]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
* vax.md (casesi): Use emit_jump_insn. Tidy expander pattern.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
e075ae69 1/* Definitions of target machine for GNU compiler for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d9a5f180 3 2001, 2002 Free Software Foundation, Inc.
c98f8742
JVA
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
97aadbb9 19the Free Software Foundation, 59 Temple Place - Suite 330,
892a2d68 20Boston, MA 02111-1307, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init; /* cost of starting a multiply */
45 const int mult_bit; /* cost of multiply per each bit set */
46 const int divide; /* cost of a divide/mod */
44cf5b6a
JH
47 int movsx; /* The cost of movsx operation. */
48 int movzx; /* The cost of movzx operation. */
8b60264b
KG
49 const int large_insn; /* insns larger than this cost more */
50 const int move_ratio; /* The threshold of number of scalar
ac775968 51 memory-to-memory move insns. */
8b60264b
KG
52 const int movzbl_load; /* cost of loading using movzbl */
53 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
54 in QImode, HImode and SImode relative
55 to reg-reg move (2). */
8b60264b 56 const int int_store[3]; /* cost of storing integer register
96e7ae40 57 in QImode, HImode and SImode */
8b60264b
KG
58 const int fp_move; /* cost of reg,reg fld/fst */
59 const int fp_load[3]; /* cost of loading FP register
96e7ae40 60 in SFmode, DFmode and XFmode */
8b60264b 61 const int fp_store[3]; /* cost of storing FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b
KG
63 const int mmx_move; /* cost of moving MMX register. */
64 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 65 in SImode and DImode */
8b60264b 66 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 67 in SImode and DImode */
8b60264b
KG
68 const int sse_move; /* cost of moving SSE register. */
69 const int sse_load[3]; /* cost of loading SSE register
fa79946e 70 in SImode, DImode and TImode*/
8b60264b 71 const int sse_store[3]; /* cost of storing SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 74 integer and vice versa. */
f4365627
JH
75 const int prefetch_block; /* bytes moved to cache for prefetch. */
76 const int simultaneous_prefetches; /* number of parallel prefetch
77 operations. */
d4ba09c0
SC
78};
79
8b60264b 80extern const struct processor_costs *ix86_cost;
d4ba09c0 81
c98f8742
JVA
82/* Run-time compilation parameters selecting different hardware subsets. */
83
84extern int target_flags;
85
86/* Macros used in the machine description to test the flags. */
87
ddd5a7c1 88/* configure can arrange to make this 2, to force a 486. */
e075ae69 89
35b528be
RS
90#ifndef TARGET_CPU_DEFAULT
91#define TARGET_CPU_DEFAULT 0
92#endif
93
3b3c6a3f 94/* Masks for the -m switches */
e075ae69
RH
95#define MASK_80387 0x00000001 /* Hardware floating point */
96#define MASK_RTD 0x00000002 /* Use ret that pops args */
97#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
98#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
99#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
100#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
101#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
102#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
103#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
0dd0e980
JH
104#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
105#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
106#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
107#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
108#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
109#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
110#define MASK_MMX_SET 0x00008000
111#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
112#define MASK_SSE_SET 0x00020000
113#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
114#define MASK_SSE2_SET 0x00080000
47f339cf 115#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
0dd0e980
JH
116#define MASK_3DNOW_SET 0x00200000
117#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
118#define MASK_3DNOW_A_SET 0x00800000
119#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
c93e80a5
JH
120#define MASK_64BIT 0x02000000 /* Produce 64bit code */
121/* ... overlap with subtarget options starts by 0x04000000. */
122#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
3b3c6a3f
MM
123
124/* Use the floating point instructions */
125#define TARGET_80387 (target_flags & MASK_80387)
126
c98f8742
JVA
127/* Compile using ret insn that pops args.
128 This will not work unless you use prototypes at least
fce5a9f2 129 for all functions that can take varying numbers of args. */
3b3c6a3f
MM
130#define TARGET_RTD (target_flags & MASK_RTD)
131
b08de47e
MM
132/* Align doubles to a two word boundary. This breaks compatibility with
133 the published ABI's for structures containing doubles, but produces
134 faster code on the pentium. */
135#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
c98f8742 136
f73ad30e
JH
137/* Use push instructions to save outgoing args. */
138#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
139
140/* Accumulate stack adjustments to prologue/epilogue. */
141#define TARGET_ACCUMULATE_OUTGOING_ARGS \
142 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
143
d7cd15e9
RS
144/* Put uninitialized locals into bss, not data.
145 Meaningful only on svr3. */
3b3c6a3f 146#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
d7cd15e9 147
c572e5ba
JVA
148/* Use IEEE floating point comparisons. These handle correctly the cases
149 where the result of a comparison is unordered. Normally SIGFPE is
150 generated in such cases, in which case this isn't needed. */
3b3c6a3f 151#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
c572e5ba 152
8c2bf92a
JVA
153/* Functions that return a floating point value may return that value
154 in the 387 FPU or in 386 integer registers. If set, this flag causes
892a2d68 155 the 387 to be used, which is compatible with most calling conventions. */
3b3c6a3f 156#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
8c2bf92a 157
2b589241 158/* Long double is 128bit instead of 96bit, even when only 80bits are used.
f5143c46 159 This mode wastes cache, but avoid misaligned data accesses and simplifies
2b589241
JH
160 address calculations. */
161#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
162
099800e3
RK
163/* Disable generation of FP sin, cos and sqrt operations for 387.
164 This is because FreeBSD lacks these in the math-emulator-code */
3b3c6a3f
MM
165#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
166
2f2fa5b1 167/* Don't create frame pointers for leaf functions */
e075ae69
RH
168#define TARGET_OMIT_LEAF_FRAME_POINTER \
169 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
f6f58ba3 170
3b3c6a3f 171/* Debug GO_IF_LEGITIMATE_ADDRESS */
c93e80a5 172#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
3b3c6a3f 173
b08de47e 174/* Debug FUNCTION_ARG macros */
c93e80a5 175#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
b08de47e 176
25f94bb5 177/* 64bit Sledgehammer mode */
0c2dc519 178#ifdef TARGET_BI_ARCH
25f94bb5 179#define TARGET_64BIT (target_flags & MASK_64BIT)
0c2dc519 180#else
67adf6a9 181#if TARGET_64BIT_DEFAULT
0c2dc519
JH
182#define TARGET_64BIT 1
183#else
184#define TARGET_64BIT 0
185#endif
186#endif
25f94bb5 187
f7746310
SC
188#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
189#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
190#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
3a0433fd 191#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
a269a03c 192#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
309ada50 193#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
b4e89e2d 194#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
a269a03c
JC
195
196#define CPUMASK (1 << ix86_cpu)
197extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
198extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 199extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69
RH
200extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
201extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
202extern const int x86_use_cltd, x86_read_modify_write;
203extern const int x86_read_modify, x86_split_long_moves;
285464d0 204extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 205extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 206extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 207extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 208extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 209extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 210extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 211extern const int x86_arch_always_fancy_math_387, x86_shift1;
f4365627 212extern int x86_prefetch_sse;
a269a03c
JC
213
214#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
215#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
216#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
217#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
218#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
0644b628
JH
219/* For sane SSE instruction set generation we need fcomi instruction. It is
220 safe to enable all CMOVE instructions. */
221#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
a269a03c 222#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
ef6257cd 223#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
a269a03c 224#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
0d7d98ee 225#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
e075ae69
RH
226#define TARGET_MOVX (x86_movx & CPUMASK)
227#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
228#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
229#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
230#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
231#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
232#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
233#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
234#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
e9e80858 235#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
285464d0 236#define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
f90800f8 237#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
d9f32422
JH
238#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
239#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
240#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
241#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
bdeb029c
JH
242#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
243#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
244#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
245#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
0b5107cf
JH
246#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
247#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
248#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
c6036a37
JH
249#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
250#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
b972dd02 251#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
f4365627 252#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
495333a6 253#define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
a269a03c 254
8c9be447 255#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
3b3c6a3f 256
79f05c19
JH
257#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
258#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
259
c93e80a5 260#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 261
446988df
JH
262#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
263#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
965f5423
JH
264#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
265#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
266 && (ix86_fpmath & FPMATH_387))
a7180f70 267#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
47f339cf
BS
268#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
269#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
a7180f70 270
8362f420
JH
271#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
272
f996902d
RH
273#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
274#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
275
a5d17ff3
PT
276/* WARNING: Do not mark empty strings for translation, as calling
277 gettext on an empty string does NOT return an empty
278 string. */
279
280
e075ae69 281#define TARGET_SWITCHES \
047142d3
PT
282{ { "80387", MASK_80387, N_("Use hardware fp") }, \
283 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
284 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
285 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
286 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
a5d17ff3
PT
287 { "386", 0, "" /*Deprecated.*/}, \
288 { "486", 0, "" /*Deprecated.*/}, \
289 { "pentium", 0, "" /*Deprecated.*/}, \
290 { "pentiumpro", 0, "" /*Deprecated.*/}, \
291 { "intel-syntax", 0, "" /*Deprecated.*/}, \
292 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
047142d3
PT
293 { "rtd", MASK_RTD, \
294 N_("Alternate calling convention") }, \
295 { "no-rtd", -MASK_RTD, \
296 N_("Use normal calling convention") }, \
e075ae69 297 { "align-double", MASK_ALIGN_DOUBLE, \
047142d3 298 N_("Align some doubles on dword boundary") }, \
e075ae69 299 { "no-align-double", -MASK_ALIGN_DOUBLE, \
047142d3 300 N_("Align doubles on word boundary") }, \
e075ae69 301 { "svr3-shlib", MASK_SVR3_SHLIB, \
047142d3 302 N_("Uninitialized locals in .bss") }, \
e075ae69 303 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
047142d3 304 N_("Uninitialized locals in .data") }, \
e075ae69 305 { "ieee-fp", MASK_IEEE_FP, \
047142d3 306 N_("Use IEEE math for fp comparisons") }, \
e075ae69 307 { "no-ieee-fp", -MASK_IEEE_FP, \
047142d3 308 N_("Do not use IEEE math for fp comparisons") }, \
e075ae69 309 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
047142d3 310 N_("Return values of functions in FPU registers") }, \
e075ae69 311 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
047142d3 312 N_("Do not return values of functions in FPU registers")}, \
e075ae69 313 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
047142d3 314 N_("Do not generate sin, cos, sqrt for FPU") }, \
e075ae69 315 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
047142d3 316 N_("Generate sin, cos, sqrt for FPU")}, \
e075ae69 317 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
047142d3 318 N_("Omit the frame pointer in leaf functions") }, \
e075ae69 319 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
047142d3
PT
320 { "stack-arg-probe", MASK_STACK_PROBE, \
321 N_("Enable stack probing") }, \
e075ae69
RH
322 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
323 { "windows", 0, 0 /* undocumented */ }, \
324 { "dll", 0, 0 /* undocumented */ }, \
79f05c19 325 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
047142d3 326 N_("Align destination of the string operations") }, \
79f05c19 327 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
047142d3 328 N_("Do not align destination of the string operations") }, \
4be2e5d9 329 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
047142d3 330 N_("Inline all known string operations") }, \
79f05c19 331 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
047142d3 332 N_("Do not inline all known string operations") }, \
f73ad30e 333 { "push-args", -MASK_NO_PUSH_ARGS, \
047142d3 334 N_("Use push instructions to save outgoing arguments") }, \
053f1126 335 { "no-push-args", MASK_NO_PUSH_ARGS, \
047142d3 336 N_("Do not use push instructions to save outgoing arguments") }, \
0dd0e980
JH
337 { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
338 | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
047142d3 339 N_("Use push instructions to save outgoing arguments") }, \
0dd0e980 340 { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
047142d3 341 N_("Do not use push instructions to save outgoing arguments") }, \
0dd0e980 342 { "mmx", MASK_MMX | MASK_MMX_SET, \
b0287a90 343 N_("Support MMX built-in functions") }, \
0dd0e980 344 { "no-mmx", -MASK_MMX, \
b0287a90 345 N_("Do not support MMX built-in functions") }, \
a5d17ff3 346 { "no-mmx", MASK_MMX_SET, "" }, \
0dd0e980 347 { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
b0287a90 348 N_("Support 3DNow! built-in functions") }, \
a5d17ff3 349 { "no-3dnow", -MASK_3DNOW, "" }, \
0dd0e980 350 { "no-3dnow", MASK_3DNOW_SET, \
b0287a90 351 N_("Do not support 3DNow! built-in functions") }, \
0dd0e980 352 { "sse", MASK_SSE | MASK_SSE_SET, \
b0287a90 353 N_("Support MMX and SSE built-in functions and code generation") }, \
a5d17ff3 354 { "no-sse", -MASK_SSE, "" }, \
0dd0e980 355 { "no-sse", MASK_SSE_SET, \
b0287a90 356 N_("Do not support MMX and SSE built-in functions and code generation") },\
0dd0e980 357 { "sse2", MASK_SSE2 | MASK_SSE2_SET, \
b0287a90 358 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
a5d17ff3 359 { "no-sse2", -MASK_SSE2, "" }, \
0dd0e980 360 { "no-sse2", MASK_SSE2_SET, \
b0287a90 361 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
2b589241 362 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
c725bd79 363 N_("sizeof(long double) is 16") }, \
2b589241 364 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
c725bd79 365 N_("sizeof(long double) is 12") }, \
25f94bb5
JH
366 { "64", MASK_64BIT, \
367 N_("Generate 64bit x86-64 code") }, \
368 { "32", -MASK_64BIT, \
369 N_("Generate 32bit i386 code") }, \
8362f420
JH
370 { "red-zone", -MASK_NO_RED_ZONE, \
371 N_("Use red-zone in the x86-64 code") }, \
372 { "no-red-zone", MASK_NO_RED_ZONE, \
4cba3b67 373 N_("Do not use red-zone in the x86-64 code") }, \
e075ae69 374 SUBTARGET_SWITCHES \
67adf6a9 375 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
241e1a89 376
67adf6a9
RH
377#ifndef TARGET_64BIT_DEFAULT
378#define TARGET_64BIT_DEFAULT 0
25f94bb5
JH
379#endif
380
67adf6a9
RH
381#define TARGET_DEFAULT MASK_OMIT_LEAF_FRAME_POINTER
382
383
f5316dfe
MM
384/* This macro is similar to `TARGET_SWITCHES' but defines names of
385 command options that have values. Its definition is an
386 initializer with a subgrouping for each command option.
387
388 Each subgrouping contains a string constant, that defines the
389 fixed part of the option name, and the address of a variable. The
390 variable, type `char *', is set to the variable part of the given
391 option if the fixed part matches. The actual option name is made
392 by appending `-m' to the specified name. */
e075ae69
RH
393#define TARGET_OPTIONS \
394{ { "cpu=", &ix86_cpu_string, \
047142d3 395 N_("Schedule code for given CPU")}, \
965f5423
JH
396 { "fpmath=", &ix86_fpmath_string, \
397 N_("Generate floating point mathematics using given instruction set")},\
e075ae69 398 { "arch=", &ix86_arch_string, \
047142d3 399 N_("Generate code for given CPU")}, \
e075ae69 400 { "regparm=", &ix86_regparm_string, \
047142d3 401 N_("Number of registers used to pass integer arguments") }, \
e075ae69 402 { "align-loops=", &ix86_align_loops_string, \
047142d3 403 N_("Loop code aligned to this power of 2") }, \
e075ae69 404 { "align-jumps=", &ix86_align_jumps_string, \
047142d3 405 N_("Jump targets are aligned to this power of 2") }, \
e075ae69 406 { "align-functions=", &ix86_align_funcs_string, \
047142d3 407 N_("Function starts are aligned to this power of 2") }, \
e075ae69
RH
408 { "preferred-stack-boundary=", \
409 &ix86_preferred_stack_boundary_string, \
047142d3 410 N_("Attempt to keep stack aligned to this power of 2") }, \
e075ae69 411 { "branch-cost=", &ix86_branch_cost_string, \
047142d3 412 N_("Branches are this expensive (1-5, arbitrary units)") }, \
6189a572
JH
413 { "cmodel=", &ix86_cmodel_string, \
414 N_("Use given x86-64 code model") }, \
c93e80a5 415 { "debug-arg", &ix86_debug_arg_string, \
a5d17ff3 416 "" /* Undocumented. */ }, \
c93e80a5 417 { "debug-addr", &ix86_debug_addr_string, \
a5d17ff3 418 "" /* Undocumented. */ }, \
c93e80a5
JH
419 { "asm=", &ix86_asm_string, \
420 N_("Use given assembler dialect") }, \
f996902d
RH
421 { "tls-dialect=", &ix86_tls_dialect_string, \
422 N_("Use given thread-local storage dialect") }, \
e075ae69 423 SUBTARGET_OPTIONS \
b08de47e 424}
f5316dfe
MM
425
426/* Sometimes certain combinations of command options do not make
427 sense on a particular target machine. You can define a macro
428 `OVERRIDE_OPTIONS' to take account of this. This macro, if
429 defined, is executed once just after all the command options have
430 been parsed.
431
432 Don't use this macro to turn on various extra optimizations for
433 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
434
435#define OVERRIDE_OPTIONS override_options ()
436
437/* These are meant to be redefined in the host dependent files */
95393dfd 438#define SUBTARGET_SWITCHES
f5316dfe 439#define SUBTARGET_OPTIONS
95393dfd 440
d4ba09c0 441/* Define this to change the optimizations performed by default. */
d9a5f180
GS
442#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
443 optimization_options ((LEVEL), (SIZE))
d4ba09c0 444
241e1a89
SC
445/* Specs for the compiler proper */
446
628714d8
RK
447#ifndef CC1_CPU_SPEC
448#define CC1_CPU_SPEC "\
241e1a89 449%{!mcpu*: \
4a88a060 450%{m386:-mcpu=i386 \
3f0e0fa2 451%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
4a88a060 452%{m486:-mcpu=i486 \
3f0e0fa2 453%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
4a88a060 454%{mpentium:-mcpu=pentium \
3f0e0fa2 455%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
4a88a060 456%{mpentiumpro:-mcpu=pentiumpro \
c93e80a5
JH
457%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
458%{mintel-syntax:-masm=intel \
459%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
460%{mno-intel-syntax:-masm=att \
461%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
241e1a89 462#endif
c98f8742 463\f
30efe578 464/* Target CPU builtins. */
1ba7b414
NB
465#define TARGET_CPU_CPP_BUILTINS() \
466 do \
467 { \
468 size_t arch_len = strlen (ix86_arch_string); \
469 size_t cpu_len = strlen (ix86_cpu_string); \
470 int last_arch_char = ix86_arch_string[arch_len - 1]; \
471 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
472 \
473 if (TARGET_64BIT) \
474 { \
475 builtin_assert ("cpu=x86_64"); \
476 builtin_assert ("machine=x86_64"); \
477 builtin_define ("__x86_64"); \
478 builtin_define ("__x86_64__"); \
479 } \
480 else \
481 { \
482 builtin_assert ("cpu=i386"); \
483 builtin_assert ("machine=i386"); \
484 builtin_define_std ("i386"); \
485 } \
486 \
487 /* Built-ins based on -mcpu= (or -march= if no \
488 CPU given). */ \
489 if (TARGET_386) \
490 builtin_define ("__tune_i386__"); \
491 else if (TARGET_486) \
492 builtin_define ("__tune_i486__"); \
493 else if (TARGET_PENTIUM) \
494 { \
495 builtin_define ("__tune_i586__"); \
496 builtin_define ("__tune_pentium__"); \
497 if (last_cpu_char == 'x') \
498 builtin_define ("__tune_pentium_mmx__"); \
499 } \
500 else if (TARGET_PENTIUMPRO) \
501 { \
502 builtin_define ("__tune_i686__"); \
503 builtin_define ("__tune_pentiumpro__"); \
504 } \
505 else if (TARGET_K6) \
506 { \
507 builtin_define ("__tune_k6__"); \
508 if (last_cpu_char == '2') \
509 builtin_define ("__tune_k6_2__"); \
510 else if (last_cpu_char == '3') \
511 builtin_define ("__tune_k6_3__"); \
512 } \
513 else if (TARGET_ATHLON) \
514 { \
515 builtin_define ("__tune_athlon__"); \
516 /* Only plain "athlon" lacks SSE. */ \
517 if (last_cpu_char != 'n') \
518 builtin_define ("__tune_athlon_sse__"); \
519 } \
520 else if (TARGET_PENTIUM4) \
521 builtin_define ("__tune_pentium4__"); \
522 \
523 if (TARGET_MMX) \
524 builtin_define ("__MMX__"); \
525 if (TARGET_3DNOW) \
526 builtin_define ("__3dNOW__"); \
527 if (TARGET_3DNOW_A) \
528 builtin_define ("__3dNOW_A__"); \
529 if (TARGET_SSE) \
530 builtin_define ("__SSE__"); \
531 if (TARGET_SSE2) \
532 builtin_define ("__SSE2__"); \
533 \
534 /* Built-ins based on -march=. */ \
535 if (ix86_arch == PROCESSOR_I486) \
536 { \
537 builtin_define ("__i486"); \
538 builtin_define ("__i486__"); \
539 } \
540 else if (ix86_arch == PROCESSOR_PENTIUM) \
541 { \
542 builtin_define ("__i586"); \
543 builtin_define ("__i586__"); \
544 builtin_define ("__pentium"); \
545 builtin_define ("__pentium__"); \
546 if (last_arch_char == 'x') \
547 builtin_define ("__pentium_mmx__"); \
548 } \
549 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
550 { \
551 builtin_define ("__i686"); \
552 builtin_define ("__i686__"); \
553 builtin_define ("__pentiumpro"); \
554 builtin_define ("__pentiumpro__"); \
555 } \
556 else if (ix86_arch == PROCESSOR_K6) \
557 { \
558 \
559 builtin_define ("__k6"); \
560 builtin_define ("__k6__"); \
561 if (last_arch_char == '2') \
562 builtin_define ("__k6_2__"); \
563 else if (last_arch_char == '3') \
564 builtin_define ("__k6_3__"); \
565 } \
566 else if (ix86_arch == PROCESSOR_ATHLON) \
567 { \
568 builtin_define ("__athlon"); \
569 builtin_define ("__athlon__"); \
570 /* Only plain "athlon" lacks SSE. */ \
571 if (last_arch_char != 'n') \
572 builtin_define ("__athlon_sse__"); \
573 } \
574 else if (ix86_arch == PROCESSOR_PENTIUM4) \
575 { \
576 builtin_define ("__pentium4"); \
577 builtin_define ("__pentium4__"); \
578 } \
579 } \
30efe578
NB
580 while (0)
581
f4365627
JH
582#define TARGET_CPU_DEFAULT_i386 0
583#define TARGET_CPU_DEFAULT_i486 1
584#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
585#define TARGET_CPU_DEFAULT_pentium_mmx 3
586#define TARGET_CPU_DEFAULT_pentiumpro 4
587#define TARGET_CPU_DEFAULT_pentium2 5
588#define TARGET_CPU_DEFAULT_pentium3 6
589#define TARGET_CPU_DEFAULT_pentium4 7
590#define TARGET_CPU_DEFAULT_k6 8
591#define TARGET_CPU_DEFAULT_k6_2 9
592#define TARGET_CPU_DEFAULT_k6_3 10
593#define TARGET_CPU_DEFAULT_athlon 11
594#define TARGET_CPU_DEFAULT_athlon_sse 12
f4365627
JH
595
596#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
597 "pentiumpro", "pentium2", "pentium3", \
598 "pentium4", "k6", "k6-2", "k6-3",\
599 "athlon", "athlon-4"}
0c2dc519 600
628714d8 601#ifndef CC1_SPEC
8015b78d 602#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
603#endif
604
605/* This macro defines names of additional specifications to put in the
606 specs that can be used in various specifications like CC1_SPEC. Its
607 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
608
609 Each subgrouping contains a string constant, that defines the
610 specification name, and a string constant that used by the GNU CC driver
611 program.
612
613 Do not define this macro if it does not need to do anything. */
614
615#ifndef SUBTARGET_EXTRA_SPECS
616#define SUBTARGET_EXTRA_SPECS
617#endif
618
619#define EXTRA_SPECS \
628714d8 620 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
621 SUBTARGET_EXTRA_SPECS
622\f
c98f8742
JVA
623/* target machine storage layout */
624
2b589241 625/* Define for XFmode or TFmode extended real floating point support.
2b589241
JH
626 The XFmode is specified by i386 ABI, while TFmode may be faster
627 due to alignment and simplifications in the address calculations.
628 */
629#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
630#define MAX_LONG_DOUBLE_TYPE_SIZE 128
65d9c0ab
JH
631#ifdef __x86_64__
632#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
633#else
634#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
635#endif
2b589241
JH
636/* Tell real.c that this is the 80-bit Intel extended float format
637 packaged in a 128-bit or 96bit entity. */
23c108af 638#define INTEL_EXTENDED_IEEE_FORMAT 1
2b589241 639
0038aea6 640
65d9c0ab
JH
641#define SHORT_TYPE_SIZE 16
642#define INT_TYPE_SIZE 32
643#define FLOAT_TYPE_SIZE 32
644#define LONG_TYPE_SIZE BITS_PER_WORD
2faf6b96 645#define MAX_WCHAR_TYPE_SIZE 32
65d9c0ab
JH
646#define DOUBLE_TYPE_SIZE 64
647#define LONG_LONG_TYPE_SIZE 64
648
67adf6a9 649#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519
JH
650#define MAX_BITS_PER_WORD 64
651#define MAX_LONG_TYPE_SIZE 64
652#else
653#define MAX_BITS_PER_WORD 32
654#define MAX_LONG_TYPE_SIZE 32
655#endif
656
c98f8742
JVA
657/* Define this if most significant byte of a word is the lowest numbered. */
658/* That is true on the 80386. */
659
660#define BITS_BIG_ENDIAN 0
661
662/* Define this if most significant byte of a word is the lowest numbered. */
663/* That is not true on the 80386. */
664#define BYTES_BIG_ENDIAN 0
665
666/* Define this if most significant word of a multiword number is the lowest
667 numbered. */
668/* Not true for 80386 */
669#define WORDS_BIG_ENDIAN 0
670
c98f8742 671/* Width of a word, in units (bytes). */
65d9c0ab
JH
672#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
673#define MIN_UNITS_PER_WORD 4
c98f8742 674
c98f8742 675/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 676#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 677
e075ae69 678/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 679#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 680
3af4bd89
JH
681/* Boundary (in *bits*) on which the stack pointer preferrs to be
682 aligned; the compiler cannot rely on having this alignment. */
e075ae69 683#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 684
1d482056
RH
685/* As of July 2001, many runtimes to not align the stack properly when
686 entering main. This causes expand_main_function to forcably align
687 the stack, which results in aligned frames for functions called from
688 main, though it does nothing for the alignment of main itself. */
689#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 690 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 691
892a2d68 692/* Allocation boundary for the code of a function. */
3e18fdf6 693#define FUNCTION_BOUNDARY 16
c98f8742 694
892a2d68 695/* Alignment of field after `int : 0' in a structure. */
c98f8742 696
65d9c0ab 697#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
698
699/* Minimum size in bits of the largest boundary to which any
700 and all fundamental data types supported by the hardware
701 might need to be aligned. No data type wants to be aligned
17f24ff0 702 rounder than this.
fce5a9f2 703
3e18fdf6 704 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
705 and Pentium Pro XFmode values at 128 bit boundaries. */
706
707#define BIGGEST_ALIGNMENT 128
708
a7180f70
BS
709/* Decide whether a variable of mode MODE must be 128 bit aligned. */
710#define ALIGN_MODE_128(MODE) \
2b589241
JH
711 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
712 || (MODE) == V4SFmode || (MODE) == V4SImode)
a7180f70 713
17f24ff0 714/* The published ABIs say that doubles should be aligned on word
6fc605d8
ZW
715 boundaries, so lower the aligment for structure fields unless
716 -malign-double is set. */
717/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
718 constant. Use the smaller value in that context. */
719#ifndef IN_TARGET_LIBS
65d9c0ab 720#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
6fc605d8
ZW
721#else
722#define BIGGEST_FIELD_ALIGNMENT 32
723#endif
c98f8742 724
e5e8a8bf 725/* If defined, a C expression to compute the alignment given to a
a7180f70 726 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
727 and ALIGN is the alignment that the object would ordinarily have.
728 The value of this macro is used instead of that alignment to align
729 the object.
730
731 If this macro is not defined, then ALIGN is used.
732
733 The typical use of this macro is to increase alignment for string
734 constants to be word aligned so that `strcpy' calls that copy
735 constants can be done inline. */
736
d9a5f180 737#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 738
8a022443
JW
739/* If defined, a C expression to compute the alignment for a static
740 variable. TYPE is the data type, and ALIGN is the alignment that
741 the object would ordinarily have. The value of this macro is used
742 instead of that alignment to align the object.
743
744 If this macro is not defined, then ALIGN is used.
745
746 One use of this macro is to increase alignment of medium-size
747 data to make it all fit in fewer cache lines. Another is to
748 cause character arrays to be word-aligned so that `strcpy' calls
749 that copy constants to character arrays can be done inline. */
750
d9a5f180 751#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
752
753/* If defined, a C expression to compute the alignment for a local
754 variable. TYPE is the data type, and ALIGN is the alignment that
755 the object would ordinarily have. The value of this macro is used
756 instead of that alignment to align the object.
757
758 If this macro is not defined, then ALIGN is used.
759
760 One use of this macro is to increase alignment of medium-size
761 data to make it all fit in fewer cache lines. */
762
d9a5f180 763#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 764
53c17031
JH
765/* If defined, a C expression that gives the alignment boundary, in
766 bits, of an argument with the specified mode and type. If it is
767 not defined, `PARM_BOUNDARY' is used for all arguments. */
768
d9a5f180
GS
769#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
770 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 771
b4ac57ab 772/* Set this non-zero if move instructions will actually fail to work
c98f8742 773 when given unaligned data. */
b4ac57ab 774#define STRICT_ALIGNMENT 0
c98f8742
JVA
775
776/* If bit field type is int, don't let it cross an int,
777 and give entire struct the alignment of an int. */
778/* Required on the 386 since it doesn't have bitfield insns. */
779#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
780\f
781/* Standard register usage. */
782
783/* This processor has special stack-like registers. See reg-stack.c
892a2d68 784 for details. */
c98f8742
JVA
785
786#define STACK_REGS
d9a5f180
GS
787#define IS_STACK_MODE(MODE) \
788 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
789 || (MODE) == TFmode)
c98f8742
JVA
790
791/* Number of actual hardware registers.
792 The hardware registers are assigned numbers for the compiler
793 from 0 to just below FIRST_PSEUDO_REGISTER.
794 All registers that the compiler knows about must be given numbers,
795 even those that are not normally considered general registers.
796
797 In the 80386 we give the 8 general purpose registers the numbers 0-7.
798 We number the floating point registers 8-15.
799 Note that registers 0-7 can be accessed as a short or int,
800 while only 0-3 may be used with byte `mov' instructions.
801
802 Reg 16 does not correspond to any hardware register, but instead
803 appears in the RTL as an argument pointer prior to reload, and is
804 eliminated during reloading in favor of either the stack or frame
892a2d68 805 pointer. */
c98f8742 806
3f3f2124 807#define FIRST_PSEUDO_REGISTER 53
c98f8742 808
3073d01c
ML
809/* Number of hardware registers that go into the DWARF-2 unwind info.
810 If not defined, equals FIRST_PSEUDO_REGISTER. */
811
812#define DWARF_FRAME_REGISTERS 17
813
c98f8742
JVA
814/* 1 for registers that have pervasive standard uses
815 and are not available for the register allocator.
3f3f2124 816 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 817
3f3f2124
JH
818 The value is an mask - bit 1 is set for fixed registers
819 for 32bit target, while 2 is set for fixed registers for 64bit.
820 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
821 */
a7180f70
BS
822#define FIXED_REGISTERS \
823/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 824{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
a7180f70 825/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 826 3, 3, 3, 3, 3, \
a7180f70
BS
827/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
828 0, 0, 0, 0, 0, 0, 0, 0, \
829/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
830 0, 0, 0, 0, 0, 0, 0, 0, \
831/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
832 1, 1, 1, 1, 1, 1, 1, 1, \
833/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
834 1, 1, 1, 1, 1, 1, 1, 1}
fce5a9f2 835
c98f8742
JVA
836
837/* 1 for registers not available across function calls.
838 These must include the FIXED_REGISTERS and also any
839 registers that can be used without being saved.
840 The latter must include the registers where values are returned
841 and the register where structure-value addresses are passed.
fce5a9f2
EC
842 Aside from that, you can include as many other registers as you like.
843
3f3f2124
JH
844 The value is an mask - bit 1 is set for call used
845 for 32bit target, while 2 is set for call used for 64bit.
846 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
847*/
a7180f70
BS
848#define CALL_USED_REGISTERS \
849/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 850{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 851/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 852 3, 3, 3, 3, 3, \
a7180f70 853/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3f3f2124 854 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 855/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
856 3, 3, 3, 3, 3, 3, 3, 3, \
857/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
858 3, 3, 3, 3, 1, 1, 1, 1, \
859/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
860 3, 3, 3, 3, 3, 3, 3, 3} \
c98f8742 861
3b3c6a3f
MM
862/* Order in which to allocate registers. Each register must be
863 listed once, even those in FIXED_REGISTERS. List frame pointer
864 late and fixed registers last. Note that, in general, we prefer
865 registers listed in CALL_USED_REGISTERS, keeping the others
866 available for storage of persistent values.
867
162f023b
JH
868 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
869 so this is just empty initializer for array. */
3b3c6a3f 870
162f023b
JH
871#define REG_ALLOC_ORDER \
872{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
873 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
874 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
875 48, 49, 50, 51, 52 }
3b3c6a3f 876
162f023b
JH
877/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
878 to be rearranged based on a particular function. When using sse math,
879 we want to allocase SSE before x87 registers and vice vera. */
3b3c6a3f 880
162f023b 881#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 882
f5316dfe 883
c98f8742 884/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 885#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 886do { \
3f3f2124
JH
887 int i; \
888 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
889 { \
890 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
891 call_used_regs[i] = (call_used_regs[i] \
892 & (TARGET_64BIT ? 2 : 1)) != 0; \
893 } \
5b43fed1 894 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
895 { \
896 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
897 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
898 } \
899 if (! TARGET_MMX) \
900 { \
901 int i; \
902 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
903 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
904 fixed_regs[i] = call_used_regs[i] = 1; \
905 } \
906 if (! TARGET_SSE) \
907 { \
908 int i; \
909 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
910 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
911 fixed_regs[i] = call_used_regs[i] = 1; \
912 } \
913 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
914 { \
915 int i; \
916 HARD_REG_SET x; \
917 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
918 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
919 if (TEST_HARD_REG_BIT (x, i)) \
920 fixed_regs[i] = call_used_regs[i] = 1; \
921 } \
d9a5f180 922 } while (0)
c98f8742
JVA
923
924/* Return number of consecutive hard regs needed starting at reg REGNO
925 to hold something of mode MODE.
926 This is ordinarily the length in words of a value of mode MODE
927 but can be less for certain modes in special long registers.
928
fce5a9f2 929 Actually there are no two word move instructions for consecutive
c98f8742
JVA
930 registers. And only registers 0-3 may have mov byte instructions
931 applied to them.
932 */
933
934#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
935 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
936 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
d9a5f180 937 : ((MODE) == TFmode \
92d0fb09 938 ? (TARGET_64BIT ? 2 : 3) \
d9a5f180 939 : (MODE) == TCmode \
92d0fb09 940 ? (TARGET_64BIT ? 4 : 6) \
2b589241 941 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 942
fbe5eb6d
BS
943#define VALID_SSE2_REG_MODE(MODE) \
944 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
945 || (MODE) == V2DImode)
946
d9a5f180
GS
947#define VALID_SSE_REG_MODE(MODE) \
948 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
949 || (MODE) == SFmode \
fbe5eb6d
BS
950 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
951 || VALID_SSE2_REG_MODE (MODE) \
141e454b 952 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
a7180f70 953
47f339cf
BS
954#define VALID_MMX_REG_MODE_3DNOW(MODE) \
955 ((MODE) == V2SFmode || (MODE) == SFmode)
956
d9a5f180
GS
957#define VALID_MMX_REG_MODE(MODE) \
958 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
959 || (MODE) == V2SImode || (MODE) == SImode)
960
961#define VECTOR_MODE_SUPPORTED_P(MODE) \
962 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
47f339cf
BS
963 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
964 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
a7180f70 965
d9a5f180
GS
966#define VALID_FP_MODE_P(MODE) \
967 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
968 || (!TARGET_64BIT && (MODE) == XFmode) \
969 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
970 || (!TARGET_64BIT && (MODE) == XCmode))
a946dd00 971
d9a5f180
GS
972#define VALID_INT_MODE_P(MODE) \
973 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
974 || (MODE) == DImode \
975 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
976 || (MODE) == CDImode \
977 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
a946dd00 978
e075ae69 979/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 980
a946dd00 981#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 982 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
983
984/* Value is 1 if it is a good idea to tie two pseudo registers
985 when one has mode MODE1 and one has mode MODE2.
986 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
987 for any hard reg, then this must be 0 for correct output. */
988
95912252
RH
989#define MODES_TIEABLE_P(MODE1, MODE2) \
990 ((MODE1) == (MODE2) \
d2836273
JH
991 || (((MODE1) == HImode || (MODE1) == SImode \
992 || ((MODE1) == QImode \
993 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
994 || ((MODE1) == DImode && TARGET_64BIT)) \
995 && ((MODE2) == HImode || (MODE2) == SImode \
996 || ((MODE1) == QImode \
997 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
998 || ((MODE2) == DImode && TARGET_64BIT))))
999
c98f8742 1000
e075ae69 1001/* Specify the modes required to caller save a given hard regno.
787dc842 1002 We do this on i386 to prevent flags from being saved at all.
e075ae69 1003
787dc842
JH
1004 Kill any attempts to combine saving of modes. */
1005
d9a5f180
GS
1006#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1007 (CC_REGNO_P (REGNO) ? VOIDmode \
1008 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1009 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1010 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1011 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1012 : (MODE))
c98f8742
JVA
1013/* Specify the registers used for certain standard purposes.
1014 The values of these macros are register numbers. */
1015
1016/* on the 386 the pc register is %eip, and is not usable as a general
1017 register. The ordinary mov instructions won't work */
1018/* #define PC_REGNUM */
1019
1020/* Register to use for pushing function arguments. */
1021#define STACK_POINTER_REGNUM 7
1022
1023/* Base register for access to local variables of the function. */
564d80f4
JH
1024#define HARD_FRAME_POINTER_REGNUM 6
1025
1026/* Base register for access to local variables of the function. */
1027#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1028
1029/* First floating point reg */
1030#define FIRST_FLOAT_REG 8
1031
1032/* First & last stack-like regs */
1033#define FIRST_STACK_REG FIRST_FLOAT_REG
1034#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1035
e075ae69
RH
1036#define FLAGS_REG 17
1037#define FPSR_REG 18
7c7ef435 1038#define DIRFLAG_REG 19
e075ae69 1039
a7180f70
BS
1040#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1041#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1042
a7180f70
BS
1043#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1044#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1045
3f3f2124
JH
1046#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1047#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1048
1049#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1050#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1051
c98f8742
JVA
1052/* Value should be nonzero if functions must have frame pointers.
1053 Zero means the frame pointer need not be set up (and parms
1054 may be accessed via the stack pointer) in functions that seem suitable.
1055 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1056#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1057
1058/* Override this in other tm.h files to cope with various OS losage
1059 requiring a frame pointer. */
1060#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1061#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1062#endif
1063
1064/* Make sure we can access arbitrary call frames. */
1065#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1066
1067/* Base register for access to arguments of the function. */
1068#define ARG_POINTER_REGNUM 16
1069
d2836273
JH
1070/* Register in which static-chain is passed to a function.
1071 We do use ECX as static chain register for 32 bit ABI. On the
1072 64bit ABI, ECX is an argument register, so we use R10 instead. */
1073#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1074
1075/* Register to hold the addressing base for position independent
5b43fed1
RH
1076 code access to data items. We don't use PIC pointer for 64bit
1077 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1078 pessimizing code dealing with EBX.
bd09bdeb
RH
1079
1080 To avoid clobbering a call-saved register unnecessarily, we renumber
1081 the pic register when possible. The change is visible after the
1082 prologue has been emitted. */
1083
1084#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1085
1086#define PIC_OFFSET_TABLE_REGNUM \
1087 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1088 : reload_completed ? REGNO (pic_offset_table_rtx) \
1089 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742
JVA
1090
1091/* Register in which address to store a structure value
1092 arrives in the function. On the 386, the prologue
1093 copies this from the stack to register %eax. */
1094#define STRUCT_VALUE_INCOMING 0
1095
1096/* Place in which caller passes the structure value address.
1097 0 means push the value on the stack like an argument. */
1098#define STRUCT_VALUE 0
713225d4
MM
1099
1100/* A C expression which can inhibit the returning of certain function
1101 values in registers, based on the type of value. A nonzero value
1102 says to return the function value in memory, just as large
1103 structures are always returned. Here TYPE will be a C expression
1104 of type `tree', representing the data type of the value.
1105
1106 Note that values of mode `BLKmode' must be explicitly handled by
1107 this macro. Also, the option `-fpcc-struct-return' takes effect
1108 regardless of this macro. On most systems, it is possible to
1109 leave the macro undefined; this causes a default definition to be
1110 used, whose value is the constant 1 for `BLKmode' values, and 0
1111 otherwise.
1112
1113 Do not use this macro to indicate that structures and unions
1114 should always be returned in memory. You should instead use
1115 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1116
d9a5f180 1117#define RETURN_IN_MEMORY(TYPE) \
53c17031 1118 ix86_return_in_memory (TYPE)
713225d4 1119
c98f8742
JVA
1120\f
1121/* Define the classes of registers for register constraints in the
1122 machine description. Also define ranges of constants.
1123
1124 One of the classes must always be named ALL_REGS and include all hard regs.
1125 If there is more than one class, another class must be named NO_REGS
1126 and contain no registers.
1127
1128 The name GENERAL_REGS must be the name of a class (or an alias for
1129 another name such as ALL_REGS). This is the class of registers
1130 that is allowed by "g" or "r" in a register constraint.
1131 Also, registers outside this class are allocated only when
1132 instructions express preferences for them.
1133
1134 The classes must be numbered in nondecreasing order; that is,
1135 a larger-numbered class must never be contained completely
1136 in a smaller-numbered class.
1137
1138 For any two classes, it is very desirable that there be another
ab408a86
JVA
1139 class that represents their union.
1140
1141 It might seem that class BREG is unnecessary, since no useful 386
1142 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1143 and the "b" register constraint is useful in asms for syscalls.
1144
1145 The flags and fpsr registers are in no class. */
c98f8742
JVA
1146
1147enum reg_class
1148{
1149 NO_REGS,
e075ae69 1150 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1151 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1152 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1153 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1154 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1155 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1156 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1157 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1158 FLOAT_REGS,
a7180f70
BS
1159 SSE_REGS,
1160 MMX_REGS,
446988df
JH
1161 FP_TOP_SSE_REGS,
1162 FP_SECOND_SSE_REGS,
1163 FLOAT_SSE_REGS,
1164 FLOAT_INT_REGS,
1165 INT_SSE_REGS,
1166 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1167 ALL_REGS, LIM_REG_CLASSES
1168};
1169
d9a5f180
GS
1170#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1171
1172#define INTEGER_CLASS_P(CLASS) \
1173 reg_class_subset_p ((CLASS), GENERAL_REGS)
1174#define FLOAT_CLASS_P(CLASS) \
1175 reg_class_subset_p ((CLASS), FLOAT_REGS)
1176#define SSE_CLASS_P(CLASS) \
1177 reg_class_subset_p ((CLASS), SSE_REGS)
1178#define MMX_CLASS_P(CLASS) \
1179 reg_class_subset_p ((CLASS), MMX_REGS)
1180#define MAYBE_INTEGER_CLASS_P(CLASS) \
1181 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1182#define MAYBE_FLOAT_CLASS_P(CLASS) \
1183 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1184#define MAYBE_SSE_CLASS_P(CLASS) \
1185 reg_classes_intersect_p (SSE_REGS, (CLASS))
1186#define MAYBE_MMX_CLASS_P(CLASS) \
1187 reg_classes_intersect_p (MMX_REGS, (CLASS))
1188
1189#define Q_CLASS_P(CLASS) \
1190 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1191
c98f8742
JVA
1192/* Give names of register classes as strings for dump file. */
1193
1194#define REG_CLASS_NAMES \
1195{ "NO_REGS", \
ab408a86 1196 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1197 "SIREG", "DIREG", \
e075ae69
RH
1198 "AD_REGS", \
1199 "Q_REGS", "NON_Q_REGS", \
c98f8742 1200 "INDEX_REGS", \
3f3f2124 1201 "LEGACY_REGS", \
c98f8742
JVA
1202 "GENERAL_REGS", \
1203 "FP_TOP_REG", "FP_SECOND_REG", \
1204 "FLOAT_REGS", \
a7180f70
BS
1205 "SSE_REGS", \
1206 "MMX_REGS", \
446988df
JH
1207 "FP_TOP_SSE_REGS", \
1208 "FP_SECOND_SSE_REGS", \
1209 "FLOAT_SSE_REGS", \
8fcaaa80 1210 "FLOAT_INT_REGS", \
446988df
JH
1211 "INT_SSE_REGS", \
1212 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1213 "ALL_REGS" }
1214
1215/* Define which registers fit in which classes.
1216 This is an initializer for a vector of HARD_REG_SET
1217 of length N_REG_CLASSES. */
1218
a7180f70 1219#define REG_CLASS_CONTENTS \
3f3f2124
JH
1220{ { 0x00, 0x0 }, \
1221 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1222 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1223 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1224 { 0x03, 0x0 }, /* AD_REGS */ \
1225 { 0x0f, 0x0 }, /* Q_REGS */ \
1226 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1227 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1228 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1229 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1230 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1231 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1232{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1233{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1234{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1235{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1236{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1237 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1238{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1239{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1240{ 0xffffffff,0x1fffff } \
e075ae69 1241}
c98f8742
JVA
1242
1243/* The same information, inverted:
1244 Return the class number of the smallest class containing
1245 reg number REGNO. This could be a conditional expression
1246 or could index an array. */
1247
c98f8742
JVA
1248#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1249
1250/* When defined, the compiler allows registers explicitly used in the
1251 rtl to be used as spill registers but prevents the compiler from
892a2d68 1252 extending the lifetime of these registers. */
c98f8742 1253
2922fe9e 1254#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1255
1256#define QI_REG_P(X) \
1257 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1258
d9a5f180
GS
1259#define GENERAL_REGNO_P(N) \
1260 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1261
1262#define GENERAL_REG_P(X) \
6189a572 1263 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1264
1265#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1266
c98f8742
JVA
1267#define NON_QI_REG_P(X) \
1268 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1269
d9a5f180 1270#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1271#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1272
c98f8742 1273#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1274#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1275#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1276#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1277
d9a5f180
GS
1278#define SSE_REGNO_P(N) \
1279 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1280 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1281
d9a5f180
GS
1282#define SSE_REGNO(N) \
1283 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1284#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1285
d9a5f180 1286#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1287 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1288
d9a5f180
GS
1289#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1290#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fce5a9f2 1291
d9a5f180
GS
1292#define STACK_REG_P(XOP) \
1293 (REG_P (XOP) && \
1294 REGNO (XOP) >= FIRST_STACK_REG && \
1295 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1296
d9a5f180 1297#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1298
d9a5f180 1299#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1300
e075ae69
RH
1301#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1302#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1303
cdbca172
JO
1304/* Indicate whether hard register numbered REG_NO should be converted
1305 to SSA form. */
1306#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
d9a5f180 1307 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
cdbca172 1308
c98f8742
JVA
1309/* The class value for index registers, and the one for base regs. */
1310
1311#define INDEX_REG_CLASS INDEX_REGS
1312#define BASE_REG_CLASS GENERAL_REGS
1313
1314/* Get reg_class from a letter such as appears in the machine description. */
1315
1316#define REG_CLASS_FROM_LETTER(C) \
8c2bf92a 1317 ((C) == 'r' ? GENERAL_REGS : \
3f3f2124
JH
1318 (C) == 'R' ? LEGACY_REGS : \
1319 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1320 (C) == 'Q' ? Q_REGS : \
8c2bf92a
JVA
1321 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1322 ? FLOAT_REGS \
1323 : NO_REGS) : \
1324 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1325 ? FP_TOP_REG \
1326 : NO_REGS) : \
1327 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1328 ? FP_SECOND_REG \
1329 : NO_REGS) : \
1330 (C) == 'a' ? AREG : \
1331 (C) == 'b' ? BREG : \
1332 (C) == 'c' ? CREG : \
1333 (C) == 'd' ? DREG : \
446988df
JH
1334 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1335 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1336 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
4b71cd6e 1337 (C) == 'A' ? AD_REGS : \
8c2bf92a 1338 (C) == 'D' ? DIREG : \
c98f8742
JVA
1339 (C) == 'S' ? SIREG : NO_REGS)
1340
1341/* The letters I, J, K, L and M in a register constraint string
1342 can be used to stand for particular ranges of immediate operands.
1343 This macro defines what the ranges are.
1344 C is the letter, and VALUE is a constant value.
1345 Return 1 if VALUE is in the range specified by C.
1346
1347 I is for non-DImode shifts.
1348 J is for DImode shifts.
e075ae69
RH
1349 K is for signed imm8 operands.
1350 L is for andsi as zero-extending move.
c98f8742 1351 M is for shifts that can be executed by the "lea" opcode.
1aa9fd24 1352 N is for immedaite operands for out/in instructions (0-255)
c98f8742
JVA
1353 */
1354
e075ae69
RH
1355#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1356 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1357 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1358 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1359 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1360 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1aa9fd24 1361 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
e075ae69 1362 : 0)
c98f8742
JVA
1363
1364/* Similar, but for floating constants, and defining letters G and H.
b4ac57ab
RS
1365 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1366 TARGET_387 isn't set, because the stack register converter may need to
c47f5ea5 1367 load 0.0 into the function value register. */
c98f8742
JVA
1368
1369#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2b04e52b
JH
1370 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1371 : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
c98f8742 1372
6189a572
JH
1373/* A C expression that defines the optional machine-dependent
1374 constraint letters that can be used to segregate specific types of
1375 operands, usually memory references, for the target machine. Any
1376 letter that is not elsewhere defined and not matched by
1377 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1378 be defined.
1379
1380 If it is required for a particular target machine, it should
1381 return 1 if VALUE corresponds to the operand type represented by
1382 the constraint letter C. If C is not defined as an extra
1383 constraint, the value returned should be 0 regardless of VALUE. */
1384
1385#define EXTRA_CONSTRAINT(VALUE, C) \
1386 ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
1387 : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1388 : 0)
1389
c98f8742 1390/* Place additional restrictions on the register class to use when it
4cbb525c 1391 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1392 register for which class CLASS would ordinarily be used. */
c98f8742 1393
d2836273
JH
1394#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1395 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1396 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1397 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1398 ? Q_REGS : (CLASS))
1399
1400/* Given an rtx X being reloaded into a reg required to be
1401 in class CLASS, return the class of reg to actually use.
1402 In general this is just CLASS; but on some machines
1403 in some cases it is preferable to use a more restrictive class.
1404 On the 80386 series, we prevent floating constants from being
1405 reloaded into floating registers (since no move-insn can do that)
1406 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1407
d398b3b1 1408/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1409 QImode must go into class Q_REGS.
d398b3b1 1410 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1411 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1412
d9a5f180
GS
1413#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1414 ix86_preferred_reload_class ((X), (CLASS))
85ff473e
JVA
1415
1416/* If we are copying between general and FP registers, we need a memory
f84aa48a 1417 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1418#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1419 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1420
1421/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1422 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1423 pseudo. */
1424
d9a5f180 1425#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1426 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1427 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1428 ? Q_REGS : NO_REGS)
c98f8742
JVA
1429
1430/* Return the maximum number of consecutive registers
1431 needed to represent mode MODE in a register of class CLASS. */
1432/* On the 80386, this is the size of MODE in words,
92d0fb09
JH
1433 except in the FP regs, where a single reg is always enough.
1434 The TFmodes are really just 80bit values, so we use only 3 registers
1435 to hold them, instead of 4, as the size would suggest.
1436 */
a7180f70 1437#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1438 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1439 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1440 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1441 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1442
1443/* A C expression whose value is nonzero if pseudos that have been
1444 assigned to registers of class CLASS would likely be spilled
1445 because registers of CLASS are needed for spill registers.
1446
1447 The default value of this macro returns 1 if CLASS has exactly one
1448 register and zero otherwise. On most machines, this default
1449 should be used. Only define this macro to some other expression
1450 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1451 their hard registers were needed for spill registers. If this
f5316dfe
MM
1452 macro returns nonzero for those classes, those pseudos will only
1453 be allocated by `global.c', which knows how to reallocate the
1454 pseudo to another register. If there would not be another
1455 register available for reallocation, you should not change the
1456 definition of this macro since the only effect of such a
1457 definition would be to slow down register allocation. */
1458
1459#define CLASS_LIKELY_SPILLED_P(CLASS) \
1460 (((CLASS) == AREG) \
1461 || ((CLASS) == DREG) \
1462 || ((CLASS) == CREG) \
1463 || ((CLASS) == BREG) \
1464 || ((CLASS) == AD_REGS) \
1465 || ((CLASS) == SIREG) \
1466 || ((CLASS) == DIREG))
1467
e075ae69 1468/* A C statement that adds to CLOBBERS any hard regs the port wishes
fce5a9f2 1469 to automatically clobber for all asms.
e075ae69
RH
1470
1471 We do this in the new i386 backend to maintain source compatibility
1472 with the old cc0-based compiler. */
1473
d9a5f180
GS
1474#define MD_ASM_CLOBBERS(CLOBBERS) \
1475 do { \
1476 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1477 (CLOBBERS)); \
1478 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1479 (CLOBBERS)); \
1480 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1481 (CLOBBERS)); \
e075ae69 1482 } while (0)
c98f8742
JVA
1483\f
1484/* Stack layout; function entry, exit and calling. */
1485
1486/* Define this if pushing a word on the stack
1487 makes the stack pointer a smaller address. */
1488#define STACK_GROWS_DOWNWARD
1489
1490/* Define this if the nominal address of the stack frame
1491 is at the high-address end of the local variables;
1492 that is, each additional local variable allocated
1493 goes at a more negative offset in the frame. */
1494#define FRAME_GROWS_DOWNWARD
1495
1496/* Offset within stack frame to start allocating local variables at.
1497 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1498 first local allocated. Otherwise, it is the offset to the BEGINNING
1499 of the first local allocated. */
1500#define STARTING_FRAME_OFFSET 0
1501
1502/* If we generate an insn to push BYTES bytes,
1503 this says how many the stack pointer really advances by.
1504 On 386 pushw decrements by exactly 2 no matter what the position was.
1505 On the 386 there is no pushb; we use pushw instead, and this
d2836273 1506 has the effect of rounding up to 2.
fce5a9f2 1507
d2836273
JH
1508 For 64bit ABI we round up to 8 bytes.
1509 */
c98f8742 1510
d2836273
JH
1511#define PUSH_ROUNDING(BYTES) \
1512 (TARGET_64BIT \
1513 ? (((BYTES) + 7) & (-8)) \
1514 : (((BYTES) + 1) & (-2)))
c98f8742 1515
f73ad30e
JH
1516/* If defined, the maximum amount of space required for outgoing arguments will
1517 be computed and placed into the variable
1518 `current_function_outgoing_args_size'. No space will be pushed onto the
1519 stack for each call; instead, the function prologue should increase the stack
1520 frame size by this amount. */
1521
1522#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1523
1524/* If defined, a C expression whose value is nonzero when we want to use PUSH
1525 instructions to pass outgoing arguments. */
1526
1527#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1528
c98f8742
JVA
1529/* Offset of first parameter from the argument pointer register value. */
1530#define FIRST_PARM_OFFSET(FNDECL) 0
1531
a7180f70
BS
1532/* Define this macro if functions should assume that stack space has been
1533 allocated for arguments even when their values are passed in registers.
1534
1535 The value of this macro is the size, in bytes, of the area reserved for
1536 arguments passed in registers for the function represented by FNDECL.
1537
1538 This space can be allocated by the caller, or be a part of the
1539 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1540 which. */
1541#define REG_PARM_STACK_SPACE(FNDECL) 0
1542
1543/* Define as a C expression that evaluates to nonzero if we do not know how
1544 to pass TYPE solely in registers. The file expr.h defines a
1545 definition that is usually appropriate, refer to expr.h for additional
1546 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1547 computed in the stack and then loaded into a register. */
d9a5f180
GS
1548#define MUST_PASS_IN_STACK(MODE, TYPE) \
1549 ((TYPE) != 0 \
1550 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1551 || TREE_ADDRESSABLE (TYPE) \
1552 || ((MODE) == TImode) \
1553 || ((MODE) == BLKmode \
1554 && ! ((TYPE) != 0 \
1555 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1556 && 0 == (int_size_in_bytes (TYPE) \
1557 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1558 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
a7180f70
BS
1559 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1560
c98f8742
JVA
1561/* Value is the number of bytes of arguments automatically
1562 popped when returning from a subroutine call.
8b109b37 1563 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1564 FUNTYPE is the data type of the function (as a tree),
1565 or for a library call it is an identifier node for the subroutine name.
1566 SIZE is the number of bytes of arguments passed on the stack.
1567
1568 On the 80386, the RTD insn may be used to pop them if the number
1569 of args is fixed, but if the number is variable then the caller
1570 must pop them all. RTD can't be used for library calls now
1571 because the library is compiled with the Unix compiler.
1572 Use of RTD is a selectable option, since it is incompatible with
1573 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1574 the caller must always pop the args.
1575
1576 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1577
d9a5f180
GS
1578#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1579 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1580
8c2bf92a
JVA
1581/* Define how to find the value returned by a function.
1582 VALTYPE is the data type of the value (as a tree).
1583 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1584 otherwise, FUNC is 0. */
c98f8742 1585#define FUNCTION_VALUE(VALTYPE, FUNC) \
53c17031
JH
1586 ix86_function_value (VALTYPE)
1587
1588#define FUNCTION_VALUE_REGNO_P(N) \
1589 ix86_function_value_regno_p (N)
c98f8742
JVA
1590
1591/* Define how to find the value returned by a library function
1592 assuming the value has mode MODE. */
1593
1594#define LIBCALL_VALUE(MODE) \
53c17031 1595 ix86_libcall_value (MODE)
c98f8742 1596
e9125c09
TW
1597/* Define the size of the result block used for communication between
1598 untyped_call and untyped_return. The block contains a DImode value
1599 followed by the block used by fnsave and frstor. */
1600
1601#define APPLY_RESULT_SIZE (8+108)
1602
b08de47e 1603/* 1 if N is a possible register number for function argument passing. */
53c17031 1604#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1605
1606/* Define a data type for recording info about an argument list
1607 during the scan of that argument list. This data type should
1608 hold all necessary information about the function itself
1609 and about the args processed so far, enough to enable macros
b08de47e 1610 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1611
e075ae69 1612typedef struct ix86_args {
b08de47e
MM
1613 int words; /* # words passed so far */
1614 int nregs; /* # registers available for passing */
1615 int regno; /* next available register number */
a7180f70
BS
1616 int sse_words; /* # sse words passed so far */
1617 int sse_nregs; /* # sse registers available for passing */
1618 int sse_regno; /* next available sse register number */
892a2d68 1619 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
b08de47e 1620} CUMULATIVE_ARGS;
c98f8742
JVA
1621
1622/* Initialize a variable CUM of type CUMULATIVE_ARGS
1623 for a call to a function whose data type is FNTYPE.
b08de47e 1624 For a library call, FNTYPE is 0. */
c98f8742 1625
d9a5f180
GS
1626#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1627 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
c98f8742
JVA
1628
1629/* Update the data in CUM to advance over an argument
1630 of mode MODE and data type TYPE.
1631 (TYPE is null for libcalls where that information may not be available.) */
1632
d9a5f180
GS
1633#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1634 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1635
1636/* Define where to put the arguments to a function.
1637 Value is zero to push the argument on the stack,
1638 or a hard register in which to store the argument.
1639
1640 MODE is the argument's machine mode.
1641 TYPE is the data type of the argument (as a tree).
1642 This is null for libcalls where that information may
1643 not be available.
1644 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1645 the preceding args and about the function being called.
1646 NAMED is nonzero if this argument is a named parameter
1647 (otherwise it is an extra parameter matching an ellipsis). */
1648
c98f8742 1649#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1650 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1651
1652/* For an arg passed partly in registers and partly in memory,
1653 this is the number of registers used.
1654 For args passed entirely in registers or entirely in memory, zero. */
1655
e075ae69 1656#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
c98f8742 1657
26f2c02a
ZW
1658/* If PIC, we cannot make sibling calls to global functions
1659 because the PLT requires %ebx live.
1660 If we are returning floats on the register stack, we cannot make
1661 sibling calls to functions that return floats. (The stack adjust
1662 instruction will wind up after the sibcall jump, and not be executed.) */
d9a5f180
GS
1663#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1664 ((DECL) \
1665 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1666 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1667 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
26f2c02a 1668 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
cbbf65e0 1669
ad919812
JH
1670/* Perform any needed actions needed for a function that is receiving a
1671 variable number of arguments.
1672
1673 CUM is as above.
1674
1675 MODE and TYPE are the mode and type of the current parameter.
1676
1677 PRETEND_SIZE is a variable that should be set to the amount of stack
1678 that must be pushed by the prolog to pretend that our caller pushed
1679 it.
1680
1681 Normally, this macro will push all remaining incoming registers on the
1682 stack and set PRETEND_SIZE to the length of the registers pushed. */
1683
d9a5f180
GS
1684#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1685 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1686 (NO_RTL))
ad919812
JH
1687
1688/* Define the `__builtin_va_list' type for the ABI. */
1689#define BUILD_VA_LIST_TYPE(VALIST) \
d9a5f180 1690 ((VALIST) = ix86_build_va_list ())
ad919812
JH
1691
1692/* Implement `va_start' for varargs and stdarg. */
d9a5f180
GS
1693#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1694 ix86_va_start ((STDARG), (VALIST), (NEXTARG))
ad919812
JH
1695
1696/* Implement `va_arg'. */
d9a5f180
GS
1697#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1698 ix86_va_arg ((VALIST), (TYPE))
ad919812 1699
4cf12e7e
RH
1700/* This macro is invoked at the end of compilation. It is used here to
1701 output code for -fpic that will load the return address into %ebx. */
3a0433fd 1702
4cf12e7e
RH
1703#undef ASM_FILE_END
1704#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
3a0433fd 1705
c98f8742
JVA
1706/* Output assembler code to FILE to increment profiler label # LABELNO
1707 for profiling a function entry. */
1708
d9a5f180
GS
1709#define FUNCTION_PROFILER(FILE, LABELNO) \
1710do { \
c98f8742
JVA
1711 if (flag_pic) \
1712 { \
d9a5f180 1713 fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
c98f8742 1714 LPREFIX, (LABELNO)); \
d9a5f180 1715 fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
c98f8742
JVA
1716 } \
1717 else \
1718 { \
d9a5f180
GS
1719 fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1720 fprintf ((FILE), "\tcall\t_mcount\n"); \
c98f8742 1721 } \
d9a5f180 1722} while (0)
c98f8742
JVA
1723
1724/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1725 the stack pointer does not matter. The value is tested only in
1726 functions that have frame pointers.
1727 No definition is equivalent to always zero. */
fce5a9f2 1728/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1729 we have to restore it ourselves from the frame pointer, in order to
1730 use pop */
1731
1732#define EXIT_IGNORE_STACK 1
1733
c98f8742
JVA
1734/* Output assembler code for a block containing the constant parts
1735 of a trampoline, leaving space for the variable parts. */
1736
a269a03c 1737/* On the 386, the trampoline contains two instructions:
c98f8742 1738 mov #STATIC,ecx
a269a03c
JC
1739 jmp FUNCTION
1740 The trampoline is generated entirely at runtime. The operand of JMP
1741 is the address of FUNCTION relative to the instruction following the
1742 JMP (which is 5 bytes long). */
c98f8742
JVA
1743
1744/* Length in units of the trampoline for entering a nested function. */
1745
39d04363 1746#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1747
1748/* Emit RTL insns to initialize the variable parts of a trampoline.
1749 FNADDR is an RTX for the address of the function's pure code.
1750 CXT is an RTX for the static chain value for the function. */
1751
d9a5f180
GS
1752#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1753 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1754\f
1755/* Definitions for register eliminations.
1756
1757 This is an array of structures. Each structure initializes one pair
1758 of eliminable registers. The "from" register number is given first,
1759 followed by "to". Eliminations of the same "from" register are listed
1760 in order of preference.
1761
afc2cd05
NC
1762 There are two registers that can always be eliminated on the i386.
1763 The frame pointer and the arg pointer can be replaced by either the
1764 hard frame pointer or to the stack pointer, depending upon the
1765 circumstances. The hard frame pointer is not used before reload and
1766 so it is not eligible for elimination. */
c98f8742 1767
564d80f4
JH
1768#define ELIMINABLE_REGS \
1769{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1770 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1771 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1772 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1773
2c5a510c
RH
1774/* Given FROM and TO register numbers, say whether this elimination is
1775 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1776
1777 All other eliminations are valid. */
1778
2c5a510c
RH
1779#define CAN_ELIMINATE(FROM, TO) \
1780 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1781
1782/* Define the offset between two registers, one to be eliminated, and the other
1783 its replacement, at the start of a routine. */
1784
d9a5f180
GS
1785#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1786 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1787\f
1788/* Addressing modes, and classification of registers for them. */
1789
940da324
JL
1790/* #define HAVE_POST_INCREMENT 0 */
1791/* #define HAVE_POST_DECREMENT 0 */
c98f8742 1792
940da324
JL
1793/* #define HAVE_PRE_DECREMENT 0 */
1794/* #define HAVE_PRE_INCREMENT 0 */
c98f8742
JVA
1795
1796/* Macros to check register numbers against specific register classes. */
1797
1798/* These assume that REGNO is a hard or pseudo reg number.
1799 They give nonzero only if REGNO is a hard reg of the suitable class
1800 or a pseudo reg currently allocated to a suitable hard reg.
1801 Since they use reg_renumber, they are safe only once reg_renumber
1802 has been allocated, which happens in local-alloc.c. */
1803
3f3f2124
JH
1804#define REGNO_OK_FOR_INDEX_P(REGNO) \
1805 ((REGNO) < STACK_POINTER_REGNUM \
1806 || (REGNO >= FIRST_REX_INT_REG \
1807 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1808 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1809 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1810 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1811
3f3f2124
JH
1812#define REGNO_OK_FOR_BASE_P(REGNO) \
1813 ((REGNO) <= STACK_POINTER_REGNUM \
1814 || (REGNO) == ARG_POINTER_REGNUM \
1815 || (REGNO) == FRAME_POINTER_REGNUM \
1816 || (REGNO >= FIRST_REX_INT_REG \
1817 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1818 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1819 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1820 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1821
d9a5f180
GS
1822#define REGNO_OK_FOR_SIREG_P(REGNO) \
1823 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1824#define REGNO_OK_FOR_DIREG_P(REGNO) \
1825 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1826
1827/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1828 and check its validity for a certain class.
1829 We have two alternate definitions for each of them.
1830 The usual definition accepts all pseudo regs; the other rejects
1831 them unless they have been allocated suitable hard regs.
1832 The symbol REG_OK_STRICT causes the latter definition to be used.
1833
1834 Most source files want to accept pseudo regs in the hope that
1835 they will get allocated to the class that the insn wants them to be in.
1836 Source files for reload pass need to be strict.
1837 After reload, it makes no difference, since pseudo regs have
1838 been eliminated by then. */
1839
c98f8742 1840
3b3c6a3f
MM
1841/* Non strict versions, pseudos are ok */
1842#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1843 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1844 || (REGNO (X) >= FIRST_REX_INT_REG \
1845 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1846 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1847
3b3c6a3f
MM
1848#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1849 (REGNO (X) <= STACK_POINTER_REGNUM \
1850 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1851 || REGNO (X) == FRAME_POINTER_REGNUM \
1852 || (REGNO (X) >= FIRST_REX_INT_REG \
1853 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1854 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1855
3b3c6a3f
MM
1856/* Strict versions, hard registers only */
1857#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1858#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1859
3b3c6a3f 1860#ifndef REG_OK_STRICT
d9a5f180
GS
1861#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1862#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1863
1864#else
d9a5f180
GS
1865#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1866#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1867#endif
1868
1869/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1870 that is a valid memory address for an instruction.
1871 The MODE argument is the machine mode for the MEM expression
1872 that wants to use this address.
1873
1874 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1875 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1876
1877 See legitimize_pic_address in i386.c for details as to what
1878 constitutes a legitimate address when -fpic is used. */
1879
1880#define MAX_REGS_PER_ADDRESS 2
1881
f996902d 1882#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1883
1884/* Nonzero if the constant value X is a legitimate general operand.
1885 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1886
f996902d 1887#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1888
3b3c6a3f
MM
1889#ifdef REG_OK_STRICT
1890#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1891do { \
1892 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1893 goto ADDR; \
d9a5f180 1894} while (0)
c98f8742 1895
3b3c6a3f
MM
1896#else
1897#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1898do { \
1899 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1900 goto ADDR; \
d9a5f180 1901} while (0)
c98f8742 1902
3b3c6a3f
MM
1903#endif
1904
b949ea8b
JW
1905/* If defined, a C expression to determine the base term of address X.
1906 This macro is used in only one place: `find_base_term' in alias.c.
1907
1908 It is always safe for this macro to not be defined. It exists so
1909 that alias analysis can understand machine-dependent addresses.
1910
1911 The typical use of this macro is to handle addresses containing
1912 a label_ref or symbol_ref within an UNSPEC. */
1913
d9a5f180 1914#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1915
c98f8742
JVA
1916/* Try machine-dependent ways of modifying an illegitimate address
1917 to be legitimate. If we find one, return the new, valid address.
1918 This macro is used in only one place: `memory_address' in explow.c.
1919
1920 OLDX is the address as it was before break_out_memory_refs was called.
1921 In some cases it is useful to look at this to decide what needs to be done.
1922
1923 MODE and WIN are passed so that this macro can use
1924 GO_IF_LEGITIMATE_ADDRESS.
1925
1926 It is always safe for this macro to do nothing. It exists to recognize
1927 opportunities to optimize the output.
1928
1929 For the 80386, we handle X+REG by loading X into a register R and
1930 using R+REG. R will go in a general reg and indexing will be used.
1931 However, if REG is a broken-out memory address or multiplication,
1932 nothing needs to be done because REG can certainly go in a general reg.
1933
1934 When -fpic is used, special handling is needed for symbolic references.
1935 See comments by legitimize_pic_address in i386.c for details. */
1936
3b3c6a3f 1937#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1938do { \
1939 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1940 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1941 goto WIN; \
d9a5f180 1942} while (0)
c98f8742 1943
d9a5f180 1944#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1945
c98f8742 1946/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1947 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1948 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1949
f996902d 1950#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1951
1952#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1953 (GET_CODE (X) == SYMBOL_REF \
1954 || GET_CODE (X) == LABEL_REF \
1955 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1956
1957/* Go to LABEL if ADDR (a legitimate address expression)
1958 has an effect that depends on the machine mode it is used for.
1959 On the 80386, only postdecrement and postincrement address depend thus
1960 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
1961#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1962do { \
1963 if (GET_CODE (ADDR) == POST_INC \
1964 || GET_CODE (ADDR) == POST_DEC) \
1965 goto LABEL; \
1966} while (0)
c98f8742 1967\f
bd793c65
BS
1968/* Codes for all the SSE/MMX builtins. */
1969enum ix86_builtins
1970{
1971 IX86_BUILTIN_ADDPS,
1972 IX86_BUILTIN_ADDSS,
1973 IX86_BUILTIN_DIVPS,
1974 IX86_BUILTIN_DIVSS,
1975 IX86_BUILTIN_MULPS,
1976 IX86_BUILTIN_MULSS,
1977 IX86_BUILTIN_SUBPS,
1978 IX86_BUILTIN_SUBSS,
1979
1980 IX86_BUILTIN_CMPEQPS,
1981 IX86_BUILTIN_CMPLTPS,
1982 IX86_BUILTIN_CMPLEPS,
1983 IX86_BUILTIN_CMPGTPS,
1984 IX86_BUILTIN_CMPGEPS,
1985 IX86_BUILTIN_CMPNEQPS,
1986 IX86_BUILTIN_CMPNLTPS,
1987 IX86_BUILTIN_CMPNLEPS,
1988 IX86_BUILTIN_CMPNGTPS,
1989 IX86_BUILTIN_CMPNGEPS,
1990 IX86_BUILTIN_CMPORDPS,
1991 IX86_BUILTIN_CMPUNORDPS,
1992 IX86_BUILTIN_CMPNEPS,
1993 IX86_BUILTIN_CMPEQSS,
1994 IX86_BUILTIN_CMPLTSS,
1995 IX86_BUILTIN_CMPLESS,
1996 IX86_BUILTIN_CMPGTSS,
1997 IX86_BUILTIN_CMPGESS,
1998 IX86_BUILTIN_CMPNEQSS,
1999 IX86_BUILTIN_CMPNLTSS,
2000 IX86_BUILTIN_CMPNLESS,
2001 IX86_BUILTIN_CMPNGTSS,
2002 IX86_BUILTIN_CMPNGESS,
2003 IX86_BUILTIN_CMPORDSS,
2004 IX86_BUILTIN_CMPUNORDSS,
2005 IX86_BUILTIN_CMPNESS,
2006
2007 IX86_BUILTIN_COMIEQSS,
2008 IX86_BUILTIN_COMILTSS,
2009 IX86_BUILTIN_COMILESS,
2010 IX86_BUILTIN_COMIGTSS,
2011 IX86_BUILTIN_COMIGESS,
2012 IX86_BUILTIN_COMINEQSS,
2013 IX86_BUILTIN_UCOMIEQSS,
2014 IX86_BUILTIN_UCOMILTSS,
2015 IX86_BUILTIN_UCOMILESS,
2016 IX86_BUILTIN_UCOMIGTSS,
2017 IX86_BUILTIN_UCOMIGESS,
2018 IX86_BUILTIN_UCOMINEQSS,
2019
2020 IX86_BUILTIN_CVTPI2PS,
2021 IX86_BUILTIN_CVTPS2PI,
2022 IX86_BUILTIN_CVTSI2SS,
2023 IX86_BUILTIN_CVTSS2SI,
2024 IX86_BUILTIN_CVTTPS2PI,
2025 IX86_BUILTIN_CVTTSS2SI,
bd793c65
BS
2026
2027 IX86_BUILTIN_MAXPS,
2028 IX86_BUILTIN_MAXSS,
2029 IX86_BUILTIN_MINPS,
2030 IX86_BUILTIN_MINSS,
2031
2032 IX86_BUILTIN_LOADAPS,
2033 IX86_BUILTIN_LOADUPS,
2034 IX86_BUILTIN_STOREAPS,
2035 IX86_BUILTIN_STOREUPS,
2036 IX86_BUILTIN_LOADSS,
2037 IX86_BUILTIN_STORESS,
2038 IX86_BUILTIN_MOVSS,
2039
2040 IX86_BUILTIN_MOVHLPS,
2041 IX86_BUILTIN_MOVLHPS,
2042 IX86_BUILTIN_LOADHPS,
2043 IX86_BUILTIN_LOADLPS,
2044 IX86_BUILTIN_STOREHPS,
2045 IX86_BUILTIN_STORELPS,
2046
2047 IX86_BUILTIN_MASKMOVQ,
2048 IX86_BUILTIN_MOVMSKPS,
2049 IX86_BUILTIN_PMOVMSKB,
2050
2051 IX86_BUILTIN_MOVNTPS,
2052 IX86_BUILTIN_MOVNTQ,
2053
2054 IX86_BUILTIN_PACKSSWB,
2055 IX86_BUILTIN_PACKSSDW,
2056 IX86_BUILTIN_PACKUSWB,
2057
2058 IX86_BUILTIN_PADDB,
2059 IX86_BUILTIN_PADDW,
2060 IX86_BUILTIN_PADDD,
2061 IX86_BUILTIN_PADDSB,
2062 IX86_BUILTIN_PADDSW,
2063 IX86_BUILTIN_PADDUSB,
2064 IX86_BUILTIN_PADDUSW,
2065 IX86_BUILTIN_PSUBB,
2066 IX86_BUILTIN_PSUBW,
2067 IX86_BUILTIN_PSUBD,
2068 IX86_BUILTIN_PSUBSB,
2069 IX86_BUILTIN_PSUBSW,
2070 IX86_BUILTIN_PSUBUSB,
2071 IX86_BUILTIN_PSUBUSW,
2072
2073 IX86_BUILTIN_PAND,
2074 IX86_BUILTIN_PANDN,
2075 IX86_BUILTIN_POR,
2076 IX86_BUILTIN_PXOR,
2077
2078 IX86_BUILTIN_PAVGB,
2079 IX86_BUILTIN_PAVGW,
2080
2081 IX86_BUILTIN_PCMPEQB,
2082 IX86_BUILTIN_PCMPEQW,
2083 IX86_BUILTIN_PCMPEQD,
2084 IX86_BUILTIN_PCMPGTB,
2085 IX86_BUILTIN_PCMPGTW,
2086 IX86_BUILTIN_PCMPGTD,
2087
2088 IX86_BUILTIN_PEXTRW,
2089 IX86_BUILTIN_PINSRW,
2090
2091 IX86_BUILTIN_PMADDWD,
2092
2093 IX86_BUILTIN_PMAXSW,
2094 IX86_BUILTIN_PMAXUB,
2095 IX86_BUILTIN_PMINSW,
2096 IX86_BUILTIN_PMINUB,
2097
2098 IX86_BUILTIN_PMULHUW,
2099 IX86_BUILTIN_PMULHW,
2100 IX86_BUILTIN_PMULLW,
2101
2102 IX86_BUILTIN_PSADBW,
2103 IX86_BUILTIN_PSHUFW,
2104
2105 IX86_BUILTIN_PSLLW,
2106 IX86_BUILTIN_PSLLD,
2107 IX86_BUILTIN_PSLLQ,
2108 IX86_BUILTIN_PSRAW,
2109 IX86_BUILTIN_PSRAD,
2110 IX86_BUILTIN_PSRLW,
2111 IX86_BUILTIN_PSRLD,
2112 IX86_BUILTIN_PSRLQ,
2113 IX86_BUILTIN_PSLLWI,
2114 IX86_BUILTIN_PSLLDI,
2115 IX86_BUILTIN_PSLLQI,
2116 IX86_BUILTIN_PSRAWI,
2117 IX86_BUILTIN_PSRADI,
2118 IX86_BUILTIN_PSRLWI,
2119 IX86_BUILTIN_PSRLDI,
2120 IX86_BUILTIN_PSRLQI,
2121
2122 IX86_BUILTIN_PUNPCKHBW,
2123 IX86_BUILTIN_PUNPCKHWD,
2124 IX86_BUILTIN_PUNPCKHDQ,
2125 IX86_BUILTIN_PUNPCKLBW,
2126 IX86_BUILTIN_PUNPCKLWD,
2127 IX86_BUILTIN_PUNPCKLDQ,
2128
2129 IX86_BUILTIN_SHUFPS,
2130
2131 IX86_BUILTIN_RCPPS,
2132 IX86_BUILTIN_RCPSS,
2133 IX86_BUILTIN_RSQRTPS,
2134 IX86_BUILTIN_RSQRTSS,
2135 IX86_BUILTIN_SQRTPS,
2136 IX86_BUILTIN_SQRTSS,
fce5a9f2 2137
bd793c65
BS
2138 IX86_BUILTIN_UNPCKHPS,
2139 IX86_BUILTIN_UNPCKLPS,
2140
2141 IX86_BUILTIN_ANDPS,
2142 IX86_BUILTIN_ANDNPS,
2143 IX86_BUILTIN_ORPS,
2144 IX86_BUILTIN_XORPS,
2145
2146 IX86_BUILTIN_EMMS,
2147 IX86_BUILTIN_LDMXCSR,
2148 IX86_BUILTIN_STMXCSR,
2149 IX86_BUILTIN_SFENCE,
bd793c65 2150
47f339cf
BS
2151 /* 3DNow! Original */
2152 IX86_BUILTIN_FEMMS,
2153 IX86_BUILTIN_PAVGUSB,
2154 IX86_BUILTIN_PF2ID,
2155 IX86_BUILTIN_PFACC,
2156 IX86_BUILTIN_PFADD,
2157 IX86_BUILTIN_PFCMPEQ,
2158 IX86_BUILTIN_PFCMPGE,
2159 IX86_BUILTIN_PFCMPGT,
2160 IX86_BUILTIN_PFMAX,
2161 IX86_BUILTIN_PFMIN,
2162 IX86_BUILTIN_PFMUL,
2163 IX86_BUILTIN_PFRCP,
2164 IX86_BUILTIN_PFRCPIT1,
2165 IX86_BUILTIN_PFRCPIT2,
2166 IX86_BUILTIN_PFRSQIT1,
2167 IX86_BUILTIN_PFRSQRT,
2168 IX86_BUILTIN_PFSUB,
2169 IX86_BUILTIN_PFSUBR,
2170 IX86_BUILTIN_PI2FD,
2171 IX86_BUILTIN_PMULHRW,
47f339cf
BS
2172
2173 /* 3DNow! Athlon Extensions */
2174 IX86_BUILTIN_PF2IW,
2175 IX86_BUILTIN_PFNACC,
2176 IX86_BUILTIN_PFPNACC,
2177 IX86_BUILTIN_PI2FW,
2178 IX86_BUILTIN_PSWAPDSI,
2179 IX86_BUILTIN_PSWAPDSF,
2180
e37af218 2181 IX86_BUILTIN_SSE_ZERO,
bd793c65
BS
2182 IX86_BUILTIN_MMX_ZERO,
2183
fbe5eb6d
BS
2184 /* SSE2 */
2185 IX86_BUILTIN_ADDPD,
2186 IX86_BUILTIN_ADDSD,
2187 IX86_BUILTIN_DIVPD,
2188 IX86_BUILTIN_DIVSD,
2189 IX86_BUILTIN_MULPD,
2190 IX86_BUILTIN_MULSD,
2191 IX86_BUILTIN_SUBPD,
2192 IX86_BUILTIN_SUBSD,
2193
2194 IX86_BUILTIN_CMPEQPD,
2195 IX86_BUILTIN_CMPLTPD,
2196 IX86_BUILTIN_CMPLEPD,
2197 IX86_BUILTIN_CMPGTPD,
2198 IX86_BUILTIN_CMPGEPD,
2199 IX86_BUILTIN_CMPNEQPD,
2200 IX86_BUILTIN_CMPNLTPD,
2201 IX86_BUILTIN_CMPNLEPD,
2202 IX86_BUILTIN_CMPNGTPD,
2203 IX86_BUILTIN_CMPNGEPD,
2204 IX86_BUILTIN_CMPORDPD,
2205 IX86_BUILTIN_CMPUNORDPD,
2206 IX86_BUILTIN_CMPNEPD,
2207 IX86_BUILTIN_CMPEQSD,
2208 IX86_BUILTIN_CMPLTSD,
2209 IX86_BUILTIN_CMPLESD,
2210 IX86_BUILTIN_CMPGTSD,
2211 IX86_BUILTIN_CMPGESD,
2212 IX86_BUILTIN_CMPNEQSD,
2213 IX86_BUILTIN_CMPNLTSD,
2214 IX86_BUILTIN_CMPNLESD,
2215 IX86_BUILTIN_CMPNGTSD,
2216 IX86_BUILTIN_CMPNGESD,
2217 IX86_BUILTIN_CMPORDSD,
2218 IX86_BUILTIN_CMPUNORDSD,
2219 IX86_BUILTIN_CMPNESD,
2220
2221 IX86_BUILTIN_COMIEQSD,
2222 IX86_BUILTIN_COMILTSD,
2223 IX86_BUILTIN_COMILESD,
2224 IX86_BUILTIN_COMIGTSD,
2225 IX86_BUILTIN_COMIGESD,
2226 IX86_BUILTIN_COMINEQSD,
2227 IX86_BUILTIN_UCOMIEQSD,
2228 IX86_BUILTIN_UCOMILTSD,
2229 IX86_BUILTIN_UCOMILESD,
2230 IX86_BUILTIN_UCOMIGTSD,
2231 IX86_BUILTIN_UCOMIGESD,
2232 IX86_BUILTIN_UCOMINEQSD,
2233
2234 IX86_BUILTIN_MAXPD,
2235 IX86_BUILTIN_MAXSD,
2236 IX86_BUILTIN_MINPD,
2237 IX86_BUILTIN_MINSD,
2238
2239 IX86_BUILTIN_ANDPD,
2240 IX86_BUILTIN_ANDNPD,
2241 IX86_BUILTIN_ORPD,
2242 IX86_BUILTIN_XORPD,
2243
2244 IX86_BUILTIN_SQRTPD,
2245 IX86_BUILTIN_SQRTSD,
2246
2247 IX86_BUILTIN_UNPCKHPD,
2248 IX86_BUILTIN_UNPCKLPD,
2249
2250 IX86_BUILTIN_SHUFPD,
2251
2252 IX86_BUILTIN_LOADAPD,
2253 IX86_BUILTIN_LOADUPD,
2254 IX86_BUILTIN_STOREAPD,
2255 IX86_BUILTIN_STOREUPD,
2256 IX86_BUILTIN_LOADSD,
2257 IX86_BUILTIN_STORESD,
2258 IX86_BUILTIN_MOVSD,
2259
2260 IX86_BUILTIN_LOADHPD,
2261 IX86_BUILTIN_LOADLPD,
2262 IX86_BUILTIN_STOREHPD,
2263 IX86_BUILTIN_STORELPD,
2264
2265 IX86_BUILTIN_CVTDQ2PD,
2266 IX86_BUILTIN_CVTDQ2PS,
2267
2268 IX86_BUILTIN_CVTPD2DQ,
2269 IX86_BUILTIN_CVTPD2PI,
2270 IX86_BUILTIN_CVTPD2PS,
2271 IX86_BUILTIN_CVTTPD2DQ,
2272 IX86_BUILTIN_CVTTPD2PI,
2273
2274 IX86_BUILTIN_CVTPI2PD,
2275 IX86_BUILTIN_CVTSI2SD,
2276
2277 IX86_BUILTIN_CVTSD2SI,
2278 IX86_BUILTIN_CVTSD2SS,
2279 IX86_BUILTIN_CVTSS2SD,
2280 IX86_BUILTIN_CVTTSD2SI,
2281
2282 IX86_BUILTIN_CVTPS2DQ,
2283 IX86_BUILTIN_CVTPS2PD,
2284 IX86_BUILTIN_CVTTPS2DQ,
2285
2286 IX86_BUILTIN_MOVNTI,
2287 IX86_BUILTIN_MOVNTPD,
2288 IX86_BUILTIN_MOVNTDQ,
2289
2290 IX86_BUILTIN_SETPD1,
2291 IX86_BUILTIN_SETPD,
2292 IX86_BUILTIN_CLRPD,
2293 IX86_BUILTIN_SETRPD,
2294 IX86_BUILTIN_LOADPD1,
2295 IX86_BUILTIN_LOADRPD,
2296 IX86_BUILTIN_STOREPD1,
2297 IX86_BUILTIN_STORERPD,
2298
2299 /* SSE2 MMX */
2300 IX86_BUILTIN_MASKMOVDQU,
2301 IX86_BUILTIN_MOVMSKPD,
2302 IX86_BUILTIN_PMOVMSKB128,
2303 IX86_BUILTIN_MOVQ2DQ,
2304
2305 IX86_BUILTIN_PACKSSWB128,
2306 IX86_BUILTIN_PACKSSDW128,
2307 IX86_BUILTIN_PACKUSWB128,
2308
2309 IX86_BUILTIN_PADDB128,
2310 IX86_BUILTIN_PADDW128,
2311 IX86_BUILTIN_PADDD128,
2312 IX86_BUILTIN_PADDQ128,
2313 IX86_BUILTIN_PADDSB128,
2314 IX86_BUILTIN_PADDSW128,
2315 IX86_BUILTIN_PADDUSB128,
2316 IX86_BUILTIN_PADDUSW128,
2317 IX86_BUILTIN_PSUBB128,
2318 IX86_BUILTIN_PSUBW128,
2319 IX86_BUILTIN_PSUBD128,
2320 IX86_BUILTIN_PSUBQ128,
2321 IX86_BUILTIN_PSUBSB128,
2322 IX86_BUILTIN_PSUBSW128,
2323 IX86_BUILTIN_PSUBUSB128,
2324 IX86_BUILTIN_PSUBUSW128,
2325
2326 IX86_BUILTIN_PAND128,
2327 IX86_BUILTIN_PANDN128,
2328 IX86_BUILTIN_POR128,
2329 IX86_BUILTIN_PXOR128,
2330
2331 IX86_BUILTIN_PAVGB128,
2332 IX86_BUILTIN_PAVGW128,
2333
2334 IX86_BUILTIN_PCMPEQB128,
2335 IX86_BUILTIN_PCMPEQW128,
2336 IX86_BUILTIN_PCMPEQD128,
2337 IX86_BUILTIN_PCMPGTB128,
2338 IX86_BUILTIN_PCMPGTW128,
2339 IX86_BUILTIN_PCMPGTD128,
2340
2341 IX86_BUILTIN_PEXTRW128,
2342 IX86_BUILTIN_PINSRW128,
2343
2344 IX86_BUILTIN_PMADDWD128,
2345
2346 IX86_BUILTIN_PMAXSW128,
2347 IX86_BUILTIN_PMAXUB128,
2348 IX86_BUILTIN_PMINSW128,
2349 IX86_BUILTIN_PMINUB128,
2350
2351 IX86_BUILTIN_PMULUDQ,
2352 IX86_BUILTIN_PMULUDQ128,
2353 IX86_BUILTIN_PMULHUW128,
2354 IX86_BUILTIN_PMULHW128,
2355 IX86_BUILTIN_PMULLW128,
2356
2357 IX86_BUILTIN_PSADBW128,
2358 IX86_BUILTIN_PSHUFHW,
2359 IX86_BUILTIN_PSHUFLW,
2360 IX86_BUILTIN_PSHUFD,
2361
2362 IX86_BUILTIN_PSLLW128,
2363 IX86_BUILTIN_PSLLD128,
2364 IX86_BUILTIN_PSLLQ128,
2365 IX86_BUILTIN_PSRAW128,
2366 IX86_BUILTIN_PSRAD128,
2367 IX86_BUILTIN_PSRLW128,
2368 IX86_BUILTIN_PSRLD128,
2369 IX86_BUILTIN_PSRLQ128,
2370 IX86_BUILTIN_PSLLWI128,
2371 IX86_BUILTIN_PSLLDI128,
2372 IX86_BUILTIN_PSLLQI128,
2373 IX86_BUILTIN_PSRAWI128,
2374 IX86_BUILTIN_PSRADI128,
2375 IX86_BUILTIN_PSRLWI128,
2376 IX86_BUILTIN_PSRLDI128,
2377 IX86_BUILTIN_PSRLQI128,
2378
2379 IX86_BUILTIN_PUNPCKHBW128,
2380 IX86_BUILTIN_PUNPCKHWD128,
2381 IX86_BUILTIN_PUNPCKHDQ128,
2382 IX86_BUILTIN_PUNPCKLBW128,
2383 IX86_BUILTIN_PUNPCKLWD128,
2384 IX86_BUILTIN_PUNPCKLDQ128,
2385
2386 IX86_BUILTIN_CLFLUSH,
2387 IX86_BUILTIN_MFENCE,
2388 IX86_BUILTIN_LFENCE,
2389
bd793c65
BS
2390 IX86_BUILTIN_MAX
2391};
bd793c65 2392\f
f996902d
RH
2393#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2394#define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2395
2396#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2397 do { \
2398 const char *xname = (NAME); \
2399 if (xname[0] == '%') \
2400 xname += 2; \
2401 if (xname[0] == '*') \
2402 xname += 1; \
2403 else \
2404 fputs (user_label_prefix, FILE); \
2405 fputs (xname, FILE); \
2406 } while (0)
b08de47e 2407\f
b08de47e
MM
2408/* Max number of args passed in registers. If this is more than 3, we will
2409 have problems with ebx (register #4), since it is a caller save register and
2410 is also used as the pic register in ELF. So for now, don't allow more than
2411 3 registers to be passed in registers. */
2412
d2836273
JH
2413#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2414
df4e780e 2415#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
b08de47e 2416
c98f8742
JVA
2417\f
2418/* Specify the machine mode that this machine uses
2419 for the index in the tablejump instruction. */
6eb791fc 2420#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 2421
18543a22
ILT
2422/* Define as C expression which evaluates to nonzero if the tablejump
2423 instruction expects the table to contain offsets from the address of the
2424 table.
892a2d68 2425 Do not define this if the table should contain absolute addresses. */
18543a22 2426/* #define CASE_VECTOR_PC_RELATIVE 1 */
c98f8742 2427
c98f8742
JVA
2428/* Define this as 1 if `char' should by default be signed; else as 0. */
2429#define DEFAULT_SIGNED_CHAR 1
2430
f4365627
JH
2431/* Number of bytes moved into a data cache for a single prefetch operation. */
2432#define PREFETCH_BLOCK ix86_cost->prefetch_block
2433
2434/* Number of prefetch operations that can be done in parallel. */
2435#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2436
c98f8742
JVA
2437/* Max number of bytes we can move from memory to memory
2438 in one reasonably fast instruction. */
65d9c0ab
JH
2439#define MOVE_MAX 16
2440
2441/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2442 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 2443 number of bytes we can move with a single instruction. */
65d9c0ab 2444#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 2445
7e24ffc9
HPN
2446/* If a memory-to-memory move would take MOVE_RATIO or more simple
2447 move-instruction pairs, we will do a movstr or libcall instead.
2448 Increasing the value will always make code faster, but eventually
2449 incurs high cost in increased code size.
c98f8742 2450
e2e52e1b 2451 If you don't define this, a reasonable default is used. */
c98f8742 2452
e2e52e1b 2453#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742
JVA
2454
2455/* Define if shifts truncate the shift count
2456 which implies one can omit a sign-extension or zero-extension
2457 of a shift count. */
892a2d68 2458/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
2459
2460/* #define SHIFT_COUNT_TRUNCATED */
2461
2462/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2463 is done just by pretending it is already truncated. */
2464#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2465
2466/* We assume that the store-condition-codes instructions store 0 for false
2467 and some other value for true. This is the value stored for true. */
2468
2469#define STORE_FLAG_VALUE 1
2470
2471/* When a prototype says `char' or `short', really pass an `int'.
2472 (The 386 can't easily push less than an int.) */
2473
cb560352 2474#define PROMOTE_PROTOTYPES 1
c98f8742 2475
d9f32422
JH
2476/* A macro to update M and UNSIGNEDP when an object whose type is
2477 TYPE and which has the specified mode and signedness is to be
2478 stored in a register. This macro is only called when TYPE is a
2479 scalar type.
2480
f710504c 2481 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2482 quantities to SImode. The choice depends on target type. */
2483
2484#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2485do { \
d9f32422
JH
2486 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2487 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2488 (MODE) = SImode; \
2489} while (0)
d9f32422 2490
c98f8742
JVA
2491/* Specify the machine mode that pointers have.
2492 After generation of rtl, the compiler makes no further distinction
2493 between pointers and any other objects of this machine mode. */
65d9c0ab 2494#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2495
2496/* A function address in a call instruction
2497 is a byte address (for indexing purposes)
2498 so give the MEM rtx a byte's mode. */
2499#define FUNCTION_MODE QImode
d4ba09c0
SC
2500\f
2501/* A part of a C `switch' statement that describes the relative costs
2502 of constant RTL expressions. It must contain `case' labels for
2503 expression codes `const_int', `const', `symbol_ref', `label_ref'
2504 and `const_double'. Each case must ultimately reach a `return'
2505 statement to return the relative cost of the use of that kind of
2506 constant value in an expression. The cost may depend on the
2507 precise value of the constant, which is available for examination
2508 in X, and the rtx code of the expression in which it is contained,
2509 found in OUTER_CODE.
fce5a9f2 2510
d4ba09c0
SC
2511 CODE is the expression code--redundant, since it can be obtained
2512 with `GET_CODE (X)'. */
c98f8742 2513
d9a5f180 2514#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
c98f8742
JVA
2515 case CONST_INT: \
2516 case CONST: \
2517 case LABEL_REF: \
2518 case SYMBOL_REF: \
44cf5b6a
JH
2519 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
2520 return 3; \
2521 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2522 return 2; \
1acc845e 2523 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
d4ba09c0 2524 \
c98f8742 2525 case CONST_DOUBLE: \
51286de6
RH
2526 if (GET_MODE (RTX) == VOIDmode) \
2527 return 0; \
2528 switch (standard_80387_constant_p (RTX)) \
2529 { \
2530 case 1: /* 0.0 */ \
2531 return 1; \
2532 case 2: /* 1.0 */ \
2533 return 2; \
2534 default: \
2535 /* Start with (MEM (SYMBOL_REF)), since that's where \
2536 it'll probably end up. Add a penalty for size. */ \
2537 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2538 + (GET_MODE (RTX) == SFmode ? 0 \
2539 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2540 }
c98f8742 2541
76565a24 2542/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
e075ae69
RH
2543#define TOPLEVEL_COSTS_N_INSNS(N) \
2544 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
76565a24 2545
d4ba09c0
SC
2546/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2547 This can be used, for example, to indicate how costly a multiply
2548 instruction is. In writing this macro, you can use the construct
2549 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2550 instructions. OUTER_CODE is the code of the expression in which X
2551 is contained.
2552
2553 This macro is optional; do not define it if the default cost
2554 assumptions are adequate for the target machine. */
2555
d9a5f180 2556#define RTX_COSTS(X, CODE, OUTER_CODE) \
44cf5b6a
JH
2557 case ZERO_EXTEND: \
2558 /* The zero extensions is often completely free on x86_64, so make \
2559 it as cheap as possible. */ \
2560 if (TARGET_64BIT && GET_MODE (X) == DImode \
2561 && GET_MODE (XEXP (X, 0)) == SImode) \
2562 { \
2563 total = 1; goto egress_rtx_costs; \
2564 } \
2565 else \
2566 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2567 ix86_cost->add : ix86_cost->movzx); \
2568 break; \
2569 case SIGN_EXTEND: \
2570 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2571 break; \
d4ba09c0
SC
2572 case ASHIFT: \
2573 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
44cf5b6a 2574 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
d4ba09c0
SC
2575 { \
2576 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
d4ba09c0 2577 if (value == 1) \
e075ae69 2578 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
b972dd02
JH
2579 if ((value == 2 || value == 3) \
2580 && !TARGET_DECOMPOSE_LEA \
2581 && ix86_cost->lea <= ix86_cost->shift_const) \
e075ae69 2582 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
d4ba09c0
SC
2583 } \
2584 /* fall through */ \
2585 \
2586 case ROTATE: \
2587 case ASHIFTRT: \
2588 case LSHIFTRT: \
2589 case ROTATERT: \
44cf5b6a 2590 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
76565a24
SC
2591 { \
2592 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
54d26233
MH
2593 { \
2594 if (INTVAL (XEXP (X, 1)) > 32) \
e075ae69
RH
2595 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2596 else \
2597 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2598 } \
2599 else \
2600 { \
2601 if (GET_CODE (XEXP (X, 1)) == AND) \
2602 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2603 else \
2604 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
54d26233 2605 } \
76565a24 2606 } \
e075ae69
RH
2607 else \
2608 { \
2609 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2610 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2611 else \
2612 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2613 } \
2614 break; \
d4ba09c0
SC
2615 \
2616 case MULT: \
2617 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2618 { \
2619 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2620 int nbits = 0; \
2621 \
2622 while (value != 0) \
2623 { \
2624 nbits++; \
2625 value >>= 1; \
2626 } \
2627 \
630c79be
BS
2628 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2629 + nbits * ix86_cost->mult_bit); \
d4ba09c0 2630 } \
d4ba09c0 2631 else /* This is arbitrary */ \
76565a24
SC
2632 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2633 + 7 * ix86_cost->mult_bit); \
d4ba09c0
SC
2634 \
2635 case DIV: \
2636 case UDIV: \
2637 case MOD: \
2638 case UMOD: \
76565a24 2639 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
d4ba09c0
SC
2640 \
2641 case PLUS: \
b972dd02
JH
2642 if (!TARGET_DECOMPOSE_LEA \
2643 && INTEGRAL_MODE_P (GET_MODE (X)) \
2644 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
e075ae69 2645 { \
b972dd02
JH
2646 if (GET_CODE (XEXP (X, 0)) == PLUS \
2647 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2648 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2649 && CONSTANT_P (XEXP (X, 1))) \
e075ae69 2650 { \
b972dd02
JH
2651 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2652 if (val == 2 || val == 4 || val == 8) \
2653 { \
2654 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2655 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2656 (OUTER_CODE)) \
2657 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2658 (OUTER_CODE)) \
2659 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02 2660 } \
e075ae69 2661 } \
b972dd02
JH
2662 else if (GET_CODE (XEXP (X, 0)) == MULT \
2663 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2664 { \
2665 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2666 if (val == 2 || val == 4 || val == 8) \
2667 { \
2668 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2669 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2670 (OUTER_CODE)) \
2671 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02
JH
2672 } \
2673 } \
2674 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
e075ae69
RH
2675 { \
2676 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2677 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2678 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2679 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
e075ae69 2680 } \
e075ae69 2681 } \
d4ba09c0
SC
2682 \
2683 /* fall through */ \
2684 case AND: \
2685 case IOR: \
2686 case XOR: \
2687 case MINUS: \
44cf5b6a 2688 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69 2689 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
d9a5f180 2690 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
e075ae69 2691 << (GET_MODE (XEXP (X, 0)) != DImode)) \
d9a5f180 2692 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
e075ae69
RH
2693 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2694 \
2695 /* fall through */ \
d4ba09c0
SC
2696 case NEG: \
2697 case NOT: \
44cf5b6a 2698 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69
RH
2699 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2700 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2701 \
51286de6 2702 case FLOAT_EXTEND: \
285464d0
JH
2703 if (!TARGET_SSE_MATH \
2704 || !VALID_SSE_REG_MODE (GET_MODE (X))) \
2705 TOPLEVEL_COSTS_N_INSNS (0); \
2706 break; \
51286de6 2707 \
e075ae69
RH
2708 egress_rtx_costs: \
2709 break;
d4ba09c0
SC
2710
2711
2712/* An expression giving the cost of an addressing mode that contains
2713 ADDRESS. If not defined, the cost is computed from the ADDRESS
2714 expression and the `CONST_COSTS' values.
2715
2716 For most CISC machines, the default cost is a good approximation
2717 of the true cost of the addressing mode. However, on RISC
2718 machines, all instructions normally have the same length and
2719 execution time. Hence all addresses will have equal costs.
2720
2721 In cases where more than one form of an address is known, the form
2722 with the lowest cost will be used. If multiple forms have the
2723 same, lowest, cost, the one that is the most complex will be used.
2724
2725 For example, suppose an address that is equal to the sum of a
2726 register and a constant is used twice in the same basic block.
2727 When this macro is not defined, the address will be computed in a
2728 register and memory references will be indirect through that
2729 register. On machines where the cost of the addressing mode
2730 containing the sum is no higher than that of a simple indirect
2731 reference, this will produce an additional instruction and
2732 possibly require an additional register. Proper specification of
2733 this macro eliminates this overhead for such machines.
2734
2735 Similar use of this macro is made in strength reduction of loops.
2736
2737 ADDRESS need not be valid as an address. In such a case, the cost
2738 is not relevant and can be any value; invalid addresses need not be
2739 assigned a different cost.
2740
2741 On machines where an address involving more than one register is as
2742 cheap as an address computation involving only one register,
2743 defining `ADDRESS_COST' to reflect this can cause two registers to
2744 be live over a region of code where only one would have been if
2745 `ADDRESS_COST' were not defined in that manner. This effect should
2746 be considered in the definition of this macro. Equivalent costs
2747 should probably only be given to addresses with different numbers
2748 of registers on machines with lots of registers.
2749
2750 This macro will normally either not be defined or be defined as a
2751 constant.
c98f8742
JVA
2752
2753 For i386, it is better to use a complex address than let gcc copy
2754 the address into a reg and make a new pseudo. But not if the address
2755 requires to two regs - that would mean more pseudos with longer
2756 lifetimes. */
2757
2758#define ADDRESS_COST(RTX) \
0806f95f 2759 ix86_address_cost (RTX)
d4ba09c0 2760
96e7ae40
JH
2761/* A C expression for the cost of moving data from a register in class FROM to
2762 one in class TO. The classes are expressed using the enumeration values
2763 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2764 interpreted relative to that.
d4ba09c0 2765
96e7ae40
JH
2766 It is not required that the cost always equal 2 when FROM is the same as TO;
2767 on some machines it is expensive to move between registers if they are not
f84aa48a 2768 general registers. */
d4ba09c0 2769
f84aa48a 2770#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2771 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2772
2773/* A C expression for the cost of moving data of mode M between a
2774 register and memory. A value of 2 is the default; this cost is
2775 relative to those in `REGISTER_MOVE_COST'.
2776
2777 If moving between registers and memory is more expensive than
2778 between two registers, you should define this macro to express the
fa79946e 2779 relative cost. */
d4ba09c0 2780
d9a5f180
GS
2781#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2782 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2783
2784/* A C expression for the cost of a branch instruction. A value of 1
2785 is the default; other values are interpreted relative to that. */
2786
e075ae69 2787#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2788
2789/* Define this macro as a C expression which is nonzero if accessing
2790 less than a word of memory (i.e. a `char' or a `short') is no
2791 faster than accessing a word of memory, i.e., if such access
2792 require more than one instruction or if there is no difference in
2793 cost between byte and (aligned) word loads.
2794
2795 When this macro is not defined, the compiler will access a field by
2796 finding the smallest containing object; when it is defined, a
2797 fullword load will be used if alignment permits. Unless bytes
2798 accesses are faster than word accesses, using word accesses is
2799 preferable since it may eliminate subsequent memory access if
2800 subsequent accesses occur to other fields in the same word of the
2801 structure, but to different bytes. */
2802
2803#define SLOW_BYTE_ACCESS 0
2804
2805/* Nonzero if access to memory by shorts is slow and undesirable. */
2806#define SLOW_SHORT_ACCESS 0
2807
d4ba09c0
SC
2808/* Define this macro to be the value 1 if unaligned accesses have a
2809 cost many times greater than aligned accesses, for example if they
2810 are emulated in a trap handler.
2811
2812 When this macro is non-zero, the compiler will act as if
2813 `STRICT_ALIGNMENT' were non-zero when generating code for block
2814 moves. This can cause significantly more instructions to be
2815 produced. Therefore, do not set this macro non-zero if unaligned
2816 accesses only add a cycle or two to the time for a memory access.
2817
2818 If the value of this macro is always zero, it need not be defined. */
2819
e1565e65 2820/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0
SC
2821
2822/* Define this macro to inhibit strength reduction of memory
2823 addresses. (On some machines, such strength reduction seems to do
2824 harm rather than good.) */
2825
2826/* #define DONT_REDUCE_ADDR */
2827
2828/* Define this macro if it is as good or better to call a constant
2829 function address than to call an address kept in a register.
2830
2831 Desirable on the 386 because a CALL with a constant address is
2832 faster than one with a register address. */
2833
2834#define NO_FUNCTION_CSE
2835
2836/* Define this macro if it is as good or better for a function to call
2837 itself with an explicit address than to call an address kept in a
2838 register. */
2839
2840#define NO_RECURSIVE_FUNCTION_CSE
c98f8742 2841\f
c572e5ba
JVA
2842/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2843 return the mode to be used for the comparison.
2844
2845 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2846 VOIDmode should be used in all other cases.
c572e5ba 2847
16189740 2848 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2849 possible, to allow for more combinations. */
c98f8742 2850
d9a5f180 2851#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3
JH
2852
2853/* Return non-zero if MODE implies a floating point inequality can be
2854 reversed. */
2855
2856#define REVERSIBLE_CC_MODE(MODE) 1
2857
2858/* A C expression whose value is reversed condition code of the CODE for
2859 comparison done in CC_MODE mode. */
2860#define REVERSE_CONDITION(CODE, MODE) \
2861 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2862 : reverse_condition_maybe_unordered (CODE))
2863
c98f8742
JVA
2864\f
2865/* Control the assembler format that we output, to the extent
2866 this does not vary between assemblers. */
2867
2868/* How to refer to registers in assembler output.
892a2d68 2869 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742
JVA
2870
2871/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2872 For non floating point regs, the following are the HImode names.
2873
2874 For float regs, the stack top is sometimes referred to as "%st(0)"
9e06e321 2875 instead of just "%st". PRINT_REG handles this with the "y" code. */
c98f8742 2876
fce5a9f2 2877#undef HI_REGISTER_NAMES
a7180f70
BS
2878#define HI_REGISTER_NAMES \
2879{"ax","dx","cx","bx","si","di","bp","sp", \
2880 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2881 "flags","fpsr", "dirflag", "frame", \
2882 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
3f3f2124
JH
2883 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2884 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2885 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2886
c98f8742
JVA
2887#define REGISTER_NAMES HI_REGISTER_NAMES
2888
2889/* Table of additional register names to use in user input. */
2890
2891#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2892{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2893 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2894 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2895 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2896 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
a7180f70
BS
2897 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2898 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2899 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
c98f8742
JVA
2900
2901/* Note we are omitting these since currently I don't know how
2902to get gcc to use these, since they want the same but different
2903number as al, and ax.
2904*/
2905
c98f8742 2906#define QI_REGISTER_NAMES \
3f3f2124 2907{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2908
2909/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2910 of regs 0 through 3. */
c98f8742
JVA
2911
2912#define QI_HIGH_REGISTER_NAMES \
2913{"ah", "dh", "ch", "bh", }
2914
2915/* How to renumber registers for dbx and gdb. */
2916
d9a5f180
GS
2917#define DBX_REGISTER_NUMBER(N) \
2918 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849
RH
2919
2920extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
0f7fa3d0 2921extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
83774849 2922extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2923
469ac993
JM
2924/* Before the prologue, RA is at 0(%esp). */
2925#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2926 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2927
e414ab29 2928/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2929#define RETURN_ADDR_RTX(COUNT, FRAME) \
2930 ((COUNT) == 0 \
2931 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2932 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2933
892a2d68 2934/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2935#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2936
a6ab3aad 2937/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2938#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2939
1020a5ab
RH
2940/* Describe how we implement __builtin_eh_return. */
2941#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2942#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2943
ad919812 2944
e4c4ebeb
RH
2945/* Select a format to encode pointers in exception handling data. CODE
2946 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2947 true if the symbol may be affected by dynamic relocations.
2948
2949 ??? All x86 object file formats are capable of representing this.
2950 After all, the relocation needed is the same as for the call insn.
2951 Whether or not a particular assembler allows us to enter such, I
2952 guess we'll have to see. */
d9a5f180 2953#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
b932f770 2954 (flag_pic \
d9a5f180 2955 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
e4c4ebeb
RH
2956 : DW_EH_PE_absptr)
2957
c98f8742
JVA
2958/* This is how to output the definition of a user-level label named NAME,
2959 such as the label on a static function or variable NAME. */
2960
d9a5f180
GS
2961#define ASM_OUTPUT_LABEL(FILE, NAME) \
2962 (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
c98f8742 2963
c98f8742
JVA
2964/* Store in OUTPUT a string (made with alloca) containing
2965 an assembler-name for a local static variable named NAME.
2966 LABELNO is an integer which is different for each call. */
2967
2968#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2969( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2970 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2971
c98f8742
JVA
2972/* This is how to output an insn to push a register on the stack.
2973 It need not be very fast code. */
2974
d9a5f180
GS
2975#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2976 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
c98f8742
JVA
2977
2978/* This is how to output an insn to pop a register from the stack.
2979 It need not be very fast code. */
2980
d9a5f180
GS
2981#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2982 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
c98f8742 2983
f88c65f7 2984/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2985
2986#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2987 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2988
f88c65f7 2989/* This is how to output an element of a case-vector that is relative. */
c98f8742 2990
33f7f353 2991#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2992 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7
RH
2993
2994/* Under some conditions we need jump tables in the text section, because
2995 the assembler cannot handle label differences between sections. */
2996
2997#define JUMP_TABLES_IN_TEXT_SECTION \
2998 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
c98f8742 2999
fce5a9f2 3000/* A C statement that outputs an address constant appropriate to
1865dbb5
JM
3001 for DWARF debugging. */
3002
d9a5f180
GS
3003#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3004 i386_dwarf_output_addr_const ((FILE), (X))
1865dbb5
JM
3005
3006/* Either simplify a location expression, or return the original. */
3007
3008#define ASM_SIMPLIFY_DWARF_ADDR(X) \
d9a5f180 3009 i386_simplify_dwarf_addr (X)
cea3bd3e
RH
3010
3011/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3012 and switch back. For x86 we do this only to save a few bytes that
3013 would otherwise be unused in the text section. */
3014#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3015 asm (SECTION_OP "\n\t" \
3016 "call " USER_LABEL_PREFIX #FUNC "\n" \
3017 TEXT_SECTION_ASM_OP);
74b42c8b 3018\f
c98f8742
JVA
3019/* Print operand X (an rtx) in assembler syntax to file FILE.
3020 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
3021 Effect of various CODE letters is described in i386.c near
3022 print_operand function. */
c98f8742 3023
d9a5f180 3024#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 3025 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742 3026
74b42c8b
RS
3027/* Print the name of a register based on its machine mode and number.
3028 If CODE is 'w', pretend the mode is HImode.
3029 If CODE is 'b', pretend the mode is QImode.
3030 If CODE is 'k', pretend the mode is SImode.
ef6257cd 3031 If CODE is 'q', pretend the mode is DImode.
74b42c8b 3032 If CODE is 'h', pretend the reg is the `high' byte register.
ef6257cd 3033 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
74b42c8b 3034
e075ae69 3035#define PRINT_REG(X, CODE, FILE) \
d9a5f180 3036 print_reg ((X), (CODE), (FILE))
74b42c8b 3037
c98f8742 3038#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 3039 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
3040
3041#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 3042 print_operand_address ((FILE), (ADDR))
c98f8742 3043
f996902d
RH
3044#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3045do { \
3046 if (! output_addr_const_extra (FILE, (X))) \
3047 goto FAIL; \
3048} while (0);
3049
aa3e8d2a
JVA
3050/* Print the name of a register for based on its machine mode and number.
3051 This macro is used to print debugging output.
3052 This macro is different from PRINT_REG in that it may be used in
3053 programs that are not linked with aux-output.o. */
3054
e075ae69 3055#define DEBUG_PRINT_REG(X, CODE, FILE) \
69ddee61
KG
3056 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3057 static const char * const qi_name[] = QI_REGISTER_NAMES; \
d9a5f180 3058 fprintf ((FILE), "%d ", REGNO (X)); \
e075ae69 3059 if (REGNO (X) == FLAGS_REG) \
d9a5f180 3060 { fputs ("flags", (FILE)); break; } \
7c7ef435 3061 if (REGNO (X) == DIRFLAG_REG) \
d9a5f180 3062 { fputs ("dirflag", (FILE)); break; } \
e075ae69 3063 if (REGNO (X) == FPSR_REG) \
d9a5f180 3064 { fputs ("fpsr", (FILE)); break; } \
aa3e8d2a 3065 if (REGNO (X) == ARG_POINTER_REGNUM) \
d9a5f180 3066 { fputs ("argp", (FILE)); break; } \
564d80f4 3067 if (REGNO (X) == FRAME_POINTER_REGNUM) \
d9a5f180 3068 { fputs ("frame", (FILE)); break; } \
aa3e8d2a 3069 if (STACK_TOP_P (X)) \
d9a5f180 3070 { fputs ("st(0)", (FILE)); break; } \
b0ceea8c 3071 if (FP_REG_P (X)) \
d9a5f180 3072 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3f3f2124
JH
3073 if (REX_INT_REG_P (X)) \
3074 { \
3075 switch (GET_MODE_SIZE (GET_MODE (X))) \
3076 { \
3077 default: \
3078 case 8: \
d9a5f180 3079 fprintf ((FILE), "r%i", REGNO (X) \
3f3f2124
JH
3080 - FIRST_REX_INT_REG + 8); \
3081 break; \
3082 case 4: \
d9a5f180 3083 fprintf ((FILE), "r%id", REGNO (X) \
3f3f2124
JH
3084 - FIRST_REX_INT_REG + 8); \
3085 break; \
3086 case 2: \
d9a5f180 3087 fprintf ((FILE), "r%iw", REGNO (X) \
3f3f2124
JH
3088 - FIRST_REX_INT_REG + 8); \
3089 break; \
3090 case 1: \
d9a5f180 3091 fprintf ((FILE), "r%ib", REGNO (X) \
3f3f2124
JH
3092 - FIRST_REX_INT_REG + 8); \
3093 break; \
3094 } \
3095 break; \
3096 } \
aa3e8d2a
JVA
3097 switch (GET_MODE_SIZE (GET_MODE (X))) \
3098 { \
3f3f2124 3099 case 8: \
d9a5f180
GS
3100 fputs ("r", (FILE)); \
3101 fputs (hi_name[REGNO (X)], (FILE)); \
3f3f2124 3102 break; \
b0ceea8c 3103 default: \
d9a5f180 3104 fputs ("e", (FILE)); \
aa3e8d2a 3105 case 2: \
d9a5f180 3106 fputs (hi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3107 break; \
3108 case 1: \
d9a5f180 3109 fputs (qi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3110 break; \
3111 } \
3112 } while (0)
3113
c98f8742
JVA
3114/* a letter which is not needed by the normal asm syntax, which
3115 we can use for operand syntax in the extended asm */
3116
3117#define ASM_OPERAND_LETTER '#'
c98f8742 3118#define RET return ""
d9a5f180 3119#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 3120\f
e075ae69
RH
3121/* Define the codes that are matched by predicates in i386.c. */
3122
3123#define PREDICATE_CODES \
7dd4b4a3
JH
3124 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3125 SYMBOL_REF, LABEL_REF, CONST}}, \
3126 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3127 SYMBOL_REF, LABEL_REF, CONST}}, \
3128 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3129 SYMBOL_REF, LABEL_REF, CONST}}, \
3130 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3131 SYMBOL_REF, LABEL_REF, CONST}}, \
3132 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3133 SYMBOL_REF, LABEL_REF, CONST}}, \
3134 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3135 SYMBOL_REF, LABEL_REF, CONST}}, \
3136 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3137 SYMBOL_REF, LABEL_REF}}, \
371bc54b 3138 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
8bad7136 3139 {"const_int_1_operand", {CONST_INT}}, \
e075ae69 3140 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2247f6ed
JH
3141 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3142 LABEL_REF, SUBREG, REG, MEM}}, \
e075ae69 3143 {"pic_symbolic_operand", {CONST}}, \
e1ff012c 3144 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
eaf19aba 3145 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
e075ae69
RH
3146 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3147 {"const1_operand", {CONST_INT}}, \
3148 {"const248_operand", {CONST_INT}}, \
3149 {"incdec_operand", {CONST_INT}}, \
915119a5 3150 {"mmx_reg_operand", {REG}}, \
e075ae69 3151 {"reg_no_sp_operand", {SUBREG, REG}}, \
2c5a510c
RH
3152 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3153 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3154 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
e075ae69
RH
3155 {"q_regs_operand", {SUBREG, REG}}, \
3156 {"non_q_regs_operand", {SUBREG, REG}}, \
9e7adcb3
JH
3157 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3158 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3159 GE, UNGE, LTGT, UNEQ}}, \
bf71a4f8
JH
3160 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3161 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3162 }}, \
9076b9c1 3163 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
9e7adcb3
JH
3164 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3165 UNGE, UNGT, LTGT, UNEQ }}, \
e075ae69
RH
3166 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3167 {"ext_register_operand", {SUBREG, REG}}, \
3168 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3169 {"mult_operator", {MULT}}, \
3170 {"div_operator", {DIV}}, \
3171 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3172 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3173 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3174 LSHIFTRT, ROTATERT}}, \
e9e80858 3175 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
e075ae69
RH
3176 {"memory_displacement_operand", {MEM}}, \
3177 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
6343a50e 3178 LABEL_REF, SUBREG, REG, MEM, AND}}, \
f996902d
RH
3179 {"long_memory_operand", {MEM}}, \
3180 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3181 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3182 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3183 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3184 {"local_exec_symbolic_operand", {SYMBOL_REF}},
c76aab11
RH
3185
3186/* A list of predicates that do special things with modes, and so
3187 should not elicit warnings for VOIDmode match_operand. */
3188
3189#define SPECIAL_MODE_PREDICATES \
3190 "ext_register_operand",
c98f8742 3191\f
5bf0ebab
RH
3192/* Which processor to schedule for. The cpu attribute defines a list that
3193 mirrors this list, so changes to i386.md must be made at the same time. */
3194
3195enum processor_type
3196{
3197 PROCESSOR_I386, /* 80386 */
3198 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3199 PROCESSOR_PENTIUM,
3200 PROCESSOR_PENTIUMPRO,
3201 PROCESSOR_K6,
3202 PROCESSOR_ATHLON,
3203 PROCESSOR_PENTIUM4,
3204 PROCESSOR_max
3205};
3206
3207extern enum processor_type ix86_cpu;
3208extern const char *ix86_cpu_string;
3209
3210extern enum processor_type ix86_arch;
3211extern const char *ix86_arch_string;
3212
3213enum fpmath_unit
3214{
3215 FPMATH_387 = 1,
3216 FPMATH_SSE = 2
3217};
3218
3219extern enum fpmath_unit ix86_fpmath;
3220extern const char *ix86_fpmath_string;
3221
f996902d
RH
3222enum tls_dialect
3223{
3224 TLS_DIALECT_GNU,
3225 TLS_DIALECT_SUN
3226};
3227
3228extern enum tls_dialect ix86_tls_dialect;
3229extern const char *ix86_tls_dialect_string;
3230
6189a572 3231enum cmodel {
5bf0ebab
RH
3232 CM_32, /* The traditional 32-bit ABI. */
3233 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3234 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3235 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3236 CM_LARGE, /* No assumptions. */
3237 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
6189a572
JH
3238};
3239
5bf0ebab
RH
3240extern enum cmodel ix86_cmodel;
3241extern const char *ix86_cmodel_string;
3242
8362f420
JH
3243/* Size of the RED_ZONE area. */
3244#define RED_ZONE_SIZE 128
3245/* Reserved area of the red zone for temporaries. */
3246#define RED_ZONE_RESERVE 8
c93e80a5
JH
3247
3248enum asm_dialect {
3249 ASM_ATT,
3250 ASM_INTEL
3251};
5bf0ebab 3252
c93e80a5 3253extern const char *ix86_asm_string;
80f33d06 3254extern enum asm_dialect ix86_asm_dialect;
5bf0ebab
RH
3255
3256extern int ix86_regparm;
fce5a9f2 3257extern const char *ix86_regparm_string;
5bf0ebab
RH
3258
3259extern int ix86_preferred_stack_boundary;
3260extern const char *ix86_preferred_stack_boundary_string;
3261
3262extern int ix86_branch_cost;
3263extern const char *ix86_branch_cost_string;
3264
3265extern const char *ix86_debug_arg_string;
3266extern const char *ix86_debug_addr_string;
3267
3268/* Obsoleted by -f options. Remove before 3.2 ships. */
3269extern const char *ix86_align_loops_string;
3270extern const char *ix86_align_jumps_string;
3271extern const char *ix86_align_funcs_string;
3272
3273/* Smallest class containing REGNO. */
3274extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3275
d9a5f180
GS
3276extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3277extern rtx ix86_compare_op1; /* operand 1 for comparisons */
22fb740d
JH
3278\f
3279/* To properly truncate FP values into integers, we need to set i387 control
3280 word. We can't emit proper mode switching code before reload, as spills
3281 generated by reload may truncate values incorrectly, but we still can avoid
3282 redundant computation of new control word by the mode switching pass.
3283 The fldcw instructions are still emitted redundantly, but this is probably
3284 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 3285 the sequence.
22fb740d
JH
3286
3287 The machinery is to emit simple truncation instructions and split them
3288 before reload to instructions having USEs of two memory locations that
3289 are filled by this code to old and new control word.
fce5a9f2 3290
22fb740d
JH
3291 Post-reload pass may be later used to eliminate the redundant fildcw if
3292 needed. */
3293
3294enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3295
3296/* Define this macro if the port needs extra instructions inserted
3297 for mode switching in an optimizing compilation. */
3298
3299#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3300
3301/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3302 initializer for an array of integers. Each initializer element N
3303 refers to an entity that needs mode switching, and specifies the
3304 number of different modes that might need to be set for this
3305 entity. The position of the initializer in the initializer -
3306 starting counting at zero - determines the integer that is used to
3307 refer to the mode-switched entity in question. */
3308
3309#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3310
3311/* ENTITY is an integer specifying a mode-switched entity. If
3312 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3313 return an integer value not larger than the corresponding element
3314 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3315 must be switched into prior to the execution of INSN. */
3316
3317#define MODE_NEEDED(ENTITY, I) \
3318 (GET_CODE (I) == CALL_INSN \
3319 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3320 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3321 ? FP_CW_UNINITIALIZED \
3322 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3323 ? FP_CW_ANY \
3324 : FP_CW_STORED)
3325
3326/* This macro specifies the order in which modes for ENTITY are
3327 processed. 0 is the highest priority. */
3328
d9a5f180 3329#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
3330
3331/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3332 is the set of hard registers live at the point where the insn(s)
3333 are to be inserted. */
3334
3335#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
d9a5f180 3336 ((MODE) == FP_CW_STORED \
22fb740d
JH
3337 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3338 assign_386_stack_local (HImode, 2)), 0\
3339 : 0)
0f0138b6
JH
3340\f
3341/* Avoid renaming of stack registers, as doing so in combination with
3342 scheduling just increases amount of live registers at time and in
3343 the turn amount of fxch instructions needed.
3344
3345 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3346
d9a5f180
GS
3347#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3348 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 3349
3b3c6a3f 3350\f
c98f8742
JVA
3351/*
3352Local variables:
3353version-control: t
3354End:
3355*/