]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR lto/62032 (FAIL: vsnprintf-chk.c execution, -O2 -flto -fno-use-linker-plugin...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
90922d36 74#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 75#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 76#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 77#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 78#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 79#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 80#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 81#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 82#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 83#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
84#define TARGET_ROUND TARGET_ISA_ROUND
85#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 86#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 87#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 88#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 89#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 90#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 91#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 92#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 93#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 94#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 95#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 96#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 97#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 98#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 99#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 100#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 101#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 102#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 103#define TARGET_AES TARGET_ISA_AES
bf7b5747 104#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
105#define TARGET_SHA TARGET_ISA_SHA
106#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
107#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
108#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
109#define TARGET_XSAVEC TARGET_ISA_XSAVEC
110#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
111#define TARGET_XSAVES TARGET_ISA_XSAVES
112#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 113#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 114#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
115#define TARGET_CMPXCHG16B TARGET_ISA_CX16
116#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 117#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 118#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 119#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 120#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 121#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 122#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
123#define TARGET_RTM TARGET_ISA_RTM
124#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 125#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 126#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 127#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 128#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 129#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 130#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 131#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 132#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 133#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 134#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 135#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 136#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 137#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 138#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
139#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
140#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
ab442df7 141
90922d36 142#define TARGET_LP64 TARGET_ABI_64
bf7b5747 143#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 144#define TARGET_X32 TARGET_ABI_X32
bf7b5747 145#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
146#define TARGET_16BIT TARGET_CODE16
147#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 148
cbf2e4d4
HJ
149/* SSE4.1 defines round instructions */
150#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 151#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 152
26b5109f
RS
153#include "config/vxworks-dummy.h"
154
7eb68c06 155#include "config/i386/i386-opts.h"
ccf8e764 156
c69fa2d4 157#define MAX_STRINGOP_ALGS 4
ccf8e764 158
8c996513
JH
159/* Specify what algorithm to use for stringops on known size.
160 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
161 known at compile time or estimated via feedback, the SIZE array
162 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 163 means infinity). Corresponding ALG is used then.
340ef734
JH
164 When NOALIGN is true the code guaranting the alignment of the memory
165 block is skipped.
166
8c996513 167 For example initializer:
4f3f76e6 168 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 169 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 170 be used otherwise. */
8c996513
JH
171struct stringop_algs
172{
173 const enum stringop_alg unknown_size;
174 const struct stringop_strategy {
175 const int max;
176 const enum stringop_alg alg;
340ef734 177 int noalign;
c69fa2d4 178 } size [MAX_STRINGOP_ALGS];
8c996513
JH
179};
180
d4ba09c0
SC
181/* Define the specific costs for a given cpu */
182
183struct processor_costs {
8b60264b
KG
184 const int add; /* cost of an add instruction */
185 const int lea; /* cost of a lea instruction */
186 const int shift_var; /* variable shift costs */
187 const int shift_const; /* constant shift costs */
f676971a 188 const int mult_init[5]; /* cost of starting a multiply
4977bab6 189 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 190 const int mult_bit; /* cost of multiply per each bit set */
f676971a 191 const int divide[5]; /* cost of a divide/mod
4977bab6 192 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
193 int movsx; /* The cost of movsx operation. */
194 int movzx; /* The cost of movzx operation. */
8b60264b
KG
195 const int large_insn; /* insns larger than this cost more */
196 const int move_ratio; /* The threshold of number of scalar
ac775968 197 memory-to-memory move insns. */
8b60264b
KG
198 const int movzbl_load; /* cost of loading using movzbl */
199 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
200 in QImode, HImode and SImode relative
201 to reg-reg move (2). */
8b60264b 202 const int int_store[3]; /* cost of storing integer register
96e7ae40 203 in QImode, HImode and SImode */
8b60264b
KG
204 const int fp_move; /* cost of reg,reg fld/fst */
205 const int fp_load[3]; /* cost of loading FP register
96e7ae40 206 in SFmode, DFmode and XFmode */
8b60264b 207 const int fp_store[3]; /* cost of storing FP register
96e7ae40 208 in SFmode, DFmode and XFmode */
8b60264b
KG
209 const int mmx_move; /* cost of moving MMX register. */
210 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 211 in SImode and DImode */
8b60264b 212 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 213 in SImode and DImode */
8b60264b
KG
214 const int sse_move; /* cost of moving SSE register. */
215 const int sse_load[3]; /* cost of loading SSE register
fa79946e 216 in SImode, DImode and TImode*/
8b60264b 217 const int sse_store[3]; /* cost of storing SSE register
fa79946e 218 in SImode, DImode and TImode*/
8b60264b 219 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 220 integer and vice versa. */
46cb0441
ZD
221 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
222 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
223 const int prefetch_block; /* bytes moved to cache for prefetch. */
224 const int simultaneous_prefetches; /* number of parallel prefetch
225 operations. */
4977bab6 226 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
227 const int fadd; /* cost of FADD and FSUB instructions. */
228 const int fmul; /* cost of FMUL instruction. */
229 const int fdiv; /* cost of FDIV instruction. */
230 const int fabs; /* cost of FABS instruction. */
231 const int fchs; /* cost of FCHS instruction. */
232 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 233 /* Specify what algorithm
bee51209 234 to use for stringops on unknown size. */
ad83025e 235 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
236 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
237 load and store. */
238 const int scalar_load_cost; /* Cost of scalar load. */
239 const int scalar_store_cost; /* Cost of scalar store. */
240 const int vec_stmt_cost; /* Cost of any vector operation, excluding
241 load, store, vector-to-scalar and
242 scalar-to-vector operation. */
243 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
244 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 245 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
246 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
247 const int vec_store_cost; /* Cost of vector store. */
248 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
249 cost model. */
250 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
251 vectorizer cost model. */
d4ba09c0
SC
252};
253
8b60264b 254extern const struct processor_costs *ix86_cost;
b2077fd2
JH
255extern const struct processor_costs ix86_size_cost;
256
257#define ix86_cur_cost() \
258 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 259
c98f8742
JVA
260/* Macros used in the machine description to test the flags. */
261
b97de419 262/* configure can arrange to change it. */
e075ae69 263
35b528be 264#ifndef TARGET_CPU_DEFAULT
b97de419 265#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 266#endif
35b528be 267
004d3859
GK
268#ifndef TARGET_FPMATH_DEFAULT
269#define TARGET_FPMATH_DEFAULT \
270 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
271#endif
272
bf7b5747
ST
273#ifndef TARGET_FPMATH_DEFAULT_P
274#define TARGET_FPMATH_DEFAULT_P(x) \
275 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
276#endif
277
6ac49599 278#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 279#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 280
5791cc29
JT
281/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
282 compile-time constant. */
283#ifdef IN_LIBGCC2
6ac49599 284#undef TARGET_64BIT
5791cc29
JT
285#ifdef __x86_64__
286#define TARGET_64BIT 1
287#else
288#define TARGET_64BIT 0
289#endif
290#else
6ac49599
RS
291#ifndef TARGET_BI_ARCH
292#undef TARGET_64BIT
e49080ec 293#undef TARGET_64BIT_P
67adf6a9 294#if TARGET_64BIT_DEFAULT
0c2dc519 295#define TARGET_64BIT 1
e49080ec 296#define TARGET_64BIT_P(x) 1
0c2dc519
JH
297#else
298#define TARGET_64BIT 0
e49080ec 299#define TARGET_64BIT_P(x) 0
0c2dc519
JH
300#endif
301#endif
5791cc29 302#endif
25f94bb5 303
750054a2
CT
304#define HAS_LONG_COND_BRANCH 1
305#define HAS_LONG_UNCOND_BRANCH 1
306
9e555526
RH
307#define TARGET_386 (ix86_tune == PROCESSOR_I386)
308#define TARGET_486 (ix86_tune == PROCESSOR_I486)
309#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
310#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 311#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
312#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
313#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
314#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
315#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 316#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 317#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 318#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
319#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
320#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 321#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
322#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
323#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 324#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 325#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 326#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 327#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 328#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 329#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 330#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 331#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 332#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 333
80fd744f
RH
334/* Feature tests against the various tunings. */
335enum ix86_tune_indices {
4b8bc035 336#undef DEF_TUNE
3ad20bd4 337#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
338#include "x86-tune.def"
339#undef DEF_TUNE
340X86_TUNE_LAST
80fd744f
RH
341};
342
ab442df7 343extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
344
345#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
346#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
347#define TARGET_ZERO_EXTEND_WITH_AND \
348 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 349#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
350#define TARGET_BRANCH_PREDICTION_HINTS \
351 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
352#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
353#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
354#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
355#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
356#define TARGET_PARTIAL_FLAG_REG_STALL \
357 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
358#define TARGET_LCP_STALL \
359 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
360#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
361#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
362#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
363#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
364#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
365#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
366#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
367#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
368#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
369#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
370#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
371#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
372 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
373#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
374#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
375#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
376#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
377#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
378#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
379#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
380#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
381#define TARGET_INTEGER_DFMODE_MOVES \
382 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
383#define TARGET_PARTIAL_REG_DEPENDENCY \
384 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
385#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
386 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
387#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
388 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
389#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
390 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
391#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
392 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
393#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
394#define TARGET_SSE_TYPELESS_STORES \
395 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
396#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
397#define TARGET_MEMORY_MISMATCH_STALL \
398 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
399#define TARGET_PROLOGUE_USING_MOVE \
400 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
401#define TARGET_EPILOGUE_USING_MOVE \
402 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
403#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
404#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
405#define TARGET_INTER_UNIT_MOVES_TO_VEC \
406 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
407#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
408 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
409#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 410 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
411#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
412#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
413#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
414#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
415#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
416#define TARGET_PAD_SHORT_FUNCTION \
417 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
418#define TARGET_EXT_80387_CONSTANTS \
419 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
420#define TARGET_AVOID_VECTOR_DECODE \
421 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
422#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
423 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
424#define TARGET_SLOW_IMUL_IMM32_MEM \
425 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
426#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
427#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
428#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
429#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
430#define TARGET_USE_VECTOR_FP_CONVERTS \
431 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
432#define TARGET_USE_VECTOR_CONVERTS \
433 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
434#define TARGET_SLOW_PSHUFB \
435 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
436#define TARGET_VECTOR_PARALLEL_EXECUTION \
437 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
438#define TARGET_FUSE_CMP_AND_BRANCH_32 \
439 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
440#define TARGET_FUSE_CMP_AND_BRANCH_64 \
441 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 442#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
443 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
444 : TARGET_FUSE_CMP_AND_BRANCH_32)
445#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
446 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
447#define TARGET_FUSE_ALU_AND_BRANCH \
448 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 449#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
450#define TARGET_AVOID_LEA_FOR_ADDR \
451 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
452#define TARGET_VECTORIZE_DOUBLE \
453 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
454#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
455 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
456#define TARGET_AVX128_OPTIMAL \
457 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
458#define TARGET_REASSOC_INT_TO_PARALLEL \
459 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
460#define TARGET_REASSOC_FP_TO_PARALLEL \
461 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
462#define TARGET_GENERAL_REGS_SSE_SPILL \
463 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
464#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
465 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 466#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 467 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
468#define TARGET_ADJUST_UNROLL \
469 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
df7b0cc4 470
80fd744f
RH
471/* Feature tests against the various architecture variations. */
472enum ix86_arch_indices {
cef31f9c 473 X86_ARCH_CMOV,
80fd744f
RH
474 X86_ARCH_CMPXCHG,
475 X86_ARCH_CMPXCHG8B,
476 X86_ARCH_XADD,
477 X86_ARCH_BSWAP,
478
479 X86_ARCH_LAST
480};
4f3f76e6 481
ab442df7 482extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 483
cef31f9c 484#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
485#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
486#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
487#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
488#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
489
cef31f9c
UB
490/* For sane SSE instruction set generation we need fcomi instruction.
491 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
492 expands to a sequence that includes conditional move. */
493#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
494
80fd744f
RH
495#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
496
cb261eb7 497extern unsigned char x86_prefetch_sse;
80fd744f
RH
498#define TARGET_PREFETCH_SSE x86_prefetch_sse
499
80fd744f
RH
500#define ASSEMBLER_DIALECT (ix86_asm_dialect)
501
502#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
503#define TARGET_MIX_SSE_I387 \
504 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
505
506#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
507#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
508#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 509#define TARGET_SUN_TLS 0
1ef45b77 510
67adf6a9
RH
511#ifndef TARGET_64BIT_DEFAULT
512#define TARGET_64BIT_DEFAULT 0
25f94bb5 513#endif
74dc3e94
RH
514#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
515#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
516#endif
25f94bb5 517
e0ea8797
AH
518#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
519#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
520
79f5e442
ZD
521/* Fence to use after loop using storent. */
522
523extern tree x86_mfence;
524#define FENCE_FOLLOWING_MOVNT x86_mfence
525
0ed4a390
JL
526/* Once GDB has been enhanced to deal with functions without frame
527 pointers, we can change this to allow for elimination of
528 the frame pointer in leaf functions. */
529#define TARGET_DEFAULT 0
67adf6a9 530
0a1c5e55
UB
531/* Extra bits to force. */
532#define TARGET_SUBTARGET_DEFAULT 0
533#define TARGET_SUBTARGET_ISA_DEFAULT 0
534
535/* Extra bits to force on w/ 32-bit mode. */
536#define TARGET_SUBTARGET32_DEFAULT 0
537#define TARGET_SUBTARGET32_ISA_DEFAULT 0
538
ccf8e764
RH
539/* Extra bits to force on w/ 64-bit mode. */
540#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 541#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 542
fee3eacd
IS
543/* Replace MACH-O, ifdefs by in-line tests, where possible.
544 (a) Macros defined in config/i386/darwin.h */
b069de3b 545#define TARGET_MACHO 0
9005471b 546#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
547#define MACHOPIC_ATT_STUB 0
548/* (b) Macros defined in config/darwin.h */
549#define MACHO_DYNAMIC_NO_PIC_P 0
550#define MACHOPIC_INDIRECT 0
551#define MACHOPIC_PURE 0
9005471b 552
5a579c3b
LE
553/* For the RDOS */
554#define TARGET_RDOS 0
555
9005471b 556/* For the Windows 64-bit ABI. */
7c800926
KT
557#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
558
6510e8bb
KT
559/* For the Windows 32-bit ABI. */
560#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
561
f81c9774
RH
562/* This is re-defined by cygming.h. */
563#define TARGET_SEH 0
564
a3d7ab92
KT
565/* This is re-defined by cygming.h. */
566#define TARGET_PECOFF 0
567
51212b32 568/* The default abi used by target. */
7c800926 569#define DEFAULT_ABI SYSV_ABI
ccf8e764 570
b8b3f0ca
LE
571/* The default TLS segment register used by target. */
572#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
573
cc69336f
RH
574/* Subtargets may reset this to 1 in order to enable 96-bit long double
575 with the rounding mode forced to 53 bits. */
576#define TARGET_96_ROUND_53_LONG_DOUBLE 0
577
682cd442
GK
578/* -march=native handling only makes sense with compiler running on
579 an x86 or x86_64 chip. If changing this condition, also change
580 the condition in driver-i386.c. */
581#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
582/* In driver-i386.c. */
583extern const char *host_detect_local_cpu (int argc, const char **argv);
584#define EXTRA_SPEC_FUNCTIONS \
585 { "local_cpu_detect", host_detect_local_cpu },
682cd442 586#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
587#endif
588
8981c15b
JM
589#if TARGET_64BIT_DEFAULT
590#define OPT_ARCH64 "!m32"
591#define OPT_ARCH32 "m32"
592#else
f0ea7581
L
593#define OPT_ARCH64 "m64|mx32"
594#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
595#endif
596
1cba2b96
EC
597/* Support for configure-time defaults of some command line options.
598 The order here is important so that -march doesn't squash the
599 tune or cpu values. */
ce998900 600#define OPTION_DEFAULT_SPECS \
da2d4c01 601 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
602 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
603 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 604 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
605 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
606 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
607 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
608 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
609 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 610
241e1a89
SC
611/* Specs for the compiler proper */
612
628714d8 613#ifndef CC1_CPU_SPEC
eb5bb0fd 614#define CC1_CPU_SPEC_1 ""
fa959ce4 615
682cd442 616#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
617#define CC1_CPU_SPEC CC1_CPU_SPEC_1
618#else
619#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
620"%{march=native:%>march=native %:local_cpu_detect(arch) \
621 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
622%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 623#endif
241e1a89 624#endif
c98f8742 625\f
30efe578 626/* Target CPU builtins. */
ab442df7
MM
627#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
628
629/* Target Pragmas. */
630#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 631
628714d8 632#ifndef CC1_SPEC
8015b78d 633#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
634#endif
635
636/* This macro defines names of additional specifications to put in the
637 specs that can be used in various specifications like CC1_SPEC. Its
638 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
639
640 Each subgrouping contains a string constant, that defines the
188fc5b5 641 specification name, and a string constant that used by the GCC driver
bcd86433
SC
642 program.
643
644 Do not define this macro if it does not need to do anything. */
645
646#ifndef SUBTARGET_EXTRA_SPECS
647#define SUBTARGET_EXTRA_SPECS
648#endif
649
650#define EXTRA_SPECS \
628714d8 651 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
652 SUBTARGET_EXTRA_SPECS
653\f
ce998900 654
d57a4b98
RH
655/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
656 FPU, assume that the fpcw is set to extended precision; when using
657 only SSE, rounding is correct; when using both SSE and the FPU,
658 the rounding precision is indeterminate, since either may be chosen
659 apparently at random. */
660#define TARGET_FLT_EVAL_METHOD \
5ccd517a 661 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 662
8ce94e44
JM
663/* Whether to allow x87 floating-point arithmetic on MODE (one of
664 SFmode, DFmode and XFmode) in the current excess precision
665 configuration. */
666#define X87_ENABLE_ARITH(MODE) \
667 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
668
669/* Likewise, whether to allow direct conversions from integer mode
670 IMODE (HImode, SImode or DImode) to MODE. */
671#define X87_ENABLE_FLOAT(MODE, IMODE) \
672 (flag_excess_precision == EXCESS_PRECISION_FAST \
673 || (MODE) == XFmode \
674 || ((MODE) == DFmode && (IMODE) == SImode) \
675 || (IMODE) == HImode)
676
979c67a5
UB
677/* target machine storage layout */
678
65d9c0ab
JH
679#define SHORT_TYPE_SIZE 16
680#define INT_TYPE_SIZE 32
f0ea7581
L
681#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
682#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 683#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 684#define FLOAT_TYPE_SIZE 32
65d9c0ab 685#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
686#define LONG_DOUBLE_TYPE_SIZE \
687 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 688
c637141a
L
689/* Define this to set long double type size to use in libgcc2.c, which can
690 not depend on target_flags. */
691#ifdef __LONG_DOUBLE_64__
692#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
693#elif defined (__LONG_DOUBLE_128__)
694#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
c637141a
L
695#else
696#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
697#endif
698
699#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 700
67adf6a9 701#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 702#define MAX_BITS_PER_WORD 64
0c2dc519
JH
703#else
704#define MAX_BITS_PER_WORD 32
0c2dc519
JH
705#endif
706
c98f8742
JVA
707/* Define this if most significant byte of a word is the lowest numbered. */
708/* That is true on the 80386. */
709
710#define BITS_BIG_ENDIAN 0
711
712/* Define this if most significant byte of a word is the lowest numbered. */
713/* That is not true on the 80386. */
714#define BYTES_BIG_ENDIAN 0
715
716/* Define this if most significant word of a multiword number is the lowest
717 numbered. */
718/* Not true for 80386 */
719#define WORDS_BIG_ENDIAN 0
720
c98f8742 721/* Width of a word, in units (bytes). */
4ae8027b 722#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
723
724#ifndef IN_LIBGCC2
2e64c636
JH
725#define MIN_UNITS_PER_WORD 4
726#endif
c98f8742 727
c98f8742 728/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 729#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 730
e075ae69 731/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 732#define STACK_BOUNDARY \
51212b32 733 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 734
2e3f842f
L
735/* Stack boundary of the main function guaranteed by OS. */
736#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
737
de1132d1 738/* Minimum stack boundary. */
5bfb2af2 739#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 740
d1f87653 741/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 742 aligned; the compiler cannot rely on having this alignment. */
e075ae69 743#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 744
de1132d1 745/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
746 both 32bit and 64bit, to support codes that need 128 bit stack
747 alignment for SSE instructions, but can't realign the stack. */
748#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
749
750/* 1 if -mstackrealign should be turned on by default. It will
751 generate an alternate prologue and epilogue that realigns the
752 runtime stack if nessary. This supports mixing codes that keep a
753 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 754 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
755#define STACK_REALIGN_DEFAULT 0
756
757/* Boundary (in *bits*) on which the incoming stack is aligned. */
758#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 759
a2851b75
TG
760/* According to Windows x64 software convention, the maximum stack allocatable
761 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
762 instructions allowed to adjust the stack pointer in the epilog, forcing the
763 use of frame pointer for frames larger than 2 GB. This theorical limit
764 is reduced by 256, an over-estimated upper bound for the stack use by the
765 prologue.
766 We define only one threshold for both the prolog and the epilog. When the
4e523f33 767 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
768 regs, then save them, and then allocate the remaining. There is no SEH
769 unwind info for this later allocation. */
770#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
771
ebff937c
SH
772/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
773 mandatory for the 64-bit ABI, and may or may not be true for other
774 operating systems. */
775#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
776
f963b5d9
RS
777/* Minimum allocation boundary for the code of a function. */
778#define FUNCTION_BOUNDARY 8
779
780/* C++ stores the virtual bit in the lowest bit of function pointers. */
781#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 782
c98f8742
JVA
783/* Minimum size in bits of the largest boundary to which any
784 and all fundamental data types supported by the hardware
785 might need to be aligned. No data type wants to be aligned
17f24ff0 786 rounder than this.
fce5a9f2 787
d1f87653 788 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
789 and Pentium Pro XFmode values at 128 bit boundaries. */
790
3f97cb0b
AI
791#define BIGGEST_ALIGNMENT \
792 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 793
2e3f842f
L
794/* Maximum stack alignment. */
795#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
796
6e4f1168
L
797/* Alignment value for attribute ((aligned)). It is a constant since
798 it is the part of the ABI. We shouldn't change it with -mavx. */
799#define ATTRIBUTE_ALIGNED_VALUE 128
800
822eda12 801/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 802#define ALIGN_MODE_128(MODE) \
4501d314 803 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 804
17f24ff0 805/* The published ABIs say that doubles should be aligned on word
d1f87653 806 boundaries, so lower the alignment for structure fields unless
6fc605d8 807 -malign-double is set. */
e932b21b 808
e83f3cff
RH
809/* ??? Blah -- this macro is used directly by libobjc. Since it
810 supports no vector modes, cut out the complexity and fall back
811 on BIGGEST_FIELD_ALIGNMENT. */
812#ifdef IN_TARGET_LIBS
ef49d42e
JH
813#ifdef __x86_64__
814#define BIGGEST_FIELD_ALIGNMENT 128
815#else
e83f3cff 816#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 817#endif
e83f3cff 818#else
e932b21b
JH
819#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
820 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 821#endif
c98f8742 822
e5e8a8bf 823/* If defined, a C expression to compute the alignment given to a
a7180f70 824 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
825 and ALIGN is the alignment that the object would ordinarily have.
826 The value of this macro is used instead of that alignment to align
827 the object.
828
829 If this macro is not defined, then ALIGN is used.
830
831 The typical use of this macro is to increase alignment for string
832 constants to be word aligned so that `strcpy' calls that copy
833 constants can be done inline. */
834
d9a5f180 835#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 836
8a022443
JW
837/* If defined, a C expression to compute the alignment for a static
838 variable. TYPE is the data type, and ALIGN is the alignment that
839 the object would ordinarily have. The value of this macro is used
840 instead of that alignment to align the object.
841
842 If this macro is not defined, then ALIGN is used.
843
844 One use of this macro is to increase alignment of medium-size
845 data to make it all fit in fewer cache lines. Another is to
846 cause character arrays to be word-aligned so that `strcpy' calls
847 that copy constants to character arrays can be done inline. */
848
df8a1d28
JJ
849#define DATA_ALIGNMENT(TYPE, ALIGN) \
850 ix86_data_alignment ((TYPE), (ALIGN), true)
851
852/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
853 some alignment increase, instead of optimization only purposes. E.g.
854 AMD x86-64 psABI says that variables with array type larger than 15 bytes
855 must be aligned to 16 byte boundaries.
856
857 If this macro is not defined, then ALIGN is used. */
858
859#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
860 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
861
862/* If defined, a C expression to compute the alignment for a local
863 variable. TYPE is the data type, and ALIGN is the alignment that
864 the object would ordinarily have. The value of this macro is used
865 instead of that alignment to align the object.
866
867 If this macro is not defined, then ALIGN is used.
868
869 One use of this macro is to increase alignment of medium-size
870 data to make it all fit in fewer cache lines. */
871
76fe54f0
L
872#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
873 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
874
875/* If defined, a C expression to compute the alignment for stack slot.
876 TYPE is the data type, MODE is the widest mode available, and ALIGN
877 is the alignment that the slot would ordinarily have. The value of
878 this macro is used instead of that alignment to align the slot.
879
880 If this macro is not defined, then ALIGN is used when TYPE is NULL,
881 Otherwise, LOCAL_ALIGNMENT will be used.
882
883 One use of this macro is to set alignment of stack slot to the
884 maximum alignment of all possible modes which the slot may have. */
885
886#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
887 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 888
9bfaf89d
JJ
889/* If defined, a C expression to compute the alignment for a local
890 variable DECL.
891
892 If this macro is not defined, then
893 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
894
895 One use of this macro is to increase alignment of medium-size
896 data to make it all fit in fewer cache lines. */
897
898#define LOCAL_DECL_ALIGNMENT(DECL) \
899 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
900
ae58e548
JJ
901/* If defined, a C expression to compute the minimum required alignment
902 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
903 MODE, assuming normal alignment ALIGN.
904
905 If this macro is not defined, then (ALIGN) will be used. */
906
907#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
908 ix86_minimum_alignment (EXP, MODE, ALIGN)
909
9bfaf89d 910
9cd10576 911/* Set this nonzero if move instructions will actually fail to work
c98f8742 912 when given unaligned data. */
b4ac57ab 913#define STRICT_ALIGNMENT 0
c98f8742
JVA
914
915/* If bit field type is int, don't let it cross an int,
916 and give entire struct the alignment of an int. */
43a88a8c 917/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 918#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
919\f
920/* Standard register usage. */
921
922/* This processor has special stack-like registers. See reg-stack.c
892a2d68 923 for details. */
c98f8742
JVA
924
925#define STACK_REGS
ce998900 926
d9a5f180 927#define IS_STACK_MODE(MODE) \
63001560
UB
928 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
929 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 930 || (MODE) == XFmode)
c98f8742
JVA
931
932/* Number of actual hardware registers.
933 The hardware registers are assigned numbers for the compiler
934 from 0 to just below FIRST_PSEUDO_REGISTER.
935 All registers that the compiler knows about must be given numbers,
936 even those that are not normally considered general registers.
937
938 In the 80386 we give the 8 general purpose registers the numbers 0-7.
939 We number the floating point registers 8-15.
940 Note that registers 0-7 can be accessed as a short or int,
941 while only 0-3 may be used with byte `mov' instructions.
942
943 Reg 16 does not correspond to any hardware register, but instead
944 appears in the RTL as an argument pointer prior to reload, and is
945 eliminated during reloading in favor of either the stack or frame
892a2d68 946 pointer. */
c98f8742 947
089d1227 948#define FIRST_PSEUDO_REGISTER 77
c98f8742 949
3073d01c
ML
950/* Number of hardware registers that go into the DWARF-2 unwind info.
951 If not defined, equals FIRST_PSEUDO_REGISTER. */
952
953#define DWARF_FRAME_REGISTERS 17
954
c98f8742
JVA
955/* 1 for registers that have pervasive standard uses
956 and are not available for the register allocator.
3f3f2124 957 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 958
621bc046
UB
959 REX registers are disabled for 32bit targets in
960 TARGET_CONDITIONAL_REGISTER_USAGE. */
961
a7180f70
BS
962#define FIXED_REGISTERS \
963/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 964{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
965/*arg,flags,fpsr,fpcr,frame*/ \
966 1, 1, 1, 1, 1, \
a7180f70
BS
967/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
968 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 969/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
970 0, 0, 0, 0, 0, 0, 0, 0, \
971/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 972 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 973/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
974 0, 0, 0, 0, 0, 0, 0, 0, \
975/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
976 0, 0, 0, 0, 0, 0, 0, 0, \
977/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
978 0, 0, 0, 0, 0, 0, 0, 0, \
979/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 980 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
981
982/* 1 for registers not available across function calls.
983 These must include the FIXED_REGISTERS and also any
984 registers that can be used without being saved.
985 The latter must include the registers where values are returned
986 and the register where structure-value addresses are passed.
fce5a9f2
EC
987 Aside from that, you can include as many other registers as you like.
988
621bc046
UB
989 Value is set to 1 if the register is call used unconditionally.
990 Bit one is set if the register is call used on TARGET_32BIT ABI.
991 Bit two is set if the register is call used on TARGET_64BIT ABI.
992 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
993
994 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
995
a7180f70
BS
996#define CALL_USED_REGISTERS \
997/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 998{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
999/*arg,flags,fpsr,fpcr,frame*/ \
1000 1, 1, 1, 1, 1, \
a7180f70 1001/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1002 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1003/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1004 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1005/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1006 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1007/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1008 6, 6, 6, 6, 6, 6, 6, 6, \
1009/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1010 6, 6, 6, 6, 6, 6, 6, 6, \
1011/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1012 6, 6, 6, 6, 6, 6, 6, 6, \
1013 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 1014 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1015
3b3c6a3f
MM
1016/* Order in which to allocate registers. Each register must be
1017 listed once, even those in FIXED_REGISTERS. List frame pointer
1018 late and fixed registers last. Note that, in general, we prefer
1019 registers listed in CALL_USED_REGISTERS, keeping the others
1020 available for storage of persistent values.
1021
5a733826 1022 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1023 so this is just empty initializer for array. */
3b3c6a3f 1024
162f023b
JH
1025#define REG_ALLOC_ORDER \
1026{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1027 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1028 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1029 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
089d1227 1030 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1031
5a733826 1032/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1033 to be rearranged based on a particular function. When using sse math,
03c259ad 1034 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1035
5a733826 1036#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1037
f5316dfe 1038
7c800926
KT
1039#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1040
c98f8742
JVA
1041/* Return number of consecutive hard regs needed starting at reg REGNO
1042 to hold something of mode MODE.
1043 This is ordinarily the length in words of a value of mode MODE
1044 but can be less for certain modes in special long registers.
1045
fce5a9f2 1046 Actually there are no two word move instructions for consecutive
c98f8742 1047 registers. And only registers 0-3 may have mov byte instructions
63001560 1048 applied to them. */
c98f8742 1049
ce998900 1050#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1051 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1052 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1053 : ((MODE) == XFmode \
92d0fb09 1054 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1055 : (MODE) == XCmode \
92d0fb09 1056 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1057 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1058
8521c414
JM
1059#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1060 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1061 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1062 ? 0 \
1063 : ((MODE) == XFmode || (MODE) == XCmode)) \
1064 : 0)
1065
1066#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1067
95879c72
L
1068#define VALID_AVX256_REG_MODE(MODE) \
1069 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1070 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1071 || (MODE) == V4DFmode)
95879c72 1072
4ac005ba 1073#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1074 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1075
3f97cb0b
AI
1076#define VALID_AVX512F_SCALAR_MODE(MODE) \
1077 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1078 || (MODE) == SFmode)
1079
1080#define VALID_AVX512F_REG_MODE(MODE) \
1081 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1082 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1083
ce998900
UB
1084#define VALID_SSE2_REG_MODE(MODE) \
1085 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1086 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1087
d9a5f180 1088#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1089 ((MODE) == V1TImode || (MODE) == TImode \
1090 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1091 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1092
47f339cf 1093#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1094 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1095
d9a5f180 1096#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1097 ((MODE == V1DImode) || (MODE) == DImode \
1098 || (MODE) == V2SImode || (MODE) == SImode \
1099 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1100
ce998900
UB
1101#define VALID_DFP_MODE_P(MODE) \
1102 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1103
d9a5f180 1104#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1105 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1106 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1107
d9a5f180 1108#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1109 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1110 || (MODE) == DImode \
1111 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1112 || (MODE) == CDImode \
1113 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1114 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1115
822eda12 1116/* Return true for modes passed in SSE registers. */
ce998900 1117#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1118 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1119 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1120 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1121 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1122 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1123 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1124 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1125 || (MODE) == V16SFmode)
822eda12 1126
85a77221
AI
1127#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1128
e075ae69 1129/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1130
a946dd00 1131#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1132 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1133
1134/* Value is 1 if it is a good idea to tie two pseudo registers
1135 when one has mode MODE1 and one has mode MODE2.
1136 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1137 for any hard reg, then this must be 0 for correct output. */
1138
c1c5b5e3 1139#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1140
ff25ef99
ZD
1141/* It is possible to write patterns to move flags; but until someone
1142 does it, */
1143#define AVOID_CCMODE_COPIES
c98f8742 1144
e075ae69 1145/* Specify the modes required to caller save a given hard regno.
787dc842 1146 We do this on i386 to prevent flags from being saved at all.
e075ae69 1147
787dc842
JH
1148 Kill any attempts to combine saving of modes. */
1149
d9a5f180
GS
1150#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1151 (CC_REGNO_P (REGNO) ? VOIDmode \
1152 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1153 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1154 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1155 || MASK_REGNO_P (REGNO)) ? SImode \
1156 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1157 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1158 : (MODE))
ce998900 1159
51ba747a
RH
1160/* The only ABI that saves SSE registers across calls is Win64 (thus no
1161 need to check the current ABI here), and with AVX enabled Win64 only
1162 guarantees that the low 16 bytes are saved. */
1163#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1164 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1165
c98f8742
JVA
1166/* Specify the registers used for certain standard purposes.
1167 The values of these macros are register numbers. */
1168
1169/* on the 386 the pc register is %eip, and is not usable as a general
1170 register. The ordinary mov instructions won't work */
1171/* #define PC_REGNUM */
1172
1173/* Register to use for pushing function arguments. */
1174#define STACK_POINTER_REGNUM 7
1175
1176/* Base register for access to local variables of the function. */
564d80f4
JH
1177#define HARD_FRAME_POINTER_REGNUM 6
1178
1179/* Base register for access to local variables of the function. */
b0d95de8 1180#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1181
1182/* First floating point reg */
1183#define FIRST_FLOAT_REG 8
1184
1185/* First & last stack-like regs */
1186#define FIRST_STACK_REG FIRST_FLOAT_REG
1187#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1188
a7180f70
BS
1189#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1190#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1191
3f97cb0b 1192#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1193#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1194
3f97cb0b 1195#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1196#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1197
3f97cb0b 1198#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1199#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1200
3f97cb0b
AI
1201#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1202#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1203
85a77221
AI
1204#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1205#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1206
aabcd309 1207/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1208 requiring a frame pointer. */
1209#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1210#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1211#endif
1212
1213/* Make sure we can access arbitrary call frames. */
1214#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1215
1216/* Base register for access to arguments of the function. */
1217#define ARG_POINTER_REGNUM 16
1218
c98f8742 1219/* Register to hold the addressing base for position independent
5b43fed1
RH
1220 code access to data items. We don't use PIC pointer for 64bit
1221 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1222 pessimizing code dealing with EBX.
bd09bdeb
RH
1223
1224 To avoid clobbering a call-saved register unnecessarily, we renumber
1225 the pic register when possible. The change is visible after the
1226 prologue has been emitted. */
1227
2e3f842f 1228#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1229
1230#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1231 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1232 || TARGET_PECOFF)) \
7dcbf659 1233 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1234 : reload_completed ? REGNO (pic_offset_table_rtx) \
1235 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1236
5fc0e5df
KW
1237#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1238
c51e6d85 1239/* This is overridden by <cygwin.h>. */
5e062767
DS
1240#define MS_AGGREGATE_RETURN 0
1241
61fec9ff 1242#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1243\f
1244/* Define the classes of registers for register constraints in the
1245 machine description. Also define ranges of constants.
1246
1247 One of the classes must always be named ALL_REGS and include all hard regs.
1248 If there is more than one class, another class must be named NO_REGS
1249 and contain no registers.
1250
1251 The name GENERAL_REGS must be the name of a class (or an alias for
1252 another name such as ALL_REGS). This is the class of registers
1253 that is allowed by "g" or "r" in a register constraint.
1254 Also, registers outside this class are allocated only when
1255 instructions express preferences for them.
1256
1257 The classes must be numbered in nondecreasing order; that is,
1258 a larger-numbered class must never be contained completely
1259 in a smaller-numbered class.
1260
1261 For any two classes, it is very desirable that there be another
ab408a86
JVA
1262 class that represents their union.
1263
1264 It might seem that class BREG is unnecessary, since no useful 386
1265 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1266 and the "b" register constraint is useful in asms for syscalls.
1267
03c259ad 1268 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1269
1270enum reg_class
1271{
1272 NO_REGS,
e075ae69 1273 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1274 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1275 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1276 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1277 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1278 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1279 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1280 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1281 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1282 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1283 FLOAT_REGS,
06f4e35d 1284 SSE_FIRST_REG,
a7180f70 1285 SSE_REGS,
3f97cb0b
AI
1286 EVEX_SSE_REGS,
1287 ALL_SSE_REGS,
a7180f70 1288 MMX_REGS,
446988df
JH
1289 FP_TOP_SSE_REGS,
1290 FP_SECOND_SSE_REGS,
1291 FLOAT_SSE_REGS,
1292 FLOAT_INT_REGS,
1293 INT_SSE_REGS,
1294 FLOAT_INT_SSE_REGS,
85a77221
AI
1295 MASK_EVEX_REGS,
1296 MASK_REGS,
c98f8742
JVA
1297 ALL_REGS, LIM_REG_CLASSES
1298};
1299
d9a5f180
GS
1300#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1301
1302#define INTEGER_CLASS_P(CLASS) \
1303 reg_class_subset_p ((CLASS), GENERAL_REGS)
1304#define FLOAT_CLASS_P(CLASS) \
1305 reg_class_subset_p ((CLASS), FLOAT_REGS)
1306#define SSE_CLASS_P(CLASS) \
3f97cb0b 1307 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1308#define MMX_CLASS_P(CLASS) \
f75959a6 1309 ((CLASS) == MMX_REGS)
d9a5f180
GS
1310#define MAYBE_INTEGER_CLASS_P(CLASS) \
1311 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1312#define MAYBE_FLOAT_CLASS_P(CLASS) \
1313 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1314#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1315 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1316#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1317 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1318#define MAYBE_MASK_CLASS_P(CLASS) \
1319 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1320
1321#define Q_CLASS_P(CLASS) \
1322 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1323
0bd72901
UB
1324#define MAYBE_NON_Q_CLASS_P(CLASS) \
1325 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1326
43f3a59d 1327/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1328
1329#define REG_CLASS_NAMES \
1330{ "NO_REGS", \
ab408a86 1331 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1332 "SIREG", "DIREG", \
e075ae69
RH
1333 "AD_REGS", \
1334 "Q_REGS", "NON_Q_REGS", \
c98f8742 1335 "INDEX_REGS", \
3f3f2124 1336 "LEGACY_REGS", \
621bc046 1337 "CLOBBERED_REGS", \
c98f8742
JVA
1338 "GENERAL_REGS", \
1339 "FP_TOP_REG", "FP_SECOND_REG", \
1340 "FLOAT_REGS", \
cb482895 1341 "SSE_FIRST_REG", \
a7180f70 1342 "SSE_REGS", \
3f97cb0b
AI
1343 "EVEX_SSE_REGS", \
1344 "ALL_SSE_REGS", \
a7180f70 1345 "MMX_REGS", \
446988df
JH
1346 "FP_TOP_SSE_REGS", \
1347 "FP_SECOND_SSE_REGS", \
1348 "FLOAT_SSE_REGS", \
8fcaaa80 1349 "FLOAT_INT_REGS", \
446988df
JH
1350 "INT_SSE_REGS", \
1351 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1352 "MASK_EVEX_REGS", \
1353 "MASK_REGS", \
c98f8742
JVA
1354 "ALL_REGS" }
1355
ac2e563f
RH
1356/* Define which registers fit in which classes. This is an initializer
1357 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1358
621bc046
UB
1359 Note that CLOBBERED_REGS are calculated by
1360 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1361
3f97cb0b 1362#define REG_CLASS_CONTENTS \
089d1227
IE
1363{ { 0x00, 0x0, 0x0 }, \
1364 { 0x01, 0x0, 0x0 }, /* AREG */ \
1365 { 0x02, 0x0, 0x0 }, /* DREG */ \
1366 { 0x04, 0x0, 0x0 }, /* CREG */ \
1367 { 0x08, 0x0, 0x0 }, /* BREG */ \
1368 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1369 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1370 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1371 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1372 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1373 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1374 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1375 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1376 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1377 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1378 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1379 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1380 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1381{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1382 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1383{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1384{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1385{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1386{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1387{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1388{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1389{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1390{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1391 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1392 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1393{ 0xffffffff,0xffffffff,0x1fff } \
e075ae69 1394}
c98f8742
JVA
1395
1396/* The same information, inverted:
1397 Return the class number of the smallest class containing
1398 reg number REGNO. This could be a conditional expression
1399 or could index an array. */
1400
c98f8742
JVA
1401#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1402
42db504c
SB
1403/* When this hook returns true for MODE, the compiler allows
1404 registers explicitly used in the rtl to be used as spill registers
1405 but prevents the compiler from extending the lifetime of these
1406 registers. */
1407#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1408
fc27f749
UB
1409#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1410#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1411
1412#define GENERAL_REG_P(X) \
6189a572 1413 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1414#define GENERAL_REGNO_P(N) \
1415 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1416
fc27f749
UB
1417#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1418#define ANY_QI_REGNO_P(N) \
1419 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1420
fc27f749 1421#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1422#define REX_INT_REGNO_P(N) \
1423 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1424
66aaf16f
UB
1425#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1426#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1427
446988df 1428#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1429#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1430
54a88090 1431#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1432 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1433
fc27f749 1434#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1435#define SSE_REGNO_P(N) \
1436 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1437 || REX_SSE_REGNO_P (N) \
1438 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1439
4977bab6 1440#define REX_SSE_REGNO_P(N) \
fb84c7a0 1441 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1442
3f97cb0b
AI
1443#define EXT_REX_SSE_REGNO_P(N) \
1444 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1445
d9a5f180 1446#define SSE_REGNO(N) \
3f97cb0b
AI
1447 ((N) < 8 ? FIRST_SSE_REG + (N) \
1448 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1449 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1450
85a77221
AI
1451#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1452#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1453
d9a5f180 1454#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1455 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1456
cbf2e4d4
HJ
1457#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1458 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1459 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1460
fc27f749 1461#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1462#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1463
fc27f749 1464#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1465
e075ae69
RH
1466#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1467#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1468
c98f8742
JVA
1469/* The class value for index registers, and the one for base regs. */
1470
1471#define INDEX_REG_CLASS INDEX_REGS
1472#define BASE_REG_CLASS GENERAL_REGS
1473
c98f8742 1474/* Place additional restrictions on the register class to use when it
4cbb525c 1475 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1476 register for which class CLASS would ordinarily be used.
1477
1478 We avoid classes containing registers from multiple units due to
1479 the limitation in ix86_secondary_memory_needed. We limit these
1480 classes to their "natural mode" single unit register class, depending
1481 on the unit availability.
1482
1483 Please note that reg_class_subset_p is not commutative, so these
1484 conditions mean "... if (CLASS) includes ALL registers from the
1485 register set." */
1486
1487#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1488 (((MODE) == QImode && !TARGET_64BIT \
1489 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1490 : (((MODE) == SImode || (MODE) == DImode) \
1491 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1492 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1493 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1494 : (X87_FLOAT_MODE_P (MODE) \
1495 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1496 : (CLASS))
c98f8742 1497
85ff473e 1498/* If we are copying between general and FP registers, we need a memory
f84aa48a 1499 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1500#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1501 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1502
c62b3659
UB
1503/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1504 There is no need to emit full 64 bit move on 64 bit targets
1505 for integral modes that can be moved using 32 bit move. */
1506#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1507 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1508 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1509 : MODE)
1510
1272914c
RH
1511/* Return a class of registers that cannot change FROM mode to TO mode. */
1512
1513#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1514 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1515\f
1516/* Stack layout; function entry, exit and calling. */
1517
1518/* Define this if pushing a word on the stack
1519 makes the stack pointer a smaller address. */
1520#define STACK_GROWS_DOWNWARD
1521
a4d05547 1522/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1523 is at the high-address end of the local variables;
1524 that is, each additional local variable allocated
1525 goes at a more negative offset in the frame. */
f62c8a5c 1526#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1527
1528/* Offset within stack frame to start allocating local variables at.
1529 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1530 first local allocated. Otherwise, it is the offset to the BEGINNING
1531 of the first local allocated. */
1532#define STARTING_FRAME_OFFSET 0
1533
8c2b2fae
UB
1534/* If we generate an insn to push BYTES bytes, this says how many the stack
1535 pointer really advances by. On 386, we have pushw instruction that
1536 decrements by exactly 2 no matter what the position was, there is no pushb.
1537
1538 But as CIE data alignment factor on this arch is -4 for 32bit targets
1539 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1540 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1541
d2836273 1542#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1543 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1544
1545/* If defined, the maximum amount of space required for outgoing arguments
1546 will be computed and placed into the variable `crtl->outgoing_args_size'.
1547 No space will be pushed onto the stack for each call; instead, the
1548 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1549
1550 In 32bit mode enabling argument accumulation results in about 5% code size
1551 growth becuase move instructions are less compact than push. In 64bit
1552 mode the difference is less drastic but visible.
1553
1554 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1555 actually grow with accumulation. Is that because accumulated args
41ee845b 1556 unwind info became unnecesarily bloated?
f830ddc2
RH
1557
1558 With the 64-bit MS ABI, we can generate correct code with or without
1559 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1560 generated without accumulated args is terrible.
41ee845b
JH
1561
1562 If stack probes are required, the space used for large function
1563 arguments on the stack must also be probed, so enable
1564 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1565
6c6094f1 1566#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1567 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1568 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1569
1570/* If defined, a C expression whose value is nonzero when we want to use PUSH
1571 instructions to pass outgoing arguments. */
1572
1573#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1574
2da4124d
L
1575/* We want the stack and args grow in opposite directions, even if
1576 PUSH_ARGS is 0. */
1577#define PUSH_ARGS_REVERSED 1
1578
c98f8742
JVA
1579/* Offset of first parameter from the argument pointer register value. */
1580#define FIRST_PARM_OFFSET(FNDECL) 0
1581
a7180f70
BS
1582/* Define this macro if functions should assume that stack space has been
1583 allocated for arguments even when their values are passed in registers.
1584
1585 The value of this macro is the size, in bytes, of the area reserved for
1586 arguments passed in registers for the function represented by FNDECL.
1587
1588 This space can be allocated by the caller, or be a part of the
1589 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1590 which. */
7c800926
KT
1591#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1592
4ae8027b 1593#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1594 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1595
c98f8742
JVA
1596/* Define how to find the value returned by a library function
1597 assuming the value has mode MODE. */
1598
4ae8027b 1599#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1600
e9125c09
TW
1601/* Define the size of the result block used for communication between
1602 untyped_call and untyped_return. The block contains a DImode value
1603 followed by the block used by fnsave and frstor. */
1604
1605#define APPLY_RESULT_SIZE (8+108)
1606
b08de47e 1607/* 1 if N is a possible register number for function argument passing. */
53c17031 1608#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1609
1610/* Define a data type for recording info about an argument list
1611 during the scan of that argument list. This data type should
1612 hold all necessary information about the function itself
1613 and about the args processed so far, enough to enable macros
b08de47e 1614 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1615
e075ae69 1616typedef struct ix86_args {
fa283935 1617 int words; /* # words passed so far */
b08de47e
MM
1618 int nregs; /* # registers available for passing */
1619 int regno; /* next available register number */
3e65f251
KT
1620 int fastcall; /* fastcall or thiscall calling convention
1621 is used */
fa283935 1622 int sse_words; /* # sse words passed so far */
a7180f70 1623 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1624 int warn_avx512f; /* True when we want to warn
1625 about AVX512F ABI. */
95879c72 1626 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1627 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1628 int warn_mmx; /* True when we want to warn about MMX ABI. */
1629 int sse_regno; /* next available sse register number */
1630 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1631 int mmx_nregs; /* # mmx registers available for passing */
1632 int mmx_regno; /* next available mmx register number */
892a2d68 1633 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1634 int caller; /* true if it is caller. */
2824d6e5
UB
1635 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1636 SFmode/DFmode arguments should be passed
1637 in SSE registers. Otherwise 0. */
51212b32 1638 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1639 MS_ABI for ms abi. */
b08de47e 1640} CUMULATIVE_ARGS;
c98f8742
JVA
1641
1642/* Initialize a variable CUM of type CUMULATIVE_ARGS
1643 for a call to a function whose data type is FNTYPE.
b08de47e 1644 For a library call, FNTYPE is 0. */
c98f8742 1645
0f6937fe 1646#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1647 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1648 (N_NAMED_ARGS) != -1)
c98f8742 1649
c98f8742
JVA
1650/* Output assembler code to FILE to increment profiler label # LABELNO
1651 for profiling a function entry. */
1652
a5fa1ecd
JH
1653#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1654
1655#define MCOUNT_NAME "_mcount"
1656
3c5273a9
KT
1657#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1658
a5fa1ecd 1659#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1660
1661/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1662 the stack pointer does not matter. The value is tested only in
1663 functions that have frame pointers.
1664 No definition is equivalent to always zero. */
fce5a9f2 1665/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1666 we have to restore it ourselves from the frame pointer, in order to
1667 use pop */
1668
1669#define EXIT_IGNORE_STACK 1
1670
c98f8742
JVA
1671/* Output assembler code for a block containing the constant parts
1672 of a trampoline, leaving space for the variable parts. */
1673
a269a03c 1674/* On the 386, the trampoline contains two instructions:
c98f8742 1675 mov #STATIC,ecx
a269a03c
JC
1676 jmp FUNCTION
1677 The trampoline is generated entirely at runtime. The operand of JMP
1678 is the address of FUNCTION relative to the instruction following the
1679 JMP (which is 5 bytes long). */
c98f8742
JVA
1680
1681/* Length in units of the trampoline for entering a nested function. */
1682
3452586b 1683#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1684\f
1685/* Definitions for register eliminations.
1686
1687 This is an array of structures. Each structure initializes one pair
1688 of eliminable registers. The "from" register number is given first,
1689 followed by "to". Eliminations of the same "from" register are listed
1690 in order of preference.
1691
afc2cd05
NC
1692 There are two registers that can always be eliminated on the i386.
1693 The frame pointer and the arg pointer can be replaced by either the
1694 hard frame pointer or to the stack pointer, depending upon the
1695 circumstances. The hard frame pointer is not used before reload and
1696 so it is not eligible for elimination. */
c98f8742 1697
564d80f4
JH
1698#define ELIMINABLE_REGS \
1699{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1700 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1701 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1702 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1703
c98f8742
JVA
1704/* Define the offset between two registers, one to be eliminated, and the other
1705 its replacement, at the start of a routine. */
1706
d9a5f180
GS
1707#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1708 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1709\f
1710/* Addressing modes, and classification of registers for them. */
1711
c98f8742
JVA
1712/* Macros to check register numbers against specific register classes. */
1713
1714/* These assume that REGNO is a hard or pseudo reg number.
1715 They give nonzero only if REGNO is a hard reg of the suitable class
1716 or a pseudo reg currently allocated to a suitable hard reg.
1717 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1718 has been allocated, which happens in reginfo.c during register
1719 allocation. */
c98f8742 1720
3f3f2124
JH
1721#define REGNO_OK_FOR_INDEX_P(REGNO) \
1722 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1723 || REX_INT_REGNO_P (REGNO) \
1724 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1725 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1726
3f3f2124 1727#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1728 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1729 || (REGNO) == ARG_POINTER_REGNUM \
1730 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1731 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1732
c98f8742
JVA
1733/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1734 and check its validity for a certain class.
1735 We have two alternate definitions for each of them.
1736 The usual definition accepts all pseudo regs; the other rejects
1737 them unless they have been allocated suitable hard regs.
1738 The symbol REG_OK_STRICT causes the latter definition to be used.
1739
1740 Most source files want to accept pseudo regs in the hope that
1741 they will get allocated to the class that the insn wants them to be in.
1742 Source files for reload pass need to be strict.
1743 After reload, it makes no difference, since pseudo regs have
1744 been eliminated by then. */
1745
c98f8742 1746
ff482c8d 1747/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1748#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1749 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1750 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1751 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1752
3b3c6a3f 1753#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1754 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1755 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1756 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1757 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1758
3b3c6a3f
MM
1759/* Strict versions, hard registers only */
1760#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1761#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1762
3b3c6a3f 1763#ifndef REG_OK_STRICT
d9a5f180
GS
1764#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1765#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1766
1767#else
d9a5f180
GS
1768#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1769#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1770#endif
1771
331d9186 1772/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1773 that is a valid memory address for an instruction.
1774 The MODE argument is the machine mode for the MEM expression
1775 that wants to use this address.
1776
331d9186 1777 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1778 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1779
1780 See legitimize_pic_address in i386.c for details as to what
1781 constitutes a legitimate address when -fpic is used. */
1782
1783#define MAX_REGS_PER_ADDRESS 2
1784
f996902d 1785#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1786
ae1547cc
UB
1787/* Try a machine-dependent way of reloading an illegitimate address
1788 operand. If we find one, push the reload and jump to WIN. This
1789 macro is used in only one place: `find_reloads_address' in reload.c. */
1790
1791#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1792do { \
1793 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1794 (int)(TYPE), (INDL))) \
1795 goto WIN; \
1796} while (0)
1797
b949ea8b
JW
1798/* If defined, a C expression to determine the base term of address X.
1799 This macro is used in only one place: `find_base_term' in alias.c.
1800
1801 It is always safe for this macro to not be defined. It exists so
1802 that alias analysis can understand machine-dependent addresses.
1803
1804 The typical use of this macro is to handle addresses containing
1805 a label_ref or symbol_ref within an UNSPEC. */
1806
d9a5f180 1807#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1808
c98f8742 1809/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1810 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1811 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1812
f996902d 1813#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1814
1815#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1816 (GET_CODE (X) == SYMBOL_REF \
1817 || GET_CODE (X) == LABEL_REF \
1818 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1819\f
b08de47e
MM
1820/* Max number of args passed in registers. If this is more than 3, we will
1821 have problems with ebx (register #4), since it is a caller save register and
1822 is also used as the pic register in ELF. So for now, don't allow more than
1823 3 registers to be passed in registers. */
1824
7c800926
KT
1825/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1826#define X86_64_REGPARM_MAX 6
72fa3605 1827#define X86_64_MS_REGPARM_MAX 4
7c800926 1828
72fa3605 1829#define X86_32_REGPARM_MAX 3
7c800926 1830
4ae8027b 1831#define REGPARM_MAX \
2824d6e5
UB
1832 (TARGET_64BIT \
1833 ? (TARGET_64BIT_MS_ABI \
1834 ? X86_64_MS_REGPARM_MAX \
1835 : X86_64_REGPARM_MAX) \
4ae8027b 1836 : X86_32_REGPARM_MAX)
d2836273 1837
72fa3605
UB
1838#define X86_64_SSE_REGPARM_MAX 8
1839#define X86_64_MS_SSE_REGPARM_MAX 4
1840
b6010cab 1841#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1842
4ae8027b 1843#define SSE_REGPARM_MAX \
2824d6e5
UB
1844 (TARGET_64BIT \
1845 ? (TARGET_64BIT_MS_ABI \
1846 ? X86_64_MS_SSE_REGPARM_MAX \
1847 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1848 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1849
1850#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1851\f
1852/* Specify the machine mode that this machine uses
1853 for the index in the tablejump instruction. */
dc4d7240 1854#define CASE_VECTOR_MODE \
6025b127 1855 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1856
c98f8742
JVA
1857/* Define this as 1 if `char' should by default be signed; else as 0. */
1858#define DEFAULT_SIGNED_CHAR 1
1859
1860/* Max number of bytes we can move from memory to memory
1861 in one reasonably fast instruction. */
65d9c0ab
JH
1862#define MOVE_MAX 16
1863
1864/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1865 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1866 number of bytes we can move with a single instruction. */
63001560 1867#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1868
7e24ffc9 1869/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1870 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1871 Increasing the value will always make code faster, but eventually
1872 incurs high cost in increased code size.
c98f8742 1873
e2e52e1b 1874 If you don't define this, a reasonable default is used. */
c98f8742 1875
e04ad03d 1876#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1877
45d78e7f
JJ
1878/* If a clear memory operation would take CLEAR_RATIO or more simple
1879 move-instruction sequences, we will do a clrmem or libcall instead. */
1880
e04ad03d 1881#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1882
53f00dde
UB
1883/* Define if shifts truncate the shift count which implies one can
1884 omit a sign-extension or zero-extension of a shift count.
1885
1886 On i386, shifts do truncate the count. But bit test instructions
1887 take the modulo of the bit offset operand. */
c98f8742
JVA
1888
1889/* #define SHIFT_COUNT_TRUNCATED */
1890
1891/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1892 is done just by pretending it is already truncated. */
1893#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1894
d9f32422
JH
1895/* A macro to update M and UNSIGNEDP when an object whose type is
1896 TYPE and which has the specified mode and signedness is to be
1897 stored in a register. This macro is only called when TYPE is a
1898 scalar type.
1899
f710504c 1900 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1901 quantities to SImode. The choice depends on target type. */
1902
1903#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1904do { \
d9f32422
JH
1905 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1906 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1907 (MODE) = SImode; \
1908} while (0)
d9f32422 1909
c98f8742
JVA
1910/* Specify the machine mode that pointers have.
1911 After generation of rtl, the compiler makes no further distinction
1912 between pointers and any other objects of this machine mode. */
28968d91 1913#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1914
f0ea7581
L
1915/* A C expression whose value is zero if pointers that need to be extended
1916 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1917 greater then zero if they are zero-extended and less then zero if the
1918 ptr_extend instruction should be used. */
1919
1920#define POINTERS_EXTEND_UNSIGNED 1
1921
c98f8742
JVA
1922/* A function address in a call instruction
1923 is a byte address (for indexing purposes)
1924 so give the MEM rtx a byte's mode. */
1925#define FUNCTION_MODE QImode
d4ba09c0 1926\f
d4ba09c0 1927
d4ba09c0
SC
1928/* A C expression for the cost of a branch instruction. A value of 1
1929 is the default; other values are interpreted relative to that. */
1930
3a4fd356
JH
1931#define BRANCH_COST(speed_p, predictable_p) \
1932 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1933
e327d1a3
L
1934/* An integer expression for the size in bits of the largest integer machine
1935 mode that should actually be used. We allow pairs of registers. */
1936#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1937
d4ba09c0
SC
1938/* Define this macro as a C expression which is nonzero if accessing
1939 less than a word of memory (i.e. a `char' or a `short') is no
1940 faster than accessing a word of memory, i.e., if such access
1941 require more than one instruction or if there is no difference in
1942 cost between byte and (aligned) word loads.
1943
1944 When this macro is not defined, the compiler will access a field by
1945 finding the smallest containing object; when it is defined, a
1946 fullword load will be used if alignment permits. Unless bytes
1947 accesses are faster than word accesses, using word accesses is
1948 preferable since it may eliminate subsequent memory access if
1949 subsequent accesses occur to other fields in the same word of the
1950 structure, but to different bytes. */
1951
1952#define SLOW_BYTE_ACCESS 0
1953
1954/* Nonzero if access to memory by shorts is slow and undesirable. */
1955#define SLOW_SHORT_ACCESS 0
1956
d4ba09c0
SC
1957/* Define this macro to be the value 1 if unaligned accesses have a
1958 cost many times greater than aligned accesses, for example if they
1959 are emulated in a trap handler.
1960
9cd10576
KH
1961 When this macro is nonzero, the compiler will act as if
1962 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1963 moves. This can cause significantly more instructions to be
9cd10576 1964 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1965 accesses only add a cycle or two to the time for a memory access.
1966
1967 If the value of this macro is always zero, it need not be defined. */
1968
e1565e65 1969/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1970
d4ba09c0
SC
1971/* Define this macro if it is as good or better to call a constant
1972 function address than to call an address kept in a register.
1973
1974 Desirable on the 386 because a CALL with a constant address is
1975 faster than one with a register address. */
1976
1977#define NO_FUNCTION_CSE
c98f8742 1978\f
c572e5ba
JVA
1979/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1980 return the mode to be used for the comparison.
1981
1982 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1983 VOIDmode should be used in all other cases.
c572e5ba 1984
16189740 1985 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1986 possible, to allow for more combinations. */
c98f8742 1987
d9a5f180 1988#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1989
9cd10576 1990/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1991 reversed. */
1992
1993#define REVERSIBLE_CC_MODE(MODE) 1
1994
1995/* A C expression whose value is reversed condition code of the CODE for
1996 comparison done in CC_MODE mode. */
3c5cb3e4 1997#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1998
c98f8742
JVA
1999\f
2000/* Control the assembler format that we output, to the extent
2001 this does not vary between assemblers. */
2002
2003/* How to refer to registers in assembler output.
892a2d68 2004 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2005
a7b376ee 2006/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2007 For non floating point regs, the following are the HImode names.
2008
2009 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2010 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2011 "y" code. */
c98f8742 2012
a7180f70
BS
2013#define HI_REGISTER_NAMES \
2014{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2015 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2016 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2017 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2018 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2019 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2020 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2021 "xmm16", "xmm17", "xmm18", "xmm19", \
2022 "xmm20", "xmm21", "xmm22", "xmm23", \
2023 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2024 "xmm28", "xmm29", "xmm30", "xmm31", \
089d1227 2025 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2026
c98f8742
JVA
2027#define REGISTER_NAMES HI_REGISTER_NAMES
2028
2029/* Table of additional register names to use in user input. */
2030
2031#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2032{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2033 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2034 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2035 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2036 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2037 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2038 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2039 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2040 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2041 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2042 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2043 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2044 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2045 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2046 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2047 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2048 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2049 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2050 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2051 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2052 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2053 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2054
2055/* Note we are omitting these since currently I don't know how
2056to get gcc to use these, since they want the same but different
2057number as al, and ax.
2058*/
2059
c98f8742 2060#define QI_REGISTER_NAMES \
3f3f2124 2061{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2062
2063/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2064 of regs 0 through 3. */
c98f8742
JVA
2065
2066#define QI_HIGH_REGISTER_NAMES \
2067{"ah", "dh", "ch", "bh", }
2068
2069/* How to renumber registers for dbx and gdb. */
2070
d9a5f180
GS
2071#define DBX_REGISTER_NUMBER(N) \
2072 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2073
9a82e702
MS
2074extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2075extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2076extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2077
780a5b71
UB
2078extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2079
469ac993
JM
2080/* Before the prologue, RA is at 0(%esp). */
2081#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2082 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2083
e414ab29 2084/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2085#define RETURN_ADDR_RTX(COUNT, FRAME) \
2086 ((COUNT) == 0 \
0a81f074
RS
2087 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2088 -UNITS_PER_WORD)) \
2089 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2090
892a2d68 2091/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2092#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2093
a6ab3aad 2094/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2095#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2096
1020a5ab 2097/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2098#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2099#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2100
ad919812 2101
e4c4ebeb
RH
2102/* Select a format to encode pointers in exception handling data. CODE
2103 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2104 true if the symbol may be affected by dynamic relocations.
2105
2106 ??? All x86 object file formats are capable of representing this.
2107 After all, the relocation needed is the same as for the call insn.
2108 Whether or not a particular assembler allows us to enter such, I
2109 guess we'll have to see. */
d9a5f180 2110#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2111 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2112
c98f8742
JVA
2113/* This is how to output an insn to push a register on the stack.
2114 It need not be very fast code. */
2115
d9a5f180 2116#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2117do { \
2118 if (TARGET_64BIT) \
2119 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2120 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2121 else \
2122 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2123} while (0)
c98f8742
JVA
2124
2125/* This is how to output an insn to pop a register from the stack.
2126 It need not be very fast code. */
2127
d9a5f180 2128#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2129do { \
2130 if (TARGET_64BIT) \
2131 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2132 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2133 else \
2134 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2135} while (0)
c98f8742 2136
f88c65f7 2137/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2138
2139#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2140 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2141
f88c65f7 2142/* This is how to output an element of a case-vector that is relative. */
c98f8742 2143
33f7f353 2144#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2145 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2146
63001560 2147/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2148
2149#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2150{ \
2151 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2152 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2153}
2154
2155/* A C statement or statements which output an assembler instruction
2156 opcode to the stdio stream STREAM. The macro-operand PTR is a
2157 variable of type `char *' which points to the opcode name in
2158 its "internal" form--the form that is written in the machine
2159 description. */
2160
2161#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2162 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2163
6a90d232
L
2164/* A C statement to output to the stdio stream FILE an assembler
2165 command to pad the location counter to a multiple of 1<<LOG
2166 bytes if it is within MAX_SKIP bytes. */
2167
2168#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2169#undef ASM_OUTPUT_MAX_SKIP_PAD
2170#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2171 if ((LOG) != 0) \
2172 { \
2173 if ((MAX_SKIP) == 0) \
2174 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2175 else \
2176 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2177 }
2178#endif
2179
135a687e
KT
2180/* Write the extra assembler code needed to declare a function
2181 properly. */
2182
2183#undef ASM_OUTPUT_FUNCTION_LABEL
2184#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2185 ix86_asm_output_function_label (FILE, NAME, DECL)
2186
f7288899
EC
2187/* Under some conditions we need jump tables in the text section,
2188 because the assembler cannot handle label differences between
2189 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2190
2191#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2192 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2193 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2194
cea3bd3e
RH
2195/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2196 and switch back. For x86 we do this only to save a few bytes that
2197 would otherwise be unused in the text section. */
ad211091
KT
2198#define CRT_MKSTR2(VAL) #VAL
2199#define CRT_MKSTR(x) CRT_MKSTR2(x)
2200
2201#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2202 asm (SECTION_OP "\n\t" \
2203 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2204 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2205
2206/* Default threshold for putting data in large sections
2207 with x86-64 medium memory model */
2208#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2209\f
b97de419
L
2210/* Which processor to tune code generation for. These must be in sync
2211 with processor_target_table in i386.c. */
5bf0ebab
RH
2212
2213enum processor_type
2214{
b97de419
L
2215 PROCESSOR_GENERIC = 0,
2216 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2217 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2218 PROCESSOR_PENTIUM,
2219 PROCESSOR_PENTIUMPRO,
5bf0ebab 2220 PROCESSOR_PENTIUM4,
89c43c0a 2221 PROCESSOR_NOCONA,
340ef734 2222 PROCESSOR_CORE2,
d3c11974
L
2223 PROCESSOR_NEHALEM,
2224 PROCESSOR_SANDYBRIDGE,
3a579e09 2225 PROCESSOR_HASWELL,
d3c11974
L
2226 PROCESSOR_BONNELL,
2227 PROCESSOR_SILVERMONT,
9a7f94d7 2228 PROCESSOR_INTEL,
b97de419
L
2229 PROCESSOR_GEODE,
2230 PROCESSOR_K6,
2231 PROCESSOR_ATHLON,
2232 PROCESSOR_K8,
21efb4d4 2233 PROCESSOR_AMDFAM10,
1133125e 2234 PROCESSOR_BDVER1,
4d652a18 2235 PROCESSOR_BDVER2,
eb2f2b44 2236 PROCESSOR_BDVER3,
ed97ad47 2237 PROCESSOR_BDVER4,
14b52538 2238 PROCESSOR_BTVER1,
e32bfc16 2239 PROCESSOR_BTVER2,
5bf0ebab
RH
2240 PROCESSOR_max
2241};
2242
9e555526 2243extern enum processor_type ix86_tune;
5bf0ebab 2244extern enum processor_type ix86_arch;
5bf0ebab 2245
8362f420
JH
2246/* Size of the RED_ZONE area. */
2247#define RED_ZONE_SIZE 128
2248/* Reserved area of the red zone for temporaries. */
2249#define RED_ZONE_RESERVE 8
c93e80a5 2250
95899b34 2251extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2252extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2253
2254/* Smallest class containing REGNO. */
2255extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2256
0948ccb2
PB
2257enum ix86_fpcmp_strategy {
2258 IX86_FPCMP_SAHF,
2259 IX86_FPCMP_COMI,
2260 IX86_FPCMP_ARITH
2261};
22fb740d
JH
2262\f
2263/* To properly truncate FP values into integers, we need to set i387 control
2264 word. We can't emit proper mode switching code before reload, as spills
2265 generated by reload may truncate values incorrectly, but we still can avoid
2266 redundant computation of new control word by the mode switching pass.
2267 The fldcw instructions are still emitted redundantly, but this is probably
2268 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2269 the sequence.
22fb740d
JH
2270
2271 The machinery is to emit simple truncation instructions and split them
2272 before reload to instructions having USEs of two memory locations that
2273 are filled by this code to old and new control word.
fce5a9f2 2274
22fb740d
JH
2275 Post-reload pass may be later used to eliminate the redundant fildcw if
2276 needed. */
2277
ff680eb1
UB
2278enum ix86_entity
2279{
ff97910d
VY
2280 AVX_U128 = 0,
2281 I387_TRUNC,
ff680eb1
UB
2282 I387_FLOOR,
2283 I387_CEIL,
2284 I387_MASK_PM,
2285 MAX_386_ENTITIES
2286};
2287
1cba2b96 2288enum ix86_stack_slot
ff680eb1 2289{
443ca5fc 2290 SLOT_TEMP = 0,
ff680eb1
UB
2291 SLOT_CW_STORED,
2292 SLOT_CW_TRUNC,
2293 SLOT_CW_FLOOR,
2294 SLOT_CW_CEIL,
2295 SLOT_CW_MASK_PM,
2296 MAX_386_STACK_LOCALS
2297};
22fb740d 2298
ff97910d
VY
2299enum avx_u128_state
2300{
2301 AVX_U128_CLEAN,
2302 AVX_U128_DIRTY,
2303 AVX_U128_ANY
2304};
2305
22fb740d
JH
2306/* Define this macro if the port needs extra instructions inserted
2307 for mode switching in an optimizing compilation. */
2308
ff680eb1
UB
2309#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2310 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2311
2312/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2313 initializer for an array of integers. Each initializer element N
2314 refers to an entity that needs mode switching, and specifies the
2315 number of different modes that might need to be set for this
2316 entity. The position of the initializer in the initializer -
2317 starting counting at zero - determines the integer that is used to
2318 refer to the mode-switched entity in question. */
2319
ff680eb1 2320#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2321 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2322
0f0138b6
JH
2323\f
2324/* Avoid renaming of stack registers, as doing so in combination with
2325 scheduling just increases amount of live registers at time and in
2326 the turn amount of fxch instructions needed.
2327
3f97cb0b
AI
2328 ??? Maybe Pentium chips benefits from renaming, someone can try....
2329
2330 Don't rename evex to non-evex sse registers. */
0f0138b6 2331
3f97cb0b
AI
2332#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2333 (EXT_REX_SSE_REGNO_P (SRC) == \
2334 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2335
3b3c6a3f 2336\f
e91f04de 2337#define FASTCALL_PREFIX '@'
fa1a0d02 2338\f
ec7ded37 2339/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2340
604a6be9 2341#ifndef USED_FOR_TARGET
ec7ded37 2342struct GTY(()) machine_frame_state
cd9c1ca8 2343{
ec7ded37
RH
2344 /* This pair tracks the currently active CFA as reg+offset. When reg
2345 is drap_reg, we don't bother trying to record here the real CFA when
2346 it might really be a DW_CFA_def_cfa_expression. */
2347 rtx cfa_reg;
2348 HOST_WIDE_INT cfa_offset;
2349
2350 /* The current offset (canonically from the CFA) of ESP and EBP.
2351 When stack frame re-alignment is active, these may not be relative
2352 to the CFA. However, in all cases they are relative to the offsets
2353 of the saved registers stored in ix86_frame. */
2354 HOST_WIDE_INT sp_offset;
2355 HOST_WIDE_INT fp_offset;
2356
2357 /* The size of the red-zone that may be assumed for the purposes of
2358 eliding register restore notes in the epilogue. This may be zero
2359 if no red-zone is in effect, or may be reduced from the real
2360 red-zone value by a maximum runtime stack re-alignment value. */
2361 int red_zone_offset;
2362
2363 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2364 value within the frame. If false then the offset above should be
2365 ignored. Note that DRAP, if valid, *always* points to the CFA and
2366 thus has an offset of zero. */
2367 BOOL_BITFIELD sp_valid : 1;
2368 BOOL_BITFIELD fp_valid : 1;
2369 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2370
2371 /* Indicate whether the local stack frame has been re-aligned. When
2372 set, the SP/FP offsets above are relative to the aligned frame
2373 and not the CFA. */
2374 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2375};
2376
f81c9774
RH
2377/* Private to winnt.c. */
2378struct seh_frame_state;
2379
d1b38208 2380struct GTY(()) machine_function {
fa1a0d02
JH
2381 struct stack_local_entry *stack_locals;
2382 const char *some_ld_name;
4aab97f9
L
2383 int varargs_gpr_size;
2384 int varargs_fpr_size;
ff680eb1 2385 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2386
2387 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2388 has been computed for. */
2389 int use_fast_prologue_epilogue_nregs;
2390
7458026b
ILT
2391 /* For -fsplit-stack support: A stack local which holds a pointer to
2392 the stack arguments for a function with a variable number of
2393 arguments. This is set at the start of the function and is used
2394 to initialize the overflow_arg_area field of the va_list
2395 structure. */
2396 rtx split_stack_varargs_pointer;
2397
3452586b
RH
2398 /* This value is used for amd64 targets and specifies the current abi
2399 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2400 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2401
2402 /* Nonzero if the function accesses a previous frame. */
2403 BOOL_BITFIELD accesses_prev_frame : 1;
2404
2405 /* Nonzero if the function requires a CLD in the prologue. */
2406 BOOL_BITFIELD needs_cld : 1;
2407
922e3e33
UB
2408 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2409 expander to determine the style used. */
3452586b
RH
2410 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2411
5bf5a10b
AO
2412 /* If true, the current function needs the default PIC register, not
2413 an alternate register (on x86) and must not use the red zone (on
2414 x86_64), even if it's a leaf function. We don't want the
2415 function to be regarded as non-leaf because TLS calls need not
2416 affect register allocation. This flag is set when a TLS call
2417 instruction is expanded within a function, and never reset, even
2418 if all such instructions are optimized away. Use the
2419 ix86_current_function_calls_tls_descriptor macro for a better
2420 approximation. */
3452586b
RH
2421 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2422
2423 /* If true, the current function has a STATIC_CHAIN is placed on the
2424 stack below the return address. */
2425 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2426
529a6471
JJ
2427 /* If true, it is safe to not save/restore DRAP register. */
2428 BOOL_BITFIELD no_drap_save_restore : 1;
2429
ec7ded37
RH
2430 /* During prologue/epilogue generation, the current frame state.
2431 Otherwise, the frame state at the end of the prologue. */
2432 struct machine_frame_state fs;
f81c9774
RH
2433
2434 /* During SEH output, this is non-null. */
2435 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2436};
cd9c1ca8 2437#endif
fa1a0d02
JH
2438
2439#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2440#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2441#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2442#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2443#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2444#define ix86_tls_descriptor_calls_expanded_in_cfun \
2445 (cfun->machine->tls_descriptor_call_expanded_p)
2446/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2447 calls are optimized away, we try to detect cases in which it was
2448 optimized away. Since such instructions (use (reg REG_SP)), we can
2449 verify whether there's any such instruction live by testing that
2450 REG_SP is live. */
2451#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2452 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2453#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2454
1bc7c5b6
ZW
2455/* Control behavior of x86_file_start. */
2456#define X86_FILE_START_VERSION_DIRECTIVE false
2457#define X86_FILE_START_FLTUSED false
2458
7dcbf659
JH
2459/* Flag to mark data that is in the large address area. */
2460#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2461#define SYMBOL_REF_FAR_ADDR_P(X) \
2462 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2463
2464/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2465 have defined always, to avoid ifdefing. */
2466#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2467#define SYMBOL_REF_DLLIMPORT_P(X) \
2468 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2469
2470#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2471#define SYMBOL_REF_DLLEXPORT_P(X) \
2472 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2473
82c0e1a0
KT
2474#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2475#define SYMBOL_REF_STUBVAR_P(X) \
2476 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2477
7942e47e
RY
2478extern void debug_ready_dispatch (void);
2479extern void debug_dispatch_window (int);
2480
91afcfa3
QN
2481/* The value at zero is only defined for the BMI instructions
2482 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2483#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2484 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2485#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2486 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2487
2488
b8ce4e94
KT
2489/* Flags returned by ix86_get_callcvt (). */
2490#define IX86_CALLCVT_CDECL 0x1
2491#define IX86_CALLCVT_STDCALL 0x2
2492#define IX86_CALLCVT_FASTCALL 0x4
2493#define IX86_CALLCVT_THISCALL 0x8
2494#define IX86_CALLCVT_REGPARM 0x10
2495#define IX86_CALLCVT_SSEREGPARM 0x20
2496
2497#define IX86_BASE_CALLCVT(FLAGS) \
2498 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2499 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2500
b86b9f44
MM
2501#define RECIP_MASK_NONE 0x00
2502#define RECIP_MASK_DIV 0x01
2503#define RECIP_MASK_SQRT 0x02
2504#define RECIP_MASK_VEC_DIV 0x04
2505#define RECIP_MASK_VEC_SQRT 0x08
2506#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2507 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2508#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2509
2510#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2511#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2512#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2513#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2514
5dcfdccd
KY
2515#define IX86_HLE_ACQUIRE (1 << 16)
2516#define IX86_HLE_RELEASE (1 << 17)
2517
e83b8e2e
JJ
2518/* For switching between functions with different target attributes. */
2519#define SWITCHABLE_TARGET 1
2520
c98f8742
JVA
2521/*
2522Local variables:
2523version-control: t
2524End:
2525*/