCEPTION \
2136 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2137
26fc730d
JJ
2138/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2139 .cfi_startproc. */
2140#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2141
1020a5ab 2142/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2143#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2144#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2145
ad919812 2146
e4c4ebeb
RH
2147/* Select a format to encode pointers in exception handling data. CODE
2148 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2149 true if the symbol may be affected by dynamic relocations.
2150
2151 ??? All x86 object file formats are capable of representing this.
2152 After all, the relocation needed is the same as for the call insn.
2153 Whether or not a particular assembler allows us to enter such, I
2154 guess we'll have to see. */
d9a5f180 2155#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2156 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2157
ec1895c1
UB
2158/* These are a couple of extensions to the formats accepted
2159 by asm_fprintf:
2160 %z prints out opcode suffix for word-mode instruction
2161 %r prints out word-mode name for reg_names[arg] */
2162#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2163 case 'z': \
2164 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2165 break; \
2166 \
2167 case 'r': \
2168 { \
2169 unsigned int regno = va_arg ((ARGS), int); \
2170 if (LEGACY_INT_REGNO_P (regno)) \
2171 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2172 fputs (reg_names[regno], (FILE)); \
2173 break; \
2174 }
2175
2176/* This is how to output an insn to push a register on the stack. */
2177
2178#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2179 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2180
2181/* This is how to output an insn to pop a register from the stack. */
c98f8742 2182
d9a5f180 2183#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2184 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2185
f88c65f7 2186/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2187
2188#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2189 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2190
f88c65f7 2191/* This is how to output an element of a case-vector that is relative. */
c98f8742 2192
33f7f353 2193#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2194 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2195
63001560 2196/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2197
2198#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2199{ \
2200 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2201 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2202}
2203
2204/* A C statement or statements which output an assembler instruction
2205 opcode to the stdio stream STREAM. The macro-operand PTR is a
2206 variable of type `char *' which points to the opcode name in
2207 its "internal" form--the form that is written in the machine
2208 description. */
2209
2210#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2211 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2212
6a90d232
L
2213/* A C statement to output to the stdio stream FILE an assembler
2214 command to pad the location counter to a multiple of 1<<LOG
2215 bytes if it is within MAX_SKIP bytes. */
2216
2217#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2218#undef ASM_OUTPUT_MAX_SKIP_PAD
2219#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2220 if ((LOG) != 0) \
2221 { \
2222 if ((MAX_SKIP) == 0) \
2223 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2224 else \
2225 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2226 }
2227#endif
2228
135a687e
KT
2229/* Write the extra assembler code needed to declare a function
2230 properly. */
2231
2232#undef ASM_OUTPUT_FUNCTION_LABEL
2233#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2234 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2235
f7288899
EC
2236/* Under some conditions we need jump tables in the text section,
2237 because the assembler cannot handle label differences between
2238 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2239
2240#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2241 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2242 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2243
cea3bd3e
RH
2244/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2245 and switch back. For x86 we do this only to save a few bytes that
2246 would otherwise be unused in the text section. */
ad211091
KT
2247#define CRT_MKSTR2(VAL) #VAL
2248#define CRT_MKSTR(x) CRT_MKSTR2(x)
2249
2250#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2251 asm (SECTION_OP "\n\t" \
2252 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2253 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2254
2255/* Default threshold for putting data in large sections
2256 with x86-64 medium memory model */
2257#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2258
2259/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2260
2261#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2262do { \
2263 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2264 && get_attr_maybe_prefix_bnd (INSN)) \
2265 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2266} while (0)
74b42c8b 2267\f
b97de419
L
2268/* Which processor to tune code generation for. These must be in sync
2269 with processor_target_table in i386.c. */
5bf0ebab
RH
2270
2271enum processor_type
2272{
b97de419
L
2273 PROCESSOR_GENERIC = 0,
2274 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2275 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2276 PROCESSOR_PENTIUM,
2d6b2e28 2277 PROCESSOR_LAKEMONT,
5bf0ebab 2278 PROCESSOR_PENTIUMPRO,
5bf0ebab 2279 PROCESSOR_PENTIUM4,
89c43c0a 2280 PROCESSOR_NOCONA,
340ef734 2281 PROCESSOR_CORE2,
d3c11974
L
2282 PROCESSOR_NEHALEM,
2283 PROCESSOR_SANDYBRIDGE,
3a579e09 2284 PROCESSOR_HASWELL,
d3c11974
L
2285 PROCESSOR_BONNELL,
2286 PROCESSOR_SILVERMONT,
50e461df 2287 PROCESSOR_GOLDMONT,
52747219 2288 PROCESSOR_KNL,
cace2309 2289 PROCESSOR_KNM,
176a3386 2290 PROCESSOR_SKYLAKE,
06caf59d 2291 PROCESSOR_SKYLAKE_AVX512,
c234d831 2292 PROCESSOR_CANNONLAKE,
79ab5364
JK
2293 PROCESSOR_ICELAKE_CLIENT,
2294 PROCESSOR_ICELAKE_SERVER,
9a7f94d7 2295 PROCESSOR_INTEL,
b97de419
L
2296 PROCESSOR_GEODE,
2297 PROCESSOR_K6,
2298 PROCESSOR_ATHLON,
2299 PROCESSOR_K8,
21efb4d4 2300 PROCESSOR_AMDFAM10,
1133125e 2301 PROCESSOR_BDVER1,
4d652a18 2302 PROCESSOR_BDVER2,
eb2f2b44 2303 PROCESSOR_BDVER3,
ed97ad47 2304 PROCESSOR_BDVER4,
14b52538 2305 PROCESSOR_BTVER1,
e32bfc16 2306 PROCESSOR_BTVER2,
9ce29eb0 2307 PROCESSOR_ZNVER1,
5bf0ebab
RH
2308 PROCESSOR_max
2309};
2310
9e555526 2311extern enum processor_type ix86_tune;
5bf0ebab 2312extern enum processor_type ix86_arch;
5bf0ebab 2313
8362f420
JH
2314/* Size of the RED_ZONE area. */
2315#define RED_ZONE_SIZE 128
2316/* Reserved area of the red zone for temporaries. */
2317#define RED_ZONE_RESERVE 8
c93e80a5 2318
95899b34 2319extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2320extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2321
2322/* Smallest class containing REGNO. */
2323extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2324
0948ccb2
PB
2325enum ix86_fpcmp_strategy {
2326 IX86_FPCMP_SAHF,
2327 IX86_FPCMP_COMI,
2328 IX86_FPCMP_ARITH
2329};
22fb740d
JH
2330\f
2331/* To properly truncate FP values into integers, we need to set i387 control
2332 word. We can't emit proper mode switching code before reload, as spills
2333 generated by reload may truncate values incorrectly, but we still can avoid
2334 redundant computation of new control word by the mode switching pass.
2335 The fldcw instructions are still emitted redundantly, but this is probably
2336 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2337 the sequence.
22fb740d
JH
2338
2339 The machinery is to emit simple truncation instructions and split them
2340 before reload to instructions having USEs of two memory locations that
2341 are filled by this code to old and new control word.
fce5a9f2 2342
22fb740d
JH
2343 Post-reload pass may be later used to eliminate the redundant fildcw if
2344 needed. */
2345
c7ca8ef8
UB
2346enum ix86_stack_slot
2347{
2348 SLOT_TEMP = 0,
2349 SLOT_CW_STORED,
2350 SLOT_CW_TRUNC,
2351 SLOT_CW_FLOOR,
2352 SLOT_CW_CEIL,
2353 SLOT_CW_MASK_PM,
80008279 2354 SLOT_STV_TEMP,
c7ca8ef8
UB
2355 MAX_386_STACK_LOCALS
2356};
2357
ff680eb1
UB
2358enum ix86_entity
2359{
c7ca8ef8
UB
2360 X86_DIRFLAG = 0,
2361 AVX_U128,
ff97910d 2362 I387_TRUNC,
ff680eb1
UB
2363 I387_FLOOR,
2364 I387_CEIL,
2365 I387_MASK_PM,
2366 MAX_386_ENTITIES
2367};
2368
c7ca8ef8 2369enum x86_dirflag_state
ff680eb1 2370{
c7ca8ef8
UB
2371 X86_DIRFLAG_RESET,
2372 X86_DIRFLAG_ANY
ff680eb1 2373};
22fb740d 2374
ff97910d
VY
2375enum avx_u128_state
2376{
2377 AVX_U128_CLEAN,
2378 AVX_U128_DIRTY,
2379 AVX_U128_ANY
2380};
2381
22fb740d
JH
2382/* Define this macro if the port needs extra instructions inserted
2383 for mode switching in an optimizing compilation. */
2384
ff680eb1
UB
2385#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2386 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2387
2388/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2389 initializer for an array of integers. Each initializer element N
2390 refers to an entity that needs mode switching, and specifies the
2391 number of different modes that might need to be set for this
2392 entity. The position of the initializer in the initializer -
2393 starting counting at zero - determines the integer that is used to
2394 refer to the mode-switched entity in question. */
2395
c7ca8ef8
UB
2396#define NUM_MODES_FOR_MODE_SWITCHING \
2397 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2398 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2399
0f0138b6
JH
2400\f
2401/* Avoid renaming of stack registers, as doing so in combination with
2402 scheduling just increases amount of live registers at time and in
2403 the turn amount of fxch instructions needed.
2404
3f97cb0b
AI
2405 ??? Maybe Pentium chips benefits from renaming, someone can try....
2406
2407 Don't rename evex to non-evex sse registers. */
0f0138b6 2408
1a6e82b8
UB
2409#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2410 (!STACK_REGNO_P (SRC) \
2411 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2412
3b3c6a3f 2413\f
e91f04de 2414#define FASTCALL_PREFIX '@'
fa1a0d02 2415\f
77560086
BE
2416#ifndef USED_FOR_TARGET
2417/* Structure describing stack frame layout.
2418 Stack grows downward:
2419
2420 [arguments]
2421 <- ARG_POINTER
2422 saved pc
2423
2424 saved static chain if ix86_static_chain_on_stack
2425
2426 saved frame pointer if frame_pointer_needed
2427 <- HARD_FRAME_POINTER
2428 [saved regs]
2429 <- reg_save_offset
2430 [padding0]
2431 <- stack_realign_offset
2432 [saved SSE regs]
2433 OR
2434 [stub-saved registers for ms x64 --> sysv clobbers
2435 <- Start of out-of-line, stub-saved/restored regs
2436 (see libgcc/config/i386/(sav|res)ms64*.S)
2437 [XMM6-15]
2438 [RSI]
2439 [RDI]
2440 [?RBX] only if RBX is clobbered
2441 [?RBP] only if RBP and RBX are clobbered
2442 [?R12] only if R12 and all previous regs are clobbered
2443 [?R13] only if R13 and all previous regs are clobbered
2444 [?R14] only if R14 and all previous regs are clobbered
2445 [?R15] only if R15 and all previous regs are clobbered
2446 <- end of stub-saved/restored regs
2447 [padding1]
2448 ]
5d9d834d 2449 <- sse_reg_save_offset
77560086
BE
2450 [padding2]
2451 | <- FRAME_POINTER
2452 [va_arg registers] |
2453 |
2454 [frame] |
2455 |
2456 [padding2] | = to_allocate
2457 <- STACK_POINTER
2458 */
2459struct GTY(()) ix86_frame
2460{
2461 int nsseregs;
2462 int nregs;
2463 int va_arg_size;
2464 int red_zone_size;
2465 int outgoing_arguments_size;
2466
2467 /* The offsets relative to ARG_POINTER. */
2468 HOST_WIDE_INT frame_pointer_offset;
2469 HOST_WIDE_INT hard_frame_pointer_offset;
2470 HOST_WIDE_INT stack_pointer_offset;
2471 HOST_WIDE_INT hfp_save_offset;
2472 HOST_WIDE_INT reg_save_offset;
122f9da1 2473 HOST_WIDE_INT stack_realign_allocate;
77560086 2474 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2475 HOST_WIDE_INT sse_reg_save_offset;
2476
2477 /* When save_regs_using_mov is set, emit prologue using
2478 move instead of push instructions. */
2479 bool save_regs_using_mov;
2480};
2481
122f9da1
DS
2482/* Machine specific frame tracking during prologue/epilogue generation. All
2483 values are positive, but since the x86 stack grows downward, are subtratced
2484 from the CFA to produce a valid address. */
cd9c1ca8 2485
ec7ded37 2486struct GTY(()) machine_frame_state
cd9c1ca8 2487{
ec7ded37
RH
2488 /* This pair tracks the currently active CFA as reg+offset. When reg
2489 is drap_reg, we don't bother trying to record here the real CFA when
2490 it might really be a DW_CFA_def_cfa_expression. */
2491 rtx cfa_reg;
2492 HOST_WIDE_INT cfa_offset;
2493
2494 /* The current offset (canonically from the CFA) of ESP and EBP.
2495 When stack frame re-alignment is active, these may not be relative
2496 to the CFA. However, in all cases they are relative to the offsets
2497 of the saved registers stored in ix86_frame. */
2498 HOST_WIDE_INT sp_offset;
2499 HOST_WIDE_INT fp_offset;
2500
2501 /* The size of the red-zone that may be assumed for the purposes of
2502 eliding register restore notes in the epilogue. This may be zero
2503 if no red-zone is in effect, or may be reduced from the real
2504 red-zone value by a maximum runtime stack re-alignment value. */
2505 int red_zone_offset;
2506
2507 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2508 value within the frame. If false then the offset above should be
2509 ignored. Note that DRAP, if valid, *always* points to the CFA and
2510 thus has an offset of zero. */
2511 BOOL_BITFIELD sp_valid : 1;
2512 BOOL_BITFIELD fp_valid : 1;
2513 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2514
2515 /* Indicate whether the local stack frame has been re-aligned. When
2516 set, the SP/FP offsets above are relative to the aligned frame
2517 and not the CFA. */
2518 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2519
2520 /* Indicates whether the stack pointer has been re-aligned. When set,
2521 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2522 should only be used for offsets > sp_realigned_offset, while
2523 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2524 The flags realigned and sp_realigned are mutually exclusive. */
2525 BOOL_BITFIELD sp_realigned : 1;
2526
122f9da1
DS
2527 /* If sp_realigned is set, this is the last valid offset from the CFA
2528 that can be used for access with the frame pointer. */
2529 HOST_WIDE_INT sp_realigned_fp_last;
2530
2531 /* If sp_realigned is set, this is the offset from the CFA that the stack
2532 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2533 Access via the stack pointer is only valid for offsets that are greater than
2534 this value. */
d6d4d770 2535 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2536};
2537
f81c9774
RH
2538/* Private to winnt.c. */
2539struct seh_frame_state;
2540
f8071c05
L
2541enum function_type
2542{
2543 TYPE_UNKNOWN = 0,
2544 TYPE_NORMAL,
2545 /* The current function is an interrupt service routine with a
2546 pointer argument as specified by the "interrupt" attribute. */
2547 TYPE_INTERRUPT,
2548 /* The current function is an interrupt service routine with a
2549 pointer argument and an integer argument as specified by the
2550 "interrupt" attribute. */
2551 TYPE_EXCEPTION
2552};
2553
d1b38208 2554struct GTY(()) machine_function {
fa1a0d02 2555 struct stack_local_entry *stack_locals;
4aab97f9
L
2556 int varargs_gpr_size;
2557 int varargs_fpr_size;
ff680eb1 2558 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2559
77560086
BE
2560 /* Cached initial frame layout for the current function. */
2561 struct ix86_frame frame;
3452586b 2562
7458026b
ILT
2563 /* For -fsplit-stack support: A stack local which holds a pointer to
2564 the stack arguments for a function with a variable number of
2565 arguments. This is set at the start of the function and is used
2566 to initialize the overflow_arg_area field of the va_list
2567 structure. */
2568 rtx split_stack_varargs_pointer;
2569
3452586b
RH
2570 /* This value is used for amd64 targets and specifies the current abi
2571 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2572 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2573
2574 /* Nonzero if the function accesses a previous frame. */
2575 BOOL_BITFIELD accesses_prev_frame : 1;
2576
922e3e33
UB
2577 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2578 expander to determine the style used. */
3452586b
RH
2579 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2580
1e4490dc
UB
2581 /* Nonzero if the current function calls pc thunk and
2582 must not use the red zone. */
2583 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2584
5bf5a10b
AO
2585 /* If true, the current function needs the default PIC register, not
2586 an alternate register (on x86) and must not use the red zone (on
2587 x86_64), even if it's a leaf function. We don't want the
2588 function to be regarded as non-leaf because TLS calls need not
2589 affect register allocation. This flag is set when a TLS call
2590 instruction is expanded within a function, and never reset, even
2591 if all such instructions are optimized away. Use the
2592 ix86_current_function_calls_tls_descriptor macro for a better
2593 approximation. */
3452586b
RH
2594 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2595
2596 /* If true, the current function has a STATIC_CHAIN is placed on the
2597 stack below the return address. */
2598 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2599
529a6471
JJ
2600 /* If true, it is safe to not save/restore DRAP register. */
2601 BOOL_BITFIELD no_drap_save_restore : 1;
2602
f8071c05
L
2603 /* Function type. */
2604 ENUM_BITFIELD(function_type) func_type : 2;
2605
da99fd4a
L
2606 /* How to generate indirec branch. */
2607 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2608
2609 /* If true, the current function has local indirect jumps, like
2610 "indirect_jump" or "tablejump". */
2611 BOOL_BITFIELD has_local_indirect_jump : 1;
2612
45e14019
L
2613 /* How to generate function return. */
2614 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2615
f8071c05
L
2616 /* If true, the current function is a function specified with
2617 the "interrupt" or "no_caller_saved_registers" attribute. */
2618 BOOL_BITFIELD no_caller_saved_registers : 1;
2619
a0ff7835
L
2620 /* If true, there is register available for argument passing. This
2621 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2622 if there is scratch register available for indirect sibcall. In
2623 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2624 pass arguments and can be used for indirect sibcall. */
2625 BOOL_BITFIELD arg_reg_available : 1;
2626
d6d4d770 2627 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2628 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2629 BOOL_BITFIELD call_ms2sysv : 1;
2630
2631 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2632 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2633 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2634
d6d4d770
DS
2635 /* This is the number of extra registers saved by stub (valid range is
2636 0-6). Each additional register is only saved/restored by the stubs
2637 if all successive ones are. (Will always be zero when using a hard
2638 frame pointer.) */
2639 unsigned int call_ms2sysv_extra_regs:3;
2640
35c95658
L
2641 /* Nonzero if the function places outgoing arguments on stack. */
2642 BOOL_BITFIELD outgoing_args_on_stack : 1;
2643
cd3410cc
L
2644 /* The largest alignment, in bytes, of stack slot actually used. */
2645 unsigned int max_used_stack_alignment;
2646
ec7ded37
RH
2647 /* During prologue/epilogue generation, the current frame state.
2648 Otherwise, the frame state at the end of the prologue. */
2649 struct machine_frame_state fs;
f81c9774
RH
2650
2651 /* During SEH output, this is non-null. */
2652 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2653};
cd9c1ca8 2654#endif
fa1a0d02
JH
2655
2656#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2657#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2658#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2659#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2660#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2661#define ix86_tls_descriptor_calls_expanded_in_cfun \
2662 (cfun->machine->tls_descriptor_call_expanded_p)
2663/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2664 calls are optimized away, we try to detect cases in which it was
2665 optimized away. Since such instructions (use (reg REG_SP)), we can
2666 verify whether there's any such instruction live by testing that
2667 REG_SP is live. */
2668#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2669 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2670#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2671#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2672
1bc7c5b6
ZW
2673/* Control behavior of x86_file_start. */
2674#define X86_FILE_START_VERSION_DIRECTIVE false
2675#define X86_FILE_START_FLTUSED false
2676
7dcbf659
JH
2677/* Flag to mark data that is in the large address area. */
2678#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2679#define SYMBOL_REF_FAR_ADDR_P(X) \
2680 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2681
2682/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2683 have defined always, to avoid ifdefing. */
2684#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2685#define SYMBOL_REF_DLLIMPORT_P(X) \
2686 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2687
2688#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2689#define SYMBOL_REF_DLLEXPORT_P(X) \
2690 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2691
82c0e1a0
KT
2692#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2693#define SYMBOL_REF_STUBVAR_P(X) \
2694 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2695
7942e47e
RY
2696extern void debug_ready_dispatch (void);
2697extern void debug_dispatch_window (int);
2698
91afcfa3
QN
2699/* The value at zero is only defined for the BMI instructions
2700 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2701#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2702 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2703#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2704 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2705
2706
b8ce4e94
KT
2707/* Flags returned by ix86_get_callcvt (). */
2708#define IX86_CALLCVT_CDECL 0x1
2709#define IX86_CALLCVT_STDCALL 0x2
2710#define IX86_CALLCVT_FASTCALL 0x4
2711#define IX86_CALLCVT_THISCALL 0x8
2712#define IX86_CALLCVT_REGPARM 0x10
2713#define IX86_CALLCVT_SSEREGPARM 0x20
2714
2715#define IX86_BASE_CALLCVT(FLAGS) \
2716 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2717 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2718
b86b9f44
MM
2719#define RECIP_MASK_NONE 0x00
2720#define RECIP_MASK_DIV 0x01
2721#define RECIP_MASK_SQRT 0x02
2722#define RECIP_MASK_VEC_DIV 0x04
2723#define RECIP_MASK_VEC_SQRT 0x08
2724#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2725 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2726#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2727
2728#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2729#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2730#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2731#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2732
ab2c4ec8
SS
2733/* Use 128-bit AVX instructions in the auto-vectorizer. */
2734#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2735/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2736#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2737 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2738
c2c601b2
L
2739#define TARGET_INDIRECT_BRANCH_REGISTER \
2740 (ix86_indirect_branch_register \
2741 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2742
5dcfdccd
KY
2743#define IX86_HLE_ACQUIRE (1 << 16)
2744#define IX86_HLE_RELEASE (1 << 17)
2745
e83b8e2e
JJ
2746/* For switching between functions with different target attributes. */
2747#define SWITCHABLE_TARGET 1
2748
44d0de8d
UB
2749#define TARGET_SUPPORTS_WIDE_INT 1
2750
c98f8742
JVA
2751/*
2752Local variables:
2753version-control: t
2754End:
2755*/