]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
gimple-parser.c (c_parser_gimple_expr_list): Simplify.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cbe34bb5 2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
79fc8ffe
AS
88#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90922d36 90#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 91#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 92#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 93#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 94#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 95#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 96#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 97#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 98#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 99#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
100#define TARGET_ROUND TARGET_ISA_ROUND
101#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 102#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
73e32c47
JK
103#define TARGET_SGX TARGET_ISA_SGX
104#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
90922d36 105#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 106#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 107#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 108#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 109#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 110#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 111#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 112#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 113#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 114#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 115#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 116#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 117#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 118#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 119#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 120#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 121#define TARGET_AES TARGET_ISA_AES
bf7b5747 122#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
123#define TARGET_SHA TARGET_ISA_SHA
124#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
125#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
126#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
127#define TARGET_CLZERO TARGET_ISA_CLZERO
128#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
129#define TARGET_XSAVEC TARGET_ISA_XSAVEC
130#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
131#define TARGET_XSAVES TARGET_ISA_XSAVES
132#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 133#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 134#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
135#define TARGET_CMPXCHG16B TARGET_ISA_CX16
136#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 137#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 138#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 139#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 140#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 141#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 142#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
143#define TARGET_RTM TARGET_ISA_RTM
144#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 145#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 146#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 147#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 148#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 149#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 150#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 151#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 152#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 153#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 154#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 155#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 156#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 157#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 158#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
159#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
160#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
161#define TARGET_MPX TARGET_ISA_MPX
162#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
163#define TARGET_CLWB TARGET_ISA_CLWB
164#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
165#define TARGET_MWAITX TARGET_ISA_MWAITX
166#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
167#define TARGET_PKU TARGET_ISA_PKU
168#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
169
ab442df7 170
90922d36 171#define TARGET_LP64 TARGET_ABI_64
bf7b5747 172#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 173#define TARGET_X32 TARGET_ABI_X32
bf7b5747 174#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
175#define TARGET_16BIT TARGET_CODE16
176#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 177
cbf2e4d4
HJ
178/* SSE4.1 defines round instructions */
179#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 180#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 181
26b5109f
RS
182#include "config/vxworks-dummy.h"
183
7eb68c06 184#include "config/i386/i386-opts.h"
ccf8e764 185
c69fa2d4 186#define MAX_STRINGOP_ALGS 4
ccf8e764 187
8c996513
JH
188/* Specify what algorithm to use for stringops on known size.
189 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
190 known at compile time or estimated via feedback, the SIZE array
191 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 192 means infinity). Corresponding ALG is used then.
340ef734
JH
193 When NOALIGN is true the code guaranting the alignment of the memory
194 block is skipped.
195
8c996513 196 For example initializer:
4f3f76e6 197 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 198 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 199 be used otherwise. */
8c996513
JH
200struct stringop_algs
201{
202 const enum stringop_alg unknown_size;
203 const struct stringop_strategy {
204 const int max;
205 const enum stringop_alg alg;
340ef734 206 int noalign;
c69fa2d4 207 } size [MAX_STRINGOP_ALGS];
8c996513
JH
208};
209
d4ba09c0
SC
210/* Define the specific costs for a given cpu */
211
212struct processor_costs {
8b60264b
KG
213 const int add; /* cost of an add instruction */
214 const int lea; /* cost of a lea instruction */
215 const int shift_var; /* variable shift costs */
216 const int shift_const; /* constant shift costs */
f676971a 217 const int mult_init[5]; /* cost of starting a multiply
4977bab6 218 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 219 const int mult_bit; /* cost of multiply per each bit set */
f676971a 220 const int divide[5]; /* cost of a divide/mod
4977bab6 221 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
222 int movsx; /* The cost of movsx operation. */
223 int movzx; /* The cost of movzx operation. */
8b60264b
KG
224 const int large_insn; /* insns larger than this cost more */
225 const int move_ratio; /* The threshold of number of scalar
ac775968 226 memory-to-memory move insns. */
8b60264b
KG
227 const int movzbl_load; /* cost of loading using movzbl */
228 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
229 in QImode, HImode and SImode relative
230 to reg-reg move (2). */
8b60264b 231 const int int_store[3]; /* cost of storing integer register
96e7ae40 232 in QImode, HImode and SImode */
8b60264b
KG
233 const int fp_move; /* cost of reg,reg fld/fst */
234 const int fp_load[3]; /* cost of loading FP register
96e7ae40 235 in SFmode, DFmode and XFmode */
8b60264b 236 const int fp_store[3]; /* cost of storing FP register
96e7ae40 237 in SFmode, DFmode and XFmode */
8b60264b
KG
238 const int mmx_move; /* cost of moving MMX register. */
239 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 240 in SImode and DImode */
8b60264b 241 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 242 in SImode and DImode */
8b60264b
KG
243 const int sse_move; /* cost of moving SSE register. */
244 const int sse_load[3]; /* cost of loading SSE register
fa79946e 245 in SImode, DImode and TImode*/
8b60264b 246 const int sse_store[3]; /* cost of storing SSE register
fa79946e 247 in SImode, DImode and TImode*/
8b60264b 248 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 249 integer and vice versa. */
46cb0441
ZD
250 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
251 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
252 const int prefetch_block; /* bytes moved to cache for prefetch. */
253 const int simultaneous_prefetches; /* number of parallel prefetch
254 operations. */
4977bab6 255 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
256 const int fadd; /* cost of FADD and FSUB instructions. */
257 const int fmul; /* cost of FMUL instruction. */
258 const int fdiv; /* cost of FDIV instruction. */
259 const int fabs; /* cost of FABS instruction. */
260 const int fchs; /* cost of FCHS instruction. */
261 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 262 /* Specify what algorithm
bee51209 263 to use for stringops on unknown size. */
ad83025e 264 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
265 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
266 load and store. */
267 const int scalar_load_cost; /* Cost of scalar load. */
268 const int scalar_store_cost; /* Cost of scalar store. */
269 const int vec_stmt_cost; /* Cost of any vector operation, excluding
270 load, store, vector-to-scalar and
271 scalar-to-vector operation. */
272 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
273 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 274 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
275 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
276 const int vec_store_cost; /* Cost of vector store. */
277 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
278 cost model. */
279 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
280 vectorizer cost model. */
d4ba09c0
SC
281};
282
8b60264b 283extern const struct processor_costs *ix86_cost;
b2077fd2
JH
284extern const struct processor_costs ix86_size_cost;
285
286#define ix86_cur_cost() \
287 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 288
c98f8742
JVA
289/* Macros used in the machine description to test the flags. */
290
b97de419 291/* configure can arrange to change it. */
e075ae69 292
35b528be 293#ifndef TARGET_CPU_DEFAULT
b97de419 294#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 295#endif
35b528be 296
004d3859
GK
297#ifndef TARGET_FPMATH_DEFAULT
298#define TARGET_FPMATH_DEFAULT \
299 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
300#endif
301
bf7b5747
ST
302#ifndef TARGET_FPMATH_DEFAULT_P
303#define TARGET_FPMATH_DEFAULT_P(x) \
304 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
305#endif
306
c207fd99
L
307/* If the i387 is disabled or -miamcu is used , then do not return
308 values in it. */
309#define TARGET_FLOAT_RETURNS_IN_80387 \
310 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
311#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
312 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 313
5791cc29
JT
314/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
315 compile-time constant. */
316#ifdef IN_LIBGCC2
6ac49599 317#undef TARGET_64BIT
5791cc29
JT
318#ifdef __x86_64__
319#define TARGET_64BIT 1
320#else
321#define TARGET_64BIT 0
322#endif
323#else
6ac49599
RS
324#ifndef TARGET_BI_ARCH
325#undef TARGET_64BIT
e49080ec 326#undef TARGET_64BIT_P
67adf6a9 327#if TARGET_64BIT_DEFAULT
0c2dc519 328#define TARGET_64BIT 1
e49080ec 329#define TARGET_64BIT_P(x) 1
0c2dc519
JH
330#else
331#define TARGET_64BIT 0
e49080ec 332#define TARGET_64BIT_P(x) 0
0c2dc519
JH
333#endif
334#endif
5791cc29 335#endif
25f94bb5 336
750054a2
CT
337#define HAS_LONG_COND_BRANCH 1
338#define HAS_LONG_UNCOND_BRANCH 1
339
9e555526
RH
340#define TARGET_386 (ix86_tune == PROCESSOR_I386)
341#define TARGET_486 (ix86_tune == PROCESSOR_I486)
342#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
343#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 344#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
345#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
346#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
347#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
348#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 349#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 350#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 351#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
352#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
353#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 354#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
355#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
356#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 357#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
06caf59d 358#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 359#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 360#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 361#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 362#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 363#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 364#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 365#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 366#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 367#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 368#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 369
80fd744f
RH
370/* Feature tests against the various tunings. */
371enum ix86_tune_indices {
4b8bc035 372#undef DEF_TUNE
3ad20bd4 373#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
374#include "x86-tune.def"
375#undef DEF_TUNE
376X86_TUNE_LAST
80fd744f
RH
377};
378
ab442df7 379extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
380
381#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
382#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
383#define TARGET_ZERO_EXTEND_WITH_AND \
384 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 385#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
386#define TARGET_BRANCH_PREDICTION_HINTS \
387 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
388#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
389#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
390#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
391#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
392#define TARGET_PARTIAL_FLAG_REG_STALL \
393 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
394#define TARGET_LCP_STALL \
395 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
396#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
397#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
398#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
399#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
400#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
401#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
402#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
403#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
404#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
405#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
406#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
407#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
408 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
409#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
410#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
411#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
412#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
413#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
414#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
415#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
416#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
417#define TARGET_INTEGER_DFMODE_MOVES \
418 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
419#define TARGET_PARTIAL_REG_DEPENDENCY \
420 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
421#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
422 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
423#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
424 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
425#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
426 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
427#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
428 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
429#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
430#define TARGET_SSE_TYPELESS_STORES \
431 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
432#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
433#define TARGET_MEMORY_MISMATCH_STALL \
434 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
435#define TARGET_PROLOGUE_USING_MOVE \
436 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
437#define TARGET_EPILOGUE_USING_MOVE \
438 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
439#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
440#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
441#define TARGET_INTER_UNIT_MOVES_TO_VEC \
442 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
443#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
444 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
445#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 446 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
447#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
448#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
449#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
450#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
451#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
452#define TARGET_PAD_SHORT_FUNCTION \
453 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
454#define TARGET_EXT_80387_CONSTANTS \
455 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
456#define TARGET_AVOID_VECTOR_DECODE \
457 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
458#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
459 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
460#define TARGET_SLOW_IMUL_IMM32_MEM \
461 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
462#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
463#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
464#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
465#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
466#define TARGET_USE_VECTOR_FP_CONVERTS \
467 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
468#define TARGET_USE_VECTOR_CONVERTS \
469 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
470#define TARGET_SLOW_PSHUFB \
471 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
472#define TARGET_VECTOR_PARALLEL_EXECUTION \
473 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
8e0dc054
JJ
474#define TARGET_AVOID_4BYTE_PREFIXES \
475 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
476#define TARGET_FUSE_CMP_AND_BRANCH_32 \
477 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
478#define TARGET_FUSE_CMP_AND_BRANCH_64 \
479 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 480#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
481 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
482 : TARGET_FUSE_CMP_AND_BRANCH_32)
483#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
484 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
485#define TARGET_FUSE_ALU_AND_BRANCH \
486 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 487#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
488#define TARGET_AVOID_LEA_FOR_ADDR \
489 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
490#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
491 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
492#define TARGET_AVX128_OPTIMAL \
493 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
494#define TARGET_REASSOC_INT_TO_PARALLEL \
495 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
496#define TARGET_REASSOC_FP_TO_PARALLEL \
497 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
498#define TARGET_GENERAL_REGS_SSE_SPILL \
499 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
500#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
501 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 502#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 503 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
504#define TARGET_ADJUST_UNROLL \
505 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
506#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
507 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
508#define TARGET_ONE_IF_CONV_INSN \
509 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 510
80fd744f
RH
511/* Feature tests against the various architecture variations. */
512enum ix86_arch_indices {
cef31f9c 513 X86_ARCH_CMOV,
80fd744f
RH
514 X86_ARCH_CMPXCHG,
515 X86_ARCH_CMPXCHG8B,
516 X86_ARCH_XADD,
517 X86_ARCH_BSWAP,
518
519 X86_ARCH_LAST
520};
4f3f76e6 521
ab442df7 522extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 523
cef31f9c 524#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
525#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
526#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
527#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
528#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
529
cef31f9c
UB
530/* For sane SSE instruction set generation we need fcomi instruction.
531 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
532 expands to a sequence that includes conditional move. */
533#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
534
80fd744f
RH
535#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
536
cb261eb7 537extern unsigned char x86_prefetch_sse;
80fd744f
RH
538#define TARGET_PREFETCH_SSE x86_prefetch_sse
539
80fd744f
RH
540#define ASSEMBLER_DIALECT (ix86_asm_dialect)
541
542#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
543#define TARGET_MIX_SSE_I387 \
544 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
545
5fa578f0
UB
546#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
547#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
548#define TARGET_HARD_XF_REGS (TARGET_80387)
549
80fd744f
RH
550#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
551#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
552#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 553#define TARGET_SUN_TLS 0
1ef45b77 554
67adf6a9
RH
555#ifndef TARGET_64BIT_DEFAULT
556#define TARGET_64BIT_DEFAULT 0
25f94bb5 557#endif
74dc3e94
RH
558#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
559#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
560#endif
25f94bb5 561
e0ea8797
AH
562#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
563#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
564
79f5e442
ZD
565/* Fence to use after loop using storent. */
566
567extern tree x86_mfence;
568#define FENCE_FOLLOWING_MOVNT x86_mfence
569
0ed4a390
JL
570/* Once GDB has been enhanced to deal with functions without frame
571 pointers, we can change this to allow for elimination of
572 the frame pointer in leaf functions. */
573#define TARGET_DEFAULT 0
67adf6a9 574
0a1c5e55
UB
575/* Extra bits to force. */
576#define TARGET_SUBTARGET_DEFAULT 0
577#define TARGET_SUBTARGET_ISA_DEFAULT 0
578
579/* Extra bits to force on w/ 32-bit mode. */
580#define TARGET_SUBTARGET32_DEFAULT 0
581#define TARGET_SUBTARGET32_ISA_DEFAULT 0
582
ccf8e764
RH
583/* Extra bits to force on w/ 64-bit mode. */
584#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 585#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 586
fee3eacd
IS
587/* Replace MACH-O, ifdefs by in-line tests, where possible.
588 (a) Macros defined in config/i386/darwin.h */
b069de3b 589#define TARGET_MACHO 0
9005471b 590#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
591#define MACHOPIC_ATT_STUB 0
592/* (b) Macros defined in config/darwin.h */
593#define MACHO_DYNAMIC_NO_PIC_P 0
594#define MACHOPIC_INDIRECT 0
595#define MACHOPIC_PURE 0
9005471b 596
5a579c3b
LE
597/* For the RDOS */
598#define TARGET_RDOS 0
599
9005471b 600/* For the Windows 64-bit ABI. */
7c800926
KT
601#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
602
6510e8bb
KT
603/* For the Windows 32-bit ABI. */
604#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
605
f81c9774
RH
606/* This is re-defined by cygming.h. */
607#define TARGET_SEH 0
608
51212b32 609/* The default abi used by target. */
7c800926 610#define DEFAULT_ABI SYSV_ABI
ccf8e764 611
b8b3f0ca 612/* The default TLS segment register used by target. */
00402c94
RH
613#define DEFAULT_TLS_SEG_REG \
614 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 615
cc69336f
RH
616/* Subtargets may reset this to 1 in order to enable 96-bit long double
617 with the rounding mode forced to 53 bits. */
618#define TARGET_96_ROUND_53_LONG_DOUBLE 0
619
682cd442
GK
620/* -march=native handling only makes sense with compiler running on
621 an x86 or x86_64 chip. If changing this condition, also change
622 the condition in driver-i386.c. */
623#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
624/* In driver-i386.c. */
625extern const char *host_detect_local_cpu (int argc, const char **argv);
626#define EXTRA_SPEC_FUNCTIONS \
627 { "local_cpu_detect", host_detect_local_cpu },
682cd442 628#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
629#endif
630
8981c15b
JM
631#if TARGET_64BIT_DEFAULT
632#define OPT_ARCH64 "!m32"
633#define OPT_ARCH32 "m32"
634#else
f0ea7581
L
635#define OPT_ARCH64 "m64|mx32"
636#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
637#endif
638
1cba2b96
EC
639/* Support for configure-time defaults of some command line options.
640 The order here is important so that -march doesn't squash the
641 tune or cpu values. */
ce998900 642#define OPTION_DEFAULT_SPECS \
da2d4c01 643 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
644 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
645 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 646 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
647 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
648 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
649 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
650 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
651 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 652
241e1a89
SC
653/* Specs for the compiler proper */
654
628714d8 655#ifndef CC1_CPU_SPEC
eb5bb0fd 656#define CC1_CPU_SPEC_1 ""
fa959ce4 657
682cd442 658#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
659#define CC1_CPU_SPEC CC1_CPU_SPEC_1
660#else
661#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
662"%{march=native:%>march=native %:local_cpu_detect(arch) \
663 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
664%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 665#endif
241e1a89 666#endif
c98f8742 667\f
30efe578 668/* Target CPU builtins. */
ab442df7
MM
669#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
670
671/* Target Pragmas. */
672#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 673
628714d8 674#ifndef CC1_SPEC
8015b78d 675#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
676#endif
677
678/* This macro defines names of additional specifications to put in the
679 specs that can be used in various specifications like CC1_SPEC. Its
680 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
681
682 Each subgrouping contains a string constant, that defines the
188fc5b5 683 specification name, and a string constant that used by the GCC driver
bcd86433
SC
684 program.
685
686 Do not define this macro if it does not need to do anything. */
687
688#ifndef SUBTARGET_EXTRA_SPECS
689#define SUBTARGET_EXTRA_SPECS
690#endif
691
692#define EXTRA_SPECS \
628714d8 693 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
694 SUBTARGET_EXTRA_SPECS
695\f
ce998900 696
8ce94e44
JM
697/* Whether to allow x87 floating-point arithmetic on MODE (one of
698 SFmode, DFmode and XFmode) in the current excess precision
699 configuration. */
b8cab8a5
UB
700#define X87_ENABLE_ARITH(MODE) \
701 (flag_unsafe_math_optimizations \
702 || flag_excess_precision == EXCESS_PRECISION_FAST \
703 || (MODE) == XFmode)
8ce94e44
JM
704
705/* Likewise, whether to allow direct conversions from integer mode
706 IMODE (HImode, SImode or DImode) to MODE. */
707#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
708 (flag_unsafe_math_optimizations \
709 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
710 || (MODE) == XFmode \
711 || ((MODE) == DFmode && (IMODE) == SImode) \
712 || (IMODE) == HImode)
713
979c67a5
UB
714/* target machine storage layout */
715
65d9c0ab
JH
716#define SHORT_TYPE_SIZE 16
717#define INT_TYPE_SIZE 32
f0ea7581
L
718#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
719#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 720#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 721#define FLOAT_TYPE_SIZE 32
65d9c0ab 722#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
723#define LONG_DOUBLE_TYPE_SIZE \
724 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 725
c637141a 726#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 727
67adf6a9 728#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 729#define MAX_BITS_PER_WORD 64
0c2dc519
JH
730#else
731#define MAX_BITS_PER_WORD 32
0c2dc519
JH
732#endif
733
c98f8742
JVA
734/* Define this if most significant byte of a word is the lowest numbered. */
735/* That is true on the 80386. */
736
737#define BITS_BIG_ENDIAN 0
738
739/* Define this if most significant byte of a word is the lowest numbered. */
740/* That is not true on the 80386. */
741#define BYTES_BIG_ENDIAN 0
742
743/* Define this if most significant word of a multiword number is the lowest
744 numbered. */
745/* Not true for 80386 */
746#define WORDS_BIG_ENDIAN 0
747
c98f8742 748/* Width of a word, in units (bytes). */
4ae8027b 749#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
750
751#ifndef IN_LIBGCC2
2e64c636
JH
752#define MIN_UNITS_PER_WORD 4
753#endif
c98f8742 754
c98f8742 755/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 756#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 757
e075ae69 758/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 759#define STACK_BOUNDARY \
51212b32 760 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 761
2e3f842f
L
762/* Stack boundary of the main function guaranteed by OS. */
763#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
764
de1132d1 765/* Minimum stack boundary. */
cba9c789 766#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 767
d1f87653 768/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 769 aligned; the compiler cannot rely on having this alignment. */
e075ae69 770#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 771
de1132d1 772/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
773 both 32bit and 64bit, to support codes that need 128 bit stack
774 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
775#define PREFERRED_STACK_BOUNDARY_DEFAULT \
776 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
777
778/* 1 if -mstackrealign should be turned on by default. It will
779 generate an alternate prologue and epilogue that realigns the
780 runtime stack if nessary. This supports mixing codes that keep a
781 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 782 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
783#define STACK_REALIGN_DEFAULT 0
784
785/* Boundary (in *bits*) on which the incoming stack is aligned. */
786#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 787
a2851b75
TG
788/* According to Windows x64 software convention, the maximum stack allocatable
789 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
790 instructions allowed to adjust the stack pointer in the epilog, forcing the
791 use of frame pointer for frames larger than 2 GB. This theorical limit
792 is reduced by 256, an over-estimated upper bound for the stack use by the
793 prologue.
794 We define only one threshold for both the prolog and the epilog. When the
4e523f33 795 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
796 regs, then save them, and then allocate the remaining. There is no SEH
797 unwind info for this later allocation. */
798#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
799
ebff937c
SH
800/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
801 mandatory for the 64-bit ABI, and may or may not be true for other
802 operating systems. */
803#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
804
f963b5d9
RS
805/* Minimum allocation boundary for the code of a function. */
806#define FUNCTION_BOUNDARY 8
807
808/* C++ stores the virtual bit in the lowest bit of function pointers. */
809#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 810
c98f8742
JVA
811/* Minimum size in bits of the largest boundary to which any
812 and all fundamental data types supported by the hardware
813 might need to be aligned. No data type wants to be aligned
17f24ff0 814 rounder than this.
fce5a9f2 815
d1f87653 816 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
817 and Pentium Pro XFmode values at 128 bit boundaries.
818
819 When increasing the maximum, also update
820 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 821
3f97cb0b 822#define BIGGEST_ALIGNMENT \
0076c82f 823 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 824
2e3f842f
L
825/* Maximum stack alignment. */
826#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
827
6e4f1168
L
828/* Alignment value for attribute ((aligned)). It is a constant since
829 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 830#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 831
822eda12 832/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 833#define ALIGN_MODE_128(MODE) \
4501d314 834 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 835
17f24ff0 836/* The published ABIs say that doubles should be aligned on word
d1f87653 837 boundaries, so lower the alignment for structure fields unless
6fc605d8 838 -malign-double is set. */
e932b21b 839
e83f3cff
RH
840/* ??? Blah -- this macro is used directly by libobjc. Since it
841 supports no vector modes, cut out the complexity and fall back
842 on BIGGEST_FIELD_ALIGNMENT. */
843#ifdef IN_TARGET_LIBS
ef49d42e
JH
844#ifdef __x86_64__
845#define BIGGEST_FIELD_ALIGNMENT 128
846#else
e83f3cff 847#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 848#endif
e83f3cff 849#else
e932b21b 850#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
1a6e82b8 851 x86_field_alignment ((FIELD), (COMPUTED))
e83f3cff 852#endif
c98f8742 853
e5e8a8bf 854/* If defined, a C expression to compute the alignment given to a
a7180f70 855 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
856 and ALIGN is the alignment that the object would ordinarily have.
857 The value of this macro is used instead of that alignment to align
858 the object.
859
860 If this macro is not defined, then ALIGN is used.
861
862 The typical use of this macro is to increase alignment for string
863 constants to be word aligned so that `strcpy' calls that copy
864 constants can be done inline. */
865
d9a5f180 866#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 867
8a022443
JW
868/* If defined, a C expression to compute the alignment for a static
869 variable. TYPE is the data type, and ALIGN is the alignment that
870 the object would ordinarily have. The value of this macro is used
871 instead of that alignment to align the object.
872
873 If this macro is not defined, then ALIGN is used.
874
875 One use of this macro is to increase alignment of medium-size
876 data to make it all fit in fewer cache lines. Another is to
877 cause character arrays to be word-aligned so that `strcpy' calls
878 that copy constants to character arrays can be done inline. */
879
df8a1d28
JJ
880#define DATA_ALIGNMENT(TYPE, ALIGN) \
881 ix86_data_alignment ((TYPE), (ALIGN), true)
882
883/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
884 some alignment increase, instead of optimization only purposes. E.g.
885 AMD x86-64 psABI says that variables with array type larger than 15 bytes
886 must be aligned to 16 byte boundaries.
887
888 If this macro is not defined, then ALIGN is used. */
889
890#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
891 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
892
893/* If defined, a C expression to compute the alignment for a local
894 variable. TYPE is the data type, and ALIGN is the alignment that
895 the object would ordinarily have. The value of this macro is used
896 instead of that alignment to align the object.
897
898 If this macro is not defined, then ALIGN is used.
899
900 One use of this macro is to increase alignment of medium-size
901 data to make it all fit in fewer cache lines. */
902
76fe54f0
L
903#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
904 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
905
906/* If defined, a C expression to compute the alignment for stack slot.
907 TYPE is the data type, MODE is the widest mode available, and ALIGN
908 is the alignment that the slot would ordinarily have. The value of
909 this macro is used instead of that alignment to align the slot.
910
911 If this macro is not defined, then ALIGN is used when TYPE is NULL,
912 Otherwise, LOCAL_ALIGNMENT will be used.
913
914 One use of this macro is to set alignment of stack slot to the
915 maximum alignment of all possible modes which the slot may have. */
916
917#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
918 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 919
9bfaf89d
JJ
920/* If defined, a C expression to compute the alignment for a local
921 variable DECL.
922
923 If this macro is not defined, then
924 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
925
926 One use of this macro is to increase alignment of medium-size
927 data to make it all fit in fewer cache lines. */
928
929#define LOCAL_DECL_ALIGNMENT(DECL) \
930 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
931
ae58e548
JJ
932/* If defined, a C expression to compute the minimum required alignment
933 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
934 MODE, assuming normal alignment ALIGN.
935
936 If this macro is not defined, then (ALIGN) will be used. */
937
938#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 939 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 940
9bfaf89d 941
9cd10576 942/* Set this nonzero if move instructions will actually fail to work
c98f8742 943 when given unaligned data. */
b4ac57ab 944#define STRICT_ALIGNMENT 0
c98f8742
JVA
945
946/* If bit field type is int, don't let it cross an int,
947 and give entire struct the alignment of an int. */
43a88a8c 948/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 949#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
950\f
951/* Standard register usage. */
952
953/* This processor has special stack-like registers. See reg-stack.c
892a2d68 954 for details. */
c98f8742
JVA
955
956#define STACK_REGS
ce998900 957
f48b4284
UB
958#define IS_STACK_MODE(MODE) \
959 (X87_FLOAT_MODE_P (MODE) \
960 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
961 || TARGET_MIX_SSE_I387))
c98f8742
JVA
962
963/* Number of actual hardware registers.
964 The hardware registers are assigned numbers for the compiler
965 from 0 to just below FIRST_PSEUDO_REGISTER.
966 All registers that the compiler knows about must be given numbers,
967 even those that are not normally considered general registers.
968
969 In the 80386 we give the 8 general purpose registers the numbers 0-7.
970 We number the floating point registers 8-15.
971 Note that registers 0-7 can be accessed as a short or int,
972 while only 0-3 may be used with byte `mov' instructions.
973
974 Reg 16 does not correspond to any hardware register, but instead
975 appears in the RTL as an argument pointer prior to reload, and is
976 eliminated during reloading in favor of either the stack or frame
892a2d68 977 pointer. */
c98f8742 978
05416670 979#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 980
3073d01c
ML
981/* Number of hardware registers that go into the DWARF-2 unwind info.
982 If not defined, equals FIRST_PSEUDO_REGISTER. */
983
984#define DWARF_FRAME_REGISTERS 17
985
c98f8742
JVA
986/* 1 for registers that have pervasive standard uses
987 and are not available for the register allocator.
3f3f2124 988 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 989
621bc046
UB
990 REX registers are disabled for 32bit targets in
991 TARGET_CONDITIONAL_REGISTER_USAGE. */
992
a7180f70
BS
993#define FIXED_REGISTERS \
994/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 995{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
996/*arg,flags,fpsr,fpcr,frame*/ \
997 1, 1, 1, 1, 1, \
a7180f70
BS
998/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
999 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1000/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1001 0, 0, 0, 0, 0, 0, 0, 0, \
1002/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1003 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1004/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1005 0, 0, 0, 0, 0, 0, 0, 0, \
1006/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1007 0, 0, 0, 0, 0, 0, 0, 0, \
1008/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1009 0, 0, 0, 0, 0, 0, 0, 0, \
1010/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1011 0, 0, 0, 0, 0, 0, 0, 0, \
1012/* b0, b1, b2, b3*/ \
1013 0, 0, 0, 0 }
c98f8742
JVA
1014
1015/* 1 for registers not available across function calls.
1016 These must include the FIXED_REGISTERS and also any
1017 registers that can be used without being saved.
1018 The latter must include the registers where values are returned
1019 and the register where structure-value addresses are passed.
fce5a9f2
EC
1020 Aside from that, you can include as many other registers as you like.
1021
621bc046
UB
1022 Value is set to 1 if the register is call used unconditionally.
1023 Bit one is set if the register is call used on TARGET_32BIT ABI.
1024 Bit two is set if the register is call used on TARGET_64BIT ABI.
1025 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1026
1027 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1028
1f3ccbc8
L
1029#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1030 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1031
a7180f70
BS
1032#define CALL_USED_REGISTERS \
1033/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1034{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1035/*arg,flags,fpsr,fpcr,frame*/ \
1036 1, 1, 1, 1, 1, \
a7180f70 1037/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1038 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1039/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1040 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1041/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1042 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1043/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1044 6, 6, 6, 6, 6, 6, 6, 6, \
1045/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1046 6, 6, 6, 6, 6, 6, 6, 6, \
1047/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1048 6, 6, 6, 6, 6, 6, 6, 6, \
1049 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1050 1, 1, 1, 1, 1, 1, 1, 1, \
1051/* b0, b1, b2, b3*/ \
1052 1, 1, 1, 1 }
c98f8742 1053
3b3c6a3f
MM
1054/* Order in which to allocate registers. Each register must be
1055 listed once, even those in FIXED_REGISTERS. List frame pointer
1056 late and fixed registers last. Note that, in general, we prefer
1057 registers listed in CALL_USED_REGISTERS, keeping the others
1058 available for storage of persistent values.
1059
5a733826 1060 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1061 so this is just empty initializer for array. */
3b3c6a3f 1062
162f023b
JH
1063#define REG_ALLOC_ORDER \
1064{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1065 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1066 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1067 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1068 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1069 78, 79, 80 }
3b3c6a3f 1070
5a733826 1071/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1072 to be rearranged based on a particular function. When using sse math,
03c259ad 1073 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1074
5a733826 1075#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1076
f5316dfe 1077
7c800926
KT
1078#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1079
c98f8742
JVA
1080/* Return number of consecutive hard regs needed starting at reg REGNO
1081 to hold something of mode MODE.
1082 This is ordinarily the length in words of a value of mode MODE
1083 but can be less for certain modes in special long registers.
1084
fce5a9f2 1085 Actually there are no two word move instructions for consecutive
c98f8742 1086 registers. And only registers 0-3 may have mov byte instructions
63001560 1087 applied to them. */
c98f8742 1088
ce998900 1089#define HARD_REGNO_NREGS(REGNO, MODE) \
7bf65250
UB
1090 (GENERAL_REGNO_P (REGNO) \
1091 ? ((MODE) == XFmode \
92d0fb09 1092 ? (TARGET_64BIT ? 2 : 3) \
1a6e82b8
UB
1093 : ((MODE) == XCmode \
1094 ? (TARGET_64BIT ? 4 : 6) \
7bf65250
UB
1095 : CEIL (GET_MODE_SIZE (MODE), UNITS_PER_WORD))) \
1096 : (COMPLEX_MODE_P (MODE) ? 2 : \
1097 (((MODE == V64SFmode) || (MODE == V64SImode)) ? 4 : 1)))
c98f8742 1098
8521c414 1099#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1100 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1101 && GENERAL_REGNO_P (REGNO) \
1102 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1103
1104#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1105
95879c72
L
1106#define VALID_AVX256_REG_MODE(MODE) \
1107 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1108 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1109 || (MODE) == V4DFmode)
95879c72 1110
4ac005ba 1111#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1112 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1113
3f97cb0b
AI
1114#define VALID_AVX512F_SCALAR_MODE(MODE) \
1115 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1116 || (MODE) == SFmode)
1117
1118#define VALID_AVX512F_REG_MODE(MODE) \
1119 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1120 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1121 || (MODE) == V4TImode)
1122
05416670 1123#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1124 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1125 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1126 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1127
ce998900
UB
1128#define VALID_SSE2_REG_MODE(MODE) \
1129 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1130 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1131
d9a5f180 1132#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1133 ((MODE) == V1TImode || (MODE) == TImode \
1134 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1135 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1136
47f339cf 1137#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1138 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1139
d9a5f180 1140#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1141 ((MODE == V1DImode) || (MODE) == DImode \
1142 || (MODE) == V2SImode || (MODE) == SImode \
1143 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1144
05416670
UB
1145#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1146
1147#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1148
d5e254e1
IE
1149#define VALID_BND_REG_MODE(MODE) \
1150 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1151
ce998900
UB
1152#define VALID_DFP_MODE_P(MODE) \
1153 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1154
d9a5f180 1155#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1156 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1157 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1158
d9a5f180 1159#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1160 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1161 || (MODE) == DImode \
1162 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1163 || (MODE) == CDImode \
1164 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1165 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1166
822eda12 1167/* Return true for modes passed in SSE registers. */
ce998900 1168#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1169 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1170 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1171 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1172 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1173 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1174 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1175 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1176 || (MODE) == V16SFmode)
822eda12 1177
05416670
UB
1178#define X87_FLOAT_MODE_P(MODE) \
1179 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1180
05416670
UB
1181#define SSE_FLOAT_MODE_P(MODE) \
1182 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1183
1184#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1185 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1186 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1187
e075ae69 1188/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1189
a946dd00 1190#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1191 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1192
1193/* Value is 1 if it is a good idea to tie two pseudo registers
1194 when one has mode MODE1 and one has mode MODE2.
1195 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1196 for any hard reg, then this must be 0 for correct output. */
1197
1a6e82b8
UB
1198#define MODES_TIEABLE_P(MODE1, MODE2) \
1199 ix86_modes_tieable_p ((MODE1), (MODE2))
d2836273 1200
ff25ef99
ZD
1201/* It is possible to write patterns to move flags; but until someone
1202 does it, */
1203#define AVOID_CCMODE_COPIES
c98f8742 1204
e075ae69 1205/* Specify the modes required to caller save a given hard regno.
787dc842 1206 We do this on i386 to prevent flags from being saved at all.
e075ae69 1207
787dc842
JH
1208 Kill any attempts to combine saving of modes. */
1209
d9a5f180
GS
1210#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1211 (CC_REGNO_P (REGNO) ? VOIDmode \
1212 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1213 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1214 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1215 && TARGET_PARTIAL_REG_STALL) \
85a77221 1216 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1217 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1218 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1219 : (MODE))
ce998900 1220
51ba747a
RH
1221/* The only ABI that saves SSE registers across calls is Win64 (thus no
1222 need to check the current ABI here), and with AVX enabled Win64 only
1223 guarantees that the low 16 bytes are saved. */
1224#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1225 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1226
c98f8742
JVA
1227/* Specify the registers used for certain standard purposes.
1228 The values of these macros are register numbers. */
1229
1230/* on the 386 the pc register is %eip, and is not usable as a general
1231 register. The ordinary mov instructions won't work */
1232/* #define PC_REGNUM */
1233
05416670
UB
1234/* Base register for access to arguments of the function. */
1235#define ARG_POINTER_REGNUM ARGP_REG
1236
c98f8742 1237/* Register to use for pushing function arguments. */
05416670 1238#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1239
1240/* Base register for access to local variables of the function. */
05416670
UB
1241#define FRAME_POINTER_REGNUM FRAME_REG
1242#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1243
05416670
UB
1244#define FIRST_INT_REG AX_REG
1245#define LAST_INT_REG SP_REG
c98f8742 1246
05416670
UB
1247#define FIRST_QI_REG AX_REG
1248#define LAST_QI_REG BX_REG
c98f8742
JVA
1249
1250/* First & last stack-like regs */
05416670
UB
1251#define FIRST_STACK_REG ST0_REG
1252#define LAST_STACK_REG ST7_REG
c98f8742 1253
05416670
UB
1254#define FIRST_SSE_REG XMM0_REG
1255#define LAST_SSE_REG XMM7_REG
fce5a9f2 1256
05416670
UB
1257#define FIRST_MMX_REG MM0_REG
1258#define LAST_MMX_REG MM7_REG
a7180f70 1259
05416670
UB
1260#define FIRST_REX_INT_REG R8_REG
1261#define LAST_REX_INT_REG R15_REG
3f3f2124 1262
05416670
UB
1263#define FIRST_REX_SSE_REG XMM8_REG
1264#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1265
05416670
UB
1266#define FIRST_EXT_REX_SSE_REG XMM16_REG
1267#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1268
05416670
UB
1269#define FIRST_MASK_REG MASK0_REG
1270#define LAST_MASK_REG MASK7_REG
85a77221 1271
05416670
UB
1272#define FIRST_BND_REG BND0_REG
1273#define LAST_BND_REG BND3_REG
d5e254e1 1274
aabcd309 1275/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1276 requiring a frame pointer. */
1277#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1278#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1279#endif
1280
1281/* Make sure we can access arbitrary call frames. */
1282#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1283
c98f8742 1284/* Register to hold the addressing base for position independent
5b43fed1
RH
1285 code access to data items. We don't use PIC pointer for 64bit
1286 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1287 pessimizing code dealing with EBX.
bd09bdeb
RH
1288
1289 To avoid clobbering a call-saved register unnecessarily, we renumber
1290 the pic register when possible. The change is visible after the
1291 prologue has been emitted. */
1292
e8b5eb25 1293#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1294
bcb21886 1295#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1296 (ix86_use_pseudo_pic_reg () \
1297 ? (pic_offset_table_rtx \
1298 ? INVALID_REGNUM \
1299 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1300 : INVALID_REGNUM)
c98f8742 1301
5fc0e5df
KW
1302#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1303
c51e6d85 1304/* This is overridden by <cygwin.h>. */
5e062767
DS
1305#define MS_AGGREGATE_RETURN 0
1306
61fec9ff 1307#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1308\f
1309/* Define the classes of registers for register constraints in the
1310 machine description. Also define ranges of constants.
1311
1312 One of the classes must always be named ALL_REGS and include all hard regs.
1313 If there is more than one class, another class must be named NO_REGS
1314 and contain no registers.
1315
1316 The name GENERAL_REGS must be the name of a class (or an alias for
1317 another name such as ALL_REGS). This is the class of registers
1318 that is allowed by "g" or "r" in a register constraint.
1319 Also, registers outside this class are allocated only when
1320 instructions express preferences for them.
1321
1322 The classes must be numbered in nondecreasing order; that is,
1323 a larger-numbered class must never be contained completely
2e24efd3
AM
1324 in a smaller-numbered class. This is why CLOBBERED_REGS class
1325 is listed early, even though in 64-bit mode it contains more
1326 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1327
1328 For any two classes, it is very desirable that there be another
ab408a86
JVA
1329 class that represents their union.
1330
1331 It might seem that class BREG is unnecessary, since no useful 386
1332 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1333 and the "b" register constraint is useful in asms for syscalls.
1334
03c259ad 1335 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1336
1337enum reg_class
1338{
1339 NO_REGS,
e075ae69 1340 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1341 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1342 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1343 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1344 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1345 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1346 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1347 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1348 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1349 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1350 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1351 FLOAT_REGS,
06f4e35d 1352 SSE_FIRST_REG,
45392c76 1353 NO_REX_SSE_REGS,
a7180f70 1354 SSE_REGS,
3f97cb0b 1355 EVEX_SSE_REGS,
d5e254e1 1356 BND_REGS,
3f97cb0b 1357 ALL_SSE_REGS,
a7180f70 1358 MMX_REGS,
446988df
JH
1359 FP_TOP_SSE_REGS,
1360 FP_SECOND_SSE_REGS,
1361 FLOAT_SSE_REGS,
1362 FLOAT_INT_REGS,
1363 INT_SSE_REGS,
1364 FLOAT_INT_SSE_REGS,
85a77221
AI
1365 MASK_EVEX_REGS,
1366 MASK_REGS,
5fbb13a7 1367 MOD4_SSE_REGS,
c98f8742
JVA
1368 ALL_REGS, LIM_REG_CLASSES
1369};
1370
d9a5f180
GS
1371#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1372
1373#define INTEGER_CLASS_P(CLASS) \
1374 reg_class_subset_p ((CLASS), GENERAL_REGS)
1375#define FLOAT_CLASS_P(CLASS) \
1376 reg_class_subset_p ((CLASS), FLOAT_REGS)
1377#define SSE_CLASS_P(CLASS) \
3f97cb0b 1378 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1379#define MMX_CLASS_P(CLASS) \
f75959a6 1380 ((CLASS) == MMX_REGS)
4ed04e93
UB
1381#define MASK_CLASS_P(CLASS) \
1382 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1383#define MAYBE_INTEGER_CLASS_P(CLASS) \
1384 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1385#define MAYBE_FLOAT_CLASS_P(CLASS) \
1386 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1387#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1388 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1389#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1390 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1391#define MAYBE_MASK_CLASS_P(CLASS) \
1392 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1393
1394#define Q_CLASS_P(CLASS) \
1395 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1396
0bd72901
UB
1397#define MAYBE_NON_Q_CLASS_P(CLASS) \
1398 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1399
43f3a59d 1400/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1401
1402#define REG_CLASS_NAMES \
1403{ "NO_REGS", \
ab408a86 1404 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1405 "SIREG", "DIREG", \
e075ae69 1406 "AD_REGS", \
2e24efd3 1407 "CLOBBERED_REGS", \
e075ae69 1408 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1409 "TLS_GOTBASE_REGS", \
c98f8742 1410 "INDEX_REGS", \
3f3f2124 1411 "LEGACY_REGS", \
c98f8742
JVA
1412 "GENERAL_REGS", \
1413 "FP_TOP_REG", "FP_SECOND_REG", \
1414 "FLOAT_REGS", \
cb482895 1415 "SSE_FIRST_REG", \
45392c76 1416 "NO_REX_SSE_REGS", \
a7180f70 1417 "SSE_REGS", \
3f97cb0b 1418 "EVEX_SSE_REGS", \
d5e254e1 1419 "BND_REGS", \
3f97cb0b 1420 "ALL_SSE_REGS", \
a7180f70 1421 "MMX_REGS", \
446988df
JH
1422 "FP_TOP_SSE_REGS", \
1423 "FP_SECOND_SSE_REGS", \
1424 "FLOAT_SSE_REGS", \
8fcaaa80 1425 "FLOAT_INT_REGS", \
446988df
JH
1426 "INT_SSE_REGS", \
1427 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1428 "MASK_EVEX_REGS", \
1429 "MASK_REGS", \
5fbb13a7 1430 "MOD4_SSE_REGS" \
c98f8742
JVA
1431 "ALL_REGS" }
1432
ac2e563f
RH
1433/* Define which registers fit in which classes. This is an initializer
1434 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1435
621bc046
UB
1436 Note that CLOBBERED_REGS are calculated by
1437 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1438
3f97cb0b 1439#define REG_CLASS_CONTENTS \
d5e254e1
IE
1440{ { 0x00, 0x0, 0x0 }, \
1441 { 0x01, 0x0, 0x0 }, /* AREG */ \
1442 { 0x02, 0x0, 0x0 }, /* DREG */ \
1443 { 0x04, 0x0, 0x0 }, /* CREG */ \
1444 { 0x08, 0x0, 0x0 }, /* BREG */ \
1445 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1446 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1447 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1448 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1449 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1450 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1451 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1452 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1453 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1454 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1455 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1456 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1457 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1458 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1459{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1460{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1461 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1462 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1463{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1464{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1465{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1466{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1467{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1468{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1469{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1470{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1471 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1472 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1473{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1474{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1475}
c98f8742
JVA
1476
1477/* The same information, inverted:
1478 Return the class number of the smallest class containing
1479 reg number REGNO. This could be a conditional expression
1480 or could index an array. */
1481
1a6e82b8 1482#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1483
42db504c
SB
1484/* When this hook returns true for MODE, the compiler allows
1485 registers explicitly used in the rtl to be used as spill registers
1486 but prevents the compiler from extending the lifetime of these
1487 registers. */
1488#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1489
fc27f749 1490#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1491#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1492
1493#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1494#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1495
1496#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1497#define REX_INT_REGNO_P(N) \
1498 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1499
58b0b34c 1500#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1501#define GENERAL_REGNO_P(N) \
58b0b34c 1502 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1503
fc27f749
UB
1504#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1505#define ANY_QI_REGNO_P(N) \
1506 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1507
66aaf16f
UB
1508#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1509#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1510
fc27f749 1511#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1512#define SSE_REGNO_P(N) \
1513 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1514 || REX_SSE_REGNO_P (N) \
1515 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1516
4977bab6 1517#define REX_SSE_REGNO_P(N) \
fb84c7a0 1518 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1519
0a48088a
IT
1520#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1521
3f97cb0b
AI
1522#define EXT_REX_SSE_REGNO_P(N) \
1523 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1524
05416670
UB
1525#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1526#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1527
9e4a4dd6 1528#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1529#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1530
fc27f749 1531#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1532#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1533
e075ae69
RH
1534#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1535#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1536
58b0b34c 1537#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1538#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1539
5fbb13a7
KY
1540#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1541#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1542 || (N) == XMM4_REG \
1543 || (N) == XMM8_REG \
1544 || (N) == XMM12_REG \
1545 || (N) == XMM16_REG \
1546 || (N) == XMM20_REG \
1547 || (N) == XMM24_REG \
1548 || (N) == XMM28_REG)
1549
05416670
UB
1550/* First floating point reg */
1551#define FIRST_FLOAT_REG FIRST_STACK_REG
1552#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1553
1554#define SSE_REGNO(N) \
1555 ((N) < 8 ? FIRST_SSE_REG + (N) \
1556 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1557 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1558
c98f8742
JVA
1559/* The class value for index registers, and the one for base regs. */
1560
1561#define INDEX_REG_CLASS INDEX_REGS
1562#define BASE_REG_CLASS GENERAL_REGS
1563
85ff473e 1564/* If we are copying between general and FP registers, we need a memory
f84aa48a 1565 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1566#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1567 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1568
c62b3659
UB
1569/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1570 There is no need to emit full 64 bit move on 64 bit targets
1571 for integral modes that can be moved using 32 bit move. */
1572#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1573 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1574 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1575 : MODE)
1576
1272914c
RH
1577/* Return a class of registers that cannot change FROM mode to TO mode. */
1578
1579#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1580 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1581\f
1582/* Stack layout; function entry, exit and calling. */
1583
1584/* Define this if pushing a word on the stack
1585 makes the stack pointer a smaller address. */
62f9f30b 1586#define STACK_GROWS_DOWNWARD 1
c98f8742 1587
a4d05547 1588/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1589 is at the high-address end of the local variables;
1590 that is, each additional local variable allocated
1591 goes at a more negative offset in the frame. */
f62c8a5c 1592#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1593
1594/* Offset within stack frame to start allocating local variables at.
1595 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1596 first local allocated. Otherwise, it is the offset to the BEGINNING
1597 of the first local allocated. */
1598#define STARTING_FRAME_OFFSET 0
1599
8c2b2fae
UB
1600/* If we generate an insn to push BYTES bytes, this says how many the stack
1601 pointer really advances by. On 386, we have pushw instruction that
1602 decrements by exactly 2 no matter what the position was, there is no pushb.
1603
1604 But as CIE data alignment factor on this arch is -4 for 32bit targets
1605 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1606 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1607
1a6e82b8 1608#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1609
1610/* If defined, the maximum amount of space required for outgoing arguments
1611 will be computed and placed into the variable `crtl->outgoing_args_size'.
1612 No space will be pushed onto the stack for each call; instead, the
1613 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1614
1615 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1616 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1617 mode the difference is less drastic but visible.
1618
1619 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1620 actually grow with accumulation. Is that because accumulated args
41ee845b 1621 unwind info became unnecesarily bloated?
f830ddc2
RH
1622
1623 With the 64-bit MS ABI, we can generate correct code with or without
1624 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1625 generated without accumulated args is terrible.
41ee845b
JH
1626
1627 If stack probes are required, the space used for large function
1628 arguments on the stack must also be probed, so enable
f8071c05
L
1629 -maccumulate-outgoing-args so this happens in the prologue.
1630
1631 We must use argument accumulation in interrupt function if stack
1632 may be realigned to avoid DRAP. */
f73ad30e 1633
6c6094f1 1634#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1635 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1636 && optimize_function_for_speed_p (cfun)) \
1637 || (cfun->machine->func_type != TYPE_NORMAL \
1638 && crtl->stack_realign_needed) \
1639 || TARGET_STACK_PROBE \
1640 || TARGET_64BIT_MS_ABI \
ff734e26 1641 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1642
1643/* If defined, a C expression whose value is nonzero when we want to use PUSH
1644 instructions to pass outgoing arguments. */
1645
1646#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1647
2da4124d
L
1648/* We want the stack and args grow in opposite directions, even if
1649 PUSH_ARGS is 0. */
1650#define PUSH_ARGS_REVERSED 1
1651
c98f8742
JVA
1652/* Offset of first parameter from the argument pointer register value. */
1653#define FIRST_PARM_OFFSET(FNDECL) 0
1654
a7180f70
BS
1655/* Define this macro if functions should assume that stack space has been
1656 allocated for arguments even when their values are passed in registers.
1657
1658 The value of this macro is the size, in bytes, of the area reserved for
1659 arguments passed in registers for the function represented by FNDECL.
1660
1661 This space can be allocated by the caller, or be a part of the
1662 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1663 which. */
7c800926
KT
1664#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1665
4ae8027b 1666#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1667 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1668
c98f8742
JVA
1669/* Define how to find the value returned by a library function
1670 assuming the value has mode MODE. */
1671
4ae8027b 1672#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1673
e9125c09
TW
1674/* Define the size of the result block used for communication between
1675 untyped_call and untyped_return. The block contains a DImode value
1676 followed by the block used by fnsave and frstor. */
1677
1678#define APPLY_RESULT_SIZE (8+108)
1679
b08de47e 1680/* 1 if N is a possible register number for function argument passing. */
53c17031 1681#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1682
1683/* Define a data type for recording info about an argument list
1684 during the scan of that argument list. This data type should
1685 hold all necessary information about the function itself
1686 and about the args processed so far, enough to enable macros
b08de47e 1687 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1688
e075ae69 1689typedef struct ix86_args {
fa283935 1690 int words; /* # words passed so far */
b08de47e
MM
1691 int nregs; /* # registers available for passing */
1692 int regno; /* next available register number */
3e65f251
KT
1693 int fastcall; /* fastcall or thiscall calling convention
1694 is used */
fa283935 1695 int sse_words; /* # sse words passed so far */
a7180f70 1696 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1697 int warn_avx512f; /* True when we want to warn
1698 about AVX512F ABI. */
95879c72 1699 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1700 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1701 int warn_mmx; /* True when we want to warn about MMX ABI. */
1702 int sse_regno; /* next available sse register number */
1703 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1704 int mmx_nregs; /* # mmx registers available for passing */
1705 int mmx_regno; /* next available mmx register number */
892a2d68 1706 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1707 int caller; /* true if it is caller. */
2824d6e5
UB
1708 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1709 SFmode/DFmode arguments should be passed
1710 in SSE registers. Otherwise 0. */
d5e254e1
IE
1711 int bnd_regno; /* next available bnd register number */
1712 int bnds_in_bt; /* number of bounds expected in BT. */
1713 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1714 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1715 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1716 MS_ABI for ms abi. */
e66fc623 1717 tree decl; /* Callee decl. */
b08de47e 1718} CUMULATIVE_ARGS;
c98f8742
JVA
1719
1720/* Initialize a variable CUM of type CUMULATIVE_ARGS
1721 for a call to a function whose data type is FNTYPE.
b08de47e 1722 For a library call, FNTYPE is 0. */
c98f8742 1723
0f6937fe 1724#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1725 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1726 (N_NAMED_ARGS) != -1)
c98f8742 1727
c98f8742
JVA
1728/* Output assembler code to FILE to increment profiler label # LABELNO
1729 for profiling a function entry. */
1730
1a6e82b8
UB
1731#define FUNCTION_PROFILER(FILE, LABELNO) \
1732 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1733
1734#define MCOUNT_NAME "_mcount"
1735
3c5273a9
KT
1736#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1737
a5fa1ecd 1738#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1739
1740/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1741 the stack pointer does not matter. The value is tested only in
1742 functions that have frame pointers.
1743 No definition is equivalent to always zero. */
fce5a9f2 1744/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1745 we have to restore it ourselves from the frame pointer, in order to
1746 use pop */
1747
1748#define EXIT_IGNORE_STACK 1
1749
f8071c05
L
1750/* Define this macro as a C expression that is nonzero for registers
1751 used by the epilogue or the `return' pattern. */
1752
1753#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1754
c98f8742
JVA
1755/* Output assembler code for a block containing the constant parts
1756 of a trampoline, leaving space for the variable parts. */
1757
a269a03c 1758/* On the 386, the trampoline contains two instructions:
c98f8742 1759 mov #STATIC,ecx
a269a03c
JC
1760 jmp FUNCTION
1761 The trampoline is generated entirely at runtime. The operand of JMP
1762 is the address of FUNCTION relative to the instruction following the
1763 JMP (which is 5 bytes long). */
c98f8742
JVA
1764
1765/* Length in units of the trampoline for entering a nested function. */
1766
3452586b 1767#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1768\f
1769/* Definitions for register eliminations.
1770
1771 This is an array of structures. Each structure initializes one pair
1772 of eliminable registers. The "from" register number is given first,
1773 followed by "to". Eliminations of the same "from" register are listed
1774 in order of preference.
1775
afc2cd05
NC
1776 There are two registers that can always be eliminated on the i386.
1777 The frame pointer and the arg pointer can be replaced by either the
1778 hard frame pointer or to the stack pointer, depending upon the
1779 circumstances. The hard frame pointer is not used before reload and
1780 so it is not eligible for elimination. */
c98f8742 1781
564d80f4
JH
1782#define ELIMINABLE_REGS \
1783{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1784 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1785 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1786 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1787
c98f8742
JVA
1788/* Define the offset between two registers, one to be eliminated, and the other
1789 its replacement, at the start of a routine. */
1790
d9a5f180
GS
1791#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1792 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1793\f
1794/* Addressing modes, and classification of registers for them. */
1795
c98f8742
JVA
1796/* Macros to check register numbers against specific register classes. */
1797
1798/* These assume that REGNO is a hard or pseudo reg number.
1799 They give nonzero only if REGNO is a hard reg of the suitable class
1800 or a pseudo reg currently allocated to a suitable hard reg.
1801 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1802 has been allocated, which happens in reginfo.c during register
1803 allocation. */
c98f8742 1804
3f3f2124
JH
1805#define REGNO_OK_FOR_INDEX_P(REGNO) \
1806 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1807 || REX_INT_REGNO_P (REGNO) \
1808 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1809 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1810
3f3f2124 1811#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1812 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1813 || (REGNO) == ARG_POINTER_REGNUM \
1814 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1815 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1816
c98f8742
JVA
1817/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1818 and check its validity for a certain class.
1819 We have two alternate definitions for each of them.
1820 The usual definition accepts all pseudo regs; the other rejects
1821 them unless they have been allocated suitable hard regs.
1822 The symbol REG_OK_STRICT causes the latter definition to be used.
1823
1824 Most source files want to accept pseudo regs in the hope that
1825 they will get allocated to the class that the insn wants them to be in.
1826 Source files for reload pass need to be strict.
1827 After reload, it makes no difference, since pseudo regs have
1828 been eliminated by then. */
1829
c98f8742 1830
ff482c8d 1831/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1832#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1833 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1834 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1835 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1836
3b3c6a3f 1837#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1838 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1839 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1840 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1841 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1842
3b3c6a3f
MM
1843/* Strict versions, hard registers only */
1844#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1845#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1846
3b3c6a3f 1847#ifndef REG_OK_STRICT
d9a5f180
GS
1848#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1849#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1850
1851#else
d9a5f180
GS
1852#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1853#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1854#endif
1855
331d9186 1856/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1857 that is a valid memory address for an instruction.
1858 The MODE argument is the machine mode for the MEM expression
1859 that wants to use this address.
1860
331d9186 1861 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1862 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1863
1864 See legitimize_pic_address in i386.c for details as to what
1865 constitutes a legitimate address when -fpic is used. */
1866
1867#define MAX_REGS_PER_ADDRESS 2
1868
f996902d 1869#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1870
b949ea8b
JW
1871/* If defined, a C expression to determine the base term of address X.
1872 This macro is used in only one place: `find_base_term' in alias.c.
1873
1874 It is always safe for this macro to not be defined. It exists so
1875 that alias analysis can understand machine-dependent addresses.
1876
1877 The typical use of this macro is to handle addresses containing
1878 a label_ref or symbol_ref within an UNSPEC. */
1879
d9a5f180 1880#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1881
c98f8742 1882/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1883 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1884 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1885
f996902d 1886#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1887
1888#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1889 (GET_CODE (X) == SYMBOL_REF \
1890 || GET_CODE (X) == LABEL_REF \
1891 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1892\f
b08de47e
MM
1893/* Max number of args passed in registers. If this is more than 3, we will
1894 have problems with ebx (register #4), since it is a caller save register and
1895 is also used as the pic register in ELF. So for now, don't allow more than
1896 3 registers to be passed in registers. */
1897
7c800926
KT
1898/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1899#define X86_64_REGPARM_MAX 6
72fa3605 1900#define X86_64_MS_REGPARM_MAX 4
7c800926 1901
72fa3605 1902#define X86_32_REGPARM_MAX 3
7c800926 1903
4ae8027b 1904#define REGPARM_MAX \
2824d6e5
UB
1905 (TARGET_64BIT \
1906 ? (TARGET_64BIT_MS_ABI \
1907 ? X86_64_MS_REGPARM_MAX \
1908 : X86_64_REGPARM_MAX) \
4ae8027b 1909 : X86_32_REGPARM_MAX)
d2836273 1910
72fa3605
UB
1911#define X86_64_SSE_REGPARM_MAX 8
1912#define X86_64_MS_SSE_REGPARM_MAX 4
1913
b6010cab 1914#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1915
4ae8027b 1916#define SSE_REGPARM_MAX \
2824d6e5
UB
1917 (TARGET_64BIT \
1918 ? (TARGET_64BIT_MS_ABI \
1919 ? X86_64_MS_SSE_REGPARM_MAX \
1920 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1921 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1922
1923#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1924\f
1925/* Specify the machine mode that this machine uses
1926 for the index in the tablejump instruction. */
dc4d7240 1927#define CASE_VECTOR_MODE \
6025b127 1928 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1929
c98f8742
JVA
1930/* Define this as 1 if `char' should by default be signed; else as 0. */
1931#define DEFAULT_SIGNED_CHAR 1
1932
1933/* Max number of bytes we can move from memory to memory
1934 in one reasonably fast instruction. */
65d9c0ab
JH
1935#define MOVE_MAX 16
1936
1937/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1938 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1939 number of bytes we can move with a single instruction.
1940
1941 ??? We should use TImode in 32-bit mode and use OImode or XImode
1942 if they are available. But since by_pieces_ninsns determines the
1943 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1944 64-bit mode. */
1945#define MOVE_MAX_PIECES \
1946 ((TARGET_64BIT \
1947 && TARGET_SSE2 \
1948 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1949 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1950 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1951
7e24ffc9 1952/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1953 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1954 Increasing the value will always make code faster, but eventually
1955 incurs high cost in increased code size.
c98f8742 1956
e2e52e1b 1957 If you don't define this, a reasonable default is used. */
c98f8742 1958
e04ad03d 1959#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1960
45d78e7f
JJ
1961/* If a clear memory operation would take CLEAR_RATIO or more simple
1962 move-instruction sequences, we will do a clrmem or libcall instead. */
1963
e04ad03d 1964#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1965
53f00dde
UB
1966/* Define if shifts truncate the shift count which implies one can
1967 omit a sign-extension or zero-extension of a shift count.
1968
1969 On i386, shifts do truncate the count. But bit test instructions
1970 take the modulo of the bit offset operand. */
c98f8742
JVA
1971
1972/* #define SHIFT_COUNT_TRUNCATED */
1973
1974/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1975 is done just by pretending it is already truncated. */
1976#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1977
d9f32422
JH
1978/* A macro to update M and UNSIGNEDP when an object whose type is
1979 TYPE and which has the specified mode and signedness is to be
1980 stored in a register. This macro is only called when TYPE is a
1981 scalar type.
1982
f710504c 1983 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1984 quantities to SImode. The choice depends on target type. */
1985
1986#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1987do { \
d9f32422
JH
1988 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1989 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1990 (MODE) = SImode; \
1991} while (0)
d9f32422 1992
c98f8742
JVA
1993/* Specify the machine mode that pointers have.
1994 After generation of rtl, the compiler makes no further distinction
1995 between pointers and any other objects of this machine mode. */
28968d91 1996#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1997
d5e254e1
IE
1998/* Specify the machine mode that bounds have. */
1999#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
2000
f0ea7581
L
2001/* A C expression whose value is zero if pointers that need to be extended
2002 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
2003 greater then zero if they are zero-extended and less then zero if the
2004 ptr_extend instruction should be used. */
2005
2006#define POINTERS_EXTEND_UNSIGNED 1
2007
c98f8742
JVA
2008/* A function address in a call instruction
2009 is a byte address (for indexing purposes)
2010 so give the MEM rtx a byte's mode. */
2011#define FUNCTION_MODE QImode
d4ba09c0 2012\f
d4ba09c0 2013
d4ba09c0
SC
2014/* A C expression for the cost of a branch instruction. A value of 1
2015 is the default; other values are interpreted relative to that. */
2016
3a4fd356
JH
2017#define BRANCH_COST(speed_p, predictable_p) \
2018 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 2019
e327d1a3
L
2020/* An integer expression for the size in bits of the largest integer machine
2021 mode that should actually be used. We allow pairs of registers. */
2022#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2023
d4ba09c0
SC
2024/* Define this macro as a C expression which is nonzero if accessing
2025 less than a word of memory (i.e. a `char' or a `short') is no
2026 faster than accessing a word of memory, i.e., if such access
2027 require more than one instruction or if there is no difference in
2028 cost between byte and (aligned) word loads.
2029
2030 When this macro is not defined, the compiler will access a field by
2031 finding the smallest containing object; when it is defined, a
2032 fullword load will be used if alignment permits. Unless bytes
2033 accesses are faster than word accesses, using word accesses is
2034 preferable since it may eliminate subsequent memory access if
2035 subsequent accesses occur to other fields in the same word of the
2036 structure, but to different bytes. */
2037
2038#define SLOW_BYTE_ACCESS 0
2039
2040/* Nonzero if access to memory by shorts is slow and undesirable. */
2041#define SLOW_SHORT_ACCESS 0
2042
d4ba09c0
SC
2043/* Define this macro to be the value 1 if unaligned accesses have a
2044 cost many times greater than aligned accesses, for example if they
2045 are emulated in a trap handler.
2046
9cd10576
KH
2047 When this macro is nonzero, the compiler will act as if
2048 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2049 moves. This can cause significantly more instructions to be
9cd10576 2050 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2051 accesses only add a cycle or two to the time for a memory access.
2052
2053 If the value of this macro is always zero, it need not be defined. */
2054
e1565e65 2055/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2056
d4ba09c0
SC
2057/* Define this macro if it is as good or better to call a constant
2058 function address than to call an address kept in a register.
2059
2060 Desirable on the 386 because a CALL with a constant address is
2061 faster than one with a register address. */
2062
1e8552c2 2063#define NO_FUNCTION_CSE 1
c98f8742 2064\f
c572e5ba
JVA
2065/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2066 return the mode to be used for the comparison.
2067
2068 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2069 VOIDmode should be used in all other cases.
c572e5ba 2070
16189740 2071 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2072 possible, to allow for more combinations. */
c98f8742 2073
d9a5f180 2074#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2075
9cd10576 2076/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2077 reversed. */
2078
2079#define REVERSIBLE_CC_MODE(MODE) 1
2080
2081/* A C expression whose value is reversed condition code of the CODE for
2082 comparison done in CC_MODE mode. */
3c5cb3e4 2083#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2084
c98f8742
JVA
2085\f
2086/* Control the assembler format that we output, to the extent
2087 this does not vary between assemblers. */
2088
2089/* How to refer to registers in assembler output.
892a2d68 2090 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2091
a7b376ee 2092/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2093 For non floating point regs, the following are the HImode names.
2094
2095 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2096 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2097 "y" code. */
c98f8742 2098
a7180f70
BS
2099#define HI_REGISTER_NAMES \
2100{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2101 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2102 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2103 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2104 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2105 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2106 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2107 "xmm16", "xmm17", "xmm18", "xmm19", \
2108 "xmm20", "xmm21", "xmm22", "xmm23", \
2109 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2110 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2111 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2112 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2113
c98f8742
JVA
2114#define REGISTER_NAMES HI_REGISTER_NAMES
2115
2116/* Table of additional register names to use in user input. */
2117
2118#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2119{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2120 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2121 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2122 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2123 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2124 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2125 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2126 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2127 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2128 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2129 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2130 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2131 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2132 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2133 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2134 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2135 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2136 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2137 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2138 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2139 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2140 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2141
2142/* Note we are omitting these since currently I don't know how
2143to get gcc to use these, since they want the same but different
2144number as al, and ax.
2145*/
2146
c98f8742 2147#define QI_REGISTER_NAMES \
3f3f2124 2148{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2149
2150/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2151 of regs 0 through 3. */
c98f8742
JVA
2152
2153#define QI_HIGH_REGISTER_NAMES \
2154{"ah", "dh", "ch", "bh", }
2155
2156/* How to renumber registers for dbx and gdb. */
2157
d9a5f180
GS
2158#define DBX_REGISTER_NUMBER(N) \
2159 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2160
9a82e702
MS
2161extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2162extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2163extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2164
780a5b71
UB
2165extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2166
469ac993
JM
2167/* Before the prologue, RA is at 0(%esp). */
2168#define INCOMING_RETURN_ADDR_RTX \
240930c4 2169 gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM))
fce5a9f2 2170
e414ab29 2171/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2172#define RETURN_ADDR_RTX(COUNT, FRAME) \
2173 ((COUNT) == 0 \
2174 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2175 -UNITS_PER_WORD)) \
2176 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2177
892a2d68 2178/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2179#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2180
a6ab3aad 2181/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2182#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2183
1020a5ab 2184/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2185#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2186#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2187
ad919812 2188
e4c4ebeb
RH
2189/* Select a format to encode pointers in exception handling data. CODE
2190 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2191 true if the symbol may be affected by dynamic relocations.
2192
2193 ??? All x86 object file formats are capable of representing this.
2194 After all, the relocation needed is the same as for the call insn.
2195 Whether or not a particular assembler allows us to enter such, I
2196 guess we'll have to see. */
d9a5f180 2197#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2198 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2199
c98f8742
JVA
2200/* This is how to output an insn to push a register on the stack.
2201 It need not be very fast code. */
2202
d9a5f180 2203#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2204do { \
2205 if (TARGET_64BIT) \
2206 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2207 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2208 else \
2209 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2210} while (0)
c98f8742
JVA
2211
2212/* This is how to output an insn to pop a register from the stack.
2213 It need not be very fast code. */
2214
d9a5f180 2215#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2216do { \
2217 if (TARGET_64BIT) \
2218 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2219 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2220 else \
2221 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2222} while (0)
c98f8742 2223
f88c65f7 2224/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2225
2226#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2227 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2228
f88c65f7 2229/* This is how to output an element of a case-vector that is relative. */
c98f8742 2230
33f7f353 2231#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2232 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2233
63001560 2234/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2235
2236#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2237{ \
2238 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2239 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2240}
2241
2242/* A C statement or statements which output an assembler instruction
2243 opcode to the stdio stream STREAM. The macro-operand PTR is a
2244 variable of type `char *' which points to the opcode name in
2245 its "internal" form--the form that is written in the machine
2246 description. */
2247
2248#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2249 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2250
6a90d232
L
2251/* A C statement to output to the stdio stream FILE an assembler
2252 command to pad the location counter to a multiple of 1<<LOG
2253 bytes if it is within MAX_SKIP bytes. */
2254
2255#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2256#undef ASM_OUTPUT_MAX_SKIP_PAD
2257#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2258 if ((LOG) != 0) \
2259 { \
2260 if ((MAX_SKIP) == 0) \
2261 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2262 else \
2263 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2264 }
2265#endif
2266
135a687e
KT
2267/* Write the extra assembler code needed to declare a function
2268 properly. */
2269
2270#undef ASM_OUTPUT_FUNCTION_LABEL
2271#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2272 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2273
f7288899
EC
2274/* Under some conditions we need jump tables in the text section,
2275 because the assembler cannot handle label differences between
2276 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2277
2278#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2279 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2280 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2281
cea3bd3e
RH
2282/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2283 and switch back. For x86 we do this only to save a few bytes that
2284 would otherwise be unused in the text section. */
ad211091
KT
2285#define CRT_MKSTR2(VAL) #VAL
2286#define CRT_MKSTR(x) CRT_MKSTR2(x)
2287
2288#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2289 asm (SECTION_OP "\n\t" \
2290 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2291 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2292
2293/* Default threshold for putting data in large sections
2294 with x86-64 medium memory model */
2295#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2296
2297/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2298
2299#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2300do { \
2301 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2302 && get_attr_maybe_prefix_bnd (INSN)) \
2303 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2304} while (0)
74b42c8b 2305\f
b97de419
L
2306/* Which processor to tune code generation for. These must be in sync
2307 with processor_target_table in i386.c. */
5bf0ebab
RH
2308
2309enum processor_type
2310{
b97de419
L
2311 PROCESSOR_GENERIC = 0,
2312 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2313 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2314 PROCESSOR_PENTIUM,
2d6b2e28 2315 PROCESSOR_LAKEMONT,
5bf0ebab 2316 PROCESSOR_PENTIUMPRO,
5bf0ebab 2317 PROCESSOR_PENTIUM4,
89c43c0a 2318 PROCESSOR_NOCONA,
340ef734 2319 PROCESSOR_CORE2,
d3c11974
L
2320 PROCESSOR_NEHALEM,
2321 PROCESSOR_SANDYBRIDGE,
3a579e09 2322 PROCESSOR_HASWELL,
d3c11974
L
2323 PROCESSOR_BONNELL,
2324 PROCESSOR_SILVERMONT,
52747219 2325 PROCESSOR_KNL,
06caf59d 2326 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2327 PROCESSOR_INTEL,
b97de419
L
2328 PROCESSOR_GEODE,
2329 PROCESSOR_K6,
2330 PROCESSOR_ATHLON,
2331 PROCESSOR_K8,
21efb4d4 2332 PROCESSOR_AMDFAM10,
1133125e 2333 PROCESSOR_BDVER1,
4d652a18 2334 PROCESSOR_BDVER2,
eb2f2b44 2335 PROCESSOR_BDVER3,
ed97ad47 2336 PROCESSOR_BDVER4,
14b52538 2337 PROCESSOR_BTVER1,
e32bfc16 2338 PROCESSOR_BTVER2,
9ce29eb0 2339 PROCESSOR_ZNVER1,
5bf0ebab
RH
2340 PROCESSOR_max
2341};
2342
9e555526 2343extern enum processor_type ix86_tune;
5bf0ebab 2344extern enum processor_type ix86_arch;
5bf0ebab 2345
8362f420
JH
2346/* Size of the RED_ZONE area. */
2347#define RED_ZONE_SIZE 128
2348/* Reserved area of the red zone for temporaries. */
2349#define RED_ZONE_RESERVE 8
c93e80a5 2350
95899b34 2351extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2352extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2353
2354/* Smallest class containing REGNO. */
2355extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2356
0948ccb2
PB
2357enum ix86_fpcmp_strategy {
2358 IX86_FPCMP_SAHF,
2359 IX86_FPCMP_COMI,
2360 IX86_FPCMP_ARITH
2361};
22fb740d
JH
2362\f
2363/* To properly truncate FP values into integers, we need to set i387 control
2364 word. We can't emit proper mode switching code before reload, as spills
2365 generated by reload may truncate values incorrectly, but we still can avoid
2366 redundant computation of new control word by the mode switching pass.
2367 The fldcw instructions are still emitted redundantly, but this is probably
2368 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2369 the sequence.
22fb740d
JH
2370
2371 The machinery is to emit simple truncation instructions and split them
2372 before reload to instructions having USEs of two memory locations that
2373 are filled by this code to old and new control word.
fce5a9f2 2374
22fb740d
JH
2375 Post-reload pass may be later used to eliminate the redundant fildcw if
2376 needed. */
2377
c7ca8ef8
UB
2378enum ix86_stack_slot
2379{
2380 SLOT_TEMP = 0,
2381 SLOT_CW_STORED,
2382 SLOT_CW_TRUNC,
2383 SLOT_CW_FLOOR,
2384 SLOT_CW_CEIL,
2385 SLOT_CW_MASK_PM,
80008279 2386 SLOT_STV_TEMP,
c7ca8ef8
UB
2387 MAX_386_STACK_LOCALS
2388};
2389
ff680eb1
UB
2390enum ix86_entity
2391{
c7ca8ef8
UB
2392 X86_DIRFLAG = 0,
2393 AVX_U128,
ff97910d 2394 I387_TRUNC,
ff680eb1
UB
2395 I387_FLOOR,
2396 I387_CEIL,
2397 I387_MASK_PM,
2398 MAX_386_ENTITIES
2399};
2400
c7ca8ef8 2401enum x86_dirflag_state
ff680eb1 2402{
c7ca8ef8
UB
2403 X86_DIRFLAG_RESET,
2404 X86_DIRFLAG_ANY
ff680eb1 2405};
22fb740d 2406
ff97910d
VY
2407enum avx_u128_state
2408{
2409 AVX_U128_CLEAN,
2410 AVX_U128_DIRTY,
2411 AVX_U128_ANY
2412};
2413
22fb740d
JH
2414/* Define this macro if the port needs extra instructions inserted
2415 for mode switching in an optimizing compilation. */
2416
ff680eb1
UB
2417#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2418 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2419
2420/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2421 initializer for an array of integers. Each initializer element N
2422 refers to an entity that needs mode switching, and specifies the
2423 number of different modes that might need to be set for this
2424 entity. The position of the initializer in the initializer -
2425 starting counting at zero - determines the integer that is used to
2426 refer to the mode-switched entity in question. */
2427
c7ca8ef8
UB
2428#define NUM_MODES_FOR_MODE_SWITCHING \
2429 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2430 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2431
0f0138b6
JH
2432\f
2433/* Avoid renaming of stack registers, as doing so in combination with
2434 scheduling just increases amount of live registers at time and in
2435 the turn amount of fxch instructions needed.
2436
3f97cb0b
AI
2437 ??? Maybe Pentium chips benefits from renaming, someone can try....
2438
2439 Don't rename evex to non-evex sse registers. */
0f0138b6 2440
1a6e82b8
UB
2441#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2442 (!STACK_REGNO_P (SRC) \
2443 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2444
3b3c6a3f 2445\f
e91f04de 2446#define FASTCALL_PREFIX '@'
fa1a0d02 2447\f
ec7ded37 2448/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2449
604a6be9 2450#ifndef USED_FOR_TARGET
ec7ded37 2451struct GTY(()) machine_frame_state
cd9c1ca8 2452{
ec7ded37
RH
2453 /* This pair tracks the currently active CFA as reg+offset. When reg
2454 is drap_reg, we don't bother trying to record here the real CFA when
2455 it might really be a DW_CFA_def_cfa_expression. */
2456 rtx cfa_reg;
2457 HOST_WIDE_INT cfa_offset;
2458
2459 /* The current offset (canonically from the CFA) of ESP and EBP.
2460 When stack frame re-alignment is active, these may not be relative
2461 to the CFA. However, in all cases they are relative to the offsets
2462 of the saved registers stored in ix86_frame. */
2463 HOST_WIDE_INT sp_offset;
2464 HOST_WIDE_INT fp_offset;
2465
2466 /* The size of the red-zone that may be assumed for the purposes of
2467 eliding register restore notes in the epilogue. This may be zero
2468 if no red-zone is in effect, or may be reduced from the real
2469 red-zone value by a maximum runtime stack re-alignment value. */
2470 int red_zone_offset;
2471
2472 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2473 value within the frame. If false then the offset above should be
2474 ignored. Note that DRAP, if valid, *always* points to the CFA and
2475 thus has an offset of zero. */
2476 BOOL_BITFIELD sp_valid : 1;
2477 BOOL_BITFIELD fp_valid : 1;
2478 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2479
2480 /* Indicate whether the local stack frame has been re-aligned. When
2481 set, the SP/FP offsets above are relative to the aligned frame
2482 and not the CFA. */
2483 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2484};
2485
f81c9774
RH
2486/* Private to winnt.c. */
2487struct seh_frame_state;
2488
f8071c05
L
2489enum function_type
2490{
2491 TYPE_UNKNOWN = 0,
2492 TYPE_NORMAL,
2493 /* The current function is an interrupt service routine with a
2494 pointer argument as specified by the "interrupt" attribute. */
2495 TYPE_INTERRUPT,
2496 /* The current function is an interrupt service routine with a
2497 pointer argument and an integer argument as specified by the
2498 "interrupt" attribute. */
2499 TYPE_EXCEPTION
2500};
2501
d1b38208 2502struct GTY(()) machine_function {
fa1a0d02
JH
2503 struct stack_local_entry *stack_locals;
2504 const char *some_ld_name;
4aab97f9
L
2505 int varargs_gpr_size;
2506 int varargs_fpr_size;
ff680eb1 2507 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2508
2509 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2510 has been computed for. */
2511 int use_fast_prologue_epilogue_nregs;
2512
7458026b
ILT
2513 /* For -fsplit-stack support: A stack local which holds a pointer to
2514 the stack arguments for a function with a variable number of
2515 arguments. This is set at the start of the function and is used
2516 to initialize the overflow_arg_area field of the va_list
2517 structure. */
2518 rtx split_stack_varargs_pointer;
2519
3452586b
RH
2520 /* This value is used for amd64 targets and specifies the current abi
2521 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2522 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2523
2524 /* Nonzero if the function accesses a previous frame. */
2525 BOOL_BITFIELD accesses_prev_frame : 1;
2526
922e3e33
UB
2527 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2528 expander to determine the style used. */
3452586b
RH
2529 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2530
1e4490dc
UB
2531 /* Nonzero if the current function calls pc thunk and
2532 must not use the red zone. */
2533 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2534
5bf5a10b
AO
2535 /* If true, the current function needs the default PIC register, not
2536 an alternate register (on x86) and must not use the red zone (on
2537 x86_64), even if it's a leaf function. We don't want the
2538 function to be regarded as non-leaf because TLS calls need not
2539 affect register allocation. This flag is set when a TLS call
2540 instruction is expanded within a function, and never reset, even
2541 if all such instructions are optimized away. Use the
2542 ix86_current_function_calls_tls_descriptor macro for a better
2543 approximation. */
3452586b
RH
2544 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2545
2546 /* If true, the current function has a STATIC_CHAIN is placed on the
2547 stack below the return address. */
2548 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2549
529a6471
JJ
2550 /* If true, it is safe to not save/restore DRAP register. */
2551 BOOL_BITFIELD no_drap_save_restore : 1;
2552
f8071c05
L
2553 /* Function type. */
2554 ENUM_BITFIELD(function_type) func_type : 2;
2555
2556 /* If true, the current function is a function specified with
2557 the "interrupt" or "no_caller_saved_registers" attribute. */
2558 BOOL_BITFIELD no_caller_saved_registers : 1;
2559
a0ff7835
L
2560 /* If true, there is register available for argument passing. This
2561 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2562 if there is scratch register available for indirect sibcall. In
2563 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2564 pass arguments and can be used for indirect sibcall. */
2565 BOOL_BITFIELD arg_reg_available : 1;
2566
ec7ded37
RH
2567 /* During prologue/epilogue generation, the current frame state.
2568 Otherwise, the frame state at the end of the prologue. */
2569 struct machine_frame_state fs;
f81c9774
RH
2570
2571 /* During SEH output, this is non-null. */
2572 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2573};
cd9c1ca8 2574#endif
fa1a0d02
JH
2575
2576#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2577#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2578#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2579#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2580#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2581#define ix86_tls_descriptor_calls_expanded_in_cfun \
2582 (cfun->machine->tls_descriptor_call_expanded_p)
2583/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2584 calls are optimized away, we try to detect cases in which it was
2585 optimized away. Since such instructions (use (reg REG_SP)), we can
2586 verify whether there's any such instruction live by testing that
2587 REG_SP is live. */
2588#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2589 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2590#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2591
1bc7c5b6
ZW
2592/* Control behavior of x86_file_start. */
2593#define X86_FILE_START_VERSION_DIRECTIVE false
2594#define X86_FILE_START_FLTUSED false
2595
7dcbf659
JH
2596/* Flag to mark data that is in the large address area. */
2597#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2598#define SYMBOL_REF_FAR_ADDR_P(X) \
2599 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2600
2601/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2602 have defined always, to avoid ifdefing. */
2603#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2604#define SYMBOL_REF_DLLIMPORT_P(X) \
2605 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2606
2607#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2608#define SYMBOL_REF_DLLEXPORT_P(X) \
2609 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2610
82c0e1a0
KT
2611#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2612#define SYMBOL_REF_STUBVAR_P(X) \
2613 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2614
7942e47e
RY
2615extern void debug_ready_dispatch (void);
2616extern void debug_dispatch_window (int);
2617
91afcfa3
QN
2618/* The value at zero is only defined for the BMI instructions
2619 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2620#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2621 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2622#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2623 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2624
2625
b8ce4e94
KT
2626/* Flags returned by ix86_get_callcvt (). */
2627#define IX86_CALLCVT_CDECL 0x1
2628#define IX86_CALLCVT_STDCALL 0x2
2629#define IX86_CALLCVT_FASTCALL 0x4
2630#define IX86_CALLCVT_THISCALL 0x8
2631#define IX86_CALLCVT_REGPARM 0x10
2632#define IX86_CALLCVT_SSEREGPARM 0x20
2633
2634#define IX86_BASE_CALLCVT(FLAGS) \
2635 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2636 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2637
b86b9f44
MM
2638#define RECIP_MASK_NONE 0x00
2639#define RECIP_MASK_DIV 0x01
2640#define RECIP_MASK_SQRT 0x02
2641#define RECIP_MASK_VEC_DIV 0x04
2642#define RECIP_MASK_VEC_SQRT 0x08
2643#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2644 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2645#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2646
2647#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2648#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2649#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2650#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2651
5dcfdccd
KY
2652#define IX86_HLE_ACQUIRE (1 << 16)
2653#define IX86_HLE_RELEASE (1 << 17)
2654
e83b8e2e
JJ
2655/* For switching between functions with different target attributes. */
2656#define SWITCHABLE_TARGET 1
2657
44d0de8d
UB
2658#define TARGET_SUPPORTS_WIDE_INT 1
2659
c98f8742
JVA
2660/*
2661Local variables:
2662version-control: t
2663End:
2664*/