]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
x86-tune.def (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY): Remove m_SILVERMONT and m_INTEL...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
90922d36 80#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 81#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 82#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 83#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 84#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 85#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 86#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 87#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 88#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 89#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
90#define TARGET_ROUND TARGET_ISA_ROUND
91#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 92#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 93#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 94#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 95#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 96#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 97#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 98#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 99#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 100#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 101#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 102#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 103#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 104#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 105#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 106#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 107#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 108#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 109#define TARGET_AES TARGET_ISA_AES
bf7b5747 110#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
111#define TARGET_SHA TARGET_ISA_SHA
112#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
113#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
114#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
115#define TARGET_XSAVEC TARGET_ISA_XSAVEC
116#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
117#define TARGET_XSAVES TARGET_ISA_XSAVES
118#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 119#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 120#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
121#define TARGET_CMPXCHG16B TARGET_ISA_CX16
122#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 123#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 124#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 125#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 126#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 127#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 128#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
129#define TARGET_RTM TARGET_ISA_RTM
130#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 131#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 132#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 133#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 134#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 135#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 136#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 137#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 138#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 139#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 140#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 141#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 142#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 143#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 144#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
145#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
146#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
ab442df7 147
90922d36 148#define TARGET_LP64 TARGET_ABI_64
bf7b5747 149#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 150#define TARGET_X32 TARGET_ABI_X32
bf7b5747 151#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
152#define TARGET_16BIT TARGET_CODE16
153#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 154
cbf2e4d4
HJ
155/* SSE4.1 defines round instructions */
156#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 157#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 158
26b5109f
RS
159#include "config/vxworks-dummy.h"
160
7eb68c06 161#include "config/i386/i386-opts.h"
ccf8e764 162
c69fa2d4 163#define MAX_STRINGOP_ALGS 4
ccf8e764 164
8c996513
JH
165/* Specify what algorithm to use for stringops on known size.
166 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
167 known at compile time or estimated via feedback, the SIZE array
168 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 169 means infinity). Corresponding ALG is used then.
340ef734
JH
170 When NOALIGN is true the code guaranting the alignment of the memory
171 block is skipped.
172
8c996513 173 For example initializer:
4f3f76e6 174 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 175 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 176 be used otherwise. */
8c996513
JH
177struct stringop_algs
178{
179 const enum stringop_alg unknown_size;
180 const struct stringop_strategy {
181 const int max;
182 const enum stringop_alg alg;
340ef734 183 int noalign;
c69fa2d4 184 } size [MAX_STRINGOP_ALGS];
8c996513
JH
185};
186
d4ba09c0
SC
187/* Define the specific costs for a given cpu */
188
189struct processor_costs {
8b60264b
KG
190 const int add; /* cost of an add instruction */
191 const int lea; /* cost of a lea instruction */
192 const int shift_var; /* variable shift costs */
193 const int shift_const; /* constant shift costs */
f676971a 194 const int mult_init[5]; /* cost of starting a multiply
4977bab6 195 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 196 const int mult_bit; /* cost of multiply per each bit set */
f676971a 197 const int divide[5]; /* cost of a divide/mod
4977bab6 198 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
199 int movsx; /* The cost of movsx operation. */
200 int movzx; /* The cost of movzx operation. */
8b60264b
KG
201 const int large_insn; /* insns larger than this cost more */
202 const int move_ratio; /* The threshold of number of scalar
ac775968 203 memory-to-memory move insns. */
8b60264b
KG
204 const int movzbl_load; /* cost of loading using movzbl */
205 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
206 in QImode, HImode and SImode relative
207 to reg-reg move (2). */
8b60264b 208 const int int_store[3]; /* cost of storing integer register
96e7ae40 209 in QImode, HImode and SImode */
8b60264b
KG
210 const int fp_move; /* cost of reg,reg fld/fst */
211 const int fp_load[3]; /* cost of loading FP register
96e7ae40 212 in SFmode, DFmode and XFmode */
8b60264b 213 const int fp_store[3]; /* cost of storing FP register
96e7ae40 214 in SFmode, DFmode and XFmode */
8b60264b
KG
215 const int mmx_move; /* cost of moving MMX register. */
216 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 217 in SImode and DImode */
8b60264b 218 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 219 in SImode and DImode */
8b60264b
KG
220 const int sse_move; /* cost of moving SSE register. */
221 const int sse_load[3]; /* cost of loading SSE register
fa79946e 222 in SImode, DImode and TImode*/
8b60264b 223 const int sse_store[3]; /* cost of storing SSE register
fa79946e 224 in SImode, DImode and TImode*/
8b60264b 225 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 226 integer and vice versa. */
46cb0441
ZD
227 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
228 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
229 const int prefetch_block; /* bytes moved to cache for prefetch. */
230 const int simultaneous_prefetches; /* number of parallel prefetch
231 operations. */
4977bab6 232 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
233 const int fadd; /* cost of FADD and FSUB instructions. */
234 const int fmul; /* cost of FMUL instruction. */
235 const int fdiv; /* cost of FDIV instruction. */
236 const int fabs; /* cost of FABS instruction. */
237 const int fchs; /* cost of FCHS instruction. */
238 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 239 /* Specify what algorithm
bee51209 240 to use for stringops on unknown size. */
ad83025e 241 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
242 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
243 load and store. */
244 const int scalar_load_cost; /* Cost of scalar load. */
245 const int scalar_store_cost; /* Cost of scalar store. */
246 const int vec_stmt_cost; /* Cost of any vector operation, excluding
247 load, store, vector-to-scalar and
248 scalar-to-vector operation. */
249 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
250 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 251 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
252 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
253 const int vec_store_cost; /* Cost of vector store. */
254 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
255 cost model. */
256 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
257 vectorizer cost model. */
d4ba09c0
SC
258};
259
8b60264b 260extern const struct processor_costs *ix86_cost;
b2077fd2
JH
261extern const struct processor_costs ix86_size_cost;
262
263#define ix86_cur_cost() \
264 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 265
c98f8742
JVA
266/* Macros used in the machine description to test the flags. */
267
b97de419 268/* configure can arrange to change it. */
e075ae69 269
35b528be 270#ifndef TARGET_CPU_DEFAULT
b97de419 271#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 272#endif
35b528be 273
004d3859
GK
274#ifndef TARGET_FPMATH_DEFAULT
275#define TARGET_FPMATH_DEFAULT \
276 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
277#endif
278
bf7b5747
ST
279#ifndef TARGET_FPMATH_DEFAULT_P
280#define TARGET_FPMATH_DEFAULT_P(x) \
281 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
282#endif
283
6ac49599 284#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 285#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 286
5791cc29
JT
287/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
288 compile-time constant. */
289#ifdef IN_LIBGCC2
6ac49599 290#undef TARGET_64BIT
5791cc29
JT
291#ifdef __x86_64__
292#define TARGET_64BIT 1
293#else
294#define TARGET_64BIT 0
295#endif
296#else
6ac49599
RS
297#ifndef TARGET_BI_ARCH
298#undef TARGET_64BIT
e49080ec 299#undef TARGET_64BIT_P
67adf6a9 300#if TARGET_64BIT_DEFAULT
0c2dc519 301#define TARGET_64BIT 1
e49080ec 302#define TARGET_64BIT_P(x) 1
0c2dc519
JH
303#else
304#define TARGET_64BIT 0
e49080ec 305#define TARGET_64BIT_P(x) 0
0c2dc519
JH
306#endif
307#endif
5791cc29 308#endif
25f94bb5 309
750054a2
CT
310#define HAS_LONG_COND_BRANCH 1
311#define HAS_LONG_UNCOND_BRANCH 1
312
9e555526
RH
313#define TARGET_386 (ix86_tune == PROCESSOR_I386)
314#define TARGET_486 (ix86_tune == PROCESSOR_I486)
315#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
316#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 317#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
318#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
319#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
320#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
321#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 322#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 323#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 324#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
325#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
326#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 327#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
328#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
329#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 330#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 331#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 332#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 333#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 334#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 335#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 336#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 337#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 338#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 339
80fd744f
RH
340/* Feature tests against the various tunings. */
341enum ix86_tune_indices {
4b8bc035 342#undef DEF_TUNE
3ad20bd4 343#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
344#include "x86-tune.def"
345#undef DEF_TUNE
346X86_TUNE_LAST
80fd744f
RH
347};
348
ab442df7 349extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
350
351#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
352#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
353#define TARGET_ZERO_EXTEND_WITH_AND \
354 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 355#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
356#define TARGET_BRANCH_PREDICTION_HINTS \
357 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
358#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
359#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
360#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
361#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
362#define TARGET_PARTIAL_FLAG_REG_STALL \
363 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
364#define TARGET_LCP_STALL \
365 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
366#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
367#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
368#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
369#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
370#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
371#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
372#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
373#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
374#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
375#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
376#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
377#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
378 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
379#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
380#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
381#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
382#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
383#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
384#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
385#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
386#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
387#define TARGET_INTEGER_DFMODE_MOVES \
388 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
389#define TARGET_PARTIAL_REG_DEPENDENCY \
390 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
391#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
392 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
393#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
394 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
395#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
396 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
397#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
398 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
399#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
400#define TARGET_SSE_TYPELESS_STORES \
401 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
402#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
403#define TARGET_MEMORY_MISMATCH_STALL \
404 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
405#define TARGET_PROLOGUE_USING_MOVE \
406 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
407#define TARGET_EPILOGUE_USING_MOVE \
408 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
409#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
410#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
411#define TARGET_INTER_UNIT_MOVES_TO_VEC \
412 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
413#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
414 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
415#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 416 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
417#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
418#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
419#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
420#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
421#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
422#define TARGET_PAD_SHORT_FUNCTION \
423 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
424#define TARGET_EXT_80387_CONSTANTS \
425 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
426#define TARGET_AVOID_VECTOR_DECODE \
427 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
428#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
429 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
430#define TARGET_SLOW_IMUL_IMM32_MEM \
431 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
432#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
433#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
434#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
435#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
436#define TARGET_USE_VECTOR_FP_CONVERTS \
437 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
438#define TARGET_USE_VECTOR_CONVERTS \
439 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
440#define TARGET_SLOW_PSHUFB \
441 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
442#define TARGET_VECTOR_PARALLEL_EXECUTION \
443 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
444#define TARGET_FUSE_CMP_AND_BRANCH_32 \
445 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
446#define TARGET_FUSE_CMP_AND_BRANCH_64 \
447 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 448#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
449 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
450 : TARGET_FUSE_CMP_AND_BRANCH_32)
451#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
452 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
453#define TARGET_FUSE_ALU_AND_BRANCH \
454 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 455#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
456#define TARGET_AVOID_LEA_FOR_ADDR \
457 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
458#define TARGET_VECTORIZE_DOUBLE \
459 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
460#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
461 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
462#define TARGET_AVX128_OPTIMAL \
463 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
464#define TARGET_REASSOC_INT_TO_PARALLEL \
465 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
466#define TARGET_REASSOC_FP_TO_PARALLEL \
467 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
468#define TARGET_GENERAL_REGS_SSE_SPILL \
469 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
470#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
471 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 472#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 473 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
474#define TARGET_ADJUST_UNROLL \
475 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
476#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
477 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 478
80fd744f
RH
479/* Feature tests against the various architecture variations. */
480enum ix86_arch_indices {
cef31f9c 481 X86_ARCH_CMOV,
80fd744f
RH
482 X86_ARCH_CMPXCHG,
483 X86_ARCH_CMPXCHG8B,
484 X86_ARCH_XADD,
485 X86_ARCH_BSWAP,
486
487 X86_ARCH_LAST
488};
4f3f76e6 489
ab442df7 490extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 491
cef31f9c 492#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
493#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
494#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
495#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
496#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
497
cef31f9c
UB
498/* For sane SSE instruction set generation we need fcomi instruction.
499 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
500 expands to a sequence that includes conditional move. */
501#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
502
80fd744f
RH
503#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
504
cb261eb7 505extern unsigned char x86_prefetch_sse;
80fd744f
RH
506#define TARGET_PREFETCH_SSE x86_prefetch_sse
507
80fd744f
RH
508#define ASSEMBLER_DIALECT (ix86_asm_dialect)
509
510#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
511#define TARGET_MIX_SSE_I387 \
512 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
513
514#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
515#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
516#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 517#define TARGET_SUN_TLS 0
1ef45b77 518
67adf6a9
RH
519#ifndef TARGET_64BIT_DEFAULT
520#define TARGET_64BIT_DEFAULT 0
25f94bb5 521#endif
74dc3e94
RH
522#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
523#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
524#endif
25f94bb5 525
e0ea8797
AH
526#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
527#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
528
79f5e442
ZD
529/* Fence to use after loop using storent. */
530
531extern tree x86_mfence;
532#define FENCE_FOLLOWING_MOVNT x86_mfence
533
0ed4a390
JL
534/* Once GDB has been enhanced to deal with functions without frame
535 pointers, we can change this to allow for elimination of
536 the frame pointer in leaf functions. */
537#define TARGET_DEFAULT 0
67adf6a9 538
0a1c5e55
UB
539/* Extra bits to force. */
540#define TARGET_SUBTARGET_DEFAULT 0
541#define TARGET_SUBTARGET_ISA_DEFAULT 0
542
543/* Extra bits to force on w/ 32-bit mode. */
544#define TARGET_SUBTARGET32_DEFAULT 0
545#define TARGET_SUBTARGET32_ISA_DEFAULT 0
546
ccf8e764
RH
547/* Extra bits to force on w/ 64-bit mode. */
548#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 549#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 550
fee3eacd
IS
551/* Replace MACH-O, ifdefs by in-line tests, where possible.
552 (a) Macros defined in config/i386/darwin.h */
b069de3b 553#define TARGET_MACHO 0
9005471b 554#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
555#define MACHOPIC_ATT_STUB 0
556/* (b) Macros defined in config/darwin.h */
557#define MACHO_DYNAMIC_NO_PIC_P 0
558#define MACHOPIC_INDIRECT 0
559#define MACHOPIC_PURE 0
9005471b 560
5a579c3b
LE
561/* For the RDOS */
562#define TARGET_RDOS 0
563
9005471b 564/* For the Windows 64-bit ABI. */
7c800926
KT
565#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
566
6510e8bb
KT
567/* For the Windows 32-bit ABI. */
568#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
569
f81c9774
RH
570/* This is re-defined by cygming.h. */
571#define TARGET_SEH 0
572
a3d7ab92
KT
573/* This is re-defined by cygming.h. */
574#define TARGET_PECOFF 0
575
51212b32 576/* The default abi used by target. */
7c800926 577#define DEFAULT_ABI SYSV_ABI
ccf8e764 578
b8b3f0ca
LE
579/* The default TLS segment register used by target. */
580#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
581
cc69336f
RH
582/* Subtargets may reset this to 1 in order to enable 96-bit long double
583 with the rounding mode forced to 53 bits. */
584#define TARGET_96_ROUND_53_LONG_DOUBLE 0
585
682cd442
GK
586/* -march=native handling only makes sense with compiler running on
587 an x86 or x86_64 chip. If changing this condition, also change
588 the condition in driver-i386.c. */
589#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
590/* In driver-i386.c. */
591extern const char *host_detect_local_cpu (int argc, const char **argv);
592#define EXTRA_SPEC_FUNCTIONS \
593 { "local_cpu_detect", host_detect_local_cpu },
682cd442 594#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
595#endif
596
8981c15b
JM
597#if TARGET_64BIT_DEFAULT
598#define OPT_ARCH64 "!m32"
599#define OPT_ARCH32 "m32"
600#else
f0ea7581
L
601#define OPT_ARCH64 "m64|mx32"
602#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
603#endif
604
1cba2b96
EC
605/* Support for configure-time defaults of some command line options.
606 The order here is important so that -march doesn't squash the
607 tune or cpu values. */
ce998900 608#define OPTION_DEFAULT_SPECS \
da2d4c01 609 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
610 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
611 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 612 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
613 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
614 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
615 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
616 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
617 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 618
241e1a89
SC
619/* Specs for the compiler proper */
620
628714d8 621#ifndef CC1_CPU_SPEC
eb5bb0fd 622#define CC1_CPU_SPEC_1 ""
fa959ce4 623
682cd442 624#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
625#define CC1_CPU_SPEC CC1_CPU_SPEC_1
626#else
627#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
628"%{march=native:%>march=native %:local_cpu_detect(arch) \
629 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
630%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 631#endif
241e1a89 632#endif
c98f8742 633\f
30efe578 634/* Target CPU builtins. */
ab442df7
MM
635#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
636
637/* Target Pragmas. */
638#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 639
628714d8 640#ifndef CC1_SPEC
8015b78d 641#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
642#endif
643
644/* This macro defines names of additional specifications to put in the
645 specs that can be used in various specifications like CC1_SPEC. Its
646 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
647
648 Each subgrouping contains a string constant, that defines the
188fc5b5 649 specification name, and a string constant that used by the GCC driver
bcd86433
SC
650 program.
651
652 Do not define this macro if it does not need to do anything. */
653
654#ifndef SUBTARGET_EXTRA_SPECS
655#define SUBTARGET_EXTRA_SPECS
656#endif
657
658#define EXTRA_SPECS \
628714d8 659 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
660 SUBTARGET_EXTRA_SPECS
661\f
ce998900 662
d57a4b98
RH
663/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
664 FPU, assume that the fpcw is set to extended precision; when using
665 only SSE, rounding is correct; when using both SSE and the FPU,
666 the rounding precision is indeterminate, since either may be chosen
667 apparently at random. */
668#define TARGET_FLT_EVAL_METHOD \
5ccd517a 669 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 670
8ce94e44
JM
671/* Whether to allow x87 floating-point arithmetic on MODE (one of
672 SFmode, DFmode and XFmode) in the current excess precision
673 configuration. */
674#define X87_ENABLE_ARITH(MODE) \
675 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
676
677/* Likewise, whether to allow direct conversions from integer mode
678 IMODE (HImode, SImode or DImode) to MODE. */
679#define X87_ENABLE_FLOAT(MODE, IMODE) \
680 (flag_excess_precision == EXCESS_PRECISION_FAST \
681 || (MODE) == XFmode \
682 || ((MODE) == DFmode && (IMODE) == SImode) \
683 || (IMODE) == HImode)
684
979c67a5
UB
685/* target machine storage layout */
686
65d9c0ab
JH
687#define SHORT_TYPE_SIZE 16
688#define INT_TYPE_SIZE 32
f0ea7581
L
689#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
690#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 691#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 692#define FLOAT_TYPE_SIZE 32
65d9c0ab 693#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
694#define LONG_DOUBLE_TYPE_SIZE \
695 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 696
c637141a 697#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 698
67adf6a9 699#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 700#define MAX_BITS_PER_WORD 64
0c2dc519
JH
701#else
702#define MAX_BITS_PER_WORD 32
0c2dc519
JH
703#endif
704
c98f8742
JVA
705/* Define this if most significant byte of a word is the lowest numbered. */
706/* That is true on the 80386. */
707
708#define BITS_BIG_ENDIAN 0
709
710/* Define this if most significant byte of a word is the lowest numbered. */
711/* That is not true on the 80386. */
712#define BYTES_BIG_ENDIAN 0
713
714/* Define this if most significant word of a multiword number is the lowest
715 numbered. */
716/* Not true for 80386 */
717#define WORDS_BIG_ENDIAN 0
718
c98f8742 719/* Width of a word, in units (bytes). */
4ae8027b 720#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
721
722#ifndef IN_LIBGCC2
2e64c636
JH
723#define MIN_UNITS_PER_WORD 4
724#endif
c98f8742 725
c98f8742 726/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 727#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 728
e075ae69 729/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 730#define STACK_BOUNDARY \
51212b32 731 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 732
2e3f842f
L
733/* Stack boundary of the main function guaranteed by OS. */
734#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
735
de1132d1 736/* Minimum stack boundary. */
5bfb2af2 737#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 738
d1f87653 739/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 740 aligned; the compiler cannot rely on having this alignment. */
e075ae69 741#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 742
de1132d1 743/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
744 both 32bit and 64bit, to support codes that need 128 bit stack
745 alignment for SSE instructions, but can't realign the stack. */
746#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
747
748/* 1 if -mstackrealign should be turned on by default. It will
749 generate an alternate prologue and epilogue that realigns the
750 runtime stack if nessary. This supports mixing codes that keep a
751 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 752 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
753#define STACK_REALIGN_DEFAULT 0
754
755/* Boundary (in *bits*) on which the incoming stack is aligned. */
756#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 757
a2851b75
TG
758/* According to Windows x64 software convention, the maximum stack allocatable
759 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
760 instructions allowed to adjust the stack pointer in the epilog, forcing the
761 use of frame pointer for frames larger than 2 GB. This theorical limit
762 is reduced by 256, an over-estimated upper bound for the stack use by the
763 prologue.
764 We define only one threshold for both the prolog and the epilog. When the
4e523f33 765 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
766 regs, then save them, and then allocate the remaining. There is no SEH
767 unwind info for this later allocation. */
768#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
769
ebff937c
SH
770/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
771 mandatory for the 64-bit ABI, and may or may not be true for other
772 operating systems. */
773#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
774
f963b5d9
RS
775/* Minimum allocation boundary for the code of a function. */
776#define FUNCTION_BOUNDARY 8
777
778/* C++ stores the virtual bit in the lowest bit of function pointers. */
779#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 780
c98f8742
JVA
781/* Minimum size in bits of the largest boundary to which any
782 and all fundamental data types supported by the hardware
783 might need to be aligned. No data type wants to be aligned
17f24ff0 784 rounder than this.
fce5a9f2 785
d1f87653 786 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
787 and Pentium Pro XFmode values at 128 bit boundaries. */
788
3f97cb0b
AI
789#define BIGGEST_ALIGNMENT \
790 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 791
2e3f842f
L
792/* Maximum stack alignment. */
793#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
794
6e4f1168
L
795/* Alignment value for attribute ((aligned)). It is a constant since
796 it is the part of the ABI. We shouldn't change it with -mavx. */
797#define ATTRIBUTE_ALIGNED_VALUE 128
798
822eda12 799/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 800#define ALIGN_MODE_128(MODE) \
4501d314 801 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 802
17f24ff0 803/* The published ABIs say that doubles should be aligned on word
d1f87653 804 boundaries, so lower the alignment for structure fields unless
6fc605d8 805 -malign-double is set. */
e932b21b 806
e83f3cff
RH
807/* ??? Blah -- this macro is used directly by libobjc. Since it
808 supports no vector modes, cut out the complexity and fall back
809 on BIGGEST_FIELD_ALIGNMENT. */
810#ifdef IN_TARGET_LIBS
ef49d42e
JH
811#ifdef __x86_64__
812#define BIGGEST_FIELD_ALIGNMENT 128
813#else
e83f3cff 814#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 815#endif
e83f3cff 816#else
e932b21b
JH
817#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
818 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 819#endif
c98f8742 820
e5e8a8bf 821/* If defined, a C expression to compute the alignment given to a
a7180f70 822 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
823 and ALIGN is the alignment that the object would ordinarily have.
824 The value of this macro is used instead of that alignment to align
825 the object.
826
827 If this macro is not defined, then ALIGN is used.
828
829 The typical use of this macro is to increase alignment for string
830 constants to be word aligned so that `strcpy' calls that copy
831 constants can be done inline. */
832
d9a5f180 833#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 834
8a022443
JW
835/* If defined, a C expression to compute the alignment for a static
836 variable. TYPE is the data type, and ALIGN is the alignment that
837 the object would ordinarily have. The value of this macro is used
838 instead of that alignment to align the object.
839
840 If this macro is not defined, then ALIGN is used.
841
842 One use of this macro is to increase alignment of medium-size
843 data to make it all fit in fewer cache lines. Another is to
844 cause character arrays to be word-aligned so that `strcpy' calls
845 that copy constants to character arrays can be done inline. */
846
df8a1d28
JJ
847#define DATA_ALIGNMENT(TYPE, ALIGN) \
848 ix86_data_alignment ((TYPE), (ALIGN), true)
849
850/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
851 some alignment increase, instead of optimization only purposes. E.g.
852 AMD x86-64 psABI says that variables with array type larger than 15 bytes
853 must be aligned to 16 byte boundaries.
854
855 If this macro is not defined, then ALIGN is used. */
856
857#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
858 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
859
860/* If defined, a C expression to compute the alignment for a local
861 variable. TYPE is the data type, and ALIGN is the alignment that
862 the object would ordinarily have. The value of this macro is used
863 instead of that alignment to align the object.
864
865 If this macro is not defined, then ALIGN is used.
866
867 One use of this macro is to increase alignment of medium-size
868 data to make it all fit in fewer cache lines. */
869
76fe54f0
L
870#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
871 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
872
873/* If defined, a C expression to compute the alignment for stack slot.
874 TYPE is the data type, MODE is the widest mode available, and ALIGN
875 is the alignment that the slot would ordinarily have. The value of
876 this macro is used instead of that alignment to align the slot.
877
878 If this macro is not defined, then ALIGN is used when TYPE is NULL,
879 Otherwise, LOCAL_ALIGNMENT will be used.
880
881 One use of this macro is to set alignment of stack slot to the
882 maximum alignment of all possible modes which the slot may have. */
883
884#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
885 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 886
9bfaf89d
JJ
887/* If defined, a C expression to compute the alignment for a local
888 variable DECL.
889
890 If this macro is not defined, then
891 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
892
893 One use of this macro is to increase alignment of medium-size
894 data to make it all fit in fewer cache lines. */
895
896#define LOCAL_DECL_ALIGNMENT(DECL) \
897 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
898
ae58e548
JJ
899/* If defined, a C expression to compute the minimum required alignment
900 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
901 MODE, assuming normal alignment ALIGN.
902
903 If this macro is not defined, then (ALIGN) will be used. */
904
905#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
906 ix86_minimum_alignment (EXP, MODE, ALIGN)
907
9bfaf89d 908
9cd10576 909/* Set this nonzero if move instructions will actually fail to work
c98f8742 910 when given unaligned data. */
b4ac57ab 911#define STRICT_ALIGNMENT 0
c98f8742
JVA
912
913/* If bit field type is int, don't let it cross an int,
914 and give entire struct the alignment of an int. */
43a88a8c 915/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 916#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
917\f
918/* Standard register usage. */
919
920/* This processor has special stack-like registers. See reg-stack.c
892a2d68 921 for details. */
c98f8742
JVA
922
923#define STACK_REGS
ce998900 924
d9a5f180 925#define IS_STACK_MODE(MODE) \
63001560
UB
926 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
927 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 928 || (MODE) == XFmode)
c98f8742
JVA
929
930/* Number of actual hardware registers.
931 The hardware registers are assigned numbers for the compiler
932 from 0 to just below FIRST_PSEUDO_REGISTER.
933 All registers that the compiler knows about must be given numbers,
934 even those that are not normally considered general registers.
935
936 In the 80386 we give the 8 general purpose registers the numbers 0-7.
937 We number the floating point registers 8-15.
938 Note that registers 0-7 can be accessed as a short or int,
939 while only 0-3 may be used with byte `mov' instructions.
940
941 Reg 16 does not correspond to any hardware register, but instead
942 appears in the RTL as an argument pointer prior to reload, and is
943 eliminated during reloading in favor of either the stack or frame
892a2d68 944 pointer. */
c98f8742 945
089d1227 946#define FIRST_PSEUDO_REGISTER 77
c98f8742 947
3073d01c
ML
948/* Number of hardware registers that go into the DWARF-2 unwind info.
949 If not defined, equals FIRST_PSEUDO_REGISTER. */
950
951#define DWARF_FRAME_REGISTERS 17
952
c98f8742
JVA
953/* 1 for registers that have pervasive standard uses
954 and are not available for the register allocator.
3f3f2124 955 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 956
621bc046
UB
957 REX registers are disabled for 32bit targets in
958 TARGET_CONDITIONAL_REGISTER_USAGE. */
959
a7180f70
BS
960#define FIXED_REGISTERS \
961/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 962{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
963/*arg,flags,fpsr,fpcr,frame*/ \
964 1, 1, 1, 1, 1, \
a7180f70
BS
965/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
966 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 967/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
968 0, 0, 0, 0, 0, 0, 0, 0, \
969/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 970 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 971/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
972 0, 0, 0, 0, 0, 0, 0, 0, \
973/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
976 0, 0, 0, 0, 0, 0, 0, 0, \
977/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 978 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
979
980/* 1 for registers not available across function calls.
981 These must include the FIXED_REGISTERS and also any
982 registers that can be used without being saved.
983 The latter must include the registers where values are returned
984 and the register where structure-value addresses are passed.
fce5a9f2
EC
985 Aside from that, you can include as many other registers as you like.
986
621bc046
UB
987 Value is set to 1 if the register is call used unconditionally.
988 Bit one is set if the register is call used on TARGET_32BIT ABI.
989 Bit two is set if the register is call used on TARGET_64BIT ABI.
990 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
991
992 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
993
a7180f70
BS
994#define CALL_USED_REGISTERS \
995/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 996{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
997/*arg,flags,fpsr,fpcr,frame*/ \
998 1, 1, 1, 1, 1, \
a7180f70 999/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1000 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1001/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1002 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1003/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1004 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1005/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1006 6, 6, 6, 6, 6, 6, 6, 6, \
1007/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1008 6, 6, 6, 6, 6, 6, 6, 6, \
1009/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1010 6, 6, 6, 6, 6, 6, 6, 6, \
1011 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 1012 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1013
3b3c6a3f
MM
1014/* Order in which to allocate registers. Each register must be
1015 listed once, even those in FIXED_REGISTERS. List frame pointer
1016 late and fixed registers last. Note that, in general, we prefer
1017 registers listed in CALL_USED_REGISTERS, keeping the others
1018 available for storage of persistent values.
1019
5a733826 1020 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1021 so this is just empty initializer for array. */
3b3c6a3f 1022
162f023b
JH
1023#define REG_ALLOC_ORDER \
1024{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1025 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1026 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1027 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
089d1227 1028 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1029
5a733826 1030/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1031 to be rearranged based on a particular function. When using sse math,
03c259ad 1032 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1033
5a733826 1034#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1035
f5316dfe 1036
7c800926
KT
1037#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1038
c98f8742
JVA
1039/* Return number of consecutive hard regs needed starting at reg REGNO
1040 to hold something of mode MODE.
1041 This is ordinarily the length in words of a value of mode MODE
1042 but can be less for certain modes in special long registers.
1043
fce5a9f2 1044 Actually there are no two word move instructions for consecutive
c98f8742 1045 registers. And only registers 0-3 may have mov byte instructions
63001560 1046 applied to them. */
c98f8742 1047
ce998900 1048#define HARD_REGNO_NREGS(REGNO, MODE) \
9e4a4dd6
AI
1049 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) \
1050 || MMX_REGNO_P (REGNO) || MASK_REGNO_P (REGNO) \
92d0fb09 1051 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1052 : ((MODE) == XFmode \
92d0fb09 1053 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1054 : (MODE) == XCmode \
92d0fb09 1055 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1056 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1057
8521c414
JM
1058#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1059 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1060 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1061 ? 0 \
1062 : ((MODE) == XFmode || (MODE) == XCmode)) \
1063 : 0)
1064
1065#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1066
95879c72
L
1067#define VALID_AVX256_REG_MODE(MODE) \
1068 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1069 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1070 || (MODE) == V4DFmode)
95879c72 1071
4ac005ba 1072#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1073 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1074
3f97cb0b
AI
1075#define VALID_AVX512F_SCALAR_MODE(MODE) \
1076 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1077 || (MODE) == SFmode)
1078
1079#define VALID_AVX512F_REG_MODE(MODE) \
1080 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1081 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1082 || (MODE) == V4TImode)
1083
1084#define VALID_AVX512VL_128_REG_MODE(MODE) \
1085 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1086 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1087
ce998900
UB
1088#define VALID_SSE2_REG_MODE(MODE) \
1089 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1090 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1091
d9a5f180 1092#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1093 ((MODE) == V1TImode || (MODE) == TImode \
1094 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1095 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1096
47f339cf 1097#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1098 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1099
d9a5f180 1100#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1101 ((MODE == V1DImode) || (MODE) == DImode \
1102 || (MODE) == V2SImode || (MODE) == SImode \
1103 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1104
ce998900
UB
1105#define VALID_DFP_MODE_P(MODE) \
1106 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1107
d9a5f180 1108#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1109 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1110 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1111
d9a5f180 1112#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1113 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1114 || (MODE) == DImode \
1115 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1116 || (MODE) == CDImode \
1117 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1118 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1119
822eda12 1120/* Return true for modes passed in SSE registers. */
ce998900 1121#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1122 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1123 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1124 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1125 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1126 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1127 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1128 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1129 || (MODE) == V16SFmode)
822eda12 1130
85a77221
AI
1131#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1132
9e4a4dd6
AI
1133#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1134
e075ae69 1135/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1136
a946dd00 1137#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1138 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1139
1140/* Value is 1 if it is a good idea to tie two pseudo registers
1141 when one has mode MODE1 and one has mode MODE2.
1142 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1143 for any hard reg, then this must be 0 for correct output. */
1144
c1c5b5e3 1145#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1146
ff25ef99
ZD
1147/* It is possible to write patterns to move flags; but until someone
1148 does it, */
1149#define AVOID_CCMODE_COPIES
c98f8742 1150
e075ae69 1151/* Specify the modes required to caller save a given hard regno.
787dc842 1152 We do this on i386 to prevent flags from being saved at all.
e075ae69 1153
787dc842
JH
1154 Kill any attempts to combine saving of modes. */
1155
d9a5f180
GS
1156#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1157 (CC_REGNO_P (REGNO) ? VOIDmode \
1158 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1159 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1160 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1161 || MASK_REGNO_P (REGNO)) ? SImode \
1162 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1163 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1164 : (MODE))
ce998900 1165
51ba747a
RH
1166/* The only ABI that saves SSE registers across calls is Win64 (thus no
1167 need to check the current ABI here), and with AVX enabled Win64 only
1168 guarantees that the low 16 bytes are saved. */
1169#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1170 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1171
c98f8742
JVA
1172/* Specify the registers used for certain standard purposes.
1173 The values of these macros are register numbers. */
1174
1175/* on the 386 the pc register is %eip, and is not usable as a general
1176 register. The ordinary mov instructions won't work */
1177/* #define PC_REGNUM */
1178
1179/* Register to use for pushing function arguments. */
1180#define STACK_POINTER_REGNUM 7
1181
1182/* Base register for access to local variables of the function. */
564d80f4
JH
1183#define HARD_FRAME_POINTER_REGNUM 6
1184
1185/* Base register for access to local variables of the function. */
b0d95de8 1186#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1187
1188/* First floating point reg */
1189#define FIRST_FLOAT_REG 8
1190
1191/* First & last stack-like regs */
1192#define FIRST_STACK_REG FIRST_FLOAT_REG
1193#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1194
a7180f70
BS
1195#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1196#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1197
3f97cb0b 1198#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1199#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1200
3f97cb0b 1201#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1202#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1203
3f97cb0b 1204#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1205#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1206
3f97cb0b
AI
1207#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1208#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1209
85a77221
AI
1210#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1211#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1212
aabcd309 1213/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1214 requiring a frame pointer. */
1215#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1216#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1217#endif
1218
1219/* Make sure we can access arbitrary call frames. */
1220#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1221
1222/* Base register for access to arguments of the function. */
1223#define ARG_POINTER_REGNUM 16
1224
c98f8742 1225/* Register to hold the addressing base for position independent
5b43fed1
RH
1226 code access to data items. We don't use PIC pointer for 64bit
1227 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1228 pessimizing code dealing with EBX.
bd09bdeb
RH
1229
1230 To avoid clobbering a call-saved register unnecessarily, we renumber
1231 the pic register when possible. The change is visible after the
1232 prologue has been emitted. */
1233
2e3f842f 1234#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1235
1236#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1237 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1238 || TARGET_PECOFF)) \
7dcbf659 1239 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1240 : reload_completed ? REGNO (pic_offset_table_rtx) \
1241 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1242
5fc0e5df
KW
1243#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1244
c51e6d85 1245/* This is overridden by <cygwin.h>. */
5e062767
DS
1246#define MS_AGGREGATE_RETURN 0
1247
61fec9ff 1248#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1249\f
1250/* Define the classes of registers for register constraints in the
1251 machine description. Also define ranges of constants.
1252
1253 One of the classes must always be named ALL_REGS and include all hard regs.
1254 If there is more than one class, another class must be named NO_REGS
1255 and contain no registers.
1256
1257 The name GENERAL_REGS must be the name of a class (or an alias for
1258 another name such as ALL_REGS). This is the class of registers
1259 that is allowed by "g" or "r" in a register constraint.
1260 Also, registers outside this class are allocated only when
1261 instructions express preferences for them.
1262
1263 The classes must be numbered in nondecreasing order; that is,
1264 a larger-numbered class must never be contained completely
1265 in a smaller-numbered class.
1266
1267 For any two classes, it is very desirable that there be another
ab408a86
JVA
1268 class that represents their union.
1269
1270 It might seem that class BREG is unnecessary, since no useful 386
1271 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1272 and the "b" register constraint is useful in asms for syscalls.
1273
03c259ad 1274 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1275
1276enum reg_class
1277{
1278 NO_REGS,
e075ae69 1279 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1280 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1281 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1282 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1283 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1284 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1285 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1286 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1287 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1288 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1289 FLOAT_REGS,
06f4e35d 1290 SSE_FIRST_REG,
a7180f70 1291 SSE_REGS,
3f97cb0b
AI
1292 EVEX_SSE_REGS,
1293 ALL_SSE_REGS,
a7180f70 1294 MMX_REGS,
446988df
JH
1295 FP_TOP_SSE_REGS,
1296 FP_SECOND_SSE_REGS,
1297 FLOAT_SSE_REGS,
1298 FLOAT_INT_REGS,
1299 INT_SSE_REGS,
1300 FLOAT_INT_SSE_REGS,
85a77221
AI
1301 MASK_EVEX_REGS,
1302 MASK_REGS,
c98f8742
JVA
1303 ALL_REGS, LIM_REG_CLASSES
1304};
1305
d9a5f180
GS
1306#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1307
1308#define INTEGER_CLASS_P(CLASS) \
1309 reg_class_subset_p ((CLASS), GENERAL_REGS)
1310#define FLOAT_CLASS_P(CLASS) \
1311 reg_class_subset_p ((CLASS), FLOAT_REGS)
1312#define SSE_CLASS_P(CLASS) \
3f97cb0b 1313 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1314#define MMX_CLASS_P(CLASS) \
f75959a6 1315 ((CLASS) == MMX_REGS)
d9a5f180
GS
1316#define MAYBE_INTEGER_CLASS_P(CLASS) \
1317 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1318#define MAYBE_FLOAT_CLASS_P(CLASS) \
1319 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1320#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1321 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1322#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1323 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1324#define MAYBE_MASK_CLASS_P(CLASS) \
1325 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1326
1327#define Q_CLASS_P(CLASS) \
1328 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1329
0bd72901
UB
1330#define MAYBE_NON_Q_CLASS_P(CLASS) \
1331 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1332
43f3a59d 1333/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1334
1335#define REG_CLASS_NAMES \
1336{ "NO_REGS", \
ab408a86 1337 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1338 "SIREG", "DIREG", \
e075ae69
RH
1339 "AD_REGS", \
1340 "Q_REGS", "NON_Q_REGS", \
c98f8742 1341 "INDEX_REGS", \
3f3f2124 1342 "LEGACY_REGS", \
621bc046 1343 "CLOBBERED_REGS", \
c98f8742
JVA
1344 "GENERAL_REGS", \
1345 "FP_TOP_REG", "FP_SECOND_REG", \
1346 "FLOAT_REGS", \
cb482895 1347 "SSE_FIRST_REG", \
a7180f70 1348 "SSE_REGS", \
3f97cb0b
AI
1349 "EVEX_SSE_REGS", \
1350 "ALL_SSE_REGS", \
a7180f70 1351 "MMX_REGS", \
446988df
JH
1352 "FP_TOP_SSE_REGS", \
1353 "FP_SECOND_SSE_REGS", \
1354 "FLOAT_SSE_REGS", \
8fcaaa80 1355 "FLOAT_INT_REGS", \
446988df
JH
1356 "INT_SSE_REGS", \
1357 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1358 "MASK_EVEX_REGS", \
1359 "MASK_REGS", \
c98f8742
JVA
1360 "ALL_REGS" }
1361
ac2e563f
RH
1362/* Define which registers fit in which classes. This is an initializer
1363 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1364
621bc046
UB
1365 Note that CLOBBERED_REGS are calculated by
1366 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1367
3f97cb0b 1368#define REG_CLASS_CONTENTS \
089d1227
IE
1369{ { 0x00, 0x0, 0x0 }, \
1370 { 0x01, 0x0, 0x0 }, /* AREG */ \
1371 { 0x02, 0x0, 0x0 }, /* DREG */ \
1372 { 0x04, 0x0, 0x0 }, /* CREG */ \
1373 { 0x08, 0x0, 0x0 }, /* BREG */ \
1374 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1375 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1376 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1377 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1378 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1379 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1380 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1381 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1382 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1383 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1384 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1385 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1386 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1387{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1388 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1389{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1390{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1391{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1392{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1393{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1394{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1395{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1396{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1397 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1398 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1399{ 0xffffffff,0xffffffff,0x1fff } \
e075ae69 1400}
c98f8742
JVA
1401
1402/* The same information, inverted:
1403 Return the class number of the smallest class containing
1404 reg number REGNO. This could be a conditional expression
1405 or could index an array. */
1406
c98f8742
JVA
1407#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1408
42db504c
SB
1409/* When this hook returns true for MODE, the compiler allows
1410 registers explicitly used in the rtl to be used as spill registers
1411 but prevents the compiler from extending the lifetime of these
1412 registers. */
1413#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1414
fc27f749
UB
1415#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1416#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1417
1418#define GENERAL_REG_P(X) \
6189a572 1419 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1420#define GENERAL_REGNO_P(N) \
1421 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1422
fc27f749
UB
1423#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1424#define ANY_QI_REGNO_P(N) \
1425 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1426
fc27f749 1427#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1428#define REX_INT_REGNO_P(N) \
1429 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1430
66aaf16f
UB
1431#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1432#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1433
446988df 1434#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1435#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1436
54a88090 1437#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1438 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1439
fc27f749 1440#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1441#define SSE_REGNO_P(N) \
1442 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1443 || REX_SSE_REGNO_P (N) \
1444 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1445
4977bab6 1446#define REX_SSE_REGNO_P(N) \
fb84c7a0 1447 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1448
3f97cb0b
AI
1449#define EXT_REX_SSE_REGNO_P(N) \
1450 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1451
d9a5f180 1452#define SSE_REGNO(N) \
3f97cb0b
AI
1453 ((N) < 8 ? FIRST_SSE_REG + (N) \
1454 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1455 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1456
9e4a4dd6 1457#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221
AI
1458#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1459#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1460
d9a5f180 1461#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1462 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1463
cbf2e4d4
HJ
1464#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1465 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1466 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1467
fc27f749 1468#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1469#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1470
fc27f749 1471#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1472
e075ae69
RH
1473#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1474#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1475
c98f8742
JVA
1476/* The class value for index registers, and the one for base regs. */
1477
1478#define INDEX_REG_CLASS INDEX_REGS
1479#define BASE_REG_CLASS GENERAL_REGS
1480
c98f8742 1481/* Place additional restrictions on the register class to use when it
4cbb525c 1482 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1483 register for which class CLASS would ordinarily be used.
1484
1485 We avoid classes containing registers from multiple units due to
1486 the limitation in ix86_secondary_memory_needed. We limit these
1487 classes to their "natural mode" single unit register class, depending
1488 on the unit availability.
1489
1490 Please note that reg_class_subset_p is not commutative, so these
1491 conditions mean "... if (CLASS) includes ALL registers from the
1492 register set." */
1493
1494#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1495 (((MODE) == QImode && !TARGET_64BIT \
1496 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1497 : (((MODE) == SImode || (MODE) == DImode) \
1498 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1499 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1500 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1501 : (X87_FLOAT_MODE_P (MODE) \
1502 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1503 : (CLASS))
c98f8742 1504
85ff473e 1505/* If we are copying between general and FP registers, we need a memory
f84aa48a 1506 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1507#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1508 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1509
c62b3659
UB
1510/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1511 There is no need to emit full 64 bit move on 64 bit targets
1512 for integral modes that can be moved using 32 bit move. */
1513#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1514 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1515 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1516 : MODE)
1517
1272914c
RH
1518/* Return a class of registers that cannot change FROM mode to TO mode. */
1519
1520#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1521 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1522\f
1523/* Stack layout; function entry, exit and calling. */
1524
1525/* Define this if pushing a word on the stack
1526 makes the stack pointer a smaller address. */
1527#define STACK_GROWS_DOWNWARD
1528
a4d05547 1529/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1530 is at the high-address end of the local variables;
1531 that is, each additional local variable allocated
1532 goes at a more negative offset in the frame. */
f62c8a5c 1533#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1534
1535/* Offset within stack frame to start allocating local variables at.
1536 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1537 first local allocated. Otherwise, it is the offset to the BEGINNING
1538 of the first local allocated. */
1539#define STARTING_FRAME_OFFSET 0
1540
8c2b2fae
UB
1541/* If we generate an insn to push BYTES bytes, this says how many the stack
1542 pointer really advances by. On 386, we have pushw instruction that
1543 decrements by exactly 2 no matter what the position was, there is no pushb.
1544
1545 But as CIE data alignment factor on this arch is -4 for 32bit targets
1546 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1547 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1548
d2836273 1549#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1550 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1551
1552/* If defined, the maximum amount of space required for outgoing arguments
1553 will be computed and placed into the variable `crtl->outgoing_args_size'.
1554 No space will be pushed onto the stack for each call; instead, the
1555 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1556
1557 In 32bit mode enabling argument accumulation results in about 5% code size
1558 growth becuase move instructions are less compact than push. In 64bit
1559 mode the difference is less drastic but visible.
1560
1561 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1562 actually grow with accumulation. Is that because accumulated args
41ee845b 1563 unwind info became unnecesarily bloated?
f830ddc2
RH
1564
1565 With the 64-bit MS ABI, we can generate correct code with or without
1566 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1567 generated without accumulated args is terrible.
41ee845b
JH
1568
1569 If stack probes are required, the space used for large function
1570 arguments on the stack must also be probed, so enable
1571 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1572
6c6094f1 1573#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1574 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1575 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1576
1577/* If defined, a C expression whose value is nonzero when we want to use PUSH
1578 instructions to pass outgoing arguments. */
1579
1580#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1581
2da4124d
L
1582/* We want the stack and args grow in opposite directions, even if
1583 PUSH_ARGS is 0. */
1584#define PUSH_ARGS_REVERSED 1
1585
c98f8742
JVA
1586/* Offset of first parameter from the argument pointer register value. */
1587#define FIRST_PARM_OFFSET(FNDECL) 0
1588
a7180f70
BS
1589/* Define this macro if functions should assume that stack space has been
1590 allocated for arguments even when their values are passed in registers.
1591
1592 The value of this macro is the size, in bytes, of the area reserved for
1593 arguments passed in registers for the function represented by FNDECL.
1594
1595 This space can be allocated by the caller, or be a part of the
1596 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1597 which. */
7c800926
KT
1598#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1599
4ae8027b 1600#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1601 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1602
c98f8742
JVA
1603/* Define how to find the value returned by a library function
1604 assuming the value has mode MODE. */
1605
4ae8027b 1606#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1607
e9125c09
TW
1608/* Define the size of the result block used for communication between
1609 untyped_call and untyped_return. The block contains a DImode value
1610 followed by the block used by fnsave and frstor. */
1611
1612#define APPLY_RESULT_SIZE (8+108)
1613
b08de47e 1614/* 1 if N is a possible register number for function argument passing. */
53c17031 1615#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1616
1617/* Define a data type for recording info about an argument list
1618 during the scan of that argument list. This data type should
1619 hold all necessary information about the function itself
1620 and about the args processed so far, enough to enable macros
b08de47e 1621 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1622
e075ae69 1623typedef struct ix86_args {
fa283935 1624 int words; /* # words passed so far */
b08de47e
MM
1625 int nregs; /* # registers available for passing */
1626 int regno; /* next available register number */
3e65f251
KT
1627 int fastcall; /* fastcall or thiscall calling convention
1628 is used */
fa283935 1629 int sse_words; /* # sse words passed so far */
a7180f70 1630 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1631 int warn_avx512f; /* True when we want to warn
1632 about AVX512F ABI. */
95879c72 1633 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1634 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1635 int warn_mmx; /* True when we want to warn about MMX ABI. */
1636 int sse_regno; /* next available sse register number */
1637 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1638 int mmx_nregs; /* # mmx registers available for passing */
1639 int mmx_regno; /* next available mmx register number */
892a2d68 1640 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1641 int caller; /* true if it is caller. */
2824d6e5
UB
1642 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1643 SFmode/DFmode arguments should be passed
1644 in SSE registers. Otherwise 0. */
51212b32 1645 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1646 MS_ABI for ms abi. */
b08de47e 1647} CUMULATIVE_ARGS;
c98f8742
JVA
1648
1649/* Initialize a variable CUM of type CUMULATIVE_ARGS
1650 for a call to a function whose data type is FNTYPE.
b08de47e 1651 For a library call, FNTYPE is 0. */
c98f8742 1652
0f6937fe 1653#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1654 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1655 (N_NAMED_ARGS) != -1)
c98f8742 1656
c98f8742
JVA
1657/* Output assembler code to FILE to increment profiler label # LABELNO
1658 for profiling a function entry. */
1659
a5fa1ecd
JH
1660#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1661
1662#define MCOUNT_NAME "_mcount"
1663
3c5273a9
KT
1664#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1665
a5fa1ecd 1666#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1667
1668/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1669 the stack pointer does not matter. The value is tested only in
1670 functions that have frame pointers.
1671 No definition is equivalent to always zero. */
fce5a9f2 1672/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1673 we have to restore it ourselves from the frame pointer, in order to
1674 use pop */
1675
1676#define EXIT_IGNORE_STACK 1
1677
c98f8742
JVA
1678/* Output assembler code for a block containing the constant parts
1679 of a trampoline, leaving space for the variable parts. */
1680
a269a03c 1681/* On the 386, the trampoline contains two instructions:
c98f8742 1682 mov #STATIC,ecx
a269a03c
JC
1683 jmp FUNCTION
1684 The trampoline is generated entirely at runtime. The operand of JMP
1685 is the address of FUNCTION relative to the instruction following the
1686 JMP (which is 5 bytes long). */
c98f8742
JVA
1687
1688/* Length in units of the trampoline for entering a nested function. */
1689
3452586b 1690#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1691\f
1692/* Definitions for register eliminations.
1693
1694 This is an array of structures. Each structure initializes one pair
1695 of eliminable registers. The "from" register number is given first,
1696 followed by "to". Eliminations of the same "from" register are listed
1697 in order of preference.
1698
afc2cd05
NC
1699 There are two registers that can always be eliminated on the i386.
1700 The frame pointer and the arg pointer can be replaced by either the
1701 hard frame pointer or to the stack pointer, depending upon the
1702 circumstances. The hard frame pointer is not used before reload and
1703 so it is not eligible for elimination. */
c98f8742 1704
564d80f4
JH
1705#define ELIMINABLE_REGS \
1706{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1707 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1708 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1709 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1710
c98f8742
JVA
1711/* Define the offset between two registers, one to be eliminated, and the other
1712 its replacement, at the start of a routine. */
1713
d9a5f180
GS
1714#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1715 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1716\f
1717/* Addressing modes, and classification of registers for them. */
1718
c98f8742
JVA
1719/* Macros to check register numbers against specific register classes. */
1720
1721/* These assume that REGNO is a hard or pseudo reg number.
1722 They give nonzero only if REGNO is a hard reg of the suitable class
1723 or a pseudo reg currently allocated to a suitable hard reg.
1724 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1725 has been allocated, which happens in reginfo.c during register
1726 allocation. */
c98f8742 1727
3f3f2124
JH
1728#define REGNO_OK_FOR_INDEX_P(REGNO) \
1729 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1730 || REX_INT_REGNO_P (REGNO) \
1731 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1732 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1733
3f3f2124 1734#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1735 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1736 || (REGNO) == ARG_POINTER_REGNUM \
1737 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1738 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1739
c98f8742
JVA
1740/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1741 and check its validity for a certain class.
1742 We have two alternate definitions for each of them.
1743 The usual definition accepts all pseudo regs; the other rejects
1744 them unless they have been allocated suitable hard regs.
1745 The symbol REG_OK_STRICT causes the latter definition to be used.
1746
1747 Most source files want to accept pseudo regs in the hope that
1748 they will get allocated to the class that the insn wants them to be in.
1749 Source files for reload pass need to be strict.
1750 After reload, it makes no difference, since pseudo regs have
1751 been eliminated by then. */
1752
c98f8742 1753
ff482c8d 1754/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1755#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1756 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1757 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1758 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1759
3b3c6a3f 1760#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1761 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1762 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1763 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1764 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1765
3b3c6a3f
MM
1766/* Strict versions, hard registers only */
1767#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1768#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1769
3b3c6a3f 1770#ifndef REG_OK_STRICT
d9a5f180
GS
1771#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1772#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1773
1774#else
d9a5f180
GS
1775#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1776#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1777#endif
1778
331d9186 1779/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1780 that is a valid memory address for an instruction.
1781 The MODE argument is the machine mode for the MEM expression
1782 that wants to use this address.
1783
331d9186 1784 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1785 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1786
1787 See legitimize_pic_address in i386.c for details as to what
1788 constitutes a legitimate address when -fpic is used. */
1789
1790#define MAX_REGS_PER_ADDRESS 2
1791
f996902d 1792#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1793
ae1547cc
UB
1794/* Try a machine-dependent way of reloading an illegitimate address
1795 operand. If we find one, push the reload and jump to WIN. This
1796 macro is used in only one place: `find_reloads_address' in reload.c. */
1797
1798#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1799do { \
1800 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1801 (int)(TYPE), (INDL))) \
1802 goto WIN; \
1803} while (0)
1804
b949ea8b
JW
1805/* If defined, a C expression to determine the base term of address X.
1806 This macro is used in only one place: `find_base_term' in alias.c.
1807
1808 It is always safe for this macro to not be defined. It exists so
1809 that alias analysis can understand machine-dependent addresses.
1810
1811 The typical use of this macro is to handle addresses containing
1812 a label_ref or symbol_ref within an UNSPEC. */
1813
d9a5f180 1814#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1815
c98f8742 1816/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1817 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1818 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1819
f996902d 1820#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1821
1822#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1823 (GET_CODE (X) == SYMBOL_REF \
1824 || GET_CODE (X) == LABEL_REF \
1825 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1826\f
b08de47e
MM
1827/* Max number of args passed in registers. If this is more than 3, we will
1828 have problems with ebx (register #4), since it is a caller save register and
1829 is also used as the pic register in ELF. So for now, don't allow more than
1830 3 registers to be passed in registers. */
1831
7c800926
KT
1832/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1833#define X86_64_REGPARM_MAX 6
72fa3605 1834#define X86_64_MS_REGPARM_MAX 4
7c800926 1835
72fa3605 1836#define X86_32_REGPARM_MAX 3
7c800926 1837
4ae8027b 1838#define REGPARM_MAX \
2824d6e5
UB
1839 (TARGET_64BIT \
1840 ? (TARGET_64BIT_MS_ABI \
1841 ? X86_64_MS_REGPARM_MAX \
1842 : X86_64_REGPARM_MAX) \
4ae8027b 1843 : X86_32_REGPARM_MAX)
d2836273 1844
72fa3605
UB
1845#define X86_64_SSE_REGPARM_MAX 8
1846#define X86_64_MS_SSE_REGPARM_MAX 4
1847
b6010cab 1848#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1849
4ae8027b 1850#define SSE_REGPARM_MAX \
2824d6e5
UB
1851 (TARGET_64BIT \
1852 ? (TARGET_64BIT_MS_ABI \
1853 ? X86_64_MS_SSE_REGPARM_MAX \
1854 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1855 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1856
1857#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1858\f
1859/* Specify the machine mode that this machine uses
1860 for the index in the tablejump instruction. */
dc4d7240 1861#define CASE_VECTOR_MODE \
6025b127 1862 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1863
c98f8742
JVA
1864/* Define this as 1 if `char' should by default be signed; else as 0. */
1865#define DEFAULT_SIGNED_CHAR 1
1866
1867/* Max number of bytes we can move from memory to memory
1868 in one reasonably fast instruction. */
65d9c0ab
JH
1869#define MOVE_MAX 16
1870
1871/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1872 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1873 number of bytes we can move with a single instruction. */
63001560 1874#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1875
7e24ffc9 1876/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1877 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1878 Increasing the value will always make code faster, but eventually
1879 incurs high cost in increased code size.
c98f8742 1880
e2e52e1b 1881 If you don't define this, a reasonable default is used. */
c98f8742 1882
e04ad03d 1883#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1884
45d78e7f
JJ
1885/* If a clear memory operation would take CLEAR_RATIO or more simple
1886 move-instruction sequences, we will do a clrmem or libcall instead. */
1887
e04ad03d 1888#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1889
53f00dde
UB
1890/* Define if shifts truncate the shift count which implies one can
1891 omit a sign-extension or zero-extension of a shift count.
1892
1893 On i386, shifts do truncate the count. But bit test instructions
1894 take the modulo of the bit offset operand. */
c98f8742
JVA
1895
1896/* #define SHIFT_COUNT_TRUNCATED */
1897
1898/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1899 is done just by pretending it is already truncated. */
1900#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1901
d9f32422
JH
1902/* A macro to update M and UNSIGNEDP when an object whose type is
1903 TYPE and which has the specified mode and signedness is to be
1904 stored in a register. This macro is only called when TYPE is a
1905 scalar type.
1906
f710504c 1907 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1908 quantities to SImode. The choice depends on target type. */
1909
1910#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1911do { \
d9f32422
JH
1912 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1913 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1914 (MODE) = SImode; \
1915} while (0)
d9f32422 1916
c98f8742
JVA
1917/* Specify the machine mode that pointers have.
1918 After generation of rtl, the compiler makes no further distinction
1919 between pointers and any other objects of this machine mode. */
28968d91 1920#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1921
f0ea7581
L
1922/* A C expression whose value is zero if pointers that need to be extended
1923 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1924 greater then zero if they are zero-extended and less then zero if the
1925 ptr_extend instruction should be used. */
1926
1927#define POINTERS_EXTEND_UNSIGNED 1
1928
c98f8742
JVA
1929/* A function address in a call instruction
1930 is a byte address (for indexing purposes)
1931 so give the MEM rtx a byte's mode. */
1932#define FUNCTION_MODE QImode
d4ba09c0 1933\f
d4ba09c0 1934
d4ba09c0
SC
1935/* A C expression for the cost of a branch instruction. A value of 1
1936 is the default; other values are interpreted relative to that. */
1937
3a4fd356
JH
1938#define BRANCH_COST(speed_p, predictable_p) \
1939 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1940
e327d1a3
L
1941/* An integer expression for the size in bits of the largest integer machine
1942 mode that should actually be used. We allow pairs of registers. */
1943#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1944
d4ba09c0
SC
1945/* Define this macro as a C expression which is nonzero if accessing
1946 less than a word of memory (i.e. a `char' or a `short') is no
1947 faster than accessing a word of memory, i.e., if such access
1948 require more than one instruction or if there is no difference in
1949 cost between byte and (aligned) word loads.
1950
1951 When this macro is not defined, the compiler will access a field by
1952 finding the smallest containing object; when it is defined, a
1953 fullword load will be used if alignment permits. Unless bytes
1954 accesses are faster than word accesses, using word accesses is
1955 preferable since it may eliminate subsequent memory access if
1956 subsequent accesses occur to other fields in the same word of the
1957 structure, but to different bytes. */
1958
1959#define SLOW_BYTE_ACCESS 0
1960
1961/* Nonzero if access to memory by shorts is slow and undesirable. */
1962#define SLOW_SHORT_ACCESS 0
1963
d4ba09c0
SC
1964/* Define this macro to be the value 1 if unaligned accesses have a
1965 cost many times greater than aligned accesses, for example if they
1966 are emulated in a trap handler.
1967
9cd10576
KH
1968 When this macro is nonzero, the compiler will act as if
1969 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1970 moves. This can cause significantly more instructions to be
9cd10576 1971 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1972 accesses only add a cycle or two to the time for a memory access.
1973
1974 If the value of this macro is always zero, it need not be defined. */
1975
e1565e65 1976/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1977
d4ba09c0
SC
1978/* Define this macro if it is as good or better to call a constant
1979 function address than to call an address kept in a register.
1980
1981 Desirable on the 386 because a CALL with a constant address is
1982 faster than one with a register address. */
1983
1984#define NO_FUNCTION_CSE
c98f8742 1985\f
c572e5ba
JVA
1986/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1987 return the mode to be used for the comparison.
1988
1989 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1990 VOIDmode should be used in all other cases.
c572e5ba 1991
16189740 1992 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1993 possible, to allow for more combinations. */
c98f8742 1994
d9a5f180 1995#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1996
9cd10576 1997/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1998 reversed. */
1999
2000#define REVERSIBLE_CC_MODE(MODE) 1
2001
2002/* A C expression whose value is reversed condition code of the CODE for
2003 comparison done in CC_MODE mode. */
3c5cb3e4 2004#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2005
c98f8742
JVA
2006\f
2007/* Control the assembler format that we output, to the extent
2008 this does not vary between assemblers. */
2009
2010/* How to refer to registers in assembler output.
892a2d68 2011 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2012
a7b376ee 2013/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2014 For non floating point regs, the following are the HImode names.
2015
2016 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2017 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2018 "y" code. */
c98f8742 2019
a7180f70
BS
2020#define HI_REGISTER_NAMES \
2021{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2022 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2023 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2024 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2025 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2026 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2027 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2028 "xmm16", "xmm17", "xmm18", "xmm19", \
2029 "xmm20", "xmm21", "xmm22", "xmm23", \
2030 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2031 "xmm28", "xmm29", "xmm30", "xmm31", \
089d1227 2032 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2033
c98f8742
JVA
2034#define REGISTER_NAMES HI_REGISTER_NAMES
2035
2036/* Table of additional register names to use in user input. */
2037
2038#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2039{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2040 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2041 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2042 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2043 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2044 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2045 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2046 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2047 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2048 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2049 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2050 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2051 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2052 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2053 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2054 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2055 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2056 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2057 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2058 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2059 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2060 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2061
2062/* Note we are omitting these since currently I don't know how
2063to get gcc to use these, since they want the same but different
2064number as al, and ax.
2065*/
2066
c98f8742 2067#define QI_REGISTER_NAMES \
3f3f2124 2068{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2069
2070/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2071 of regs 0 through 3. */
c98f8742
JVA
2072
2073#define QI_HIGH_REGISTER_NAMES \
2074{"ah", "dh", "ch", "bh", }
2075
2076/* How to renumber registers for dbx and gdb. */
2077
d9a5f180
GS
2078#define DBX_REGISTER_NUMBER(N) \
2079 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2080
9a82e702
MS
2081extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2082extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2083extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2084
780a5b71
UB
2085extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2086
469ac993
JM
2087/* Before the prologue, RA is at 0(%esp). */
2088#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2089 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2090
e414ab29 2091/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2092#define RETURN_ADDR_RTX(COUNT, FRAME) \
2093 ((COUNT) == 0 \
0a81f074
RS
2094 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2095 -UNITS_PER_WORD)) \
2096 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2097
892a2d68 2098/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2099#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2100
a6ab3aad 2101/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2102#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2103
1020a5ab 2104/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2105#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2106#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2107
ad919812 2108
e4c4ebeb
RH
2109/* Select a format to encode pointers in exception handling data. CODE
2110 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2111 true if the symbol may be affected by dynamic relocations.
2112
2113 ??? All x86 object file formats are capable of representing this.
2114 After all, the relocation needed is the same as for the call insn.
2115 Whether or not a particular assembler allows us to enter such, I
2116 guess we'll have to see. */
d9a5f180 2117#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2118 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2119
c98f8742
JVA
2120/* This is how to output an insn to push a register on the stack.
2121 It need not be very fast code. */
2122
d9a5f180 2123#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2124do { \
2125 if (TARGET_64BIT) \
2126 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2127 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2128 else \
2129 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2130} while (0)
c98f8742
JVA
2131
2132/* This is how to output an insn to pop a register from the stack.
2133 It need not be very fast code. */
2134
d9a5f180 2135#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2136do { \
2137 if (TARGET_64BIT) \
2138 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2139 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2140 else \
2141 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2142} while (0)
c98f8742 2143
f88c65f7 2144/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2145
2146#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2147 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2148
f88c65f7 2149/* This is how to output an element of a case-vector that is relative. */
c98f8742 2150
33f7f353 2151#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2152 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2153
63001560 2154/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2155
2156#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2157{ \
2158 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2159 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2160}
2161
2162/* A C statement or statements which output an assembler instruction
2163 opcode to the stdio stream STREAM. The macro-operand PTR is a
2164 variable of type `char *' which points to the opcode name in
2165 its "internal" form--the form that is written in the machine
2166 description. */
2167
2168#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2169 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2170
6a90d232
L
2171/* A C statement to output to the stdio stream FILE an assembler
2172 command to pad the location counter to a multiple of 1<<LOG
2173 bytes if it is within MAX_SKIP bytes. */
2174
2175#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2176#undef ASM_OUTPUT_MAX_SKIP_PAD
2177#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2178 if ((LOG) != 0) \
2179 { \
2180 if ((MAX_SKIP) == 0) \
2181 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2182 else \
2183 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2184 }
2185#endif
2186
135a687e
KT
2187/* Write the extra assembler code needed to declare a function
2188 properly. */
2189
2190#undef ASM_OUTPUT_FUNCTION_LABEL
2191#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2192 ix86_asm_output_function_label (FILE, NAME, DECL)
2193
f7288899
EC
2194/* Under some conditions we need jump tables in the text section,
2195 because the assembler cannot handle label differences between
2196 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2197
2198#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2199 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2200 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2201
cea3bd3e
RH
2202/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2203 and switch back. For x86 we do this only to save a few bytes that
2204 would otherwise be unused in the text section. */
ad211091
KT
2205#define CRT_MKSTR2(VAL) #VAL
2206#define CRT_MKSTR(x) CRT_MKSTR2(x)
2207
2208#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2209 asm (SECTION_OP "\n\t" \
2210 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2211 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2212
2213/* Default threshold for putting data in large sections
2214 with x86-64 medium memory model */
2215#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2216\f
b97de419
L
2217/* Which processor to tune code generation for. These must be in sync
2218 with processor_target_table in i386.c. */
5bf0ebab
RH
2219
2220enum processor_type
2221{
b97de419
L
2222 PROCESSOR_GENERIC = 0,
2223 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2224 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2225 PROCESSOR_PENTIUM,
2226 PROCESSOR_PENTIUMPRO,
5bf0ebab 2227 PROCESSOR_PENTIUM4,
89c43c0a 2228 PROCESSOR_NOCONA,
340ef734 2229 PROCESSOR_CORE2,
d3c11974
L
2230 PROCESSOR_NEHALEM,
2231 PROCESSOR_SANDYBRIDGE,
3a579e09 2232 PROCESSOR_HASWELL,
d3c11974
L
2233 PROCESSOR_BONNELL,
2234 PROCESSOR_SILVERMONT,
9a7f94d7 2235 PROCESSOR_INTEL,
b97de419
L
2236 PROCESSOR_GEODE,
2237 PROCESSOR_K6,
2238 PROCESSOR_ATHLON,
2239 PROCESSOR_K8,
21efb4d4 2240 PROCESSOR_AMDFAM10,
1133125e 2241 PROCESSOR_BDVER1,
4d652a18 2242 PROCESSOR_BDVER2,
eb2f2b44 2243 PROCESSOR_BDVER3,
ed97ad47 2244 PROCESSOR_BDVER4,
14b52538 2245 PROCESSOR_BTVER1,
e32bfc16 2246 PROCESSOR_BTVER2,
5bf0ebab
RH
2247 PROCESSOR_max
2248};
2249
9e555526 2250extern enum processor_type ix86_tune;
5bf0ebab 2251extern enum processor_type ix86_arch;
5bf0ebab 2252
8362f420
JH
2253/* Size of the RED_ZONE area. */
2254#define RED_ZONE_SIZE 128
2255/* Reserved area of the red zone for temporaries. */
2256#define RED_ZONE_RESERVE 8
c93e80a5 2257
95899b34 2258extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2259extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2260
2261/* Smallest class containing REGNO. */
2262extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2263
0948ccb2
PB
2264enum ix86_fpcmp_strategy {
2265 IX86_FPCMP_SAHF,
2266 IX86_FPCMP_COMI,
2267 IX86_FPCMP_ARITH
2268};
22fb740d
JH
2269\f
2270/* To properly truncate FP values into integers, we need to set i387 control
2271 word. We can't emit proper mode switching code before reload, as spills
2272 generated by reload may truncate values incorrectly, but we still can avoid
2273 redundant computation of new control word by the mode switching pass.
2274 The fldcw instructions are still emitted redundantly, but this is probably
2275 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2276 the sequence.
22fb740d
JH
2277
2278 The machinery is to emit simple truncation instructions and split them
2279 before reload to instructions having USEs of two memory locations that
2280 are filled by this code to old and new control word.
fce5a9f2 2281
22fb740d
JH
2282 Post-reload pass may be later used to eliminate the redundant fildcw if
2283 needed. */
2284
ff680eb1
UB
2285enum ix86_entity
2286{
ff97910d
VY
2287 AVX_U128 = 0,
2288 I387_TRUNC,
ff680eb1
UB
2289 I387_FLOOR,
2290 I387_CEIL,
2291 I387_MASK_PM,
2292 MAX_386_ENTITIES
2293};
2294
1cba2b96 2295enum ix86_stack_slot
ff680eb1 2296{
443ca5fc 2297 SLOT_TEMP = 0,
ff680eb1
UB
2298 SLOT_CW_STORED,
2299 SLOT_CW_TRUNC,
2300 SLOT_CW_FLOOR,
2301 SLOT_CW_CEIL,
2302 SLOT_CW_MASK_PM,
2303 MAX_386_STACK_LOCALS
2304};
22fb740d 2305
ff97910d
VY
2306enum avx_u128_state
2307{
2308 AVX_U128_CLEAN,
2309 AVX_U128_DIRTY,
2310 AVX_U128_ANY
2311};
2312
22fb740d
JH
2313/* Define this macro if the port needs extra instructions inserted
2314 for mode switching in an optimizing compilation. */
2315
ff680eb1
UB
2316#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2317 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2318
2319/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2320 initializer for an array of integers. Each initializer element N
2321 refers to an entity that needs mode switching, and specifies the
2322 number of different modes that might need to be set for this
2323 entity. The position of the initializer in the initializer -
2324 starting counting at zero - determines the integer that is used to
2325 refer to the mode-switched entity in question. */
2326
ff680eb1 2327#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2328 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2329
0f0138b6
JH
2330\f
2331/* Avoid renaming of stack registers, as doing so in combination with
2332 scheduling just increases amount of live registers at time and in
2333 the turn amount of fxch instructions needed.
2334
3f97cb0b
AI
2335 ??? Maybe Pentium chips benefits from renaming, someone can try....
2336
2337 Don't rename evex to non-evex sse registers. */
0f0138b6 2338
3f97cb0b
AI
2339#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2340 (EXT_REX_SSE_REGNO_P (SRC) == \
2341 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2342
3b3c6a3f 2343\f
e91f04de 2344#define FASTCALL_PREFIX '@'
fa1a0d02 2345\f
ec7ded37 2346/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2347
604a6be9 2348#ifndef USED_FOR_TARGET
ec7ded37 2349struct GTY(()) machine_frame_state
cd9c1ca8 2350{
ec7ded37
RH
2351 /* This pair tracks the currently active CFA as reg+offset. When reg
2352 is drap_reg, we don't bother trying to record here the real CFA when
2353 it might really be a DW_CFA_def_cfa_expression. */
2354 rtx cfa_reg;
2355 HOST_WIDE_INT cfa_offset;
2356
2357 /* The current offset (canonically from the CFA) of ESP and EBP.
2358 When stack frame re-alignment is active, these may not be relative
2359 to the CFA. However, in all cases they are relative to the offsets
2360 of the saved registers stored in ix86_frame. */
2361 HOST_WIDE_INT sp_offset;
2362 HOST_WIDE_INT fp_offset;
2363
2364 /* The size of the red-zone that may be assumed for the purposes of
2365 eliding register restore notes in the epilogue. This may be zero
2366 if no red-zone is in effect, or may be reduced from the real
2367 red-zone value by a maximum runtime stack re-alignment value. */
2368 int red_zone_offset;
2369
2370 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2371 value within the frame. If false then the offset above should be
2372 ignored. Note that DRAP, if valid, *always* points to the CFA and
2373 thus has an offset of zero. */
2374 BOOL_BITFIELD sp_valid : 1;
2375 BOOL_BITFIELD fp_valid : 1;
2376 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2377
2378 /* Indicate whether the local stack frame has been re-aligned. When
2379 set, the SP/FP offsets above are relative to the aligned frame
2380 and not the CFA. */
2381 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2382};
2383
f81c9774
RH
2384/* Private to winnt.c. */
2385struct seh_frame_state;
2386
d1b38208 2387struct GTY(()) machine_function {
fa1a0d02
JH
2388 struct stack_local_entry *stack_locals;
2389 const char *some_ld_name;
4aab97f9
L
2390 int varargs_gpr_size;
2391 int varargs_fpr_size;
ff680eb1 2392 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2393
2394 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2395 has been computed for. */
2396 int use_fast_prologue_epilogue_nregs;
2397
7458026b
ILT
2398 /* For -fsplit-stack support: A stack local which holds a pointer to
2399 the stack arguments for a function with a variable number of
2400 arguments. This is set at the start of the function and is used
2401 to initialize the overflow_arg_area field of the va_list
2402 structure. */
2403 rtx split_stack_varargs_pointer;
2404
3452586b
RH
2405 /* This value is used for amd64 targets and specifies the current abi
2406 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2407 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2408
2409 /* Nonzero if the function accesses a previous frame. */
2410 BOOL_BITFIELD accesses_prev_frame : 1;
2411
2412 /* Nonzero if the function requires a CLD in the prologue. */
2413 BOOL_BITFIELD needs_cld : 1;
2414
922e3e33
UB
2415 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2416 expander to determine the style used. */
3452586b
RH
2417 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2418
5bf5a10b
AO
2419 /* If true, the current function needs the default PIC register, not
2420 an alternate register (on x86) and must not use the red zone (on
2421 x86_64), even if it's a leaf function. We don't want the
2422 function to be regarded as non-leaf because TLS calls need not
2423 affect register allocation. This flag is set when a TLS call
2424 instruction is expanded within a function, and never reset, even
2425 if all such instructions are optimized away. Use the
2426 ix86_current_function_calls_tls_descriptor macro for a better
2427 approximation. */
3452586b
RH
2428 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2429
2430 /* If true, the current function has a STATIC_CHAIN is placed on the
2431 stack below the return address. */
2432 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2433
529a6471
JJ
2434 /* If true, it is safe to not save/restore DRAP register. */
2435 BOOL_BITFIELD no_drap_save_restore : 1;
2436
ec7ded37
RH
2437 /* During prologue/epilogue generation, the current frame state.
2438 Otherwise, the frame state at the end of the prologue. */
2439 struct machine_frame_state fs;
f81c9774
RH
2440
2441 /* During SEH output, this is non-null. */
2442 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2443};
cd9c1ca8 2444#endif
fa1a0d02
JH
2445
2446#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2447#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2448#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2449#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2450#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2451#define ix86_tls_descriptor_calls_expanded_in_cfun \
2452 (cfun->machine->tls_descriptor_call_expanded_p)
2453/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2454 calls are optimized away, we try to detect cases in which it was
2455 optimized away. Since such instructions (use (reg REG_SP)), we can
2456 verify whether there's any such instruction live by testing that
2457 REG_SP is live. */
2458#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2459 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2460#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2461
1bc7c5b6
ZW
2462/* Control behavior of x86_file_start. */
2463#define X86_FILE_START_VERSION_DIRECTIVE false
2464#define X86_FILE_START_FLTUSED false
2465
7dcbf659
JH
2466/* Flag to mark data that is in the large address area. */
2467#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2468#define SYMBOL_REF_FAR_ADDR_P(X) \
2469 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2470
2471/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2472 have defined always, to avoid ifdefing. */
2473#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2474#define SYMBOL_REF_DLLIMPORT_P(X) \
2475 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2476
2477#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2478#define SYMBOL_REF_DLLEXPORT_P(X) \
2479 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2480
82c0e1a0
KT
2481#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2482#define SYMBOL_REF_STUBVAR_P(X) \
2483 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2484
7942e47e
RY
2485extern void debug_ready_dispatch (void);
2486extern void debug_dispatch_window (int);
2487
91afcfa3
QN
2488/* The value at zero is only defined for the BMI instructions
2489 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2490#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2491 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2492#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2493 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2494
2495
b8ce4e94
KT
2496/* Flags returned by ix86_get_callcvt (). */
2497#define IX86_CALLCVT_CDECL 0x1
2498#define IX86_CALLCVT_STDCALL 0x2
2499#define IX86_CALLCVT_FASTCALL 0x4
2500#define IX86_CALLCVT_THISCALL 0x8
2501#define IX86_CALLCVT_REGPARM 0x10
2502#define IX86_CALLCVT_SSEREGPARM 0x20
2503
2504#define IX86_BASE_CALLCVT(FLAGS) \
2505 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2506 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2507
b86b9f44
MM
2508#define RECIP_MASK_NONE 0x00
2509#define RECIP_MASK_DIV 0x01
2510#define RECIP_MASK_SQRT 0x02
2511#define RECIP_MASK_VEC_DIV 0x04
2512#define RECIP_MASK_VEC_SQRT 0x08
2513#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2514 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2515#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2516
2517#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2518#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2519#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2520#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2521
5dcfdccd
KY
2522#define IX86_HLE_ACQUIRE (1 << 16)
2523#define IX86_HLE_RELEASE (1 << 17)
2524
e83b8e2e
JJ
2525/* For switching between functions with different target attributes. */
2526#define SWITCHABLE_TARGET 1
2527
c98f8742
JVA
2528/*
2529Local variables:
2530version-control: t
2531End:
2532*/