]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
i386-cpuid.h (bit_SSE3): New.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5bf5a10b 3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
c98f8742 4
188fc5b5 5This file is part of GCC.
c98f8742 6
188fc5b5 7GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
188fc5b5 12GCC is distributed in the hope that it will be useful,
c98f8742
JVA
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
188fc5b5 18along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
c98f8742 21
8c996513
JH
22/* Algorithm to expand string function with. */
23enum stringop_alg
24{
25 no_stringop,
26 libcall,
27 rep_prefix_1_byte,
28 rep_prefix_4_byte,
29 rep_prefix_8_byte,
30 loop_1_byte,
31 loop,
32 unrolled_loop
33};
34#define NAX_STRINGOP_ALGS 4
35/* Specify what algorithm to use for stringops on known size.
36 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
37 known at compile time or estimated via feedback, the SIZE array
38 is walked in order until MAX is greater then the estimate (or -1
39 means infinity). Corresponding ALG is used then.
40 For example initializer:
41 {{256, loop}, {-1, rep_prefix_4_byte}}
42 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
43 be used otherwise.
44*/
45struct stringop_algs
46{
47 const enum stringop_alg unknown_size;
48 const struct stringop_strategy {
49 const int max;
50 const enum stringop_alg alg;
51 } size [NAX_STRINGOP_ALGS];
52};
53
c98f8742 54/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 55 independent of assembler syntax or operating system.
c98f8742
JVA
56
57 Three other files build on this one to describe a specific assembler syntax:
58 bsd386.h, att386.h, and sun386.h.
59
60 The actual tm.h file for a particular system should include
61 this file, and then the file for the appropriate assembler syntax.
62
63 Many macros that specify assembler syntax are omitted entirely from
64 this file because they really belong in the files for particular
e075ae69
RH
65 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
66 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
67 that start with ASM_ or end in ASM_OP. */
c98f8742 68
d4ba09c0
SC
69/* Define the specific costs for a given cpu */
70
71struct processor_costs {
8b60264b
KG
72 const int add; /* cost of an add instruction */
73 const int lea; /* cost of a lea instruction */
74 const int shift_var; /* variable shift costs */
75 const int shift_const; /* constant shift costs */
f676971a 76 const int mult_init[5]; /* cost of starting a multiply
4977bab6 77 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 78 const int mult_bit; /* cost of multiply per each bit set */
f676971a 79 const int divide[5]; /* cost of a divide/mod
4977bab6 80 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
81 int movsx; /* The cost of movsx operation. */
82 int movzx; /* The cost of movzx operation. */
8b60264b
KG
83 const int large_insn; /* insns larger than this cost more */
84 const int move_ratio; /* The threshold of number of scalar
ac775968 85 memory-to-memory move insns. */
8b60264b
KG
86 const int movzbl_load; /* cost of loading using movzbl */
87 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
88 in QImode, HImode and SImode relative
89 to reg-reg move (2). */
8b60264b 90 const int int_store[3]; /* cost of storing integer register
96e7ae40 91 in QImode, HImode and SImode */
8b60264b
KG
92 const int fp_move; /* cost of reg,reg fld/fst */
93 const int fp_load[3]; /* cost of loading FP register
96e7ae40 94 in SFmode, DFmode and XFmode */
8b60264b 95 const int fp_store[3]; /* cost of storing FP register
96e7ae40 96 in SFmode, DFmode and XFmode */
8b60264b
KG
97 const int mmx_move; /* cost of moving MMX register. */
98 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 99 in SImode and DImode */
8b60264b 100 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 101 in SImode and DImode */
8b60264b
KG
102 const int sse_move; /* cost of moving SSE register. */
103 const int sse_load[3]; /* cost of loading SSE register
fa79946e 104 in SImode, DImode and TImode*/
8b60264b 105 const int sse_store[3]; /* cost of storing SSE register
fa79946e 106 in SImode, DImode and TImode*/
8b60264b 107 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 108 integer and vice versa. */
f4365627
JH
109 const int prefetch_block; /* bytes moved to cache for prefetch. */
110 const int simultaneous_prefetches; /* number of parallel prefetch
111 operations. */
4977bab6 112 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
113 const int fadd; /* cost of FADD and FSUB instructions. */
114 const int fmul; /* cost of FMUL instruction. */
115 const int fdiv; /* cost of FDIV instruction. */
116 const int fabs; /* cost of FABS instruction. */
117 const int fchs; /* cost of FCHS instruction. */
118 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
119 /* Specify what algorithm
120 to use for stringops on unknown size. */
121 struct stringop_algs memcpy[2], memset[2];
d4ba09c0
SC
122};
123
8b60264b 124extern const struct processor_costs *ix86_cost;
d4ba09c0 125
c98f8742
JVA
126/* Macros used in the machine description to test the flags. */
127
ddd5a7c1 128/* configure can arrange to make this 2, to force a 486. */
e075ae69 129
35b528be 130#ifndef TARGET_CPU_DEFAULT
d326eaf0 131#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 132#endif
35b528be 133
004d3859
GK
134#ifndef TARGET_FPMATH_DEFAULT
135#define TARGET_FPMATH_DEFAULT \
136 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
137#endif
138
6ac49599 139#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 140
5791cc29
JT
141/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
142 compile-time constant. */
143#ifdef IN_LIBGCC2
6ac49599 144#undef TARGET_64BIT
5791cc29
JT
145#ifdef __x86_64__
146#define TARGET_64BIT 1
147#else
148#define TARGET_64BIT 0
149#endif
150#else
6ac49599
RS
151#ifndef TARGET_BI_ARCH
152#undef TARGET_64BIT
67adf6a9 153#if TARGET_64BIT_DEFAULT
0c2dc519
JH
154#define TARGET_64BIT 1
155#else
156#define TARGET_64BIT 0
157#endif
158#endif
5791cc29 159#endif
25f94bb5 160
750054a2
CT
161#define HAS_LONG_COND_BRANCH 1
162#define HAS_LONG_UNCOND_BRANCH 1
163
9e555526
RH
164#define TARGET_386 (ix86_tune == PROCESSOR_I386)
165#define TARGET_486 (ix86_tune == PROCESSOR_I486)
166#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
167#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 168#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
169#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
170#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
171#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
172#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 173#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 174#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 175#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
176#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
177#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
178#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
a269a03c 179
9e555526 180#define TUNEMASK (1 << ix86_tune)
a269a03c 181extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
1e993cb8 182extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 183extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69 184extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
862e2886 185extern const int x86_use_himode_fiop, x86_use_simode_fiop;
0e8c2b0d 186extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
e075ae69 187extern const int x86_read_modify, x86_split_long_moves;
285464d0 188extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 189extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 190extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 191extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 192extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 193extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 194extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 195extern const int x86_arch_always_fancy_math_387, x86_shift1;
41afe4ef 196extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
4977bab6 197extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
41afe4ef 198extern const int x86_use_ffreep;
ad7b96a9 199extern const int x86_inter_unit_moves, x86_schedule;
7cacf53e 200extern const int x86_use_bt;
a0274e3e 201extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
d326eaf0
JH
202extern const int x86_use_incdec;
203extern const int x86_pad_returns;
167fa32c 204extern const int x86_bswap;
995cc369 205extern const int x86_partial_flag_reg_stall;
f4365627 206extern int x86_prefetch_sse;
a269a03c 207
9e555526
RH
208#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
209#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
210#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
211#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
212#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
0644b628
JH
213/* For sane SSE instruction set generation we need fcomi instruction. It is
214 safe to enable all CMOVE instructions. */
215#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
1e993cb8 216#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
9e555526
RH
217#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
218#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
219#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
220#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
221#define TARGET_MOVX (x86_movx & TUNEMASK)
222#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
995cc369 223#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
0e8c2b0d
UB
224#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
225#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
9e555526
RH
226#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
227#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
228#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
229#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
230#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
231#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
232#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
233#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
234#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
235#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
236#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
237#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
238#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
239#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
240#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
241#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
242#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
243#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
4977bab6 244#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
9e555526 245 (x86_sse_partial_reg_dependency & TUNEMASK)
41afe4ef 246#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
9e555526 247#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
9e555526
RH
248#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
249#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
250#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
251#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
f4365627 252#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
9e555526
RH
253#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
254#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
9e555526 255#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
be04394b 256#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
ad7b96a9 257#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
7cacf53e 258#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
d326eaf0
JH
259#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
260#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
a269a03c 261
c93e80a5 262#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 263
965f5423
JH
264#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
265#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
266 && (ix86_fpmath & FPMATH_387))
4977bab6 267
f996902d 268#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
5bf5a10b
AO
269#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
270#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
f996902d
RH
271#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
272
1ef45b77 273#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
a0274e3e
JJ
274#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
275#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
1ef45b77 276#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
167fa32c 277#define TARGET_BSWAP (x86_bswap & (1 << ix86_arch))
1ef45b77 278
67adf6a9
RH
279#ifndef TARGET_64BIT_DEFAULT
280#define TARGET_64BIT_DEFAULT 0
25f94bb5 281#endif
74dc3e94
RH
282#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
283#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
284#endif
25f94bb5 285
0ed4a390
JL
286/* Once GDB has been enhanced to deal with functions without frame
287 pointers, we can change this to allow for elimination of
288 the frame pointer in leaf functions. */
289#define TARGET_DEFAULT 0
67adf6a9 290
b069de3b
SS
291/* This is not really a target flag, but is done this way so that
292 it's analogous to similar code for Mach-O on PowerPC. darwin.h
293 redefines this to 1. */
294#define TARGET_MACHO 0
295
cc69336f
RH
296/* Subtargets may reset this to 1 in order to enable 96-bit long double
297 with the rounding mode forced to 53 bits. */
298#define TARGET_96_ROUND_53_LONG_DOUBLE 0
299
f5316dfe
MM
300/* Sometimes certain combinations of command options do not make
301 sense on a particular target machine. You can define a macro
302 `OVERRIDE_OPTIONS' to take account of this. This macro, if
303 defined, is executed once just after all the command options have
304 been parsed.
305
306 Don't use this macro to turn on various extra optimizations for
307 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
308
309#define OVERRIDE_OPTIONS override_options ()
310
d4ba09c0 311/* Define this to change the optimizations performed by default. */
d9a5f180
GS
312#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
313 optimization_options ((LEVEL), (SIZE))
d4ba09c0 314
682cd442
GK
315/* -march=native handling only makes sense with compiler running on
316 an x86 or x86_64 chip. If changing this condition, also change
317 the condition in driver-i386.c. */
318#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
319/* In driver-i386.c. */
320extern const char *host_detect_local_cpu (int argc, const char **argv);
321#define EXTRA_SPEC_FUNCTIONS \
322 { "local_cpu_detect", host_detect_local_cpu },
682cd442 323#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
324#endif
325
1cba2b96
EC
326/* Support for configure-time defaults of some command line options.
327 The order here is important so that -march doesn't squash the
328 tune or cpu values. */
7816bea0 329#define OPTION_DEFAULT_SPECS \
da2d4c01 330 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
331 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
332 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 333
241e1a89
SC
334/* Specs for the compiler proper */
335
628714d8 336#ifndef CC1_CPU_SPEC
fa959ce4 337#define CC1_CPU_SPEC_1 "\
9d913bbf
KC
338%{!mtune*: \
339%{m386:mtune=i386 \
340%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
341%{m486:-mtune=i486 \
342%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
343%{mpentium:-mtune=pentium \
344%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
345%{mpentiumpro:-mtune=pentiumpro \
346%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
347%{mcpu=*:-mtune=%* \
348%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
349%<mcpu=* \
c93e80a5
JH
350%{mintel-syntax:-masm=intel \
351%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
352%{mno-intel-syntax:-masm=att \
353%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 354
682cd442 355#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
356#define CC1_CPU_SPEC CC1_CPU_SPEC_1
357#else
358#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
359"%{march=native:%<march=native %:local_cpu_detect(arch)} \
360%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
361#endif
241e1a89 362#endif
c98f8742 363\f
30efe578 364/* Target CPU builtins. */
1ba7b414
NB
365#define TARGET_CPU_CPP_BUILTINS() \
366 do \
367 { \
368 size_t arch_len = strlen (ix86_arch_string); \
9e555526 369 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 370 int last_arch_char = ix86_arch_string[arch_len - 1]; \
9e555526 371 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
372 \
373 if (TARGET_64BIT) \
374 { \
375 builtin_assert ("cpu=x86_64"); \
26b0ad13 376 builtin_assert ("machine=x86_64"); \
97242ddc
JH
377 builtin_define ("__amd64"); \
378 builtin_define ("__amd64__"); \
1ba7b414
NB
379 builtin_define ("__x86_64"); \
380 builtin_define ("__x86_64__"); \
381 } \
382 else \
383 { \
384 builtin_assert ("cpu=i386"); \
385 builtin_assert ("machine=i386"); \
386 builtin_define_std ("i386"); \
387 } \
388 \
9d913bbf 389 /* Built-ins based on -mtune= (or -march= if no \
9e555526 390 -mtune= given). */ \
1ba7b414
NB
391 if (TARGET_386) \
392 builtin_define ("__tune_i386__"); \
393 else if (TARGET_486) \
394 builtin_define ("__tune_i486__"); \
395 else if (TARGET_PENTIUM) \
396 { \
397 builtin_define ("__tune_i586__"); \
398 builtin_define ("__tune_pentium__"); \
9e555526 399 if (last_tune_char == 'x') \
1ba7b414
NB
400 builtin_define ("__tune_pentium_mmx__"); \
401 } \
402 else if (TARGET_PENTIUMPRO) \
403 { \
404 builtin_define ("__tune_i686__"); \
405 builtin_define ("__tune_pentiumpro__"); \
9e555526 406 switch (last_tune_char) \
2e37b0ce
RH
407 { \
408 case '3': \
409 builtin_define ("__tune_pentium3__"); \
5efb1046 410 /* FALLTHRU */ \
2e37b0ce
RH
411 case '2': \
412 builtin_define ("__tune_pentium2__"); \
413 break; \
414 } \
1ba7b414 415 } \
cfe1b18f
VM
416 else if (TARGET_GEODE) \
417 { \
418 builtin_define ("__tune_geode__"); \
419 } \
1ba7b414
NB
420 else if (TARGET_K6) \
421 { \
422 builtin_define ("__tune_k6__"); \
9e555526 423 if (last_tune_char == '2') \
1ba7b414 424 builtin_define ("__tune_k6_2__"); \
9e555526 425 else if (last_tune_char == '3') \
1ba7b414
NB
426 builtin_define ("__tune_k6_3__"); \
427 } \
428 else if (TARGET_ATHLON) \
429 { \
430 builtin_define ("__tune_athlon__"); \
431 /* Only plain "athlon" lacks SSE. */ \
9e555526 432 if (last_tune_char != 'n') \
1ba7b414
NB
433 builtin_define ("__tune_athlon_sse__"); \
434 } \
4977bab6
ZW
435 else if (TARGET_K8) \
436 builtin_define ("__tune_k8__"); \
1ba7b414
NB
437 else if (TARGET_PENTIUM4) \
438 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
439 else if (TARGET_NOCONA) \
440 builtin_define ("__tune_nocona__"); \
05f85dbb
VM
441 else if (TARGET_CORE2) \
442 builtin_define ("__tune_core2__"); \
1ba7b414
NB
443 \
444 if (TARGET_MMX) \
445 builtin_define ("__MMX__"); \
446 if (TARGET_3DNOW) \
447 builtin_define ("__3dNOW__"); \
448 if (TARGET_3DNOW_A) \
449 builtin_define ("__3dNOW_A__"); \
450 if (TARGET_SSE) \
451 builtin_define ("__SSE__"); \
452 if (TARGET_SSE2) \
453 builtin_define ("__SSE2__"); \
9e200aaf
KC
454 if (TARGET_SSE3) \
455 builtin_define ("__SSE3__"); \
b1875f52
L
456 if (TARGET_SSSE3) \
457 builtin_define ("__SSSE3__"); \
48ddd46c
JH
458 if (TARGET_SSE_MATH && TARGET_SSE) \
459 builtin_define ("__SSE_MATH__"); \
460 if (TARGET_SSE_MATH && TARGET_SSE2) \
461 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
462 \
463 /* Built-ins based on -march=. */ \
464 if (ix86_arch == PROCESSOR_I486) \
465 { \
466 builtin_define ("__i486"); \
467 builtin_define ("__i486__"); \
468 } \
469 else if (ix86_arch == PROCESSOR_PENTIUM) \
470 { \
471 builtin_define ("__i586"); \
472 builtin_define ("__i586__"); \
473 builtin_define ("__pentium"); \
474 builtin_define ("__pentium__"); \
475 if (last_arch_char == 'x') \
476 builtin_define ("__pentium_mmx__"); \
477 } \
478 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
479 { \
480 builtin_define ("__i686"); \
481 builtin_define ("__i686__"); \
482 builtin_define ("__pentiumpro"); \
483 builtin_define ("__pentiumpro__"); \
484 } \
cfe1b18f
VM
485 else if (ix86_arch == PROCESSOR_GEODE) \
486 { \
487 builtin_define ("__geode"); \
488 builtin_define ("__geode__"); \
489 } \
1ba7b414
NB
490 else if (ix86_arch == PROCESSOR_K6) \
491 { \
492 \
493 builtin_define ("__k6"); \
494 builtin_define ("__k6__"); \
495 if (last_arch_char == '2') \
496 builtin_define ("__k6_2__"); \
497 else if (last_arch_char == '3') \
498 builtin_define ("__k6_3__"); \
499 } \
500 else if (ix86_arch == PROCESSOR_ATHLON) \
501 { \
502 builtin_define ("__athlon"); \
503 builtin_define ("__athlon__"); \
504 /* Only plain "athlon" lacks SSE. */ \
505 if (last_arch_char != 'n') \
506 builtin_define ("__athlon_sse__"); \
507 } \
4977bab6
ZW
508 else if (ix86_arch == PROCESSOR_K8) \
509 { \
510 builtin_define ("__k8"); \
511 builtin_define ("__k8__"); \
512 } \
1ba7b414
NB
513 else if (ix86_arch == PROCESSOR_PENTIUM4) \
514 { \
515 builtin_define ("__pentium4"); \
516 builtin_define ("__pentium4__"); \
517 } \
89c43c0a
VM
518 else if (ix86_arch == PROCESSOR_NOCONA) \
519 { \
520 builtin_define ("__nocona"); \
521 builtin_define ("__nocona__"); \
522 } \
05f85dbb
VM
523 else if (ix86_arch == PROCESSOR_CORE2) \
524 { \
525 builtin_define ("__core2"); \
526 builtin_define ("__core2__"); \
527 } \
1ba7b414 528 } \
30efe578
NB
529 while (0)
530
f4365627
JH
531#define TARGET_CPU_DEFAULT_i386 0
532#define TARGET_CPU_DEFAULT_i486 1
533#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
534#define TARGET_CPU_DEFAULT_pentium_mmx 3
535#define TARGET_CPU_DEFAULT_pentiumpro 4
536#define TARGET_CPU_DEFAULT_pentium2 5
537#define TARGET_CPU_DEFAULT_pentium3 6
538#define TARGET_CPU_DEFAULT_pentium4 7
cfe1b18f
VM
539#define TARGET_CPU_DEFAULT_geode 8
540#define TARGET_CPU_DEFAULT_k6 9
541#define TARGET_CPU_DEFAULT_k6_2 10
542#define TARGET_CPU_DEFAULT_k6_3 11
543#define TARGET_CPU_DEFAULT_athlon 12
544#define TARGET_CPU_DEFAULT_athlon_sse 13
545#define TARGET_CPU_DEFAULT_k8 14
546#define TARGET_CPU_DEFAULT_pentium_m 15
547#define TARGET_CPU_DEFAULT_prescott 16
548#define TARGET_CPU_DEFAULT_nocona 17
05f85dbb
VM
549#define TARGET_CPU_DEFAULT_core2 18
550#define TARGET_CPU_DEFAULT_generic 19
f4365627
JH
551
552#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
553 "pentiumpro", "pentium2", "pentium3", \
cfe1b18f 554 "pentium4", "geode", "k6", "k6-2", "k6-3", \
5bbeea44 555 "athlon", "athlon-4", "k8", \
d326eaf0 556 "pentium-m", "prescott", "nocona", \
05f85dbb 557 "core2", "generic"}
0c2dc519 558
628714d8 559#ifndef CC1_SPEC
8015b78d 560#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
561#endif
562
563/* This macro defines names of additional specifications to put in the
564 specs that can be used in various specifications like CC1_SPEC. Its
565 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
566
567 Each subgrouping contains a string constant, that defines the
188fc5b5 568 specification name, and a string constant that used by the GCC driver
bcd86433
SC
569 program.
570
571 Do not define this macro if it does not need to do anything. */
572
573#ifndef SUBTARGET_EXTRA_SPECS
574#define SUBTARGET_EXTRA_SPECS
575#endif
576
577#define EXTRA_SPECS \
628714d8 578 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
579 SUBTARGET_EXTRA_SPECS
580\f
c98f8742
JVA
581/* target machine storage layout */
582
968a7562 583#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 584
d57a4b98
RH
585/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
586 FPU, assume that the fpcw is set to extended precision; when using
587 only SSE, rounding is correct; when using both SSE and the FPU,
588 the rounding precision is indeterminate, since either may be chosen
589 apparently at random. */
590#define TARGET_FLT_EVAL_METHOD \
5ccd517a 591 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 592
65d9c0ab
JH
593#define SHORT_TYPE_SIZE 16
594#define INT_TYPE_SIZE 32
595#define FLOAT_TYPE_SIZE 32
596#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
597#define DOUBLE_TYPE_SIZE 64
598#define LONG_LONG_TYPE_SIZE 64
599
67adf6a9 600#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 601#define MAX_BITS_PER_WORD 64
0c2dc519
JH
602#else
603#define MAX_BITS_PER_WORD 32
0c2dc519
JH
604#endif
605
c98f8742
JVA
606/* Define this if most significant byte of a word is the lowest numbered. */
607/* That is true on the 80386. */
608
609#define BITS_BIG_ENDIAN 0
610
611/* Define this if most significant byte of a word is the lowest numbered. */
612/* That is not true on the 80386. */
613#define BYTES_BIG_ENDIAN 0
614
615/* Define this if most significant word of a multiword number is the lowest
616 numbered. */
617/* Not true for 80386 */
618#define WORDS_BIG_ENDIAN 0
619
c98f8742 620/* Width of a word, in units (bytes). */
65d9c0ab 621#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
622#ifdef IN_LIBGCC2
623#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
624#else
625#define MIN_UNITS_PER_WORD 4
626#endif
c98f8742 627
c98f8742 628/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 629#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 630
e075ae69 631/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 632#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 633
d1f87653 634/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 635 aligned; the compiler cannot rely on having this alignment. */
e075ae69 636#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 637
ead903e9 638/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 639 entering main. This causes expand_main_function to forcibly align
1d482056
RH
640 the stack, which results in aligned frames for functions called from
641 main, though it does nothing for the alignment of main itself. */
642#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 643 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 644
f963b5d9
RS
645/* Minimum allocation boundary for the code of a function. */
646#define FUNCTION_BOUNDARY 8
647
648/* C++ stores the virtual bit in the lowest bit of function pointers. */
649#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 650
892a2d68 651/* Alignment of field after `int : 0' in a structure. */
c98f8742 652
65d9c0ab 653#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
654
655/* Minimum size in bits of the largest boundary to which any
656 and all fundamental data types supported by the hardware
657 might need to be aligned. No data type wants to be aligned
17f24ff0 658 rounder than this.
fce5a9f2 659
d1f87653 660 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
661 and Pentium Pro XFmode values at 128 bit boundaries. */
662
663#define BIGGEST_ALIGNMENT 128
664
822eda12 665/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 666#define ALIGN_MODE_128(MODE) \
4501d314 667 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 668
17f24ff0 669/* The published ABIs say that doubles should be aligned on word
d1f87653 670 boundaries, so lower the alignment for structure fields unless
6fc605d8 671 -malign-double is set. */
e932b21b 672
e83f3cff
RH
673/* ??? Blah -- this macro is used directly by libobjc. Since it
674 supports no vector modes, cut out the complexity and fall back
675 on BIGGEST_FIELD_ALIGNMENT. */
676#ifdef IN_TARGET_LIBS
ef49d42e
JH
677#ifdef __x86_64__
678#define BIGGEST_FIELD_ALIGNMENT 128
679#else
e83f3cff 680#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 681#endif
e83f3cff 682#else
e932b21b
JH
683#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
684 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 685#endif
c98f8742 686
e5e8a8bf 687/* If defined, a C expression to compute the alignment given to a
a7180f70 688 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
689 and ALIGN is the alignment that the object would ordinarily have.
690 The value of this macro is used instead of that alignment to align
691 the object.
692
693 If this macro is not defined, then ALIGN is used.
694
695 The typical use of this macro is to increase alignment for string
696 constants to be word aligned so that `strcpy' calls that copy
697 constants can be done inline. */
698
d9a5f180 699#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 700
8a022443
JW
701/* If defined, a C expression to compute the alignment for a static
702 variable. TYPE is the data type, and ALIGN is the alignment that
703 the object would ordinarily have. The value of this macro is used
704 instead of that alignment to align the object.
705
706 If this macro is not defined, then ALIGN is used.
707
708 One use of this macro is to increase alignment of medium-size
709 data to make it all fit in fewer cache lines. Another is to
710 cause character arrays to be word-aligned so that `strcpy' calls
711 that copy constants to character arrays can be done inline. */
712
d9a5f180 713#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
714
715/* If defined, a C expression to compute the alignment for a local
716 variable. TYPE is the data type, and ALIGN is the alignment that
717 the object would ordinarily have. The value of this macro is used
718 instead of that alignment to align the object.
719
720 If this macro is not defined, then ALIGN is used.
721
722 One use of this macro is to increase alignment of medium-size
723 data to make it all fit in fewer cache lines. */
724
d9a5f180 725#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 726
53c17031
JH
727/* If defined, a C expression that gives the alignment boundary, in
728 bits, of an argument with the specified mode and type. If it is
729 not defined, `PARM_BOUNDARY' is used for all arguments. */
730
d9a5f180
GS
731#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
732 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 733
9cd10576 734/* Set this nonzero if move instructions will actually fail to work
c98f8742 735 when given unaligned data. */
b4ac57ab 736#define STRICT_ALIGNMENT 0
c98f8742
JVA
737
738/* If bit field type is int, don't let it cross an int,
739 and give entire struct the alignment of an int. */
43a88a8c 740/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 741#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
742\f
743/* Standard register usage. */
744
745/* This processor has special stack-like registers. See reg-stack.c
892a2d68 746 for details. */
c98f8742
JVA
747
748#define STACK_REGS
d9a5f180 749#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
750 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
751 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
752 || (MODE) == XFmode)
c98f8742
JVA
753
754/* Number of actual hardware registers.
755 The hardware registers are assigned numbers for the compiler
756 from 0 to just below FIRST_PSEUDO_REGISTER.
757 All registers that the compiler knows about must be given numbers,
758 even those that are not normally considered general registers.
759
760 In the 80386 we give the 8 general purpose registers the numbers 0-7.
761 We number the floating point registers 8-15.
762 Note that registers 0-7 can be accessed as a short or int,
763 while only 0-3 may be used with byte `mov' instructions.
764
765 Reg 16 does not correspond to any hardware register, but instead
766 appears in the RTL as an argument pointer prior to reload, and is
767 eliminated during reloading in favor of either the stack or frame
892a2d68 768 pointer. */
c98f8742 769
03c259ad 770#define FIRST_PSEUDO_REGISTER 54
c98f8742 771
3073d01c
ML
772/* Number of hardware registers that go into the DWARF-2 unwind info.
773 If not defined, equals FIRST_PSEUDO_REGISTER. */
774
775#define DWARF_FRAME_REGISTERS 17
776
c98f8742
JVA
777/* 1 for registers that have pervasive standard uses
778 and are not available for the register allocator.
3f3f2124 779 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 780
3a4416fb
RS
781 The value is zero if the register is not fixed on either 32 or
782 64 bit targets, one if the register if fixed on both 32 and 64
783 bit targets, two if it is only fixed on 32bit targets and three
784 if its only fixed on 64bit targets.
785 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 786 */
a7180f70
BS
787#define FIXED_REGISTERS \
788/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 789{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
03c259ad
UB
790/*arg,flags,fpsr,fpcr,dir,frame*/ \
791 1, 1, 1, 1, 1, 1, \
a7180f70
BS
792/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
793 0, 0, 0, 0, 0, 0, 0, 0, \
794/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
795 0, 0, 0, 0, 0, 0, 0, 0, \
796/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 797 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 798/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 799 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 800
c98f8742
JVA
801
802/* 1 for registers not available across function calls.
803 These must include the FIXED_REGISTERS and also any
804 registers that can be used without being saved.
805 The latter must include the registers where values are returned
806 and the register where structure-value addresses are passed.
fce5a9f2
EC
807 Aside from that, you can include as many other registers as you like.
808
9d72d996
JJ
809 The value is zero if the register is not call used on either 32 or
810 64 bit targets, one if the register if call used on both 32 and 64
811 bit targets, two if it is only call used on 32bit targets and three
812 if its only call used on 64bit targets.
3a4416fb 813 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 814*/
a7180f70
BS
815#define CALL_USED_REGISTERS \
816/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 817{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
03c259ad
UB
818/*arg,flags,fpsr,fpcr,dir,frame*/ \
819 1, 1, 1, 1, 1, 1, \
a7180f70 820/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 821 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 822/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 823 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 824/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 825 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 826/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 827 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 828
3b3c6a3f
MM
829/* Order in which to allocate registers. Each register must be
830 listed once, even those in FIXED_REGISTERS. List frame pointer
831 late and fixed registers last. Note that, in general, we prefer
832 registers listed in CALL_USED_REGISTERS, keeping the others
833 available for storage of persistent values.
834
162f023b
JH
835 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
836 so this is just empty initializer for array. */
3b3c6a3f 837
162f023b
JH
838#define REG_ALLOC_ORDER \
839{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
840 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
841 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
03c259ad 842 48, 49, 50, 51, 52, 53 }
3b3c6a3f 843
162f023b
JH
844/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
845 to be rearranged based on a particular function. When using sse math,
03c259ad 846 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 847
162f023b 848#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 849
f5316dfe 850
c98f8742 851/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 852#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 853do { \
3f3f2124
JH
854 int i; \
855 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
856 { \
3a4416fb
RS
857 if (fixed_regs[i] > 1) \
858 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
859 if (call_used_regs[i] > 1) \
860 call_used_regs[i] = (call_used_regs[i] \
861 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 862 } \
5b43fed1 863 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
864 { \
865 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
866 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
867 } \
868 if (! TARGET_MMX) \
869 { \
870 int i; \
871 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
872 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 873 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
874 } \
875 if (! TARGET_SSE) \
876 { \
877 int i; \
878 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
879 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 880 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
881 } \
882 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
883 { \
884 int i; \
885 HARD_REG_SET x; \
886 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
887 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
888 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
889 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
890 } \
891 if (! TARGET_64BIT) \
892 { \
893 int i; \
894 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
895 reg_names[i] = ""; \
896 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
897 reg_names[i] = ""; \
a7180f70 898 } \
d9a5f180 899 } while (0)
c98f8742
JVA
900
901/* Return number of consecutive hard regs needed starting at reg REGNO
902 to hold something of mode MODE.
903 This is ordinarily the length in words of a value of mode MODE
904 but can be less for certain modes in special long registers.
905
fce5a9f2 906 Actually there are no two word move instructions for consecutive
c98f8742
JVA
907 registers. And only registers 0-3 may have mov byte instructions
908 applied to them.
909 */
910
911#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
912 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
913 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 914 : ((MODE) == XFmode \
92d0fb09 915 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 916 : (MODE) == XCmode \
92d0fb09 917 ? (TARGET_64BIT ? 4 : 6) \
2b589241 918 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 919
fbe5eb6d
BS
920#define VALID_SSE2_REG_MODE(MODE) \
921 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 922 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 923
d9a5f180
GS
924#define VALID_SSE_REG_MODE(MODE) \
925 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 926 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 927
47f339cf
BS
928#define VALID_MMX_REG_MODE_3DNOW(MODE) \
929 ((MODE) == V2SFmode || (MODE) == SFmode)
930
d9a5f180
GS
931#define VALID_MMX_REG_MODE(MODE) \
932 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
933 || (MODE) == V2SImode || (MODE) == SImode)
934
accde4cf
RH
935/* ??? No autovectorization into MMX or 3DNOW until we can reliably
936 place emms and femms instructions. */
c4336539 937#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 938
d9a5f180 939#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
940 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
941 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 942
d9a5f180
GS
943#define VALID_INT_MODE_P(MODE) \
944 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
945 || (MODE) == DImode \
946 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
947 || (MODE) == CDImode \
f8a1ebc6
JH
948 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
949 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 950
822eda12
JH
951/* Return true for modes passed in SSE registers. */
952#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 953 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
954 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
955 || (MODE) == V4SFmode || (MODE) == V4SImode)
956
e075ae69 957/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 958
a946dd00 959#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 960 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
961
962/* Value is 1 if it is a good idea to tie two pseudo registers
963 when one has mode MODE1 and one has mode MODE2.
964 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
965 for any hard reg, then this must be 0 for correct output. */
966
c1c5b5e3 967#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 968
ff25ef99
ZD
969/* It is possible to write patterns to move flags; but until someone
970 does it, */
971#define AVOID_CCMODE_COPIES
c98f8742 972
e075ae69 973/* Specify the modes required to caller save a given hard regno.
787dc842 974 We do this on i386 to prevent flags from being saved at all.
e075ae69 975
787dc842
JH
976 Kill any attempts to combine saving of modes. */
977
d9a5f180
GS
978#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
979 (CC_REGNO_P (REGNO) ? VOIDmode \
980 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 981 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
982 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
983 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 984 : (MODE))
c98f8742
JVA
985/* Specify the registers used for certain standard purposes.
986 The values of these macros are register numbers. */
987
988/* on the 386 the pc register is %eip, and is not usable as a general
989 register. The ordinary mov instructions won't work */
990/* #define PC_REGNUM */
991
992/* Register to use for pushing function arguments. */
993#define STACK_POINTER_REGNUM 7
994
995/* Base register for access to local variables of the function. */
564d80f4
JH
996#define HARD_FRAME_POINTER_REGNUM 6
997
998/* Base register for access to local variables of the function. */
03c259ad 999#define FRAME_POINTER_REGNUM 21
c98f8742
JVA
1000
1001/* First floating point reg */
1002#define FIRST_FLOAT_REG 8
1003
1004/* First & last stack-like regs */
1005#define FIRST_STACK_REG FIRST_FLOAT_REG
1006#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1007
a7180f70
BS
1008#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1009#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1010
a7180f70
BS
1011#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1012#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1013
3f3f2124
JH
1014#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1015#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1016
1017#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1018#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1019
c98f8742
JVA
1020/* Value should be nonzero if functions must have frame pointers.
1021 Zero means the frame pointer need not be set up (and parms
1022 may be accessed via the stack pointer) in functions that seem suitable.
1023 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1024#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1025
aabcd309 1026/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1027 requiring a frame pointer. */
1028#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1029#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1030#endif
1031
1032/* Make sure we can access arbitrary call frames. */
1033#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1034
1035/* Base register for access to arguments of the function. */
1036#define ARG_POINTER_REGNUM 16
1037
d2836273
JH
1038/* Register in which static-chain is passed to a function.
1039 We do use ECX as static chain register for 32 bit ABI. On the
1040 64bit ABI, ECX is an argument register, so we use R10 instead. */
1041#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1042
1043/* Register to hold the addressing base for position independent
5b43fed1
RH
1044 code access to data items. We don't use PIC pointer for 64bit
1045 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1046 pessimizing code dealing with EBX.
bd09bdeb
RH
1047
1048 To avoid clobbering a call-saved register unnecessarily, we renumber
1049 the pic register when possible. The change is visible after the
1050 prologue has been emitted. */
1051
1052#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1053
1054#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1055 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1056 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1057 : reload_completed ? REGNO (pic_offset_table_rtx) \
1058 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1059
5fc0e5df
KW
1060#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1061
713225d4
MM
1062/* A C expression which can inhibit the returning of certain function
1063 values in registers, based on the type of value. A nonzero value
1064 says to return the function value in memory, just as large
1065 structures are always returned. Here TYPE will be a C expression
1066 of type `tree', representing the data type of the value.
1067
1068 Note that values of mode `BLKmode' must be explicitly handled by
1069 this macro. Also, the option `-fpcc-struct-return' takes effect
1070 regardless of this macro. On most systems, it is possible to
1071 leave the macro undefined; this causes a default definition to be
1072 used, whose value is the constant 1 for `BLKmode' values, and 0
1073 otherwise.
1074
1075 Do not use this macro to indicate that structures and unions
1076 should always be returned in memory. You should instead use
1077 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1078
d9a5f180 1079#define RETURN_IN_MEMORY(TYPE) \
53c17031 1080 ix86_return_in_memory (TYPE)
713225d4 1081
c51e6d85 1082/* This is overridden by <cygwin.h>. */
5e062767
DS
1083#define MS_AGGREGATE_RETURN 0
1084
61fec9ff
JB
1085/* This is overridden by <netware.h>. */
1086#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1087\f
1088/* Define the classes of registers for register constraints in the
1089 machine description. Also define ranges of constants.
1090
1091 One of the classes must always be named ALL_REGS and include all hard regs.
1092 If there is more than one class, another class must be named NO_REGS
1093 and contain no registers.
1094
1095 The name GENERAL_REGS must be the name of a class (or an alias for
1096 another name such as ALL_REGS). This is the class of registers
1097 that is allowed by "g" or "r" in a register constraint.
1098 Also, registers outside this class are allocated only when
1099 instructions express preferences for them.
1100
1101 The classes must be numbered in nondecreasing order; that is,
1102 a larger-numbered class must never be contained completely
1103 in a smaller-numbered class.
1104
1105 For any two classes, it is very desirable that there be another
ab408a86
JVA
1106 class that represents their union.
1107
1108 It might seem that class BREG is unnecessary, since no useful 386
1109 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1110 and the "b" register constraint is useful in asms for syscalls.
1111
03c259ad 1112 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1113
1114enum reg_class
1115{
1116 NO_REGS,
e075ae69 1117 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1118 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1119 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1120 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1121 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1122 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1123 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1124 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1125 FLOAT_REGS,
a7180f70
BS
1126 SSE_REGS,
1127 MMX_REGS,
446988df
JH
1128 FP_TOP_SSE_REGS,
1129 FP_SECOND_SSE_REGS,
1130 FLOAT_SSE_REGS,
1131 FLOAT_INT_REGS,
1132 INT_SSE_REGS,
1133 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1134 ALL_REGS, LIM_REG_CLASSES
1135};
1136
d9a5f180
GS
1137#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1138
1139#define INTEGER_CLASS_P(CLASS) \
1140 reg_class_subset_p ((CLASS), GENERAL_REGS)
1141#define FLOAT_CLASS_P(CLASS) \
1142 reg_class_subset_p ((CLASS), FLOAT_REGS)
1143#define SSE_CLASS_P(CLASS) \
f75959a6 1144 ((CLASS) == SSE_REGS)
d9a5f180 1145#define MMX_CLASS_P(CLASS) \
f75959a6 1146 ((CLASS) == MMX_REGS)
d9a5f180
GS
1147#define MAYBE_INTEGER_CLASS_P(CLASS) \
1148 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1149#define MAYBE_FLOAT_CLASS_P(CLASS) \
1150 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1151#define MAYBE_SSE_CLASS_P(CLASS) \
1152 reg_classes_intersect_p (SSE_REGS, (CLASS))
1153#define MAYBE_MMX_CLASS_P(CLASS) \
1154 reg_classes_intersect_p (MMX_REGS, (CLASS))
1155
1156#define Q_CLASS_P(CLASS) \
1157 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1158
43f3a59d 1159/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1160
1161#define REG_CLASS_NAMES \
1162{ "NO_REGS", \
ab408a86 1163 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1164 "SIREG", "DIREG", \
e075ae69
RH
1165 "AD_REGS", \
1166 "Q_REGS", "NON_Q_REGS", \
c98f8742 1167 "INDEX_REGS", \
3f3f2124 1168 "LEGACY_REGS", \
c98f8742
JVA
1169 "GENERAL_REGS", \
1170 "FP_TOP_REG", "FP_SECOND_REG", \
1171 "FLOAT_REGS", \
a7180f70
BS
1172 "SSE_REGS", \
1173 "MMX_REGS", \
446988df
JH
1174 "FP_TOP_SSE_REGS", \
1175 "FP_SECOND_SSE_REGS", \
1176 "FLOAT_SSE_REGS", \
8fcaaa80 1177 "FLOAT_INT_REGS", \
446988df
JH
1178 "INT_SSE_REGS", \
1179 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1180 "ALL_REGS" }
1181
1182/* Define which registers fit in which classes.
1183 This is an initializer for a vector of HARD_REG_SET
1184 of length N_REG_CLASSES. */
1185
a7180f70 1186#define REG_CLASS_CONTENTS \
3f3f2124
JH
1187{ { 0x00, 0x0 }, \
1188 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1189 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1190 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1191 { 0x03, 0x0 }, /* AD_REGS */ \
1192 { 0x0f, 0x0 }, /* Q_REGS */ \
03c259ad
UB
1193 { 0x2100f0, 0x3fc0 }, /* NON_Q_REGS */ \
1194 { 0x7f, 0x3fc0 }, /* INDEX_REGS */ \
1195 { 0x2100ff, 0x0 }, /* LEGACY_REGS */ \
1196 { 0x2100ff, 0x3fc0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1197 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1198 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
03c259ad
UB
1199{ 0x3fc00000,0x3fc000 }, /* SSE_REGS */ \
1200{ 0xc0000000, 0x3f }, /* MMX_REGS */ \
1201{ 0x3fc00100,0x3fc000 }, /* FP_TOP_SSE_REG */ \
1202{ 0x3fc00200,0x3fc000 }, /* FP_SECOND_SSE_REG */ \
1203{ 0x3fc0ff00,0x3fc000 }, /* FLOAT_SSE_REGS */ \
1204 { 0x1ffff, 0x3fc0 }, /* FLOAT_INT_REGS */ \
1205{ 0x3fc100ff,0x3fffc0 }, /* INT_SSE_REGS */ \
1206{ 0x3fc1ffff,0x3fffc0 }, /* FLOAT_INT_SSE_REGS */ \
1207{ 0xffffffff,0x3fffff } \
e075ae69 1208}
c98f8742
JVA
1209
1210/* The same information, inverted:
1211 Return the class number of the smallest class containing
1212 reg number REGNO. This could be a conditional expression
1213 or could index an array. */
1214
c98f8742
JVA
1215#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1216
1217/* When defined, the compiler allows registers explicitly used in the
1218 rtl to be used as spill registers but prevents the compiler from
892a2d68 1219 extending the lifetime of these registers. */
c98f8742 1220
2922fe9e 1221#define SMALL_REGISTER_CLASSES 1
c98f8742 1222
fb84c7a0 1223#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1224
d9a5f180 1225#define GENERAL_REGNO_P(N) \
fb84c7a0 1226 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1227
1228#define GENERAL_REG_P(X) \
6189a572 1229 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1230
1231#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1232
c98f8742 1233#define NON_QI_REG_P(X) \
fb84c7a0 1234 (REG_P (X) && IN_RANGE (REGNO (X), 4, FIRST_PSEUDO_REGISTER - 1))
c98f8742 1235
fb84c7a0
UB
1236#define REX_INT_REGNO_P(N) \
1237 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1238#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1239
c98f8742 1240#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1241#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1242#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1243#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1244
fb84c7a0
UB
1245#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1246#define SSE_REGNO_P(N) \
1247 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1248 || REX_SSE_REGNO_P (N))
3f3f2124 1249
4977bab6 1250#define REX_SSE_REGNO_P(N) \
fb84c7a0 1251 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1252
d9a5f180
GS
1253#define SSE_REGNO(N) \
1254 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1255
d9a5f180 1256#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1257 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1258
d9a5f180 1259#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1260#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1261
fb84c7a0
UB
1262#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1263#define NON_STACK_REG_P(XOP) \
1264 (REG_P (XOP) && ! STACK_REGNO_P (REGNO (XOP)))
1265#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1266
d9a5f180 1267#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1268
e075ae69
RH
1269#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1270#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1271
c98f8742
JVA
1272/* The class value for index registers, and the one for base regs. */
1273
1274#define INDEX_REG_CLASS INDEX_REGS
1275#define BASE_REG_CLASS GENERAL_REGS
1276
c98f8742 1277/* Place additional restrictions on the register class to use when it
4cbb525c 1278 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1279 register for which class CLASS would ordinarily be used. */
c98f8742 1280
d2836273
JH
1281#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1282 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1283 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1284 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1285 ? Q_REGS : (CLASS))
1286
1287/* Given an rtx X being reloaded into a reg required to be
1288 in class CLASS, return the class of reg to actually use.
1289 In general this is just CLASS; but on some machines
1290 in some cases it is preferable to use a more restrictive class.
1291 On the 80386 series, we prevent floating constants from being
1292 reloaded into floating registers (since no move-insn can do that)
1293 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1294
d398b3b1 1295/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1296 QImode must go into class Q_REGS.
d398b3b1 1297 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1298 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1299
d9a5f180
GS
1300#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1301 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1302
b5c82fa1
PB
1303/* Discourage putting floating-point values in SSE registers unless
1304 SSE math is being used, and likewise for the 387 registers. */
1305
1306#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1307 ix86_preferred_output_reload_class ((X), (CLASS))
1308
85ff473e 1309/* If we are copying between general and FP registers, we need a memory
f84aa48a 1310 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1311#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1312 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1313
1314/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1315 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1316 pseudo. */
1317
d9a5f180 1318#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1319 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1320 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1321 ? Q_REGS : NO_REGS)
c98f8742
JVA
1322
1323/* Return the maximum number of consecutive registers
1324 needed to represent mode MODE in a register of class CLASS. */
1325/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1326 except in the FP regs, where a single reg is always enough. */
a7180f70 1327#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1328 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1329 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1330 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1331 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1332
1333/* A C expression whose value is nonzero if pseudos that have been
1334 assigned to registers of class CLASS would likely be spilled
1335 because registers of CLASS are needed for spill registers.
1336
1337 The default value of this macro returns 1 if CLASS has exactly one
1338 register and zero otherwise. On most machines, this default
1339 should be used. Only define this macro to some other expression
1340 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1341 their hard registers were needed for spill registers. If this
f5316dfe
MM
1342 macro returns nonzero for those classes, those pseudos will only
1343 be allocated by `global.c', which knows how to reallocate the
1344 pseudo to another register. If there would not be another
1345 register available for reallocation, you should not change the
1346 definition of this macro since the only effect of such a
1347 definition would be to slow down register allocation. */
1348
1349#define CLASS_LIKELY_SPILLED_P(CLASS) \
1350 (((CLASS) == AREG) \
1351 || ((CLASS) == DREG) \
1352 || ((CLASS) == CREG) \
1353 || ((CLASS) == BREG) \
1354 || ((CLASS) == AD_REGS) \
1355 || ((CLASS) == SIREG) \
b0af5c03
JH
1356 || ((CLASS) == DIREG) \
1357 || ((CLASS) == FP_TOP_REG) \
1358 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1359
1272914c
RH
1360/* Return a class of registers that cannot change FROM mode to TO mode. */
1361
1362#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1363 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1364\f
1365/* Stack layout; function entry, exit and calling. */
1366
1367/* Define this if pushing a word on the stack
1368 makes the stack pointer a smaller address. */
1369#define STACK_GROWS_DOWNWARD
1370
a4d05547 1371/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1372 is at the high-address end of the local variables;
1373 that is, each additional local variable allocated
1374 goes at a more negative offset in the frame. */
f62c8a5c 1375#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1376
1377/* Offset within stack frame to start allocating local variables at.
1378 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1379 first local allocated. Otherwise, it is the offset to the BEGINNING
1380 of the first local allocated. */
1381#define STARTING_FRAME_OFFSET 0
1382
1383/* If we generate an insn to push BYTES bytes,
1384 this says how many the stack pointer really advances by.
6541fe75
JJ
1385 On 386, we have pushw instruction that decrements by exactly 2 no
1386 matter what the position was, there is no pushb.
1387 But as CIE data alignment factor on this arch is -4, we need to make
1388 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1389
d2836273
JH
1390 For 64bit ABI we round up to 8 bytes.
1391 */
c98f8742 1392
d2836273
JH
1393#define PUSH_ROUNDING(BYTES) \
1394 (TARGET_64BIT \
1395 ? (((BYTES) + 7) & (-8)) \
6541fe75 1396 : (((BYTES) + 3) & (-4)))
c98f8742 1397
f73ad30e
JH
1398/* If defined, the maximum amount of space required for outgoing arguments will
1399 be computed and placed into the variable
1400 `current_function_outgoing_args_size'. No space will be pushed onto the
1401 stack for each call; instead, the function prologue should increase the stack
1402 frame size by this amount. */
1403
1404#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1405
1406/* If defined, a C expression whose value is nonzero when we want to use PUSH
1407 instructions to pass outgoing arguments. */
1408
1409#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1410
2da4124d
L
1411/* We want the stack and args grow in opposite directions, even if
1412 PUSH_ARGS is 0. */
1413#define PUSH_ARGS_REVERSED 1
1414
c98f8742
JVA
1415/* Offset of first parameter from the argument pointer register value. */
1416#define FIRST_PARM_OFFSET(FNDECL) 0
1417
a7180f70
BS
1418/* Define this macro if functions should assume that stack space has been
1419 allocated for arguments even when their values are passed in registers.
1420
1421 The value of this macro is the size, in bytes, of the area reserved for
1422 arguments passed in registers for the function represented by FNDECL.
1423
1424 This space can be allocated by the caller, or be a part of the
1425 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1426 which. */
1427#define REG_PARM_STACK_SPACE(FNDECL) 0
1428
c98f8742
JVA
1429/* Value is the number of bytes of arguments automatically
1430 popped when returning from a subroutine call.
8b109b37 1431 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1432 FUNTYPE is the data type of the function (as a tree),
1433 or for a library call it is an identifier node for the subroutine name.
1434 SIZE is the number of bytes of arguments passed on the stack.
1435
1436 On the 80386, the RTD insn may be used to pop them if the number
1437 of args is fixed, but if the number is variable then the caller
1438 must pop them all. RTD can't be used for library calls now
1439 because the library is compiled with the Unix compiler.
1440 Use of RTD is a selectable option, since it is incompatible with
1441 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1442 the caller must always pop the args.
1443
1444 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1445
d9a5f180
GS
1446#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1447 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1448
53c17031
JH
1449#define FUNCTION_VALUE_REGNO_P(N) \
1450 ix86_function_value_regno_p (N)
c98f8742
JVA
1451
1452/* Define how to find the value returned by a library function
1453 assuming the value has mode MODE. */
1454
1455#define LIBCALL_VALUE(MODE) \
53c17031 1456 ix86_libcall_value (MODE)
c98f8742 1457
e9125c09
TW
1458/* Define the size of the result block used for communication between
1459 untyped_call and untyped_return. The block contains a DImode value
1460 followed by the block used by fnsave and frstor. */
1461
1462#define APPLY_RESULT_SIZE (8+108)
1463
b08de47e 1464/* 1 if N is a possible register number for function argument passing. */
53c17031 1465#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1466
1467/* Define a data type for recording info about an argument list
1468 during the scan of that argument list. This data type should
1469 hold all necessary information about the function itself
1470 and about the args processed so far, enough to enable macros
b08de47e 1471 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1472
e075ae69 1473typedef struct ix86_args {
b08de47e
MM
1474 int nregs; /* # registers available for passing */
1475 int regno; /* next available register number */
47a37ce4 1476 int words; /* # words passed so far */
9d72d996 1477 int fastcall; /* fastcall calling convention is used */
47a37ce4
UB
1478 int x87_nregs; /* # x87 registers available for passing */
1479 int x87_regno; /* # next available x87 register number */
a7180f70
BS
1480 int sse_nregs; /* # sse registers available for passing */
1481 int sse_regno; /* next available sse register number */
47a37ce4 1482 int warn_sse; /* True when we want to warn about SSE ABI. */
bcf17554
JH
1483 int mmx_nregs; /* # mmx registers available for passing */
1484 int mmx_regno; /* next available mmx register number */
47a37ce4 1485 int warn_mmx; /* True when we want to warn about MMX ABI. */
892a2d68 1486 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
47a37ce4
UB
1487 int float_in_x87; /* 1 if floating point arguments should
1488 be passed in 80387 registere. */
2f84b963
RG
1489 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1490 be passed in SSE registers. Otherwise 0. */
b08de47e 1491} CUMULATIVE_ARGS;
c98f8742
JVA
1492
1493/* Initialize a variable CUM of type CUMULATIVE_ARGS
1494 for a call to a function whose data type is FNTYPE.
b08de47e 1495 For a library call, FNTYPE is 0. */
c98f8742 1496
0f6937fe 1497#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1498 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1499
1500/* Update the data in CUM to advance over an argument
1501 of mode MODE and data type TYPE.
1502 (TYPE is null for libcalls where that information may not be available.) */
1503
d9a5f180
GS
1504#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1505 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1506
1507/* Define where to put the arguments to a function.
1508 Value is zero to push the argument on the stack,
1509 or a hard register in which to store the argument.
1510
1511 MODE is the argument's machine mode.
1512 TYPE is the data type of the argument (as a tree).
1513 This is null for libcalls where that information may
1514 not be available.
1515 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1516 the preceding args and about the function being called.
1517 NAMED is nonzero if this argument is a named parameter
1518 (otherwise it is an extra parameter matching an ellipsis). */
1519
c98f8742 1520#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1521 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1522
ad919812 1523/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1524#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1525 ix86_va_start (VALIST, NEXTARG)
ad919812 1526
a5fe455b
ZW
1527#define TARGET_ASM_FILE_END ix86_file_end
1528#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1529
c98f8742
JVA
1530/* Output assembler code to FILE to increment profiler label # LABELNO
1531 for profiling a function entry. */
1532
a5fa1ecd
JH
1533#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1534
1535#define MCOUNT_NAME "_mcount"
1536
1537#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1538
1539/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1540 the stack pointer does not matter. The value is tested only in
1541 functions that have frame pointers.
1542 No definition is equivalent to always zero. */
fce5a9f2 1543/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1544 we have to restore it ourselves from the frame pointer, in order to
1545 use pop */
1546
1547#define EXIT_IGNORE_STACK 1
1548
c98f8742
JVA
1549/* Output assembler code for a block containing the constant parts
1550 of a trampoline, leaving space for the variable parts. */
1551
a269a03c 1552/* On the 386, the trampoline contains two instructions:
c98f8742 1553 mov #STATIC,ecx
a269a03c
JC
1554 jmp FUNCTION
1555 The trampoline is generated entirely at runtime. The operand of JMP
1556 is the address of FUNCTION relative to the instruction following the
1557 JMP (which is 5 bytes long). */
c98f8742
JVA
1558
1559/* Length in units of the trampoline for entering a nested function. */
1560
39d04363 1561#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1562
1563/* Emit RTL insns to initialize the variable parts of a trampoline.
1564 FNADDR is an RTX for the address of the function's pure code.
1565 CXT is an RTX for the static chain value for the function. */
1566
d9a5f180
GS
1567#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1568 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1569\f
1570/* Definitions for register eliminations.
1571
1572 This is an array of structures. Each structure initializes one pair
1573 of eliminable registers. The "from" register number is given first,
1574 followed by "to". Eliminations of the same "from" register are listed
1575 in order of preference.
1576
afc2cd05
NC
1577 There are two registers that can always be eliminated on the i386.
1578 The frame pointer and the arg pointer can be replaced by either the
1579 hard frame pointer or to the stack pointer, depending upon the
1580 circumstances. The hard frame pointer is not used before reload and
1581 so it is not eligible for elimination. */
c98f8742 1582
564d80f4
JH
1583#define ELIMINABLE_REGS \
1584{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1585 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1586 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1587 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1588
2c5a510c
RH
1589/* Given FROM and TO register numbers, say whether this elimination is
1590 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1591
1592 All other eliminations are valid. */
1593
2c5a510c
RH
1594#define CAN_ELIMINATE(FROM, TO) \
1595 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1596
1597/* Define the offset between two registers, one to be eliminated, and the other
1598 its replacement, at the start of a routine. */
1599
d9a5f180
GS
1600#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1601 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1602\f
1603/* Addressing modes, and classification of registers for them. */
1604
c98f8742
JVA
1605/* Macros to check register numbers against specific register classes. */
1606
1607/* These assume that REGNO is a hard or pseudo reg number.
1608 They give nonzero only if REGNO is a hard reg of the suitable class
1609 or a pseudo reg currently allocated to a suitable hard reg.
1610 Since they use reg_renumber, they are safe only once reg_renumber
1611 has been allocated, which happens in local-alloc.c. */
1612
3f3f2124
JH
1613#define REGNO_OK_FOR_INDEX_P(REGNO) \
1614 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1615 || REX_INT_REGNO_P (REGNO) \
1616 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1617 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1618
3f3f2124 1619#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1620 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1621 || (REGNO) == ARG_POINTER_REGNUM \
1622 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1623 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1624
d9a5f180
GS
1625#define REGNO_OK_FOR_SIREG_P(REGNO) \
1626 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1627#define REGNO_OK_FOR_DIREG_P(REGNO) \
1628 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1629
1630/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1631 and check its validity for a certain class.
1632 We have two alternate definitions for each of them.
1633 The usual definition accepts all pseudo regs; the other rejects
1634 them unless they have been allocated suitable hard regs.
1635 The symbol REG_OK_STRICT causes the latter definition to be used.
1636
1637 Most source files want to accept pseudo regs in the hope that
1638 they will get allocated to the class that the insn wants them to be in.
1639 Source files for reload pass need to be strict.
1640 After reload, it makes no difference, since pseudo regs have
1641 been eliminated by then. */
1642
c98f8742 1643
ff482c8d 1644/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1645#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1646 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1647 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1648 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1649
3b3c6a3f 1650#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1651 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1652 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1653 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1654 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1655
3b3c6a3f
MM
1656/* Strict versions, hard registers only */
1657#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1658#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1659
3b3c6a3f 1660#ifndef REG_OK_STRICT
d9a5f180
GS
1661#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1662#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1663
1664#else
d9a5f180
GS
1665#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1666#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1667#endif
1668
1669/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1670 that is a valid memory address for an instruction.
1671 The MODE argument is the machine mode for the MEM expression
1672 that wants to use this address.
1673
1674 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1675 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1676
1677 See legitimize_pic_address in i386.c for details as to what
1678 constitutes a legitimate address when -fpic is used. */
1679
1680#define MAX_REGS_PER_ADDRESS 2
1681
f996902d 1682#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1683
1684/* Nonzero if the constant value X is a legitimate general operand.
1685 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1686
f996902d 1687#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1688
3b3c6a3f
MM
1689#ifdef REG_OK_STRICT
1690#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1691do { \
1692 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1693 goto ADDR; \
d9a5f180 1694} while (0)
c98f8742 1695
3b3c6a3f
MM
1696#else
1697#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1698do { \
1699 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1700 goto ADDR; \
d9a5f180 1701} while (0)
c98f8742 1702
3b3c6a3f
MM
1703#endif
1704
b949ea8b
JW
1705/* If defined, a C expression to determine the base term of address X.
1706 This macro is used in only one place: `find_base_term' in alias.c.
1707
1708 It is always safe for this macro to not be defined. It exists so
1709 that alias analysis can understand machine-dependent addresses.
1710
1711 The typical use of this macro is to handle addresses containing
1712 a label_ref or symbol_ref within an UNSPEC. */
1713
d9a5f180 1714#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1715
c98f8742
JVA
1716/* Try machine-dependent ways of modifying an illegitimate address
1717 to be legitimate. If we find one, return the new, valid address.
1718 This macro is used in only one place: `memory_address' in explow.c.
1719
1720 OLDX is the address as it was before break_out_memory_refs was called.
1721 In some cases it is useful to look at this to decide what needs to be done.
1722
1723 MODE and WIN are passed so that this macro can use
1724 GO_IF_LEGITIMATE_ADDRESS.
1725
1726 It is always safe for this macro to do nothing. It exists to recognize
1727 opportunities to optimize the output.
1728
1729 For the 80386, we handle X+REG by loading X into a register R and
1730 using R+REG. R will go in a general reg and indexing will be used.
1731 However, if REG is a broken-out memory address or multiplication,
1732 nothing needs to be done because REG can certainly go in a general reg.
1733
1734 When -fpic is used, special handling is needed for symbolic references.
1735 See comments by legitimize_pic_address in i386.c for details. */
1736
3b3c6a3f 1737#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1738do { \
1739 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1740 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1741 goto WIN; \
d9a5f180 1742} while (0)
c98f8742 1743
d9a5f180 1744#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1745
c98f8742 1746/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1747 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1748 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1749
f996902d 1750#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1751
1752#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1753 (GET_CODE (X) == SYMBOL_REF \
1754 || GET_CODE (X) == LABEL_REF \
1755 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1756
1757/* Go to LABEL if ADDR (a legitimate address expression)
1758 has an effect that depends on the machine mode it is used for.
1759 On the 80386, only postdecrement and postincrement address depend thus
1760 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
1761#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1762do { \
1763 if (GET_CODE (ADDR) == POST_INC \
1764 || GET_CODE (ADDR) == POST_DEC) \
1765 goto LABEL; \
1766} while (0)
c98f8742 1767\f
b08de47e
MM
1768/* Max number of args passed in registers. If this is more than 3, we will
1769 have problems with ebx (register #4), since it is a caller save register and
1770 is also used as the pic register in ELF. So for now, don't allow more than
1771 3 registers to be passed in registers. */
1772
d2836273
JH
1773#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1774
47a37ce4
UB
1775#define X87_REGPARM_MAX 3
1776
bcf17554
JH
1777#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1778
1779#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1780
c98f8742
JVA
1781\f
1782/* Specify the machine mode that this machine uses
1783 for the index in the tablejump instruction. */
6eb791fc 1784#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 1785
c98f8742
JVA
1786/* Define this as 1 if `char' should by default be signed; else as 0. */
1787#define DEFAULT_SIGNED_CHAR 1
1788
1789/* Max number of bytes we can move from memory to memory
1790 in one reasonably fast instruction. */
65d9c0ab
JH
1791#define MOVE_MAX 16
1792
1793/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1794 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1795 number of bytes we can move with a single instruction. */
65d9c0ab 1796#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1797
7e24ffc9 1798/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1799 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1800 Increasing the value will always make code faster, but eventually
1801 incurs high cost in increased code size.
c98f8742 1802
e2e52e1b 1803 If you don't define this, a reasonable default is used. */
c98f8742 1804
e2e52e1b 1805#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1806
45d78e7f
JJ
1807/* If a clear memory operation would take CLEAR_RATIO or more simple
1808 move-instruction sequences, we will do a clrmem or libcall instead. */
1809
1810#define CLEAR_RATIO (optimize_size ? 2 \
1811 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1812
c98f8742
JVA
1813/* Define if shifts truncate the shift count
1814 which implies one can omit a sign-extension or zero-extension
1815 of a shift count. */
892a2d68 1816/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1817
1818/* #define SHIFT_COUNT_TRUNCATED */
1819
1820/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1821 is done just by pretending it is already truncated. */
1822#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1823
d9f32422
JH
1824/* A macro to update M and UNSIGNEDP when an object whose type is
1825 TYPE and which has the specified mode and signedness is to be
1826 stored in a register. This macro is only called when TYPE is a
1827 scalar type.
1828
f710504c 1829 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1830 quantities to SImode. The choice depends on target type. */
1831
1832#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1833do { \
d9f32422
JH
1834 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1835 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1836 (MODE) = SImode; \
1837} while (0)
d9f32422 1838
c98f8742
JVA
1839/* Specify the machine mode that pointers have.
1840 After generation of rtl, the compiler makes no further distinction
1841 between pointers and any other objects of this machine mode. */
65d9c0ab 1842#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1843
1844/* A function address in a call instruction
1845 is a byte address (for indexing purposes)
1846 so give the MEM rtx a byte's mode. */
1847#define FUNCTION_MODE QImode
d4ba09c0 1848\f
96e7ae40
JH
1849/* A C expression for the cost of moving data from a register in class FROM to
1850 one in class TO. The classes are expressed using the enumeration values
1851 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1852 interpreted relative to that.
d4ba09c0 1853
96e7ae40
JH
1854 It is not required that the cost always equal 2 when FROM is the same as TO;
1855 on some machines it is expensive to move between registers if they are not
f84aa48a 1856 general registers. */
d4ba09c0 1857
f84aa48a 1858#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1859 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1860
1861/* A C expression for the cost of moving data of mode M between a
1862 register and memory. A value of 2 is the default; this cost is
1863 relative to those in `REGISTER_MOVE_COST'.
1864
1865 If moving between registers and memory is more expensive than
1866 between two registers, you should define this macro to express the
fa79946e 1867 relative cost. */
d4ba09c0 1868
d9a5f180
GS
1869#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1870 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1871
1872/* A C expression for the cost of a branch instruction. A value of 1
1873 is the default; other values are interpreted relative to that. */
1874
e075ae69 1875#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
1876
1877/* Define this macro as a C expression which is nonzero if accessing
1878 less than a word of memory (i.e. a `char' or a `short') is no
1879 faster than accessing a word of memory, i.e., if such access
1880 require more than one instruction or if there is no difference in
1881 cost between byte and (aligned) word loads.
1882
1883 When this macro is not defined, the compiler will access a field by
1884 finding the smallest containing object; when it is defined, a
1885 fullword load will be used if alignment permits. Unless bytes
1886 accesses are faster than word accesses, using word accesses is
1887 preferable since it may eliminate subsequent memory access if
1888 subsequent accesses occur to other fields in the same word of the
1889 structure, but to different bytes. */
1890
1891#define SLOW_BYTE_ACCESS 0
1892
1893/* Nonzero if access to memory by shorts is slow and undesirable. */
1894#define SLOW_SHORT_ACCESS 0
1895
d4ba09c0
SC
1896/* Define this macro to be the value 1 if unaligned accesses have a
1897 cost many times greater than aligned accesses, for example if they
1898 are emulated in a trap handler.
1899
9cd10576
KH
1900 When this macro is nonzero, the compiler will act as if
1901 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1902 moves. This can cause significantly more instructions to be
9cd10576 1903 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1904 accesses only add a cycle or two to the time for a memory access.
1905
1906 If the value of this macro is always zero, it need not be defined. */
1907
e1565e65 1908/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1909
d4ba09c0
SC
1910/* Define this macro if it is as good or better to call a constant
1911 function address than to call an address kept in a register.
1912
1913 Desirable on the 386 because a CALL with a constant address is
1914 faster than one with a register address. */
1915
1916#define NO_FUNCTION_CSE
c98f8742 1917\f
c572e5ba
JVA
1918/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1919 return the mode to be used for the comparison.
1920
1921 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1922 VOIDmode should be used in all other cases.
c572e5ba 1923
16189740 1924 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1925 possible, to allow for more combinations. */
c98f8742 1926
d9a5f180 1927#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1928
9cd10576 1929/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1930 reversed. */
1931
1932#define REVERSIBLE_CC_MODE(MODE) 1
1933
1934/* A C expression whose value is reversed condition code of the CODE for
1935 comparison done in CC_MODE mode. */
3c5cb3e4 1936#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1937
c98f8742
JVA
1938\f
1939/* Control the assembler format that we output, to the extent
1940 this does not vary between assemblers. */
1941
1942/* How to refer to registers in assembler output.
892a2d68 1943 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1944
21bf822e 1945/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
c98f8742
JVA
1946 For non floating point regs, the following are the HImode names.
1947
1948 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 1949 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 1950
a7180f70
BS
1951#define HI_REGISTER_NAMES \
1952{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1953 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
03c259ad 1954 "argp", "flags", "fpsr", "fpcr", "dirflag", "frame", \
a7180f70 1955 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1956 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1957 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1958 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1959
c98f8742
JVA
1960#define REGISTER_NAMES HI_REGISTER_NAMES
1961
1962/* Table of additional register names to use in user input. */
1963
1964#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1965{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1966 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1967 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1968 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1969 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1970 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1971
1972/* Note we are omitting these since currently I don't know how
1973to get gcc to use these, since they want the same but different
1974number as al, and ax.
1975*/
1976
c98f8742 1977#define QI_REGISTER_NAMES \
3f3f2124 1978{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1979
1980/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1981 of regs 0 through 3. */
c98f8742
JVA
1982
1983#define QI_HIGH_REGISTER_NAMES \
1984{"ah", "dh", "ch", "bh", }
1985
1986/* How to renumber registers for dbx and gdb. */
1987
d9a5f180
GS
1988#define DBX_REGISTER_NUMBER(N) \
1989 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1990
9a82e702
MS
1991extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1992extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1993extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1994
469ac993
JM
1995/* Before the prologue, RA is at 0(%esp). */
1996#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1997 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1998
e414ab29 1999/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2000#define RETURN_ADDR_RTX(COUNT, FRAME) \
2001 ((COUNT) == 0 \
2002 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2003 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2004
892a2d68 2005/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2006#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2007
a6ab3aad 2008/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2009#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2010
1020a5ab
RH
2011/* Describe how we implement __builtin_eh_return. */
2012#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2013#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2014
ad919812 2015
e4c4ebeb
RH
2016/* Select a format to encode pointers in exception handling data. CODE
2017 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2018 true if the symbol may be affected by dynamic relocations.
2019
2020 ??? All x86 object file formats are capable of representing this.
2021 After all, the relocation needed is the same as for the call insn.
2022 Whether or not a particular assembler allows us to enter such, I
2023 guess we'll have to see. */
d9a5f180 2024#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2025 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2026
c98f8742
JVA
2027/* This is how to output an insn to push a register on the stack.
2028 It need not be very fast code. */
2029
d9a5f180 2030#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2031do { \
2032 if (TARGET_64BIT) \
2033 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2034 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2035 else \
2036 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2037} while (0)
c98f8742
JVA
2038
2039/* This is how to output an insn to pop a register from the stack.
2040 It need not be very fast code. */
2041
d9a5f180 2042#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2043do { \
2044 if (TARGET_64BIT) \
2045 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2046 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2047 else \
2048 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2049} while (0)
c98f8742 2050
f88c65f7 2051/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2052
2053#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2054 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2055
f88c65f7 2056/* This is how to output an element of a case-vector that is relative. */
c98f8742 2057
33f7f353 2058#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2059 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2060
f7288899
EC
2061/* Under some conditions we need jump tables in the text section,
2062 because the assembler cannot handle label differences between
2063 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2064
2065#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2066 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2067 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2068
cea3bd3e
RH
2069/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2070 and switch back. For x86 we do this only to save a few bytes that
2071 would otherwise be unused in the text section. */
2072#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2073 asm (SECTION_OP "\n\t" \
2074 "call " USER_LABEL_PREFIX #FUNC "\n" \
2075 TEXT_SECTION_ASM_OP);
74b42c8b 2076\f
c98f8742
JVA
2077/* Print operand X (an rtx) in assembler syntax to file FILE.
2078 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2079 Effect of various CODE letters is described in i386.c near
2080 print_operand function. */
c98f8742 2081
d9a5f180 2082#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2083 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2084
2085#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2086 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2087
2088#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2089 print_operand_address ((FILE), (ADDR))
c98f8742 2090
f996902d
RH
2091#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2092do { \
2093 if (! output_addr_const_extra (FILE, (X))) \
2094 goto FAIL; \
2095} while (0);
2096
c98f8742
JVA
2097/* a letter which is not needed by the normal asm syntax, which
2098 we can use for operand syntax in the extended asm */
2099
2100#define ASM_OPERAND_LETTER '#'
c98f8742 2101#define RET return ""
d9a5f180 2102#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 2103\f
5bf0ebab
RH
2104/* Which processor to schedule for. The cpu attribute defines a list that
2105 mirrors this list, so changes to i386.md must be made at the same time. */
2106
2107enum processor_type
2108{
2109 PROCESSOR_I386, /* 80386 */
2110 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2111 PROCESSOR_PENTIUM,
2112 PROCESSOR_PENTIUMPRO,
cfe1b18f 2113 PROCESSOR_GEODE,
5bf0ebab
RH
2114 PROCESSOR_K6,
2115 PROCESSOR_ATHLON,
2116 PROCESSOR_PENTIUM4,
4977bab6 2117 PROCESSOR_K8,
89c43c0a 2118 PROCESSOR_NOCONA,
05f85dbb 2119 PROCESSOR_CORE2,
d326eaf0
JH
2120 PROCESSOR_GENERIC32,
2121 PROCESSOR_GENERIC64,
5bf0ebab
RH
2122 PROCESSOR_max
2123};
2124
9e555526 2125extern enum processor_type ix86_tune;
5bf0ebab 2126extern enum processor_type ix86_arch;
5bf0ebab
RH
2127
2128enum fpmath_unit
2129{
2130 FPMATH_387 = 1,
2131 FPMATH_SSE = 2
2132};
2133
2134extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2135
f996902d
RH
2136enum tls_dialect
2137{
2138 TLS_DIALECT_GNU,
5bf5a10b 2139 TLS_DIALECT_GNU2,
f996902d
RH
2140 TLS_DIALECT_SUN
2141};
2142
2143extern enum tls_dialect ix86_tls_dialect;
f996902d 2144
6189a572 2145enum cmodel {
5bf0ebab
RH
2146 CM_32, /* The traditional 32-bit ABI. */
2147 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2148 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2149 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2150 CM_LARGE, /* No assumptions. */
7dcbf659
JH
2151 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2152 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
6189a572
JH
2153};
2154
5bf0ebab 2155extern enum cmodel ix86_cmodel;
5bf0ebab 2156
8362f420
JH
2157/* Size of the RED_ZONE area. */
2158#define RED_ZONE_SIZE 128
2159/* Reserved area of the red zone for temporaries. */
2160#define RED_ZONE_RESERVE 8
c93e80a5
JH
2161
2162enum asm_dialect {
2163 ASM_ATT,
2164 ASM_INTEL
2165};
5bf0ebab 2166
80f33d06 2167extern enum asm_dialect ix86_asm_dialect;
95899b34 2168extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2169extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2170
2171/* Smallest class containing REGNO. */
2172extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2173
d9a5f180
GS
2174extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2175extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2176extern rtx ix86_compare_emitted;
22fb740d
JH
2177\f
2178/* To properly truncate FP values into integers, we need to set i387 control
2179 word. We can't emit proper mode switching code before reload, as spills
2180 generated by reload may truncate values incorrectly, but we still can avoid
2181 redundant computation of new control word by the mode switching pass.
2182 The fldcw instructions are still emitted redundantly, but this is probably
2183 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2184 the sequence.
22fb740d
JH
2185
2186 The machinery is to emit simple truncation instructions and split them
2187 before reload to instructions having USEs of two memory locations that
2188 are filled by this code to old and new control word.
fce5a9f2 2189
22fb740d
JH
2190 Post-reload pass may be later used to eliminate the redundant fildcw if
2191 needed. */
2192
ff680eb1
UB
2193enum ix86_entity
2194{
2195 I387_TRUNC = 0,
2196 I387_FLOOR,
2197 I387_CEIL,
2198 I387_MASK_PM,
2199 MAX_386_ENTITIES
2200};
2201
1cba2b96 2202enum ix86_stack_slot
ff680eb1
UB
2203{
2204 SLOT_TEMP = 0,
2205 SLOT_CW_STORED,
2206 SLOT_CW_TRUNC,
2207 SLOT_CW_FLOOR,
2208 SLOT_CW_CEIL,
2209 SLOT_CW_MASK_PM,
2210 MAX_386_STACK_LOCALS
2211};
22fb740d
JH
2212
2213/* Define this macro if the port needs extra instructions inserted
2214 for mode switching in an optimizing compilation. */
2215
ff680eb1
UB
2216#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2217 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2218
2219/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2220 initializer for an array of integers. Each initializer element N
2221 refers to an entity that needs mode switching, and specifies the
2222 number of different modes that might need to be set for this
2223 entity. The position of the initializer in the initializer -
2224 starting counting at zero - determines the integer that is used to
2225 refer to the mode-switched entity in question. */
2226
ff680eb1
UB
2227#define NUM_MODES_FOR_MODE_SWITCHING \
2228 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2229
2230/* ENTITY is an integer specifying a mode-switched entity. If
2231 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2232 return an integer value not larger than the corresponding element
2233 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2234 must be switched into prior to the execution of INSN. */
2235
2236#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2237
2238/* This macro specifies the order in which modes for ENTITY are
2239 processed. 0 is the highest priority. */
2240
d9a5f180 2241#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2242
2243/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2244 is the set of hard registers live at the point where the insn(s)
2245 are to be inserted. */
2246
2247#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2248 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2249 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2250 : 0)
ff680eb1 2251
0f0138b6
JH
2252\f
2253/* Avoid renaming of stack registers, as doing so in combination with
2254 scheduling just increases amount of live registers at time and in
2255 the turn amount of fxch instructions needed.
2256
43f3a59d 2257 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2258
d9a5f180 2259#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2260 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2261
3b3c6a3f 2262\f
e91f04de
CH
2263#define DLL_IMPORT_EXPORT_PREFIX '#'
2264
2265#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2266\f
2267struct machine_function GTY(())
2268{
2269 struct stack_local_entry *stack_locals;
2270 const char *some_ld_name;
150cdc9e 2271 rtx force_align_arg_pointer;
fa1a0d02
JH
2272 int save_varrargs_registers;
2273 int accesses_prev_frame;
ff680eb1 2274 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2275 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2276 determine the style used. */
2277 int use_fast_prologue_epilogue;
d7394366
JH
2278 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2279 for. */
2280 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2281 /* If true, the current function needs the default PIC register, not
2282 an alternate register (on x86) and must not use the red zone (on
2283 x86_64), even if it's a leaf function. We don't want the
2284 function to be regarded as non-leaf because TLS calls need not
2285 affect register allocation. This flag is set when a TLS call
2286 instruction is expanded within a function, and never reset, even
2287 if all such instructions are optimized away. Use the
2288 ix86_current_function_calls_tls_descriptor macro for a better
2289 approximation. */
2290 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2291};
2292
2293#define ix86_stack_locals (cfun->machine->stack_locals)
2294#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2295#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2296#define ix86_tls_descriptor_calls_expanded_in_cfun \
2297 (cfun->machine->tls_descriptor_call_expanded_p)
2298/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2299 calls are optimized away, we try to detect cases in which it was
2300 optimized away. Since such instructions (use (reg REG_SP)), we can
2301 verify whether there's any such instruction live by testing that
2302 REG_SP is live. */
2303#define ix86_current_function_calls_tls_descriptor \
2304 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
249e6b63 2305
1bc7c5b6
ZW
2306/* Control behavior of x86_file_start. */
2307#define X86_FILE_START_VERSION_DIRECTIVE false
2308#define X86_FILE_START_FLTUSED false
2309
7dcbf659
JH
2310/* Flag to mark data that is in the large address area. */
2311#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2312#define SYMBOL_REF_FAR_ADDR_P(X) \
2313 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
c98f8742
JVA
2314/*
2315Local variables:
2316version-control: t
2317End:
2318*/