]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Prevent invalid register mode changes in combine
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cbe34bb5 2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
79fc8ffe
AS
88#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90922d36 90#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 91#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 92#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 93#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 94#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 95#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 96#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 97#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 98#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 99#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 100#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 101#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
73e32c47
JK
102#define TARGET_SGX TARGET_ISA_SGX
103#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
104#define TARGET_RDPID TARGET_ISA_RDPID
105#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
90922d36 106#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 107#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 108#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 109#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 110#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 111#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 112#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 113#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 114#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 115#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 116#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 117#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 118#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 119#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 120#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 121#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 122#define TARGET_AES TARGET_ISA_AES
bf7b5747 123#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
124#define TARGET_SHA TARGET_ISA_SHA
125#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
126#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
127#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
128#define TARGET_CLZERO TARGET_ISA_CLZERO
129#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
130#define TARGET_XSAVEC TARGET_ISA_XSAVEC
131#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
132#define TARGET_XSAVES TARGET_ISA_XSAVES
133#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 134#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 135#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
136#define TARGET_CMPXCHG16B TARGET_ISA_CX16
137#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 138#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 139#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 140#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 141#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 142#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 143#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
144#define TARGET_RTM TARGET_ISA_RTM
145#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 146#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 147#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 148#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 149#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 150#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 151#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 152#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 153#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 154#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 155#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 156#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 157#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 158#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 159#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
160#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
161#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
162#define TARGET_MPX TARGET_ISA_MPX
163#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
164#define TARGET_CLWB TARGET_ISA_CLWB
165#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
166#define TARGET_MWAITX TARGET_ISA_MWAITX
167#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
168#define TARGET_PKU TARGET_ISA_PKU
169#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
170
90922d36 171#define TARGET_LP64 TARGET_ABI_64
bf7b5747 172#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 173#define TARGET_X32 TARGET_ABI_X32
bf7b5747 174#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
175#define TARGET_16BIT TARGET_CODE16
176#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 177
26b5109f
RS
178#include "config/vxworks-dummy.h"
179
7eb68c06 180#include "config/i386/i386-opts.h"
ccf8e764 181
c69fa2d4 182#define MAX_STRINGOP_ALGS 4
ccf8e764 183
8c996513
JH
184/* Specify what algorithm to use for stringops on known size.
185 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
186 known at compile time or estimated via feedback, the SIZE array
187 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 188 means infinity). Corresponding ALG is used then.
340ef734
JH
189 When NOALIGN is true the code guaranting the alignment of the memory
190 block is skipped.
191
8c996513 192 For example initializer:
4f3f76e6 193 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 194 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 195 be used otherwise. */
8c996513
JH
196struct stringop_algs
197{
198 const enum stringop_alg unknown_size;
199 const struct stringop_strategy {
200 const int max;
201 const enum stringop_alg alg;
340ef734 202 int noalign;
c69fa2d4 203 } size [MAX_STRINGOP_ALGS];
8c996513
JH
204};
205
d4ba09c0
SC
206/* Define the specific costs for a given cpu */
207
208struct processor_costs {
8b60264b
KG
209 const int add; /* cost of an add instruction */
210 const int lea; /* cost of a lea instruction */
211 const int shift_var; /* variable shift costs */
212 const int shift_const; /* constant shift costs */
f676971a 213 const int mult_init[5]; /* cost of starting a multiply
4977bab6 214 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 215 const int mult_bit; /* cost of multiply per each bit set */
f676971a 216 const int divide[5]; /* cost of a divide/mod
4977bab6 217 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
218 int movsx; /* The cost of movsx operation. */
219 int movzx; /* The cost of movzx operation. */
8b60264b
KG
220 const int large_insn; /* insns larger than this cost more */
221 const int move_ratio; /* The threshold of number of scalar
ac775968 222 memory-to-memory move insns. */
8b60264b
KG
223 const int movzbl_load; /* cost of loading using movzbl */
224 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
225 in QImode, HImode and SImode relative
226 to reg-reg move (2). */
8b60264b 227 const int int_store[3]; /* cost of storing integer register
96e7ae40 228 in QImode, HImode and SImode */
8b60264b
KG
229 const int fp_move; /* cost of reg,reg fld/fst */
230 const int fp_load[3]; /* cost of loading FP register
96e7ae40 231 in SFmode, DFmode and XFmode */
8b60264b 232 const int fp_store[3]; /* cost of storing FP register
96e7ae40 233 in SFmode, DFmode and XFmode */
8b60264b
KG
234 const int mmx_move; /* cost of moving MMX register. */
235 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 236 in SImode and DImode */
8b60264b 237 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 238 in SImode and DImode */
8b60264b
KG
239 const int sse_move; /* cost of moving SSE register. */
240 const int sse_load[3]; /* cost of loading SSE register
fa79946e 241 in SImode, DImode and TImode*/
8b60264b 242 const int sse_store[3]; /* cost of storing SSE register
fa79946e 243 in SImode, DImode and TImode*/
8b60264b 244 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 245 integer and vice versa. */
46cb0441
ZD
246 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
247 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
248 const int prefetch_block; /* bytes moved to cache for prefetch. */
249 const int simultaneous_prefetches; /* number of parallel prefetch
250 operations. */
4977bab6 251 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
252 const int fadd; /* cost of FADD and FSUB instructions. */
253 const int fmul; /* cost of FMUL instruction. */
254 const int fdiv; /* cost of FDIV instruction. */
255 const int fabs; /* cost of FABS instruction. */
256 const int fchs; /* cost of FCHS instruction. */
257 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 258 /* Specify what algorithm
bee51209 259 to use for stringops on unknown size. */
a813c280
JH
260 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
261 /* Specify reassociation width for integer,
262 fp, vector integer and vector fp
263 operations. Generally should correspond
264 to number of instructions executed in
265 parallel. See also
266 ix86_reassociation_width. */
ad83025e 267 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
268 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
269 load and store. */
270 const int scalar_load_cost; /* Cost of scalar load. */
271 const int scalar_store_cost; /* Cost of scalar store. */
272 const int vec_stmt_cost; /* Cost of any vector operation, excluding
273 load, store, vector-to-scalar and
274 scalar-to-vector operation. */
275 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
276 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 277 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
278 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
279 const int vec_store_cost; /* Cost of vector store. */
280 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
281 cost model. */
282 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
283 vectorizer cost model. */
d4ba09c0
SC
284};
285
8b60264b 286extern const struct processor_costs *ix86_cost;
b2077fd2
JH
287extern const struct processor_costs ix86_size_cost;
288
289#define ix86_cur_cost() \
290 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 291
c98f8742
JVA
292/* Macros used in the machine description to test the flags. */
293
b97de419 294/* configure can arrange to change it. */
e075ae69 295
35b528be 296#ifndef TARGET_CPU_DEFAULT
b97de419 297#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 298#endif
35b528be 299
004d3859
GK
300#ifndef TARGET_FPMATH_DEFAULT
301#define TARGET_FPMATH_DEFAULT \
302 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
303#endif
304
bf7b5747
ST
305#ifndef TARGET_FPMATH_DEFAULT_P
306#define TARGET_FPMATH_DEFAULT_P(x) \
307 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
308#endif
309
c207fd99
L
310/* If the i387 is disabled or -miamcu is used , then do not return
311 values in it. */
312#define TARGET_FLOAT_RETURNS_IN_80387 \
313 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
314#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
315 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 316
5791cc29
JT
317/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
318 compile-time constant. */
319#ifdef IN_LIBGCC2
6ac49599 320#undef TARGET_64BIT
5791cc29
JT
321#ifdef __x86_64__
322#define TARGET_64BIT 1
323#else
324#define TARGET_64BIT 0
325#endif
326#else
6ac49599
RS
327#ifndef TARGET_BI_ARCH
328#undef TARGET_64BIT
e49080ec 329#undef TARGET_64BIT_P
67adf6a9 330#if TARGET_64BIT_DEFAULT
0c2dc519 331#define TARGET_64BIT 1
e49080ec 332#define TARGET_64BIT_P(x) 1
0c2dc519
JH
333#else
334#define TARGET_64BIT 0
e49080ec 335#define TARGET_64BIT_P(x) 0
0c2dc519
JH
336#endif
337#endif
5791cc29 338#endif
25f94bb5 339
750054a2
CT
340#define HAS_LONG_COND_BRANCH 1
341#define HAS_LONG_UNCOND_BRANCH 1
342
9e555526
RH
343#define TARGET_386 (ix86_tune == PROCESSOR_I386)
344#define TARGET_486 (ix86_tune == PROCESSOR_I486)
345#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
346#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 347#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
348#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
349#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
350#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
351#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 352#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 353#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 354#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
355#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
356#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 357#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
358#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
359#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 360#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 361#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
06caf59d 362#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 363#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 364#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 365#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 366#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 367#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 368#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 369#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 370#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 371#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 372#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 373
80fd744f
RH
374/* Feature tests against the various tunings. */
375enum ix86_tune_indices {
4b8bc035 376#undef DEF_TUNE
3ad20bd4 377#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
378#include "x86-tune.def"
379#undef DEF_TUNE
380X86_TUNE_LAST
80fd744f
RH
381};
382
ab442df7 383extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
384
385#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
386#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
387#define TARGET_ZERO_EXTEND_WITH_AND \
388 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 389#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
390#define TARGET_BRANCH_PREDICTION_HINTS \
391 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
392#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
393#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
394#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
395#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
396#define TARGET_PARTIAL_FLAG_REG_STALL \
397 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
398#define TARGET_LCP_STALL \
399 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
400#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
401#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
402#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
403#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
404#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
405#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
406#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
407#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
408#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
409#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
410#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
411#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
412 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
413#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
414#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
415#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
416#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
417#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
418#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
419#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
420#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
421#define TARGET_INTEGER_DFMODE_MOVES \
422 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
423#define TARGET_PARTIAL_REG_DEPENDENCY \
424 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
425#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
426 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
427#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
428 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
429#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
430 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
431#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
432 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
433#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
434#define TARGET_SSE_TYPELESS_STORES \
435 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
436#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
437#define TARGET_MEMORY_MISMATCH_STALL \
438 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
439#define TARGET_PROLOGUE_USING_MOVE \
440 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
441#define TARGET_EPILOGUE_USING_MOVE \
442 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
443#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
444#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
445#define TARGET_INTER_UNIT_MOVES_TO_VEC \
446 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
447#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
448 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
449#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 450 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
451#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
452#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
453#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
454#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
455#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
456#define TARGET_PAD_SHORT_FUNCTION \
457 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
458#define TARGET_EXT_80387_CONSTANTS \
459 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
460#define TARGET_AVOID_VECTOR_DECODE \
461 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
462#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
463 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
464#define TARGET_SLOW_IMUL_IMM32_MEM \
465 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
466#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
467#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
468#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
469#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
470#define TARGET_USE_VECTOR_FP_CONVERTS \
471 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
472#define TARGET_USE_VECTOR_CONVERTS \
473 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
474#define TARGET_SLOW_PSHUFB \
475 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
476#define TARGET_AVOID_4BYTE_PREFIXES \
477 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
478#define TARGET_FUSE_CMP_AND_BRANCH_32 \
479 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
480#define TARGET_FUSE_CMP_AND_BRANCH_64 \
481 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 482#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
483 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
484 : TARGET_FUSE_CMP_AND_BRANCH_32)
485#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
486 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
487#define TARGET_FUSE_ALU_AND_BRANCH \
488 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 489#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
490#define TARGET_AVOID_LEA_FOR_ADDR \
491 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
492#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
493 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
494#define TARGET_AVX128_OPTIMAL \
495 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
496#define TARGET_GENERAL_REGS_SSE_SPILL \
497 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
498#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
499 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 500#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 501 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
502#define TARGET_ADJUST_UNROLL \
503 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
504#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
505 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
506#define TARGET_ONE_IF_CONV_INSN \
507 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 508
80fd744f
RH
509/* Feature tests against the various architecture variations. */
510enum ix86_arch_indices {
cef31f9c 511 X86_ARCH_CMOV,
80fd744f
RH
512 X86_ARCH_CMPXCHG,
513 X86_ARCH_CMPXCHG8B,
514 X86_ARCH_XADD,
515 X86_ARCH_BSWAP,
516
517 X86_ARCH_LAST
518};
4f3f76e6 519
ab442df7 520extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 521
cef31f9c 522#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
523#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
524#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
525#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
526#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
527
cef31f9c
UB
528/* For sane SSE instruction set generation we need fcomi instruction.
529 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
530 expands to a sequence that includes conditional move. */
531#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
532
80fd744f
RH
533#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
534
cb261eb7 535extern unsigned char x86_prefetch_sse;
80fd744f
RH
536#define TARGET_PREFETCH_SSE x86_prefetch_sse
537
80fd744f
RH
538#define ASSEMBLER_DIALECT (ix86_asm_dialect)
539
540#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
541#define TARGET_MIX_SSE_I387 \
542 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
543
5fa578f0
UB
544#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
545#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
546#define TARGET_HARD_XF_REGS (TARGET_80387)
547
80fd744f
RH
548#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
549#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
550#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 551#define TARGET_SUN_TLS 0
1ef45b77 552
67adf6a9
RH
553#ifndef TARGET_64BIT_DEFAULT
554#define TARGET_64BIT_DEFAULT 0
25f94bb5 555#endif
74dc3e94
RH
556#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
557#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
558#endif
25f94bb5 559
e0ea8797
AH
560#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
561#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
562
79f5e442
ZD
563/* Fence to use after loop using storent. */
564
565extern tree x86_mfence;
566#define FENCE_FOLLOWING_MOVNT x86_mfence
567
0ed4a390
JL
568/* Once GDB has been enhanced to deal with functions without frame
569 pointers, we can change this to allow for elimination of
570 the frame pointer in leaf functions. */
571#define TARGET_DEFAULT 0
67adf6a9 572
0a1c5e55
UB
573/* Extra bits to force. */
574#define TARGET_SUBTARGET_DEFAULT 0
575#define TARGET_SUBTARGET_ISA_DEFAULT 0
576
577/* Extra bits to force on w/ 32-bit mode. */
578#define TARGET_SUBTARGET32_DEFAULT 0
579#define TARGET_SUBTARGET32_ISA_DEFAULT 0
580
ccf8e764
RH
581/* Extra bits to force on w/ 64-bit mode. */
582#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 583#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 584
fee3eacd
IS
585/* Replace MACH-O, ifdefs by in-line tests, where possible.
586 (a) Macros defined in config/i386/darwin.h */
b069de3b 587#define TARGET_MACHO 0
9005471b 588#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
589#define MACHOPIC_ATT_STUB 0
590/* (b) Macros defined in config/darwin.h */
591#define MACHO_DYNAMIC_NO_PIC_P 0
592#define MACHOPIC_INDIRECT 0
593#define MACHOPIC_PURE 0
9005471b 594
5a579c3b
LE
595/* For the RDOS */
596#define TARGET_RDOS 0
597
9005471b 598/* For the Windows 64-bit ABI. */
7c800926
KT
599#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
600
6510e8bb
KT
601/* For the Windows 32-bit ABI. */
602#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
603
f81c9774
RH
604/* This is re-defined by cygming.h. */
605#define TARGET_SEH 0
606
51212b32 607/* The default abi used by target. */
7c800926 608#define DEFAULT_ABI SYSV_ABI
ccf8e764 609
b8b3f0ca 610/* The default TLS segment register used by target. */
00402c94
RH
611#define DEFAULT_TLS_SEG_REG \
612 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 613
cc69336f
RH
614/* Subtargets may reset this to 1 in order to enable 96-bit long double
615 with the rounding mode forced to 53 bits. */
616#define TARGET_96_ROUND_53_LONG_DOUBLE 0
617
682cd442
GK
618/* -march=native handling only makes sense with compiler running on
619 an x86 or x86_64 chip. If changing this condition, also change
620 the condition in driver-i386.c. */
621#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
622/* In driver-i386.c. */
623extern const char *host_detect_local_cpu (int argc, const char **argv);
624#define EXTRA_SPEC_FUNCTIONS \
625 { "local_cpu_detect", host_detect_local_cpu },
682cd442 626#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
627#endif
628
8981c15b
JM
629#if TARGET_64BIT_DEFAULT
630#define OPT_ARCH64 "!m32"
631#define OPT_ARCH32 "m32"
632#else
f0ea7581
L
633#define OPT_ARCH64 "m64|mx32"
634#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
635#endif
636
1cba2b96
EC
637/* Support for configure-time defaults of some command line options.
638 The order here is important so that -march doesn't squash the
639 tune or cpu values. */
ce998900 640#define OPTION_DEFAULT_SPECS \
da2d4c01 641 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
642 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
643 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 644 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
645 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
646 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
647 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
648 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
649 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 650
241e1a89
SC
651/* Specs for the compiler proper */
652
628714d8 653#ifndef CC1_CPU_SPEC
eb5bb0fd 654#define CC1_CPU_SPEC_1 ""
fa959ce4 655
682cd442 656#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
657#define CC1_CPU_SPEC CC1_CPU_SPEC_1
658#else
659#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
660"%{march=native:%>march=native %:local_cpu_detect(arch) \
661 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
662%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 663#endif
241e1a89 664#endif
c98f8742 665\f
30efe578 666/* Target CPU builtins. */
ab442df7
MM
667#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
668
669/* Target Pragmas. */
670#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 671
628714d8 672#ifndef CC1_SPEC
8015b78d 673#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
674#endif
675
676/* This macro defines names of additional specifications to put in the
677 specs that can be used in various specifications like CC1_SPEC. Its
678 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
679
680 Each subgrouping contains a string constant, that defines the
188fc5b5 681 specification name, and a string constant that used by the GCC driver
bcd86433
SC
682 program.
683
684 Do not define this macro if it does not need to do anything. */
685
686#ifndef SUBTARGET_EXTRA_SPECS
687#define SUBTARGET_EXTRA_SPECS
688#endif
689
690#define EXTRA_SPECS \
628714d8 691 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
692 SUBTARGET_EXTRA_SPECS
693\f
ce998900 694
8ce94e44
JM
695/* Whether to allow x87 floating-point arithmetic on MODE (one of
696 SFmode, DFmode and XFmode) in the current excess precision
697 configuration. */
b8cab8a5
UB
698#define X87_ENABLE_ARITH(MODE) \
699 (flag_unsafe_math_optimizations \
700 || flag_excess_precision == EXCESS_PRECISION_FAST \
701 || (MODE) == XFmode)
8ce94e44
JM
702
703/* Likewise, whether to allow direct conversions from integer mode
704 IMODE (HImode, SImode or DImode) to MODE. */
705#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
706 (flag_unsafe_math_optimizations \
707 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
708 || (MODE) == XFmode \
709 || ((MODE) == DFmode && (IMODE) == SImode) \
710 || (IMODE) == HImode)
711
979c67a5
UB
712/* target machine storage layout */
713
65d9c0ab
JH
714#define SHORT_TYPE_SIZE 16
715#define INT_TYPE_SIZE 32
f0ea7581
L
716#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
717#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 718#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 719#define FLOAT_TYPE_SIZE 32
65d9c0ab 720#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
721#define LONG_DOUBLE_TYPE_SIZE \
722 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 723
c637141a 724#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 725
67adf6a9 726#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 727#define MAX_BITS_PER_WORD 64
0c2dc519
JH
728#else
729#define MAX_BITS_PER_WORD 32
0c2dc519
JH
730#endif
731
c98f8742
JVA
732/* Define this if most significant byte of a word is the lowest numbered. */
733/* That is true on the 80386. */
734
735#define BITS_BIG_ENDIAN 0
736
737/* Define this if most significant byte of a word is the lowest numbered. */
738/* That is not true on the 80386. */
739#define BYTES_BIG_ENDIAN 0
740
741/* Define this if most significant word of a multiword number is the lowest
742 numbered. */
743/* Not true for 80386 */
744#define WORDS_BIG_ENDIAN 0
745
c98f8742 746/* Width of a word, in units (bytes). */
4ae8027b 747#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
748
749#ifndef IN_LIBGCC2
2e64c636
JH
750#define MIN_UNITS_PER_WORD 4
751#endif
c98f8742 752
c98f8742 753/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 754#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 755
e075ae69 756/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 757#define STACK_BOUNDARY \
51212b32 758 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 759
2e3f842f
L
760/* Stack boundary of the main function guaranteed by OS. */
761#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
762
de1132d1 763/* Minimum stack boundary. */
cba9c789 764#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 765
d1f87653 766/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 767 aligned; the compiler cannot rely on having this alignment. */
e075ae69 768#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 769
de1132d1 770/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
771 both 32bit and 64bit, to support codes that need 128 bit stack
772 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
773#define PREFERRED_STACK_BOUNDARY_DEFAULT \
774 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
775
776/* 1 if -mstackrealign should be turned on by default. It will
777 generate an alternate prologue and epilogue that realigns the
778 runtime stack if nessary. This supports mixing codes that keep a
779 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 780 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
781#define STACK_REALIGN_DEFAULT 0
782
783/* Boundary (in *bits*) on which the incoming stack is aligned. */
784#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 785
a2851b75
TG
786/* According to Windows x64 software convention, the maximum stack allocatable
787 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
788 instructions allowed to adjust the stack pointer in the epilog, forcing the
789 use of frame pointer for frames larger than 2 GB. This theorical limit
790 is reduced by 256, an over-estimated upper bound for the stack use by the
791 prologue.
792 We define only one threshold for both the prolog and the epilog. When the
4e523f33 793 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
794 regs, then save them, and then allocate the remaining. There is no SEH
795 unwind info for this later allocation. */
796#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
797
ebff937c
SH
798/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
799 mandatory for the 64-bit ABI, and may or may not be true for other
800 operating systems. */
801#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
802
f963b5d9
RS
803/* Minimum allocation boundary for the code of a function. */
804#define FUNCTION_BOUNDARY 8
805
806/* C++ stores the virtual bit in the lowest bit of function pointers. */
807#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 808
c98f8742
JVA
809/* Minimum size in bits of the largest boundary to which any
810 and all fundamental data types supported by the hardware
811 might need to be aligned. No data type wants to be aligned
17f24ff0 812 rounder than this.
fce5a9f2 813
d1f87653 814 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
815 and Pentium Pro XFmode values at 128 bit boundaries.
816
817 When increasing the maximum, also update
818 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 819
3f97cb0b 820#define BIGGEST_ALIGNMENT \
0076c82f 821 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 822
2e3f842f
L
823/* Maximum stack alignment. */
824#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
825
6e4f1168
L
826/* Alignment value for attribute ((aligned)). It is a constant since
827 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 828#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 829
822eda12 830/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 831#define ALIGN_MODE_128(MODE) \
4501d314 832 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 833
17f24ff0 834/* The published ABIs say that doubles should be aligned on word
d1f87653 835 boundaries, so lower the alignment for structure fields unless
6fc605d8 836 -malign-double is set. */
e932b21b 837
e83f3cff
RH
838/* ??? Blah -- this macro is used directly by libobjc. Since it
839 supports no vector modes, cut out the complexity and fall back
840 on BIGGEST_FIELD_ALIGNMENT. */
841#ifdef IN_TARGET_LIBS
ef49d42e
JH
842#ifdef __x86_64__
843#define BIGGEST_FIELD_ALIGNMENT 128
844#else
e83f3cff 845#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 846#endif
e83f3cff 847#else
a4cf4b64
RB
848#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
849 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 850#endif
c98f8742 851
8a022443
JW
852/* If defined, a C expression to compute the alignment for a static
853 variable. TYPE is the data type, and ALIGN is the alignment that
854 the object would ordinarily have. The value of this macro is used
855 instead of that alignment to align the object.
856
857 If this macro is not defined, then ALIGN is used.
858
859 One use of this macro is to increase alignment of medium-size
860 data to make it all fit in fewer cache lines. Another is to
861 cause character arrays to be word-aligned so that `strcpy' calls
862 that copy constants to character arrays can be done inline. */
863
df8a1d28
JJ
864#define DATA_ALIGNMENT(TYPE, ALIGN) \
865 ix86_data_alignment ((TYPE), (ALIGN), true)
866
867/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
868 some alignment increase, instead of optimization only purposes. E.g.
869 AMD x86-64 psABI says that variables with array type larger than 15 bytes
870 must be aligned to 16 byte boundaries.
871
872 If this macro is not defined, then ALIGN is used. */
873
874#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
875 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
876
877/* If defined, a C expression to compute the alignment for a local
878 variable. TYPE is the data type, and ALIGN is the alignment that
879 the object would ordinarily have. The value of this macro is used
880 instead of that alignment to align the object.
881
882 If this macro is not defined, then ALIGN is used.
883
884 One use of this macro is to increase alignment of medium-size
885 data to make it all fit in fewer cache lines. */
886
76fe54f0
L
887#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
888 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
889
890/* If defined, a C expression to compute the alignment for stack slot.
891 TYPE is the data type, MODE is the widest mode available, and ALIGN
892 is the alignment that the slot would ordinarily have. The value of
893 this macro is used instead of that alignment to align the slot.
894
895 If this macro is not defined, then ALIGN is used when TYPE is NULL,
896 Otherwise, LOCAL_ALIGNMENT will be used.
897
898 One use of this macro is to set alignment of stack slot to the
899 maximum alignment of all possible modes which the slot may have. */
900
901#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
902 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 903
9bfaf89d
JJ
904/* If defined, a C expression to compute the alignment for a local
905 variable DECL.
906
907 If this macro is not defined, then
908 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
909
910 One use of this macro is to increase alignment of medium-size
911 data to make it all fit in fewer cache lines. */
912
913#define LOCAL_DECL_ALIGNMENT(DECL) \
914 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
915
ae58e548
JJ
916/* If defined, a C expression to compute the minimum required alignment
917 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
918 MODE, assuming normal alignment ALIGN.
919
920 If this macro is not defined, then (ALIGN) will be used. */
921
922#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 923 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 924
9bfaf89d 925
9cd10576 926/* Set this nonzero if move instructions will actually fail to work
c98f8742 927 when given unaligned data. */
b4ac57ab 928#define STRICT_ALIGNMENT 0
c98f8742
JVA
929
930/* If bit field type is int, don't let it cross an int,
931 and give entire struct the alignment of an int. */
43a88a8c 932/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 933#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
934\f
935/* Standard register usage. */
936
937/* This processor has special stack-like registers. See reg-stack.c
892a2d68 938 for details. */
c98f8742
JVA
939
940#define STACK_REGS
ce998900 941
f48b4284
UB
942#define IS_STACK_MODE(MODE) \
943 (X87_FLOAT_MODE_P (MODE) \
944 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
945 || TARGET_MIX_SSE_I387))
c98f8742
JVA
946
947/* Number of actual hardware registers.
948 The hardware registers are assigned numbers for the compiler
949 from 0 to just below FIRST_PSEUDO_REGISTER.
950 All registers that the compiler knows about must be given numbers,
951 even those that are not normally considered general registers.
952
953 In the 80386 we give the 8 general purpose registers the numbers 0-7.
954 We number the floating point registers 8-15.
955 Note that registers 0-7 can be accessed as a short or int,
956 while only 0-3 may be used with byte `mov' instructions.
957
958 Reg 16 does not correspond to any hardware register, but instead
959 appears in the RTL as an argument pointer prior to reload, and is
960 eliminated during reloading in favor of either the stack or frame
892a2d68 961 pointer. */
c98f8742 962
05416670 963#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 964
3073d01c
ML
965/* Number of hardware registers that go into the DWARF-2 unwind info.
966 If not defined, equals FIRST_PSEUDO_REGISTER. */
967
968#define DWARF_FRAME_REGISTERS 17
969
c98f8742
JVA
970/* 1 for registers that have pervasive standard uses
971 and are not available for the register allocator.
3f3f2124 972 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 973
621bc046
UB
974 REX registers are disabled for 32bit targets in
975 TARGET_CONDITIONAL_REGISTER_USAGE. */
976
a7180f70
BS
977#define FIXED_REGISTERS \
978/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 979{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
980/*arg,flags,fpsr,fpcr,frame*/ \
981 1, 1, 1, 1, 1, \
a7180f70
BS
982/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
983 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 984/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
985 0, 0, 0, 0, 0, 0, 0, 0, \
986/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 987 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 988/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
989 0, 0, 0, 0, 0, 0, 0, 0, \
990/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
991 0, 0, 0, 0, 0, 0, 0, 0, \
992/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
993 0, 0, 0, 0, 0, 0, 0, 0, \
994/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
995 0, 0, 0, 0, 0, 0, 0, 0, \
996/* b0, b1, b2, b3*/ \
997 0, 0, 0, 0 }
c98f8742
JVA
998
999/* 1 for registers not available across function calls.
1000 These must include the FIXED_REGISTERS and also any
1001 registers that can be used without being saved.
1002 The latter must include the registers where values are returned
1003 and the register where structure-value addresses are passed.
fce5a9f2
EC
1004 Aside from that, you can include as many other registers as you like.
1005
621bc046
UB
1006 Value is set to 1 if the register is call used unconditionally.
1007 Bit one is set if the register is call used on TARGET_32BIT ABI.
1008 Bit two is set if the register is call used on TARGET_64BIT ABI.
1009 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1010
1011 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1012
1f3ccbc8
L
1013#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1014 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1015
a7180f70
BS
1016#define CALL_USED_REGISTERS \
1017/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1018{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1019/*arg,flags,fpsr,fpcr,frame*/ \
1020 1, 1, 1, 1, 1, \
a7180f70 1021/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1022 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1023/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1024 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1025/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1026 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1027/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1028 6, 6, 6, 6, 6, 6, 6, 6, \
1029/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1030 6, 6, 6, 6, 6, 6, 6, 6, \
1031/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1032 6, 6, 6, 6, 6, 6, 6, 6, \
1033 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1034 1, 1, 1, 1, 1, 1, 1, 1, \
1035/* b0, b1, b2, b3*/ \
1036 1, 1, 1, 1 }
c98f8742 1037
3b3c6a3f
MM
1038/* Order in which to allocate registers. Each register must be
1039 listed once, even those in FIXED_REGISTERS. List frame pointer
1040 late and fixed registers last. Note that, in general, we prefer
1041 registers listed in CALL_USED_REGISTERS, keeping the others
1042 available for storage of persistent values.
1043
5a733826 1044 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1045 so this is just empty initializer for array. */
3b3c6a3f 1046
162f023b
JH
1047#define REG_ALLOC_ORDER \
1048{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1049 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1050 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1051 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1052 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1053 78, 79, 80 }
3b3c6a3f 1054
5a733826 1055/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1056 to be rearranged based on a particular function. When using sse math,
03c259ad 1057 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1058
5a733826 1059#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1060
f5316dfe 1061
7c800926
KT
1062#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1063
8521c414 1064#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1065 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1066 && GENERAL_REGNO_P (REGNO) \
1067 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1068
1069#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1070
95879c72
L
1071#define VALID_AVX256_REG_MODE(MODE) \
1072 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1073 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1074 || (MODE) == V4DFmode)
95879c72 1075
4ac005ba 1076#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1077 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1078
3f97cb0b
AI
1079#define VALID_AVX512F_SCALAR_MODE(MODE) \
1080 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1081 || (MODE) == SFmode)
1082
1083#define VALID_AVX512F_REG_MODE(MODE) \
1084 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1085 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1086 || (MODE) == V4TImode)
1087
05416670 1088#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1089 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1090 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1091 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1092
ce998900
UB
1093#define VALID_SSE2_REG_MODE(MODE) \
1094 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1095 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1096
d9a5f180 1097#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1098 ((MODE) == V1TImode || (MODE) == TImode \
1099 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1100 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1101
47f339cf 1102#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1103 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1104
d9a5f180 1105#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1106 ((MODE == V1DImode) || (MODE) == DImode \
1107 || (MODE) == V2SImode || (MODE) == SImode \
1108 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1109
05416670
UB
1110#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1111
1112#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1113
d5e254e1
IE
1114#define VALID_BND_REG_MODE(MODE) \
1115 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1116
ce998900
UB
1117#define VALID_DFP_MODE_P(MODE) \
1118 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1119
d9a5f180 1120#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1121 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1122 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1123
d9a5f180 1124#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1125 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1126 || (MODE) == DImode \
1127 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1128 || (MODE) == CDImode \
1129 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1130 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1131
822eda12 1132/* Return true for modes passed in SSE registers. */
ce998900 1133#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1134 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1135 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1136 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1137 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1138 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1139 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1140 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1141 || (MODE) == V16SFmode)
822eda12 1142
05416670
UB
1143#define X87_FLOAT_MODE_P(MODE) \
1144 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1145
05416670
UB
1146#define SSE_FLOAT_MODE_P(MODE) \
1147 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1148
1149#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1150 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1151 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1152
ff25ef99
ZD
1153/* It is possible to write patterns to move flags; but until someone
1154 does it, */
1155#define AVOID_CCMODE_COPIES
c98f8742 1156
e075ae69 1157/* Specify the modes required to caller save a given hard regno.
787dc842 1158 We do this on i386 to prevent flags from being saved at all.
e075ae69 1159
787dc842
JH
1160 Kill any attempts to combine saving of modes. */
1161
d9a5f180
GS
1162#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1163 (CC_REGNO_P (REGNO) ? VOIDmode \
1164 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1165 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1166 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1167 && TARGET_PARTIAL_REG_STALL) \
85a77221 1168 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1169 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1170 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1171 : (MODE))
ce998900 1172
c98f8742
JVA
1173/* Specify the registers used for certain standard purposes.
1174 The values of these macros are register numbers. */
1175
1176/* on the 386 the pc register is %eip, and is not usable as a general
1177 register. The ordinary mov instructions won't work */
1178/* #define PC_REGNUM */
1179
05416670
UB
1180/* Base register for access to arguments of the function. */
1181#define ARG_POINTER_REGNUM ARGP_REG
1182
c98f8742 1183/* Register to use for pushing function arguments. */
05416670 1184#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1185
1186/* Base register for access to local variables of the function. */
05416670
UB
1187#define FRAME_POINTER_REGNUM FRAME_REG
1188#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1189
05416670
UB
1190#define FIRST_INT_REG AX_REG
1191#define LAST_INT_REG SP_REG
c98f8742 1192
05416670
UB
1193#define FIRST_QI_REG AX_REG
1194#define LAST_QI_REG BX_REG
c98f8742
JVA
1195
1196/* First & last stack-like regs */
05416670
UB
1197#define FIRST_STACK_REG ST0_REG
1198#define LAST_STACK_REG ST7_REG
c98f8742 1199
05416670
UB
1200#define FIRST_SSE_REG XMM0_REG
1201#define LAST_SSE_REG XMM7_REG
fce5a9f2 1202
05416670
UB
1203#define FIRST_MMX_REG MM0_REG
1204#define LAST_MMX_REG MM7_REG
a7180f70 1205
05416670
UB
1206#define FIRST_REX_INT_REG R8_REG
1207#define LAST_REX_INT_REG R15_REG
3f3f2124 1208
05416670
UB
1209#define FIRST_REX_SSE_REG XMM8_REG
1210#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1211
05416670
UB
1212#define FIRST_EXT_REX_SSE_REG XMM16_REG
1213#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1214
05416670
UB
1215#define FIRST_MASK_REG MASK0_REG
1216#define LAST_MASK_REG MASK7_REG
85a77221 1217
05416670
UB
1218#define FIRST_BND_REG BND0_REG
1219#define LAST_BND_REG BND3_REG
d5e254e1 1220
aabcd309 1221/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1222 requiring a frame pointer. */
1223#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1224#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1225#endif
1226
1227/* Make sure we can access arbitrary call frames. */
1228#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1229
c98f8742 1230/* Register to hold the addressing base for position independent
5b43fed1
RH
1231 code access to data items. We don't use PIC pointer for 64bit
1232 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1233 pessimizing code dealing with EBX.
bd09bdeb
RH
1234
1235 To avoid clobbering a call-saved register unnecessarily, we renumber
1236 the pic register when possible. The change is visible after the
1237 prologue has been emitted. */
1238
e8b5eb25 1239#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1240
bcb21886 1241#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1242 (ix86_use_pseudo_pic_reg () \
1243 ? (pic_offset_table_rtx \
1244 ? INVALID_REGNUM \
1245 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1246 : INVALID_REGNUM)
c98f8742 1247
5fc0e5df
KW
1248#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1249
c51e6d85 1250/* This is overridden by <cygwin.h>. */
5e062767
DS
1251#define MS_AGGREGATE_RETURN 0
1252
61fec9ff 1253#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1254\f
1255/* Define the classes of registers for register constraints in the
1256 machine description. Also define ranges of constants.
1257
1258 One of the classes must always be named ALL_REGS and include all hard regs.
1259 If there is more than one class, another class must be named NO_REGS
1260 and contain no registers.
1261
1262 The name GENERAL_REGS must be the name of a class (or an alias for
1263 another name such as ALL_REGS). This is the class of registers
1264 that is allowed by "g" or "r" in a register constraint.
1265 Also, registers outside this class are allocated only when
1266 instructions express preferences for them.
1267
1268 The classes must be numbered in nondecreasing order; that is,
1269 a larger-numbered class must never be contained completely
2e24efd3
AM
1270 in a smaller-numbered class. This is why CLOBBERED_REGS class
1271 is listed early, even though in 64-bit mode it contains more
1272 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1273
1274 For any two classes, it is very desirable that there be another
ab408a86
JVA
1275 class that represents their union.
1276
1277 It might seem that class BREG is unnecessary, since no useful 386
1278 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1279 and the "b" register constraint is useful in asms for syscalls.
1280
03c259ad 1281 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1282
1283enum reg_class
1284{
1285 NO_REGS,
e075ae69 1286 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1287 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1288 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1289 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1290 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1291 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1292 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1293 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1294 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1295 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1296 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1297 FLOAT_REGS,
06f4e35d 1298 SSE_FIRST_REG,
45392c76 1299 NO_REX_SSE_REGS,
a7180f70 1300 SSE_REGS,
3f97cb0b 1301 EVEX_SSE_REGS,
d5e254e1 1302 BND_REGS,
3f97cb0b 1303 ALL_SSE_REGS,
a7180f70 1304 MMX_REGS,
446988df
JH
1305 FP_TOP_SSE_REGS,
1306 FP_SECOND_SSE_REGS,
1307 FLOAT_SSE_REGS,
1308 FLOAT_INT_REGS,
1309 INT_SSE_REGS,
1310 FLOAT_INT_SSE_REGS,
85a77221
AI
1311 MASK_EVEX_REGS,
1312 MASK_REGS,
5fbb13a7 1313 MOD4_SSE_REGS,
c98f8742
JVA
1314 ALL_REGS, LIM_REG_CLASSES
1315};
1316
d9a5f180
GS
1317#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1318
1319#define INTEGER_CLASS_P(CLASS) \
1320 reg_class_subset_p ((CLASS), GENERAL_REGS)
1321#define FLOAT_CLASS_P(CLASS) \
1322 reg_class_subset_p ((CLASS), FLOAT_REGS)
1323#define SSE_CLASS_P(CLASS) \
3f97cb0b 1324 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1325#define MMX_CLASS_P(CLASS) \
f75959a6 1326 ((CLASS) == MMX_REGS)
4ed04e93
UB
1327#define MASK_CLASS_P(CLASS) \
1328 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1329#define MAYBE_INTEGER_CLASS_P(CLASS) \
1330 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1331#define MAYBE_FLOAT_CLASS_P(CLASS) \
1332 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1333#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1334 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1335#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1336 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1337#define MAYBE_MASK_CLASS_P(CLASS) \
1338 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1339
1340#define Q_CLASS_P(CLASS) \
1341 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1342
0bd72901
UB
1343#define MAYBE_NON_Q_CLASS_P(CLASS) \
1344 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1345
43f3a59d 1346/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1347
1348#define REG_CLASS_NAMES \
1349{ "NO_REGS", \
ab408a86 1350 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1351 "SIREG", "DIREG", \
e075ae69 1352 "AD_REGS", \
2e24efd3 1353 "CLOBBERED_REGS", \
e075ae69 1354 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1355 "TLS_GOTBASE_REGS", \
c98f8742 1356 "INDEX_REGS", \
3f3f2124 1357 "LEGACY_REGS", \
c98f8742
JVA
1358 "GENERAL_REGS", \
1359 "FP_TOP_REG", "FP_SECOND_REG", \
1360 "FLOAT_REGS", \
cb482895 1361 "SSE_FIRST_REG", \
45392c76 1362 "NO_REX_SSE_REGS", \
a7180f70 1363 "SSE_REGS", \
3f97cb0b 1364 "EVEX_SSE_REGS", \
d5e254e1 1365 "BND_REGS", \
3f97cb0b 1366 "ALL_SSE_REGS", \
a7180f70 1367 "MMX_REGS", \
446988df
JH
1368 "FP_TOP_SSE_REGS", \
1369 "FP_SECOND_SSE_REGS", \
1370 "FLOAT_SSE_REGS", \
8fcaaa80 1371 "FLOAT_INT_REGS", \
446988df
JH
1372 "INT_SSE_REGS", \
1373 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1374 "MASK_EVEX_REGS", \
1375 "MASK_REGS", \
cae67b80 1376 "MOD4_SSE_REGS", \
c98f8742
JVA
1377 "ALL_REGS" }
1378
ac2e563f
RH
1379/* Define which registers fit in which classes. This is an initializer
1380 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1381
621bc046
UB
1382 Note that CLOBBERED_REGS are calculated by
1383 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1384
3f97cb0b 1385#define REG_CLASS_CONTENTS \
d5e254e1
IE
1386{ { 0x00, 0x0, 0x0 }, \
1387 { 0x01, 0x0, 0x0 }, /* AREG */ \
1388 { 0x02, 0x0, 0x0 }, /* DREG */ \
1389 { 0x04, 0x0, 0x0 }, /* CREG */ \
1390 { 0x08, 0x0, 0x0 }, /* BREG */ \
1391 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1392 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1393 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1394 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1395 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1396 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1397 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1398 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1399 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1400 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1401 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1402 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1403 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1404 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1405{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1406{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1407 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1408 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1409{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1410{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1411{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1412{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1413{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1414{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1415{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1416{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1417 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1418 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1419{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1420{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1421}
c98f8742
JVA
1422
1423/* The same information, inverted:
1424 Return the class number of the smallest class containing
1425 reg number REGNO. This could be a conditional expression
1426 or could index an array. */
1427
1a6e82b8 1428#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1429
42db504c
SB
1430/* When this hook returns true for MODE, the compiler allows
1431 registers explicitly used in the rtl to be used as spill registers
1432 but prevents the compiler from extending the lifetime of these
1433 registers. */
1434#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1435
fc27f749 1436#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1437#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1438
1439#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1440#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1441
1442#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1443#define REX_INT_REGNO_P(N) \
1444 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1445
58b0b34c 1446#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1447#define GENERAL_REGNO_P(N) \
58b0b34c 1448 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1449
fc27f749
UB
1450#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1451#define ANY_QI_REGNO_P(N) \
1452 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1453
66aaf16f
UB
1454#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1455#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1456
fc27f749 1457#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1458#define SSE_REGNO_P(N) \
1459 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1460 || REX_SSE_REGNO_P (N) \
1461 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1462
4977bab6 1463#define REX_SSE_REGNO_P(N) \
fb84c7a0 1464 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1465
0a48088a
IT
1466#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1467
3f97cb0b
AI
1468#define EXT_REX_SSE_REGNO_P(N) \
1469 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1470
05416670
UB
1471#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1472#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1473
9e4a4dd6 1474#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1475#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1476
fc27f749 1477#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1478#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1479
e075ae69
RH
1480#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1481#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1482
58b0b34c 1483#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1484#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1485
5fbb13a7
KY
1486#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1487#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1488 || (N) == XMM4_REG \
1489 || (N) == XMM8_REG \
1490 || (N) == XMM12_REG \
1491 || (N) == XMM16_REG \
1492 || (N) == XMM20_REG \
1493 || (N) == XMM24_REG \
1494 || (N) == XMM28_REG)
1495
05416670
UB
1496/* First floating point reg */
1497#define FIRST_FLOAT_REG FIRST_STACK_REG
1498#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1499
1500#define SSE_REGNO(N) \
1501 ((N) < 8 ? FIRST_SSE_REG + (N) \
1502 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1503 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1504
c98f8742
JVA
1505/* The class value for index registers, and the one for base regs. */
1506
1507#define INDEX_REG_CLASS INDEX_REGS
1508#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1509\f
1510/* Stack layout; function entry, exit and calling. */
1511
1512/* Define this if pushing a word on the stack
1513 makes the stack pointer a smaller address. */
62f9f30b 1514#define STACK_GROWS_DOWNWARD 1
c98f8742 1515
a4d05547 1516/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1517 is at the high-address end of the local variables;
1518 that is, each additional local variable allocated
1519 goes at a more negative offset in the frame. */
f62c8a5c 1520#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1521
1522/* Offset within stack frame to start allocating local variables at.
1523 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1524 first local allocated. Otherwise, it is the offset to the BEGINNING
1525 of the first local allocated. */
1526#define STARTING_FRAME_OFFSET 0
1527
8c2b2fae
UB
1528/* If we generate an insn to push BYTES bytes, this says how many the stack
1529 pointer really advances by. On 386, we have pushw instruction that
1530 decrements by exactly 2 no matter what the position was, there is no pushb.
1531
1532 But as CIE data alignment factor on this arch is -4 for 32bit targets
1533 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1534 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1535
1a6e82b8 1536#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1537
1538/* If defined, the maximum amount of space required for outgoing arguments
1539 will be computed and placed into the variable `crtl->outgoing_args_size'.
1540 No space will be pushed onto the stack for each call; instead, the
1541 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1542
1543 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1544 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1545 mode the difference is less drastic but visible.
1546
1547 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1548 actually grow with accumulation. Is that because accumulated args
41ee845b 1549 unwind info became unnecesarily bloated?
f830ddc2
RH
1550
1551 With the 64-bit MS ABI, we can generate correct code with or without
1552 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1553 generated without accumulated args is terrible.
41ee845b
JH
1554
1555 If stack probes are required, the space used for large function
1556 arguments on the stack must also be probed, so enable
f8071c05
L
1557 -maccumulate-outgoing-args so this happens in the prologue.
1558
1559 We must use argument accumulation in interrupt function if stack
1560 may be realigned to avoid DRAP. */
f73ad30e 1561
6c6094f1 1562#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1563 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1564 && optimize_function_for_speed_p (cfun)) \
1565 || (cfun->machine->func_type != TYPE_NORMAL \
1566 && crtl->stack_realign_needed) \
1567 || TARGET_STACK_PROBE \
1568 || TARGET_64BIT_MS_ABI \
ff734e26 1569 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1570
1571/* If defined, a C expression whose value is nonzero when we want to use PUSH
1572 instructions to pass outgoing arguments. */
1573
1574#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1575
2da4124d
L
1576/* We want the stack and args grow in opposite directions, even if
1577 PUSH_ARGS is 0. */
1578#define PUSH_ARGS_REVERSED 1
1579
c98f8742
JVA
1580/* Offset of first parameter from the argument pointer register value. */
1581#define FIRST_PARM_OFFSET(FNDECL) 0
1582
a7180f70
BS
1583/* Define this macro if functions should assume that stack space has been
1584 allocated for arguments even when their values are passed in registers.
1585
1586 The value of this macro is the size, in bytes, of the area reserved for
1587 arguments passed in registers for the function represented by FNDECL.
1588
1589 This space can be allocated by the caller, or be a part of the
1590 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1591 which. */
7c800926
KT
1592#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1593
4ae8027b 1594#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1595 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1596
c98f8742
JVA
1597/* Define how to find the value returned by a library function
1598 assuming the value has mode MODE. */
1599
4ae8027b 1600#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1601
e9125c09
TW
1602/* Define the size of the result block used for communication between
1603 untyped_call and untyped_return. The block contains a DImode value
1604 followed by the block used by fnsave and frstor. */
1605
1606#define APPLY_RESULT_SIZE (8+108)
1607
b08de47e 1608/* 1 if N is a possible register number for function argument passing. */
53c17031 1609#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1610
1611/* Define a data type for recording info about an argument list
1612 during the scan of that argument list. This data type should
1613 hold all necessary information about the function itself
1614 and about the args processed so far, enough to enable macros
b08de47e 1615 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1616
e075ae69 1617typedef struct ix86_args {
fa283935 1618 int words; /* # words passed so far */
b08de47e
MM
1619 int nregs; /* # registers available for passing */
1620 int regno; /* next available register number */
3e65f251
KT
1621 int fastcall; /* fastcall or thiscall calling convention
1622 is used */
fa283935 1623 int sse_words; /* # sse words passed so far */
a7180f70 1624 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1625 int warn_avx512f; /* True when we want to warn
1626 about AVX512F ABI. */
95879c72 1627 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1628 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1629 int warn_mmx; /* True when we want to warn about MMX ABI. */
1630 int sse_regno; /* next available sse register number */
1631 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1632 int mmx_nregs; /* # mmx registers available for passing */
1633 int mmx_regno; /* next available mmx register number */
892a2d68 1634 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1635 int caller; /* true if it is caller. */
2824d6e5
UB
1636 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1637 SFmode/DFmode arguments should be passed
1638 in SSE registers. Otherwise 0. */
d5e254e1
IE
1639 int bnd_regno; /* next available bnd register number */
1640 int bnds_in_bt; /* number of bounds expected in BT. */
1641 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1642 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1643 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1644 MS_ABI for ms abi. */
e66fc623 1645 tree decl; /* Callee decl. */
b08de47e 1646} CUMULATIVE_ARGS;
c98f8742
JVA
1647
1648/* Initialize a variable CUM of type CUMULATIVE_ARGS
1649 for a call to a function whose data type is FNTYPE.
b08de47e 1650 For a library call, FNTYPE is 0. */
c98f8742 1651
0f6937fe 1652#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1653 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1654 (N_NAMED_ARGS) != -1)
c98f8742 1655
c98f8742
JVA
1656/* Output assembler code to FILE to increment profiler label # LABELNO
1657 for profiling a function entry. */
1658
1a6e82b8
UB
1659#define FUNCTION_PROFILER(FILE, LABELNO) \
1660 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1661
1662#define MCOUNT_NAME "_mcount"
1663
3c5273a9
KT
1664#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1665
a5fa1ecd 1666#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1667
1668/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1669 the stack pointer does not matter. The value is tested only in
1670 functions that have frame pointers.
1671 No definition is equivalent to always zero. */
fce5a9f2 1672/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1673 we have to restore it ourselves from the frame pointer, in order to
1674 use pop */
1675
1676#define EXIT_IGNORE_STACK 1
1677
f8071c05
L
1678/* Define this macro as a C expression that is nonzero for registers
1679 used by the epilogue or the `return' pattern. */
1680
1681#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1682
c98f8742
JVA
1683/* Output assembler code for a block containing the constant parts
1684 of a trampoline, leaving space for the variable parts. */
1685
a269a03c 1686/* On the 386, the trampoline contains two instructions:
c98f8742 1687 mov #STATIC,ecx
a269a03c
JC
1688 jmp FUNCTION
1689 The trampoline is generated entirely at runtime. The operand of JMP
1690 is the address of FUNCTION relative to the instruction following the
1691 JMP (which is 5 bytes long). */
c98f8742
JVA
1692
1693/* Length in units of the trampoline for entering a nested function. */
1694
3452586b 1695#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1696\f
1697/* Definitions for register eliminations.
1698
1699 This is an array of structures. Each structure initializes one pair
1700 of eliminable registers. The "from" register number is given first,
1701 followed by "to". Eliminations of the same "from" register are listed
1702 in order of preference.
1703
afc2cd05
NC
1704 There are two registers that can always be eliminated on the i386.
1705 The frame pointer and the arg pointer can be replaced by either the
1706 hard frame pointer or to the stack pointer, depending upon the
1707 circumstances. The hard frame pointer is not used before reload and
1708 so it is not eligible for elimination. */
c98f8742 1709
564d80f4
JH
1710#define ELIMINABLE_REGS \
1711{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1712 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1713 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1714 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1715
c98f8742
JVA
1716/* Define the offset between two registers, one to be eliminated, and the other
1717 its replacement, at the start of a routine. */
1718
d9a5f180
GS
1719#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1720 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1721\f
1722/* Addressing modes, and classification of registers for them. */
1723
c98f8742
JVA
1724/* Macros to check register numbers against specific register classes. */
1725
1726/* These assume that REGNO is a hard or pseudo reg number.
1727 They give nonzero only if REGNO is a hard reg of the suitable class
1728 or a pseudo reg currently allocated to a suitable hard reg.
1729 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1730 has been allocated, which happens in reginfo.c during register
1731 allocation. */
c98f8742 1732
3f3f2124
JH
1733#define REGNO_OK_FOR_INDEX_P(REGNO) \
1734 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1735 || REX_INT_REGNO_P (REGNO) \
1736 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1737 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1738
3f3f2124 1739#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1740 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1741 || (REGNO) == ARG_POINTER_REGNUM \
1742 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1743 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1744
c98f8742
JVA
1745/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1746 and check its validity for a certain class.
1747 We have two alternate definitions for each of them.
1748 The usual definition accepts all pseudo regs; the other rejects
1749 them unless they have been allocated suitable hard regs.
1750 The symbol REG_OK_STRICT causes the latter definition to be used.
1751
1752 Most source files want to accept pseudo regs in the hope that
1753 they will get allocated to the class that the insn wants them to be in.
1754 Source files for reload pass need to be strict.
1755 After reload, it makes no difference, since pseudo regs have
1756 been eliminated by then. */
1757
c98f8742 1758
ff482c8d 1759/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1760#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1761 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1762 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1763 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1764
3b3c6a3f 1765#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1766 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1767 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1768 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1769 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1770
3b3c6a3f
MM
1771/* Strict versions, hard registers only */
1772#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1773#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1774
3b3c6a3f 1775#ifndef REG_OK_STRICT
d9a5f180
GS
1776#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1777#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1778
1779#else
d9a5f180
GS
1780#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1781#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1782#endif
1783
331d9186 1784/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1785 that is a valid memory address for an instruction.
1786 The MODE argument is the machine mode for the MEM expression
1787 that wants to use this address.
1788
331d9186 1789 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1790 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1791
1792 See legitimize_pic_address in i386.c for details as to what
1793 constitutes a legitimate address when -fpic is used. */
1794
1795#define MAX_REGS_PER_ADDRESS 2
1796
f996902d 1797#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1798
b949ea8b
JW
1799/* If defined, a C expression to determine the base term of address X.
1800 This macro is used in only one place: `find_base_term' in alias.c.
1801
1802 It is always safe for this macro to not be defined. It exists so
1803 that alias analysis can understand machine-dependent addresses.
1804
1805 The typical use of this macro is to handle addresses containing
1806 a label_ref or symbol_ref within an UNSPEC. */
1807
d9a5f180 1808#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1809
c98f8742 1810/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1811 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1812 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1813
f996902d 1814#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1815
1816#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1817 (GET_CODE (X) == SYMBOL_REF \
1818 || GET_CODE (X) == LABEL_REF \
1819 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1820\f
b08de47e
MM
1821/* Max number of args passed in registers. If this is more than 3, we will
1822 have problems with ebx (register #4), since it is a caller save register and
1823 is also used as the pic register in ELF. So for now, don't allow more than
1824 3 registers to be passed in registers. */
1825
7c800926
KT
1826/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1827#define X86_64_REGPARM_MAX 6
72fa3605 1828#define X86_64_MS_REGPARM_MAX 4
7c800926 1829
72fa3605 1830#define X86_32_REGPARM_MAX 3
7c800926 1831
4ae8027b 1832#define REGPARM_MAX \
2824d6e5
UB
1833 (TARGET_64BIT \
1834 ? (TARGET_64BIT_MS_ABI \
1835 ? X86_64_MS_REGPARM_MAX \
1836 : X86_64_REGPARM_MAX) \
4ae8027b 1837 : X86_32_REGPARM_MAX)
d2836273 1838
72fa3605
UB
1839#define X86_64_SSE_REGPARM_MAX 8
1840#define X86_64_MS_SSE_REGPARM_MAX 4
1841
b6010cab 1842#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1843
4ae8027b 1844#define SSE_REGPARM_MAX \
2824d6e5
UB
1845 (TARGET_64BIT \
1846 ? (TARGET_64BIT_MS_ABI \
1847 ? X86_64_MS_SSE_REGPARM_MAX \
1848 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1849 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1850
1851#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1852\f
1853/* Specify the machine mode that this machine uses
1854 for the index in the tablejump instruction. */
dc4d7240 1855#define CASE_VECTOR_MODE \
6025b127 1856 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1857
c98f8742
JVA
1858/* Define this as 1 if `char' should by default be signed; else as 0. */
1859#define DEFAULT_SIGNED_CHAR 1
1860
1861/* Max number of bytes we can move from memory to memory
1862 in one reasonably fast instruction. */
65d9c0ab
JH
1863#define MOVE_MAX 16
1864
1865/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1866 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1867 number of bytes we can move with a single instruction.
1868
1869 ??? We should use TImode in 32-bit mode and use OImode or XImode
1870 if they are available. But since by_pieces_ninsns determines the
1871 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1872 64-bit mode. */
1873#define MOVE_MAX_PIECES \
1874 ((TARGET_64BIT \
1875 && TARGET_SSE2 \
1876 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1877 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1878 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1879
7e24ffc9 1880/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1881 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1882 Increasing the value will always make code faster, but eventually
1883 incurs high cost in increased code size.
c98f8742 1884
e2e52e1b 1885 If you don't define this, a reasonable default is used. */
c98f8742 1886
e04ad03d 1887#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1888
45d78e7f
JJ
1889/* If a clear memory operation would take CLEAR_RATIO or more simple
1890 move-instruction sequences, we will do a clrmem or libcall instead. */
1891
e04ad03d 1892#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1893
53f00dde
UB
1894/* Define if shifts truncate the shift count which implies one can
1895 omit a sign-extension or zero-extension of a shift count.
1896
1897 On i386, shifts do truncate the count. But bit test instructions
1898 take the modulo of the bit offset operand. */
c98f8742
JVA
1899
1900/* #define SHIFT_COUNT_TRUNCATED */
1901
d9f32422
JH
1902/* A macro to update M and UNSIGNEDP when an object whose type is
1903 TYPE and which has the specified mode and signedness is to be
1904 stored in a register. This macro is only called when TYPE is a
1905 scalar type.
1906
f710504c 1907 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1908 quantities to SImode. The choice depends on target type. */
1909
1910#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1911do { \
d9f32422
JH
1912 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1913 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1914 (MODE) = SImode; \
1915} while (0)
d9f32422 1916
c98f8742
JVA
1917/* Specify the machine mode that pointers have.
1918 After generation of rtl, the compiler makes no further distinction
1919 between pointers and any other objects of this machine mode. */
28968d91 1920#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1921
d5e254e1
IE
1922/* Specify the machine mode that bounds have. */
1923#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1924
f0ea7581
L
1925/* A C expression whose value is zero if pointers that need to be extended
1926 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1927 greater then zero if they are zero-extended and less then zero if the
1928 ptr_extend instruction should be used. */
1929
1930#define POINTERS_EXTEND_UNSIGNED 1
1931
c98f8742
JVA
1932/* A function address in a call instruction
1933 is a byte address (for indexing purposes)
1934 so give the MEM rtx a byte's mode. */
1935#define FUNCTION_MODE QImode
d4ba09c0 1936\f
d4ba09c0 1937
d4ba09c0
SC
1938/* A C expression for the cost of a branch instruction. A value of 1
1939 is the default; other values are interpreted relative to that. */
1940
3a4fd356
JH
1941#define BRANCH_COST(speed_p, predictable_p) \
1942 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1943
e327d1a3
L
1944/* An integer expression for the size in bits of the largest integer machine
1945 mode that should actually be used. We allow pairs of registers. */
1946#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1947
d4ba09c0
SC
1948/* Define this macro as a C expression which is nonzero if accessing
1949 less than a word of memory (i.e. a `char' or a `short') is no
1950 faster than accessing a word of memory, i.e., if such access
1951 require more than one instruction or if there is no difference in
1952 cost between byte and (aligned) word loads.
1953
1954 When this macro is not defined, the compiler will access a field by
1955 finding the smallest containing object; when it is defined, a
1956 fullword load will be used if alignment permits. Unless bytes
1957 accesses are faster than word accesses, using word accesses is
1958 preferable since it may eliminate subsequent memory access if
1959 subsequent accesses occur to other fields in the same word of the
1960 structure, but to different bytes. */
1961
1962#define SLOW_BYTE_ACCESS 0
1963
1964/* Nonzero if access to memory by shorts is slow and undesirable. */
1965#define SLOW_SHORT_ACCESS 0
1966
d4ba09c0
SC
1967/* Define this macro if it is as good or better to call a constant
1968 function address than to call an address kept in a register.
1969
1970 Desirable on the 386 because a CALL with a constant address is
1971 faster than one with a register address. */
1972
1e8552c2 1973#define NO_FUNCTION_CSE 1
c98f8742 1974\f
c572e5ba
JVA
1975/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1976 return the mode to be used for the comparison.
1977
1978 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1979 VOIDmode should be used in all other cases.
c572e5ba 1980
16189740 1981 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1982 possible, to allow for more combinations. */
c98f8742 1983
d9a5f180 1984#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1985
9cd10576 1986/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1987 reversed. */
1988
1989#define REVERSIBLE_CC_MODE(MODE) 1
1990
1991/* A C expression whose value is reversed condition code of the CODE for
1992 comparison done in CC_MODE mode. */
3c5cb3e4 1993#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1994
c98f8742
JVA
1995\f
1996/* Control the assembler format that we output, to the extent
1997 this does not vary between assemblers. */
1998
1999/* How to refer to registers in assembler output.
892a2d68 2000 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2001
a7b376ee 2002/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2003 For non floating point regs, the following are the HImode names.
2004
2005 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2006 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2007 "y" code. */
c98f8742 2008
a7180f70
BS
2009#define HI_REGISTER_NAMES \
2010{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2011 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2012 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2013 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2014 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2015 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2016 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2017 "xmm16", "xmm17", "xmm18", "xmm19", \
2018 "xmm20", "xmm21", "xmm22", "xmm23", \
2019 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2020 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2021 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2022 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2023
c98f8742
JVA
2024#define REGISTER_NAMES HI_REGISTER_NAMES
2025
2026/* Table of additional register names to use in user input. */
2027
2028#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2029{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2030 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2031 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2032 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2033 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2034 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2035 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2036 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2037 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2038 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2039 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2040 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2041 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2042 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2043 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2044 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2045 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2046 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2047 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2048 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2049 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2050 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2051
2052/* Note we are omitting these since currently I don't know how
2053to get gcc to use these, since they want the same but different
2054number as al, and ax.
2055*/
2056
c98f8742 2057#define QI_REGISTER_NAMES \
3f3f2124 2058{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2059
2060/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2061 of regs 0 through 3. */
c98f8742
JVA
2062
2063#define QI_HIGH_REGISTER_NAMES \
2064{"ah", "dh", "ch", "bh", }
2065
2066/* How to renumber registers for dbx and gdb. */
2067
d9a5f180
GS
2068#define DBX_REGISTER_NUMBER(N) \
2069 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2070
9a82e702
MS
2071extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2072extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2073extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2074
469ac993
JM
2075/* Before the prologue, RA is at 0(%esp). */
2076#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2077 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2078
e414ab29 2079/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2080#define RETURN_ADDR_RTX(COUNT, FRAME) \
2081 ((COUNT) == 0 \
2082 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2083 -UNITS_PER_WORD)) \
2084 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2085
892a2d68 2086/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2087#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2088
a10b3cf1
L
2089/* Before the prologue, there are return address and error code for
2090 exception handler on the top of the frame. */
2091#define INCOMING_FRAME_SP_OFFSET \
2092 (cfun->machine->func_type == TYPE_EXCEPTION \
2093 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2094
1020a5ab 2095/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2096#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2097#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2098
ad919812 2099
e4c4ebeb
RH
2100/* Select a format to encode pointers in exception handling data. CODE
2101 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2102 true if the symbol may be affected by dynamic relocations.
2103
2104 ??? All x86 object file formats are capable of representing this.
2105 After all, the relocation needed is the same as for the call insn.
2106 Whether or not a particular assembler allows us to enter such, I
2107 guess we'll have to see. */
d9a5f180 2108#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2109 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2110
ec1895c1
UB
2111/* These are a couple of extensions to the formats accepted
2112 by asm_fprintf:
2113 %z prints out opcode suffix for word-mode instruction
2114 %r prints out word-mode name for reg_names[arg] */
2115#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2116 case 'z': \
2117 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2118 break; \
2119 \
2120 case 'r': \
2121 { \
2122 unsigned int regno = va_arg ((ARGS), int); \
2123 if (LEGACY_INT_REGNO_P (regno)) \
2124 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2125 fputs (reg_names[regno], (FILE)); \
2126 break; \
2127 }
2128
2129/* This is how to output an insn to push a register on the stack. */
2130
2131#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2132 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2133
2134/* This is how to output an insn to pop a register from the stack. */
c98f8742 2135
d9a5f180 2136#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2137 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2138
f88c65f7 2139/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2140
2141#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2142 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2143
f88c65f7 2144/* This is how to output an element of a case-vector that is relative. */
c98f8742 2145
33f7f353 2146#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2147 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2148
63001560 2149/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2150
2151#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2152{ \
2153 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2154 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2155}
2156
2157/* A C statement or statements which output an assembler instruction
2158 opcode to the stdio stream STREAM. The macro-operand PTR is a
2159 variable of type `char *' which points to the opcode name in
2160 its "internal" form--the form that is written in the machine
2161 description. */
2162
2163#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2164 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2165
6a90d232
L
2166/* A C statement to output to the stdio stream FILE an assembler
2167 command to pad the location counter to a multiple of 1<<LOG
2168 bytes if it is within MAX_SKIP bytes. */
2169
2170#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2171#undef ASM_OUTPUT_MAX_SKIP_PAD
2172#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2173 if ((LOG) != 0) \
2174 { \
2175 if ((MAX_SKIP) == 0) \
2176 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2177 else \
2178 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2179 }
2180#endif
2181
135a687e
KT
2182/* Write the extra assembler code needed to declare a function
2183 properly. */
2184
2185#undef ASM_OUTPUT_FUNCTION_LABEL
2186#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2187 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2188
f7288899
EC
2189/* Under some conditions we need jump tables in the text section,
2190 because the assembler cannot handle label differences between
2191 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2192
2193#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2194 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2195 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2196
cea3bd3e
RH
2197/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2198 and switch back. For x86 we do this only to save a few bytes that
2199 would otherwise be unused in the text section. */
ad211091
KT
2200#define CRT_MKSTR2(VAL) #VAL
2201#define CRT_MKSTR(x) CRT_MKSTR2(x)
2202
2203#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2204 asm (SECTION_OP "\n\t" \
2205 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2206 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2207
2208/* Default threshold for putting data in large sections
2209 with x86-64 medium memory model */
2210#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2211
2212/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2213
2214#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2215do { \
2216 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2217 && get_attr_maybe_prefix_bnd (INSN)) \
2218 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2219} while (0)
74b42c8b 2220\f
b97de419
L
2221/* Which processor to tune code generation for. These must be in sync
2222 with processor_target_table in i386.c. */
5bf0ebab
RH
2223
2224enum processor_type
2225{
b97de419
L
2226 PROCESSOR_GENERIC = 0,
2227 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2228 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2229 PROCESSOR_PENTIUM,
2d6b2e28 2230 PROCESSOR_LAKEMONT,
5bf0ebab 2231 PROCESSOR_PENTIUMPRO,
5bf0ebab 2232 PROCESSOR_PENTIUM4,
89c43c0a 2233 PROCESSOR_NOCONA,
340ef734 2234 PROCESSOR_CORE2,
d3c11974
L
2235 PROCESSOR_NEHALEM,
2236 PROCESSOR_SANDYBRIDGE,
3a579e09 2237 PROCESSOR_HASWELL,
d3c11974
L
2238 PROCESSOR_BONNELL,
2239 PROCESSOR_SILVERMONT,
52747219 2240 PROCESSOR_KNL,
cace2309 2241 PROCESSOR_KNM,
06caf59d 2242 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2243 PROCESSOR_INTEL,
b97de419
L
2244 PROCESSOR_GEODE,
2245 PROCESSOR_K6,
2246 PROCESSOR_ATHLON,
2247 PROCESSOR_K8,
21efb4d4 2248 PROCESSOR_AMDFAM10,
1133125e 2249 PROCESSOR_BDVER1,
4d652a18 2250 PROCESSOR_BDVER2,
eb2f2b44 2251 PROCESSOR_BDVER3,
ed97ad47 2252 PROCESSOR_BDVER4,
14b52538 2253 PROCESSOR_BTVER1,
e32bfc16 2254 PROCESSOR_BTVER2,
9ce29eb0 2255 PROCESSOR_ZNVER1,
5bf0ebab
RH
2256 PROCESSOR_max
2257};
2258
9e555526 2259extern enum processor_type ix86_tune;
5bf0ebab 2260extern enum processor_type ix86_arch;
5bf0ebab 2261
8362f420
JH
2262/* Size of the RED_ZONE area. */
2263#define RED_ZONE_SIZE 128
2264/* Reserved area of the red zone for temporaries. */
2265#define RED_ZONE_RESERVE 8
c93e80a5 2266
95899b34 2267extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2268extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2269
2270/* Smallest class containing REGNO. */
2271extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2272
0948ccb2
PB
2273enum ix86_fpcmp_strategy {
2274 IX86_FPCMP_SAHF,
2275 IX86_FPCMP_COMI,
2276 IX86_FPCMP_ARITH
2277};
22fb740d
JH
2278\f
2279/* To properly truncate FP values into integers, we need to set i387 control
2280 word. We can't emit proper mode switching code before reload, as spills
2281 generated by reload may truncate values incorrectly, but we still can avoid
2282 redundant computation of new control word by the mode switching pass.
2283 The fldcw instructions are still emitted redundantly, but this is probably
2284 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2285 the sequence.
22fb740d
JH
2286
2287 The machinery is to emit simple truncation instructions and split them
2288 before reload to instructions having USEs of two memory locations that
2289 are filled by this code to old and new control word.
fce5a9f2 2290
22fb740d
JH
2291 Post-reload pass may be later used to eliminate the redundant fildcw if
2292 needed. */
2293
c7ca8ef8
UB
2294enum ix86_stack_slot
2295{
2296 SLOT_TEMP = 0,
2297 SLOT_CW_STORED,
2298 SLOT_CW_TRUNC,
2299 SLOT_CW_FLOOR,
2300 SLOT_CW_CEIL,
2301 SLOT_CW_MASK_PM,
80008279 2302 SLOT_STV_TEMP,
c7ca8ef8
UB
2303 MAX_386_STACK_LOCALS
2304};
2305
ff680eb1
UB
2306enum ix86_entity
2307{
c7ca8ef8
UB
2308 X86_DIRFLAG = 0,
2309 AVX_U128,
ff97910d 2310 I387_TRUNC,
ff680eb1
UB
2311 I387_FLOOR,
2312 I387_CEIL,
2313 I387_MASK_PM,
2314 MAX_386_ENTITIES
2315};
2316
c7ca8ef8 2317enum x86_dirflag_state
ff680eb1 2318{
c7ca8ef8
UB
2319 X86_DIRFLAG_RESET,
2320 X86_DIRFLAG_ANY
ff680eb1 2321};
22fb740d 2322
ff97910d
VY
2323enum avx_u128_state
2324{
2325 AVX_U128_CLEAN,
2326 AVX_U128_DIRTY,
2327 AVX_U128_ANY
2328};
2329
22fb740d
JH
2330/* Define this macro if the port needs extra instructions inserted
2331 for mode switching in an optimizing compilation. */
2332
ff680eb1
UB
2333#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2334 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2335
2336/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2337 initializer for an array of integers. Each initializer element N
2338 refers to an entity that needs mode switching, and specifies the
2339 number of different modes that might need to be set for this
2340 entity. The position of the initializer in the initializer -
2341 starting counting at zero - determines the integer that is used to
2342 refer to the mode-switched entity in question. */
2343
c7ca8ef8
UB
2344#define NUM_MODES_FOR_MODE_SWITCHING \
2345 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2346 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2347
0f0138b6
JH
2348\f
2349/* Avoid renaming of stack registers, as doing so in combination with
2350 scheduling just increases amount of live registers at time and in
2351 the turn amount of fxch instructions needed.
2352
3f97cb0b
AI
2353 ??? Maybe Pentium chips benefits from renaming, someone can try....
2354
2355 Don't rename evex to non-evex sse registers. */
0f0138b6 2356
1a6e82b8
UB
2357#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2358 (!STACK_REGNO_P (SRC) \
2359 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2360
3b3c6a3f 2361\f
e91f04de 2362#define FASTCALL_PREFIX '@'
fa1a0d02 2363\f
77560086
BE
2364#ifndef USED_FOR_TARGET
2365/* Structure describing stack frame layout.
2366 Stack grows downward:
2367
2368 [arguments]
2369 <- ARG_POINTER
2370 saved pc
2371
2372 saved static chain if ix86_static_chain_on_stack
2373
2374 saved frame pointer if frame_pointer_needed
2375 <- HARD_FRAME_POINTER
2376 [saved regs]
2377 <- reg_save_offset
2378 [padding0]
2379 <- stack_realign_offset
2380 [saved SSE regs]
2381 OR
2382 [stub-saved registers for ms x64 --> sysv clobbers
2383 <- Start of out-of-line, stub-saved/restored regs
2384 (see libgcc/config/i386/(sav|res)ms64*.S)
2385 [XMM6-15]
2386 [RSI]
2387 [RDI]
2388 [?RBX] only if RBX is clobbered
2389 [?RBP] only if RBP and RBX are clobbered
2390 [?R12] only if R12 and all previous regs are clobbered
2391 [?R13] only if R13 and all previous regs are clobbered
2392 [?R14] only if R14 and all previous regs are clobbered
2393 [?R15] only if R15 and all previous regs are clobbered
2394 <- end of stub-saved/restored regs
2395 [padding1]
2396 ]
5d9d834d 2397 <- sse_reg_save_offset
77560086
BE
2398 [padding2]
2399 | <- FRAME_POINTER
2400 [va_arg registers] |
2401 |
2402 [frame] |
2403 |
2404 [padding2] | = to_allocate
2405 <- STACK_POINTER
2406 */
2407struct GTY(()) ix86_frame
2408{
2409 int nsseregs;
2410 int nregs;
2411 int va_arg_size;
2412 int red_zone_size;
2413 int outgoing_arguments_size;
2414
2415 /* The offsets relative to ARG_POINTER. */
2416 HOST_WIDE_INT frame_pointer_offset;
2417 HOST_WIDE_INT hard_frame_pointer_offset;
2418 HOST_WIDE_INT stack_pointer_offset;
2419 HOST_WIDE_INT hfp_save_offset;
2420 HOST_WIDE_INT reg_save_offset;
122f9da1 2421 HOST_WIDE_INT stack_realign_allocate;
77560086 2422 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2423 HOST_WIDE_INT sse_reg_save_offset;
2424
2425 /* When save_regs_using_mov is set, emit prologue using
2426 move instead of push instructions. */
2427 bool save_regs_using_mov;
2428};
2429
122f9da1
DS
2430/* Machine specific frame tracking during prologue/epilogue generation. All
2431 values are positive, but since the x86 stack grows downward, are subtratced
2432 from the CFA to produce a valid address. */
cd9c1ca8 2433
ec7ded37 2434struct GTY(()) machine_frame_state
cd9c1ca8 2435{
ec7ded37
RH
2436 /* This pair tracks the currently active CFA as reg+offset. When reg
2437 is drap_reg, we don't bother trying to record here the real CFA when
2438 it might really be a DW_CFA_def_cfa_expression. */
2439 rtx cfa_reg;
2440 HOST_WIDE_INT cfa_offset;
2441
2442 /* The current offset (canonically from the CFA) of ESP and EBP.
2443 When stack frame re-alignment is active, these may not be relative
2444 to the CFA. However, in all cases they are relative to the offsets
2445 of the saved registers stored in ix86_frame. */
2446 HOST_WIDE_INT sp_offset;
2447 HOST_WIDE_INT fp_offset;
2448
2449 /* The size of the red-zone that may be assumed for the purposes of
2450 eliding register restore notes in the epilogue. This may be zero
2451 if no red-zone is in effect, or may be reduced from the real
2452 red-zone value by a maximum runtime stack re-alignment value. */
2453 int red_zone_offset;
2454
2455 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2456 value within the frame. If false then the offset above should be
2457 ignored. Note that DRAP, if valid, *always* points to the CFA and
2458 thus has an offset of zero. */
2459 BOOL_BITFIELD sp_valid : 1;
2460 BOOL_BITFIELD fp_valid : 1;
2461 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2462
2463 /* Indicate whether the local stack frame has been re-aligned. When
2464 set, the SP/FP offsets above are relative to the aligned frame
2465 and not the CFA. */
2466 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2467
2468 /* Indicates whether the stack pointer has been re-aligned. When set,
2469 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2470 should only be used for offsets > sp_realigned_offset, while
2471 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2472 The flags realigned and sp_realigned are mutually exclusive. */
2473 BOOL_BITFIELD sp_realigned : 1;
2474
122f9da1
DS
2475 /* If sp_realigned is set, this is the last valid offset from the CFA
2476 that can be used for access with the frame pointer. */
2477 HOST_WIDE_INT sp_realigned_fp_last;
2478
2479 /* If sp_realigned is set, this is the offset from the CFA that the stack
2480 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2481 Access via the stack pointer is only valid for offsets that are greater than
2482 this value. */
d6d4d770 2483 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2484};
2485
f81c9774
RH
2486/* Private to winnt.c. */
2487struct seh_frame_state;
2488
f8071c05
L
2489enum function_type
2490{
2491 TYPE_UNKNOWN = 0,
2492 TYPE_NORMAL,
2493 /* The current function is an interrupt service routine with a
2494 pointer argument as specified by the "interrupt" attribute. */
2495 TYPE_INTERRUPT,
2496 /* The current function is an interrupt service routine with a
2497 pointer argument and an integer argument as specified by the
2498 "interrupt" attribute. */
2499 TYPE_EXCEPTION
2500};
2501
d1b38208 2502struct GTY(()) machine_function {
fa1a0d02 2503 struct stack_local_entry *stack_locals;
4aab97f9
L
2504 int varargs_gpr_size;
2505 int varargs_fpr_size;
ff680eb1 2506 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2507
77560086
BE
2508 /* Cached initial frame layout for the current function. */
2509 struct ix86_frame frame;
3452586b 2510
7458026b
ILT
2511 /* For -fsplit-stack support: A stack local which holds a pointer to
2512 the stack arguments for a function with a variable number of
2513 arguments. This is set at the start of the function and is used
2514 to initialize the overflow_arg_area field of the va_list
2515 structure. */
2516 rtx split_stack_varargs_pointer;
2517
3452586b
RH
2518 /* This value is used for amd64 targets and specifies the current abi
2519 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2520 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2521
2522 /* Nonzero if the function accesses a previous frame. */
2523 BOOL_BITFIELD accesses_prev_frame : 1;
2524
922e3e33
UB
2525 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2526 expander to determine the style used. */
3452586b
RH
2527 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2528
1e4490dc
UB
2529 /* Nonzero if the current function calls pc thunk and
2530 must not use the red zone. */
2531 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2532
5bf5a10b
AO
2533 /* If true, the current function needs the default PIC register, not
2534 an alternate register (on x86) and must not use the red zone (on
2535 x86_64), even if it's a leaf function. We don't want the
2536 function to be regarded as non-leaf because TLS calls need not
2537 affect register allocation. This flag is set when a TLS call
2538 instruction is expanded within a function, and never reset, even
2539 if all such instructions are optimized away. Use the
2540 ix86_current_function_calls_tls_descriptor macro for a better
2541 approximation. */
3452586b
RH
2542 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2543
2544 /* If true, the current function has a STATIC_CHAIN is placed on the
2545 stack below the return address. */
2546 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2547
529a6471
JJ
2548 /* If true, it is safe to not save/restore DRAP register. */
2549 BOOL_BITFIELD no_drap_save_restore : 1;
2550
f8071c05
L
2551 /* Function type. */
2552 ENUM_BITFIELD(function_type) func_type : 2;
2553
2554 /* If true, the current function is a function specified with
2555 the "interrupt" or "no_caller_saved_registers" attribute. */
2556 BOOL_BITFIELD no_caller_saved_registers : 1;
2557
a0ff7835
L
2558 /* If true, there is register available for argument passing. This
2559 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2560 if there is scratch register available for indirect sibcall. In
2561 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2562 pass arguments and can be used for indirect sibcall. */
2563 BOOL_BITFIELD arg_reg_available : 1;
2564
d6d4d770 2565 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2566 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2567 BOOL_BITFIELD call_ms2sysv : 1;
2568
2569 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2570 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2571 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2572
d6d4d770
DS
2573 /* This is the number of extra registers saved by stub (valid range is
2574 0-6). Each additional register is only saved/restored by the stubs
2575 if all successive ones are. (Will always be zero when using a hard
2576 frame pointer.) */
2577 unsigned int call_ms2sysv_extra_regs:3;
2578
35c95658
L
2579 /* Nonzero if the function places outgoing arguments on stack. */
2580 BOOL_BITFIELD outgoing_args_on_stack : 1;
2581
ec7ded37
RH
2582 /* During prologue/epilogue generation, the current frame state.
2583 Otherwise, the frame state at the end of the prologue. */
2584 struct machine_frame_state fs;
f81c9774
RH
2585
2586 /* During SEH output, this is non-null. */
2587 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2588};
cd9c1ca8 2589#endif
fa1a0d02
JH
2590
2591#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2592#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2593#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2594#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2595#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2596#define ix86_tls_descriptor_calls_expanded_in_cfun \
2597 (cfun->machine->tls_descriptor_call_expanded_p)
2598/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2599 calls are optimized away, we try to detect cases in which it was
2600 optimized away. Since such instructions (use (reg REG_SP)), we can
2601 verify whether there's any such instruction live by testing that
2602 REG_SP is live. */
2603#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2604 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2605#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2606
1bc7c5b6
ZW
2607/* Control behavior of x86_file_start. */
2608#define X86_FILE_START_VERSION_DIRECTIVE false
2609#define X86_FILE_START_FLTUSED false
2610
7dcbf659
JH
2611/* Flag to mark data that is in the large address area. */
2612#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2613#define SYMBOL_REF_FAR_ADDR_P(X) \
2614 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2615
2616/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2617 have defined always, to avoid ifdefing. */
2618#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2619#define SYMBOL_REF_DLLIMPORT_P(X) \
2620 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2621
2622#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2623#define SYMBOL_REF_DLLEXPORT_P(X) \
2624 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2625
82c0e1a0
KT
2626#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2627#define SYMBOL_REF_STUBVAR_P(X) \
2628 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2629
7942e47e
RY
2630extern void debug_ready_dispatch (void);
2631extern void debug_dispatch_window (int);
2632
91afcfa3
QN
2633/* The value at zero is only defined for the BMI instructions
2634 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2635#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2636 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2637#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2638 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2639
2640
b8ce4e94
KT
2641/* Flags returned by ix86_get_callcvt (). */
2642#define IX86_CALLCVT_CDECL 0x1
2643#define IX86_CALLCVT_STDCALL 0x2
2644#define IX86_CALLCVT_FASTCALL 0x4
2645#define IX86_CALLCVT_THISCALL 0x8
2646#define IX86_CALLCVT_REGPARM 0x10
2647#define IX86_CALLCVT_SSEREGPARM 0x20
2648
2649#define IX86_BASE_CALLCVT(FLAGS) \
2650 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2651 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2652
b86b9f44
MM
2653#define RECIP_MASK_NONE 0x00
2654#define RECIP_MASK_DIV 0x01
2655#define RECIP_MASK_SQRT 0x02
2656#define RECIP_MASK_VEC_DIV 0x04
2657#define RECIP_MASK_VEC_SQRT 0x08
2658#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2659 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2660#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2661
2662#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2663#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2664#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2665#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2666
5dcfdccd
KY
2667#define IX86_HLE_ACQUIRE (1 << 16)
2668#define IX86_HLE_RELEASE (1 << 17)
2669
e83b8e2e
JJ
2670/* For switching between functions with different target attributes. */
2671#define SWITCHABLE_TARGET 1
2672
44d0de8d
UB
2673#define TARGET_SUPPORTS_WIDE_INT 1
2674
c98f8742
JVA
2675/*
2676Local variables:
2677version-control: t
2678End:
2679*/