]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR rtl-optimization/60866 (ICE: in get_seqno_for_a_jump, at sel-sched-ir.c:4068...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
90922d36 74#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 75#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 76#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 77#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 78#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 79#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 80#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 81#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 82#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 83#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
84#define TARGET_ROUND TARGET_ISA_ROUND
85#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 86#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 87#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 88#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 89#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 90#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 91#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 92#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 93#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 94#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 95#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 96#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 97#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 98#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 99#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 100#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 101#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 102#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 103#define TARGET_AES TARGET_ISA_AES
bf7b5747 104#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
105#define TARGET_SHA TARGET_ISA_SHA
106#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
90922d36 107#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 108#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
109#define TARGET_CMPXCHG16B TARGET_ISA_CX16
110#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 111#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 112#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 113#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 114#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 115#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 116#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
117#define TARGET_RTM TARGET_ISA_RTM
118#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 119#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 120#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 121#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 122#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 123#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 124#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 125#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 126#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 127#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 128#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 129#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 130#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 131#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 132#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
133#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
134#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
ab442df7 135
90922d36 136#define TARGET_LP64 TARGET_ABI_64
bf7b5747 137#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 138#define TARGET_X32 TARGET_ABI_X32
bf7b5747 139#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
140#define TARGET_16BIT TARGET_CODE16
141#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 142
cbf2e4d4
HJ
143/* SSE4.1 defines round instructions */
144#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 145#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 146
26b5109f
RS
147#include "config/vxworks-dummy.h"
148
7eb68c06 149#include "config/i386/i386-opts.h"
ccf8e764 150
c69fa2d4 151#define MAX_STRINGOP_ALGS 4
ccf8e764 152
8c996513
JH
153/* Specify what algorithm to use for stringops on known size.
154 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
155 known at compile time or estimated via feedback, the SIZE array
156 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 157 means infinity). Corresponding ALG is used then.
340ef734
JH
158 When NOALIGN is true the code guaranting the alignment of the memory
159 block is skipped.
160
8c996513 161 For example initializer:
4f3f76e6 162 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 163 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 164 be used otherwise. */
8c996513
JH
165struct stringop_algs
166{
167 const enum stringop_alg unknown_size;
168 const struct stringop_strategy {
169 const int max;
170 const enum stringop_alg alg;
340ef734 171 int noalign;
c69fa2d4 172 } size [MAX_STRINGOP_ALGS];
8c996513
JH
173};
174
d4ba09c0
SC
175/* Define the specific costs for a given cpu */
176
177struct processor_costs {
8b60264b
KG
178 const int add; /* cost of an add instruction */
179 const int lea; /* cost of a lea instruction */
180 const int shift_var; /* variable shift costs */
181 const int shift_const; /* constant shift costs */
f676971a 182 const int mult_init[5]; /* cost of starting a multiply
4977bab6 183 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 184 const int mult_bit; /* cost of multiply per each bit set */
f676971a 185 const int divide[5]; /* cost of a divide/mod
4977bab6 186 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
187 int movsx; /* The cost of movsx operation. */
188 int movzx; /* The cost of movzx operation. */
8b60264b
KG
189 const int large_insn; /* insns larger than this cost more */
190 const int move_ratio; /* The threshold of number of scalar
ac775968 191 memory-to-memory move insns. */
8b60264b
KG
192 const int movzbl_load; /* cost of loading using movzbl */
193 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
194 in QImode, HImode and SImode relative
195 to reg-reg move (2). */
8b60264b 196 const int int_store[3]; /* cost of storing integer register
96e7ae40 197 in QImode, HImode and SImode */
8b60264b
KG
198 const int fp_move; /* cost of reg,reg fld/fst */
199 const int fp_load[3]; /* cost of loading FP register
96e7ae40 200 in SFmode, DFmode and XFmode */
8b60264b 201 const int fp_store[3]; /* cost of storing FP register
96e7ae40 202 in SFmode, DFmode and XFmode */
8b60264b
KG
203 const int mmx_move; /* cost of moving MMX register. */
204 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 205 in SImode and DImode */
8b60264b 206 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 207 in SImode and DImode */
8b60264b
KG
208 const int sse_move; /* cost of moving SSE register. */
209 const int sse_load[3]; /* cost of loading SSE register
fa79946e 210 in SImode, DImode and TImode*/
8b60264b 211 const int sse_store[3]; /* cost of storing SSE register
fa79946e 212 in SImode, DImode and TImode*/
8b60264b 213 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 214 integer and vice versa. */
46cb0441
ZD
215 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
216 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
217 const int prefetch_block; /* bytes moved to cache for prefetch. */
218 const int simultaneous_prefetches; /* number of parallel prefetch
219 operations. */
4977bab6 220 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
221 const int fadd; /* cost of FADD and FSUB instructions. */
222 const int fmul; /* cost of FMUL instruction. */
223 const int fdiv; /* cost of FDIV instruction. */
224 const int fabs; /* cost of FABS instruction. */
225 const int fchs; /* cost of FCHS instruction. */
226 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 227 /* Specify what algorithm
bee51209 228 to use for stringops on unknown size. */
ad83025e 229 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
230 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
231 load and store. */
232 const int scalar_load_cost; /* Cost of scalar load. */
233 const int scalar_store_cost; /* Cost of scalar store. */
234 const int vec_stmt_cost; /* Cost of any vector operation, excluding
235 load, store, vector-to-scalar and
236 scalar-to-vector operation. */
237 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
238 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 239 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
240 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
241 const int vec_store_cost; /* Cost of vector store. */
242 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
243 cost model. */
244 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
245 vectorizer cost model. */
d4ba09c0
SC
246};
247
8b60264b 248extern const struct processor_costs *ix86_cost;
b2077fd2
JH
249extern const struct processor_costs ix86_size_cost;
250
251#define ix86_cur_cost() \
252 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 253
c98f8742
JVA
254/* Macros used in the machine description to test the flags. */
255
b97de419 256/* configure can arrange to change it. */
e075ae69 257
35b528be 258#ifndef TARGET_CPU_DEFAULT
b97de419 259#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 260#endif
35b528be 261
004d3859
GK
262#ifndef TARGET_FPMATH_DEFAULT
263#define TARGET_FPMATH_DEFAULT \
264 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
265#endif
266
bf7b5747
ST
267#ifndef TARGET_FPMATH_DEFAULT_P
268#define TARGET_FPMATH_DEFAULT_P(x) \
269 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
270#endif
271
6ac49599 272#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 273#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 274
5791cc29
JT
275/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
276 compile-time constant. */
277#ifdef IN_LIBGCC2
6ac49599 278#undef TARGET_64BIT
5791cc29
JT
279#ifdef __x86_64__
280#define TARGET_64BIT 1
281#else
282#define TARGET_64BIT 0
283#endif
284#else
6ac49599
RS
285#ifndef TARGET_BI_ARCH
286#undef TARGET_64BIT
e49080ec 287#undef TARGET_64BIT_P
67adf6a9 288#if TARGET_64BIT_DEFAULT
0c2dc519 289#define TARGET_64BIT 1
e49080ec 290#define TARGET_64BIT_P(x) 1
0c2dc519
JH
291#else
292#define TARGET_64BIT 0
e49080ec 293#define TARGET_64BIT_P(x) 0
0c2dc519
JH
294#endif
295#endif
5791cc29 296#endif
25f94bb5 297
750054a2
CT
298#define HAS_LONG_COND_BRANCH 1
299#define HAS_LONG_UNCOND_BRANCH 1
300
9e555526
RH
301#define TARGET_386 (ix86_tune == PROCESSOR_I386)
302#define TARGET_486 (ix86_tune == PROCESSOR_I486)
303#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
304#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 305#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
306#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
307#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
308#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
309#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 310#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 311#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 312#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
313#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
314#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 315#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
316#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
317#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 318#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 319#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 320#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 321#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 322#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 323#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 324#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 325#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 326#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 327
80fd744f
RH
328/* Feature tests against the various tunings. */
329enum ix86_tune_indices {
4b8bc035 330#undef DEF_TUNE
3ad20bd4 331#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
332#include "x86-tune.def"
333#undef DEF_TUNE
334X86_TUNE_LAST
80fd744f
RH
335};
336
ab442df7 337extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
338
339#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
340#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
341#define TARGET_ZERO_EXTEND_WITH_AND \
342 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 343#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
344#define TARGET_BRANCH_PREDICTION_HINTS \
345 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
346#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
347#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
348#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
349#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
350#define TARGET_PARTIAL_FLAG_REG_STALL \
351 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
352#define TARGET_LCP_STALL \
353 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
354#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
355#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
356#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
357#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
358#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
359#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
360#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
361#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
362#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
363#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
364#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
365#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
366 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
367#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
368#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
369#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
370#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
371#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
372#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
373#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
374#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
375#define TARGET_INTEGER_DFMODE_MOVES \
376 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
377#define TARGET_PARTIAL_REG_DEPENDENCY \
378 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
379#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
380 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
381#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
382 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
383#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
384 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
385#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
386 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
387#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
388#define TARGET_SSE_TYPELESS_STORES \
389 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
390#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
391#define TARGET_MEMORY_MISMATCH_STALL \
392 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
393#define TARGET_PROLOGUE_USING_MOVE \
394 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
395#define TARGET_EPILOGUE_USING_MOVE \
396 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
397#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
398#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
399#define TARGET_INTER_UNIT_MOVES_TO_VEC \
400 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
401#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
402 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
403#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 404 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
405#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
406#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
407#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
408#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
409#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
410#define TARGET_PAD_SHORT_FUNCTION \
411 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
412#define TARGET_EXT_80387_CONSTANTS \
413 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
414#define TARGET_AVOID_VECTOR_DECODE \
415 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
416#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
417 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
418#define TARGET_SLOW_IMUL_IMM32_MEM \
419 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
420#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
421#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
422#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
423#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
424#define TARGET_USE_VECTOR_FP_CONVERTS \
425 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
426#define TARGET_USE_VECTOR_CONVERTS \
427 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
428#define TARGET_SLOW_PSHUFB \
429 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
0dc41f28
WM
430#define TARGET_FUSE_CMP_AND_BRANCH_32 \
431 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
432#define TARGET_FUSE_CMP_AND_BRANCH_64 \
433 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 434#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
435 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
436 : TARGET_FUSE_CMP_AND_BRANCH_32)
437#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
438 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
439#define TARGET_FUSE_ALU_AND_BRANCH \
440 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 441#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
442#define TARGET_AVOID_LEA_FOR_ADDR \
443 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
444#define TARGET_VECTORIZE_DOUBLE \
445 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
446#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
447 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
448#define TARGET_AVX128_OPTIMAL \
449 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
450#define TARGET_REASSOC_INT_TO_PARALLEL \
451 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
452#define TARGET_REASSOC_FP_TO_PARALLEL \
453 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
454#define TARGET_GENERAL_REGS_SSE_SPILL \
455 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
456#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
457 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 458#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 459 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
460#define TARGET_ADJUST_UNROLL \
461 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
df7b0cc4 462
80fd744f
RH
463/* Feature tests against the various architecture variations. */
464enum ix86_arch_indices {
cef31f9c 465 X86_ARCH_CMOV,
80fd744f
RH
466 X86_ARCH_CMPXCHG,
467 X86_ARCH_CMPXCHG8B,
468 X86_ARCH_XADD,
469 X86_ARCH_BSWAP,
470
471 X86_ARCH_LAST
472};
4f3f76e6 473
ab442df7 474extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 475
cef31f9c 476#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
477#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
478#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
479#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
480#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
481
cef31f9c
UB
482/* For sane SSE instruction set generation we need fcomi instruction.
483 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
484 expands to a sequence that includes conditional move. */
485#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
486
80fd744f
RH
487#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
488
cb261eb7 489extern unsigned char x86_prefetch_sse;
80fd744f
RH
490#define TARGET_PREFETCH_SSE x86_prefetch_sse
491
80fd744f
RH
492#define ASSEMBLER_DIALECT (ix86_asm_dialect)
493
494#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
495#define TARGET_MIX_SSE_I387 \
496 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
497
498#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
499#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
500#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 501#define TARGET_SUN_TLS 0
1ef45b77 502
67adf6a9
RH
503#ifndef TARGET_64BIT_DEFAULT
504#define TARGET_64BIT_DEFAULT 0
25f94bb5 505#endif
74dc3e94
RH
506#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
507#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
508#endif
25f94bb5 509
e0ea8797
AH
510#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
511#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
512
79f5e442
ZD
513/* Fence to use after loop using storent. */
514
515extern tree x86_mfence;
516#define FENCE_FOLLOWING_MOVNT x86_mfence
517
0ed4a390
JL
518/* Once GDB has been enhanced to deal with functions without frame
519 pointers, we can change this to allow for elimination of
520 the frame pointer in leaf functions. */
521#define TARGET_DEFAULT 0
67adf6a9 522
0a1c5e55
UB
523/* Extra bits to force. */
524#define TARGET_SUBTARGET_DEFAULT 0
525#define TARGET_SUBTARGET_ISA_DEFAULT 0
526
527/* Extra bits to force on w/ 32-bit mode. */
528#define TARGET_SUBTARGET32_DEFAULT 0
529#define TARGET_SUBTARGET32_ISA_DEFAULT 0
530
ccf8e764
RH
531/* Extra bits to force on w/ 64-bit mode. */
532#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 533#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 534
fee3eacd
IS
535/* Replace MACH-O, ifdefs by in-line tests, where possible.
536 (a) Macros defined in config/i386/darwin.h */
b069de3b 537#define TARGET_MACHO 0
9005471b 538#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
539#define MACHOPIC_ATT_STUB 0
540/* (b) Macros defined in config/darwin.h */
541#define MACHO_DYNAMIC_NO_PIC_P 0
542#define MACHOPIC_INDIRECT 0
543#define MACHOPIC_PURE 0
9005471b 544
5a579c3b
LE
545/* For the RDOS */
546#define TARGET_RDOS 0
547
9005471b 548/* For the Windows 64-bit ABI. */
7c800926
KT
549#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
550
6510e8bb
KT
551/* For the Windows 32-bit ABI. */
552#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
553
f81c9774
RH
554/* This is re-defined by cygming.h. */
555#define TARGET_SEH 0
556
a3d7ab92
KT
557/* This is re-defined by cygming.h. */
558#define TARGET_PECOFF 0
559
51212b32 560/* The default abi used by target. */
7c800926 561#define DEFAULT_ABI SYSV_ABI
ccf8e764 562
b8b3f0ca
LE
563/* The default TLS segment register used by target. */
564#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
565
cc69336f
RH
566/* Subtargets may reset this to 1 in order to enable 96-bit long double
567 with the rounding mode forced to 53 bits. */
568#define TARGET_96_ROUND_53_LONG_DOUBLE 0
569
682cd442
GK
570/* -march=native handling only makes sense with compiler running on
571 an x86 or x86_64 chip. If changing this condition, also change
572 the condition in driver-i386.c. */
573#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
574/* In driver-i386.c. */
575extern const char *host_detect_local_cpu (int argc, const char **argv);
576#define EXTRA_SPEC_FUNCTIONS \
577 { "local_cpu_detect", host_detect_local_cpu },
682cd442 578#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
579#endif
580
8981c15b
JM
581#if TARGET_64BIT_DEFAULT
582#define OPT_ARCH64 "!m32"
583#define OPT_ARCH32 "m32"
584#else
f0ea7581
L
585#define OPT_ARCH64 "m64|mx32"
586#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
587#endif
588
1cba2b96
EC
589/* Support for configure-time defaults of some command line options.
590 The order here is important so that -march doesn't squash the
591 tune or cpu values. */
ce998900 592#define OPTION_DEFAULT_SPECS \
da2d4c01 593 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
594 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
595 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 596 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
597 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
598 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
599 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
600 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
601 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 602
241e1a89
SC
603/* Specs for the compiler proper */
604
628714d8 605#ifndef CC1_CPU_SPEC
eb5bb0fd 606#define CC1_CPU_SPEC_1 ""
fa959ce4 607
682cd442 608#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
609#define CC1_CPU_SPEC CC1_CPU_SPEC_1
610#else
611#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
612"%{march=native:%>march=native %:local_cpu_detect(arch) \
613 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
614%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 615#endif
241e1a89 616#endif
c98f8742 617\f
30efe578 618/* Target CPU builtins. */
ab442df7
MM
619#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
620
621/* Target Pragmas. */
622#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 623
628714d8 624#ifndef CC1_SPEC
8015b78d 625#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
626#endif
627
628/* This macro defines names of additional specifications to put in the
629 specs that can be used in various specifications like CC1_SPEC. Its
630 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
631
632 Each subgrouping contains a string constant, that defines the
188fc5b5 633 specification name, and a string constant that used by the GCC driver
bcd86433
SC
634 program.
635
636 Do not define this macro if it does not need to do anything. */
637
638#ifndef SUBTARGET_EXTRA_SPECS
639#define SUBTARGET_EXTRA_SPECS
640#endif
641
642#define EXTRA_SPECS \
628714d8 643 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
644 SUBTARGET_EXTRA_SPECS
645\f
ce998900 646
d57a4b98
RH
647/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
648 FPU, assume that the fpcw is set to extended precision; when using
649 only SSE, rounding is correct; when using both SSE and the FPU,
650 the rounding precision is indeterminate, since either may be chosen
651 apparently at random. */
652#define TARGET_FLT_EVAL_METHOD \
5ccd517a 653 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 654
8ce94e44
JM
655/* Whether to allow x87 floating-point arithmetic on MODE (one of
656 SFmode, DFmode and XFmode) in the current excess precision
657 configuration. */
658#define X87_ENABLE_ARITH(MODE) \
659 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
660
661/* Likewise, whether to allow direct conversions from integer mode
662 IMODE (HImode, SImode or DImode) to MODE. */
663#define X87_ENABLE_FLOAT(MODE, IMODE) \
664 (flag_excess_precision == EXCESS_PRECISION_FAST \
665 || (MODE) == XFmode \
666 || ((MODE) == DFmode && (IMODE) == SImode) \
667 || (IMODE) == HImode)
668
979c67a5
UB
669/* target machine storage layout */
670
65d9c0ab
JH
671#define SHORT_TYPE_SIZE 16
672#define INT_TYPE_SIZE 32
f0ea7581
L
673#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
674#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 675#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 676#define FLOAT_TYPE_SIZE 32
65d9c0ab 677#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
678#define LONG_DOUBLE_TYPE_SIZE \
679 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 680
c637141a
L
681/* Define this to set long double type size to use in libgcc2.c, which can
682 not depend on target_flags. */
683#ifdef __LONG_DOUBLE_64__
684#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
685#elif defined (__LONG_DOUBLE_128__)
686#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
c637141a
L
687#else
688#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
689#endif
690
691#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 692
67adf6a9 693#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 694#define MAX_BITS_PER_WORD 64
0c2dc519
JH
695#else
696#define MAX_BITS_PER_WORD 32
0c2dc519
JH
697#endif
698
c98f8742
JVA
699/* Define this if most significant byte of a word is the lowest numbered. */
700/* That is true on the 80386. */
701
702#define BITS_BIG_ENDIAN 0
703
704/* Define this if most significant byte of a word is the lowest numbered. */
705/* That is not true on the 80386. */
706#define BYTES_BIG_ENDIAN 0
707
708/* Define this if most significant word of a multiword number is the lowest
709 numbered. */
710/* Not true for 80386 */
711#define WORDS_BIG_ENDIAN 0
712
c98f8742 713/* Width of a word, in units (bytes). */
4ae8027b 714#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
715
716#ifndef IN_LIBGCC2
2e64c636
JH
717#define MIN_UNITS_PER_WORD 4
718#endif
c98f8742 719
c98f8742 720/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 721#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 722
e075ae69 723/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 724#define STACK_BOUNDARY \
51212b32 725 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 726
2e3f842f
L
727/* Stack boundary of the main function guaranteed by OS. */
728#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
729
de1132d1 730/* Minimum stack boundary. */
5bfb2af2 731#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 732
d1f87653 733/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 734 aligned; the compiler cannot rely on having this alignment. */
e075ae69 735#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 736
de1132d1 737/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
738 both 32bit and 64bit, to support codes that need 128 bit stack
739 alignment for SSE instructions, but can't realign the stack. */
740#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
741
742/* 1 if -mstackrealign should be turned on by default. It will
743 generate an alternate prologue and epilogue that realigns the
744 runtime stack if nessary. This supports mixing codes that keep a
745 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 746 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
747#define STACK_REALIGN_DEFAULT 0
748
749/* Boundary (in *bits*) on which the incoming stack is aligned. */
750#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 751
a2851b75
TG
752/* According to Windows x64 software convention, the maximum stack allocatable
753 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
754 instructions allowed to adjust the stack pointer in the epilog, forcing the
755 use of frame pointer for frames larger than 2 GB. This theorical limit
756 is reduced by 256, an over-estimated upper bound for the stack use by the
757 prologue.
758 We define only one threshold for both the prolog and the epilog. When the
4e523f33 759 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
760 regs, then save them, and then allocate the remaining. There is no SEH
761 unwind info for this later allocation. */
762#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
763
ebff937c
SH
764/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
765 mandatory for the 64-bit ABI, and may or may not be true for other
766 operating systems. */
767#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
768
f963b5d9
RS
769/* Minimum allocation boundary for the code of a function. */
770#define FUNCTION_BOUNDARY 8
771
772/* C++ stores the virtual bit in the lowest bit of function pointers. */
773#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 774
c98f8742
JVA
775/* Minimum size in bits of the largest boundary to which any
776 and all fundamental data types supported by the hardware
777 might need to be aligned. No data type wants to be aligned
17f24ff0 778 rounder than this.
fce5a9f2 779
d1f87653 780 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
781 and Pentium Pro XFmode values at 128 bit boundaries. */
782
3f97cb0b
AI
783#define BIGGEST_ALIGNMENT \
784 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 785
2e3f842f
L
786/* Maximum stack alignment. */
787#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
788
6e4f1168
L
789/* Alignment value for attribute ((aligned)). It is a constant since
790 it is the part of the ABI. We shouldn't change it with -mavx. */
791#define ATTRIBUTE_ALIGNED_VALUE 128
792
822eda12 793/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 794#define ALIGN_MODE_128(MODE) \
4501d314 795 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 796
17f24ff0 797/* The published ABIs say that doubles should be aligned on word
d1f87653 798 boundaries, so lower the alignment for structure fields unless
6fc605d8 799 -malign-double is set. */
e932b21b 800
e83f3cff
RH
801/* ??? Blah -- this macro is used directly by libobjc. Since it
802 supports no vector modes, cut out the complexity and fall back
803 on BIGGEST_FIELD_ALIGNMENT. */
804#ifdef IN_TARGET_LIBS
ef49d42e
JH
805#ifdef __x86_64__
806#define BIGGEST_FIELD_ALIGNMENT 128
807#else
e83f3cff 808#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 809#endif
e83f3cff 810#else
e932b21b
JH
811#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
812 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 813#endif
c98f8742 814
e5e8a8bf 815/* If defined, a C expression to compute the alignment given to a
a7180f70 816 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
817 and ALIGN is the alignment that the object would ordinarily have.
818 The value of this macro is used instead of that alignment to align
819 the object.
820
821 If this macro is not defined, then ALIGN is used.
822
823 The typical use of this macro is to increase alignment for string
824 constants to be word aligned so that `strcpy' calls that copy
825 constants can be done inline. */
826
d9a5f180 827#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 828
8a022443
JW
829/* If defined, a C expression to compute the alignment for a static
830 variable. TYPE is the data type, and ALIGN is the alignment that
831 the object would ordinarily have. The value of this macro is used
832 instead of that alignment to align the object.
833
834 If this macro is not defined, then ALIGN is used.
835
836 One use of this macro is to increase alignment of medium-size
837 data to make it all fit in fewer cache lines. Another is to
838 cause character arrays to be word-aligned so that `strcpy' calls
839 that copy constants to character arrays can be done inline. */
840
df8a1d28
JJ
841#define DATA_ALIGNMENT(TYPE, ALIGN) \
842 ix86_data_alignment ((TYPE), (ALIGN), true)
843
844/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
845 some alignment increase, instead of optimization only purposes. E.g.
846 AMD x86-64 psABI says that variables with array type larger than 15 bytes
847 must be aligned to 16 byte boundaries.
848
849 If this macro is not defined, then ALIGN is used. */
850
851#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
852 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
853
854/* If defined, a C expression to compute the alignment for a local
855 variable. TYPE is the data type, and ALIGN is the alignment that
856 the object would ordinarily have. The value of this macro is used
857 instead of that alignment to align the object.
858
859 If this macro is not defined, then ALIGN is used.
860
861 One use of this macro is to increase alignment of medium-size
862 data to make it all fit in fewer cache lines. */
863
76fe54f0
L
864#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
865 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
866
867/* If defined, a C expression to compute the alignment for stack slot.
868 TYPE is the data type, MODE is the widest mode available, and ALIGN
869 is the alignment that the slot would ordinarily have. The value of
870 this macro is used instead of that alignment to align the slot.
871
872 If this macro is not defined, then ALIGN is used when TYPE is NULL,
873 Otherwise, LOCAL_ALIGNMENT will be used.
874
875 One use of this macro is to set alignment of stack slot to the
876 maximum alignment of all possible modes which the slot may have. */
877
878#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
879 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 880
9bfaf89d
JJ
881/* If defined, a C expression to compute the alignment for a local
882 variable DECL.
883
884 If this macro is not defined, then
885 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
886
887 One use of this macro is to increase alignment of medium-size
888 data to make it all fit in fewer cache lines. */
889
890#define LOCAL_DECL_ALIGNMENT(DECL) \
891 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
892
ae58e548
JJ
893/* If defined, a C expression to compute the minimum required alignment
894 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
895 MODE, assuming normal alignment ALIGN.
896
897 If this macro is not defined, then (ALIGN) will be used. */
898
899#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
900 ix86_minimum_alignment (EXP, MODE, ALIGN)
901
9bfaf89d 902
9cd10576 903/* Set this nonzero if move instructions will actually fail to work
c98f8742 904 when given unaligned data. */
b4ac57ab 905#define STRICT_ALIGNMENT 0
c98f8742
JVA
906
907/* If bit field type is int, don't let it cross an int,
908 and give entire struct the alignment of an int. */
43a88a8c 909/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 910#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
911\f
912/* Standard register usage. */
913
914/* This processor has special stack-like registers. See reg-stack.c
892a2d68 915 for details. */
c98f8742
JVA
916
917#define STACK_REGS
ce998900 918
d9a5f180 919#define IS_STACK_MODE(MODE) \
63001560
UB
920 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
921 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 922 || (MODE) == XFmode)
c98f8742
JVA
923
924/* Number of actual hardware registers.
925 The hardware registers are assigned numbers for the compiler
926 from 0 to just below FIRST_PSEUDO_REGISTER.
927 All registers that the compiler knows about must be given numbers,
928 even those that are not normally considered general registers.
929
930 In the 80386 we give the 8 general purpose registers the numbers 0-7.
931 We number the floating point registers 8-15.
932 Note that registers 0-7 can be accessed as a short or int,
933 while only 0-3 may be used with byte `mov' instructions.
934
935 Reg 16 does not correspond to any hardware register, but instead
936 appears in the RTL as an argument pointer prior to reload, and is
937 eliminated during reloading in favor of either the stack or frame
892a2d68 938 pointer. */
c98f8742 939
089d1227 940#define FIRST_PSEUDO_REGISTER 77
c98f8742 941
3073d01c
ML
942/* Number of hardware registers that go into the DWARF-2 unwind info.
943 If not defined, equals FIRST_PSEUDO_REGISTER. */
944
945#define DWARF_FRAME_REGISTERS 17
946
c98f8742
JVA
947/* 1 for registers that have pervasive standard uses
948 and are not available for the register allocator.
3f3f2124 949 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 950
621bc046
UB
951 REX registers are disabled for 32bit targets in
952 TARGET_CONDITIONAL_REGISTER_USAGE. */
953
a7180f70
BS
954#define FIXED_REGISTERS \
955/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 956{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
957/*arg,flags,fpsr,fpcr,frame*/ \
958 1, 1, 1, 1, 1, \
a7180f70
BS
959/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
960 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 961/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
962 0, 0, 0, 0, 0, 0, 0, 0, \
963/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 964 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 965/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
966 0, 0, 0, 0, 0, 0, 0, 0, \
967/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
968 0, 0, 0, 0, 0, 0, 0, 0, \
969/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
970 0, 0, 0, 0, 0, 0, 0, 0, \
971/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 972 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
973
974/* 1 for registers not available across function calls.
975 These must include the FIXED_REGISTERS and also any
976 registers that can be used without being saved.
977 The latter must include the registers where values are returned
978 and the register where structure-value addresses are passed.
fce5a9f2
EC
979 Aside from that, you can include as many other registers as you like.
980
621bc046
UB
981 Value is set to 1 if the register is call used unconditionally.
982 Bit one is set if the register is call used on TARGET_32BIT ABI.
983 Bit two is set if the register is call used on TARGET_64BIT ABI.
984 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
985
986 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
987
a7180f70
BS
988#define CALL_USED_REGISTERS \
989/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 990{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
991/*arg,flags,fpsr,fpcr,frame*/ \
992 1, 1, 1, 1, 1, \
a7180f70 993/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 994 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 995/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 996 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 997/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 998 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 999/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1000 6, 6, 6, 6, 6, 6, 6, 6, \
1001/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1002 6, 6, 6, 6, 6, 6, 6, 6, \
1003/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1004 6, 6, 6, 6, 6, 6, 6, 6, \
1005 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 1006 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1007
3b3c6a3f
MM
1008/* Order in which to allocate registers. Each register must be
1009 listed once, even those in FIXED_REGISTERS. List frame pointer
1010 late and fixed registers last. Note that, in general, we prefer
1011 registers listed in CALL_USED_REGISTERS, keeping the others
1012 available for storage of persistent values.
1013
5a733826 1014 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1015 so this is just empty initializer for array. */
3b3c6a3f 1016
162f023b
JH
1017#define REG_ALLOC_ORDER \
1018{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1019 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1020 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1021 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
089d1227 1022 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1023
5a733826 1024/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1025 to be rearranged based on a particular function. When using sse math,
03c259ad 1026 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1027
5a733826 1028#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1029
f5316dfe 1030
7c800926
KT
1031#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1032
c98f8742
JVA
1033/* Return number of consecutive hard regs needed starting at reg REGNO
1034 to hold something of mode MODE.
1035 This is ordinarily the length in words of a value of mode MODE
1036 but can be less for certain modes in special long registers.
1037
fce5a9f2 1038 Actually there are no two word move instructions for consecutive
c98f8742 1039 registers. And only registers 0-3 may have mov byte instructions
63001560 1040 applied to them. */
c98f8742 1041
ce998900 1042#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1043 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1044 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1045 : ((MODE) == XFmode \
92d0fb09 1046 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1047 : (MODE) == XCmode \
92d0fb09 1048 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1049 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1050
8521c414
JM
1051#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1052 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1053 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1054 ? 0 \
1055 : ((MODE) == XFmode || (MODE) == XCmode)) \
1056 : 0)
1057
1058#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1059
95879c72
L
1060#define VALID_AVX256_REG_MODE(MODE) \
1061 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1062 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1063 || (MODE) == V4DFmode)
95879c72 1064
4ac005ba 1065#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1066 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1067
3f97cb0b
AI
1068#define VALID_AVX512F_SCALAR_MODE(MODE) \
1069 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1070 || (MODE) == SFmode)
1071
1072#define VALID_AVX512F_REG_MODE(MODE) \
1073 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1074 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1075
ce998900
UB
1076#define VALID_SSE2_REG_MODE(MODE) \
1077 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1078 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1079
d9a5f180 1080#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1081 ((MODE) == V1TImode || (MODE) == TImode \
1082 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1083 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1084
47f339cf 1085#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1086 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1087
d9a5f180 1088#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1089 ((MODE == V1DImode) || (MODE) == DImode \
1090 || (MODE) == V2SImode || (MODE) == SImode \
1091 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1092
ce998900
UB
1093#define VALID_DFP_MODE_P(MODE) \
1094 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1095
d9a5f180 1096#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1097 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1098 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1099
d9a5f180 1100#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1101 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1102 || (MODE) == DImode \
1103 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1104 || (MODE) == CDImode \
1105 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1106 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1107
822eda12 1108/* Return true for modes passed in SSE registers. */
ce998900 1109#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1110 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1111 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1112 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1113 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1114 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1115 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1116 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1117 || (MODE) == V16SFmode)
822eda12 1118
85a77221
AI
1119#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1120
e075ae69 1121/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1122
a946dd00 1123#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1124 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1125
1126/* Value is 1 if it is a good idea to tie two pseudo registers
1127 when one has mode MODE1 and one has mode MODE2.
1128 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1129 for any hard reg, then this must be 0 for correct output. */
1130
c1c5b5e3 1131#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1132
ff25ef99
ZD
1133/* It is possible to write patterns to move flags; but until someone
1134 does it, */
1135#define AVOID_CCMODE_COPIES
c98f8742 1136
e075ae69 1137/* Specify the modes required to caller save a given hard regno.
787dc842 1138 We do this on i386 to prevent flags from being saved at all.
e075ae69 1139
787dc842
JH
1140 Kill any attempts to combine saving of modes. */
1141
d9a5f180
GS
1142#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1143 (CC_REGNO_P (REGNO) ? VOIDmode \
1144 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1145 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1146 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1147 || MASK_REGNO_P (REGNO)) ? SImode \
1148 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1149 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1150 : (MODE))
ce998900 1151
51ba747a
RH
1152/* The only ABI that saves SSE registers across calls is Win64 (thus no
1153 need to check the current ABI here), and with AVX enabled Win64 only
1154 guarantees that the low 16 bytes are saved. */
1155#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1156 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1157
c98f8742
JVA
1158/* Specify the registers used for certain standard purposes.
1159 The values of these macros are register numbers. */
1160
1161/* on the 386 the pc register is %eip, and is not usable as a general
1162 register. The ordinary mov instructions won't work */
1163/* #define PC_REGNUM */
1164
1165/* Register to use for pushing function arguments. */
1166#define STACK_POINTER_REGNUM 7
1167
1168/* Base register for access to local variables of the function. */
564d80f4
JH
1169#define HARD_FRAME_POINTER_REGNUM 6
1170
1171/* Base register for access to local variables of the function. */
b0d95de8 1172#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1173
1174/* First floating point reg */
1175#define FIRST_FLOAT_REG 8
1176
1177/* First & last stack-like regs */
1178#define FIRST_STACK_REG FIRST_FLOAT_REG
1179#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1180
a7180f70
BS
1181#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1182#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1183
3f97cb0b 1184#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1185#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1186
3f97cb0b 1187#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1188#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1189
3f97cb0b 1190#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1191#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1192
3f97cb0b
AI
1193#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1194#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1195
85a77221
AI
1196#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1197#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1198
aabcd309 1199/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1200 requiring a frame pointer. */
1201#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1202#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1203#endif
1204
1205/* Make sure we can access arbitrary call frames. */
1206#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1207
1208/* Base register for access to arguments of the function. */
1209#define ARG_POINTER_REGNUM 16
1210
c98f8742 1211/* Register to hold the addressing base for position independent
5b43fed1
RH
1212 code access to data items. We don't use PIC pointer for 64bit
1213 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1214 pessimizing code dealing with EBX.
bd09bdeb
RH
1215
1216 To avoid clobbering a call-saved register unnecessarily, we renumber
1217 the pic register when possible. The change is visible after the
1218 prologue has been emitted. */
1219
2e3f842f 1220#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1221
1222#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1223 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1224 || TARGET_PECOFF)) \
7dcbf659 1225 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1226 : reload_completed ? REGNO (pic_offset_table_rtx) \
1227 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1228
5fc0e5df
KW
1229#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1230
c51e6d85 1231/* This is overridden by <cygwin.h>. */
5e062767
DS
1232#define MS_AGGREGATE_RETURN 0
1233
61fec9ff 1234#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1235\f
1236/* Define the classes of registers for register constraints in the
1237 machine description. Also define ranges of constants.
1238
1239 One of the classes must always be named ALL_REGS and include all hard regs.
1240 If there is more than one class, another class must be named NO_REGS
1241 and contain no registers.
1242
1243 The name GENERAL_REGS must be the name of a class (or an alias for
1244 another name such as ALL_REGS). This is the class of registers
1245 that is allowed by "g" or "r" in a register constraint.
1246 Also, registers outside this class are allocated only when
1247 instructions express preferences for them.
1248
1249 The classes must be numbered in nondecreasing order; that is,
1250 a larger-numbered class must never be contained completely
1251 in a smaller-numbered class.
1252
1253 For any two classes, it is very desirable that there be another
ab408a86
JVA
1254 class that represents their union.
1255
1256 It might seem that class BREG is unnecessary, since no useful 386
1257 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1258 and the "b" register constraint is useful in asms for syscalls.
1259
03c259ad 1260 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1261
1262enum reg_class
1263{
1264 NO_REGS,
e075ae69 1265 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1266 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1267 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1268 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1269 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1270 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1271 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1272 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1273 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1274 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1275 FLOAT_REGS,
06f4e35d 1276 SSE_FIRST_REG,
a7180f70 1277 SSE_REGS,
3f97cb0b
AI
1278 EVEX_SSE_REGS,
1279 ALL_SSE_REGS,
a7180f70 1280 MMX_REGS,
446988df
JH
1281 FP_TOP_SSE_REGS,
1282 FP_SECOND_SSE_REGS,
1283 FLOAT_SSE_REGS,
1284 FLOAT_INT_REGS,
1285 INT_SSE_REGS,
1286 FLOAT_INT_SSE_REGS,
85a77221
AI
1287 MASK_EVEX_REGS,
1288 MASK_REGS,
c98f8742
JVA
1289 ALL_REGS, LIM_REG_CLASSES
1290};
1291
d9a5f180
GS
1292#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1293
1294#define INTEGER_CLASS_P(CLASS) \
1295 reg_class_subset_p ((CLASS), GENERAL_REGS)
1296#define FLOAT_CLASS_P(CLASS) \
1297 reg_class_subset_p ((CLASS), FLOAT_REGS)
1298#define SSE_CLASS_P(CLASS) \
3f97cb0b 1299 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1300#define MMX_CLASS_P(CLASS) \
f75959a6 1301 ((CLASS) == MMX_REGS)
d9a5f180
GS
1302#define MAYBE_INTEGER_CLASS_P(CLASS) \
1303 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1304#define MAYBE_FLOAT_CLASS_P(CLASS) \
1305 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1306#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1307 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1308#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1309 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1310#define MAYBE_MASK_CLASS_P(CLASS) \
1311 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1312
1313#define Q_CLASS_P(CLASS) \
1314 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1315
0bd72901
UB
1316#define MAYBE_NON_Q_CLASS_P(CLASS) \
1317 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1318
43f3a59d 1319/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1320
1321#define REG_CLASS_NAMES \
1322{ "NO_REGS", \
ab408a86 1323 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1324 "SIREG", "DIREG", \
e075ae69
RH
1325 "AD_REGS", \
1326 "Q_REGS", "NON_Q_REGS", \
c98f8742 1327 "INDEX_REGS", \
3f3f2124 1328 "LEGACY_REGS", \
621bc046 1329 "CLOBBERED_REGS", \
c98f8742
JVA
1330 "GENERAL_REGS", \
1331 "FP_TOP_REG", "FP_SECOND_REG", \
1332 "FLOAT_REGS", \
cb482895 1333 "SSE_FIRST_REG", \
a7180f70 1334 "SSE_REGS", \
3f97cb0b
AI
1335 "EVEX_SSE_REGS", \
1336 "ALL_SSE_REGS", \
a7180f70 1337 "MMX_REGS", \
446988df
JH
1338 "FP_TOP_SSE_REGS", \
1339 "FP_SECOND_SSE_REGS", \
1340 "FLOAT_SSE_REGS", \
8fcaaa80 1341 "FLOAT_INT_REGS", \
446988df
JH
1342 "INT_SSE_REGS", \
1343 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1344 "MASK_EVEX_REGS", \
1345 "MASK_REGS", \
c98f8742
JVA
1346 "ALL_REGS" }
1347
ac2e563f
RH
1348/* Define which registers fit in which classes. This is an initializer
1349 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1350
621bc046
UB
1351 Note that CLOBBERED_REGS are calculated by
1352 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1353
3f97cb0b 1354#define REG_CLASS_CONTENTS \
089d1227
IE
1355{ { 0x00, 0x0, 0x0 }, \
1356 { 0x01, 0x0, 0x0 }, /* AREG */ \
1357 { 0x02, 0x0, 0x0 }, /* DREG */ \
1358 { 0x04, 0x0, 0x0 }, /* CREG */ \
1359 { 0x08, 0x0, 0x0 }, /* BREG */ \
1360 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1361 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1362 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1363 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1364 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1365 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1366 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1367 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1368 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1369 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1370 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1371 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1372 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1373{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1374 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1375{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1376{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1377{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1378{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1379{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1380{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1381{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1382{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1383 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1384 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1385{ 0xffffffff,0xffffffff,0x1fff } \
e075ae69 1386}
c98f8742
JVA
1387
1388/* The same information, inverted:
1389 Return the class number of the smallest class containing
1390 reg number REGNO. This could be a conditional expression
1391 or could index an array. */
1392
c98f8742
JVA
1393#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1394
42db504c
SB
1395/* When this hook returns true for MODE, the compiler allows
1396 registers explicitly used in the rtl to be used as spill registers
1397 but prevents the compiler from extending the lifetime of these
1398 registers. */
1399#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1400
fc27f749
UB
1401#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1402#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1403
1404#define GENERAL_REG_P(X) \
6189a572 1405 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1406#define GENERAL_REGNO_P(N) \
1407 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1408
fc27f749
UB
1409#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1410#define ANY_QI_REGNO_P(N) \
1411 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1412
fc27f749 1413#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1414#define REX_INT_REGNO_P(N) \
1415 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1416
66aaf16f
UB
1417#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1418#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1419
446988df 1420#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1421#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1422
54a88090 1423#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1424 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1425
fc27f749 1426#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1427#define SSE_REGNO_P(N) \
1428 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1429 || REX_SSE_REGNO_P (N) \
1430 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1431
4977bab6 1432#define REX_SSE_REGNO_P(N) \
fb84c7a0 1433 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1434
3f97cb0b
AI
1435#define EXT_REX_SSE_REGNO_P(N) \
1436 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1437
d9a5f180 1438#define SSE_REGNO(N) \
3f97cb0b
AI
1439 ((N) < 8 ? FIRST_SSE_REG + (N) \
1440 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1441 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1442
85a77221
AI
1443#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1444#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1445
d9a5f180 1446#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1447 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1448
cbf2e4d4
HJ
1449#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1450 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1451 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1452
fc27f749 1453#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1454#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1455
fc27f749 1456#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1457
e075ae69
RH
1458#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1459#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1460
c98f8742
JVA
1461/* The class value for index registers, and the one for base regs. */
1462
1463#define INDEX_REG_CLASS INDEX_REGS
1464#define BASE_REG_CLASS GENERAL_REGS
1465
c98f8742 1466/* Place additional restrictions on the register class to use when it
4cbb525c 1467 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1468 register for which class CLASS would ordinarily be used.
1469
1470 We avoid classes containing registers from multiple units due to
1471 the limitation in ix86_secondary_memory_needed. We limit these
1472 classes to their "natural mode" single unit register class, depending
1473 on the unit availability.
1474
1475 Please note that reg_class_subset_p is not commutative, so these
1476 conditions mean "... if (CLASS) includes ALL registers from the
1477 register set." */
1478
1479#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1480 (((MODE) == QImode && !TARGET_64BIT \
1481 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1482 : (((MODE) == SImode || (MODE) == DImode) \
1483 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1484 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1485 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1486 : (X87_FLOAT_MODE_P (MODE) \
1487 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1488 : (CLASS))
c98f8742 1489
85ff473e 1490/* If we are copying between general and FP registers, we need a memory
f84aa48a 1491 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1492#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1493 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1494
c62b3659
UB
1495/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1496 There is no need to emit full 64 bit move on 64 bit targets
1497 for integral modes that can be moved using 32 bit move. */
1498#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1499 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1500 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1501 : MODE)
1502
1272914c
RH
1503/* Return a class of registers that cannot change FROM mode to TO mode. */
1504
1505#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1506 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1507\f
1508/* Stack layout; function entry, exit and calling. */
1509
1510/* Define this if pushing a word on the stack
1511 makes the stack pointer a smaller address. */
1512#define STACK_GROWS_DOWNWARD
1513
a4d05547 1514/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1515 is at the high-address end of the local variables;
1516 that is, each additional local variable allocated
1517 goes at a more negative offset in the frame. */
f62c8a5c 1518#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1519
1520/* Offset within stack frame to start allocating local variables at.
1521 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1522 first local allocated. Otherwise, it is the offset to the BEGINNING
1523 of the first local allocated. */
1524#define STARTING_FRAME_OFFSET 0
1525
8c2b2fae
UB
1526/* If we generate an insn to push BYTES bytes, this says how many the stack
1527 pointer really advances by. On 386, we have pushw instruction that
1528 decrements by exactly 2 no matter what the position was, there is no pushb.
1529
1530 But as CIE data alignment factor on this arch is -4 for 32bit targets
1531 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1532 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1533
d2836273 1534#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1535 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1536
1537/* If defined, the maximum amount of space required for outgoing arguments
1538 will be computed and placed into the variable `crtl->outgoing_args_size'.
1539 No space will be pushed onto the stack for each call; instead, the
1540 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1541
1542 In 32bit mode enabling argument accumulation results in about 5% code size
1543 growth becuase move instructions are less compact than push. In 64bit
1544 mode the difference is less drastic but visible.
1545
1546 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1547 actually grow with accumulation. Is that because accumulated args
41ee845b 1548 unwind info became unnecesarily bloated?
f830ddc2
RH
1549
1550 With the 64-bit MS ABI, we can generate correct code with or without
1551 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1552 generated without accumulated args is terrible.
41ee845b
JH
1553
1554 If stack probes are required, the space used for large function
1555 arguments on the stack must also be probed, so enable
1556 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1557
6c6094f1 1558#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1559 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1560 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1561
1562/* If defined, a C expression whose value is nonzero when we want to use PUSH
1563 instructions to pass outgoing arguments. */
1564
1565#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1566
2da4124d
L
1567/* We want the stack and args grow in opposite directions, even if
1568 PUSH_ARGS is 0. */
1569#define PUSH_ARGS_REVERSED 1
1570
c98f8742
JVA
1571/* Offset of first parameter from the argument pointer register value. */
1572#define FIRST_PARM_OFFSET(FNDECL) 0
1573
a7180f70
BS
1574/* Define this macro if functions should assume that stack space has been
1575 allocated for arguments even when their values are passed in registers.
1576
1577 The value of this macro is the size, in bytes, of the area reserved for
1578 arguments passed in registers for the function represented by FNDECL.
1579
1580 This space can be allocated by the caller, or be a part of the
1581 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1582 which. */
7c800926
KT
1583#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1584
4ae8027b 1585#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1586 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1587
c98f8742
JVA
1588/* Define how to find the value returned by a library function
1589 assuming the value has mode MODE. */
1590
4ae8027b 1591#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1592
e9125c09
TW
1593/* Define the size of the result block used for communication between
1594 untyped_call and untyped_return. The block contains a DImode value
1595 followed by the block used by fnsave and frstor. */
1596
1597#define APPLY_RESULT_SIZE (8+108)
1598
b08de47e 1599/* 1 if N is a possible register number for function argument passing. */
53c17031 1600#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1601
1602/* Define a data type for recording info about an argument list
1603 during the scan of that argument list. This data type should
1604 hold all necessary information about the function itself
1605 and about the args processed so far, enough to enable macros
b08de47e 1606 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1607
e075ae69 1608typedef struct ix86_args {
fa283935 1609 int words; /* # words passed so far */
b08de47e
MM
1610 int nregs; /* # registers available for passing */
1611 int regno; /* next available register number */
3e65f251
KT
1612 int fastcall; /* fastcall or thiscall calling convention
1613 is used */
fa283935 1614 int sse_words; /* # sse words passed so far */
a7180f70 1615 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1616 int warn_avx512f; /* True when we want to warn
1617 about AVX512F ABI. */
95879c72 1618 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1619 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1620 int warn_mmx; /* True when we want to warn about MMX ABI. */
1621 int sse_regno; /* next available sse register number */
1622 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1623 int mmx_nregs; /* # mmx registers available for passing */
1624 int mmx_regno; /* next available mmx register number */
892a2d68 1625 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1626 int caller; /* true if it is caller. */
2824d6e5
UB
1627 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1628 SFmode/DFmode arguments should be passed
1629 in SSE registers. Otherwise 0. */
51212b32 1630 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1631 MS_ABI for ms abi. */
b08de47e 1632} CUMULATIVE_ARGS;
c98f8742
JVA
1633
1634/* Initialize a variable CUM of type CUMULATIVE_ARGS
1635 for a call to a function whose data type is FNTYPE.
b08de47e 1636 For a library call, FNTYPE is 0. */
c98f8742 1637
0f6937fe 1638#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1639 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1640 (N_NAMED_ARGS) != -1)
c98f8742 1641
c98f8742
JVA
1642/* Output assembler code to FILE to increment profiler label # LABELNO
1643 for profiling a function entry. */
1644
a5fa1ecd
JH
1645#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1646
1647#define MCOUNT_NAME "_mcount"
1648
3c5273a9
KT
1649#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1650
a5fa1ecd 1651#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1652
1653/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1654 the stack pointer does not matter. The value is tested only in
1655 functions that have frame pointers.
1656 No definition is equivalent to always zero. */
fce5a9f2 1657/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1658 we have to restore it ourselves from the frame pointer, in order to
1659 use pop */
1660
1661#define EXIT_IGNORE_STACK 1
1662
c98f8742
JVA
1663/* Output assembler code for a block containing the constant parts
1664 of a trampoline, leaving space for the variable parts. */
1665
a269a03c 1666/* On the 386, the trampoline contains two instructions:
c98f8742 1667 mov #STATIC,ecx
a269a03c
JC
1668 jmp FUNCTION
1669 The trampoline is generated entirely at runtime. The operand of JMP
1670 is the address of FUNCTION relative to the instruction following the
1671 JMP (which is 5 bytes long). */
c98f8742
JVA
1672
1673/* Length in units of the trampoline for entering a nested function. */
1674
3452586b 1675#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1676\f
1677/* Definitions for register eliminations.
1678
1679 This is an array of structures. Each structure initializes one pair
1680 of eliminable registers. The "from" register number is given first,
1681 followed by "to". Eliminations of the same "from" register are listed
1682 in order of preference.
1683
afc2cd05
NC
1684 There are two registers that can always be eliminated on the i386.
1685 The frame pointer and the arg pointer can be replaced by either the
1686 hard frame pointer or to the stack pointer, depending upon the
1687 circumstances. The hard frame pointer is not used before reload and
1688 so it is not eligible for elimination. */
c98f8742 1689
564d80f4
JH
1690#define ELIMINABLE_REGS \
1691{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1692 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1693 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1694 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1695
c98f8742
JVA
1696/* Define the offset between two registers, one to be eliminated, and the other
1697 its replacement, at the start of a routine. */
1698
d9a5f180
GS
1699#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1700 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1701\f
1702/* Addressing modes, and classification of registers for them. */
1703
c98f8742
JVA
1704/* Macros to check register numbers against specific register classes. */
1705
1706/* These assume that REGNO is a hard or pseudo reg number.
1707 They give nonzero only if REGNO is a hard reg of the suitable class
1708 or a pseudo reg currently allocated to a suitable hard reg.
1709 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1710 has been allocated, which happens in reginfo.c during register
1711 allocation. */
c98f8742 1712
3f3f2124
JH
1713#define REGNO_OK_FOR_INDEX_P(REGNO) \
1714 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1715 || REX_INT_REGNO_P (REGNO) \
1716 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1717 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1718
3f3f2124 1719#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1720 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1721 || (REGNO) == ARG_POINTER_REGNUM \
1722 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1723 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1724
c98f8742
JVA
1725/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1726 and check its validity for a certain class.
1727 We have two alternate definitions for each of them.
1728 The usual definition accepts all pseudo regs; the other rejects
1729 them unless they have been allocated suitable hard regs.
1730 The symbol REG_OK_STRICT causes the latter definition to be used.
1731
1732 Most source files want to accept pseudo regs in the hope that
1733 they will get allocated to the class that the insn wants them to be in.
1734 Source files for reload pass need to be strict.
1735 After reload, it makes no difference, since pseudo regs have
1736 been eliminated by then. */
1737
c98f8742 1738
ff482c8d 1739/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1740#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1741 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1742 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1743 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1744
3b3c6a3f 1745#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1746 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1747 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1748 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1749 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1750
3b3c6a3f
MM
1751/* Strict versions, hard registers only */
1752#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1753#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1754
3b3c6a3f 1755#ifndef REG_OK_STRICT
d9a5f180
GS
1756#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1757#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1758
1759#else
d9a5f180
GS
1760#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1761#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1762#endif
1763
331d9186 1764/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1765 that is a valid memory address for an instruction.
1766 The MODE argument is the machine mode for the MEM expression
1767 that wants to use this address.
1768
331d9186 1769 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1770 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1771
1772 See legitimize_pic_address in i386.c for details as to what
1773 constitutes a legitimate address when -fpic is used. */
1774
1775#define MAX_REGS_PER_ADDRESS 2
1776
f996902d 1777#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1778
ae1547cc
UB
1779/* Try a machine-dependent way of reloading an illegitimate address
1780 operand. If we find one, push the reload and jump to WIN. This
1781 macro is used in only one place: `find_reloads_address' in reload.c. */
1782
1783#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1784do { \
1785 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1786 (int)(TYPE), (INDL))) \
1787 goto WIN; \
1788} while (0)
1789
b949ea8b
JW
1790/* If defined, a C expression to determine the base term of address X.
1791 This macro is used in only one place: `find_base_term' in alias.c.
1792
1793 It is always safe for this macro to not be defined. It exists so
1794 that alias analysis can understand machine-dependent addresses.
1795
1796 The typical use of this macro is to handle addresses containing
1797 a label_ref or symbol_ref within an UNSPEC. */
1798
d9a5f180 1799#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1800
c98f8742 1801/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1802 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1803 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1804
f996902d 1805#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1806
1807#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1808 (GET_CODE (X) == SYMBOL_REF \
1809 || GET_CODE (X) == LABEL_REF \
1810 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1811\f
b08de47e
MM
1812/* Max number of args passed in registers. If this is more than 3, we will
1813 have problems with ebx (register #4), since it is a caller save register and
1814 is also used as the pic register in ELF. So for now, don't allow more than
1815 3 registers to be passed in registers. */
1816
7c800926
KT
1817/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1818#define X86_64_REGPARM_MAX 6
72fa3605 1819#define X86_64_MS_REGPARM_MAX 4
7c800926 1820
72fa3605 1821#define X86_32_REGPARM_MAX 3
7c800926 1822
4ae8027b 1823#define REGPARM_MAX \
2824d6e5
UB
1824 (TARGET_64BIT \
1825 ? (TARGET_64BIT_MS_ABI \
1826 ? X86_64_MS_REGPARM_MAX \
1827 : X86_64_REGPARM_MAX) \
4ae8027b 1828 : X86_32_REGPARM_MAX)
d2836273 1829
72fa3605
UB
1830#define X86_64_SSE_REGPARM_MAX 8
1831#define X86_64_MS_SSE_REGPARM_MAX 4
1832
b6010cab 1833#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1834
4ae8027b 1835#define SSE_REGPARM_MAX \
2824d6e5
UB
1836 (TARGET_64BIT \
1837 ? (TARGET_64BIT_MS_ABI \
1838 ? X86_64_MS_SSE_REGPARM_MAX \
1839 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1840 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1841
1842#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1843\f
1844/* Specify the machine mode that this machine uses
1845 for the index in the tablejump instruction. */
dc4d7240 1846#define CASE_VECTOR_MODE \
6025b127 1847 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1848
c98f8742
JVA
1849/* Define this as 1 if `char' should by default be signed; else as 0. */
1850#define DEFAULT_SIGNED_CHAR 1
1851
1852/* Max number of bytes we can move from memory to memory
1853 in one reasonably fast instruction. */
65d9c0ab
JH
1854#define MOVE_MAX 16
1855
1856/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1857 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1858 number of bytes we can move with a single instruction. */
63001560 1859#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1860
7e24ffc9 1861/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1862 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1863 Increasing the value will always make code faster, but eventually
1864 incurs high cost in increased code size.
c98f8742 1865
e2e52e1b 1866 If you don't define this, a reasonable default is used. */
c98f8742 1867
e04ad03d 1868#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1869
45d78e7f
JJ
1870/* If a clear memory operation would take CLEAR_RATIO or more simple
1871 move-instruction sequences, we will do a clrmem or libcall instead. */
1872
e04ad03d 1873#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1874
53f00dde
UB
1875/* Define if shifts truncate the shift count which implies one can
1876 omit a sign-extension or zero-extension of a shift count.
1877
1878 On i386, shifts do truncate the count. But bit test instructions
1879 take the modulo of the bit offset operand. */
c98f8742
JVA
1880
1881/* #define SHIFT_COUNT_TRUNCATED */
1882
1883/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1884 is done just by pretending it is already truncated. */
1885#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1886
d9f32422
JH
1887/* A macro to update M and UNSIGNEDP when an object whose type is
1888 TYPE and which has the specified mode and signedness is to be
1889 stored in a register. This macro is only called when TYPE is a
1890 scalar type.
1891
f710504c 1892 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1893 quantities to SImode. The choice depends on target type. */
1894
1895#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1896do { \
d9f32422
JH
1897 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1898 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1899 (MODE) = SImode; \
1900} while (0)
d9f32422 1901
c98f8742
JVA
1902/* Specify the machine mode that pointers have.
1903 After generation of rtl, the compiler makes no further distinction
1904 between pointers and any other objects of this machine mode. */
28968d91 1905#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1906
f0ea7581
L
1907/* A C expression whose value is zero if pointers that need to be extended
1908 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1909 greater then zero if they are zero-extended and less then zero if the
1910 ptr_extend instruction should be used. */
1911
1912#define POINTERS_EXTEND_UNSIGNED 1
1913
c98f8742
JVA
1914/* A function address in a call instruction
1915 is a byte address (for indexing purposes)
1916 so give the MEM rtx a byte's mode. */
1917#define FUNCTION_MODE QImode
d4ba09c0 1918\f
d4ba09c0 1919
d4ba09c0
SC
1920/* A C expression for the cost of a branch instruction. A value of 1
1921 is the default; other values are interpreted relative to that. */
1922
3a4fd356
JH
1923#define BRANCH_COST(speed_p, predictable_p) \
1924 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1925
e327d1a3
L
1926/* An integer expression for the size in bits of the largest integer machine
1927 mode that should actually be used. We allow pairs of registers. */
1928#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1929
d4ba09c0
SC
1930/* Define this macro as a C expression which is nonzero if accessing
1931 less than a word of memory (i.e. a `char' or a `short') is no
1932 faster than accessing a word of memory, i.e., if such access
1933 require more than one instruction or if there is no difference in
1934 cost between byte and (aligned) word loads.
1935
1936 When this macro is not defined, the compiler will access a field by
1937 finding the smallest containing object; when it is defined, a
1938 fullword load will be used if alignment permits. Unless bytes
1939 accesses are faster than word accesses, using word accesses is
1940 preferable since it may eliminate subsequent memory access if
1941 subsequent accesses occur to other fields in the same word of the
1942 structure, but to different bytes. */
1943
1944#define SLOW_BYTE_ACCESS 0
1945
1946/* Nonzero if access to memory by shorts is slow and undesirable. */
1947#define SLOW_SHORT_ACCESS 0
1948
d4ba09c0
SC
1949/* Define this macro to be the value 1 if unaligned accesses have a
1950 cost many times greater than aligned accesses, for example if they
1951 are emulated in a trap handler.
1952
9cd10576
KH
1953 When this macro is nonzero, the compiler will act as if
1954 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1955 moves. This can cause significantly more instructions to be
9cd10576 1956 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1957 accesses only add a cycle or two to the time for a memory access.
1958
1959 If the value of this macro is always zero, it need not be defined. */
1960
e1565e65 1961/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1962
d4ba09c0
SC
1963/* Define this macro if it is as good or better to call a constant
1964 function address than to call an address kept in a register.
1965
1966 Desirable on the 386 because a CALL with a constant address is
1967 faster than one with a register address. */
1968
1969#define NO_FUNCTION_CSE
c98f8742 1970\f
c572e5ba
JVA
1971/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1972 return the mode to be used for the comparison.
1973
1974 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1975 VOIDmode should be used in all other cases.
c572e5ba 1976
16189740 1977 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1978 possible, to allow for more combinations. */
c98f8742 1979
d9a5f180 1980#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1981
9cd10576 1982/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1983 reversed. */
1984
1985#define REVERSIBLE_CC_MODE(MODE) 1
1986
1987/* A C expression whose value is reversed condition code of the CODE for
1988 comparison done in CC_MODE mode. */
3c5cb3e4 1989#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1990
c98f8742
JVA
1991\f
1992/* Control the assembler format that we output, to the extent
1993 this does not vary between assemblers. */
1994
1995/* How to refer to registers in assembler output.
892a2d68 1996 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1997
a7b376ee 1998/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1999 For non floating point regs, the following are the HImode names.
2000
2001 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2002 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2003 "y" code. */
c98f8742 2004
a7180f70
BS
2005#define HI_REGISTER_NAMES \
2006{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2007 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2008 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2009 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2010 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2011 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2012 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2013 "xmm16", "xmm17", "xmm18", "xmm19", \
2014 "xmm20", "xmm21", "xmm22", "xmm23", \
2015 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2016 "xmm28", "xmm29", "xmm30", "xmm31", \
089d1227 2017 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2018
c98f8742
JVA
2019#define REGISTER_NAMES HI_REGISTER_NAMES
2020
2021/* Table of additional register names to use in user input. */
2022
2023#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2024{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2025 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2026 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2027 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2028 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2029 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2030 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2031 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2032 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2033 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2034 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2035 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2036 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2037 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2038 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2039 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2040 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2041 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2042 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2043 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2044 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2045 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2046
2047/* Note we are omitting these since currently I don't know how
2048to get gcc to use these, since they want the same but different
2049number as al, and ax.
2050*/
2051
c98f8742 2052#define QI_REGISTER_NAMES \
3f3f2124 2053{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2054
2055/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2056 of regs 0 through 3. */
c98f8742
JVA
2057
2058#define QI_HIGH_REGISTER_NAMES \
2059{"ah", "dh", "ch", "bh", }
2060
2061/* How to renumber registers for dbx and gdb. */
2062
d9a5f180
GS
2063#define DBX_REGISTER_NUMBER(N) \
2064 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2065
9a82e702
MS
2066extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2067extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2068extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2069
780a5b71
UB
2070extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2071
469ac993
JM
2072/* Before the prologue, RA is at 0(%esp). */
2073#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2074 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2075
e414ab29 2076/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2077#define RETURN_ADDR_RTX(COUNT, FRAME) \
2078 ((COUNT) == 0 \
0a81f074
RS
2079 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2080 -UNITS_PER_WORD)) \
2081 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2082
892a2d68 2083/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2084#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2085
a6ab3aad 2086/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2087#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2088
1020a5ab 2089/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2090#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2091#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2092
ad919812 2093
e4c4ebeb
RH
2094/* Select a format to encode pointers in exception handling data. CODE
2095 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2096 true if the symbol may be affected by dynamic relocations.
2097
2098 ??? All x86 object file formats are capable of representing this.
2099 After all, the relocation needed is the same as for the call insn.
2100 Whether or not a particular assembler allows us to enter such, I
2101 guess we'll have to see. */
d9a5f180 2102#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2103 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2104
c98f8742
JVA
2105/* This is how to output an insn to push a register on the stack.
2106 It need not be very fast code. */
2107
d9a5f180 2108#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2109do { \
2110 if (TARGET_64BIT) \
2111 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2112 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2113 else \
2114 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2115} while (0)
c98f8742
JVA
2116
2117/* This is how to output an insn to pop a register from the stack.
2118 It need not be very fast code. */
2119
d9a5f180 2120#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2121do { \
2122 if (TARGET_64BIT) \
2123 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2124 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2125 else \
2126 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2127} while (0)
c98f8742 2128
f88c65f7 2129/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2130
2131#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2132 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2133
f88c65f7 2134/* This is how to output an element of a case-vector that is relative. */
c98f8742 2135
33f7f353 2136#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2137 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2138
63001560 2139/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2140
2141#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2142{ \
2143 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2144 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2145}
2146
2147/* A C statement or statements which output an assembler instruction
2148 opcode to the stdio stream STREAM. The macro-operand PTR is a
2149 variable of type `char *' which points to the opcode name in
2150 its "internal" form--the form that is written in the machine
2151 description. */
2152
2153#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2154 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2155
6a90d232
L
2156/* A C statement to output to the stdio stream FILE an assembler
2157 command to pad the location counter to a multiple of 1<<LOG
2158 bytes if it is within MAX_SKIP bytes. */
2159
2160#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2161#undef ASM_OUTPUT_MAX_SKIP_PAD
2162#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2163 if ((LOG) != 0) \
2164 { \
2165 if ((MAX_SKIP) == 0) \
2166 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2167 else \
2168 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2169 }
2170#endif
2171
135a687e
KT
2172/* Write the extra assembler code needed to declare a function
2173 properly. */
2174
2175#undef ASM_OUTPUT_FUNCTION_LABEL
2176#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2177 ix86_asm_output_function_label (FILE, NAME, DECL)
2178
f7288899
EC
2179/* Under some conditions we need jump tables in the text section,
2180 because the assembler cannot handle label differences between
2181 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2182
2183#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2184 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2185 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2186
cea3bd3e
RH
2187/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2188 and switch back. For x86 we do this only to save a few bytes that
2189 would otherwise be unused in the text section. */
ad211091
KT
2190#define CRT_MKSTR2(VAL) #VAL
2191#define CRT_MKSTR(x) CRT_MKSTR2(x)
2192
2193#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2194 asm (SECTION_OP "\n\t" \
2195 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2196 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2197
2198/* Default threshold for putting data in large sections
2199 with x86-64 medium memory model */
2200#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2201\f
b97de419
L
2202/* Which processor to tune code generation for. These must be in sync
2203 with processor_target_table in i386.c. */
5bf0ebab
RH
2204
2205enum processor_type
2206{
b97de419
L
2207 PROCESSOR_GENERIC = 0,
2208 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2209 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2210 PROCESSOR_PENTIUM,
2211 PROCESSOR_PENTIUMPRO,
5bf0ebab 2212 PROCESSOR_PENTIUM4,
89c43c0a 2213 PROCESSOR_NOCONA,
340ef734 2214 PROCESSOR_CORE2,
d3c11974
L
2215 PROCESSOR_NEHALEM,
2216 PROCESSOR_SANDYBRIDGE,
3a579e09 2217 PROCESSOR_HASWELL,
d3c11974
L
2218 PROCESSOR_BONNELL,
2219 PROCESSOR_SILVERMONT,
9a7f94d7 2220 PROCESSOR_INTEL,
b97de419
L
2221 PROCESSOR_GEODE,
2222 PROCESSOR_K6,
2223 PROCESSOR_ATHLON,
2224 PROCESSOR_K8,
21efb4d4 2225 PROCESSOR_AMDFAM10,
1133125e 2226 PROCESSOR_BDVER1,
4d652a18 2227 PROCESSOR_BDVER2,
eb2f2b44 2228 PROCESSOR_BDVER3,
ed97ad47 2229 PROCESSOR_BDVER4,
14b52538 2230 PROCESSOR_BTVER1,
e32bfc16 2231 PROCESSOR_BTVER2,
5bf0ebab
RH
2232 PROCESSOR_max
2233};
2234
9e555526 2235extern enum processor_type ix86_tune;
5bf0ebab 2236extern enum processor_type ix86_arch;
5bf0ebab 2237
8362f420
JH
2238/* Size of the RED_ZONE area. */
2239#define RED_ZONE_SIZE 128
2240/* Reserved area of the red zone for temporaries. */
2241#define RED_ZONE_RESERVE 8
c93e80a5 2242
95899b34 2243extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2244extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2245
2246/* Smallest class containing REGNO. */
2247extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2248
0948ccb2
PB
2249enum ix86_fpcmp_strategy {
2250 IX86_FPCMP_SAHF,
2251 IX86_FPCMP_COMI,
2252 IX86_FPCMP_ARITH
2253};
22fb740d
JH
2254\f
2255/* To properly truncate FP values into integers, we need to set i387 control
2256 word. We can't emit proper mode switching code before reload, as spills
2257 generated by reload may truncate values incorrectly, but we still can avoid
2258 redundant computation of new control word by the mode switching pass.
2259 The fldcw instructions are still emitted redundantly, but this is probably
2260 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2261 the sequence.
22fb740d
JH
2262
2263 The machinery is to emit simple truncation instructions and split them
2264 before reload to instructions having USEs of two memory locations that
2265 are filled by this code to old and new control word.
fce5a9f2 2266
22fb740d
JH
2267 Post-reload pass may be later used to eliminate the redundant fildcw if
2268 needed. */
2269
ff680eb1
UB
2270enum ix86_entity
2271{
ff97910d
VY
2272 AVX_U128 = 0,
2273 I387_TRUNC,
ff680eb1
UB
2274 I387_FLOOR,
2275 I387_CEIL,
2276 I387_MASK_PM,
2277 MAX_386_ENTITIES
2278};
2279
1cba2b96 2280enum ix86_stack_slot
ff680eb1 2281{
443ca5fc 2282 SLOT_TEMP = 0,
ff680eb1
UB
2283 SLOT_CW_STORED,
2284 SLOT_CW_TRUNC,
2285 SLOT_CW_FLOOR,
2286 SLOT_CW_CEIL,
2287 SLOT_CW_MASK_PM,
2288 MAX_386_STACK_LOCALS
2289};
22fb740d 2290
ff97910d
VY
2291enum avx_u128_state
2292{
2293 AVX_U128_CLEAN,
2294 AVX_U128_DIRTY,
2295 AVX_U128_ANY
2296};
2297
22fb740d
JH
2298/* Define this macro if the port needs extra instructions inserted
2299 for mode switching in an optimizing compilation. */
2300
ff680eb1
UB
2301#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2302 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2303
2304/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2305 initializer for an array of integers. Each initializer element N
2306 refers to an entity that needs mode switching, and specifies the
2307 number of different modes that might need to be set for this
2308 entity. The position of the initializer in the initializer -
2309 starting counting at zero - determines the integer that is used to
2310 refer to the mode-switched entity in question. */
2311
ff680eb1 2312#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2313 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2314
0f0138b6
JH
2315\f
2316/* Avoid renaming of stack registers, as doing so in combination with
2317 scheduling just increases amount of live registers at time and in
2318 the turn amount of fxch instructions needed.
2319
3f97cb0b
AI
2320 ??? Maybe Pentium chips benefits from renaming, someone can try....
2321
2322 Don't rename evex to non-evex sse registers. */
0f0138b6 2323
3f97cb0b
AI
2324#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2325 (EXT_REX_SSE_REGNO_P (SRC) == \
2326 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2327
3b3c6a3f 2328\f
e91f04de 2329#define FASTCALL_PREFIX '@'
fa1a0d02 2330\f
ec7ded37 2331/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2332
604a6be9 2333#ifndef USED_FOR_TARGET
ec7ded37 2334struct GTY(()) machine_frame_state
cd9c1ca8 2335{
ec7ded37
RH
2336 /* This pair tracks the currently active CFA as reg+offset. When reg
2337 is drap_reg, we don't bother trying to record here the real CFA when
2338 it might really be a DW_CFA_def_cfa_expression. */
2339 rtx cfa_reg;
2340 HOST_WIDE_INT cfa_offset;
2341
2342 /* The current offset (canonically from the CFA) of ESP and EBP.
2343 When stack frame re-alignment is active, these may not be relative
2344 to the CFA. However, in all cases they are relative to the offsets
2345 of the saved registers stored in ix86_frame. */
2346 HOST_WIDE_INT sp_offset;
2347 HOST_WIDE_INT fp_offset;
2348
2349 /* The size of the red-zone that may be assumed for the purposes of
2350 eliding register restore notes in the epilogue. This may be zero
2351 if no red-zone is in effect, or may be reduced from the real
2352 red-zone value by a maximum runtime stack re-alignment value. */
2353 int red_zone_offset;
2354
2355 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2356 value within the frame. If false then the offset above should be
2357 ignored. Note that DRAP, if valid, *always* points to the CFA and
2358 thus has an offset of zero. */
2359 BOOL_BITFIELD sp_valid : 1;
2360 BOOL_BITFIELD fp_valid : 1;
2361 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2362
2363 /* Indicate whether the local stack frame has been re-aligned. When
2364 set, the SP/FP offsets above are relative to the aligned frame
2365 and not the CFA. */
2366 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2367};
2368
f81c9774
RH
2369/* Private to winnt.c. */
2370struct seh_frame_state;
2371
d1b38208 2372struct GTY(()) machine_function {
fa1a0d02
JH
2373 struct stack_local_entry *stack_locals;
2374 const char *some_ld_name;
4aab97f9
L
2375 int varargs_gpr_size;
2376 int varargs_fpr_size;
ff680eb1 2377 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2378
2379 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2380 has been computed for. */
2381 int use_fast_prologue_epilogue_nregs;
2382
7458026b
ILT
2383 /* For -fsplit-stack support: A stack local which holds a pointer to
2384 the stack arguments for a function with a variable number of
2385 arguments. This is set at the start of the function and is used
2386 to initialize the overflow_arg_area field of the va_list
2387 structure. */
2388 rtx split_stack_varargs_pointer;
2389
3452586b
RH
2390 /* This value is used for amd64 targets and specifies the current abi
2391 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2392 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2393
2394 /* Nonzero if the function accesses a previous frame. */
2395 BOOL_BITFIELD accesses_prev_frame : 1;
2396
2397 /* Nonzero if the function requires a CLD in the prologue. */
2398 BOOL_BITFIELD needs_cld : 1;
2399
922e3e33
UB
2400 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2401 expander to determine the style used. */
3452586b
RH
2402 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2403
5bf5a10b
AO
2404 /* If true, the current function needs the default PIC register, not
2405 an alternate register (on x86) and must not use the red zone (on
2406 x86_64), even if it's a leaf function. We don't want the
2407 function to be regarded as non-leaf because TLS calls need not
2408 affect register allocation. This flag is set when a TLS call
2409 instruction is expanded within a function, and never reset, even
2410 if all such instructions are optimized away. Use the
2411 ix86_current_function_calls_tls_descriptor macro for a better
2412 approximation. */
3452586b
RH
2413 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2414
2415 /* If true, the current function has a STATIC_CHAIN is placed on the
2416 stack below the return address. */
2417 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2418
529a6471
JJ
2419 /* If true, it is safe to not save/restore DRAP register. */
2420 BOOL_BITFIELD no_drap_save_restore : 1;
2421
ec7ded37
RH
2422 /* During prologue/epilogue generation, the current frame state.
2423 Otherwise, the frame state at the end of the prologue. */
2424 struct machine_frame_state fs;
f81c9774
RH
2425
2426 /* During SEH output, this is non-null. */
2427 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2428};
cd9c1ca8 2429#endif
fa1a0d02
JH
2430
2431#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2432#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2433#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2434#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2435#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2436#define ix86_tls_descriptor_calls_expanded_in_cfun \
2437 (cfun->machine->tls_descriptor_call_expanded_p)
2438/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2439 calls are optimized away, we try to detect cases in which it was
2440 optimized away. Since such instructions (use (reg REG_SP)), we can
2441 verify whether there's any such instruction live by testing that
2442 REG_SP is live. */
2443#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2444 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2445#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2446
1bc7c5b6
ZW
2447/* Control behavior of x86_file_start. */
2448#define X86_FILE_START_VERSION_DIRECTIVE false
2449#define X86_FILE_START_FLTUSED false
2450
7dcbf659
JH
2451/* Flag to mark data that is in the large address area. */
2452#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2453#define SYMBOL_REF_FAR_ADDR_P(X) \
2454 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2455
2456/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2457 have defined always, to avoid ifdefing. */
2458#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2459#define SYMBOL_REF_DLLIMPORT_P(X) \
2460 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2461
2462#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2463#define SYMBOL_REF_DLLEXPORT_P(X) \
2464 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2465
82c0e1a0
KT
2466#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2467#define SYMBOL_REF_STUBVAR_P(X) \
2468 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2469
7942e47e
RY
2470extern void debug_ready_dispatch (void);
2471extern void debug_dispatch_window (int);
2472
91afcfa3
QN
2473/* The value at zero is only defined for the BMI instructions
2474 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2475#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2476 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2477#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2478 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2479
2480
b8ce4e94
KT
2481/* Flags returned by ix86_get_callcvt (). */
2482#define IX86_CALLCVT_CDECL 0x1
2483#define IX86_CALLCVT_STDCALL 0x2
2484#define IX86_CALLCVT_FASTCALL 0x4
2485#define IX86_CALLCVT_THISCALL 0x8
2486#define IX86_CALLCVT_REGPARM 0x10
2487#define IX86_CALLCVT_SSEREGPARM 0x20
2488
2489#define IX86_BASE_CALLCVT(FLAGS) \
2490 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2491 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2492
b86b9f44
MM
2493#define RECIP_MASK_NONE 0x00
2494#define RECIP_MASK_DIV 0x01
2495#define RECIP_MASK_SQRT 0x02
2496#define RECIP_MASK_VEC_DIV 0x04
2497#define RECIP_MASK_VEC_SQRT 0x08
2498#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2499 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2500#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2501
2502#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2503#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2504#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2505#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2506
5dcfdccd
KY
2507#define IX86_HLE_ACQUIRE (1 << 16)
2508#define IX86_HLE_RELEASE (1 << 17)
2509
e83b8e2e
JJ
2510/* For switching between functions with different target attributes. */
2511#define SWITCHABLE_TARGET 1
2512
c98f8742
JVA
2513/*
2514Local variables:
2515version-control: t
2516End:
2517*/