]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
c-ubsan.c (ubsan_instrument_division): Remove unnecessary code.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
5624e564 2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
90922d36 84#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 85#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 86#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 87#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 88#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 89#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 90#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 91#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 92#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 93#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
94#define TARGET_ROUND TARGET_ISA_ROUND
95#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 96#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 97#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 98#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 99#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 100#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 101#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 102#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 103#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 104#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 105#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 106#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 107#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 108#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 109#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 110#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 111#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 112#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 113#define TARGET_AES TARGET_ISA_AES
bf7b5747 114#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
115#define TARGET_SHA TARGET_ISA_SHA
116#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
117#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
119#define TARGET_XSAVEC TARGET_ISA_XSAVEC
120#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
121#define TARGET_XSAVES TARGET_ISA_XSAVES
122#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 123#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 124#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
125#define TARGET_CMPXCHG16B TARGET_ISA_CX16
126#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 127#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 128#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 129#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 130#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 131#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 132#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
133#define TARGET_RTM TARGET_ISA_RTM
134#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 135#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 136#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 137#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 138#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 139#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 140#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 141#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 142#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 143#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 144#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 145#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 146#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 147#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 148#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
149#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
150#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
151#define TARGET_MPX TARGET_ISA_MPX
152#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
36e9b73e
IT
153#define TARGET_PCOMMIT TARGET_ISA_PCOMMIT
154#define TARGET_PCOMMIT_P(x) TARGET_ISA_PCOMMIT_P(x)
9c3bca11
IT
155#define TARGET_CLWB TARGET_ISA_CLWB
156#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
157#define TARGET_MWAITX TARGET_ISA_MWAITX
158#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
ab442df7 159
90922d36 160#define TARGET_LP64 TARGET_ABI_64
bf7b5747 161#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 162#define TARGET_X32 TARGET_ABI_X32
bf7b5747 163#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
164#define TARGET_16BIT TARGET_CODE16
165#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 166
cbf2e4d4
HJ
167/* SSE4.1 defines round instructions */
168#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 169#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 170
26b5109f
RS
171#include "config/vxworks-dummy.h"
172
7eb68c06 173#include "config/i386/i386-opts.h"
ccf8e764 174
c69fa2d4 175#define MAX_STRINGOP_ALGS 4
ccf8e764 176
8c996513
JH
177/* Specify what algorithm to use for stringops on known size.
178 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
179 known at compile time or estimated via feedback, the SIZE array
180 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 181 means infinity). Corresponding ALG is used then.
340ef734
JH
182 When NOALIGN is true the code guaranting the alignment of the memory
183 block is skipped.
184
8c996513 185 For example initializer:
4f3f76e6 186 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 187 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 188 be used otherwise. */
8c996513
JH
189struct stringop_algs
190{
191 const enum stringop_alg unknown_size;
192 const struct stringop_strategy {
193 const int max;
194 const enum stringop_alg alg;
340ef734 195 int noalign;
c69fa2d4 196 } size [MAX_STRINGOP_ALGS];
8c996513
JH
197};
198
d4ba09c0
SC
199/* Define the specific costs for a given cpu */
200
201struct processor_costs {
8b60264b
KG
202 const int add; /* cost of an add instruction */
203 const int lea; /* cost of a lea instruction */
204 const int shift_var; /* variable shift costs */
205 const int shift_const; /* constant shift costs */
f676971a 206 const int mult_init[5]; /* cost of starting a multiply
4977bab6 207 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 208 const int mult_bit; /* cost of multiply per each bit set */
f676971a 209 const int divide[5]; /* cost of a divide/mod
4977bab6 210 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
211 int movsx; /* The cost of movsx operation. */
212 int movzx; /* The cost of movzx operation. */
8b60264b
KG
213 const int large_insn; /* insns larger than this cost more */
214 const int move_ratio; /* The threshold of number of scalar
ac775968 215 memory-to-memory move insns. */
8b60264b
KG
216 const int movzbl_load; /* cost of loading using movzbl */
217 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
218 in QImode, HImode and SImode relative
219 to reg-reg move (2). */
8b60264b 220 const int int_store[3]; /* cost of storing integer register
96e7ae40 221 in QImode, HImode and SImode */
8b60264b
KG
222 const int fp_move; /* cost of reg,reg fld/fst */
223 const int fp_load[3]; /* cost of loading FP register
96e7ae40 224 in SFmode, DFmode and XFmode */
8b60264b 225 const int fp_store[3]; /* cost of storing FP register
96e7ae40 226 in SFmode, DFmode and XFmode */
8b60264b
KG
227 const int mmx_move; /* cost of moving MMX register. */
228 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 229 in SImode and DImode */
8b60264b 230 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 231 in SImode and DImode */
8b60264b
KG
232 const int sse_move; /* cost of moving SSE register. */
233 const int sse_load[3]; /* cost of loading SSE register
fa79946e 234 in SImode, DImode and TImode*/
8b60264b 235 const int sse_store[3]; /* cost of storing SSE register
fa79946e 236 in SImode, DImode and TImode*/
8b60264b 237 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 238 integer and vice versa. */
46cb0441
ZD
239 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
240 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
241 const int prefetch_block; /* bytes moved to cache for prefetch. */
242 const int simultaneous_prefetches; /* number of parallel prefetch
243 operations. */
4977bab6 244 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
245 const int fadd; /* cost of FADD and FSUB instructions. */
246 const int fmul; /* cost of FMUL instruction. */
247 const int fdiv; /* cost of FDIV instruction. */
248 const int fabs; /* cost of FABS instruction. */
249 const int fchs; /* cost of FCHS instruction. */
250 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 251 /* Specify what algorithm
bee51209 252 to use for stringops on unknown size. */
ad83025e 253 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
254 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
255 load and store. */
256 const int scalar_load_cost; /* Cost of scalar load. */
257 const int scalar_store_cost; /* Cost of scalar store. */
258 const int vec_stmt_cost; /* Cost of any vector operation, excluding
259 load, store, vector-to-scalar and
260 scalar-to-vector operation. */
261 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
262 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 263 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
264 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
265 const int vec_store_cost; /* Cost of vector store. */
266 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
267 cost model. */
268 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
269 vectorizer cost model. */
d4ba09c0
SC
270};
271
8b60264b 272extern const struct processor_costs *ix86_cost;
b2077fd2
JH
273extern const struct processor_costs ix86_size_cost;
274
275#define ix86_cur_cost() \
276 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 277
c98f8742
JVA
278/* Macros used in the machine description to test the flags. */
279
b97de419 280/* configure can arrange to change it. */
e075ae69 281
35b528be 282#ifndef TARGET_CPU_DEFAULT
b97de419 283#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 284#endif
35b528be 285
004d3859
GK
286#ifndef TARGET_FPMATH_DEFAULT
287#define TARGET_FPMATH_DEFAULT \
288 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
289#endif
290
bf7b5747
ST
291#ifndef TARGET_FPMATH_DEFAULT_P
292#define TARGET_FPMATH_DEFAULT_P(x) \
293 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
294#endif
295
6ac49599 296#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 297#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 298
5791cc29
JT
299/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
300 compile-time constant. */
301#ifdef IN_LIBGCC2
6ac49599 302#undef TARGET_64BIT
5791cc29
JT
303#ifdef __x86_64__
304#define TARGET_64BIT 1
305#else
306#define TARGET_64BIT 0
307#endif
308#else
6ac49599
RS
309#ifndef TARGET_BI_ARCH
310#undef TARGET_64BIT
e49080ec 311#undef TARGET_64BIT_P
67adf6a9 312#if TARGET_64BIT_DEFAULT
0c2dc519 313#define TARGET_64BIT 1
e49080ec 314#define TARGET_64BIT_P(x) 1
0c2dc519
JH
315#else
316#define TARGET_64BIT 0
e49080ec 317#define TARGET_64BIT_P(x) 0
0c2dc519
JH
318#endif
319#endif
5791cc29 320#endif
25f94bb5 321
750054a2
CT
322#define HAS_LONG_COND_BRANCH 1
323#define HAS_LONG_UNCOND_BRANCH 1
324
9e555526
RH
325#define TARGET_386 (ix86_tune == PROCESSOR_I386)
326#define TARGET_486 (ix86_tune == PROCESSOR_I486)
327#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
328#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 329#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
330#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
331#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
332#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
333#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 334#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 335#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 336#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
337#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
338#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 339#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
340#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
341#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 342#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
06caf59d 343#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 344#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 345#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 346#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 347#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 348#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 349#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 350#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 351#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 352#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 353
80fd744f
RH
354/* Feature tests against the various tunings. */
355enum ix86_tune_indices {
4b8bc035 356#undef DEF_TUNE
3ad20bd4 357#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
358#include "x86-tune.def"
359#undef DEF_TUNE
360X86_TUNE_LAST
80fd744f
RH
361};
362
ab442df7 363extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
364
365#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
366#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
367#define TARGET_ZERO_EXTEND_WITH_AND \
368 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 369#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
370#define TARGET_BRANCH_PREDICTION_HINTS \
371 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
372#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
373#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
374#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
375#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
376#define TARGET_PARTIAL_FLAG_REG_STALL \
377 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
378#define TARGET_LCP_STALL \
379 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
380#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
381#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
382#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
383#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
384#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
385#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
386#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
387#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
388#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
389#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
390#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
391#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
392 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
393#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
394#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
395#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
396#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
397#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
398#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
399#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
400#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
401#define TARGET_INTEGER_DFMODE_MOVES \
402 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
403#define TARGET_PARTIAL_REG_DEPENDENCY \
404 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
405#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
406 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
407#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
408 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
409#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
410 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
411#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
412 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
413#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
414#define TARGET_SSE_TYPELESS_STORES \
415 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
416#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
417#define TARGET_MEMORY_MISMATCH_STALL \
418 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
419#define TARGET_PROLOGUE_USING_MOVE \
420 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
421#define TARGET_EPILOGUE_USING_MOVE \
422 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
423#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
424#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
425#define TARGET_INTER_UNIT_MOVES_TO_VEC \
426 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
427#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
428 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
429#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 430 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
431#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
432#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
433#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
434#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
435#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
436#define TARGET_PAD_SHORT_FUNCTION \
437 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
438#define TARGET_EXT_80387_CONSTANTS \
439 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
440#define TARGET_AVOID_VECTOR_DECODE \
441 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
442#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
443 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
444#define TARGET_SLOW_IMUL_IMM32_MEM \
445 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
446#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
447#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
448#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
449#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
450#define TARGET_USE_VECTOR_FP_CONVERTS \
451 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
452#define TARGET_USE_VECTOR_CONVERTS \
453 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
454#define TARGET_SLOW_PSHUFB \
455 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
456#define TARGET_VECTOR_PARALLEL_EXECUTION \
457 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
458#define TARGET_FUSE_CMP_AND_BRANCH_32 \
459 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
460#define TARGET_FUSE_CMP_AND_BRANCH_64 \
461 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 462#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
463 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
464 : TARGET_FUSE_CMP_AND_BRANCH_32)
465#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
466 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
467#define TARGET_FUSE_ALU_AND_BRANCH \
468 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 469#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
470#define TARGET_AVOID_LEA_FOR_ADDR \
471 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
472#define TARGET_VECTORIZE_DOUBLE \
473 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
474#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
475 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
476#define TARGET_AVX128_OPTIMAL \
477 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
478#define TARGET_REASSOC_INT_TO_PARALLEL \
479 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
480#define TARGET_REASSOC_FP_TO_PARALLEL \
481 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
482#define TARGET_GENERAL_REGS_SSE_SPILL \
483 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
484#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
485 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 486#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 487 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
488#define TARGET_ADJUST_UNROLL \
489 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
490#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
491 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 492
80fd744f
RH
493/* Feature tests against the various architecture variations. */
494enum ix86_arch_indices {
cef31f9c 495 X86_ARCH_CMOV,
80fd744f
RH
496 X86_ARCH_CMPXCHG,
497 X86_ARCH_CMPXCHG8B,
498 X86_ARCH_XADD,
499 X86_ARCH_BSWAP,
500
501 X86_ARCH_LAST
502};
4f3f76e6 503
ab442df7 504extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 505
cef31f9c 506#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
507#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
508#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
509#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
510#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
511
cef31f9c
UB
512/* For sane SSE instruction set generation we need fcomi instruction.
513 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
514 expands to a sequence that includes conditional move. */
515#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
516
80fd744f
RH
517#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
518
cb261eb7 519extern unsigned char x86_prefetch_sse;
80fd744f
RH
520#define TARGET_PREFETCH_SSE x86_prefetch_sse
521
80fd744f
RH
522#define ASSEMBLER_DIALECT (ix86_asm_dialect)
523
524#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
525#define TARGET_MIX_SSE_I387 \
526 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
527
5fa578f0
UB
528#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
529#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
530#define TARGET_HARD_XF_REGS (TARGET_80387)
531
80fd744f
RH
532#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
533#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
534#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 535#define TARGET_SUN_TLS 0
1ef45b77 536
67adf6a9
RH
537#ifndef TARGET_64BIT_DEFAULT
538#define TARGET_64BIT_DEFAULT 0
25f94bb5 539#endif
74dc3e94
RH
540#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
541#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
542#endif
25f94bb5 543
e0ea8797
AH
544#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
545#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
546
79f5e442
ZD
547/* Fence to use after loop using storent. */
548
549extern tree x86_mfence;
550#define FENCE_FOLLOWING_MOVNT x86_mfence
551
0ed4a390
JL
552/* Once GDB has been enhanced to deal with functions without frame
553 pointers, we can change this to allow for elimination of
554 the frame pointer in leaf functions. */
555#define TARGET_DEFAULT 0
67adf6a9 556
0a1c5e55
UB
557/* Extra bits to force. */
558#define TARGET_SUBTARGET_DEFAULT 0
559#define TARGET_SUBTARGET_ISA_DEFAULT 0
560
561/* Extra bits to force on w/ 32-bit mode. */
562#define TARGET_SUBTARGET32_DEFAULT 0
563#define TARGET_SUBTARGET32_ISA_DEFAULT 0
564
ccf8e764
RH
565/* Extra bits to force on w/ 64-bit mode. */
566#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 567#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 568
fee3eacd
IS
569/* Replace MACH-O, ifdefs by in-line tests, where possible.
570 (a) Macros defined in config/i386/darwin.h */
b069de3b 571#define TARGET_MACHO 0
9005471b 572#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
573#define MACHOPIC_ATT_STUB 0
574/* (b) Macros defined in config/darwin.h */
575#define MACHO_DYNAMIC_NO_PIC_P 0
576#define MACHOPIC_INDIRECT 0
577#define MACHOPIC_PURE 0
9005471b 578
5a579c3b
LE
579/* For the RDOS */
580#define TARGET_RDOS 0
581
9005471b 582/* For the Windows 64-bit ABI. */
7c800926
KT
583#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
584
6510e8bb
KT
585/* For the Windows 32-bit ABI. */
586#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
587
f81c9774
RH
588/* This is re-defined by cygming.h. */
589#define TARGET_SEH 0
590
a3d7ab92
KT
591/* This is re-defined by cygming.h. */
592#define TARGET_PECOFF 0
593
51212b32 594/* The default abi used by target. */
7c800926 595#define DEFAULT_ABI SYSV_ABI
ccf8e764 596
b8b3f0ca
LE
597/* The default TLS segment register used by target. */
598#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
599
cc69336f
RH
600/* Subtargets may reset this to 1 in order to enable 96-bit long double
601 with the rounding mode forced to 53 bits. */
602#define TARGET_96_ROUND_53_LONG_DOUBLE 0
603
682cd442
GK
604/* -march=native handling only makes sense with compiler running on
605 an x86 or x86_64 chip. If changing this condition, also change
606 the condition in driver-i386.c. */
607#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
608/* In driver-i386.c. */
609extern const char *host_detect_local_cpu (int argc, const char **argv);
610#define EXTRA_SPEC_FUNCTIONS \
611 { "local_cpu_detect", host_detect_local_cpu },
682cd442 612#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
613#endif
614
8981c15b
JM
615#if TARGET_64BIT_DEFAULT
616#define OPT_ARCH64 "!m32"
617#define OPT_ARCH32 "m32"
618#else
f0ea7581
L
619#define OPT_ARCH64 "m64|mx32"
620#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
621#endif
622
1cba2b96
EC
623/* Support for configure-time defaults of some command line options.
624 The order here is important so that -march doesn't squash the
625 tune or cpu values. */
ce998900 626#define OPTION_DEFAULT_SPECS \
da2d4c01 627 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
628 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
629 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 630 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
631 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
632 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
633 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
634 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
635 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 636
241e1a89
SC
637/* Specs for the compiler proper */
638
628714d8 639#ifndef CC1_CPU_SPEC
eb5bb0fd 640#define CC1_CPU_SPEC_1 ""
fa959ce4 641
682cd442 642#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
643#define CC1_CPU_SPEC CC1_CPU_SPEC_1
644#else
645#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
646"%{march=native:%>march=native %:local_cpu_detect(arch) \
647 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
648%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 649#endif
241e1a89 650#endif
c98f8742 651\f
30efe578 652/* Target CPU builtins. */
ab442df7
MM
653#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
654
655/* Target Pragmas. */
656#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 657
628714d8 658#ifndef CC1_SPEC
8015b78d 659#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
660#endif
661
662/* This macro defines names of additional specifications to put in the
663 specs that can be used in various specifications like CC1_SPEC. Its
664 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
665
666 Each subgrouping contains a string constant, that defines the
188fc5b5 667 specification name, and a string constant that used by the GCC driver
bcd86433
SC
668 program.
669
670 Do not define this macro if it does not need to do anything. */
671
672#ifndef SUBTARGET_EXTRA_SPECS
673#define SUBTARGET_EXTRA_SPECS
674#endif
675
676#define EXTRA_SPECS \
628714d8 677 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
678 SUBTARGET_EXTRA_SPECS
679\f
ce998900 680
d57a4b98
RH
681/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
682 FPU, assume that the fpcw is set to extended precision; when using
683 only SSE, rounding is correct; when using both SSE and the FPU,
684 the rounding precision is indeterminate, since either may be chosen
685 apparently at random. */
686#define TARGET_FLT_EVAL_METHOD \
5ccd517a 687 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 688
8ce94e44
JM
689/* Whether to allow x87 floating-point arithmetic on MODE (one of
690 SFmode, DFmode and XFmode) in the current excess precision
691 configuration. */
692#define X87_ENABLE_ARITH(MODE) \
693 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
694
695/* Likewise, whether to allow direct conversions from integer mode
696 IMODE (HImode, SImode or DImode) to MODE. */
697#define X87_ENABLE_FLOAT(MODE, IMODE) \
698 (flag_excess_precision == EXCESS_PRECISION_FAST \
699 || (MODE) == XFmode \
700 || ((MODE) == DFmode && (IMODE) == SImode) \
701 || (IMODE) == HImode)
702
979c67a5
UB
703/* target machine storage layout */
704
65d9c0ab
JH
705#define SHORT_TYPE_SIZE 16
706#define INT_TYPE_SIZE 32
f0ea7581
L
707#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
708#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 709#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 710#define FLOAT_TYPE_SIZE 32
65d9c0ab 711#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
712#define LONG_DOUBLE_TYPE_SIZE \
713 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 714
c637141a 715#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 716
67adf6a9 717#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 718#define MAX_BITS_PER_WORD 64
0c2dc519
JH
719#else
720#define MAX_BITS_PER_WORD 32
0c2dc519
JH
721#endif
722
c98f8742
JVA
723/* Define this if most significant byte of a word is the lowest numbered. */
724/* That is true on the 80386. */
725
726#define BITS_BIG_ENDIAN 0
727
728/* Define this if most significant byte of a word is the lowest numbered. */
729/* That is not true on the 80386. */
730#define BYTES_BIG_ENDIAN 0
731
732/* Define this if most significant word of a multiword number is the lowest
733 numbered. */
734/* Not true for 80386 */
735#define WORDS_BIG_ENDIAN 0
736
c98f8742 737/* Width of a word, in units (bytes). */
4ae8027b 738#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
739
740#ifndef IN_LIBGCC2
2e64c636
JH
741#define MIN_UNITS_PER_WORD 4
742#endif
c98f8742 743
c98f8742 744/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 745#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 746
e075ae69 747/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 748#define STACK_BOUNDARY \
51212b32 749 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 750
2e3f842f
L
751/* Stack boundary of the main function guaranteed by OS. */
752#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
753
de1132d1 754/* Minimum stack boundary. */
5bfb2af2 755#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 756
d1f87653 757/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 758 aligned; the compiler cannot rely on having this alignment. */
e075ae69 759#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 760
de1132d1 761/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
762 both 32bit and 64bit, to support codes that need 128 bit stack
763 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
764#define PREFERRED_STACK_BOUNDARY_DEFAULT \
765 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
766
767/* 1 if -mstackrealign should be turned on by default. It will
768 generate an alternate prologue and epilogue that realigns the
769 runtime stack if nessary. This supports mixing codes that keep a
770 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 771 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
772#define STACK_REALIGN_DEFAULT 0
773
774/* Boundary (in *bits*) on which the incoming stack is aligned. */
775#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 776
a2851b75
TG
777/* According to Windows x64 software convention, the maximum stack allocatable
778 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
779 instructions allowed to adjust the stack pointer in the epilog, forcing the
780 use of frame pointer for frames larger than 2 GB. This theorical limit
781 is reduced by 256, an over-estimated upper bound for the stack use by the
782 prologue.
783 We define only one threshold for both the prolog and the epilog. When the
4e523f33 784 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
785 regs, then save them, and then allocate the remaining. There is no SEH
786 unwind info for this later allocation. */
787#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
788
ebff937c
SH
789/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
790 mandatory for the 64-bit ABI, and may or may not be true for other
791 operating systems. */
792#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
793
f963b5d9
RS
794/* Minimum allocation boundary for the code of a function. */
795#define FUNCTION_BOUNDARY 8
796
797/* C++ stores the virtual bit in the lowest bit of function pointers. */
798#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 799
c98f8742
JVA
800/* Minimum size in bits of the largest boundary to which any
801 and all fundamental data types supported by the hardware
802 might need to be aligned. No data type wants to be aligned
17f24ff0 803 rounder than this.
fce5a9f2 804
d1f87653 805 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
806 and Pentium Pro XFmode values at 128 bit boundaries.
807
808 When increasing the maximum, also update
809 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 810
3f97cb0b 811#define BIGGEST_ALIGNMENT \
d9063947 812 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : (TARGET_IAMCU ? 32 : 128)))
17f24ff0 813
2e3f842f
L
814/* Maximum stack alignment. */
815#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
816
6e4f1168
L
817/* Alignment value for attribute ((aligned)). It is a constant since
818 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 819#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 820
822eda12 821/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 822#define ALIGN_MODE_128(MODE) \
4501d314 823 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 824
17f24ff0 825/* The published ABIs say that doubles should be aligned on word
d1f87653 826 boundaries, so lower the alignment for structure fields unless
6fc605d8 827 -malign-double is set. */
e932b21b 828
e83f3cff
RH
829/* ??? Blah -- this macro is used directly by libobjc. Since it
830 supports no vector modes, cut out the complexity and fall back
831 on BIGGEST_FIELD_ALIGNMENT. */
832#ifdef IN_TARGET_LIBS
ef49d42e
JH
833#ifdef __x86_64__
834#define BIGGEST_FIELD_ALIGNMENT 128
835#else
e83f3cff 836#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 837#endif
e83f3cff 838#else
e932b21b
JH
839#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
840 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 841#endif
c98f8742 842
e5e8a8bf 843/* If defined, a C expression to compute the alignment given to a
a7180f70 844 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
845 and ALIGN is the alignment that the object would ordinarily have.
846 The value of this macro is used instead of that alignment to align
847 the object.
848
849 If this macro is not defined, then ALIGN is used.
850
851 The typical use of this macro is to increase alignment for string
852 constants to be word aligned so that `strcpy' calls that copy
853 constants can be done inline. */
854
d9a5f180 855#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 856
8a022443
JW
857/* If defined, a C expression to compute the alignment for a static
858 variable. TYPE is the data type, and ALIGN is the alignment that
859 the object would ordinarily have. The value of this macro is used
860 instead of that alignment to align the object.
861
862 If this macro is not defined, then ALIGN is used.
863
864 One use of this macro is to increase alignment of medium-size
865 data to make it all fit in fewer cache lines. Another is to
866 cause character arrays to be word-aligned so that `strcpy' calls
867 that copy constants to character arrays can be done inline. */
868
df8a1d28
JJ
869#define DATA_ALIGNMENT(TYPE, ALIGN) \
870 ix86_data_alignment ((TYPE), (ALIGN), true)
871
872/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
873 some alignment increase, instead of optimization only purposes. E.g.
874 AMD x86-64 psABI says that variables with array type larger than 15 bytes
875 must be aligned to 16 byte boundaries.
876
877 If this macro is not defined, then ALIGN is used. */
878
879#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
880 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
881
882/* If defined, a C expression to compute the alignment for a local
883 variable. TYPE is the data type, and ALIGN is the alignment that
884 the object would ordinarily have. The value of this macro is used
885 instead of that alignment to align the object.
886
887 If this macro is not defined, then ALIGN is used.
888
889 One use of this macro is to increase alignment of medium-size
890 data to make it all fit in fewer cache lines. */
891
76fe54f0
L
892#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
893 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
894
895/* If defined, a C expression to compute the alignment for stack slot.
896 TYPE is the data type, MODE is the widest mode available, and ALIGN
897 is the alignment that the slot would ordinarily have. The value of
898 this macro is used instead of that alignment to align the slot.
899
900 If this macro is not defined, then ALIGN is used when TYPE is NULL,
901 Otherwise, LOCAL_ALIGNMENT will be used.
902
903 One use of this macro is to set alignment of stack slot to the
904 maximum alignment of all possible modes which the slot may have. */
905
906#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
907 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 908
9bfaf89d
JJ
909/* If defined, a C expression to compute the alignment for a local
910 variable DECL.
911
912 If this macro is not defined, then
913 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
914
915 One use of this macro is to increase alignment of medium-size
916 data to make it all fit in fewer cache lines. */
917
918#define LOCAL_DECL_ALIGNMENT(DECL) \
919 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
920
ae58e548
JJ
921/* If defined, a C expression to compute the minimum required alignment
922 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
923 MODE, assuming normal alignment ALIGN.
924
925 If this macro is not defined, then (ALIGN) will be used. */
926
927#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
928 ix86_minimum_alignment (EXP, MODE, ALIGN)
929
9bfaf89d 930
9cd10576 931/* Set this nonzero if move instructions will actually fail to work
c98f8742 932 when given unaligned data. */
b4ac57ab 933#define STRICT_ALIGNMENT 0
c98f8742
JVA
934
935/* If bit field type is int, don't let it cross an int,
936 and give entire struct the alignment of an int. */
43a88a8c 937/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 938#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
939\f
940/* Standard register usage. */
941
942/* This processor has special stack-like registers. See reg-stack.c
892a2d68 943 for details. */
c98f8742
JVA
944
945#define STACK_REGS
ce998900 946
d9a5f180 947#define IS_STACK_MODE(MODE) \
63001560
UB
948 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
949 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 950 || (MODE) == XFmode)
c98f8742
JVA
951
952/* Number of actual hardware registers.
953 The hardware registers are assigned numbers for the compiler
954 from 0 to just below FIRST_PSEUDO_REGISTER.
955 All registers that the compiler knows about must be given numbers,
956 even those that are not normally considered general registers.
957
958 In the 80386 we give the 8 general purpose registers the numbers 0-7.
959 We number the floating point registers 8-15.
960 Note that registers 0-7 can be accessed as a short or int,
961 while only 0-3 may be used with byte `mov' instructions.
962
963 Reg 16 does not correspond to any hardware register, but instead
964 appears in the RTL as an argument pointer prior to reload, and is
965 eliminated during reloading in favor of either the stack or frame
892a2d68 966 pointer. */
c98f8742 967
05416670 968#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 969
3073d01c
ML
970/* Number of hardware registers that go into the DWARF-2 unwind info.
971 If not defined, equals FIRST_PSEUDO_REGISTER. */
972
973#define DWARF_FRAME_REGISTERS 17
974
c98f8742
JVA
975/* 1 for registers that have pervasive standard uses
976 and are not available for the register allocator.
3f3f2124 977 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 978
621bc046
UB
979 REX registers are disabled for 32bit targets in
980 TARGET_CONDITIONAL_REGISTER_USAGE. */
981
a7180f70
BS
982#define FIXED_REGISTERS \
983/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 984{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
985/*arg,flags,fpsr,fpcr,frame*/ \
986 1, 1, 1, 1, 1, \
a7180f70
BS
987/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
988 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 989/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
990 0, 0, 0, 0, 0, 0, 0, 0, \
991/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 992 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 993/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
994 0, 0, 0, 0, 0, 0, 0, 0, \
995/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
996 0, 0, 0, 0, 0, 0, 0, 0, \
997/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
998 0, 0, 0, 0, 0, 0, 0, 0, \
999/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1000 0, 0, 0, 0, 0, 0, 0, 0, \
1001/* b0, b1, b2, b3*/ \
1002 0, 0, 0, 0 }
c98f8742
JVA
1003
1004/* 1 for registers not available across function calls.
1005 These must include the FIXED_REGISTERS and also any
1006 registers that can be used without being saved.
1007 The latter must include the registers where values are returned
1008 and the register where structure-value addresses are passed.
fce5a9f2
EC
1009 Aside from that, you can include as many other registers as you like.
1010
621bc046
UB
1011 Value is set to 1 if the register is call used unconditionally.
1012 Bit one is set if the register is call used on TARGET_32BIT ABI.
1013 Bit two is set if the register is call used on TARGET_64BIT ABI.
1014 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1015
1016 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1017
a7180f70
BS
1018#define CALL_USED_REGISTERS \
1019/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1020{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1021/*arg,flags,fpsr,fpcr,frame*/ \
1022 1, 1, 1, 1, 1, \
a7180f70 1023/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1024 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1025/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1026 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1027/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1028 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1029/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1030 6, 6, 6, 6, 6, 6, 6, 6, \
1031/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1032 6, 6, 6, 6, 6, 6, 6, 6, \
1033/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1034 6, 6, 6, 6, 6, 6, 6, 6, \
1035 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1036 1, 1, 1, 1, 1, 1, 1, 1, \
1037/* b0, b1, b2, b3*/ \
1038 1, 1, 1, 1 }
c98f8742 1039
3b3c6a3f
MM
1040/* Order in which to allocate registers. Each register must be
1041 listed once, even those in FIXED_REGISTERS. List frame pointer
1042 late and fixed registers last. Note that, in general, we prefer
1043 registers listed in CALL_USED_REGISTERS, keeping the others
1044 available for storage of persistent values.
1045
5a733826 1046 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1047 so this is just empty initializer for array. */
3b3c6a3f 1048
162f023b
JH
1049#define REG_ALLOC_ORDER \
1050{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1051 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1052 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1053 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1054 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1055 78, 79, 80 }
3b3c6a3f 1056
5a733826 1057/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1058 to be rearranged based on a particular function. When using sse math,
03c259ad 1059 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1060
5a733826 1061#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1062
f5316dfe 1063
7c800926
KT
1064#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1065
c98f8742
JVA
1066/* Return number of consecutive hard regs needed starting at reg REGNO
1067 to hold something of mode MODE.
1068 This is ordinarily the length in words of a value of mode MODE
1069 but can be less for certain modes in special long registers.
1070
fce5a9f2 1071 Actually there are no two word move instructions for consecutive
c98f8742 1072 registers. And only registers 0-3 may have mov byte instructions
63001560 1073 applied to them. */
c98f8742 1074
ce998900 1075#define HARD_REGNO_NREGS(REGNO, MODE) \
d5e254e1
IE
1076 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1077 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
92d0fb09 1078 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1079 : ((MODE) == XFmode \
92d0fb09 1080 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1081 : (MODE) == XCmode \
92d0fb09 1082 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1083 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1084
8521c414
JM
1085#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1086 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1087 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1088 ? 0 \
1089 : ((MODE) == XFmode || (MODE) == XCmode)) \
1090 : 0)
1091
1092#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1093
95879c72
L
1094#define VALID_AVX256_REG_MODE(MODE) \
1095 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1096 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1097 || (MODE) == V4DFmode)
95879c72 1098
4ac005ba 1099#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1100 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1101
3f97cb0b
AI
1102#define VALID_AVX512F_SCALAR_MODE(MODE) \
1103 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1104 || (MODE) == SFmode)
1105
1106#define VALID_AVX512F_REG_MODE(MODE) \
1107 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1108 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1109 || (MODE) == V4TImode)
1110
05416670 1111#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6
AI
1112 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1113 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1114
ce998900
UB
1115#define VALID_SSE2_REG_MODE(MODE) \
1116 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1117 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1118
d9a5f180 1119#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1120 ((MODE) == V1TImode || (MODE) == TImode \
1121 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1122 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1123
47f339cf 1124#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1125 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1126
d9a5f180 1127#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1128 ((MODE == V1DImode) || (MODE) == DImode \
1129 || (MODE) == V2SImode || (MODE) == SImode \
1130 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1131
05416670
UB
1132#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1133
1134#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1135
d5e254e1
IE
1136#define VALID_BND_REG_MODE(MODE) \
1137 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1138
ce998900
UB
1139#define VALID_DFP_MODE_P(MODE) \
1140 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1141
d9a5f180 1142#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1143 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1144 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1145
d9a5f180 1146#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1147 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1148 || (MODE) == DImode \
1149 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1150 || (MODE) == CDImode \
1151 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1152 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1153
822eda12 1154/* Return true for modes passed in SSE registers. */
ce998900 1155#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1156 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1157 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1158 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1159 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1160 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1161 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1162 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1163 || (MODE) == V16SFmode)
822eda12 1164
05416670
UB
1165#define X87_FLOAT_MODE_P(MODE) \
1166 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1167
05416670
UB
1168#define SSE_FLOAT_MODE_P(MODE) \
1169 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1170
1171#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1172 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1173 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1174
e075ae69 1175/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1176
a946dd00 1177#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1178 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1179
1180/* Value is 1 if it is a good idea to tie two pseudo registers
1181 when one has mode MODE1 and one has mode MODE2.
1182 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1183 for any hard reg, then this must be 0 for correct output. */
1184
c1c5b5e3 1185#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1186
ff25ef99
ZD
1187/* It is possible to write patterns to move flags; but until someone
1188 does it, */
1189#define AVOID_CCMODE_COPIES
c98f8742 1190
e075ae69 1191/* Specify the modes required to caller save a given hard regno.
787dc842 1192 We do this on i386 to prevent flags from being saved at all.
e075ae69 1193
787dc842
JH
1194 Kill any attempts to combine saving of modes. */
1195
d9a5f180
GS
1196#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1197 (CC_REGNO_P (REGNO) ? VOIDmode \
1198 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1199 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1200 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1201 || MASK_REGNO_P (REGNO)) ? SImode \
1202 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1203 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1204 : (MODE))
ce998900 1205
51ba747a
RH
1206/* The only ABI that saves SSE registers across calls is Win64 (thus no
1207 need to check the current ABI here), and with AVX enabled Win64 only
1208 guarantees that the low 16 bytes are saved. */
1209#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1210 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1211
c98f8742
JVA
1212/* Specify the registers used for certain standard purposes.
1213 The values of these macros are register numbers. */
1214
1215/* on the 386 the pc register is %eip, and is not usable as a general
1216 register. The ordinary mov instructions won't work */
1217/* #define PC_REGNUM */
1218
05416670
UB
1219/* Base register for access to arguments of the function. */
1220#define ARG_POINTER_REGNUM ARGP_REG
1221
c98f8742 1222/* Register to use for pushing function arguments. */
05416670 1223#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1224
1225/* Base register for access to local variables of the function. */
05416670
UB
1226#define FRAME_POINTER_REGNUM FRAME_REG
1227#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1228
05416670
UB
1229#define FIRST_INT_REG AX_REG
1230#define LAST_INT_REG SP_REG
c98f8742 1231
05416670
UB
1232#define FIRST_QI_REG AX_REG
1233#define LAST_QI_REG BX_REG
c98f8742
JVA
1234
1235/* First & last stack-like regs */
05416670
UB
1236#define FIRST_STACK_REG ST0_REG
1237#define LAST_STACK_REG ST7_REG
c98f8742 1238
05416670
UB
1239#define FIRST_SSE_REG XMM0_REG
1240#define LAST_SSE_REG XMM7_REG
fce5a9f2 1241
05416670
UB
1242#define FIRST_MMX_REG MM0_REG
1243#define LAST_MMX_REG MM7_REG
a7180f70 1244
05416670
UB
1245#define FIRST_REX_INT_REG R8_REG
1246#define LAST_REX_INT_REG R15_REG
3f3f2124 1247
05416670
UB
1248#define FIRST_REX_SSE_REG XMM8_REG
1249#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1250
05416670
UB
1251#define FIRST_EXT_REX_SSE_REG XMM16_REG
1252#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1253
05416670
UB
1254#define FIRST_MASK_REG MASK0_REG
1255#define LAST_MASK_REG MASK7_REG
85a77221 1256
05416670
UB
1257#define FIRST_BND_REG BND0_REG
1258#define LAST_BND_REG BND3_REG
d5e254e1 1259
aabcd309 1260/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1261 requiring a frame pointer. */
1262#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1263#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1264#endif
1265
1266/* Make sure we can access arbitrary call frames. */
1267#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1268
c98f8742 1269/* Register to hold the addressing base for position independent
5b43fed1
RH
1270 code access to data items. We don't use PIC pointer for 64bit
1271 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1272 pessimizing code dealing with EBX.
bd09bdeb
RH
1273
1274 To avoid clobbering a call-saved register unnecessarily, we renumber
1275 the pic register when possible. The change is visible after the
1276 prologue has been emitted. */
1277
e8b5eb25 1278#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1279
bcb21886 1280#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1281 (ix86_use_pseudo_pic_reg () \
1282 ? (pic_offset_table_rtx \
1283 ? INVALID_REGNUM \
1284 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1285 : INVALID_REGNUM)
c98f8742 1286
5fc0e5df
KW
1287#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1288
c51e6d85 1289/* This is overridden by <cygwin.h>. */
5e062767
DS
1290#define MS_AGGREGATE_RETURN 0
1291
61fec9ff 1292#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1293\f
1294/* Define the classes of registers for register constraints in the
1295 machine description. Also define ranges of constants.
1296
1297 One of the classes must always be named ALL_REGS and include all hard regs.
1298 If there is more than one class, another class must be named NO_REGS
1299 and contain no registers.
1300
1301 The name GENERAL_REGS must be the name of a class (or an alias for
1302 another name such as ALL_REGS). This is the class of registers
1303 that is allowed by "g" or "r" in a register constraint.
1304 Also, registers outside this class are allocated only when
1305 instructions express preferences for them.
1306
1307 The classes must be numbered in nondecreasing order; that is,
1308 a larger-numbered class must never be contained completely
2e24efd3
AM
1309 in a smaller-numbered class. This is why CLOBBERED_REGS class
1310 is listed early, even though in 64-bit mode it contains more
1311 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1312
1313 For any two classes, it is very desirable that there be another
ab408a86
JVA
1314 class that represents their union.
1315
1316 It might seem that class BREG is unnecessary, since no useful 386
1317 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1318 and the "b" register constraint is useful in asms for syscalls.
1319
03c259ad 1320 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1321
1322enum reg_class
1323{
1324 NO_REGS,
e075ae69 1325 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1326 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1327 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1328 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1329 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1330 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1331 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1332 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1333 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1334 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1335 FLOAT_REGS,
06f4e35d 1336 SSE_FIRST_REG,
45392c76 1337 NO_REX_SSE_REGS,
a7180f70 1338 SSE_REGS,
3f97cb0b 1339 EVEX_SSE_REGS,
d5e254e1 1340 BND_REGS,
3f97cb0b 1341 ALL_SSE_REGS,
a7180f70 1342 MMX_REGS,
446988df
JH
1343 FP_TOP_SSE_REGS,
1344 FP_SECOND_SSE_REGS,
1345 FLOAT_SSE_REGS,
1346 FLOAT_INT_REGS,
1347 INT_SSE_REGS,
1348 FLOAT_INT_SSE_REGS,
85a77221
AI
1349 MASK_EVEX_REGS,
1350 MASK_REGS,
c98f8742
JVA
1351 ALL_REGS, LIM_REG_CLASSES
1352};
1353
d9a5f180
GS
1354#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1355
1356#define INTEGER_CLASS_P(CLASS) \
1357 reg_class_subset_p ((CLASS), GENERAL_REGS)
1358#define FLOAT_CLASS_P(CLASS) \
1359 reg_class_subset_p ((CLASS), FLOAT_REGS)
1360#define SSE_CLASS_P(CLASS) \
3f97cb0b 1361 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1362#define MMX_CLASS_P(CLASS) \
f75959a6 1363 ((CLASS) == MMX_REGS)
d9a5f180
GS
1364#define MAYBE_INTEGER_CLASS_P(CLASS) \
1365 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1366#define MAYBE_FLOAT_CLASS_P(CLASS) \
1367 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1368#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1369 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1370#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1371 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1372#define MAYBE_MASK_CLASS_P(CLASS) \
1373 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1374
1375#define Q_CLASS_P(CLASS) \
1376 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1377
0bd72901
UB
1378#define MAYBE_NON_Q_CLASS_P(CLASS) \
1379 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1380
43f3a59d 1381/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1382
1383#define REG_CLASS_NAMES \
1384{ "NO_REGS", \
ab408a86 1385 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1386 "SIREG", "DIREG", \
e075ae69 1387 "AD_REGS", \
2e24efd3 1388 "CLOBBERED_REGS", \
e075ae69 1389 "Q_REGS", "NON_Q_REGS", \
c98f8742 1390 "INDEX_REGS", \
3f3f2124 1391 "LEGACY_REGS", \
c98f8742
JVA
1392 "GENERAL_REGS", \
1393 "FP_TOP_REG", "FP_SECOND_REG", \
1394 "FLOAT_REGS", \
cb482895 1395 "SSE_FIRST_REG", \
45392c76 1396 "NO_REX_SSE_REGS", \
a7180f70 1397 "SSE_REGS", \
3f97cb0b 1398 "EVEX_SSE_REGS", \
d5e254e1 1399 "BND_REGS", \
3f97cb0b 1400 "ALL_SSE_REGS", \
a7180f70 1401 "MMX_REGS", \
446988df
JH
1402 "FP_TOP_SSE_REGS", \
1403 "FP_SECOND_SSE_REGS", \
1404 "FLOAT_SSE_REGS", \
8fcaaa80 1405 "FLOAT_INT_REGS", \
446988df
JH
1406 "INT_SSE_REGS", \
1407 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1408 "MASK_EVEX_REGS", \
1409 "MASK_REGS", \
c98f8742
JVA
1410 "ALL_REGS" }
1411
ac2e563f
RH
1412/* Define which registers fit in which classes. This is an initializer
1413 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1414
621bc046
UB
1415 Note that CLOBBERED_REGS are calculated by
1416 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1417
3f97cb0b 1418#define REG_CLASS_CONTENTS \
d5e254e1
IE
1419{ { 0x00, 0x0, 0x0 }, \
1420 { 0x01, 0x0, 0x0 }, /* AREG */ \
1421 { 0x02, 0x0, 0x0 }, /* DREG */ \
1422 { 0x04, 0x0, 0x0 }, /* CREG */ \
1423 { 0x08, 0x0, 0x0 }, /* BREG */ \
1424 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1425 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1426 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1427 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1428 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1429 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1430 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1431 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1432 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1433 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1434 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1435 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1436 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1437{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1438{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1439 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1440 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1441{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1442{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1443{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1444{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1445{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1446{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1447{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1448{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1449 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1450 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1451{ 0xffffffff,0xffffffff, 0x1fff } \
e075ae69 1452}
c98f8742
JVA
1453
1454/* The same information, inverted:
1455 Return the class number of the smallest class containing
1456 reg number REGNO. This could be a conditional expression
1457 or could index an array. */
1458
c98f8742
JVA
1459#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1460
42db504c
SB
1461/* When this hook returns true for MODE, the compiler allows
1462 registers explicitly used in the rtl to be used as spill registers
1463 but prevents the compiler from extending the lifetime of these
1464 registers. */
1465#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1466
fc27f749 1467#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1468#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1469
1470#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1471#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1472
1473#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1474#define REX_INT_REGNO_P(N) \
1475 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1476
58b0b34c 1477#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1478#define GENERAL_REGNO_P(N) \
58b0b34c 1479 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1480
fc27f749
UB
1481#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1482#define ANY_QI_REGNO_P(N) \
1483 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1484
66aaf16f
UB
1485#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1486#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1487
fc27f749 1488#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1489#define SSE_REGNO_P(N) \
1490 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1491 || REX_SSE_REGNO_P (N) \
1492 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1493
4977bab6 1494#define REX_SSE_REGNO_P(N) \
fb84c7a0 1495 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1496
0a48088a
IT
1497#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1498
3f97cb0b
AI
1499#define EXT_REX_SSE_REGNO_P(N) \
1500 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1501
05416670
UB
1502#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1503#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1504
9e4a4dd6 1505#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1506#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1507
fc27f749 1508#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1509#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1510
e075ae69
RH
1511#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1512#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1513
58b0b34c 1514#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1515#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1516
05416670
UB
1517/* First floating point reg */
1518#define FIRST_FLOAT_REG FIRST_STACK_REG
1519#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1520
1521#define SSE_REGNO(N) \
1522 ((N) < 8 ? FIRST_SSE_REG + (N) \
1523 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1524 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1525
c98f8742
JVA
1526/* The class value for index registers, and the one for base regs. */
1527
1528#define INDEX_REG_CLASS INDEX_REGS
1529#define BASE_REG_CLASS GENERAL_REGS
1530
c98f8742 1531/* Place additional restrictions on the register class to use when it
4cbb525c 1532 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1533 register for which class CLASS would ordinarily be used.
1534
1535 We avoid classes containing registers from multiple units due to
1536 the limitation in ix86_secondary_memory_needed. We limit these
1537 classes to their "natural mode" single unit register class, depending
1538 on the unit availability.
1539
1540 Please note that reg_class_subset_p is not commutative, so these
1541 conditions mean "... if (CLASS) includes ALL registers from the
1542 register set." */
1543
1544#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1545 (((MODE) == QImode && !TARGET_64BIT \
1546 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1547 : (((MODE) == SImode || (MODE) == DImode) \
1548 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1549 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1550 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1551 : (X87_FLOAT_MODE_P (MODE) \
1552 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1553 : (CLASS))
c98f8742 1554
85ff473e 1555/* If we are copying between general and FP registers, we need a memory
f84aa48a 1556 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1557#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1558 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1559
c62b3659
UB
1560/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1561 There is no need to emit full 64 bit move on 64 bit targets
1562 for integral modes that can be moved using 32 bit move. */
1563#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1564 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1565 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1566 : MODE)
1567
1272914c
RH
1568/* Return a class of registers that cannot change FROM mode to TO mode. */
1569
1570#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1571 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1572\f
1573/* Stack layout; function entry, exit and calling. */
1574
1575/* Define this if pushing a word on the stack
1576 makes the stack pointer a smaller address. */
62f9f30b 1577#define STACK_GROWS_DOWNWARD 1
c98f8742 1578
a4d05547 1579/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1580 is at the high-address end of the local variables;
1581 that is, each additional local variable allocated
1582 goes at a more negative offset in the frame. */
f62c8a5c 1583#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1584
1585/* Offset within stack frame to start allocating local variables at.
1586 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1587 first local allocated. Otherwise, it is the offset to the BEGINNING
1588 of the first local allocated. */
1589#define STARTING_FRAME_OFFSET 0
1590
8c2b2fae
UB
1591/* If we generate an insn to push BYTES bytes, this says how many the stack
1592 pointer really advances by. On 386, we have pushw instruction that
1593 decrements by exactly 2 no matter what the position was, there is no pushb.
1594
1595 But as CIE data alignment factor on this arch is -4 for 32bit targets
1596 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1597 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1598
d2836273 1599#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1600 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1601
1602/* If defined, the maximum amount of space required for outgoing arguments
1603 will be computed and placed into the variable `crtl->outgoing_args_size'.
1604 No space will be pushed onto the stack for each call; instead, the
1605 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1606
1607 In 32bit mode enabling argument accumulation results in about 5% code size
1608 growth becuase move instructions are less compact than push. In 64bit
1609 mode the difference is less drastic but visible.
1610
1611 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1612 actually grow with accumulation. Is that because accumulated args
41ee845b 1613 unwind info became unnecesarily bloated?
f830ddc2
RH
1614
1615 With the 64-bit MS ABI, we can generate correct code with or without
1616 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1617 generated without accumulated args is terrible.
41ee845b
JH
1618
1619 If stack probes are required, the space used for large function
1620 arguments on the stack must also be probed, so enable
1621 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1622
6c6094f1 1623#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1624 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1625 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1626
1627/* If defined, a C expression whose value is nonzero when we want to use PUSH
1628 instructions to pass outgoing arguments. */
1629
1630#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1631
2da4124d
L
1632/* We want the stack and args grow in opposite directions, even if
1633 PUSH_ARGS is 0. */
1634#define PUSH_ARGS_REVERSED 1
1635
c98f8742
JVA
1636/* Offset of first parameter from the argument pointer register value. */
1637#define FIRST_PARM_OFFSET(FNDECL) 0
1638
a7180f70
BS
1639/* Define this macro if functions should assume that stack space has been
1640 allocated for arguments even when their values are passed in registers.
1641
1642 The value of this macro is the size, in bytes, of the area reserved for
1643 arguments passed in registers for the function represented by FNDECL.
1644
1645 This space can be allocated by the caller, or be a part of the
1646 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1647 which. */
7c800926
KT
1648#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1649
4ae8027b 1650#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1651 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1652
c98f8742
JVA
1653/* Define how to find the value returned by a library function
1654 assuming the value has mode MODE. */
1655
4ae8027b 1656#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1657
e9125c09
TW
1658/* Define the size of the result block used for communication between
1659 untyped_call and untyped_return. The block contains a DImode value
1660 followed by the block used by fnsave and frstor. */
1661
1662#define APPLY_RESULT_SIZE (8+108)
1663
b08de47e 1664/* 1 if N is a possible register number for function argument passing. */
53c17031 1665#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1666
1667/* Define a data type for recording info about an argument list
1668 during the scan of that argument list. This data type should
1669 hold all necessary information about the function itself
1670 and about the args processed so far, enough to enable macros
b08de47e 1671 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1672
e075ae69 1673typedef struct ix86_args {
fa283935 1674 int words; /* # words passed so far */
b08de47e
MM
1675 int nregs; /* # registers available for passing */
1676 int regno; /* next available register number */
3e65f251
KT
1677 int fastcall; /* fastcall or thiscall calling convention
1678 is used */
fa283935 1679 int sse_words; /* # sse words passed so far */
a7180f70 1680 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1681 int warn_avx512f; /* True when we want to warn
1682 about AVX512F ABI. */
95879c72 1683 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1684 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1685 int warn_mmx; /* True when we want to warn about MMX ABI. */
1686 int sse_regno; /* next available sse register number */
1687 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1688 int mmx_nregs; /* # mmx registers available for passing */
1689 int mmx_regno; /* next available mmx register number */
892a2d68 1690 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1691 int caller; /* true if it is caller. */
2824d6e5
UB
1692 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1693 SFmode/DFmode arguments should be passed
1694 in SSE registers. Otherwise 0. */
d5e254e1
IE
1695 int bnd_regno; /* next available bnd register number */
1696 int bnds_in_bt; /* number of bounds expected in BT. */
1697 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1698 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1699 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1700 MS_ABI for ms abi. */
e66fc623 1701 tree decl; /* Callee decl. */
b08de47e 1702} CUMULATIVE_ARGS;
c98f8742
JVA
1703
1704/* Initialize a variable CUM of type CUMULATIVE_ARGS
1705 for a call to a function whose data type is FNTYPE.
b08de47e 1706 For a library call, FNTYPE is 0. */
c98f8742 1707
0f6937fe 1708#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1709 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1710 (N_NAMED_ARGS) != -1)
c98f8742 1711
c98f8742
JVA
1712/* Output assembler code to FILE to increment profiler label # LABELNO
1713 for profiling a function entry. */
1714
a5fa1ecd
JH
1715#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1716
1717#define MCOUNT_NAME "_mcount"
1718
3c5273a9
KT
1719#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1720
a5fa1ecd 1721#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1722
1723/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1724 the stack pointer does not matter. The value is tested only in
1725 functions that have frame pointers.
1726 No definition is equivalent to always zero. */
fce5a9f2 1727/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1728 we have to restore it ourselves from the frame pointer, in order to
1729 use pop */
1730
1731#define EXIT_IGNORE_STACK 1
1732
c98f8742
JVA
1733/* Output assembler code for a block containing the constant parts
1734 of a trampoline, leaving space for the variable parts. */
1735
a269a03c 1736/* On the 386, the trampoline contains two instructions:
c98f8742 1737 mov #STATIC,ecx
a269a03c
JC
1738 jmp FUNCTION
1739 The trampoline is generated entirely at runtime. The operand of JMP
1740 is the address of FUNCTION relative to the instruction following the
1741 JMP (which is 5 bytes long). */
c98f8742
JVA
1742
1743/* Length in units of the trampoline for entering a nested function. */
1744
3452586b 1745#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1746\f
1747/* Definitions for register eliminations.
1748
1749 This is an array of structures. Each structure initializes one pair
1750 of eliminable registers. The "from" register number is given first,
1751 followed by "to". Eliminations of the same "from" register are listed
1752 in order of preference.
1753
afc2cd05
NC
1754 There are two registers that can always be eliminated on the i386.
1755 The frame pointer and the arg pointer can be replaced by either the
1756 hard frame pointer or to the stack pointer, depending upon the
1757 circumstances. The hard frame pointer is not used before reload and
1758 so it is not eligible for elimination. */
c98f8742 1759
564d80f4
JH
1760#define ELIMINABLE_REGS \
1761{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1762 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1763 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1764 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1765
c98f8742
JVA
1766/* Define the offset between two registers, one to be eliminated, and the other
1767 its replacement, at the start of a routine. */
1768
d9a5f180
GS
1769#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1770 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1771\f
1772/* Addressing modes, and classification of registers for them. */
1773
c98f8742
JVA
1774/* Macros to check register numbers against specific register classes. */
1775
1776/* These assume that REGNO is a hard or pseudo reg number.
1777 They give nonzero only if REGNO is a hard reg of the suitable class
1778 or a pseudo reg currently allocated to a suitable hard reg.
1779 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1780 has been allocated, which happens in reginfo.c during register
1781 allocation. */
c98f8742 1782
3f3f2124
JH
1783#define REGNO_OK_FOR_INDEX_P(REGNO) \
1784 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1785 || REX_INT_REGNO_P (REGNO) \
1786 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1787 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1788
3f3f2124 1789#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1790 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1791 || (REGNO) == ARG_POINTER_REGNUM \
1792 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1793 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1794
c98f8742
JVA
1795/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1796 and check its validity for a certain class.
1797 We have two alternate definitions for each of them.
1798 The usual definition accepts all pseudo regs; the other rejects
1799 them unless they have been allocated suitable hard regs.
1800 The symbol REG_OK_STRICT causes the latter definition to be used.
1801
1802 Most source files want to accept pseudo regs in the hope that
1803 they will get allocated to the class that the insn wants them to be in.
1804 Source files for reload pass need to be strict.
1805 After reload, it makes no difference, since pseudo regs have
1806 been eliminated by then. */
1807
c98f8742 1808
ff482c8d 1809/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1810#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1811 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1812 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1813 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1814
3b3c6a3f 1815#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1816 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1817 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1818 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1819 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1820
3b3c6a3f
MM
1821/* Strict versions, hard registers only */
1822#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1823#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1824
3b3c6a3f 1825#ifndef REG_OK_STRICT
d9a5f180
GS
1826#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1827#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1828
1829#else
d9a5f180
GS
1830#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1831#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1832#endif
1833
331d9186 1834/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1835 that is a valid memory address for an instruction.
1836 The MODE argument is the machine mode for the MEM expression
1837 that wants to use this address.
1838
331d9186 1839 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1840 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1841
1842 See legitimize_pic_address in i386.c for details as to what
1843 constitutes a legitimate address when -fpic is used. */
1844
1845#define MAX_REGS_PER_ADDRESS 2
1846
f996902d 1847#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1848
b949ea8b
JW
1849/* If defined, a C expression to determine the base term of address X.
1850 This macro is used in only one place: `find_base_term' in alias.c.
1851
1852 It is always safe for this macro to not be defined. It exists so
1853 that alias analysis can understand machine-dependent addresses.
1854
1855 The typical use of this macro is to handle addresses containing
1856 a label_ref or symbol_ref within an UNSPEC. */
1857
d9a5f180 1858#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1859
c98f8742 1860/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1861 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1862 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1863
f996902d 1864#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1865
1866#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1867 (GET_CODE (X) == SYMBOL_REF \
1868 || GET_CODE (X) == LABEL_REF \
1869 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1870\f
b08de47e
MM
1871/* Max number of args passed in registers. If this is more than 3, we will
1872 have problems with ebx (register #4), since it is a caller save register and
1873 is also used as the pic register in ELF. So for now, don't allow more than
1874 3 registers to be passed in registers. */
1875
7c800926
KT
1876/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1877#define X86_64_REGPARM_MAX 6
72fa3605 1878#define X86_64_MS_REGPARM_MAX 4
7c800926 1879
72fa3605 1880#define X86_32_REGPARM_MAX 3
7c800926 1881
4ae8027b 1882#define REGPARM_MAX \
2824d6e5
UB
1883 (TARGET_64BIT \
1884 ? (TARGET_64BIT_MS_ABI \
1885 ? X86_64_MS_REGPARM_MAX \
1886 : X86_64_REGPARM_MAX) \
4ae8027b 1887 : X86_32_REGPARM_MAX)
d2836273 1888
72fa3605
UB
1889#define X86_64_SSE_REGPARM_MAX 8
1890#define X86_64_MS_SSE_REGPARM_MAX 4
1891
b6010cab 1892#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1893
4ae8027b 1894#define SSE_REGPARM_MAX \
2824d6e5
UB
1895 (TARGET_64BIT \
1896 ? (TARGET_64BIT_MS_ABI \
1897 ? X86_64_MS_SSE_REGPARM_MAX \
1898 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1899 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1900
1901#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1902\f
1903/* Specify the machine mode that this machine uses
1904 for the index in the tablejump instruction. */
dc4d7240 1905#define CASE_VECTOR_MODE \
6025b127 1906 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1907
c98f8742
JVA
1908/* Define this as 1 if `char' should by default be signed; else as 0. */
1909#define DEFAULT_SIGNED_CHAR 1
1910
1911/* Max number of bytes we can move from memory to memory
1912 in one reasonably fast instruction. */
65d9c0ab
JH
1913#define MOVE_MAX 16
1914
1915/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1916 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1917 number of bytes we can move with a single instruction. */
63001560 1918#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1919
7e24ffc9 1920/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1921 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1922 Increasing the value will always make code faster, but eventually
1923 incurs high cost in increased code size.
c98f8742 1924
e2e52e1b 1925 If you don't define this, a reasonable default is used. */
c98f8742 1926
e04ad03d 1927#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1928
45d78e7f
JJ
1929/* If a clear memory operation would take CLEAR_RATIO or more simple
1930 move-instruction sequences, we will do a clrmem or libcall instead. */
1931
e04ad03d 1932#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1933
53f00dde
UB
1934/* Define if shifts truncate the shift count which implies one can
1935 omit a sign-extension or zero-extension of a shift count.
1936
1937 On i386, shifts do truncate the count. But bit test instructions
1938 take the modulo of the bit offset operand. */
c98f8742
JVA
1939
1940/* #define SHIFT_COUNT_TRUNCATED */
1941
1942/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1943 is done just by pretending it is already truncated. */
1944#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1945
d9f32422
JH
1946/* A macro to update M and UNSIGNEDP when an object whose type is
1947 TYPE and which has the specified mode and signedness is to be
1948 stored in a register. This macro is only called when TYPE is a
1949 scalar type.
1950
f710504c 1951 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1952 quantities to SImode. The choice depends on target type. */
1953
1954#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1955do { \
d9f32422
JH
1956 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1957 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1958 (MODE) = SImode; \
1959} while (0)
d9f32422 1960
c98f8742
JVA
1961/* Specify the machine mode that pointers have.
1962 After generation of rtl, the compiler makes no further distinction
1963 between pointers and any other objects of this machine mode. */
28968d91 1964#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1965
d5e254e1
IE
1966/* Specify the machine mode that bounds have. */
1967#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1968
f0ea7581
L
1969/* A C expression whose value is zero if pointers that need to be extended
1970 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1971 greater then zero if they are zero-extended and less then zero if the
1972 ptr_extend instruction should be used. */
1973
1974#define POINTERS_EXTEND_UNSIGNED 1
1975
c98f8742
JVA
1976/* A function address in a call instruction
1977 is a byte address (for indexing purposes)
1978 so give the MEM rtx a byte's mode. */
1979#define FUNCTION_MODE QImode
d4ba09c0 1980\f
d4ba09c0 1981
d4ba09c0
SC
1982/* A C expression for the cost of a branch instruction. A value of 1
1983 is the default; other values are interpreted relative to that. */
1984
3a4fd356
JH
1985#define BRANCH_COST(speed_p, predictable_p) \
1986 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1987
e327d1a3
L
1988/* An integer expression for the size in bits of the largest integer machine
1989 mode that should actually be used. We allow pairs of registers. */
1990#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1991
d4ba09c0
SC
1992/* Define this macro as a C expression which is nonzero if accessing
1993 less than a word of memory (i.e. a `char' or a `short') is no
1994 faster than accessing a word of memory, i.e., if such access
1995 require more than one instruction or if there is no difference in
1996 cost between byte and (aligned) word loads.
1997
1998 When this macro is not defined, the compiler will access a field by
1999 finding the smallest containing object; when it is defined, a
2000 fullword load will be used if alignment permits. Unless bytes
2001 accesses are faster than word accesses, using word accesses is
2002 preferable since it may eliminate subsequent memory access if
2003 subsequent accesses occur to other fields in the same word of the
2004 structure, but to different bytes. */
2005
2006#define SLOW_BYTE_ACCESS 0
2007
2008/* Nonzero if access to memory by shorts is slow and undesirable. */
2009#define SLOW_SHORT_ACCESS 0
2010
d4ba09c0
SC
2011/* Define this macro to be the value 1 if unaligned accesses have a
2012 cost many times greater than aligned accesses, for example if they
2013 are emulated in a trap handler.
2014
9cd10576
KH
2015 When this macro is nonzero, the compiler will act as if
2016 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2017 moves. This can cause significantly more instructions to be
9cd10576 2018 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2019 accesses only add a cycle or two to the time for a memory access.
2020
2021 If the value of this macro is always zero, it need not be defined. */
2022
e1565e65 2023/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2024
d4ba09c0
SC
2025/* Define this macro if it is as good or better to call a constant
2026 function address than to call an address kept in a register.
2027
2028 Desirable on the 386 because a CALL with a constant address is
2029 faster than one with a register address. */
2030
1e8552c2 2031#define NO_FUNCTION_CSE 1
c98f8742 2032\f
c572e5ba
JVA
2033/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2034 return the mode to be used for the comparison.
2035
2036 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2037 VOIDmode should be used in all other cases.
c572e5ba 2038
16189740 2039 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2040 possible, to allow for more combinations. */
c98f8742 2041
d9a5f180 2042#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2043
9cd10576 2044/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2045 reversed. */
2046
2047#define REVERSIBLE_CC_MODE(MODE) 1
2048
2049/* A C expression whose value is reversed condition code of the CODE for
2050 comparison done in CC_MODE mode. */
3c5cb3e4 2051#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2052
c98f8742
JVA
2053\f
2054/* Control the assembler format that we output, to the extent
2055 this does not vary between assemblers. */
2056
2057/* How to refer to registers in assembler output.
892a2d68 2058 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2059
a7b376ee 2060/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2061 For non floating point regs, the following are the HImode names.
2062
2063 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2064 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2065 "y" code. */
c98f8742 2066
a7180f70
BS
2067#define HI_REGISTER_NAMES \
2068{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2069 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2070 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2071 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2072 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2073 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2074 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2075 "xmm16", "xmm17", "xmm18", "xmm19", \
2076 "xmm20", "xmm21", "xmm22", "xmm23", \
2077 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2078 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2079 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2080 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2081
c98f8742
JVA
2082#define REGISTER_NAMES HI_REGISTER_NAMES
2083
2084/* Table of additional register names to use in user input. */
2085
2086#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2087{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2088 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2089 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2090 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2091 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2092 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2093 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2094 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2095 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2096 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2097 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2098 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2099 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2100 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2101 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2102 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2103 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2104 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2105 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2106 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2107 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2108 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2109
2110/* Note we are omitting these since currently I don't know how
2111to get gcc to use these, since they want the same but different
2112number as al, and ax.
2113*/
2114
c98f8742 2115#define QI_REGISTER_NAMES \
3f3f2124 2116{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2117
2118/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2119 of regs 0 through 3. */
c98f8742
JVA
2120
2121#define QI_HIGH_REGISTER_NAMES \
2122{"ah", "dh", "ch", "bh", }
2123
2124/* How to renumber registers for dbx and gdb. */
2125
d9a5f180
GS
2126#define DBX_REGISTER_NUMBER(N) \
2127 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2128
9a82e702
MS
2129extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2130extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2131extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2132
780a5b71
UB
2133extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2134
469ac993
JM
2135/* Before the prologue, RA is at 0(%esp). */
2136#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2137 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2138
e414ab29 2139/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2140#define RETURN_ADDR_RTX(COUNT, FRAME) \
2141 ((COUNT) == 0 \
0a81f074
RS
2142 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2143 -UNITS_PER_WORD)) \
2144 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2145
892a2d68 2146/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2147#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2148
a6ab3aad 2149/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2150#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2151
1020a5ab 2152/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2153#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2154#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2155
ad919812 2156
e4c4ebeb
RH
2157/* Select a format to encode pointers in exception handling data. CODE
2158 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2159 true if the symbol may be affected by dynamic relocations.
2160
2161 ??? All x86 object file formats are capable of representing this.
2162 After all, the relocation needed is the same as for the call insn.
2163 Whether or not a particular assembler allows us to enter such, I
2164 guess we'll have to see. */
d9a5f180 2165#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2166 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2167
c98f8742
JVA
2168/* This is how to output an insn to push a register on the stack.
2169 It need not be very fast code. */
2170
d9a5f180 2171#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2172do { \
2173 if (TARGET_64BIT) \
2174 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2175 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2176 else \
2177 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2178} while (0)
c98f8742
JVA
2179
2180/* This is how to output an insn to pop a register from the stack.
2181 It need not be very fast code. */
2182
d9a5f180 2183#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2184do { \
2185 if (TARGET_64BIT) \
2186 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2187 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2188 else \
2189 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2190} while (0)
c98f8742 2191
f88c65f7 2192/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2193
2194#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2195 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2196
f88c65f7 2197/* This is how to output an element of a case-vector that is relative. */
c98f8742 2198
33f7f353 2199#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2200 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2201
63001560 2202/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2203
2204#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2205{ \
2206 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2207 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2208}
2209
2210/* A C statement or statements which output an assembler instruction
2211 opcode to the stdio stream STREAM. The macro-operand PTR is a
2212 variable of type `char *' which points to the opcode name in
2213 its "internal" form--the form that is written in the machine
2214 description. */
2215
2216#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2217 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2218
6a90d232
L
2219/* A C statement to output to the stdio stream FILE an assembler
2220 command to pad the location counter to a multiple of 1<<LOG
2221 bytes if it is within MAX_SKIP bytes. */
2222
2223#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2224#undef ASM_OUTPUT_MAX_SKIP_PAD
2225#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2226 if ((LOG) != 0) \
2227 { \
2228 if ((MAX_SKIP) == 0) \
2229 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2230 else \
2231 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2232 }
2233#endif
2234
135a687e
KT
2235/* Write the extra assembler code needed to declare a function
2236 properly. */
2237
2238#undef ASM_OUTPUT_FUNCTION_LABEL
2239#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2240 ix86_asm_output_function_label (FILE, NAME, DECL)
2241
f7288899
EC
2242/* Under some conditions we need jump tables in the text section,
2243 because the assembler cannot handle label differences between
2244 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2245
2246#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2247 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2248 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2249
cea3bd3e
RH
2250/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2251 and switch back. For x86 we do this only to save a few bytes that
2252 would otherwise be unused in the text section. */
ad211091
KT
2253#define CRT_MKSTR2(VAL) #VAL
2254#define CRT_MKSTR(x) CRT_MKSTR2(x)
2255
2256#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2257 asm (SECTION_OP "\n\t" \
2258 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2259 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2260
2261/* Default threshold for putting data in large sections
2262 with x86-64 medium memory model */
2263#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2264
2265/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2266
2267#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2268do { \
2269 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2270 && get_attr_maybe_prefix_bnd (INSN)) \
2271 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2272} while (0)
74b42c8b 2273\f
b97de419
L
2274/* Which processor to tune code generation for. These must be in sync
2275 with processor_target_table in i386.c. */
5bf0ebab
RH
2276
2277enum processor_type
2278{
b97de419
L
2279 PROCESSOR_GENERIC = 0,
2280 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2281 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2282 PROCESSOR_PENTIUM,
89e5941d 2283 PROCESSOR_LAKEMOUNT,
5bf0ebab 2284 PROCESSOR_PENTIUMPRO,
5bf0ebab 2285 PROCESSOR_PENTIUM4,
89c43c0a 2286 PROCESSOR_NOCONA,
340ef734 2287 PROCESSOR_CORE2,
d3c11974
L
2288 PROCESSOR_NEHALEM,
2289 PROCESSOR_SANDYBRIDGE,
3a579e09 2290 PROCESSOR_HASWELL,
d3c11974
L
2291 PROCESSOR_BONNELL,
2292 PROCESSOR_SILVERMONT,
52747219 2293 PROCESSOR_KNL,
06caf59d 2294 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2295 PROCESSOR_INTEL,
b97de419
L
2296 PROCESSOR_GEODE,
2297 PROCESSOR_K6,
2298 PROCESSOR_ATHLON,
2299 PROCESSOR_K8,
21efb4d4 2300 PROCESSOR_AMDFAM10,
1133125e 2301 PROCESSOR_BDVER1,
4d652a18 2302 PROCESSOR_BDVER2,
eb2f2b44 2303 PROCESSOR_BDVER3,
ed97ad47 2304 PROCESSOR_BDVER4,
14b52538 2305 PROCESSOR_BTVER1,
e32bfc16 2306 PROCESSOR_BTVER2,
5bf0ebab
RH
2307 PROCESSOR_max
2308};
2309
9e555526 2310extern enum processor_type ix86_tune;
5bf0ebab 2311extern enum processor_type ix86_arch;
5bf0ebab 2312
8362f420
JH
2313/* Size of the RED_ZONE area. */
2314#define RED_ZONE_SIZE 128
2315/* Reserved area of the red zone for temporaries. */
2316#define RED_ZONE_RESERVE 8
c93e80a5 2317
95899b34 2318extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2319extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2320
2321/* Smallest class containing REGNO. */
2322extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2323
0948ccb2
PB
2324enum ix86_fpcmp_strategy {
2325 IX86_FPCMP_SAHF,
2326 IX86_FPCMP_COMI,
2327 IX86_FPCMP_ARITH
2328};
22fb740d
JH
2329\f
2330/* To properly truncate FP values into integers, we need to set i387 control
2331 word. We can't emit proper mode switching code before reload, as spills
2332 generated by reload may truncate values incorrectly, but we still can avoid
2333 redundant computation of new control word by the mode switching pass.
2334 The fldcw instructions are still emitted redundantly, but this is probably
2335 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2336 the sequence.
22fb740d
JH
2337
2338 The machinery is to emit simple truncation instructions and split them
2339 before reload to instructions having USEs of two memory locations that
2340 are filled by this code to old and new control word.
fce5a9f2 2341
22fb740d
JH
2342 Post-reload pass may be later used to eliminate the redundant fildcw if
2343 needed. */
2344
ff680eb1
UB
2345enum ix86_entity
2346{
ff97910d
VY
2347 AVX_U128 = 0,
2348 I387_TRUNC,
ff680eb1
UB
2349 I387_FLOOR,
2350 I387_CEIL,
2351 I387_MASK_PM,
2352 MAX_386_ENTITIES
2353};
2354
1cba2b96 2355enum ix86_stack_slot
ff680eb1 2356{
443ca5fc 2357 SLOT_TEMP = 0,
ff680eb1
UB
2358 SLOT_CW_STORED,
2359 SLOT_CW_TRUNC,
2360 SLOT_CW_FLOOR,
2361 SLOT_CW_CEIL,
2362 SLOT_CW_MASK_PM,
2363 MAX_386_STACK_LOCALS
2364};
22fb740d 2365
ff97910d
VY
2366enum avx_u128_state
2367{
2368 AVX_U128_CLEAN,
2369 AVX_U128_DIRTY,
2370 AVX_U128_ANY
2371};
2372
22fb740d
JH
2373/* Define this macro if the port needs extra instructions inserted
2374 for mode switching in an optimizing compilation. */
2375
ff680eb1
UB
2376#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2377 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2378
2379/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2380 initializer for an array of integers. Each initializer element N
2381 refers to an entity that needs mode switching, and specifies the
2382 number of different modes that might need to be set for this
2383 entity. The position of the initializer in the initializer -
2384 starting counting at zero - determines the integer that is used to
2385 refer to the mode-switched entity in question. */
2386
ff680eb1 2387#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2388 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2389
0f0138b6
JH
2390\f
2391/* Avoid renaming of stack registers, as doing so in combination with
2392 scheduling just increases amount of live registers at time and in
2393 the turn amount of fxch instructions needed.
2394
3f97cb0b
AI
2395 ??? Maybe Pentium chips benefits from renaming, someone can try....
2396
2397 Don't rename evex to non-evex sse registers. */
0f0138b6 2398
3f97cb0b
AI
2399#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2400 (EXT_REX_SSE_REGNO_P (SRC) == \
2401 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2402
3b3c6a3f 2403\f
e91f04de 2404#define FASTCALL_PREFIX '@'
fa1a0d02 2405\f
ec7ded37 2406/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2407
604a6be9 2408#ifndef USED_FOR_TARGET
ec7ded37 2409struct GTY(()) machine_frame_state
cd9c1ca8 2410{
ec7ded37
RH
2411 /* This pair tracks the currently active CFA as reg+offset. When reg
2412 is drap_reg, we don't bother trying to record here the real CFA when
2413 it might really be a DW_CFA_def_cfa_expression. */
2414 rtx cfa_reg;
2415 HOST_WIDE_INT cfa_offset;
2416
2417 /* The current offset (canonically from the CFA) of ESP and EBP.
2418 When stack frame re-alignment is active, these may not be relative
2419 to the CFA. However, in all cases they are relative to the offsets
2420 of the saved registers stored in ix86_frame. */
2421 HOST_WIDE_INT sp_offset;
2422 HOST_WIDE_INT fp_offset;
2423
2424 /* The size of the red-zone that may be assumed for the purposes of
2425 eliding register restore notes in the epilogue. This may be zero
2426 if no red-zone is in effect, or may be reduced from the real
2427 red-zone value by a maximum runtime stack re-alignment value. */
2428 int red_zone_offset;
2429
2430 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2431 value within the frame. If false then the offset above should be
2432 ignored. Note that DRAP, if valid, *always* points to the CFA and
2433 thus has an offset of zero. */
2434 BOOL_BITFIELD sp_valid : 1;
2435 BOOL_BITFIELD fp_valid : 1;
2436 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2437
2438 /* Indicate whether the local stack frame has been re-aligned. When
2439 set, the SP/FP offsets above are relative to the aligned frame
2440 and not the CFA. */
2441 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2442};
2443
f81c9774
RH
2444/* Private to winnt.c. */
2445struct seh_frame_state;
2446
d1b38208 2447struct GTY(()) machine_function {
fa1a0d02
JH
2448 struct stack_local_entry *stack_locals;
2449 const char *some_ld_name;
4aab97f9
L
2450 int varargs_gpr_size;
2451 int varargs_fpr_size;
ff680eb1 2452 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2453
2454 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2455 has been computed for. */
2456 int use_fast_prologue_epilogue_nregs;
2457
7458026b
ILT
2458 /* For -fsplit-stack support: A stack local which holds a pointer to
2459 the stack arguments for a function with a variable number of
2460 arguments. This is set at the start of the function and is used
2461 to initialize the overflow_arg_area field of the va_list
2462 structure. */
2463 rtx split_stack_varargs_pointer;
2464
3452586b
RH
2465 /* This value is used for amd64 targets and specifies the current abi
2466 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2467 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2468
2469 /* Nonzero if the function accesses a previous frame. */
2470 BOOL_BITFIELD accesses_prev_frame : 1;
2471
2472 /* Nonzero if the function requires a CLD in the prologue. */
2473 BOOL_BITFIELD needs_cld : 1;
2474
922e3e33
UB
2475 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2476 expander to determine the style used. */
3452586b
RH
2477 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2478
5bf5a10b
AO
2479 /* If true, the current function needs the default PIC register, not
2480 an alternate register (on x86) and must not use the red zone (on
2481 x86_64), even if it's a leaf function. We don't want the
2482 function to be regarded as non-leaf because TLS calls need not
2483 affect register allocation. This flag is set when a TLS call
2484 instruction is expanded within a function, and never reset, even
2485 if all such instructions are optimized away. Use the
2486 ix86_current_function_calls_tls_descriptor macro for a better
2487 approximation. */
3452586b
RH
2488 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2489
2490 /* If true, the current function has a STATIC_CHAIN is placed on the
2491 stack below the return address. */
2492 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2493
529a6471
JJ
2494 /* If true, it is safe to not save/restore DRAP register. */
2495 BOOL_BITFIELD no_drap_save_restore : 1;
2496
a0ff7835
L
2497 /* If true, there is register available for argument passing. This
2498 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2499 if there is scratch register available for indirect sibcall. In
2500 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2501 pass arguments and can be used for indirect sibcall. */
2502 BOOL_BITFIELD arg_reg_available : 1;
2503
ec7ded37
RH
2504 /* During prologue/epilogue generation, the current frame state.
2505 Otherwise, the frame state at the end of the prologue. */
2506 struct machine_frame_state fs;
f81c9774
RH
2507
2508 /* During SEH output, this is non-null. */
2509 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2510};
cd9c1ca8 2511#endif
fa1a0d02
JH
2512
2513#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2514#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2515#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2516#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2517#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2518#define ix86_tls_descriptor_calls_expanded_in_cfun \
2519 (cfun->machine->tls_descriptor_call_expanded_p)
2520/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2521 calls are optimized away, we try to detect cases in which it was
2522 optimized away. Since such instructions (use (reg REG_SP)), we can
2523 verify whether there's any such instruction live by testing that
2524 REG_SP is live. */
2525#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2526 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2527#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2528
1bc7c5b6
ZW
2529/* Control behavior of x86_file_start. */
2530#define X86_FILE_START_VERSION_DIRECTIVE false
2531#define X86_FILE_START_FLTUSED false
2532
7dcbf659
JH
2533/* Flag to mark data that is in the large address area. */
2534#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2535#define SYMBOL_REF_FAR_ADDR_P(X) \
2536 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2537
2538/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2539 have defined always, to avoid ifdefing. */
2540#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2541#define SYMBOL_REF_DLLIMPORT_P(X) \
2542 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2543
2544#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2545#define SYMBOL_REF_DLLEXPORT_P(X) \
2546 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2547
82c0e1a0
KT
2548#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2549#define SYMBOL_REF_STUBVAR_P(X) \
2550 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2551
7942e47e
RY
2552extern void debug_ready_dispatch (void);
2553extern void debug_dispatch_window (int);
2554
91afcfa3
QN
2555/* The value at zero is only defined for the BMI instructions
2556 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2557#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2558 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2559#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2560 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2561
2562
b8ce4e94
KT
2563/* Flags returned by ix86_get_callcvt (). */
2564#define IX86_CALLCVT_CDECL 0x1
2565#define IX86_CALLCVT_STDCALL 0x2
2566#define IX86_CALLCVT_FASTCALL 0x4
2567#define IX86_CALLCVT_THISCALL 0x8
2568#define IX86_CALLCVT_REGPARM 0x10
2569#define IX86_CALLCVT_SSEREGPARM 0x20
2570
2571#define IX86_BASE_CALLCVT(FLAGS) \
2572 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2573 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2574
b86b9f44
MM
2575#define RECIP_MASK_NONE 0x00
2576#define RECIP_MASK_DIV 0x01
2577#define RECIP_MASK_SQRT 0x02
2578#define RECIP_MASK_VEC_DIV 0x04
2579#define RECIP_MASK_VEC_SQRT 0x08
2580#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2581 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2582#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2583
2584#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2585#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2586#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2587#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2588
5dcfdccd
KY
2589#define IX86_HLE_ACQUIRE (1 << 16)
2590#define IX86_HLE_RELEASE (1 << 17)
2591
e83b8e2e
JJ
2592/* For switching between functions with different target attributes. */
2593#define SWITCHABLE_TARGET 1
2594
44d0de8d
UB
2595#define TARGET_SUPPORTS_WIDE_INT 1
2596
c98f8742
JVA
2597/*
2598Local variables:
2599version-control: t
2600End:
2601*/