]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
ce71a9e6 1/* Definitions of target machine for GNU compiler for IA-32.
9526f064 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
1b12cfd7 3 2001, 2002 Free Software Foundation, Inc.
43b83681 4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
b0603eb3 19the Free Software Foundation, 59 Temple Place - Suite 330,
bb441676 20Boston, MA 02111-1307, USA. */
43b83681 21
22/* The purpose of this file is to define the characteristics of the i386,
bdf74c8a 23 independent of assembler syntax or operating system.
43b83681 24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
ce71a9e6 33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
43b83681 36
9af5c5d1 37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
e99c3a1d 40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
805e22b2 44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
e99c3a1d 46 const int mult_bit; /* cost of multiply per each bit set */
805e22b2 47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
78ac78d9 49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
e99c3a1d 51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
b8e3cf86 53 memory-to-memory move insns. */
e99c3a1d 54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
3ab61a4d 56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
e99c3a1d 58 const int int_store[3]; /* cost of storing integer register
3ab61a4d 59 in QImode, HImode and SImode */
e99c3a1d 60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
3ab61a4d 62 in SFmode, DFmode and XFmode */
e99c3a1d 63 const int fp_store[3]; /* cost of storing FP register
3ab61a4d 64 in SFmode, DFmode and XFmode */
e99c3a1d 65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
4f3e5c20 67 in SImode and DImode */
e99c3a1d 68 const int mmx_store[2]; /* cost of storing MMX register
4f3e5c20 69 in SImode and DImode */
e99c3a1d 70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
4f3e5c20 72 in SImode, DImode and TImode*/
e99c3a1d 73 const int sse_store[3]; /* cost of storing SSE register
4f3e5c20 74 in SImode, DImode and TImode*/
e99c3a1d 75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
4f3e5c20 76 integer and vice versa. */
afa6d980 77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
805e22b2 80 const int branch_cost; /* Default value for BRANCH_COST. */
b80ce4a8 81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
9af5c5d1 87};
88
e99c3a1d 89extern const struct processor_costs *ix86_cost;
9af5c5d1 90
43b83681 91/* Run-time compilation parameters selecting different hardware subsets. */
92
93extern int target_flags;
94
95/* Macros used in the machine description to test the flags. */
96
01cc3b75 97/* configure can arrange to make this 2, to force a 486. */
ce71a9e6 98
f0c53df0 99#ifndef TARGET_CPU_DEFAULT
100#define TARGET_CPU_DEFAULT 0
101#endif
102
60206704 103/* Masks for the -m switches */
ce71a9e6 104#define MASK_80387 0x00000001 /* Hardware floating point */
105#define MASK_RTD 0x00000002 /* Use ret that pops args */
106#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
ba38e12b 113#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
02a06c30 117#define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118#define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119#define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120#define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121#define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122#define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123#define MASK_64BIT 0x00080000 /* Produce 64bit code */
805e22b2 124#define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
02a06c30 125
805e22b2 126/* Unused: 0x03e0000 */
02a06c30 127
25b31391 128/* ... overlap with subtarget options starts by 0x04000000. */
129#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
60206704 130
131/* Use the floating point instructions */
132#define TARGET_80387 (target_flags & MASK_80387)
133
43b83681 134/* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
d4983fea 136 for all functions that can take varying numbers of args. */
60206704 137#define TARGET_RTD (target_flags & MASK_RTD)
138
bfa936ad 139/* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
43b83681 143
4448f543 144/* Use push instructions to save outgoing args. */
145#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147/* Accumulate stack adjustments to prologue/epilogue. */
148#define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
fb2477f5 151/* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
60206704 153#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
fb2477f5 154
b15e0bba 155/* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
60206704 158#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
b15e0bba 159
914a34d6 160/* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
bb441676 162 the 387 to be used, which is compatible with most calling conventions. */
60206704 163#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
914a34d6 164
0cd8258d 165/* Long double is 128bit instead of 96bit, even when only 80bits are used.
35a3065a 166 This mode wastes cache, but avoid misaligned data accesses and simplifies
0cd8258d 167 address calculations. */
168#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
37611804 170/* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
60206704 172#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
d2b0b902 174/* Don't create frame pointers for leaf functions */
ce71a9e6 175#define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
e31d7821 177
60206704 178/* Debug GO_IF_LEGITIMATE_ADDRESS */
25b31391 179#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
60206704 180
bfa936ad 181/* Debug FUNCTION_ARG macros */
25b31391 182#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
bfa936ad 183
54113cf5 184/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186#ifdef IN_LIBGCC2
187#ifdef __x86_64__
188#define TARGET_64BIT 1
189#else
190#define TARGET_64BIT 0
191#endif
192#else
6c52fa55 193#ifdef TARGET_BI_ARCH
bacf1c2a 194#define TARGET_64BIT (target_flags & MASK_64BIT)
6c52fa55 195#else
76b5af68 196#if TARGET_64BIT_DEFAULT
6c52fa55 197#define TARGET_64BIT 1
198#else
199#define TARGET_64BIT 0
200#endif
201#endif
54113cf5 202#endif
bacf1c2a 203
aa30ffd5 204#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
205#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
206#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
42c2e1fa 207#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
f3e2ae00 208#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
1e2195fd 209#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
80fafb88 210#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
805e22b2 211#define TARGET_K8 (ix86_cpu == PROCESSOR_K8)
212#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
f3e2ae00 213
214#define CPUMASK (1 << ix86_cpu)
215extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
e0f05f0c 217extern const int x86_branch_hints, x86_unroll_strlen;
ce71a9e6 218extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220extern const int x86_use_cltd, x86_read_modify_write;
221extern const int x86_read_modify, x86_split_long_moves;
27442180 222extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
c41f04da 223extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
d8fbfe34 224extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
ae8e37a6 225extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
d8fbfe34 226extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
f02b4a51 227extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
71ee24e8 228extern const int x86_epilogue_using_move, x86_decompose_lea;
8c09ed55 229extern const int x86_arch_always_fancy_math_387, x86_shift1;
805e22b2 230extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
afa6d980 233extern int x86_prefetch_sse;
f3e2ae00 234
235#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
236#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
237#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
238#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
239#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
e48da928 240/* For sane SSE instruction set generation we need fcomi instruction. It is
241 safe to enable all CMOVE instructions. */
242#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
f3e2ae00 243#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
e0f05f0c 244#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
f3e2ae00 245#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
2d81b9db 246#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
ce71a9e6 247#define TARGET_MOVX (x86_movx & CPUMASK)
248#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
249#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
250#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
251#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
252#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
253#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
254#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
255#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
fe9510bc 256#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
27442180 257#define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
c4147fd5 258#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
c41f04da 259#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
260#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
261#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
262#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
ae8e37a6 263#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
264#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
265#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
266#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
d8fbfe34 267#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
268#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
805e22b2 269#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
270 (x86_sse_partial_reg_dependency & CPUMASK)
271#define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & CPUMASK)
272#define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
273 (x86_sse_partial_regs_for_cvtsd2ss & CPUMASK)
274#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & CPUMASK)
275#define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & CPUMASK)
276#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & CPUMASK)
d8fbfe34 277#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
f02b4a51 278#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
279#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
71ee24e8 280#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
afa6d980 281#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
8c09ed55 282#define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
805e22b2 283#define TARGET_USE_FFREEP (x86_use_ffreep & CPUMASK)
284#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & CPUMASK)
f3e2ae00 285
a4efe123 286#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
60206704 287
2196a3bb 288#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
289#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
290
25b31391 291#define ASSEMBLER_DIALECT (ix86_asm_dialect)
ce71a9e6 292
394c6a4a 293#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
294#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
5409fdc5 295#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
296#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
297 && (ix86_fpmath & FPMATH_387))
f01b0085 298#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
d5e0afe2 299#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
300#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
f01b0085 301
8eafd985 302#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
303
805e22b2 304#define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
305
2d6788fe 306#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
307#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
308
959b27f3 309/* WARNING: Do not mark empty strings for translation, as calling
310 gettext on an empty string does NOT return an empty
311 string. */
312
313
ce71a9e6 314#define TARGET_SWITCHES \
ef7b064f 315{ { "80387", MASK_80387, N_("Use hardware fp") }, \
316 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
317 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
318 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
959b27f3 320 { "386", 0, "" /*Deprecated.*/}, \
321 { "486", 0, "" /*Deprecated.*/}, \
322 { "pentium", 0, "" /*Deprecated.*/}, \
323 { "pentiumpro", 0, "" /*Deprecated.*/}, \
324 { "intel-syntax", 0, "" /*Deprecated.*/}, \
325 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
ef7b064f 326 { "rtd", MASK_RTD, \
327 N_("Alternate calling convention") }, \
328 { "no-rtd", -MASK_RTD, \
329 N_("Use normal calling convention") }, \
ce71a9e6 330 { "align-double", MASK_ALIGN_DOUBLE, \
ef7b064f 331 N_("Align some doubles on dword boundary") }, \
ce71a9e6 332 { "no-align-double", -MASK_ALIGN_DOUBLE, \
ef7b064f 333 N_("Align doubles on word boundary") }, \
ce71a9e6 334 { "svr3-shlib", MASK_SVR3_SHLIB, \
ef7b064f 335 N_("Uninitialized locals in .bss") }, \
ce71a9e6 336 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
ef7b064f 337 N_("Uninitialized locals in .data") }, \
ce71a9e6 338 { "ieee-fp", MASK_IEEE_FP, \
ef7b064f 339 N_("Use IEEE math for fp comparisons") }, \
ce71a9e6 340 { "no-ieee-fp", -MASK_IEEE_FP, \
ef7b064f 341 N_("Do not use IEEE math for fp comparisons") }, \
ce71a9e6 342 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
ef7b064f 343 N_("Return values of functions in FPU registers") }, \
ce71a9e6 344 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
ef7b064f 345 N_("Do not return values of functions in FPU registers")}, \
ce71a9e6 346 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
ef7b064f 347 N_("Do not generate sin, cos, sqrt for FPU") }, \
ce71a9e6 348 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
ef7b064f 349 N_("Generate sin, cos, sqrt for FPU")}, \
ce71a9e6 350 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
ef7b064f 351 N_("Omit the frame pointer in leaf functions") }, \
ce71a9e6 352 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
ef7b064f 353 { "stack-arg-probe", MASK_STACK_PROBE, \
354 N_("Enable stack probing") }, \
ce71a9e6 355 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
356 { "windows", 0, 0 /* undocumented */ }, \
357 { "dll", 0, 0 /* undocumented */ }, \
2196a3bb 358 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
ef7b064f 359 N_("Align destination of the string operations") }, \
2196a3bb 360 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
ef7b064f 361 N_("Do not align destination of the string operations") }, \
2e931aff 362 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
ef7b064f 363 N_("Inline all known string operations") }, \
2196a3bb 364 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
ef7b064f 365 N_("Do not inline all known string operations") }, \
4448f543 366 { "push-args", -MASK_NO_PUSH_ARGS, \
ef7b064f 367 N_("Use push instructions to save outgoing arguments") }, \
929c0138 368 { "no-push-args", MASK_NO_PUSH_ARGS, \
ef7b064f 369 N_("Do not use push instructions to save outgoing arguments") }, \
02a06c30 370 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
ef7b064f 371 N_("Use push instructions to save outgoing arguments") }, \
02a06c30 372 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
ef7b064f 373 N_("Do not use push instructions to save outgoing arguments") }, \
02a06c30 374 { "mmx", MASK_MMX, \
f4ec69cb 375 N_("Support MMX built-in functions") }, \
ba38e12b 376 { "no-mmx", -MASK_MMX, \
f4ec69cb 377 N_("Do not support MMX built-in functions") }, \
02a06c30 378 { "3dnow", MASK_3DNOW, \
f4ec69cb 379 N_("Support 3DNow! built-in functions") }, \
02a06c30 380 { "no-3dnow", -MASK_3DNOW, \
f4ec69cb 381 N_("Do not support 3DNow! built-in functions") }, \
02a06c30 382 { "sse", MASK_SSE, \
f4ec69cb 383 N_("Support MMX and SSE built-in functions and code generation") }, \
02a06c30 384 { "no-sse", -MASK_SSE, \
f4ec69cb 385 N_("Do not support MMX and SSE built-in functions and code generation") },\
02a06c30 386 { "sse2", MASK_SSE2, \
f4ec69cb 387 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
02a06c30 388 { "no-sse2", -MASK_SSE2, \
f4ec69cb 389 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
0cd8258d 390 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
68435912 391 N_("sizeof(long double) is 16") }, \
0cd8258d 392 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
68435912 393 N_("sizeof(long double) is 12") }, \
bacf1c2a 394 { "64", MASK_64BIT, \
395 N_("Generate 64bit x86-64 code") }, \
396 { "32", -MASK_64BIT, \
397 N_("Generate 32bit i386 code") }, \
805e22b2 398 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
399 N_("Use native (MS) bitfield layout") }, \
400 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use gcc default bitfield layout") }, \
8eafd985 402 { "red-zone", -MASK_NO_RED_ZONE, \
403 N_("Use red-zone in the x86-64 code") }, \
404 { "no-red-zone", MASK_NO_RED_ZONE, \
79dab547 405 N_("Do not use red-zone in the x86-64 code") }, \
ce71a9e6 406 SUBTARGET_SWITCHES \
76b5af68 407 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
8fad0667 408
76b5af68 409#ifndef TARGET_64BIT_DEFAULT
410#define TARGET_64BIT_DEFAULT 0
bacf1c2a 411#endif
412
39d31f69 413/* Once GDB has been enhanced to deal with functions without frame
414 pointers, we can change this to allow for elimination of
415 the frame pointer in leaf functions. */
416#define TARGET_DEFAULT 0
76b5af68 417
ffd05090 418/* This is not really a target flag, but is done this way so that
419 it's analogous to similar code for Mach-O on PowerPC. darwin.h
420 redefines this to 1. */
421#define TARGET_MACHO 0
422
0bf9a70a 423/* This macro is similar to `TARGET_SWITCHES' but defines names of
424 command options that have values. Its definition is an
425 initializer with a subgrouping for each command option.
426
427 Each subgrouping contains a string constant, that defines the
428 fixed part of the option name, and the address of a variable. The
429 variable, type `char *', is set to the variable part of the given
430 option if the fixed part matches. The actual option name is made
431 by appending `-m' to the specified name. */
ce71a9e6 432#define TARGET_OPTIONS \
433{ { "cpu=", &ix86_cpu_string, \
ef7b064f 434 N_("Schedule code for given CPU")}, \
5409fdc5 435 { "fpmath=", &ix86_fpmath_string, \
436 N_("Generate floating point mathematics using given instruction set")},\
ce71a9e6 437 { "arch=", &ix86_arch_string, \
ef7b064f 438 N_("Generate code for given CPU")}, \
ce71a9e6 439 { "regparm=", &ix86_regparm_string, \
ef7b064f 440 N_("Number of registers used to pass integer arguments") }, \
ce71a9e6 441 { "align-loops=", &ix86_align_loops_string, \
ef7b064f 442 N_("Loop code aligned to this power of 2") }, \
ce71a9e6 443 { "align-jumps=", &ix86_align_jumps_string, \
ef7b064f 444 N_("Jump targets are aligned to this power of 2") }, \
ce71a9e6 445 { "align-functions=", &ix86_align_funcs_string, \
ef7b064f 446 N_("Function starts are aligned to this power of 2") }, \
ce71a9e6 447 { "preferred-stack-boundary=", \
448 &ix86_preferred_stack_boundary_string, \
ef7b064f 449 N_("Attempt to keep stack aligned to this power of 2") }, \
ce71a9e6 450 { "branch-cost=", &ix86_branch_cost_string, \
ef7b064f 451 N_("Branches are this expensive (1-5, arbitrary units)") }, \
cbf58688 452 { "cmodel=", &ix86_cmodel_string, \
453 N_("Use given x86-64 code model") }, \
25b31391 454 { "debug-arg", &ix86_debug_arg_string, \
959b27f3 455 "" /* Undocumented. */ }, \
25b31391 456 { "debug-addr", &ix86_debug_addr_string, \
959b27f3 457 "" /* Undocumented. */ }, \
25b31391 458 { "asm=", &ix86_asm_string, \
459 N_("Use given assembler dialect") }, \
2d6788fe 460 { "tls-dialect=", &ix86_tls_dialect_string, \
461 N_("Use given thread-local storage dialect") }, \
ce71a9e6 462 SUBTARGET_OPTIONS \
bfa936ad 463}
0bf9a70a 464
465/* Sometimes certain combinations of command options do not make
466 sense on a particular target machine. You can define a macro
467 `OVERRIDE_OPTIONS' to take account of this. This macro, if
468 defined, is executed once just after all the command options have
469 been parsed.
470
471 Don't use this macro to turn on various extra optimizations for
472 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
473
474#define OVERRIDE_OPTIONS override_options ()
475
476/* These are meant to be redefined in the host dependent files */
b5505acf 477#define SUBTARGET_SWITCHES
0bf9a70a 478#define SUBTARGET_OPTIONS
b5505acf 479
9af5c5d1 480/* Define this to change the optimizations performed by default. */
1b12cfd7 481#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
482 optimization_options ((LEVEL), (SIZE))
9af5c5d1 483
8fad0667 484/* Specs for the compiler proper */
485
d17e16d2 486#ifndef CC1_CPU_SPEC
487#define CC1_CPU_SPEC "\
8fad0667 488%{!mcpu*: \
90286764 489%{m386:-mcpu=i386 \
1485bb2c 490%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
90286764 491%{m486:-mcpu=i486 \
1485bb2c 492%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
90286764 493%{mpentium:-mcpu=pentium \
1485bb2c 494%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
90286764 495%{mpentiumpro:-mcpu=pentiumpro \
25b31391 496%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
497%{mintel-syntax:-masm=intel \
498%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
499%{mno-intel-syntax:-masm=att \
500%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
8fad0667 501#endif
43b83681 502\f
7dbd6483 503/* Target CPU builtins. */
d9d8b700 504#define TARGET_CPU_CPP_BUILTINS() \
505 do \
506 { \
507 size_t arch_len = strlen (ix86_arch_string); \
508 size_t cpu_len = strlen (ix86_cpu_string); \
509 int last_arch_char = ix86_arch_string[arch_len - 1]; \
510 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
511 \
512 if (TARGET_64BIT) \
513 { \
514 builtin_assert ("cpu=x86_64"); \
515 builtin_assert ("machine=x86_64"); \
516 builtin_define ("__x86_64"); \
517 builtin_define ("__x86_64__"); \
518 } \
519 else \
520 { \
521 builtin_assert ("cpu=i386"); \
522 builtin_assert ("machine=i386"); \
523 builtin_define_std ("i386"); \
524 } \
525 \
526 /* Built-ins based on -mcpu= (or -march= if no \
527 CPU given). */ \
528 if (TARGET_386) \
529 builtin_define ("__tune_i386__"); \
530 else if (TARGET_486) \
531 builtin_define ("__tune_i486__"); \
532 else if (TARGET_PENTIUM) \
533 { \
534 builtin_define ("__tune_i586__"); \
535 builtin_define ("__tune_pentium__"); \
536 if (last_cpu_char == 'x') \
537 builtin_define ("__tune_pentium_mmx__"); \
538 } \
539 else if (TARGET_PENTIUMPRO) \
540 { \
541 builtin_define ("__tune_i686__"); \
542 builtin_define ("__tune_pentiumpro__"); \
41b9fc78 543 switch (last_cpu_char) \
544 { \
545 case '3': \
546 builtin_define ("__tune_pentium3__"); \
547 /* FALLTHRU */ \
548 case '2': \
549 builtin_define ("__tune_pentium2__"); \
550 break; \
551 } \
d9d8b700 552 } \
553 else if (TARGET_K6) \
554 { \
555 builtin_define ("__tune_k6__"); \
556 if (last_cpu_char == '2') \
557 builtin_define ("__tune_k6_2__"); \
558 else if (last_cpu_char == '3') \
559 builtin_define ("__tune_k6_3__"); \
560 } \
561 else if (TARGET_ATHLON) \
562 { \
563 builtin_define ("__tune_athlon__"); \
564 /* Only plain "athlon" lacks SSE. */ \
565 if (last_cpu_char != 'n') \
566 builtin_define ("__tune_athlon_sse__"); \
567 } \
805e22b2 568 else if (TARGET_K8) \
569 builtin_define ("__tune_k8__"); \
d9d8b700 570 else if (TARGET_PENTIUM4) \
571 builtin_define ("__tune_pentium4__"); \
572 \
573 if (TARGET_MMX) \
574 builtin_define ("__MMX__"); \
575 if (TARGET_3DNOW) \
576 builtin_define ("__3dNOW__"); \
577 if (TARGET_3DNOW_A) \
578 builtin_define ("__3dNOW_A__"); \
579 if (TARGET_SSE) \
580 builtin_define ("__SSE__"); \
581 if (TARGET_SSE2) \
582 builtin_define ("__SSE2__"); \
7832abdc 583 if (TARGET_SSE_MATH && TARGET_SSE) \
584 builtin_define ("__SSE_MATH__"); \
585 if (TARGET_SSE_MATH && TARGET_SSE2) \
586 builtin_define ("__SSE2_MATH__"); \
d9d8b700 587 \
588 /* Built-ins based on -march=. */ \
589 if (ix86_arch == PROCESSOR_I486) \
590 { \
591 builtin_define ("__i486"); \
592 builtin_define ("__i486__"); \
593 } \
594 else if (ix86_arch == PROCESSOR_PENTIUM) \
595 { \
596 builtin_define ("__i586"); \
597 builtin_define ("__i586__"); \
598 builtin_define ("__pentium"); \
599 builtin_define ("__pentium__"); \
600 if (last_arch_char == 'x') \
601 builtin_define ("__pentium_mmx__"); \
602 } \
603 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
604 { \
605 builtin_define ("__i686"); \
606 builtin_define ("__i686__"); \
607 builtin_define ("__pentiumpro"); \
608 builtin_define ("__pentiumpro__"); \
609 } \
610 else if (ix86_arch == PROCESSOR_K6) \
611 { \
612 \
613 builtin_define ("__k6"); \
614 builtin_define ("__k6__"); \
615 if (last_arch_char == '2') \
616 builtin_define ("__k6_2__"); \
617 else if (last_arch_char == '3') \
618 builtin_define ("__k6_3__"); \
619 } \
620 else if (ix86_arch == PROCESSOR_ATHLON) \
621 { \
622 builtin_define ("__athlon"); \
623 builtin_define ("__athlon__"); \
624 /* Only plain "athlon" lacks SSE. */ \
625 if (last_arch_char != 'n') \
626 builtin_define ("__athlon_sse__"); \
627 } \
805e22b2 628 else if (ix86_arch == PROCESSOR_K8) \
629 { \
630 builtin_define ("__k8"); \
631 builtin_define ("__k8__"); \
632 } \
d9d8b700 633 else if (ix86_arch == PROCESSOR_PENTIUM4) \
634 { \
635 builtin_define ("__pentium4"); \
636 builtin_define ("__pentium4__"); \
637 } \
638 } \
7dbd6483 639 while (0)
640
afa6d980 641#define TARGET_CPU_DEFAULT_i386 0
642#define TARGET_CPU_DEFAULT_i486 1
643#define TARGET_CPU_DEFAULT_pentium 2
60da70a7 644#define TARGET_CPU_DEFAULT_pentium_mmx 3
645#define TARGET_CPU_DEFAULT_pentiumpro 4
646#define TARGET_CPU_DEFAULT_pentium2 5
647#define TARGET_CPU_DEFAULT_pentium3 6
648#define TARGET_CPU_DEFAULT_pentium4 7
649#define TARGET_CPU_DEFAULT_k6 8
650#define TARGET_CPU_DEFAULT_k6_2 9
651#define TARGET_CPU_DEFAULT_k6_3 10
652#define TARGET_CPU_DEFAULT_athlon 11
653#define TARGET_CPU_DEFAULT_athlon_sse 12
805e22b2 654#define TARGET_CPU_DEFAULT_k8 13
afa6d980 655
656#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
657 "pentiumpro", "pentium2", "pentium3", \
658 "pentium4", "k6", "k6-2", "k6-3",\
805e22b2 659 "athlon", "athlon-4", "k8"}
6c52fa55 660
d17e16d2 661#ifndef CC1_SPEC
18870143 662#define CC1_SPEC "%(cc1_cpu) "
d17e16d2 663#endif
664
665/* This macro defines names of additional specifications to put in the
666 specs that can be used in various specifications like CC1_SPEC. Its
667 definition is an initializer with a subgrouping for each command option.
2bc9393a 668
669 Each subgrouping contains a string constant, that defines the
670 specification name, and a string constant that used by the GNU CC driver
671 program.
672
673 Do not define this macro if it does not need to do anything. */
674
675#ifndef SUBTARGET_EXTRA_SPECS
676#define SUBTARGET_EXTRA_SPECS
677#endif
678
679#define EXTRA_SPECS \
d17e16d2 680 { "cc1_cpu", CC1_CPU_SPEC }, \
2bc9393a 681 SUBTARGET_EXTRA_SPECS
682\f
43b83681 683/* target machine storage layout */
684
0cd8258d 685/* Define for XFmode or TFmode extended real floating point support.
0cd8258d 686 The XFmode is specified by i386 ABI, while TFmode may be faster
1268285a 687 due to alignment and simplifications in the address calculations. */
0cd8258d 688#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
689#define MAX_LONG_DOUBLE_TYPE_SIZE 128
c7f5f345 690#ifdef __x86_64__
691#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
692#else
693#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
694#endif
0cd8258d 695
f3dde807 696/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
697 FPU, assume that the fpcw is set to extended precision; when using
698 only SSE, rounding is correct; when using both SSE and the FPU,
699 the rounding precision is indeterminate, since either may be chosen
700 apparently at random. */
701#define TARGET_FLT_EVAL_METHOD \
702 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
0898f59e 703
c7f5f345 704#define SHORT_TYPE_SIZE 16
705#define INT_TYPE_SIZE 32
706#define FLOAT_TYPE_SIZE 32
707#define LONG_TYPE_SIZE BITS_PER_WORD
d14d1623 708#define MAX_WCHAR_TYPE_SIZE 32
c7f5f345 709#define DOUBLE_TYPE_SIZE 64
710#define LONG_LONG_TYPE_SIZE 64
711
76b5af68 712#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
6c52fa55 713#define MAX_BITS_PER_WORD 64
714#define MAX_LONG_TYPE_SIZE 64
715#else
716#define MAX_BITS_PER_WORD 32
717#define MAX_LONG_TYPE_SIZE 32
718#endif
719
43b83681 720/* Define this if most significant byte of a word is the lowest numbered. */
721/* That is true on the 80386. */
722
723#define BITS_BIG_ENDIAN 0
724
725/* Define this if most significant byte of a word is the lowest numbered. */
726/* That is not true on the 80386. */
727#define BYTES_BIG_ENDIAN 0
728
729/* Define this if most significant word of a multiword number is the lowest
730 numbered. */
731/* Not true for 80386 */
732#define WORDS_BIG_ENDIAN 0
733
43b83681 734/* Width of a word, in units (bytes). */
c7f5f345 735#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
52cb7411 736#ifdef IN_LIBGCC2
737#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
738#else
739#define MIN_UNITS_PER_WORD 4
740#endif
43b83681 741
43b83681 742/* Allocation boundary (in *bits*) for storing arguments in argument list. */
c7f5f345 743#define PARM_BOUNDARY BITS_PER_WORD
43b83681 744
ce71a9e6 745/* Boundary (in *bits*) on which stack pointer should be aligned. */
c7f5f345 746#define STACK_BOUNDARY BITS_PER_WORD
43b83681 747
bc0eb8c6 748/* Boundary (in *bits*) on which the stack pointer preferrs to be
749 aligned; the compiler cannot rely on having this alignment. */
ce71a9e6 750#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
88451936 751
3ca5a306 752/* As of July 2001, many runtimes to not align the stack properly when
753 entering main. This causes expand_main_function to forcably align
754 the stack, which results in aligned frames for functions called from
755 main, though it does nothing for the alignment of main itself. */
756#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
5c66405b 757 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
3ca5a306 758
fc5cb4c0 759/* Minimum allocation boundary for the code of a function. */
760#define FUNCTION_BOUNDARY 8
761
762/* C++ stores the virtual bit in the lowest bit of function pointers. */
763#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
43b83681 764
bb441676 765/* Alignment of field after `int : 0' in a structure. */
43b83681 766
c7f5f345 767#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
43b83681 768
769/* Minimum size in bits of the largest boundary to which any
770 and all fundamental data types supported by the hardware
771 might need to be aligned. No data type wants to be aligned
4e17b634 772 rounder than this.
d4983fea 773
a2b35d87 774 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
4e17b634 775 and Pentium Pro XFmode values at 128 bit boundaries. */
776
777#define BIGGEST_ALIGNMENT 128
778
2feb8eca 779/* Decide whether a variable of mode MODE should be 128 bit aligned. */
f01b0085 780#define ALIGN_MODE_128(MODE) \
2feb8eca 781 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
f01b0085 782
4e17b634 783/* The published ABIs say that doubles should be aligned on word
040f791a 784 boundaries, so lower the aligment for structure fields unless
785 -malign-double is set. */
bd0f3c40 786
6e5d72bd 787/* ??? Blah -- this macro is used directly by libobjc. Since it
788 supports no vector modes, cut out the complexity and fall back
789 on BIGGEST_FIELD_ALIGNMENT. */
790#ifdef IN_TARGET_LIBS
aa867d91 791#ifdef __x86_64__
792#define BIGGEST_FIELD_ALIGNMENT 128
793#else
6e5d72bd 794#define BIGGEST_FIELD_ALIGNMENT 32
aa867d91 795#endif
6e5d72bd 796#else
bd0f3c40 797#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
798 x86_field_alignment (FIELD, COMPUTED)
6e5d72bd 799#endif
43b83681 800
f7d6703c 801/* If defined, a C expression to compute the alignment given to a
f01b0085 802 constant that is being placed in memory. EXP is the constant
f7d6703c 803 and ALIGN is the alignment that the object would ordinarily have.
804 The value of this macro is used instead of that alignment to align
805 the object.
806
807 If this macro is not defined, then ALIGN is used.
808
809 The typical use of this macro is to increase alignment for string
810 constants to be word aligned so that `strcpy' calls that copy
811 constants can be done inline. */
812
1b12cfd7 813#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
9af5c5d1 814
ed45e834 815/* If defined, a C expression to compute the alignment for a static
816 variable. TYPE is the data type, and ALIGN is the alignment that
817 the object would ordinarily have. The value of this macro is used
818 instead of that alignment to align the object.
819
820 If this macro is not defined, then ALIGN is used.
821
822 One use of this macro is to increase alignment of medium-size
823 data to make it all fit in fewer cache lines. Another is to
824 cause character arrays to be word-aligned so that `strcpy' calls
825 that copy constants to character arrays can be done inline. */
826
1b12cfd7 827#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
9bd87fd2 828
829/* If defined, a C expression to compute the alignment for a local
830 variable. TYPE is the data type, and ALIGN is the alignment that
831 the object would ordinarily have. The value of this macro is used
832 instead of that alignment to align the object.
833
834 If this macro is not defined, then ALIGN is used.
835
836 One use of this macro is to increase alignment of medium-size
837 data to make it all fit in fewer cache lines. */
838
1b12cfd7 839#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
ed45e834 840
e4bf866d 841/* If defined, a C expression that gives the alignment boundary, in
842 bits, of an argument with the specified mode and type. If it is
843 not defined, `PARM_BOUNDARY' is used for all arguments. */
844
1b12cfd7 845#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
846 ix86_function_arg_boundary ((MODE), (TYPE))
e4bf866d 847
c46dc351 848/* Set this nonzero if move instructions will actually fail to work
43b83681 849 when given unaligned data. */
bdf74c8a 850#define STRICT_ALIGNMENT 0
43b83681 851
852/* If bit field type is int, don't let it cross an int,
853 and give entire struct the alignment of an int. */
ceb2fe0f 854/* Required on the 386 since it doesn't have bit-field insns. */
43b83681 855#define PCC_BITFIELD_TYPE_MATTERS 1
43b83681 856\f
857/* Standard register usage. */
858
859/* This processor has special stack-like registers. See reg-stack.c
bb441676 860 for details. */
43b83681 861
862#define STACK_REGS
1b12cfd7 863#define IS_STACK_MODE(MODE) \
864 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
865 || (MODE) == TFmode)
43b83681 866
867/* Number of actual hardware registers.
868 The hardware registers are assigned numbers for the compiler
869 from 0 to just below FIRST_PSEUDO_REGISTER.
870 All registers that the compiler knows about must be given numbers,
871 even those that are not normally considered general registers.
872
873 In the 80386 we give the 8 general purpose registers the numbers 0-7.
874 We number the floating point registers 8-15.
875 Note that registers 0-7 can be accessed as a short or int,
876 while only 0-3 may be used with byte `mov' instructions.
877
878 Reg 16 does not correspond to any hardware register, but instead
879 appears in the RTL as an argument pointer prior to reload, and is
880 eliminated during reloading in favor of either the stack or frame
bb441676 881 pointer. */
43b83681 882
c6d93f09 883#define FIRST_PSEUDO_REGISTER 53
43b83681 884
55de61ac 885/* Number of hardware registers that go into the DWARF-2 unwind info.
886 If not defined, equals FIRST_PSEUDO_REGISTER. */
887
888#define DWARF_FRAME_REGISTERS 17
889
43b83681 890/* 1 for registers that have pervasive standard uses
891 and are not available for the register allocator.
c6d93f09 892 On the 80386, the stack pointer is such, as is the arg pointer.
d4983fea 893
c6d93f09 894 The value is an mask - bit 1 is set for fixed registers
895 for 32bit target, while 2 is set for fixed registers for 64bit.
896 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
897 */
f01b0085 898#define FIXED_REGISTERS \
899/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
c6d93f09 900{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
f01b0085 901/*arg,flags,fpsr,dir,frame*/ \
c6d93f09 902 3, 3, 3, 3, 3, \
f01b0085 903/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
904 0, 0, 0, 0, 0, 0, 0, 0, \
905/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
c6d93f09 906 0, 0, 0, 0, 0, 0, 0, 0, \
907/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
908 1, 1, 1, 1, 1, 1, 1, 1, \
909/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
910 1, 1, 1, 1, 1, 1, 1, 1}
d4983fea 911
43b83681 912
913/* 1 for registers not available across function calls.
914 These must include the FIXED_REGISTERS and also any
915 registers that can be used without being saved.
916 The latter must include the registers where values are returned
917 and the register where structure-value addresses are passed.
d4983fea 918 Aside from that, you can include as many other registers as you like.
919
c6d93f09 920 The value is an mask - bit 1 is set for call used
921 for 32bit target, while 2 is set for call used for 64bit.
922 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
923*/
f01b0085 924#define CALL_USED_REGISTERS \
925/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
c6d93f09 926{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
f01b0085 927/*arg,flags,fpsr,dir,frame*/ \
c6d93f09 928 3, 3, 3, 3, 3, \
f01b0085 929/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
c6d93f09 930 3, 3, 3, 3, 3, 3, 3, 3, \
f01b0085 931/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
c6d93f09 932 3, 3, 3, 3, 3, 3, 3, 3, \
933/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
934 3, 3, 3, 3, 1, 1, 1, 1, \
935/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
936 3, 3, 3, 3, 3, 3, 3, 3} \
43b83681 937
60206704 938/* Order in which to allocate registers. Each register must be
939 listed once, even those in FIXED_REGISTERS. List frame pointer
940 late and fixed registers last. Note that, in general, we prefer
941 registers listed in CALL_USED_REGISTERS, keeping the others
942 available for storage of persistent values.
943
717db2f5 944 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
945 so this is just empty initializer for array. */
60206704 946
717db2f5 947#define REG_ALLOC_ORDER \
948{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
949 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
950 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
951 48, 49, 50, 51, 52 }
60206704 952
717db2f5 953/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
954 to be rearranged based on a particular function. When using sse math,
955 we want to allocase SSE before x87 registers and vice vera. */
60206704 956
717db2f5 957#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
60206704 958
0bf9a70a 959
43b83681 960/* Macro to conditionally modify fixed_regs/call_used_regs. */
f01b0085 961#define CONDITIONAL_REGISTER_USAGE \
1b12cfd7 962do { \
c6d93f09 963 int i; \
964 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
965 { \
966 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
967 call_used_regs[i] = (call_used_regs[i] \
968 & (TARGET_64BIT ? 2 : 1)) != 0; \
969 } \
df9f5cf8 970 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
f01b0085 971 { \
972 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
973 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
974 } \
975 if (! TARGET_MMX) \
976 { \
977 int i; \
978 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
979 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
980 fixed_regs[i] = call_used_regs[i] = 1; \
981 } \
982 if (! TARGET_SSE) \
983 { \
984 int i; \
985 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
986 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
987 fixed_regs[i] = call_used_regs[i] = 1; \
988 } \
989 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
990 { \
991 int i; \
992 HARD_REG_SET x; \
993 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
994 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
995 if (TEST_HARD_REG_BIT (x, i)) \
996 fixed_regs[i] = call_used_regs[i] = 1; \
997 } \
1b12cfd7 998 } while (0)
43b83681 999
1000/* Return number of consecutive hard regs needed starting at reg REGNO
1001 to hold something of mode MODE.
1002 This is ordinarily the length in words of a value of mode MODE
1003 but can be less for certain modes in special long registers.
1004
d4983fea 1005 Actually there are no two word move instructions for consecutive
43b83681 1006 registers. And only registers 0-3 may have mov byte instructions
1007 applied to them.
1008 */
1009
1010#define HARD_REGNO_NREGS(REGNO, MODE) \
699a9fea 1011 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1012 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1b12cfd7 1013 : ((MODE) == TFmode \
699a9fea 1014 ? (TARGET_64BIT ? 2 : 3) \
1b12cfd7 1015 : (MODE) == TCmode \
699a9fea 1016 ? (TARGET_64BIT ? 4 : 6) \
0cd8258d 1017 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
43b83681 1018
b0556a84 1019#define VALID_SSE2_REG_MODE(MODE) \
1020 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1021 || (MODE) == V2DImode)
1022
1b12cfd7 1023#define VALID_SSE_REG_MODE(MODE) \
1024 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1025 || (MODE) == SFmode \
b0556a84 1026 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1027 || VALID_SSE2_REG_MODE (MODE) \
e78c6706 1028 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
f01b0085 1029
d5e0afe2 1030#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1031 ((MODE) == V2SFmode || (MODE) == SFmode)
1032
1b12cfd7 1033#define VALID_MMX_REG_MODE(MODE) \
1034 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
f01b0085 1035 || (MODE) == V2SImode || (MODE) == SImode)
1036
1037#define VECTOR_MODE_SUPPORTED_P(MODE) \
1038 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
d5e0afe2 1039 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1040 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
f01b0085 1041
1b12cfd7 1042#define VALID_FP_MODE_P(MODE) \
1043 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1044 || (!TARGET_64BIT && (MODE) == XFmode) \
1045 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1046 || (!TARGET_64BIT && (MODE) == XCmode))
0698f0cc 1047
1b12cfd7 1048#define VALID_INT_MODE_P(MODE) \
1049 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1050 || (MODE) == DImode \
1051 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1052 || (MODE) == CDImode \
1053 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
0698f0cc 1054
2feb8eca 1055/* Return true for modes passed in SSE registers. */
1056#define SSE_REG_MODE_P(MODE) \
1057 ((MODE) == TImode || (MODE) == V16QImode \
1058 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1059 || (MODE) == V4SFmode || (MODE) == V4SImode)
1060
1061/* Return true for modes passed in MMX registers. */
1062#define MMX_REG_MODE_P(MODE) \
1063 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1064 || (MODE) == V2SFmode)
1065
ce71a9e6 1066/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
5dd8ee04 1067
0698f0cc 1068#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1b12cfd7 1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
43b83681 1070
1071/* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
60edd1aa 1076#define MODES_TIEABLE_P(MODE1, MODE2) \
1077 ((MODE1) == (MODE2) \
2ede69f5 1078 || (((MODE1) == HImode || (MODE1) == SImode \
1079 || ((MODE1) == QImode \
1080 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1081 || ((MODE1) == DImode && TARGET_64BIT)) \
1082 && ((MODE2) == HImode || (MODE2) == SImode \
1083 || ((MODE1) == QImode \
1084 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1085 || ((MODE2) == DImode && TARGET_64BIT))))
1086
43b83681 1087
ce71a9e6 1088/* Specify the modes required to caller save a given hard regno.
301652e2 1089 We do this on i386 to prevent flags from being saved at all.
ce71a9e6 1090
301652e2 1091 Kill any attempts to combine saving of modes. */
1092
1b12cfd7 1093#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1094 (CC_REGNO_P (REGNO) ? VOIDmode \
1095 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1096 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1097 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1098 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
2ede69f5 1099 : (MODE))
43b83681 1100/* Specify the registers used for certain standard purposes.
1101 The values of these macros are register numbers. */
1102
1103/* on the 386 the pc register is %eip, and is not usable as a general
1104 register. The ordinary mov instructions won't work */
1105/* #define PC_REGNUM */
1106
1107/* Register to use for pushing function arguments. */
1108#define STACK_POINTER_REGNUM 7
1109
1110/* Base register for access to local variables of the function. */
8c5dc77f 1111#define HARD_FRAME_POINTER_REGNUM 6
1112
1113/* Base register for access to local variables of the function. */
1114#define FRAME_POINTER_REGNUM 20
43b83681 1115
1116/* First floating point reg */
1117#define FIRST_FLOAT_REG 8
1118
1119/* First & last stack-like regs */
1120#define FIRST_STACK_REG FIRST_FLOAT_REG
1121#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1122
ce71a9e6 1123#define FLAGS_REG 17
1124#define FPSR_REG 18
b52b8962 1125#define DIRFLAG_REG 19
ce71a9e6 1126
f01b0085 1127#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1128#define LAST_SSE_REG (FIRST_SSE_REG + 7)
d4983fea 1129
f01b0085 1130#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1131#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1132
c6d93f09 1133#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1134#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1135
1136#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1137#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1138
43b83681 1139/* Value should be nonzero if functions must have frame pointers.
1140 Zero means the frame pointer need not be set up (and parms
1141 may be accessed via the stack pointer) in functions that seem suitable.
1142 This is computed in `reload', in reload1.c. */
15b10465 1143#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1144
1145/* Override this in other tm.h files to cope with various OS losage
1146 requiring a frame pointer. */
1147#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1148#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1149#endif
1150
1151/* Make sure we can access arbitrary call frames. */
1152#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
43b83681 1153
1154/* Base register for access to arguments of the function. */
1155#define ARG_POINTER_REGNUM 16
1156
2ede69f5 1157/* Register in which static-chain is passed to a function.
1158 We do use ECX as static chain register for 32 bit ABI. On the
1159 64bit ABI, ECX is an argument register, so we use R10 instead. */
1160#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
43b83681 1161
1162/* Register to hold the addressing base for position independent
df9f5cf8 1163 code access to data items. We don't use PIC pointer for 64bit
1164 mode. Define the regnum to dummy value to prevent gcc from
d4983fea 1165 pessimizing code dealing with EBX.
e3abf694 1166
1167 To avoid clobbering a call-saved register unnecessarily, we renumber
1168 the pic register when possible. The change is visible after the
1169 prologue has been emitted. */
1170
1171#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1172
1173#define PIC_OFFSET_TABLE_REGNUM \
1174 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1175 : reload_completed ? REGNO (pic_offset_table_rtx) \
1176 : REAL_PIC_OFFSET_TABLE_REGNUM)
43b83681 1177
c4797f24 1178#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1179
43b83681 1180/* Register in which address to store a structure value
1181 arrives in the function. On the 386, the prologue
1182 copies this from the stack to register %eax. */
1183#define STRUCT_VALUE_INCOMING 0
1184
1185/* Place in which caller passes the structure value address.
1186 0 means push the value on the stack like an argument. */
1187#define STRUCT_VALUE 0
2cf8495e 1188
1189/* A C expression which can inhibit the returning of certain function
1190 values in registers, based on the type of value. A nonzero value
1191 says to return the function value in memory, just as large
1192 structures are always returned. Here TYPE will be a C expression
1193 of type `tree', representing the data type of the value.
1194
1195 Note that values of mode `BLKmode' must be explicitly handled by
1196 this macro. Also, the option `-fpcc-struct-return' takes effect
1197 regardless of this macro. On most systems, it is possible to
1198 leave the macro undefined; this causes a default definition to be
1199 used, whose value is the constant 1 for `BLKmode' values, and 0
1200 otherwise.
1201
1202 Do not use this macro to indicate that structures and unions
1203 should always be returned in memory. You should instead use
1204 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1205
1b12cfd7 1206#define RETURN_IN_MEMORY(TYPE) \
e4bf866d 1207 ix86_return_in_memory (TYPE)
2cf8495e 1208
43b83681 1209\f
1210/* Define the classes of registers for register constraints in the
1211 machine description. Also define ranges of constants.
1212
1213 One of the classes must always be named ALL_REGS and include all hard regs.
1214 If there is more than one class, another class must be named NO_REGS
1215 and contain no registers.
1216
1217 The name GENERAL_REGS must be the name of a class (or an alias for
1218 another name such as ALL_REGS). This is the class of registers
1219 that is allowed by "g" or "r" in a register constraint.
1220 Also, registers outside this class are allocated only when
1221 instructions express preferences for them.
1222
1223 The classes must be numbered in nondecreasing order; that is,
1224 a larger-numbered class must never be contained completely
1225 in a smaller-numbered class.
1226
1227 For any two classes, it is very desirable that there be another
5d70629f 1228 class that represents their union.
1229
1230 It might seem that class BREG is unnecessary, since no useful 386
1231 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
ce71a9e6 1232 and the "b" register constraint is useful in asms for syscalls.
1233
1234 The flags and fpsr registers are in no class. */
43b83681 1235
1236enum reg_class
1237{
1238 NO_REGS,
ce71a9e6 1239 AREG, DREG, CREG, BREG, SIREG, DIREG,
7f6a3ac8 1240 AD_REGS, /* %eax/%edx for DImode */
43b83681 1241 Q_REGS, /* %eax %ebx %ecx %edx */
8c5dc77f 1242 NON_Q_REGS, /* %esi %edi %ebp %esp */
43b83681 1243 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
c6d93f09 1244 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1245 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
43b83681 1246 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1247 FLOAT_REGS,
f01b0085 1248 SSE_REGS,
1249 MMX_REGS,
394c6a4a 1250 FP_TOP_SSE_REGS,
1251 FP_SECOND_SSE_REGS,
1252 FLOAT_SSE_REGS,
1253 FLOAT_INT_REGS,
1254 INT_SSE_REGS,
1255 FLOAT_INT_SSE_REGS,
43b83681 1256 ALL_REGS, LIM_REG_CLASSES
1257};
1258
1b12cfd7 1259#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1260
1261#define INTEGER_CLASS_P(CLASS) \
1262 reg_class_subset_p ((CLASS), GENERAL_REGS)
1263#define FLOAT_CLASS_P(CLASS) \
1264 reg_class_subset_p ((CLASS), FLOAT_REGS)
1265#define SSE_CLASS_P(CLASS) \
1266 reg_class_subset_p ((CLASS), SSE_REGS)
1267#define MMX_CLASS_P(CLASS) \
1268 reg_class_subset_p ((CLASS), MMX_REGS)
1269#define MAYBE_INTEGER_CLASS_P(CLASS) \
1270 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1271#define MAYBE_FLOAT_CLASS_P(CLASS) \
1272 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1273#define MAYBE_SSE_CLASS_P(CLASS) \
1274 reg_classes_intersect_p (SSE_REGS, (CLASS))
1275#define MAYBE_MMX_CLASS_P(CLASS) \
1276 reg_classes_intersect_p (MMX_REGS, (CLASS))
1277
1278#define Q_CLASS_P(CLASS) \
1279 reg_class_subset_p ((CLASS), Q_REGS)
8dc6dd95 1280
43b83681 1281/* Give names of register classes as strings for dump file. */
1282
1283#define REG_CLASS_NAMES \
1284{ "NO_REGS", \
5d70629f 1285 "AREG", "DREG", "CREG", "BREG", \
43b83681 1286 "SIREG", "DIREG", \
ce71a9e6 1287 "AD_REGS", \
1288 "Q_REGS", "NON_Q_REGS", \
43b83681 1289 "INDEX_REGS", \
c6d93f09 1290 "LEGACY_REGS", \
43b83681 1291 "GENERAL_REGS", \
1292 "FP_TOP_REG", "FP_SECOND_REG", \
1293 "FLOAT_REGS", \
f01b0085 1294 "SSE_REGS", \
1295 "MMX_REGS", \
394c6a4a 1296 "FP_TOP_SSE_REGS", \
1297 "FP_SECOND_SSE_REGS", \
1298 "FLOAT_SSE_REGS", \
a648dfa9 1299 "FLOAT_INT_REGS", \
394c6a4a 1300 "INT_SSE_REGS", \
1301 "FLOAT_INT_SSE_REGS", \
43b83681 1302 "ALL_REGS" }
1303
1304/* Define which registers fit in which classes.
1305 This is an initializer for a vector of HARD_REG_SET
1306 of length N_REG_CLASSES. */
1307
f01b0085 1308#define REG_CLASS_CONTENTS \
c6d93f09 1309{ { 0x00, 0x0 }, \
1310 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1311 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1312 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1313 { 0x03, 0x0 }, /* AD_REGS */ \
1314 { 0x0f, 0x0 }, /* Q_REGS */ \
1315 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1316 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1317 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1318 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1319 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1320 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1321{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1322{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1323{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1324{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1325{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1326 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1327{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1328{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1329{ 0xffffffff,0x1fffff } \
ce71a9e6 1330}
43b83681 1331
1332/* The same information, inverted:
1333 Return the class number of the smallest class containing
1334 reg number REGNO. This could be a conditional expression
1335 or could index an array. */
1336
43b83681 1337#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1338
1339/* When defined, the compiler allows registers explicitly used in the
1340 rtl to be used as spill registers but prevents the compiler from
bb441676 1341 extending the lifetime of these registers. */
43b83681 1342
f1db295a 1343#define SMALL_REGISTER_CLASSES 1
43b83681 1344
1345#define QI_REG_P(X) \
1346 (REG_P (X) && REGNO (X) < 4)
c6d93f09 1347
1b12cfd7 1348#define GENERAL_REGNO_P(N) \
1349 ((N) < 8 || REX_INT_REGNO_P (N))
c6d93f09 1350
1351#define GENERAL_REG_P(X) \
cbf58688 1352 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
c6d93f09 1353
1354#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1355
43b83681 1356#define NON_QI_REG_P(X) \
1357 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1358
1b12cfd7 1359#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
c6d93f09 1360#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1361
43b83681 1362#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1b12cfd7 1363#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
394c6a4a 1364#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1b12cfd7 1365#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
f01b0085 1366
1b12cfd7 1367#define SSE_REGNO_P(N) \
1368 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1369 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
c6d93f09 1370
805e22b2 1371#define REX_SSE_REGNO_P(N) \
1372 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1373
1b12cfd7 1374#define SSE_REGNO(N) \
1375 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1376#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
394c6a4a 1377
1b12cfd7 1378#define SSE_FLOAT_MODE_P(MODE) \
780f86b7 1379 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
f01b0085 1380
1b12cfd7 1381#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1382#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
d4983fea 1383
1b12cfd7 1384#define STACK_REG_P(XOP) \
1385 (REG_P (XOP) && \
1386 REGNO (XOP) >= FIRST_STACK_REG && \
1387 REGNO (XOP) <= LAST_STACK_REG)
43b83681 1388
1b12cfd7 1389#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
43b83681 1390
1b12cfd7 1391#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
43b83681 1392
ce71a9e6 1393#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1394#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1395
baaa5be9 1396/* Indicate whether hard register numbered REG_NO should be converted
1397 to SSA form. */
1398#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1b12cfd7 1399 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
baaa5be9 1400
43b83681 1401/* The class value for index registers, and the one for base regs. */
1402
1403#define INDEX_REG_CLASS INDEX_REGS
1404#define BASE_REG_CLASS GENERAL_REGS
1405
1406/* Get reg_class from a letter such as appears in the machine description. */
1407
1408#define REG_CLASS_FROM_LETTER(C) \
914a34d6 1409 ((C) == 'r' ? GENERAL_REGS : \
c6d93f09 1410 (C) == 'R' ? LEGACY_REGS : \
1411 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1412 (C) == 'Q' ? Q_REGS : \
914a34d6 1413 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1414 ? FLOAT_REGS \
1415 : NO_REGS) : \
1416 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1417 ? FP_TOP_REG \
1418 : NO_REGS) : \
1419 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1420 ? FP_SECOND_REG \
1421 : NO_REGS) : \
1422 (C) == 'a' ? AREG : \
1423 (C) == 'b' ? BREG : \
1424 (C) == 'c' ? CREG : \
1425 (C) == 'd' ? DREG : \
394c6a4a 1426 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1427 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1428 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
7f6a3ac8 1429 (C) == 'A' ? AD_REGS : \
914a34d6 1430 (C) == 'D' ? DIREG : \
43b83681 1431 (C) == 'S' ? SIREG : NO_REGS)
1432
1433/* The letters I, J, K, L and M in a register constraint string
1434 can be used to stand for particular ranges of immediate operands.
1435 This macro defines what the ranges are.
1436 C is the letter, and VALUE is a constant value.
1437 Return 1 if VALUE is in the range specified by C.
1438
1439 I is for non-DImode shifts.
1440 J is for DImode shifts.
ce71a9e6 1441 K is for signed imm8 operands.
1442 L is for andsi as zero-extending move.
43b83681 1443 M is for shifts that can be executed by the "lea" opcode.
53d36ba3 1444 N is for immedaite operands for out/in instructions (0-255)
43b83681 1445 */
1446
ce71a9e6 1447#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1448 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1449 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1450 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1451 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1452 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
53d36ba3 1453 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
ce71a9e6 1454 : 0)
43b83681 1455
1456/* Similar, but for floating constants, and defining letters G and H.
bdf74c8a 1457 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1458 TARGET_387 isn't set, because the stack register converter may need to
8ad9ded8 1459 load 0.0 into the function value register. */
43b83681 1460
1461#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
35e2670d 1462 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
c2f63288 1463 : 0)
43b83681 1464
cbf58688 1465/* A C expression that defines the optional machine-dependent
1466 constraint letters that can be used to segregate specific types of
1467 operands, usually memory references, for the target machine. Any
1468 letter that is not elsewhere defined and not matched by
1469 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1470 be defined.
1471
1472 If it is required for a particular target machine, it should
1473 return 1 if VALUE corresponds to the operand type represented by
1474 the constraint letter C. If C is not defined as an extra
1475 constraint, the value returned should be 0 regardless of VALUE. */
1476
3a9a09bb 1477#define EXTRA_CONSTRAINT(VALUE, D) \
a73600cc 1478 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
3a9a09bb 1479 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1480 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
cbf58688 1481 : 0)
1482
43b83681 1483/* Place additional restrictions on the register class to use when it
76170098 1484 is necessary to be able to hold a value of mode MODE in a reload
bb441676 1485 register for which class CLASS would ordinarily be used. */
43b83681 1486
2ede69f5 1487#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1488 ((MODE) == QImode && !TARGET_64BIT \
c0a5a33a 1489 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1490 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
43b83681 1491 ? Q_REGS : (CLASS))
1492
1493/* Given an rtx X being reloaded into a reg required to be
1494 in class CLASS, return the class of reg to actually use.
1495 In general this is just CLASS; but on some machines
1496 in some cases it is preferable to use a more restrictive class.
1497 On the 80386 series, we prevent floating constants from being
1498 reloaded into floating registers (since no move-insn can do that)
1499 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1500
3eba6fa0 1501/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
43b83681 1502 QImode must go into class Q_REGS.
3eba6fa0 1503 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
bb441676 1504 movdf to do mem-to-mem moves through integer regs. */
43b83681 1505
1b12cfd7 1506#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1507 ix86_preferred_reload_class ((X), (CLASS))
9a0e8e92 1508
1509/* If we are copying between general and FP registers, we need a memory
ea073cb0 1510 location. The same is true for SSE and MMX registers. */
1b12cfd7 1511#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1512 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
ce71a9e6 1513
1514/* QImode spills from non-QI registers need a scratch. This does not
d4983fea 1515 happen often -- the only example so far requires an uninitialized
ce71a9e6 1516 pseudo. */
1517
1b12cfd7 1518#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
c0a5a33a 1519 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1520 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
2ede69f5 1521 ? Q_REGS : NO_REGS)
43b83681 1522
1523/* Return the maximum number of consecutive registers
1524 needed to represent mode MODE in a register of class CLASS. */
1525/* On the 80386, this is the size of MODE in words,
699a9fea 1526 except in the FP regs, where a single reg is always enough.
1527 The TFmodes are really just 80bit values, so we use only 3 registers
1528 to hold them, instead of 4, as the size would suggest.
1529 */
f01b0085 1530#define CLASS_MAX_NREGS(CLASS, MODE) \
699a9fea 1531 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1532 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1533 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1534 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0bf9a70a 1535
1536/* A C expression whose value is nonzero if pseudos that have been
1537 assigned to registers of class CLASS would likely be spilled
1538 because registers of CLASS are needed for spill registers.
1539
1540 The default value of this macro returns 1 if CLASS has exactly one
1541 register and zero otherwise. On most machines, this default
1542 should be used. Only define this macro to some other expression
1543 if pseudo allocated by `local-alloc.c' end up in memory because
01cc3b75 1544 their hard registers were needed for spill registers. If this
0bf9a70a 1545 macro returns nonzero for those classes, those pseudos will only
1546 be allocated by `global.c', which knows how to reallocate the
1547 pseudo to another register. If there would not be another
1548 register available for reallocation, you should not change the
1549 definition of this macro since the only effect of such a
1550 definition would be to slow down register allocation. */
1551
1552#define CLASS_LIKELY_SPILLED_P(CLASS) \
1553 (((CLASS) == AREG) \
1554 || ((CLASS) == DREG) \
1555 || ((CLASS) == CREG) \
1556 || ((CLASS) == BREG) \
1557 || ((CLASS) == AD_REGS) \
1558 || ((CLASS) == SIREG) \
1559 || ((CLASS) == DIREG))
1560
ce71a9e6 1561/* A C statement that adds to CLOBBERS any hard regs the port wishes
d4983fea 1562 to automatically clobber for all asms.
ce71a9e6 1563
1564 We do this in the new i386 backend to maintain source compatibility
1565 with the old cc0-based compiler. */
1566
1b12cfd7 1567#define MD_ASM_CLOBBERS(CLOBBERS) \
1568 do { \
1569 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1570 (CLOBBERS)); \
1571 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1572 (CLOBBERS)); \
1573 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1574 (CLOBBERS)); \
ce71a9e6 1575 } while (0)
43b83681 1576\f
1577/* Stack layout; function entry, exit and calling. */
1578
1579/* Define this if pushing a word on the stack
1580 makes the stack pointer a smaller address. */
1581#define STACK_GROWS_DOWNWARD
1582
1583/* Define this if the nominal address of the stack frame
1584 is at the high-address end of the local variables;
1585 that is, each additional local variable allocated
1586 goes at a more negative offset in the frame. */
1587#define FRAME_GROWS_DOWNWARD
1588
1589/* Offset within stack frame to start allocating local variables at.
1590 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1591 first local allocated. Otherwise, it is the offset to the BEGINNING
1592 of the first local allocated. */
1593#define STARTING_FRAME_OFFSET 0
1594
1595/* If we generate an insn to push BYTES bytes,
1596 this says how many the stack pointer really advances by.
1597 On 386 pushw decrements by exactly 2 no matter what the position was.
1598 On the 386 there is no pushb; we use pushw instead, and this
2ede69f5 1599 has the effect of rounding up to 2.
d4983fea 1600
2ede69f5 1601 For 64bit ABI we round up to 8 bytes.
1602 */
43b83681 1603
2ede69f5 1604#define PUSH_ROUNDING(BYTES) \
1605 (TARGET_64BIT \
1606 ? (((BYTES) + 7) & (-8)) \
1607 : (((BYTES) + 1) & (-2)))
43b83681 1608
4448f543 1609/* If defined, the maximum amount of space required for outgoing arguments will
1610 be computed and placed into the variable
1611 `current_function_outgoing_args_size'. No space will be pushed onto the
1612 stack for each call; instead, the function prologue should increase the stack
1613 frame size by this amount. */
1614
1615#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1616
1617/* If defined, a C expression whose value is nonzero when we want to use PUSH
1618 instructions to pass outgoing arguments. */
1619
1620#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1621
2a8e54a4 1622/* We want the stack and args grow in opposite directions, even if
1623 PUSH_ARGS is 0. */
1624#define PUSH_ARGS_REVERSED 1
1625
43b83681 1626/* Offset of first parameter from the argument pointer register value. */
1627#define FIRST_PARM_OFFSET(FNDECL) 0
1628
f01b0085 1629/* Define this macro if functions should assume that stack space has been
1630 allocated for arguments even when their values are passed in registers.
1631
1632 The value of this macro is the size, in bytes, of the area reserved for
1633 arguments passed in registers for the function represented by FNDECL.
1634
1635 This space can be allocated by the caller, or be a part of the
1636 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1637 which. */
1638#define REG_PARM_STACK_SPACE(FNDECL) 0
1639
1640/* Define as a C expression that evaluates to nonzero if we do not know how
1641 to pass TYPE solely in registers. The file expr.h defines a
1642 definition that is usually appropriate, refer to expr.h for additional
1643 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1644 computed in the stack and then loaded into a register. */
1b12cfd7 1645#define MUST_PASS_IN_STACK(MODE, TYPE) \
1646 ((TYPE) != 0 \
1647 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1648 || TREE_ADDRESSABLE (TYPE) \
1649 || ((MODE) == TImode) \
1650 || ((MODE) == BLKmode \
1651 && ! ((TYPE) != 0 \
1652 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1653 && 0 == (int_size_in_bytes (TYPE) \
1654 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1655 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
f01b0085 1656 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1657
43b83681 1658/* Value is the number of bytes of arguments automatically
1659 popped when returning from a subroutine call.
97a18f26 1660 FUNDECL is the declaration node of the function (as a tree),
43b83681 1661 FUNTYPE is the data type of the function (as a tree),
1662 or for a library call it is an identifier node for the subroutine name.
1663 SIZE is the number of bytes of arguments passed on the stack.
1664
1665 On the 80386, the RTD insn may be used to pop them if the number
1666 of args is fixed, but if the number is variable then the caller
1667 must pop them all. RTD can't be used for library calls now
1668 because the library is compiled with the Unix compiler.
1669 Use of RTD is a selectable option, since it is incompatible with
1670 standard Unix calling sequences. If the option is not selected,
bfa936ad 1671 the caller must always pop the args.
1672
1673 The attribute stdcall is equivalent to RTD on a per module basis. */
43b83681 1674
1b12cfd7 1675#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1676 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
43b83681 1677
914a34d6 1678/* Define how to find the value returned by a function.
1679 VALTYPE is the data type of the value (as a tree).
1680 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1681 otherwise, FUNC is 0. */
43b83681 1682#define FUNCTION_VALUE(VALTYPE, FUNC) \
e4bf866d 1683 ix86_function_value (VALTYPE)
1684
1685#define FUNCTION_VALUE_REGNO_P(N) \
1686 ix86_function_value_regno_p (N)
43b83681 1687
1688/* Define how to find the value returned by a library function
1689 assuming the value has mode MODE. */
1690
1691#define LIBCALL_VALUE(MODE) \
e4bf866d 1692 ix86_libcall_value (MODE)
43b83681 1693
f202941c 1694/* Define the size of the result block used for communication between
1695 untyped_call and untyped_return. The block contains a DImode value
1696 followed by the block used by fnsave and frstor. */
1697
1698#define APPLY_RESULT_SIZE (8+108)
1699
bfa936ad 1700/* 1 if N is a possible register number for function argument passing. */
e4bf866d 1701#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
43b83681 1702
1703/* Define a data type for recording info about an argument list
1704 during the scan of that argument list. This data type should
1705 hold all necessary information about the function itself
1706 and about the args processed so far, enough to enable macros
bfa936ad 1707 such as FUNCTION_ARG to determine where the next arg should go. */
43b83681 1708
ce71a9e6 1709typedef struct ix86_args {
bfa936ad 1710 int words; /* # words passed so far */
1711 int nregs; /* # registers available for passing */
1712 int regno; /* next available register number */
f01b0085 1713 int sse_words; /* # sse words passed so far */
1714 int sse_nregs; /* # sse registers available for passing */
1715 int sse_regno; /* next available sse register number */
bb441676 1716 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
bfa936ad 1717} CUMULATIVE_ARGS;
43b83681 1718
1719/* Initialize a variable CUM of type CUMULATIVE_ARGS
1720 for a call to a function whose data type is FNTYPE.
bfa936ad 1721 For a library call, FNTYPE is 0. */
43b83681 1722
1b12cfd7 1723#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1724 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
43b83681 1725
1726/* Update the data in CUM to advance over an argument
1727 of mode MODE and data type TYPE.
1728 (TYPE is null for libcalls where that information may not be available.) */
1729
1b12cfd7 1730#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1731 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
43b83681 1732
1733/* Define where to put the arguments to a function.
1734 Value is zero to push the argument on the stack,
1735 or a hard register in which to store the argument.
1736
1737 MODE is the argument's machine mode.
1738 TYPE is the data type of the argument (as a tree).
1739 This is null for libcalls where that information may
1740 not be available.
1741 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1742 the preceding args and about the function being called.
1743 NAMED is nonzero if this argument is a named parameter
1744 (otherwise it is an extra parameter matching an ellipsis). */
1745
43b83681 1746#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1b12cfd7 1747 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
43b83681 1748
1749/* For an arg passed partly in registers and partly in memory,
1750 this is the number of registers used.
1751 For args passed entirely in registers or entirely in memory, zero. */
1752
ce71a9e6 1753#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
43b83681 1754
9532742b 1755/* Perform any needed actions needed for a function that is receiving a
1756 variable number of arguments.
1757
1758 CUM is as above.
1759
1760 MODE and TYPE are the mode and type of the current parameter.
1761
1762 PRETEND_SIZE is a variable that should be set to the amount of stack
1763 that must be pushed by the prolog to pretend that our caller pushed
1764 it.
1765
1766 Normally, this macro will push all remaining incoming registers on the
1767 stack and set PRETEND_SIZE to the length of the registers pushed. */
1768
1b12cfd7 1769#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1770 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1771 (NO_RTL))
9532742b 1772
1773/* Define the `__builtin_va_list' type for the ABI. */
1774#define BUILD_VA_LIST_TYPE(VALIST) \
1b12cfd7 1775 ((VALIST) = ix86_build_va_list ())
9532742b 1776
1777/* Implement `va_start' for varargs and stdarg. */
7df226a2 1778#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1779 ix86_va_start (VALIST, NEXTARG)
9532742b 1780
1781/* Implement `va_arg'. */
1b12cfd7 1782#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1783 ix86_va_arg ((VALIST), (TYPE))
9532742b 1784
6a34d485 1785/* This macro is invoked at the end of compilation. It is used here to
1786 output code for -fpic that will load the return address into %ebx. */
42c2e1fa 1787
6a34d485 1788#undef ASM_FILE_END
1789#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
42c2e1fa 1790
43b83681 1791/* Output assembler code to FILE to increment profiler label # LABELNO
1792 for profiling a function entry. */
1793
af23924f 1794#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1795
1796#define MCOUNT_NAME "_mcount"
1797
1798#define PROFILE_COUNT_REGISTER "edx"
43b83681 1799
1800/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1801 the stack pointer does not matter. The value is tested only in
1802 functions that have frame pointers.
1803 No definition is equivalent to always zero. */
d4983fea 1804/* Note on the 386 it might be more efficient not to define this since
43b83681 1805 we have to restore it ourselves from the frame pointer, in order to
1806 use pop */
1807
1808#define EXIT_IGNORE_STACK 1
1809
43b83681 1810/* Output assembler code for a block containing the constant parts
1811 of a trampoline, leaving space for the variable parts. */
1812
f3e2ae00 1813/* On the 386, the trampoline contains two instructions:
43b83681 1814 mov #STATIC,ecx
f3e2ae00 1815 jmp FUNCTION
1816 The trampoline is generated entirely at runtime. The operand of JMP
1817 is the address of FUNCTION relative to the instruction following the
1818 JMP (which is 5 bytes long). */
43b83681 1819
1820/* Length in units of the trampoline for entering a nested function. */
1821
e246b648 1822#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
43b83681 1823
1824/* Emit RTL insns to initialize the variable parts of a trampoline.
1825 FNADDR is an RTX for the address of the function's pure code.
1826 CXT is an RTX for the static chain value for the function. */
1827
1b12cfd7 1828#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1829 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
43b83681 1830\f
1831/* Definitions for register eliminations.
1832
1833 This is an array of structures. Each structure initializes one pair
1834 of eliminable registers. The "from" register number is given first,
1835 followed by "to". Eliminations of the same "from" register are listed
1836 in order of preference.
1837
0be394dd 1838 There are two registers that can always be eliminated on the i386.
1839 The frame pointer and the arg pointer can be replaced by either the
1840 hard frame pointer or to the stack pointer, depending upon the
1841 circumstances. The hard frame pointer is not used before reload and
1842 so it is not eligible for elimination. */
43b83681 1843
8c5dc77f 1844#define ELIMINABLE_REGS \
1845{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1846 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1847 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1848 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
43b83681 1849
83070725 1850/* Given FROM and TO register numbers, say whether this elimination is
1851 allowed. Frame pointer elimination is automatically handled.
43b83681 1852
1853 All other eliminations are valid. */
1854
83070725 1855#define CAN_ELIMINATE(FROM, TO) \
1856 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
43b83681 1857
1858/* Define the offset between two registers, one to be eliminated, and the other
1859 its replacement, at the start of a routine. */
1860
1b12cfd7 1861#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1862 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
43b83681 1863\f
1864/* Addressing modes, and classification of registers for them. */
1865
43b83681 1866/* Macros to check register numbers against specific register classes. */
1867
1868/* These assume that REGNO is a hard or pseudo reg number.
1869 They give nonzero only if REGNO is a hard reg of the suitable class
1870 or a pseudo reg currently allocated to a suitable hard reg.
1871 Since they use reg_renumber, they are safe only once reg_renumber
1872 has been allocated, which happens in local-alloc.c. */
1873
c6d93f09 1874#define REGNO_OK_FOR_INDEX_P(REGNO) \
1875 ((REGNO) < STACK_POINTER_REGNUM \
1876 || (REGNO >= FIRST_REX_INT_REG \
1877 && (REGNO) <= LAST_REX_INT_REG) \
1b12cfd7 1878 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1879 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1880 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
43b83681 1881
c6d93f09 1882#define REGNO_OK_FOR_BASE_P(REGNO) \
1883 ((REGNO) <= STACK_POINTER_REGNUM \
1884 || (REGNO) == ARG_POINTER_REGNUM \
1885 || (REGNO) == FRAME_POINTER_REGNUM \
1886 || (REGNO >= FIRST_REX_INT_REG \
1887 && (REGNO) <= LAST_REX_INT_REG) \
1b12cfd7 1888 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1889 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1890 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
43b83681 1891
1b12cfd7 1892#define REGNO_OK_FOR_SIREG_P(REGNO) \
1893 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1894#define REGNO_OK_FOR_DIREG_P(REGNO) \
1895 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
43b83681 1896
1897/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1898 and check its validity for a certain class.
1899 We have two alternate definitions for each of them.
1900 The usual definition accepts all pseudo regs; the other rejects
1901 them unless they have been allocated suitable hard regs.
1902 The symbol REG_OK_STRICT causes the latter definition to be used.
1903
1904 Most source files want to accept pseudo regs in the hope that
1905 they will get allocated to the class that the insn wants them to be in.
1906 Source files for reload pass need to be strict.
1907 After reload, it makes no difference, since pseudo regs have
1908 been eliminated by then. */
1909
43b83681 1910
60206704 1911/* Non strict versions, pseudos are ok */
1912#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1913 (REGNO (X) < STACK_POINTER_REGNUM \
c6d93f09 1914 || (REGNO (X) >= FIRST_REX_INT_REG \
1915 && REGNO (X) <= LAST_REX_INT_REG) \
43b83681 1916 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1917
60206704 1918#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1919 (REGNO (X) <= STACK_POINTER_REGNUM \
1920 || REGNO (X) == ARG_POINTER_REGNUM \
c6d93f09 1921 || REGNO (X) == FRAME_POINTER_REGNUM \
1922 || (REGNO (X) >= FIRST_REX_INT_REG \
1923 && REGNO (X) <= LAST_REX_INT_REG) \
60206704 1924 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
43b83681 1925
60206704 1926/* Strict versions, hard registers only */
1927#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1928#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
43b83681 1929
60206704 1930#ifndef REG_OK_STRICT
1b12cfd7 1931#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1932#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
60206704 1933
1934#else
1b12cfd7 1935#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1936#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
43b83681 1937#endif
1938
1939/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1940 that is a valid memory address for an instruction.
1941 The MODE argument is the machine mode for the MEM expression
1942 that wants to use this address.
1943
1944 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1945 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1946
1947 See legitimize_pic_address in i386.c for details as to what
1948 constitutes a legitimate address when -fpic is used. */
1949
1950#define MAX_REGS_PER_ADDRESS 2
1951
2d6788fe 1952#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
43b83681 1953
1954/* Nonzero if the constant value X is a legitimate general operand.
1955 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1956
2d6788fe 1957#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
43b83681 1958
60206704 1959#ifdef REG_OK_STRICT
1960#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1b12cfd7 1961do { \
1962 if (legitimate_address_p ((MODE), (X), 1)) \
60206704 1963 goto ADDR; \
1b12cfd7 1964} while (0)
43b83681 1965
60206704 1966#else
1967#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1b12cfd7 1968do { \
1969 if (legitimate_address_p ((MODE), (X), 0)) \
43b83681 1970 goto ADDR; \
1b12cfd7 1971} while (0)
43b83681 1972
60206704 1973#endif
1974
15750b1e 1975/* If defined, a C expression to determine the base term of address X.
1976 This macro is used in only one place: `find_base_term' in alias.c.
1977
1978 It is always safe for this macro to not be defined. It exists so
1979 that alias analysis can understand machine-dependent addresses.
1980
1981 The typical use of this macro is to handle addresses containing
1982 a label_ref or symbol_ref within an UNSPEC. */
1983
1b12cfd7 1984#define FIND_BASE_TERM(X) ix86_find_base_term (X)
15750b1e 1985
43b83681 1986/* Try machine-dependent ways of modifying an illegitimate address
1987 to be legitimate. If we find one, return the new, valid address.
1988 This macro is used in only one place: `memory_address' in explow.c.
1989
1990 OLDX is the address as it was before break_out_memory_refs was called.
1991 In some cases it is useful to look at this to decide what needs to be done.
1992
1993 MODE and WIN are passed so that this macro can use
1994 GO_IF_LEGITIMATE_ADDRESS.
1995
1996 It is always safe for this macro to do nothing. It exists to recognize
1997 opportunities to optimize the output.
1998
1999 For the 80386, we handle X+REG by loading X into a register R and
2000 using R+REG. R will go in a general reg and indexing will be used.
2001 However, if REG is a broken-out memory address or multiplication,
2002 nothing needs to be done because REG can certainly go in a general reg.
2003
2004 When -fpic is used, special handling is needed for symbolic references.
2005 See comments by legitimize_pic_address in i386.c for details. */
2006
60206704 2007#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1b12cfd7 2008do { \
2009 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2010 if (memory_address_p ((MODE), (X))) \
60206704 2011 goto WIN; \
1b12cfd7 2012} while (0)
43b83681 2013
1b12cfd7 2014#define REWRITE_ADDRESS(X) rewrite_address (X)
9af5c5d1 2015
43b83681 2016/* Nonzero if the constant value X is a legitimate general operand
d4983fea 2017 when generating PIC code. It is given that flag_pic is on and
43b83681 2018 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2019
2d6788fe 2020#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
43b83681 2021
2022#define SYMBOLIC_CONST(X) \
1b12cfd7 2023 (GET_CODE (X) == SYMBOL_REF \
2024 || GET_CODE (X) == LABEL_REF \
2025 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
43b83681 2026
2027/* Go to LABEL if ADDR (a legitimate address expression)
2028 has an effect that depends on the machine mode it is used for.
2029 On the 80386, only postdecrement and postincrement address depend thus
2030 (the amount of decrement or increment being the length of the operand). */
1b12cfd7 2031#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2032do { \
2033 if (GET_CODE (ADDR) == POST_INC \
2034 || GET_CODE (ADDR) == POST_DEC) \
2035 goto LABEL; \
2036} while (0)
43b83681 2037\f
a2713927 2038/* Codes for all the SSE/MMX builtins. */
2039enum ix86_builtins
2040{
2041 IX86_BUILTIN_ADDPS,
2042 IX86_BUILTIN_ADDSS,
2043 IX86_BUILTIN_DIVPS,
2044 IX86_BUILTIN_DIVSS,
2045 IX86_BUILTIN_MULPS,
2046 IX86_BUILTIN_MULSS,
2047 IX86_BUILTIN_SUBPS,
2048 IX86_BUILTIN_SUBSS,
2049
2050 IX86_BUILTIN_CMPEQPS,
2051 IX86_BUILTIN_CMPLTPS,
2052 IX86_BUILTIN_CMPLEPS,
2053 IX86_BUILTIN_CMPGTPS,
2054 IX86_BUILTIN_CMPGEPS,
2055 IX86_BUILTIN_CMPNEQPS,
2056 IX86_BUILTIN_CMPNLTPS,
2057 IX86_BUILTIN_CMPNLEPS,
2058 IX86_BUILTIN_CMPNGTPS,
2059 IX86_BUILTIN_CMPNGEPS,
2060 IX86_BUILTIN_CMPORDPS,
2061 IX86_BUILTIN_CMPUNORDPS,
2062 IX86_BUILTIN_CMPNEPS,
2063 IX86_BUILTIN_CMPEQSS,
2064 IX86_BUILTIN_CMPLTSS,
2065 IX86_BUILTIN_CMPLESS,
a2713927 2066 IX86_BUILTIN_CMPNEQSS,
2067 IX86_BUILTIN_CMPNLTSS,
2068 IX86_BUILTIN_CMPNLESS,
a2713927 2069 IX86_BUILTIN_CMPORDSS,
2070 IX86_BUILTIN_CMPUNORDSS,
2071 IX86_BUILTIN_CMPNESS,
2072
2073 IX86_BUILTIN_COMIEQSS,
2074 IX86_BUILTIN_COMILTSS,
2075 IX86_BUILTIN_COMILESS,
2076 IX86_BUILTIN_COMIGTSS,
2077 IX86_BUILTIN_COMIGESS,
2078 IX86_BUILTIN_COMINEQSS,
2079 IX86_BUILTIN_UCOMIEQSS,
2080 IX86_BUILTIN_UCOMILTSS,
2081 IX86_BUILTIN_UCOMILESS,
2082 IX86_BUILTIN_UCOMIGTSS,
2083 IX86_BUILTIN_UCOMIGESS,
2084 IX86_BUILTIN_UCOMINEQSS,
2085
2086 IX86_BUILTIN_CVTPI2PS,
2087 IX86_BUILTIN_CVTPS2PI,
2088 IX86_BUILTIN_CVTSI2SS,
2089 IX86_BUILTIN_CVTSS2SI,
2090 IX86_BUILTIN_CVTTPS2PI,
2091 IX86_BUILTIN_CVTTSS2SI,
a2713927 2092
2093 IX86_BUILTIN_MAXPS,
2094 IX86_BUILTIN_MAXSS,
2095 IX86_BUILTIN_MINPS,
2096 IX86_BUILTIN_MINSS,
2097
2098 IX86_BUILTIN_LOADAPS,
2099 IX86_BUILTIN_LOADUPS,
2100 IX86_BUILTIN_STOREAPS,
2101 IX86_BUILTIN_STOREUPS,
2102 IX86_BUILTIN_LOADSS,
2103 IX86_BUILTIN_STORESS,
2104 IX86_BUILTIN_MOVSS,
2105
2106 IX86_BUILTIN_MOVHLPS,
2107 IX86_BUILTIN_MOVLHPS,
2108 IX86_BUILTIN_LOADHPS,
2109 IX86_BUILTIN_LOADLPS,
2110 IX86_BUILTIN_STOREHPS,
2111 IX86_BUILTIN_STORELPS,
2112
2113 IX86_BUILTIN_MASKMOVQ,
2114 IX86_BUILTIN_MOVMSKPS,
2115 IX86_BUILTIN_PMOVMSKB,
2116
2117 IX86_BUILTIN_MOVNTPS,
2118 IX86_BUILTIN_MOVNTQ,
2119
4901c1b4 2120 IX86_BUILTIN_LOADDQA,
2121 IX86_BUILTIN_LOADDQU,
2122 IX86_BUILTIN_STOREDQA,
2123 IX86_BUILTIN_STOREDQU,
2124 IX86_BUILTIN_MOVQ,
2125 IX86_BUILTIN_LOADD,
2126 IX86_BUILTIN_STORED,
2127
2128 IX86_BUILTIN_CLRTI,
2129
a2713927 2130 IX86_BUILTIN_PACKSSWB,
2131 IX86_BUILTIN_PACKSSDW,
2132 IX86_BUILTIN_PACKUSWB,
2133
2134 IX86_BUILTIN_PADDB,
2135 IX86_BUILTIN_PADDW,
2136 IX86_BUILTIN_PADDD,
2137 IX86_BUILTIN_PADDSB,
2138 IX86_BUILTIN_PADDSW,
2139 IX86_BUILTIN_PADDUSB,
2140 IX86_BUILTIN_PADDUSW,
2141 IX86_BUILTIN_PSUBB,
2142 IX86_BUILTIN_PSUBW,
2143 IX86_BUILTIN_PSUBD,
2144 IX86_BUILTIN_PSUBSB,
2145 IX86_BUILTIN_PSUBSW,
2146 IX86_BUILTIN_PSUBUSB,
2147 IX86_BUILTIN_PSUBUSW,
2148
2149 IX86_BUILTIN_PAND,
2150 IX86_BUILTIN_PANDN,
2151 IX86_BUILTIN_POR,
2152 IX86_BUILTIN_PXOR,
2153
2154 IX86_BUILTIN_PAVGB,
2155 IX86_BUILTIN_PAVGW,
2156
2157 IX86_BUILTIN_PCMPEQB,
2158 IX86_BUILTIN_PCMPEQW,
2159 IX86_BUILTIN_PCMPEQD,
2160 IX86_BUILTIN_PCMPGTB,
2161 IX86_BUILTIN_PCMPGTW,
2162 IX86_BUILTIN_PCMPGTD,
2163
2164 IX86_BUILTIN_PEXTRW,
2165 IX86_BUILTIN_PINSRW,
2166
2167 IX86_BUILTIN_PMADDWD,
2168
2169 IX86_BUILTIN_PMAXSW,
2170 IX86_BUILTIN_PMAXUB,
2171 IX86_BUILTIN_PMINSW,
2172 IX86_BUILTIN_PMINUB,
2173
2174 IX86_BUILTIN_PMULHUW,
2175 IX86_BUILTIN_PMULHW,
2176 IX86_BUILTIN_PMULLW,
2177
2178 IX86_BUILTIN_PSADBW,
2179 IX86_BUILTIN_PSHUFW,
2180
2181 IX86_BUILTIN_PSLLW,
2182 IX86_BUILTIN_PSLLD,
2183 IX86_BUILTIN_PSLLQ,
2184 IX86_BUILTIN_PSRAW,
2185 IX86_BUILTIN_PSRAD,
2186 IX86_BUILTIN_PSRLW,
2187 IX86_BUILTIN_PSRLD,
2188 IX86_BUILTIN_PSRLQ,
2189 IX86_BUILTIN_PSLLWI,
2190 IX86_BUILTIN_PSLLDI,
2191 IX86_BUILTIN_PSLLQI,
2192 IX86_BUILTIN_PSRAWI,
2193 IX86_BUILTIN_PSRADI,
2194 IX86_BUILTIN_PSRLWI,
2195 IX86_BUILTIN_PSRLDI,
2196 IX86_BUILTIN_PSRLQI,
2197
2198 IX86_BUILTIN_PUNPCKHBW,
2199 IX86_BUILTIN_PUNPCKHWD,
2200 IX86_BUILTIN_PUNPCKHDQ,
2201 IX86_BUILTIN_PUNPCKLBW,
2202 IX86_BUILTIN_PUNPCKLWD,
2203 IX86_BUILTIN_PUNPCKLDQ,
2204
2205 IX86_BUILTIN_SHUFPS,
2206
2207 IX86_BUILTIN_RCPPS,
2208 IX86_BUILTIN_RCPSS,
2209 IX86_BUILTIN_RSQRTPS,
2210 IX86_BUILTIN_RSQRTSS,
2211 IX86_BUILTIN_SQRTPS,
2212 IX86_BUILTIN_SQRTSS,
d4983fea 2213
a2713927 2214 IX86_BUILTIN_UNPCKHPS,
2215 IX86_BUILTIN_UNPCKLPS,
2216
2217 IX86_BUILTIN_ANDPS,
2218 IX86_BUILTIN_ANDNPS,
2219 IX86_BUILTIN_ORPS,
2220 IX86_BUILTIN_XORPS,
2221
2222 IX86_BUILTIN_EMMS,
2223 IX86_BUILTIN_LDMXCSR,
2224 IX86_BUILTIN_STMXCSR,
2225 IX86_BUILTIN_SFENCE,
a2713927 2226
d5e0afe2 2227 /* 3DNow! Original */
2228 IX86_BUILTIN_FEMMS,
2229 IX86_BUILTIN_PAVGUSB,
2230 IX86_BUILTIN_PF2ID,
2231 IX86_BUILTIN_PFACC,
2232 IX86_BUILTIN_PFADD,
2233 IX86_BUILTIN_PFCMPEQ,
2234 IX86_BUILTIN_PFCMPGE,
2235 IX86_BUILTIN_PFCMPGT,
2236 IX86_BUILTIN_PFMAX,
2237 IX86_BUILTIN_PFMIN,
2238 IX86_BUILTIN_PFMUL,
2239 IX86_BUILTIN_PFRCP,
2240 IX86_BUILTIN_PFRCPIT1,
2241 IX86_BUILTIN_PFRCPIT2,
2242 IX86_BUILTIN_PFRSQIT1,
2243 IX86_BUILTIN_PFRSQRT,
2244 IX86_BUILTIN_PFSUB,
2245 IX86_BUILTIN_PFSUBR,
2246 IX86_BUILTIN_PI2FD,
2247 IX86_BUILTIN_PMULHRW,
d5e0afe2 2248
2249 /* 3DNow! Athlon Extensions */
2250 IX86_BUILTIN_PF2IW,
2251 IX86_BUILTIN_PFNACC,
2252 IX86_BUILTIN_PFPNACC,
2253 IX86_BUILTIN_PI2FW,
2254 IX86_BUILTIN_PSWAPDSI,
2255 IX86_BUILTIN_PSWAPDSF,
2256
3381a03a 2257 IX86_BUILTIN_SSE_ZERO,
a2713927 2258 IX86_BUILTIN_MMX_ZERO,
2259
b0556a84 2260 /* SSE2 */
2261 IX86_BUILTIN_ADDPD,
2262 IX86_BUILTIN_ADDSD,
2263 IX86_BUILTIN_DIVPD,
2264 IX86_BUILTIN_DIVSD,
2265 IX86_BUILTIN_MULPD,
2266 IX86_BUILTIN_MULSD,
2267 IX86_BUILTIN_SUBPD,
2268 IX86_BUILTIN_SUBSD,
2269
2270 IX86_BUILTIN_CMPEQPD,
2271 IX86_BUILTIN_CMPLTPD,
2272 IX86_BUILTIN_CMPLEPD,
2273 IX86_BUILTIN_CMPGTPD,
2274 IX86_BUILTIN_CMPGEPD,
2275 IX86_BUILTIN_CMPNEQPD,
2276 IX86_BUILTIN_CMPNLTPD,
2277 IX86_BUILTIN_CMPNLEPD,
2278 IX86_BUILTIN_CMPNGTPD,
2279 IX86_BUILTIN_CMPNGEPD,
2280 IX86_BUILTIN_CMPORDPD,
2281 IX86_BUILTIN_CMPUNORDPD,
2282 IX86_BUILTIN_CMPNEPD,
2283 IX86_BUILTIN_CMPEQSD,
2284 IX86_BUILTIN_CMPLTSD,
2285 IX86_BUILTIN_CMPLESD,
b0556a84 2286 IX86_BUILTIN_CMPNEQSD,
2287 IX86_BUILTIN_CMPNLTSD,
2288 IX86_BUILTIN_CMPNLESD,
b0556a84 2289 IX86_BUILTIN_CMPORDSD,
2290 IX86_BUILTIN_CMPUNORDSD,
2291 IX86_BUILTIN_CMPNESD,
2292
2293 IX86_BUILTIN_COMIEQSD,
2294 IX86_BUILTIN_COMILTSD,
2295 IX86_BUILTIN_COMILESD,
2296 IX86_BUILTIN_COMIGTSD,
2297 IX86_BUILTIN_COMIGESD,
2298 IX86_BUILTIN_COMINEQSD,
2299 IX86_BUILTIN_UCOMIEQSD,
2300 IX86_BUILTIN_UCOMILTSD,
2301 IX86_BUILTIN_UCOMILESD,
2302 IX86_BUILTIN_UCOMIGTSD,
2303 IX86_BUILTIN_UCOMIGESD,
2304 IX86_BUILTIN_UCOMINEQSD,
2305
2306 IX86_BUILTIN_MAXPD,
2307 IX86_BUILTIN_MAXSD,
2308 IX86_BUILTIN_MINPD,
2309 IX86_BUILTIN_MINSD,
2310
2311 IX86_BUILTIN_ANDPD,
2312 IX86_BUILTIN_ANDNPD,
2313 IX86_BUILTIN_ORPD,
2314 IX86_BUILTIN_XORPD,
2315
2316 IX86_BUILTIN_SQRTPD,
2317 IX86_BUILTIN_SQRTSD,
2318
2319 IX86_BUILTIN_UNPCKHPD,
2320 IX86_BUILTIN_UNPCKLPD,
2321
2322 IX86_BUILTIN_SHUFPD,
2323
2324 IX86_BUILTIN_LOADAPD,
2325 IX86_BUILTIN_LOADUPD,
2326 IX86_BUILTIN_STOREAPD,
2327 IX86_BUILTIN_STOREUPD,
2328 IX86_BUILTIN_LOADSD,
2329 IX86_BUILTIN_STORESD,
2330 IX86_BUILTIN_MOVSD,
2331
2332 IX86_BUILTIN_LOADHPD,
2333 IX86_BUILTIN_LOADLPD,
2334 IX86_BUILTIN_STOREHPD,
2335 IX86_BUILTIN_STORELPD,
2336
2337 IX86_BUILTIN_CVTDQ2PD,
2338 IX86_BUILTIN_CVTDQ2PS,
2339
2340 IX86_BUILTIN_CVTPD2DQ,
2341 IX86_BUILTIN_CVTPD2PI,
2342 IX86_BUILTIN_CVTPD2PS,
2343 IX86_BUILTIN_CVTTPD2DQ,
2344 IX86_BUILTIN_CVTTPD2PI,
2345
2346 IX86_BUILTIN_CVTPI2PD,
2347 IX86_BUILTIN_CVTSI2SD,
2348
2349 IX86_BUILTIN_CVTSD2SI,
2350 IX86_BUILTIN_CVTSD2SS,
2351 IX86_BUILTIN_CVTSS2SD,
2352 IX86_BUILTIN_CVTTSD2SI,
2353
2354 IX86_BUILTIN_CVTPS2DQ,
2355 IX86_BUILTIN_CVTPS2PD,
2356 IX86_BUILTIN_CVTTPS2DQ,
2357
2358 IX86_BUILTIN_MOVNTI,
2359 IX86_BUILTIN_MOVNTPD,
2360 IX86_BUILTIN_MOVNTDQ,
2361
2362 IX86_BUILTIN_SETPD1,
2363 IX86_BUILTIN_SETPD,
2364 IX86_BUILTIN_CLRPD,
2365 IX86_BUILTIN_SETRPD,
2366 IX86_BUILTIN_LOADPD1,
2367 IX86_BUILTIN_LOADRPD,
2368 IX86_BUILTIN_STOREPD1,
2369 IX86_BUILTIN_STORERPD,
2370
2371 /* SSE2 MMX */
2372 IX86_BUILTIN_MASKMOVDQU,
2373 IX86_BUILTIN_MOVMSKPD,
2374 IX86_BUILTIN_PMOVMSKB128,
2375 IX86_BUILTIN_MOVQ2DQ,
4901c1b4 2376 IX86_BUILTIN_MOVDQ2Q,
b0556a84 2377
2378 IX86_BUILTIN_PACKSSWB128,
2379 IX86_BUILTIN_PACKSSDW128,
2380 IX86_BUILTIN_PACKUSWB128,
2381
2382 IX86_BUILTIN_PADDB128,
2383 IX86_BUILTIN_PADDW128,
2384 IX86_BUILTIN_PADDD128,
2385 IX86_BUILTIN_PADDQ128,
2386 IX86_BUILTIN_PADDSB128,
2387 IX86_BUILTIN_PADDSW128,
2388 IX86_BUILTIN_PADDUSB128,
2389 IX86_BUILTIN_PADDUSW128,
2390 IX86_BUILTIN_PSUBB128,
2391 IX86_BUILTIN_PSUBW128,
2392 IX86_BUILTIN_PSUBD128,
2393 IX86_BUILTIN_PSUBQ128,
2394 IX86_BUILTIN_PSUBSB128,
2395 IX86_BUILTIN_PSUBSW128,
2396 IX86_BUILTIN_PSUBUSB128,
2397 IX86_BUILTIN_PSUBUSW128,
2398
2399 IX86_BUILTIN_PAND128,
2400 IX86_BUILTIN_PANDN128,
2401 IX86_BUILTIN_POR128,
2402 IX86_BUILTIN_PXOR128,
2403
2404 IX86_BUILTIN_PAVGB128,
2405 IX86_BUILTIN_PAVGW128,
2406
2407 IX86_BUILTIN_PCMPEQB128,
2408 IX86_BUILTIN_PCMPEQW128,
2409 IX86_BUILTIN_PCMPEQD128,
2410 IX86_BUILTIN_PCMPGTB128,
2411 IX86_BUILTIN_PCMPGTW128,
2412 IX86_BUILTIN_PCMPGTD128,
2413
2414 IX86_BUILTIN_PEXTRW128,
2415 IX86_BUILTIN_PINSRW128,
2416
2417 IX86_BUILTIN_PMADDWD128,
2418
2419 IX86_BUILTIN_PMAXSW128,
2420 IX86_BUILTIN_PMAXUB128,
2421 IX86_BUILTIN_PMINSW128,
2422 IX86_BUILTIN_PMINUB128,
2423
2424 IX86_BUILTIN_PMULUDQ,
2425 IX86_BUILTIN_PMULUDQ128,
2426 IX86_BUILTIN_PMULHUW128,
2427 IX86_BUILTIN_PMULHW128,
2428 IX86_BUILTIN_PMULLW128,
2429
2430 IX86_BUILTIN_PSADBW128,
2431 IX86_BUILTIN_PSHUFHW,
2432 IX86_BUILTIN_PSHUFLW,
2433 IX86_BUILTIN_PSHUFD,
2434
2435 IX86_BUILTIN_PSLLW128,
2436 IX86_BUILTIN_PSLLD128,
2437 IX86_BUILTIN_PSLLQ128,
2438 IX86_BUILTIN_PSRAW128,
2439 IX86_BUILTIN_PSRAD128,
2440 IX86_BUILTIN_PSRLW128,
2441 IX86_BUILTIN_PSRLD128,
2442 IX86_BUILTIN_PSRLQ128,
f466dd9f 2443 IX86_BUILTIN_PSLLDQI128,
b0556a84 2444 IX86_BUILTIN_PSLLWI128,
2445 IX86_BUILTIN_PSLLDI128,
2446 IX86_BUILTIN_PSLLQI128,
2447 IX86_BUILTIN_PSRAWI128,
2448 IX86_BUILTIN_PSRADI128,
f466dd9f 2449 IX86_BUILTIN_PSRLDQI128,
b0556a84 2450 IX86_BUILTIN_PSRLWI128,
2451 IX86_BUILTIN_PSRLDI128,
2452 IX86_BUILTIN_PSRLQI128,
2453
2454 IX86_BUILTIN_PUNPCKHBW128,
2455 IX86_BUILTIN_PUNPCKHWD128,
2456 IX86_BUILTIN_PUNPCKHDQ128,
dd0ece6e 2457 IX86_BUILTIN_PUNPCKHQDQ128,
b0556a84 2458 IX86_BUILTIN_PUNPCKLBW128,
2459 IX86_BUILTIN_PUNPCKLWD128,
2460 IX86_BUILTIN_PUNPCKLDQ128,
4901c1b4 2461 IX86_BUILTIN_PUNPCKLQDQ128,
b0556a84 2462
2463 IX86_BUILTIN_CLFLUSH,
2464 IX86_BUILTIN_MFENCE,
2465 IX86_BUILTIN_LFENCE,
2466
a2713927 2467 IX86_BUILTIN_MAX
2468};
a2713927 2469\f
2d6788fe 2470#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2471#define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2472
2473#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2474 do { \
2475 const char *xname = (NAME); \
2476 if (xname[0] == '%') \
2477 xname += 2; \
2478 if (xname[0] == '*') \
2479 xname += 1; \
2480 else \
2481 fputs (user_label_prefix, FILE); \
2482 fputs (xname, FILE); \
2483 } while (0)
bfa936ad 2484\f
bfa936ad 2485/* Max number of args passed in registers. If this is more than 3, we will
2486 have problems with ebx (register #4), since it is a caller save register and
2487 is also used as the pic register in ELF. So for now, don't allow more than
2488 3 registers to be passed in registers. */
2489
2ede69f5 2490#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2491
bcbaca1b 2492#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
bfa936ad 2493
43b83681 2494\f
2495/* Specify the machine mode that this machine uses
2496 for the index in the tablejump instruction. */
3ef53a66 2497#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
43b83681 2498
25d1d1e9 2499/* Define as C expression which evaluates to nonzero if the tablejump
2500 instruction expects the table to contain offsets from the address of the
2501 table.
bb441676 2502 Do not define this if the table should contain absolute addresses. */
25d1d1e9 2503/* #define CASE_VECTOR_PC_RELATIVE 1 */
43b83681 2504
43b83681 2505/* Define this as 1 if `char' should by default be signed; else as 0. */
2506#define DEFAULT_SIGNED_CHAR 1
2507
afa6d980 2508/* Number of bytes moved into a data cache for a single prefetch operation. */
2509#define PREFETCH_BLOCK ix86_cost->prefetch_block
2510
2511/* Number of prefetch operations that can be done in parallel. */
2512#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2513
43b83681 2514/* Max number of bytes we can move from memory to memory
2515 in one reasonably fast instruction. */
c7f5f345 2516#define MOVE_MAX 16
2517
2518/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2519 move efficiently, as opposed to MOVE_MAX which is the maximum
bb441676 2520 number of bytes we can move with a single instruction. */
c7f5f345 2521#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
43b83681 2522
cbdc0179 2523/* If a memory-to-memory move would take MOVE_RATIO or more simple
2524 move-instruction pairs, we will do a movstr or libcall instead.
2525 Increasing the value will always make code faster, but eventually
2526 incurs high cost in increased code size.
43b83681 2527
a746fd01 2528 If you don't define this, a reasonable default is used. */
43b83681 2529
a746fd01 2530#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
43b83681 2531
2532/* Define if shifts truncate the shift count
2533 which implies one can omit a sign-extension or zero-extension
2534 of a shift count. */
bb441676 2535/* On i386, shifts do truncate the count. But bit opcodes don't. */
43b83681 2536
2537/* #define SHIFT_COUNT_TRUNCATED */
2538
2539/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2540 is done just by pretending it is already truncated. */
2541#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2542
2543/* We assume that the store-condition-codes instructions store 0 for false
2544 and some other value for true. This is the value stored for true. */
2545
2546#define STORE_FLAG_VALUE 1
2547
2548/* When a prototype says `char' or `short', really pass an `int'.
2549 (The 386 can't easily push less than an int.) */
2550
9dbd91d8 2551#define PROMOTE_PROTOTYPES 1
43b83681 2552
c41f04da 2553/* A macro to update M and UNSIGNEDP when an object whose type is
2554 TYPE and which has the specified mode and signedness is to be
2555 stored in a register. This macro is only called when TYPE is a
2556 scalar type.
2557
8ef587dc 2558 On i386 it is sometimes useful to promote HImode and QImode
c41f04da 2559 quantities to SImode. The choice depends on target type. */
2560
2561#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1b12cfd7 2562do { \
c41f04da 2563 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2564 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1b12cfd7 2565 (MODE) = SImode; \
2566} while (0)
c41f04da 2567
43b83681 2568/* Specify the machine mode that pointers have.
2569 After generation of rtl, the compiler makes no further distinction
2570 between pointers and any other objects of this machine mode. */
c7f5f345 2571#define Pmode (TARGET_64BIT ? DImode : SImode)
43b83681 2572
2573/* A function address in a call instruction
2574 is a byte address (for indexing purposes)
2575 so give the MEM rtx a byte's mode. */
2576#define FUNCTION_MODE QImode
9af5c5d1 2577\f
2578/* A part of a C `switch' statement that describes the relative costs
2579 of constant RTL expressions. It must contain `case' labels for
2580 expression codes `const_int', `const', `symbol_ref', `label_ref'
2581 and `const_double'. Each case must ultimately reach a `return'
2582 statement to return the relative cost of the use of that kind of
2583 constant value in an expression. The cost may depend on the
2584 precise value of the constant, which is available for examination
2585 in X, and the rtx code of the expression in which it is contained,
2586 found in OUTER_CODE.
d4983fea 2587
9af5c5d1 2588 CODE is the expression code--redundant, since it can be obtained
2589 with `GET_CODE (X)'. */
43b83681 2590
1b12cfd7 2591#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
43b83681 2592 case CONST_INT: \
2593 case CONST: \
2594 case LABEL_REF: \
2595 case SYMBOL_REF: \
a73600cc 2596 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
78ac78d9 2597 return 3; \
2598 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2599 return 2; \
0ac9c5cc 2600 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
9af5c5d1 2601 \
43b83681 2602 case CONST_DOUBLE: \
c0c4a46d 2603 if (GET_MODE (RTX) == VOIDmode) \
2604 return 0; \
2605 switch (standard_80387_constant_p (RTX)) \
2606 { \
2607 case 1: /* 0.0 */ \
2608 return 1; \
2609 case 2: /* 1.0 */ \
2610 return 2; \
2611 default: \
2612 /* Start with (MEM (SYMBOL_REF)), since that's where \
2613 it'll probably end up. Add a penalty for size. */ \
2614 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2615 + (GET_MODE (RTX) == SFmode ? 0 \
2616 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2617 }
43b83681 2618
9786a867 2619/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
ce71a9e6 2620#define TOPLEVEL_COSTS_N_INSNS(N) \
2621 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
9786a867 2622
805e22b2 2623/* Return index of given mode in mult and division cost tables. */
2624#define MODE_INDEX(mode) \
2625 ((mode) == QImode ? 0 \
2626 : (mode) == HImode ? 1 \
2627 : (mode) == SImode ? 2 \
2628 : (mode) == DImode ? 3 \
2629 : 4)
2630
9af5c5d1 2631/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2632 This can be used, for example, to indicate how costly a multiply
2633 instruction is. In writing this macro, you can use the construct
2634 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2635 instructions. OUTER_CODE is the code of the expression in which X
2636 is contained.
2637
2638 This macro is optional; do not define it if the default cost
2639 assumptions are adequate for the target machine. */
2640
1b12cfd7 2641#define RTX_COSTS(X, CODE, OUTER_CODE) \
78ac78d9 2642 case ZERO_EXTEND: \
2643 /* The zero extensions is often completely free on x86_64, so make \
2644 it as cheap as possible. */ \
2645 if (TARGET_64BIT && GET_MODE (X) == DImode \
2646 && GET_MODE (XEXP (X, 0)) == SImode) \
2647 { \
2648 total = 1; goto egress_rtx_costs; \
2649 } \
2650 else \
2651 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2652 ix86_cost->add : ix86_cost->movzx); \
2653 break; \
2654 case SIGN_EXTEND: \
2655 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2656 break; \
9af5c5d1 2657 case ASHIFT: \
2658 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
78ac78d9 2659 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
9af5c5d1 2660 { \
2661 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
9af5c5d1 2662 if (value == 1) \
ce71a9e6 2663 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
71ee24e8 2664 if ((value == 2 || value == 3) \
2665 && !TARGET_DECOMPOSE_LEA \
2666 && ix86_cost->lea <= ix86_cost->shift_const) \
ce71a9e6 2667 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
9af5c5d1 2668 } \
2669 /* fall through */ \
2670 \
2671 case ROTATE: \
2672 case ASHIFTRT: \
2673 case LSHIFTRT: \
2674 case ROTATERT: \
78ac78d9 2675 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
9786a867 2676 { \
2677 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
ebf7b427 2678 { \
2679 if (INTVAL (XEXP (X, 1)) > 32) \
ce71a9e6 2680 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2681 else \
2682 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2683 } \
2684 else \
2685 { \
2686 if (GET_CODE (XEXP (X, 1)) == AND) \
2687 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2688 else \
2689 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
ebf7b427 2690 } \
9786a867 2691 } \
ce71a9e6 2692 else \
2693 { \
2694 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2695 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2696 else \
2697 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2698 } \
2699 break; \
9af5c5d1 2700 \
2701 case MULT: \
b80ce4a8 2702 if (FLOAT_MODE_P (GET_MODE (X))) \
2703 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul); \
2704 else if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
9af5c5d1 2705 { \
2706 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2707 int nbits = 0; \
2708 \
2709 while (value != 0) \
2710 { \
2711 nbits++; \
2712 value >>= 1; \
2713 } \
2714 \
d27eb4b1 2715 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
805e22b2 2716 [MODE_INDEX (GET_MODE (X))] \
d27eb4b1 2717 + nbits * ix86_cost->mult_bit); \
9af5c5d1 2718 } \
9af5c5d1 2719 else /* This is arbitrary */ \
9786a867 2720 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
805e22b2 2721 [MODE_INDEX (GET_MODE (X))] \
9786a867 2722 + 7 * ix86_cost->mult_bit); \
9af5c5d1 2723 \
2724 case DIV: \
2725 case UDIV: \
2726 case MOD: \
2727 case UMOD: \
b80ce4a8 2728 if (FLOAT_MODE_P (GET_MODE (X))) \
2729 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv); \
2730 else \
805e22b2 2731 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide \
2732 [MODE_INDEX (GET_MODE (X))]); \
b80ce4a8 2733 break; \
9af5c5d1 2734 \
2735 case PLUS: \
b80ce4a8 2736 if (FLOAT_MODE_P (GET_MODE (X))) \
2737 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2738 else if (!TARGET_DECOMPOSE_LEA \
71ee24e8 2739 && INTEGRAL_MODE_P (GET_MODE (X)) \
2740 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
ce71a9e6 2741 { \
71ee24e8 2742 if (GET_CODE (XEXP (X, 0)) == PLUS \
2743 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2744 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2745 && CONSTANT_P (XEXP (X, 1))) \
ce71a9e6 2746 { \
71ee24e8 2747 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2748 if (val == 2 || val == 4 || val == 8) \
2749 { \
2750 return (COSTS_N_INSNS (ix86_cost->lea) \
1b12cfd7 2751 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2752 (OUTER_CODE)) \
2753 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2754 (OUTER_CODE)) \
2755 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
71ee24e8 2756 } \
ce71a9e6 2757 } \
71ee24e8 2758 else if (GET_CODE (XEXP (X, 0)) == MULT \
2759 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2760 { \
2761 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2762 if (val == 2 || val == 4 || val == 8) \
2763 { \
2764 return (COSTS_N_INSNS (ix86_cost->lea) \
1b12cfd7 2765 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2766 (OUTER_CODE)) \
2767 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
71ee24e8 2768 } \
2769 } \
2770 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
ce71a9e6 2771 { \
2772 return (COSTS_N_INSNS (ix86_cost->lea) \
1b12cfd7 2773 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2774 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2775 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
ce71a9e6 2776 } \
ce71a9e6 2777 } \
b80ce4a8 2778 /* fall through */ \
9af5c5d1 2779 \
b80ce4a8 2780 case MINUS: \
2781 if (FLOAT_MODE_P (GET_MODE (X))) \
2782 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
9af5c5d1 2783 /* fall through */ \
b80ce4a8 2784 \
9af5c5d1 2785 case AND: \
2786 case IOR: \
2787 case XOR: \
78ac78d9 2788 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
ce71a9e6 2789 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
1b12cfd7 2790 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
ce71a9e6 2791 << (GET_MODE (XEXP (X, 0)) != DImode)) \
1b12cfd7 2792 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
ce71a9e6 2793 << (GET_MODE (XEXP (X, 1)) != DImode))); \
ce71a9e6 2794 /* fall through */ \
b80ce4a8 2795 \
9af5c5d1 2796 case NEG: \
b80ce4a8 2797 if (FLOAT_MODE_P (GET_MODE (X))) \
2798 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs); \
2799 /* fall through */ \
2800 \
9af5c5d1 2801 case NOT: \
78ac78d9 2802 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
ce71a9e6 2803 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2804 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2805 \
c0c4a46d 2806 case FLOAT_EXTEND: \
27442180 2807 if (!TARGET_SSE_MATH \
2808 || !VALID_SSE_REG_MODE (GET_MODE (X))) \
2809 TOPLEVEL_COSTS_N_INSNS (0); \
2810 break; \
c0c4a46d 2811 \
b80ce4a8 2812 case ABS: \
2813 if (FLOAT_MODE_P (GET_MODE (X))) \
2814 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs); \
2815 break; \
2816 \
2817 case SQRT: \
2818 if (FLOAT_MODE_P (GET_MODE (X))) \
2819 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt); \
2820 break; \
2821 \
ce71a9e6 2822 egress_rtx_costs: \
2823 break;
9af5c5d1 2824
2825
2826/* An expression giving the cost of an addressing mode that contains
2827 ADDRESS. If not defined, the cost is computed from the ADDRESS
2828 expression and the `CONST_COSTS' values.
2829
2830 For most CISC machines, the default cost is a good approximation
2831 of the true cost of the addressing mode. However, on RISC
2832 machines, all instructions normally have the same length and
2833 execution time. Hence all addresses will have equal costs.
2834
2835 In cases where more than one form of an address is known, the form
2836 with the lowest cost will be used. If multiple forms have the
2837 same, lowest, cost, the one that is the most complex will be used.
2838
2839 For example, suppose an address that is equal to the sum of a
2840 register and a constant is used twice in the same basic block.
2841 When this macro is not defined, the address will be computed in a
2842 register and memory references will be indirect through that
2843 register. On machines where the cost of the addressing mode
2844 containing the sum is no higher than that of a simple indirect
2845 reference, this will produce an additional instruction and
2846 possibly require an additional register. Proper specification of
2847 this macro eliminates this overhead for such machines.
2848
2849 Similar use of this macro is made in strength reduction of loops.
2850
2851 ADDRESS need not be valid as an address. In such a case, the cost
2852 is not relevant and can be any value; invalid addresses need not be
2853 assigned a different cost.
2854
2855 On machines where an address involving more than one register is as
2856 cheap as an address computation involving only one register,
2857 defining `ADDRESS_COST' to reflect this can cause two registers to
2858 be live over a region of code where only one would have been if
2859 `ADDRESS_COST' were not defined in that manner. This effect should
2860 be considered in the definition of this macro. Equivalent costs
2861 should probably only be given to addresses with different numbers
2862 of registers on machines with lots of registers.
2863
2864 This macro will normally either not be defined or be defined as a
2865 constant.
43b83681 2866
2867 For i386, it is better to use a complex address than let gcc copy
2868 the address into a reg and make a new pseudo. But not if the address
2869 requires to two regs - that would mean more pseudos with longer
2870 lifetimes. */
2871
2872#define ADDRESS_COST(RTX) \
54d90350 2873 ix86_address_cost (RTX)
9af5c5d1 2874
3ab61a4d 2875/* A C expression for the cost of moving data from a register in class FROM to
2876 one in class TO. The classes are expressed using the enumeration values
2877 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2878 interpreted relative to that.
9af5c5d1 2879
3ab61a4d 2880 It is not required that the cost always equal 2 when FROM is the same as TO;
2881 on some machines it is expensive to move between registers if they are not
ea073cb0 2882 general registers. */
9af5c5d1 2883
ea073cb0 2884#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1b12cfd7 2885 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
9af5c5d1 2886
2887/* A C expression for the cost of moving data of mode M between a
2888 register and memory. A value of 2 is the default; this cost is
2889 relative to those in `REGISTER_MOVE_COST'.
2890
2891 If moving between registers and memory is more expensive than
2892 between two registers, you should define this macro to express the
4f3e5c20 2893 relative cost. */
9af5c5d1 2894
1b12cfd7 2895#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2896 ix86_memory_move_cost ((MODE), (CLASS), (IN))
9af5c5d1 2897
2898/* A C expression for the cost of a branch instruction. A value of 1
2899 is the default; other values are interpreted relative to that. */
2900
ce71a9e6 2901#define BRANCH_COST ix86_branch_cost
9af5c5d1 2902
2903/* Define this macro as a C expression which is nonzero if accessing
2904 less than a word of memory (i.e. a `char' or a `short') is no
2905 faster than accessing a word of memory, i.e., if such access
2906 require more than one instruction or if there is no difference in
2907 cost between byte and (aligned) word loads.
2908
2909 When this macro is not defined, the compiler will access a field by
2910 finding the smallest containing object; when it is defined, a
2911 fullword load will be used if alignment permits. Unless bytes
2912 accesses are faster than word accesses, using word accesses is
2913 preferable since it may eliminate subsequent memory access if
2914 subsequent accesses occur to other fields in the same word of the
2915 structure, but to different bytes. */
2916
2917#define SLOW_BYTE_ACCESS 0
2918
2919/* Nonzero if access to memory by shorts is slow and undesirable. */
2920#define SLOW_SHORT_ACCESS 0
2921
9af5c5d1 2922/* Define this macro to be the value 1 if unaligned accesses have a
2923 cost many times greater than aligned accesses, for example if they
2924 are emulated in a trap handler.
2925
c46dc351 2926 When this macro is nonzero, the compiler will act as if
2927 `STRICT_ALIGNMENT' were nonzero when generating code for block
9af5c5d1 2928 moves. This can cause significantly more instructions to be
c46dc351 2929 produced. Therefore, do not set this macro nonzero if unaligned
9af5c5d1 2930 accesses only add a cycle or two to the time for a memory access.
2931
2932 If the value of this macro is always zero, it need not be defined. */
2933
9439ebf7 2934/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
9af5c5d1 2935
2936/* Define this macro to inhibit strength reduction of memory
2937 addresses. (On some machines, such strength reduction seems to do
2938 harm rather than good.) */
2939
2940/* #define DONT_REDUCE_ADDR */
2941
2942/* Define this macro if it is as good or better to call a constant
2943 function address than to call an address kept in a register.
2944
2945 Desirable on the 386 because a CALL with a constant address is
2946 faster than one with a register address. */
2947
2948#define NO_FUNCTION_CSE
2949
2950/* Define this macro if it is as good or better for a function to call
2951 itself with an explicit address than to call an address kept in a
2952 register. */
2953
2954#define NO_RECURSIVE_FUNCTION_CSE
43b83681 2955\f
b15e0bba 2956/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2957 return the mode to be used for the comparison.
2958
2959 For floating-point equality comparisons, CCFPEQmode should be used.
ce71a9e6 2960 VOIDmode should be used in all other cases.
b15e0bba 2961
979a64df 2962 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
ce71a9e6 2963 possible, to allow for more combinations. */
43b83681 2964
1b12cfd7 2965#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
59112222 2966
c46dc351 2967/* Return nonzero if MODE implies a floating point inequality can be
59112222 2968 reversed. */
2969
2970#define REVERSIBLE_CC_MODE(MODE) 1
2971
2972/* A C expression whose value is reversed condition code of the CODE for
2973 comparison done in CC_MODE mode. */
2974#define REVERSE_CONDITION(CODE, MODE) \
2975 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2976 : reverse_condition_maybe_unordered (CODE))
2977
43b83681 2978\f
2979/* Control the assembler format that we output, to the extent
2980 this does not vary between assemblers. */
2981
2982/* How to refer to registers in assembler output.
bb441676 2983 This sequence is indexed by compiler's hard-register-number (see above). */
43b83681 2984
2985/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2986 For non floating point regs, the following are the HImode names.
2987
2988 For float regs, the stack top is sometimes referred to as "%st(0)"
78f42230 2989 instead of just "%st". PRINT_REG handles this with the "y" code. */
43b83681 2990
d4983fea 2991#undef HI_REGISTER_NAMES
f01b0085 2992#define HI_REGISTER_NAMES \
2993{"ax","dx","cx","bx","si","di","bp","sp", \
2994 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2995 "flags","fpsr", "dirflag", "frame", \
2996 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
c6d93f09 2997 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2998 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2999 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
f01b0085 3000
43b83681 3001#define REGISTER_NAMES HI_REGISTER_NAMES
3002
3003/* Table of additional register names to use in user input. */
3004
3005#define ADDITIONAL_REGISTER_NAMES \
ebf7b427 3006{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
3007 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
c6d93f09 3008 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
3009 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
ebf7b427 3010 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
f01b0085 3011 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
3012 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
3013 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
43b83681 3014
3015/* Note we are omitting these since currently I don't know how
3016to get gcc to use these, since they want the same but different
3017number as al, and ax.
3018*/
3019
43b83681 3020#define QI_REGISTER_NAMES \
c6d93f09 3021{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
43b83681 3022
3023/* These parallel the array above, and can be used to access bits 8:15
bb441676 3024 of regs 0 through 3. */
43b83681 3025
3026#define QI_HIGH_REGISTER_NAMES \
3027{"ah", "dh", "ch", "bh", }
3028
3029/* How to renumber registers for dbx and gdb. */
3030
1b12cfd7 3031#define DBX_REGISTER_NUMBER(N) \
3032 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
eb26ca2c 3033
3034extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
62c74046 3035extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
eb26ca2c 3036extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
43b83681 3037
df78b73b 3038/* Before the prologue, RA is at 0(%esp). */
3039#define INCOMING_RETURN_ADDR_RTX \
5c6cf936 3040 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
d4983fea 3041
0870676d 3042/* After the prologue, RA is at -4(AP) in the current frame. */
287edcbf 3043#define RETURN_ADDR_RTX(COUNT, FRAME) \
3044 ((COUNT) == 0 \
3045 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3046 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
0870676d 3047
bb441676 3048/* PC is dbx register 8; let's use that column for RA. */
62c74046 3049#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
df78b73b 3050
19bce576 3051/* Before the prologue, the top of the frame is at 4(%esp). */
62c74046 3052#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
19bce576 3053
287edcbf 3054/* Describe how we implement __builtin_eh_return. */
3055#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
3056#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
3057
9532742b 3058
038bfd6b 3059/* Select a format to encode pointers in exception handling data. CODE
3060 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
3061 true if the symbol may be affected by dynamic relocations.
3062
3063 ??? All x86 object file formats are capable of representing this.
3064 After all, the relocation needed is the same as for the call insn.
3065 Whether or not a particular assembler allows us to enter such, I
3066 guess we'll have to see. */
1b12cfd7 3067#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
9645fa4f 3068 (flag_pic \
1b12cfd7 3069 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
038bfd6b 3070 : DW_EH_PE_absptr)
3071
43b83681 3072/* This is how to output an insn to push a register on the stack.
3073 It need not be very fast code. */
3074
1b12cfd7 3075#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
44c0bfa7 3076do { \
3077 if (TARGET_64BIT) \
3078 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
3079 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3080 else \
3081 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
3082} while (0)
43b83681 3083
3084/* This is how to output an insn to pop a register from the stack.
3085 It need not be very fast code. */
3086
1b12cfd7 3087#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
44c0bfa7 3088do { \
3089 if (TARGET_64BIT) \
3090 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
3091 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3092 else \
3093 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
3094} while (0)
43b83681 3095
bb006a84 3096/* This is how to output an element of a case-vector that is absolute. */
43b83681 3097
3098#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1b12cfd7 3099 ix86_output_addr_vec_elt ((FILE), (VALUE))
43b83681 3100
bb006a84 3101/* This is how to output an element of a case-vector that is relative. */
43b83681 3102
9eaab178 3103#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1b12cfd7 3104 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
bb006a84 3105
3106/* Under some conditions we need jump tables in the text section, because
3107 the assembler cannot handle label differences between sections. */
3108
3109#define JUMP_TABLES_IN_TEXT_SECTION \
3110 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
43b83681 3111
d4983fea 3112/* A C statement that outputs an address constant appropriate to
eacbfaac 3113 for DWARF debugging. */
3114
1b12cfd7 3115#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3116 i386_dwarf_output_addr_const ((FILE), (X))
eacbfaac 3117
3118/* Either simplify a location expression, or return the original. */
3119
3120#define ASM_SIMPLIFY_DWARF_ADDR(X) \
1b12cfd7 3121 i386_simplify_dwarf_addr (X)
e1ff7102 3122
931e9893 3123/* Emit a dtp-relative reference to a TLS variable. */
3124
3125#ifdef HAVE_AS_TLS
3126#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3127 i386_output_dwarf_dtprel (FILE, SIZE, X)
3128#endif
3129
e1ff7102 3130/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3131 and switch back. For x86 we do this only to save a few bytes that
3132 would otherwise be unused in the text section. */
3133#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3134 asm (SECTION_OP "\n\t" \
3135 "call " USER_LABEL_PREFIX #FUNC "\n" \
3136 TEXT_SECTION_ASM_OP);
a40a0ed3 3137\f
43b83681 3138/* Print operand X (an rtx) in assembler syntax to file FILE.
3139 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
e0f05f0c 3140 Effect of various CODE letters is described in i386.c near
3141 print_operand function. */
43b83681 3142
1b12cfd7 3143#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2d6788fe 3144 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
43b83681 3145
a40a0ed3 3146/* Print the name of a register based on its machine mode and number.
3147 If CODE is 'w', pretend the mode is HImode.
3148 If CODE is 'b', pretend the mode is QImode.
3149 If CODE is 'k', pretend the mode is SImode.
e0f05f0c 3150 If CODE is 'q', pretend the mode is DImode.
a40a0ed3 3151 If CODE is 'h', pretend the reg is the `high' byte register.
e0f05f0c 3152 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
a40a0ed3 3153
ce71a9e6 3154#define PRINT_REG(X, CODE, FILE) \
1b12cfd7 3155 print_reg ((X), (CODE), (FILE))
a40a0ed3 3156
43b83681 3157#define PRINT_OPERAND(FILE, X, CODE) \
1b12cfd7 3158 print_operand ((FILE), (X), (CODE))
43b83681 3159
3160#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1b12cfd7 3161 print_operand_address ((FILE), (ADDR))
43b83681 3162
2d6788fe 3163#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3164do { \
3165 if (! output_addr_const_extra (FILE, (X))) \
3166 goto FAIL; \
3167} while (0);
3168
9efd3a9b 3169/* Print the name of a register for based on its machine mode and number.
3170 This macro is used to print debugging output.
3171 This macro is different from PRINT_REG in that it may be used in
3172 programs that are not linked with aux-output.o. */
3173
ce71a9e6 3174#define DEBUG_PRINT_REG(X, CODE, FILE) \
a256b0be 3175 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3176 static const char * const qi_name[] = QI_REGISTER_NAMES; \
1b12cfd7 3177 fprintf ((FILE), "%d ", REGNO (X)); \
ce71a9e6 3178 if (REGNO (X) == FLAGS_REG) \
1b12cfd7 3179 { fputs ("flags", (FILE)); break; } \
b52b8962 3180 if (REGNO (X) == DIRFLAG_REG) \
1b12cfd7 3181 { fputs ("dirflag", (FILE)); break; } \
ce71a9e6 3182 if (REGNO (X) == FPSR_REG) \
1b12cfd7 3183 { fputs ("fpsr", (FILE)); break; } \
9efd3a9b 3184 if (REGNO (X) == ARG_POINTER_REGNUM) \
1b12cfd7 3185 { fputs ("argp", (FILE)); break; } \
8c5dc77f 3186 if (REGNO (X) == FRAME_POINTER_REGNUM) \
1b12cfd7 3187 { fputs ("frame", (FILE)); break; } \
9efd3a9b 3188 if (STACK_TOP_P (X)) \
1b12cfd7 3189 { fputs ("st(0)", (FILE)); break; } \
081d395f 3190 if (FP_REG_P (X)) \
1b12cfd7 3191 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
c6d93f09 3192 if (REX_INT_REG_P (X)) \
3193 { \
3194 switch (GET_MODE_SIZE (GET_MODE (X))) \
3195 { \
3196 default: \
3197 case 8: \
1b12cfd7 3198 fprintf ((FILE), "r%i", REGNO (X) \
c6d93f09 3199 - FIRST_REX_INT_REG + 8); \
3200 break; \
3201 case 4: \
1b12cfd7 3202 fprintf ((FILE), "r%id", REGNO (X) \
c6d93f09 3203 - FIRST_REX_INT_REG + 8); \
3204 break; \
3205 case 2: \
1b12cfd7 3206 fprintf ((FILE), "r%iw", REGNO (X) \
c6d93f09 3207 - FIRST_REX_INT_REG + 8); \
3208 break; \
3209 case 1: \
1b12cfd7 3210 fprintf ((FILE), "r%ib", REGNO (X) \
c6d93f09 3211 - FIRST_REX_INT_REG + 8); \
3212 break; \
3213 } \
3214 break; \
3215 } \
9efd3a9b 3216 switch (GET_MODE_SIZE (GET_MODE (X))) \
3217 { \
c6d93f09 3218 case 8: \
1b12cfd7 3219 fputs ("r", (FILE)); \
3220 fputs (hi_name[REGNO (X)], (FILE)); \
c6d93f09 3221 break; \
081d395f 3222 default: \
1b12cfd7 3223 fputs ("e", (FILE)); \
9efd3a9b 3224 case 2: \
1b12cfd7 3225 fputs (hi_name[REGNO (X)], (FILE)); \
9efd3a9b 3226 break; \
3227 case 1: \
1b12cfd7 3228 fputs (qi_name[REGNO (X)], (FILE)); \
9efd3a9b 3229 break; \
3230 } \
3231 } while (0)
3232
43b83681 3233/* a letter which is not needed by the normal asm syntax, which
3234 we can use for operand syntax in the extended asm */
3235
3236#define ASM_OPERAND_LETTER '#'
43b83681 3237#define RET return ""
1b12cfd7 3238#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
9af5c5d1 3239\f
ce71a9e6 3240/* Define the codes that are matched by predicates in i386.c. */
3241
3242#define PREDICATE_CODES \
ed591655 3243 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3244 SYMBOL_REF, LABEL_REF, CONST}}, \
3245 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3246 SYMBOL_REF, LABEL_REF, CONST}}, \
3247 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3248 SYMBOL_REF, LABEL_REF, CONST}}, \
3249 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3250 SYMBOL_REF, LABEL_REF, CONST}}, \
3251 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3252 SYMBOL_REF, LABEL_REF, CONST}}, \
3253 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3254 SYMBOL_REF, LABEL_REF, CONST}}, \
3255 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3256 SYMBOL_REF, LABEL_REF}}, \
a4ebafd0 3257 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
e1239ca3 3258 {"const_int_1_operand", {CONST_INT}}, \
6efed9b8 3259 {"const_int_1_31_operand", {CONST_INT}}, \
ce71a9e6 3260 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
7df932a8 3261 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3262 LABEL_REF, SUBREG, REG, MEM}}, \
ce71a9e6 3263 {"pic_symbolic_operand", {CONST}}, \
b50bc2ba 3264 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
805e22b2 3265 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
d15b4262 3266 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
ce71a9e6 3267 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3268 {"const1_operand", {CONST_INT}}, \
3269 {"const248_operand", {CONST_INT}}, \
3270 {"incdec_operand", {CONST_INT}}, \
3871ebd1 3271 {"mmx_reg_operand", {REG}}, \
ce71a9e6 3272 {"reg_no_sp_operand", {SUBREG, REG}}, \
83070725 3273 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3274 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3275 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
1f170a8e 3276 {"index_register_operand", {SUBREG, REG}}, \
805e22b2 3277 {"flags_reg_operand", {REG}}, \
ce71a9e6 3278 {"q_regs_operand", {SUBREG, REG}}, \
3279 {"non_q_regs_operand", {SUBREG, REG}}, \
59112222 3280 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3281 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3282 GE, UNGE, LTGT, UNEQ}}, \
c25dac7b 3283 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3284 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3285 }}, \
78e5bb48 3286 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
59112222 3287 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3288 UNGE, UNGT, LTGT, UNEQ }}, \
ce71a9e6 3289 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3290 {"ext_register_operand", {SUBREG, REG}}, \
3291 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3292 {"mult_operator", {MULT}}, \
3293 {"div_operator", {DIV}}, \
3294 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3295 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3296 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3297 LSHIFTRT, ROTATERT}}, \
fe9510bc 3298 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
ce71a9e6 3299 {"memory_displacement_operand", {MEM}}, \
3300 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
783353a1 3301 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2d6788fe 3302 {"long_memory_operand", {MEM}}, \
3303 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3304 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3305 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3306 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
309db274 3307 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3308 {"any_fp_register_operand", {REG}}, \
3309 {"register_and_not_any_fp_reg_operand", {REG}}, \
3310 {"fp_register_operand", {REG}}, \
3311 {"register_and_not_fp_reg_operand", {REG}}, \
805e22b2 3312 {"zero_extended_scalar_load_operand", {MEM}}, \
6432a96a 3313
3314/* A list of predicates that do special things with modes, and so
3315 should not elicit warnings for VOIDmode match_operand. */
3316
3317#define SPECIAL_MODE_PREDICATES \
3318 "ext_register_operand",
43b83681 3319\f
d25a2a8c 3320/* Which processor to schedule for. The cpu attribute defines a list that
3321 mirrors this list, so changes to i386.md must be made at the same time. */
3322
3323enum processor_type
3324{
3325 PROCESSOR_I386, /* 80386 */
3326 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3327 PROCESSOR_PENTIUM,
3328 PROCESSOR_PENTIUMPRO,
3329 PROCESSOR_K6,
3330 PROCESSOR_ATHLON,
3331 PROCESSOR_PENTIUM4,
805e22b2 3332 PROCESSOR_K8,
d25a2a8c 3333 PROCESSOR_max
3334};
3335
3336extern enum processor_type ix86_cpu;
3337extern const char *ix86_cpu_string;
3338
3339extern enum processor_type ix86_arch;
3340extern const char *ix86_arch_string;
3341
3342enum fpmath_unit
3343{
3344 FPMATH_387 = 1,
3345 FPMATH_SSE = 2
3346};
3347
3348extern enum fpmath_unit ix86_fpmath;
3349extern const char *ix86_fpmath_string;
3350
2d6788fe 3351enum tls_dialect
3352{
3353 TLS_DIALECT_GNU,
3354 TLS_DIALECT_SUN
3355};
3356
3357extern enum tls_dialect ix86_tls_dialect;
3358extern const char *ix86_tls_dialect_string;
3359
cbf58688 3360enum cmodel {
d25a2a8c 3361 CM_32, /* The traditional 32-bit ABI. */
3362 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3363 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3364 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3365 CM_LARGE, /* No assumptions. */
3366 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
cbf58688 3367};
3368
d25a2a8c 3369extern enum cmodel ix86_cmodel;
3370extern const char *ix86_cmodel_string;
3371
8eafd985 3372/* Size of the RED_ZONE area. */
3373#define RED_ZONE_SIZE 128
3374/* Reserved area of the red zone for temporaries. */
3375#define RED_ZONE_RESERVE 8
25b31391 3376
3377enum asm_dialect {
3378 ASM_ATT,
3379 ASM_INTEL
3380};
d25a2a8c 3381
25b31391 3382extern const char *ix86_asm_string;
60b0f8fb 3383extern enum asm_dialect ix86_asm_dialect;
d25a2a8c 3384
3385extern int ix86_regparm;
d4983fea 3386extern const char *ix86_regparm_string;
d25a2a8c 3387
3388extern int ix86_preferred_stack_boundary;
3389extern const char *ix86_preferred_stack_boundary_string;
3390
3391extern int ix86_branch_cost;
3392extern const char *ix86_branch_cost_string;
3393
3394extern const char *ix86_debug_arg_string;
3395extern const char *ix86_debug_addr_string;
3396
3397/* Obsoleted by -f options. Remove before 3.2 ships. */
3398extern const char *ix86_align_loops_string;
3399extern const char *ix86_align_jumps_string;
3400extern const char *ix86_align_funcs_string;
3401
3402/* Smallest class containing REGNO. */
3403extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3404
1b12cfd7 3405extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3406extern rtx ix86_compare_op1; /* operand 1 for comparisons */
be0c5fcb 3407\f
3408/* To properly truncate FP values into integers, we need to set i387 control
3409 word. We can't emit proper mode switching code before reload, as spills
3410 generated by reload may truncate values incorrectly, but we still can avoid
3411 redundant computation of new control word by the mode switching pass.
3412 The fldcw instructions are still emitted redundantly, but this is probably
3413 not going to be noticeable problem, as most CPUs do have fast path for
d4983fea 3414 the sequence.
be0c5fcb 3415
3416 The machinery is to emit simple truncation instructions and split them
3417 before reload to instructions having USEs of two memory locations that
3418 are filled by this code to old and new control word.
d4983fea 3419
be0c5fcb 3420 Post-reload pass may be later used to eliminate the redundant fildcw if
3421 needed. */
3422
3423enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3424
3425/* Define this macro if the port needs extra instructions inserted
3426 for mode switching in an optimizing compilation. */
3427
3428#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3429
3430/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3431 initializer for an array of integers. Each initializer element N
3432 refers to an entity that needs mode switching, and specifies the
3433 number of different modes that might need to be set for this
3434 entity. The position of the initializer in the initializer -
3435 starting counting at zero - determines the integer that is used to
3436 refer to the mode-switched entity in question. */
3437
3438#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3439
3440/* ENTITY is an integer specifying a mode-switched entity. If
3441 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3442 return an integer value not larger than the corresponding element
3443 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3444 must be switched into prior to the execution of INSN. */
3445
3446#define MODE_NEEDED(ENTITY, I) \
3447 (GET_CODE (I) == CALL_INSN \
3448 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3449 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3450 ? FP_CW_UNINITIALIZED \
3451 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3452 ? FP_CW_ANY \
3453 : FP_CW_STORED)
3454
3455/* This macro specifies the order in which modes for ENTITY are
3456 processed. 0 is the highest priority. */
3457
1b12cfd7 3458#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
be0c5fcb 3459
3460/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3461 is the set of hard registers live at the point where the insn(s)
3462 are to be inserted. */
3463
3464#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1b12cfd7 3465 ((MODE) == FP_CW_STORED \
be0c5fcb 3466 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3467 assign_386_stack_local (HImode, 2)), 0\
3468 : 0)
483f30d9 3469\f
3470/* Avoid renaming of stack registers, as doing so in combination with
3471 scheduling just increases amount of live registers at time and in
3472 the turn amount of fxch instructions needed.
3473
3474 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3475
1b12cfd7 3476#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3477 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
be0c5fcb 3478
60206704 3479\f
30d58384 3480#define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
78177281 3481
3482#define DLL_IMPORT_EXPORT_PREFIX '@'
3483
43b83681 3484/*
3485Local variables:
3486version-control: t
3487End:
3488*/