]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
c-ada-spec.c (has_static_fields): Look only into fields.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cbe34bb5 2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
79fc8ffe
AS
88#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90922d36 90#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 91#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 92#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 93#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 94#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 95#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 96#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 97#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 98#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 99#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
100#define TARGET_ROUND TARGET_ISA_ROUND
101#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 102#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
73e32c47
JK
103#define TARGET_SGX TARGET_ISA_SGX
104#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
105#define TARGET_RDPID TARGET_ISA_RDPID
106#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
90922d36 107#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 108#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 109#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 110#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 111#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 112#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 113#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 114#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 115#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 116#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 117#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 118#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 119#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 120#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 121#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 122#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 123#define TARGET_AES TARGET_ISA_AES
bf7b5747 124#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
125#define TARGET_SHA TARGET_ISA_SHA
126#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
127#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
128#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
129#define TARGET_CLZERO TARGET_ISA_CLZERO
130#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
131#define TARGET_XSAVEC TARGET_ISA_XSAVEC
132#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
133#define TARGET_XSAVES TARGET_ISA_XSAVES
134#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 135#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 136#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
137#define TARGET_CMPXCHG16B TARGET_ISA_CX16
138#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 139#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 140#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 141#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 142#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 143#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 144#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
145#define TARGET_RTM TARGET_ISA_RTM
146#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 147#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 148#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 149#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 150#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 151#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 152#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 153#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 154#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 155#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 156#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 157#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 158#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 159#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 160#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
161#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
162#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
163#define TARGET_MPX TARGET_ISA_MPX
164#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
165#define TARGET_CLWB TARGET_ISA_CLWB
166#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
167#define TARGET_MWAITX TARGET_ISA_MWAITX
168#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
169#define TARGET_PKU TARGET_ISA_PKU
170#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
171
90922d36 172#define TARGET_LP64 TARGET_ABI_64
bf7b5747 173#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 174#define TARGET_X32 TARGET_ABI_X32
bf7b5747 175#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
176#define TARGET_16BIT TARGET_CODE16
177#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 178
cbf2e4d4
HJ
179/* SSE4.1 defines round instructions */
180#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 181#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 182
26b5109f
RS
183#include "config/vxworks-dummy.h"
184
7eb68c06 185#include "config/i386/i386-opts.h"
ccf8e764 186
c69fa2d4 187#define MAX_STRINGOP_ALGS 4
ccf8e764 188
8c996513
JH
189/* Specify what algorithm to use for stringops on known size.
190 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
191 known at compile time or estimated via feedback, the SIZE array
192 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 193 means infinity). Corresponding ALG is used then.
340ef734
JH
194 When NOALIGN is true the code guaranting the alignment of the memory
195 block is skipped.
196
8c996513 197 For example initializer:
4f3f76e6 198 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 199 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 200 be used otherwise. */
8c996513
JH
201struct stringop_algs
202{
203 const enum stringop_alg unknown_size;
204 const struct stringop_strategy {
205 const int max;
206 const enum stringop_alg alg;
340ef734 207 int noalign;
c69fa2d4 208 } size [MAX_STRINGOP_ALGS];
8c996513
JH
209};
210
d4ba09c0
SC
211/* Define the specific costs for a given cpu */
212
213struct processor_costs {
8b60264b
KG
214 const int add; /* cost of an add instruction */
215 const int lea; /* cost of a lea instruction */
216 const int shift_var; /* variable shift costs */
217 const int shift_const; /* constant shift costs */
f676971a 218 const int mult_init[5]; /* cost of starting a multiply
4977bab6 219 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 220 const int mult_bit; /* cost of multiply per each bit set */
f676971a 221 const int divide[5]; /* cost of a divide/mod
4977bab6 222 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
223 int movsx; /* The cost of movsx operation. */
224 int movzx; /* The cost of movzx operation. */
8b60264b
KG
225 const int large_insn; /* insns larger than this cost more */
226 const int move_ratio; /* The threshold of number of scalar
ac775968 227 memory-to-memory move insns. */
8b60264b
KG
228 const int movzbl_load; /* cost of loading using movzbl */
229 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
230 in QImode, HImode and SImode relative
231 to reg-reg move (2). */
8b60264b 232 const int int_store[3]; /* cost of storing integer register
96e7ae40 233 in QImode, HImode and SImode */
8b60264b
KG
234 const int fp_move; /* cost of reg,reg fld/fst */
235 const int fp_load[3]; /* cost of loading FP register
96e7ae40 236 in SFmode, DFmode and XFmode */
8b60264b 237 const int fp_store[3]; /* cost of storing FP register
96e7ae40 238 in SFmode, DFmode and XFmode */
8b60264b
KG
239 const int mmx_move; /* cost of moving MMX register. */
240 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 241 in SImode and DImode */
8b60264b 242 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 243 in SImode and DImode */
8b60264b
KG
244 const int sse_move; /* cost of moving SSE register. */
245 const int sse_load[3]; /* cost of loading SSE register
fa79946e 246 in SImode, DImode and TImode*/
8b60264b 247 const int sse_store[3]; /* cost of storing SSE register
fa79946e 248 in SImode, DImode and TImode*/
8b60264b 249 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 250 integer and vice versa. */
46cb0441
ZD
251 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
252 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
253 const int prefetch_block; /* bytes moved to cache for prefetch. */
254 const int simultaneous_prefetches; /* number of parallel prefetch
255 operations. */
4977bab6 256 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
257 const int fadd; /* cost of FADD and FSUB instructions. */
258 const int fmul; /* cost of FMUL instruction. */
259 const int fdiv; /* cost of FDIV instruction. */
260 const int fabs; /* cost of FABS instruction. */
261 const int fchs; /* cost of FCHS instruction. */
262 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 263 /* Specify what algorithm
bee51209 264 to use for stringops on unknown size. */
ad83025e 265 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
266 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
267 load and store. */
268 const int scalar_load_cost; /* Cost of scalar load. */
269 const int scalar_store_cost; /* Cost of scalar store. */
270 const int vec_stmt_cost; /* Cost of any vector operation, excluding
271 load, store, vector-to-scalar and
272 scalar-to-vector operation. */
273 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
274 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 275 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
276 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
277 const int vec_store_cost; /* Cost of vector store. */
278 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
279 cost model. */
280 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
281 vectorizer cost model. */
d4ba09c0
SC
282};
283
8b60264b 284extern const struct processor_costs *ix86_cost;
b2077fd2
JH
285extern const struct processor_costs ix86_size_cost;
286
287#define ix86_cur_cost() \
288 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 289
c98f8742
JVA
290/* Macros used in the machine description to test the flags. */
291
b97de419 292/* configure can arrange to change it. */
e075ae69 293
35b528be 294#ifndef TARGET_CPU_DEFAULT
b97de419 295#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 296#endif
35b528be 297
004d3859
GK
298#ifndef TARGET_FPMATH_DEFAULT
299#define TARGET_FPMATH_DEFAULT \
300 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
301#endif
302
bf7b5747
ST
303#ifndef TARGET_FPMATH_DEFAULT_P
304#define TARGET_FPMATH_DEFAULT_P(x) \
305 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
306#endif
307
c207fd99
L
308/* If the i387 is disabled or -miamcu is used , then do not return
309 values in it. */
310#define TARGET_FLOAT_RETURNS_IN_80387 \
311 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
312#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
313 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 314
5791cc29
JT
315/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
316 compile-time constant. */
317#ifdef IN_LIBGCC2
6ac49599 318#undef TARGET_64BIT
5791cc29
JT
319#ifdef __x86_64__
320#define TARGET_64BIT 1
321#else
322#define TARGET_64BIT 0
323#endif
324#else
6ac49599
RS
325#ifndef TARGET_BI_ARCH
326#undef TARGET_64BIT
e49080ec 327#undef TARGET_64BIT_P
67adf6a9 328#if TARGET_64BIT_DEFAULT
0c2dc519 329#define TARGET_64BIT 1
e49080ec 330#define TARGET_64BIT_P(x) 1
0c2dc519
JH
331#else
332#define TARGET_64BIT 0
e49080ec 333#define TARGET_64BIT_P(x) 0
0c2dc519
JH
334#endif
335#endif
5791cc29 336#endif
25f94bb5 337
750054a2
CT
338#define HAS_LONG_COND_BRANCH 1
339#define HAS_LONG_UNCOND_BRANCH 1
340
9e555526
RH
341#define TARGET_386 (ix86_tune == PROCESSOR_I386)
342#define TARGET_486 (ix86_tune == PROCESSOR_I486)
343#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
344#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 345#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
346#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
347#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
348#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
349#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 350#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 351#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 352#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
353#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
354#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 355#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
356#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
357#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 358#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
06caf59d 359#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 360#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 361#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 362#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 363#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 364#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 365#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 366#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 367#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 368#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 369#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 370
80fd744f
RH
371/* Feature tests against the various tunings. */
372enum ix86_tune_indices {
4b8bc035 373#undef DEF_TUNE
3ad20bd4 374#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
375#include "x86-tune.def"
376#undef DEF_TUNE
377X86_TUNE_LAST
80fd744f
RH
378};
379
ab442df7 380extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
381
382#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
383#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
384#define TARGET_ZERO_EXTEND_WITH_AND \
385 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 386#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
387#define TARGET_BRANCH_PREDICTION_HINTS \
388 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
389#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
390#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
391#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
392#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
393#define TARGET_PARTIAL_FLAG_REG_STALL \
394 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
395#define TARGET_LCP_STALL \
396 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
397#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
398#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
399#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
400#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
401#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
402#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
403#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
404#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
405#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
406#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
407#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
408#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
409 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
410#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
411#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
412#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
413#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
414#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
415#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
416#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
417#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
418#define TARGET_INTEGER_DFMODE_MOVES \
419 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
420#define TARGET_PARTIAL_REG_DEPENDENCY \
421 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
422#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
423 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
424#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
425 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
426#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
427 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
428#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
429 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
430#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
431#define TARGET_SSE_TYPELESS_STORES \
432 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
433#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
434#define TARGET_MEMORY_MISMATCH_STALL \
435 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
436#define TARGET_PROLOGUE_USING_MOVE \
437 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
438#define TARGET_EPILOGUE_USING_MOVE \
439 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
440#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
441#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
442#define TARGET_INTER_UNIT_MOVES_TO_VEC \
443 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
444#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
445 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
446#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 447 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
448#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
449#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
450#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
451#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
452#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
453#define TARGET_PAD_SHORT_FUNCTION \
454 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
455#define TARGET_EXT_80387_CONSTANTS \
456 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
457#define TARGET_AVOID_VECTOR_DECODE \
458 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
459#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
460 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
461#define TARGET_SLOW_IMUL_IMM32_MEM \
462 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
463#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
464#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
465#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
466#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
467#define TARGET_USE_VECTOR_FP_CONVERTS \
468 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
469#define TARGET_USE_VECTOR_CONVERTS \
470 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
471#define TARGET_SLOW_PSHUFB \
472 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
473#define TARGET_VECTOR_PARALLEL_EXECUTION \
474 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
8e0dc054
JJ
475#define TARGET_AVOID_4BYTE_PREFIXES \
476 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
477#define TARGET_FUSE_CMP_AND_BRANCH_32 \
478 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
479#define TARGET_FUSE_CMP_AND_BRANCH_64 \
480 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 481#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
482 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
483 : TARGET_FUSE_CMP_AND_BRANCH_32)
484#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
485 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
486#define TARGET_FUSE_ALU_AND_BRANCH \
487 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 488#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
489#define TARGET_AVOID_LEA_FOR_ADDR \
490 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
491#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
492 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
493#define TARGET_AVX128_OPTIMAL \
494 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
495#define TARGET_REASSOC_INT_TO_PARALLEL \
496 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
497#define TARGET_REASSOC_FP_TO_PARALLEL \
498 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
499#define TARGET_GENERAL_REGS_SSE_SPILL \
500 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
501#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
502 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 503#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 504 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
505#define TARGET_ADJUST_UNROLL \
506 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
507#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
508 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
509#define TARGET_ONE_IF_CONV_INSN \
510 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 511
80fd744f
RH
512/* Feature tests against the various architecture variations. */
513enum ix86_arch_indices {
cef31f9c 514 X86_ARCH_CMOV,
80fd744f
RH
515 X86_ARCH_CMPXCHG,
516 X86_ARCH_CMPXCHG8B,
517 X86_ARCH_XADD,
518 X86_ARCH_BSWAP,
519
520 X86_ARCH_LAST
521};
4f3f76e6 522
ab442df7 523extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 524
cef31f9c 525#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
526#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
527#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
528#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
529#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
530
cef31f9c
UB
531/* For sane SSE instruction set generation we need fcomi instruction.
532 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
533 expands to a sequence that includes conditional move. */
534#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
535
80fd744f
RH
536#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
537
cb261eb7 538extern unsigned char x86_prefetch_sse;
80fd744f
RH
539#define TARGET_PREFETCH_SSE x86_prefetch_sse
540
80fd744f
RH
541#define ASSEMBLER_DIALECT (ix86_asm_dialect)
542
543#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
544#define TARGET_MIX_SSE_I387 \
545 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
546
5fa578f0
UB
547#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
548#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
549#define TARGET_HARD_XF_REGS (TARGET_80387)
550
80fd744f
RH
551#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
552#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
553#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 554#define TARGET_SUN_TLS 0
1ef45b77 555
67adf6a9
RH
556#ifndef TARGET_64BIT_DEFAULT
557#define TARGET_64BIT_DEFAULT 0
25f94bb5 558#endif
74dc3e94
RH
559#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
560#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
561#endif
25f94bb5 562
e0ea8797
AH
563#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
564#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
565
79f5e442
ZD
566/* Fence to use after loop using storent. */
567
568extern tree x86_mfence;
569#define FENCE_FOLLOWING_MOVNT x86_mfence
570
0ed4a390
JL
571/* Once GDB has been enhanced to deal with functions without frame
572 pointers, we can change this to allow for elimination of
573 the frame pointer in leaf functions. */
574#define TARGET_DEFAULT 0
67adf6a9 575
0a1c5e55
UB
576/* Extra bits to force. */
577#define TARGET_SUBTARGET_DEFAULT 0
578#define TARGET_SUBTARGET_ISA_DEFAULT 0
579
580/* Extra bits to force on w/ 32-bit mode. */
581#define TARGET_SUBTARGET32_DEFAULT 0
582#define TARGET_SUBTARGET32_ISA_DEFAULT 0
583
ccf8e764
RH
584/* Extra bits to force on w/ 64-bit mode. */
585#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 586#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 587
fee3eacd
IS
588/* Replace MACH-O, ifdefs by in-line tests, where possible.
589 (a) Macros defined in config/i386/darwin.h */
b069de3b 590#define TARGET_MACHO 0
9005471b 591#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
592#define MACHOPIC_ATT_STUB 0
593/* (b) Macros defined in config/darwin.h */
594#define MACHO_DYNAMIC_NO_PIC_P 0
595#define MACHOPIC_INDIRECT 0
596#define MACHOPIC_PURE 0
9005471b 597
5a579c3b
LE
598/* For the RDOS */
599#define TARGET_RDOS 0
600
9005471b 601/* For the Windows 64-bit ABI. */
7c800926
KT
602#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
603
6510e8bb
KT
604/* For the Windows 32-bit ABI. */
605#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
606
f81c9774
RH
607/* This is re-defined by cygming.h. */
608#define TARGET_SEH 0
609
51212b32 610/* The default abi used by target. */
7c800926 611#define DEFAULT_ABI SYSV_ABI
ccf8e764 612
b8b3f0ca 613/* The default TLS segment register used by target. */
00402c94
RH
614#define DEFAULT_TLS_SEG_REG \
615 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 616
cc69336f
RH
617/* Subtargets may reset this to 1 in order to enable 96-bit long double
618 with the rounding mode forced to 53 bits. */
619#define TARGET_96_ROUND_53_LONG_DOUBLE 0
620
682cd442
GK
621/* -march=native handling only makes sense with compiler running on
622 an x86 or x86_64 chip. If changing this condition, also change
623 the condition in driver-i386.c. */
624#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
625/* In driver-i386.c. */
626extern const char *host_detect_local_cpu (int argc, const char **argv);
627#define EXTRA_SPEC_FUNCTIONS \
628 { "local_cpu_detect", host_detect_local_cpu },
682cd442 629#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
630#endif
631
8981c15b
JM
632#if TARGET_64BIT_DEFAULT
633#define OPT_ARCH64 "!m32"
634#define OPT_ARCH32 "m32"
635#else
f0ea7581
L
636#define OPT_ARCH64 "m64|mx32"
637#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
638#endif
639
1cba2b96
EC
640/* Support for configure-time defaults of some command line options.
641 The order here is important so that -march doesn't squash the
642 tune or cpu values. */
ce998900 643#define OPTION_DEFAULT_SPECS \
da2d4c01 644 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
645 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
646 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 647 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
648 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
649 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
650 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
651 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
652 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 653
241e1a89
SC
654/* Specs for the compiler proper */
655
628714d8 656#ifndef CC1_CPU_SPEC
eb5bb0fd 657#define CC1_CPU_SPEC_1 ""
fa959ce4 658
682cd442 659#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
660#define CC1_CPU_SPEC CC1_CPU_SPEC_1
661#else
662#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
663"%{march=native:%>march=native %:local_cpu_detect(arch) \
664 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
665%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 666#endif
241e1a89 667#endif
c98f8742 668\f
30efe578 669/* Target CPU builtins. */
ab442df7
MM
670#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
671
672/* Target Pragmas. */
673#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 674
628714d8 675#ifndef CC1_SPEC
8015b78d 676#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
677#endif
678
679/* This macro defines names of additional specifications to put in the
680 specs that can be used in various specifications like CC1_SPEC. Its
681 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
682
683 Each subgrouping contains a string constant, that defines the
188fc5b5 684 specification name, and a string constant that used by the GCC driver
bcd86433
SC
685 program.
686
687 Do not define this macro if it does not need to do anything. */
688
689#ifndef SUBTARGET_EXTRA_SPECS
690#define SUBTARGET_EXTRA_SPECS
691#endif
692
693#define EXTRA_SPECS \
628714d8 694 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
695 SUBTARGET_EXTRA_SPECS
696\f
ce998900 697
8ce94e44
JM
698/* Whether to allow x87 floating-point arithmetic on MODE (one of
699 SFmode, DFmode and XFmode) in the current excess precision
700 configuration. */
b8cab8a5
UB
701#define X87_ENABLE_ARITH(MODE) \
702 (flag_unsafe_math_optimizations \
703 || flag_excess_precision == EXCESS_PRECISION_FAST \
704 || (MODE) == XFmode)
8ce94e44
JM
705
706/* Likewise, whether to allow direct conversions from integer mode
707 IMODE (HImode, SImode or DImode) to MODE. */
708#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
709 (flag_unsafe_math_optimizations \
710 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
711 || (MODE) == XFmode \
712 || ((MODE) == DFmode && (IMODE) == SImode) \
713 || (IMODE) == HImode)
714
979c67a5
UB
715/* target machine storage layout */
716
65d9c0ab
JH
717#define SHORT_TYPE_SIZE 16
718#define INT_TYPE_SIZE 32
f0ea7581
L
719#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
720#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 721#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 722#define FLOAT_TYPE_SIZE 32
65d9c0ab 723#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
724#define LONG_DOUBLE_TYPE_SIZE \
725 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 726
c637141a 727#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 728
67adf6a9 729#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 730#define MAX_BITS_PER_WORD 64
0c2dc519
JH
731#else
732#define MAX_BITS_PER_WORD 32
0c2dc519
JH
733#endif
734
c98f8742
JVA
735/* Define this if most significant byte of a word is the lowest numbered. */
736/* That is true on the 80386. */
737
738#define BITS_BIG_ENDIAN 0
739
740/* Define this if most significant byte of a word is the lowest numbered. */
741/* That is not true on the 80386. */
742#define BYTES_BIG_ENDIAN 0
743
744/* Define this if most significant word of a multiword number is the lowest
745 numbered. */
746/* Not true for 80386 */
747#define WORDS_BIG_ENDIAN 0
748
c98f8742 749/* Width of a word, in units (bytes). */
4ae8027b 750#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
751
752#ifndef IN_LIBGCC2
2e64c636
JH
753#define MIN_UNITS_PER_WORD 4
754#endif
c98f8742 755
c98f8742 756/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 757#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 758
e075ae69 759/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 760#define STACK_BOUNDARY \
51212b32 761 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 762
2e3f842f
L
763/* Stack boundary of the main function guaranteed by OS. */
764#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
765
de1132d1 766/* Minimum stack boundary. */
cba9c789 767#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 768
d1f87653 769/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 770 aligned; the compiler cannot rely on having this alignment. */
e075ae69 771#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 772
de1132d1 773/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
774 both 32bit and 64bit, to support codes that need 128 bit stack
775 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
776#define PREFERRED_STACK_BOUNDARY_DEFAULT \
777 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
778
779/* 1 if -mstackrealign should be turned on by default. It will
780 generate an alternate prologue and epilogue that realigns the
781 runtime stack if nessary. This supports mixing codes that keep a
782 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 783 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
784#define STACK_REALIGN_DEFAULT 0
785
786/* Boundary (in *bits*) on which the incoming stack is aligned. */
787#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 788
a2851b75
TG
789/* According to Windows x64 software convention, the maximum stack allocatable
790 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
791 instructions allowed to adjust the stack pointer in the epilog, forcing the
792 use of frame pointer for frames larger than 2 GB. This theorical limit
793 is reduced by 256, an over-estimated upper bound for the stack use by the
794 prologue.
795 We define only one threshold for both the prolog and the epilog. When the
4e523f33 796 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
797 regs, then save them, and then allocate the remaining. There is no SEH
798 unwind info for this later allocation. */
799#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
800
ebff937c
SH
801/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
802 mandatory for the 64-bit ABI, and may or may not be true for other
803 operating systems. */
804#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
805
f963b5d9
RS
806/* Minimum allocation boundary for the code of a function. */
807#define FUNCTION_BOUNDARY 8
808
809/* C++ stores the virtual bit in the lowest bit of function pointers. */
810#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 811
c98f8742
JVA
812/* Minimum size in bits of the largest boundary to which any
813 and all fundamental data types supported by the hardware
814 might need to be aligned. No data type wants to be aligned
17f24ff0 815 rounder than this.
fce5a9f2 816
d1f87653 817 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
818 and Pentium Pro XFmode values at 128 bit boundaries.
819
820 When increasing the maximum, also update
821 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 822
3f97cb0b 823#define BIGGEST_ALIGNMENT \
0076c82f 824 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 825
2e3f842f
L
826/* Maximum stack alignment. */
827#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
828
6e4f1168
L
829/* Alignment value for attribute ((aligned)). It is a constant since
830 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 831#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 832
822eda12 833/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 834#define ALIGN_MODE_128(MODE) \
4501d314 835 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 836
17f24ff0 837/* The published ABIs say that doubles should be aligned on word
d1f87653 838 boundaries, so lower the alignment for structure fields unless
6fc605d8 839 -malign-double is set. */
e932b21b 840
e83f3cff
RH
841/* ??? Blah -- this macro is used directly by libobjc. Since it
842 supports no vector modes, cut out the complexity and fall back
843 on BIGGEST_FIELD_ALIGNMENT. */
844#ifdef IN_TARGET_LIBS
ef49d42e
JH
845#ifdef __x86_64__
846#define BIGGEST_FIELD_ALIGNMENT 128
847#else
e83f3cff 848#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 849#endif
e83f3cff 850#else
a4cf4b64
RB
851#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
852 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 853#endif
c98f8742 854
e5e8a8bf 855/* If defined, a C expression to compute the alignment given to a
a7180f70 856 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
857 and ALIGN is the alignment that the object would ordinarily have.
858 The value of this macro is used instead of that alignment to align
859 the object.
860
861 If this macro is not defined, then ALIGN is used.
862
863 The typical use of this macro is to increase alignment for string
864 constants to be word aligned so that `strcpy' calls that copy
865 constants can be done inline. */
866
d9a5f180 867#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 868
8a022443
JW
869/* If defined, a C expression to compute the alignment for a static
870 variable. TYPE is the data type, and ALIGN is the alignment that
871 the object would ordinarily have. The value of this macro is used
872 instead of that alignment to align the object.
873
874 If this macro is not defined, then ALIGN is used.
875
876 One use of this macro is to increase alignment of medium-size
877 data to make it all fit in fewer cache lines. Another is to
878 cause character arrays to be word-aligned so that `strcpy' calls
879 that copy constants to character arrays can be done inline. */
880
df8a1d28
JJ
881#define DATA_ALIGNMENT(TYPE, ALIGN) \
882 ix86_data_alignment ((TYPE), (ALIGN), true)
883
884/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
885 some alignment increase, instead of optimization only purposes. E.g.
886 AMD x86-64 psABI says that variables with array type larger than 15 bytes
887 must be aligned to 16 byte boundaries.
888
889 If this macro is not defined, then ALIGN is used. */
890
891#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
892 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
893
894/* If defined, a C expression to compute the alignment for a local
895 variable. TYPE is the data type, and ALIGN is the alignment that
896 the object would ordinarily have. The value of this macro is used
897 instead of that alignment to align the object.
898
899 If this macro is not defined, then ALIGN is used.
900
901 One use of this macro is to increase alignment of medium-size
902 data to make it all fit in fewer cache lines. */
903
76fe54f0
L
904#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
905 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
906
907/* If defined, a C expression to compute the alignment for stack slot.
908 TYPE is the data type, MODE is the widest mode available, and ALIGN
909 is the alignment that the slot would ordinarily have. The value of
910 this macro is used instead of that alignment to align the slot.
911
912 If this macro is not defined, then ALIGN is used when TYPE is NULL,
913 Otherwise, LOCAL_ALIGNMENT will be used.
914
915 One use of this macro is to set alignment of stack slot to the
916 maximum alignment of all possible modes which the slot may have. */
917
918#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
919 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 920
9bfaf89d
JJ
921/* If defined, a C expression to compute the alignment for a local
922 variable DECL.
923
924 If this macro is not defined, then
925 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
926
927 One use of this macro is to increase alignment of medium-size
928 data to make it all fit in fewer cache lines. */
929
930#define LOCAL_DECL_ALIGNMENT(DECL) \
931 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
932
ae58e548
JJ
933/* If defined, a C expression to compute the minimum required alignment
934 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
935 MODE, assuming normal alignment ALIGN.
936
937 If this macro is not defined, then (ALIGN) will be used. */
938
939#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 940 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 941
9bfaf89d 942
9cd10576 943/* Set this nonzero if move instructions will actually fail to work
c98f8742 944 when given unaligned data. */
b4ac57ab 945#define STRICT_ALIGNMENT 0
c98f8742
JVA
946
947/* If bit field type is int, don't let it cross an int,
948 and give entire struct the alignment of an int. */
43a88a8c 949/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 950#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
951\f
952/* Standard register usage. */
953
954/* This processor has special stack-like registers. See reg-stack.c
892a2d68 955 for details. */
c98f8742
JVA
956
957#define STACK_REGS
ce998900 958
f48b4284
UB
959#define IS_STACK_MODE(MODE) \
960 (X87_FLOAT_MODE_P (MODE) \
961 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
962 || TARGET_MIX_SSE_I387))
c98f8742
JVA
963
964/* Number of actual hardware registers.
965 The hardware registers are assigned numbers for the compiler
966 from 0 to just below FIRST_PSEUDO_REGISTER.
967 All registers that the compiler knows about must be given numbers,
968 even those that are not normally considered general registers.
969
970 In the 80386 we give the 8 general purpose registers the numbers 0-7.
971 We number the floating point registers 8-15.
972 Note that registers 0-7 can be accessed as a short or int,
973 while only 0-3 may be used with byte `mov' instructions.
974
975 Reg 16 does not correspond to any hardware register, but instead
976 appears in the RTL as an argument pointer prior to reload, and is
977 eliminated during reloading in favor of either the stack or frame
892a2d68 978 pointer. */
c98f8742 979
05416670 980#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 981
3073d01c
ML
982/* Number of hardware registers that go into the DWARF-2 unwind info.
983 If not defined, equals FIRST_PSEUDO_REGISTER. */
984
985#define DWARF_FRAME_REGISTERS 17
986
c98f8742
JVA
987/* 1 for registers that have pervasive standard uses
988 and are not available for the register allocator.
3f3f2124 989 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 990
621bc046
UB
991 REX registers are disabled for 32bit targets in
992 TARGET_CONDITIONAL_REGISTER_USAGE. */
993
a7180f70
BS
994#define FIXED_REGISTERS \
995/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 996{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
997/*arg,flags,fpsr,fpcr,frame*/ \
998 1, 1, 1, 1, 1, \
a7180f70
BS
999/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1000 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1001/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1002 0, 0, 0, 0, 0, 0, 0, 0, \
1003/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1004 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1005/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1006 0, 0, 0, 0, 0, 0, 0, 0, \
1007/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1008 0, 0, 0, 0, 0, 0, 0, 0, \
1009/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1010 0, 0, 0, 0, 0, 0, 0, 0, \
1011/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1012 0, 0, 0, 0, 0, 0, 0, 0, \
1013/* b0, b1, b2, b3*/ \
1014 0, 0, 0, 0 }
c98f8742
JVA
1015
1016/* 1 for registers not available across function calls.
1017 These must include the FIXED_REGISTERS and also any
1018 registers that can be used without being saved.
1019 The latter must include the registers where values are returned
1020 and the register where structure-value addresses are passed.
fce5a9f2
EC
1021 Aside from that, you can include as many other registers as you like.
1022
621bc046
UB
1023 Value is set to 1 if the register is call used unconditionally.
1024 Bit one is set if the register is call used on TARGET_32BIT ABI.
1025 Bit two is set if the register is call used on TARGET_64BIT ABI.
1026 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1027
1028 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1029
1f3ccbc8
L
1030#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1031 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1032
a7180f70
BS
1033#define CALL_USED_REGISTERS \
1034/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1035{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1036/*arg,flags,fpsr,fpcr,frame*/ \
1037 1, 1, 1, 1, 1, \
a7180f70 1038/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1039 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1040/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1041 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1042/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1043 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1044/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1045 6, 6, 6, 6, 6, 6, 6, 6, \
1046/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1047 6, 6, 6, 6, 6, 6, 6, 6, \
1048/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1049 6, 6, 6, 6, 6, 6, 6, 6, \
1050 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1051 1, 1, 1, 1, 1, 1, 1, 1, \
1052/* b0, b1, b2, b3*/ \
1053 1, 1, 1, 1 }
c98f8742 1054
3b3c6a3f
MM
1055/* Order in which to allocate registers. Each register must be
1056 listed once, even those in FIXED_REGISTERS. List frame pointer
1057 late and fixed registers last. Note that, in general, we prefer
1058 registers listed in CALL_USED_REGISTERS, keeping the others
1059 available for storage of persistent values.
1060
5a733826 1061 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1062 so this is just empty initializer for array. */
3b3c6a3f 1063
162f023b
JH
1064#define REG_ALLOC_ORDER \
1065{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1066 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1067 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1068 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1069 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1070 78, 79, 80 }
3b3c6a3f 1071
5a733826 1072/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1073 to be rearranged based on a particular function. When using sse math,
03c259ad 1074 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1075
5a733826 1076#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1077
f5316dfe 1078
7c800926
KT
1079#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1080
c98f8742
JVA
1081/* Return number of consecutive hard regs needed starting at reg REGNO
1082 to hold something of mode MODE.
1083 This is ordinarily the length in words of a value of mode MODE
1084 but can be less for certain modes in special long registers.
1085
fce5a9f2 1086 Actually there are no two word move instructions for consecutive
c98f8742 1087 registers. And only registers 0-3 may have mov byte instructions
63001560 1088 applied to them. */
c98f8742 1089
ce998900 1090#define HARD_REGNO_NREGS(REGNO, MODE) \
7bf65250
UB
1091 (GENERAL_REGNO_P (REGNO) \
1092 ? ((MODE) == XFmode \
92d0fb09 1093 ? (TARGET_64BIT ? 2 : 3) \
1a6e82b8
UB
1094 : ((MODE) == XCmode \
1095 ? (TARGET_64BIT ? 4 : 6) \
7bf65250
UB
1096 : CEIL (GET_MODE_SIZE (MODE), UNITS_PER_WORD))) \
1097 : (COMPLEX_MODE_P (MODE) ? 2 : \
1098 (((MODE == V64SFmode) || (MODE == V64SImode)) ? 4 : 1)))
c98f8742 1099
8521c414 1100#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1101 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1102 && GENERAL_REGNO_P (REGNO) \
1103 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1104
1105#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1106
95879c72
L
1107#define VALID_AVX256_REG_MODE(MODE) \
1108 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1109 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1110 || (MODE) == V4DFmode)
95879c72 1111
4ac005ba 1112#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1113 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1114
3f97cb0b
AI
1115#define VALID_AVX512F_SCALAR_MODE(MODE) \
1116 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1117 || (MODE) == SFmode)
1118
1119#define VALID_AVX512F_REG_MODE(MODE) \
1120 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1121 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1122 || (MODE) == V4TImode)
1123
05416670 1124#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1125 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1126 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1127 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1128
ce998900
UB
1129#define VALID_SSE2_REG_MODE(MODE) \
1130 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1131 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1132
d9a5f180 1133#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1134 ((MODE) == V1TImode || (MODE) == TImode \
1135 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1136 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1137
47f339cf 1138#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1139 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1140
d9a5f180 1141#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1142 ((MODE == V1DImode) || (MODE) == DImode \
1143 || (MODE) == V2SImode || (MODE) == SImode \
1144 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1145
05416670
UB
1146#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1147
1148#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1149
d5e254e1
IE
1150#define VALID_BND_REG_MODE(MODE) \
1151 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1152
ce998900
UB
1153#define VALID_DFP_MODE_P(MODE) \
1154 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1155
d9a5f180 1156#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1157 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1158 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1159
d9a5f180 1160#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1161 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1162 || (MODE) == DImode \
1163 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1164 || (MODE) == CDImode \
1165 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1166 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1167
822eda12 1168/* Return true for modes passed in SSE registers. */
ce998900 1169#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1170 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1171 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1172 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1173 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1174 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1175 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1176 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1177 || (MODE) == V16SFmode)
822eda12 1178
05416670
UB
1179#define X87_FLOAT_MODE_P(MODE) \
1180 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1181
05416670
UB
1182#define SSE_FLOAT_MODE_P(MODE) \
1183 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1184
1185#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1186 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1187 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1188
e075ae69 1189/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1190
a946dd00 1191#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1192 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1193
1194/* Value is 1 if it is a good idea to tie two pseudo registers
1195 when one has mode MODE1 and one has mode MODE2.
1196 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1197 for any hard reg, then this must be 0 for correct output. */
1198
1a6e82b8
UB
1199#define MODES_TIEABLE_P(MODE1, MODE2) \
1200 ix86_modes_tieable_p ((MODE1), (MODE2))
d2836273 1201
ff25ef99
ZD
1202/* It is possible to write patterns to move flags; but until someone
1203 does it, */
1204#define AVOID_CCMODE_COPIES
c98f8742 1205
e075ae69 1206/* Specify the modes required to caller save a given hard regno.
787dc842 1207 We do this on i386 to prevent flags from being saved at all.
e075ae69 1208
787dc842
JH
1209 Kill any attempts to combine saving of modes. */
1210
d9a5f180
GS
1211#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1212 (CC_REGNO_P (REGNO) ? VOIDmode \
1213 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1214 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1215 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1216 && TARGET_PARTIAL_REG_STALL) \
85a77221 1217 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1218 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1219 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1220 : (MODE))
ce998900 1221
51ba747a
RH
1222/* The only ABI that saves SSE registers across calls is Win64 (thus no
1223 need to check the current ABI here), and with AVX enabled Win64 only
1224 guarantees that the low 16 bytes are saved. */
1225#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1226 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1227
c98f8742
JVA
1228/* Specify the registers used for certain standard purposes.
1229 The values of these macros are register numbers. */
1230
1231/* on the 386 the pc register is %eip, and is not usable as a general
1232 register. The ordinary mov instructions won't work */
1233/* #define PC_REGNUM */
1234
05416670
UB
1235/* Base register for access to arguments of the function. */
1236#define ARG_POINTER_REGNUM ARGP_REG
1237
c98f8742 1238/* Register to use for pushing function arguments. */
05416670 1239#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1240
1241/* Base register for access to local variables of the function. */
05416670
UB
1242#define FRAME_POINTER_REGNUM FRAME_REG
1243#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1244
05416670
UB
1245#define FIRST_INT_REG AX_REG
1246#define LAST_INT_REG SP_REG
c98f8742 1247
05416670
UB
1248#define FIRST_QI_REG AX_REG
1249#define LAST_QI_REG BX_REG
c98f8742
JVA
1250
1251/* First & last stack-like regs */
05416670
UB
1252#define FIRST_STACK_REG ST0_REG
1253#define LAST_STACK_REG ST7_REG
c98f8742 1254
05416670
UB
1255#define FIRST_SSE_REG XMM0_REG
1256#define LAST_SSE_REG XMM7_REG
fce5a9f2 1257
05416670
UB
1258#define FIRST_MMX_REG MM0_REG
1259#define LAST_MMX_REG MM7_REG
a7180f70 1260
05416670
UB
1261#define FIRST_REX_INT_REG R8_REG
1262#define LAST_REX_INT_REG R15_REG
3f3f2124 1263
05416670
UB
1264#define FIRST_REX_SSE_REG XMM8_REG
1265#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1266
05416670
UB
1267#define FIRST_EXT_REX_SSE_REG XMM16_REG
1268#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1269
05416670
UB
1270#define FIRST_MASK_REG MASK0_REG
1271#define LAST_MASK_REG MASK7_REG
85a77221 1272
05416670
UB
1273#define FIRST_BND_REG BND0_REG
1274#define LAST_BND_REG BND3_REG
d5e254e1 1275
aabcd309 1276/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1277 requiring a frame pointer. */
1278#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1279#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1280#endif
1281
1282/* Make sure we can access arbitrary call frames. */
1283#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1284
c98f8742 1285/* Register to hold the addressing base for position independent
5b43fed1
RH
1286 code access to data items. We don't use PIC pointer for 64bit
1287 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1288 pessimizing code dealing with EBX.
bd09bdeb
RH
1289
1290 To avoid clobbering a call-saved register unnecessarily, we renumber
1291 the pic register when possible. The change is visible after the
1292 prologue has been emitted. */
1293
e8b5eb25 1294#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1295
bcb21886 1296#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1297 (ix86_use_pseudo_pic_reg () \
1298 ? (pic_offset_table_rtx \
1299 ? INVALID_REGNUM \
1300 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1301 : INVALID_REGNUM)
c98f8742 1302
5fc0e5df
KW
1303#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1304
c51e6d85 1305/* This is overridden by <cygwin.h>. */
5e062767
DS
1306#define MS_AGGREGATE_RETURN 0
1307
61fec9ff 1308#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1309\f
1310/* Define the classes of registers for register constraints in the
1311 machine description. Also define ranges of constants.
1312
1313 One of the classes must always be named ALL_REGS and include all hard regs.
1314 If there is more than one class, another class must be named NO_REGS
1315 and contain no registers.
1316
1317 The name GENERAL_REGS must be the name of a class (or an alias for
1318 another name such as ALL_REGS). This is the class of registers
1319 that is allowed by "g" or "r" in a register constraint.
1320 Also, registers outside this class are allocated only when
1321 instructions express preferences for them.
1322
1323 The classes must be numbered in nondecreasing order; that is,
1324 a larger-numbered class must never be contained completely
2e24efd3
AM
1325 in a smaller-numbered class. This is why CLOBBERED_REGS class
1326 is listed early, even though in 64-bit mode it contains more
1327 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1328
1329 For any two classes, it is very desirable that there be another
ab408a86
JVA
1330 class that represents their union.
1331
1332 It might seem that class BREG is unnecessary, since no useful 386
1333 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1334 and the "b" register constraint is useful in asms for syscalls.
1335
03c259ad 1336 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1337
1338enum reg_class
1339{
1340 NO_REGS,
e075ae69 1341 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1342 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1343 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1344 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1345 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1346 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1347 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1348 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1349 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1350 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1351 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1352 FLOAT_REGS,
06f4e35d 1353 SSE_FIRST_REG,
45392c76 1354 NO_REX_SSE_REGS,
a7180f70 1355 SSE_REGS,
3f97cb0b 1356 EVEX_SSE_REGS,
d5e254e1 1357 BND_REGS,
3f97cb0b 1358 ALL_SSE_REGS,
a7180f70 1359 MMX_REGS,
446988df
JH
1360 FP_TOP_SSE_REGS,
1361 FP_SECOND_SSE_REGS,
1362 FLOAT_SSE_REGS,
1363 FLOAT_INT_REGS,
1364 INT_SSE_REGS,
1365 FLOAT_INT_SSE_REGS,
85a77221
AI
1366 MASK_EVEX_REGS,
1367 MASK_REGS,
5fbb13a7 1368 MOD4_SSE_REGS,
c98f8742
JVA
1369 ALL_REGS, LIM_REG_CLASSES
1370};
1371
d9a5f180
GS
1372#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1373
1374#define INTEGER_CLASS_P(CLASS) \
1375 reg_class_subset_p ((CLASS), GENERAL_REGS)
1376#define FLOAT_CLASS_P(CLASS) \
1377 reg_class_subset_p ((CLASS), FLOAT_REGS)
1378#define SSE_CLASS_P(CLASS) \
3f97cb0b 1379 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1380#define MMX_CLASS_P(CLASS) \
f75959a6 1381 ((CLASS) == MMX_REGS)
4ed04e93
UB
1382#define MASK_CLASS_P(CLASS) \
1383 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1384#define MAYBE_INTEGER_CLASS_P(CLASS) \
1385 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1386#define MAYBE_FLOAT_CLASS_P(CLASS) \
1387 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1388#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1389 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1390#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1391 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1392#define MAYBE_MASK_CLASS_P(CLASS) \
1393 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1394
1395#define Q_CLASS_P(CLASS) \
1396 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1397
0bd72901
UB
1398#define MAYBE_NON_Q_CLASS_P(CLASS) \
1399 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1400
43f3a59d 1401/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1402
1403#define REG_CLASS_NAMES \
1404{ "NO_REGS", \
ab408a86 1405 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1406 "SIREG", "DIREG", \
e075ae69 1407 "AD_REGS", \
2e24efd3 1408 "CLOBBERED_REGS", \
e075ae69 1409 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1410 "TLS_GOTBASE_REGS", \
c98f8742 1411 "INDEX_REGS", \
3f3f2124 1412 "LEGACY_REGS", \
c98f8742
JVA
1413 "GENERAL_REGS", \
1414 "FP_TOP_REG", "FP_SECOND_REG", \
1415 "FLOAT_REGS", \
cb482895 1416 "SSE_FIRST_REG", \
45392c76 1417 "NO_REX_SSE_REGS", \
a7180f70 1418 "SSE_REGS", \
3f97cb0b 1419 "EVEX_SSE_REGS", \
d5e254e1 1420 "BND_REGS", \
3f97cb0b 1421 "ALL_SSE_REGS", \
a7180f70 1422 "MMX_REGS", \
446988df
JH
1423 "FP_TOP_SSE_REGS", \
1424 "FP_SECOND_SSE_REGS", \
1425 "FLOAT_SSE_REGS", \
8fcaaa80 1426 "FLOAT_INT_REGS", \
446988df
JH
1427 "INT_SSE_REGS", \
1428 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1429 "MASK_EVEX_REGS", \
1430 "MASK_REGS", \
cae67b80 1431 "MOD4_SSE_REGS", \
c98f8742
JVA
1432 "ALL_REGS" }
1433
ac2e563f
RH
1434/* Define which registers fit in which classes. This is an initializer
1435 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1436
621bc046
UB
1437 Note that CLOBBERED_REGS are calculated by
1438 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1439
3f97cb0b 1440#define REG_CLASS_CONTENTS \
d5e254e1
IE
1441{ { 0x00, 0x0, 0x0 }, \
1442 { 0x01, 0x0, 0x0 }, /* AREG */ \
1443 { 0x02, 0x0, 0x0 }, /* DREG */ \
1444 { 0x04, 0x0, 0x0 }, /* CREG */ \
1445 { 0x08, 0x0, 0x0 }, /* BREG */ \
1446 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1447 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1448 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1449 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1450 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1451 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1452 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1453 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1454 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1455 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1456 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1457 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1458 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1459 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1460{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1461{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1462 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1463 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1464{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1465{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1466{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1467{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1468{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1469{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1470{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1471{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1472 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1473 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1474{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1475{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1476}
c98f8742
JVA
1477
1478/* The same information, inverted:
1479 Return the class number of the smallest class containing
1480 reg number REGNO. This could be a conditional expression
1481 or could index an array. */
1482
1a6e82b8 1483#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1484
42db504c
SB
1485/* When this hook returns true for MODE, the compiler allows
1486 registers explicitly used in the rtl to be used as spill registers
1487 but prevents the compiler from extending the lifetime of these
1488 registers. */
1489#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1490
fc27f749 1491#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1492#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1493
1494#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1495#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1496
1497#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1498#define REX_INT_REGNO_P(N) \
1499 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1500
58b0b34c 1501#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1502#define GENERAL_REGNO_P(N) \
58b0b34c 1503 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1504
fc27f749
UB
1505#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1506#define ANY_QI_REGNO_P(N) \
1507 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1508
66aaf16f
UB
1509#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1510#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1511
fc27f749 1512#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1513#define SSE_REGNO_P(N) \
1514 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1515 || REX_SSE_REGNO_P (N) \
1516 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1517
4977bab6 1518#define REX_SSE_REGNO_P(N) \
fb84c7a0 1519 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1520
0a48088a
IT
1521#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1522
3f97cb0b
AI
1523#define EXT_REX_SSE_REGNO_P(N) \
1524 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1525
05416670
UB
1526#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1527#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1528
9e4a4dd6 1529#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1530#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1531
fc27f749 1532#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1533#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1534
e075ae69
RH
1535#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1536#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1537
58b0b34c 1538#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1539#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1540
5fbb13a7
KY
1541#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1542#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1543 || (N) == XMM4_REG \
1544 || (N) == XMM8_REG \
1545 || (N) == XMM12_REG \
1546 || (N) == XMM16_REG \
1547 || (N) == XMM20_REG \
1548 || (N) == XMM24_REG \
1549 || (N) == XMM28_REG)
1550
05416670
UB
1551/* First floating point reg */
1552#define FIRST_FLOAT_REG FIRST_STACK_REG
1553#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1554
1555#define SSE_REGNO(N) \
1556 ((N) < 8 ? FIRST_SSE_REG + (N) \
1557 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1558 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1559
c98f8742
JVA
1560/* The class value for index registers, and the one for base regs. */
1561
1562#define INDEX_REG_CLASS INDEX_REGS
1563#define BASE_REG_CLASS GENERAL_REGS
1564
85ff473e 1565/* If we are copying between general and FP registers, we need a memory
f84aa48a 1566 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1567#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1568 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1569
c62b3659
UB
1570/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1571 There is no need to emit full 64 bit move on 64 bit targets
1572 for integral modes that can be moved using 32 bit move. */
1573#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1574 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1575 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1576 : MODE)
1577
1272914c
RH
1578/* Return a class of registers that cannot change FROM mode to TO mode. */
1579
1580#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1581 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1582\f
1583/* Stack layout; function entry, exit and calling. */
1584
1585/* Define this if pushing a word on the stack
1586 makes the stack pointer a smaller address. */
62f9f30b 1587#define STACK_GROWS_DOWNWARD 1
c98f8742 1588
a4d05547 1589/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1590 is at the high-address end of the local variables;
1591 that is, each additional local variable allocated
1592 goes at a more negative offset in the frame. */
f62c8a5c 1593#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1594
1595/* Offset within stack frame to start allocating local variables at.
1596 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1597 first local allocated. Otherwise, it is the offset to the BEGINNING
1598 of the first local allocated. */
1599#define STARTING_FRAME_OFFSET 0
1600
8c2b2fae
UB
1601/* If we generate an insn to push BYTES bytes, this says how many the stack
1602 pointer really advances by. On 386, we have pushw instruction that
1603 decrements by exactly 2 no matter what the position was, there is no pushb.
1604
1605 But as CIE data alignment factor on this arch is -4 for 32bit targets
1606 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1607 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1608
1a6e82b8 1609#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1610
1611/* If defined, the maximum amount of space required for outgoing arguments
1612 will be computed and placed into the variable `crtl->outgoing_args_size'.
1613 No space will be pushed onto the stack for each call; instead, the
1614 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1615
1616 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1617 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1618 mode the difference is less drastic but visible.
1619
1620 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1621 actually grow with accumulation. Is that because accumulated args
41ee845b 1622 unwind info became unnecesarily bloated?
f830ddc2
RH
1623
1624 With the 64-bit MS ABI, we can generate correct code with or without
1625 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1626 generated without accumulated args is terrible.
41ee845b
JH
1627
1628 If stack probes are required, the space used for large function
1629 arguments on the stack must also be probed, so enable
f8071c05
L
1630 -maccumulate-outgoing-args so this happens in the prologue.
1631
1632 We must use argument accumulation in interrupt function if stack
1633 may be realigned to avoid DRAP. */
f73ad30e 1634
6c6094f1 1635#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1636 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1637 && optimize_function_for_speed_p (cfun)) \
1638 || (cfun->machine->func_type != TYPE_NORMAL \
1639 && crtl->stack_realign_needed) \
1640 || TARGET_STACK_PROBE \
1641 || TARGET_64BIT_MS_ABI \
ff734e26 1642 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1643
1644/* If defined, a C expression whose value is nonzero when we want to use PUSH
1645 instructions to pass outgoing arguments. */
1646
1647#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1648
2da4124d
L
1649/* We want the stack and args grow in opposite directions, even if
1650 PUSH_ARGS is 0. */
1651#define PUSH_ARGS_REVERSED 1
1652
c98f8742
JVA
1653/* Offset of first parameter from the argument pointer register value. */
1654#define FIRST_PARM_OFFSET(FNDECL) 0
1655
a7180f70
BS
1656/* Define this macro if functions should assume that stack space has been
1657 allocated for arguments even when their values are passed in registers.
1658
1659 The value of this macro is the size, in bytes, of the area reserved for
1660 arguments passed in registers for the function represented by FNDECL.
1661
1662 This space can be allocated by the caller, or be a part of the
1663 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1664 which. */
7c800926
KT
1665#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1666
4ae8027b 1667#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1668 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1669
c98f8742
JVA
1670/* Define how to find the value returned by a library function
1671 assuming the value has mode MODE. */
1672
4ae8027b 1673#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1674
e9125c09
TW
1675/* Define the size of the result block used for communication between
1676 untyped_call and untyped_return. The block contains a DImode value
1677 followed by the block used by fnsave and frstor. */
1678
1679#define APPLY_RESULT_SIZE (8+108)
1680
b08de47e 1681/* 1 if N is a possible register number for function argument passing. */
53c17031 1682#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1683
1684/* Define a data type for recording info about an argument list
1685 during the scan of that argument list. This data type should
1686 hold all necessary information about the function itself
1687 and about the args processed so far, enough to enable macros
b08de47e 1688 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1689
e075ae69 1690typedef struct ix86_args {
fa283935 1691 int words; /* # words passed so far */
b08de47e
MM
1692 int nregs; /* # registers available for passing */
1693 int regno; /* next available register number */
3e65f251
KT
1694 int fastcall; /* fastcall or thiscall calling convention
1695 is used */
fa283935 1696 int sse_words; /* # sse words passed so far */
a7180f70 1697 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1698 int warn_avx512f; /* True when we want to warn
1699 about AVX512F ABI. */
95879c72 1700 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1701 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1702 int warn_mmx; /* True when we want to warn about MMX ABI. */
1703 int sse_regno; /* next available sse register number */
1704 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1705 int mmx_nregs; /* # mmx registers available for passing */
1706 int mmx_regno; /* next available mmx register number */
892a2d68 1707 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1708 int caller; /* true if it is caller. */
2824d6e5
UB
1709 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1710 SFmode/DFmode arguments should be passed
1711 in SSE registers. Otherwise 0. */
d5e254e1
IE
1712 int bnd_regno; /* next available bnd register number */
1713 int bnds_in_bt; /* number of bounds expected in BT. */
1714 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1715 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1716 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1717 MS_ABI for ms abi. */
e66fc623 1718 tree decl; /* Callee decl. */
b08de47e 1719} CUMULATIVE_ARGS;
c98f8742
JVA
1720
1721/* Initialize a variable CUM of type CUMULATIVE_ARGS
1722 for a call to a function whose data type is FNTYPE.
b08de47e 1723 For a library call, FNTYPE is 0. */
c98f8742 1724
0f6937fe 1725#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1726 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1727 (N_NAMED_ARGS) != -1)
c98f8742 1728
c98f8742
JVA
1729/* Output assembler code to FILE to increment profiler label # LABELNO
1730 for profiling a function entry. */
1731
1a6e82b8
UB
1732#define FUNCTION_PROFILER(FILE, LABELNO) \
1733 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1734
1735#define MCOUNT_NAME "_mcount"
1736
3c5273a9
KT
1737#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1738
a5fa1ecd 1739#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1740
1741/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1742 the stack pointer does not matter. The value is tested only in
1743 functions that have frame pointers.
1744 No definition is equivalent to always zero. */
fce5a9f2 1745/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1746 we have to restore it ourselves from the frame pointer, in order to
1747 use pop */
1748
1749#define EXIT_IGNORE_STACK 1
1750
f8071c05
L
1751/* Define this macro as a C expression that is nonzero for registers
1752 used by the epilogue or the `return' pattern. */
1753
1754#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1755
c98f8742
JVA
1756/* Output assembler code for a block containing the constant parts
1757 of a trampoline, leaving space for the variable parts. */
1758
a269a03c 1759/* On the 386, the trampoline contains two instructions:
c98f8742 1760 mov #STATIC,ecx
a269a03c
JC
1761 jmp FUNCTION
1762 The trampoline is generated entirely at runtime. The operand of JMP
1763 is the address of FUNCTION relative to the instruction following the
1764 JMP (which is 5 bytes long). */
c98f8742
JVA
1765
1766/* Length in units of the trampoline for entering a nested function. */
1767
3452586b 1768#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1769\f
1770/* Definitions for register eliminations.
1771
1772 This is an array of structures. Each structure initializes one pair
1773 of eliminable registers. The "from" register number is given first,
1774 followed by "to". Eliminations of the same "from" register are listed
1775 in order of preference.
1776
afc2cd05
NC
1777 There are two registers that can always be eliminated on the i386.
1778 The frame pointer and the arg pointer can be replaced by either the
1779 hard frame pointer or to the stack pointer, depending upon the
1780 circumstances. The hard frame pointer is not used before reload and
1781 so it is not eligible for elimination. */
c98f8742 1782
564d80f4
JH
1783#define ELIMINABLE_REGS \
1784{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1785 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1786 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1787 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1788
c98f8742
JVA
1789/* Define the offset between two registers, one to be eliminated, and the other
1790 its replacement, at the start of a routine. */
1791
d9a5f180
GS
1792#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1793 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1794\f
1795/* Addressing modes, and classification of registers for them. */
1796
c98f8742
JVA
1797/* Macros to check register numbers against specific register classes. */
1798
1799/* These assume that REGNO is a hard or pseudo reg number.
1800 They give nonzero only if REGNO is a hard reg of the suitable class
1801 or a pseudo reg currently allocated to a suitable hard reg.
1802 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1803 has been allocated, which happens in reginfo.c during register
1804 allocation. */
c98f8742 1805
3f3f2124
JH
1806#define REGNO_OK_FOR_INDEX_P(REGNO) \
1807 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1808 || REX_INT_REGNO_P (REGNO) \
1809 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1810 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1811
3f3f2124 1812#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1813 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1814 || (REGNO) == ARG_POINTER_REGNUM \
1815 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1816 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1817
c98f8742
JVA
1818/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1819 and check its validity for a certain class.
1820 We have two alternate definitions for each of them.
1821 The usual definition accepts all pseudo regs; the other rejects
1822 them unless they have been allocated suitable hard regs.
1823 The symbol REG_OK_STRICT causes the latter definition to be used.
1824
1825 Most source files want to accept pseudo regs in the hope that
1826 they will get allocated to the class that the insn wants them to be in.
1827 Source files for reload pass need to be strict.
1828 After reload, it makes no difference, since pseudo regs have
1829 been eliminated by then. */
1830
c98f8742 1831
ff482c8d 1832/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1833#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1834 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1835 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1836 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1837
3b3c6a3f 1838#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1839 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1840 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1841 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1842 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1843
3b3c6a3f
MM
1844/* Strict versions, hard registers only */
1845#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1846#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1847
3b3c6a3f 1848#ifndef REG_OK_STRICT
d9a5f180
GS
1849#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1850#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1851
1852#else
d9a5f180
GS
1853#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1854#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1855#endif
1856
331d9186 1857/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1858 that is a valid memory address for an instruction.
1859 The MODE argument is the machine mode for the MEM expression
1860 that wants to use this address.
1861
331d9186 1862 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1863 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1864
1865 See legitimize_pic_address in i386.c for details as to what
1866 constitutes a legitimate address when -fpic is used. */
1867
1868#define MAX_REGS_PER_ADDRESS 2
1869
f996902d 1870#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1871
b949ea8b
JW
1872/* If defined, a C expression to determine the base term of address X.
1873 This macro is used in only one place: `find_base_term' in alias.c.
1874
1875 It is always safe for this macro to not be defined. It exists so
1876 that alias analysis can understand machine-dependent addresses.
1877
1878 The typical use of this macro is to handle addresses containing
1879 a label_ref or symbol_ref within an UNSPEC. */
1880
d9a5f180 1881#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1882
c98f8742 1883/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1884 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1885 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1886
f996902d 1887#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1888
1889#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1890 (GET_CODE (X) == SYMBOL_REF \
1891 || GET_CODE (X) == LABEL_REF \
1892 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1893\f
b08de47e
MM
1894/* Max number of args passed in registers. If this is more than 3, we will
1895 have problems with ebx (register #4), since it is a caller save register and
1896 is also used as the pic register in ELF. So for now, don't allow more than
1897 3 registers to be passed in registers. */
1898
7c800926
KT
1899/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1900#define X86_64_REGPARM_MAX 6
72fa3605 1901#define X86_64_MS_REGPARM_MAX 4
7c800926 1902
72fa3605 1903#define X86_32_REGPARM_MAX 3
7c800926 1904
4ae8027b 1905#define REGPARM_MAX \
2824d6e5
UB
1906 (TARGET_64BIT \
1907 ? (TARGET_64BIT_MS_ABI \
1908 ? X86_64_MS_REGPARM_MAX \
1909 : X86_64_REGPARM_MAX) \
4ae8027b 1910 : X86_32_REGPARM_MAX)
d2836273 1911
72fa3605
UB
1912#define X86_64_SSE_REGPARM_MAX 8
1913#define X86_64_MS_SSE_REGPARM_MAX 4
1914
b6010cab 1915#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1916
4ae8027b 1917#define SSE_REGPARM_MAX \
2824d6e5
UB
1918 (TARGET_64BIT \
1919 ? (TARGET_64BIT_MS_ABI \
1920 ? X86_64_MS_SSE_REGPARM_MAX \
1921 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1922 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1923
1924#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1925\f
1926/* Specify the machine mode that this machine uses
1927 for the index in the tablejump instruction. */
dc4d7240 1928#define CASE_VECTOR_MODE \
6025b127 1929 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1930
c98f8742
JVA
1931/* Define this as 1 if `char' should by default be signed; else as 0. */
1932#define DEFAULT_SIGNED_CHAR 1
1933
1934/* Max number of bytes we can move from memory to memory
1935 in one reasonably fast instruction. */
65d9c0ab
JH
1936#define MOVE_MAX 16
1937
1938/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1939 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1940 number of bytes we can move with a single instruction.
1941
1942 ??? We should use TImode in 32-bit mode and use OImode or XImode
1943 if they are available. But since by_pieces_ninsns determines the
1944 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1945 64-bit mode. */
1946#define MOVE_MAX_PIECES \
1947 ((TARGET_64BIT \
1948 && TARGET_SSE2 \
1949 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1950 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1951 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1952
7e24ffc9 1953/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1954 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1955 Increasing the value will always make code faster, but eventually
1956 incurs high cost in increased code size.
c98f8742 1957
e2e52e1b 1958 If you don't define this, a reasonable default is used. */
c98f8742 1959
e04ad03d 1960#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1961
45d78e7f
JJ
1962/* If a clear memory operation would take CLEAR_RATIO or more simple
1963 move-instruction sequences, we will do a clrmem or libcall instead. */
1964
e04ad03d 1965#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1966
53f00dde
UB
1967/* Define if shifts truncate the shift count which implies one can
1968 omit a sign-extension or zero-extension of a shift count.
1969
1970 On i386, shifts do truncate the count. But bit test instructions
1971 take the modulo of the bit offset operand. */
c98f8742
JVA
1972
1973/* #define SHIFT_COUNT_TRUNCATED */
1974
1975/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1976 is done just by pretending it is already truncated. */
1977#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1978
d9f32422
JH
1979/* A macro to update M and UNSIGNEDP when an object whose type is
1980 TYPE and which has the specified mode and signedness is to be
1981 stored in a register. This macro is only called when TYPE is a
1982 scalar type.
1983
f710504c 1984 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1985 quantities to SImode. The choice depends on target type. */
1986
1987#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1988do { \
d9f32422
JH
1989 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1990 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1991 (MODE) = SImode; \
1992} while (0)
d9f32422 1993
c98f8742
JVA
1994/* Specify the machine mode that pointers have.
1995 After generation of rtl, the compiler makes no further distinction
1996 between pointers and any other objects of this machine mode. */
28968d91 1997#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1998
d5e254e1
IE
1999/* Specify the machine mode that bounds have. */
2000#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
2001
f0ea7581
L
2002/* A C expression whose value is zero if pointers that need to be extended
2003 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
2004 greater then zero if they are zero-extended and less then zero if the
2005 ptr_extend instruction should be used. */
2006
2007#define POINTERS_EXTEND_UNSIGNED 1
2008
c98f8742
JVA
2009/* A function address in a call instruction
2010 is a byte address (for indexing purposes)
2011 so give the MEM rtx a byte's mode. */
2012#define FUNCTION_MODE QImode
d4ba09c0 2013\f
d4ba09c0 2014
d4ba09c0
SC
2015/* A C expression for the cost of a branch instruction. A value of 1
2016 is the default; other values are interpreted relative to that. */
2017
3a4fd356
JH
2018#define BRANCH_COST(speed_p, predictable_p) \
2019 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 2020
e327d1a3
L
2021/* An integer expression for the size in bits of the largest integer machine
2022 mode that should actually be used. We allow pairs of registers. */
2023#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2024
d4ba09c0
SC
2025/* Define this macro as a C expression which is nonzero if accessing
2026 less than a word of memory (i.e. a `char' or a `short') is no
2027 faster than accessing a word of memory, i.e., if such access
2028 require more than one instruction or if there is no difference in
2029 cost between byte and (aligned) word loads.
2030
2031 When this macro is not defined, the compiler will access a field by
2032 finding the smallest containing object; when it is defined, a
2033 fullword load will be used if alignment permits. Unless bytes
2034 accesses are faster than word accesses, using word accesses is
2035 preferable since it may eliminate subsequent memory access if
2036 subsequent accesses occur to other fields in the same word of the
2037 structure, but to different bytes. */
2038
2039#define SLOW_BYTE_ACCESS 0
2040
2041/* Nonzero if access to memory by shorts is slow and undesirable. */
2042#define SLOW_SHORT_ACCESS 0
2043
d4ba09c0
SC
2044/* Define this macro to be the value 1 if unaligned accesses have a
2045 cost many times greater than aligned accesses, for example if they
2046 are emulated in a trap handler.
2047
9cd10576
KH
2048 When this macro is nonzero, the compiler will act as if
2049 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2050 moves. This can cause significantly more instructions to be
9cd10576 2051 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2052 accesses only add a cycle or two to the time for a memory access.
2053
2054 If the value of this macro is always zero, it need not be defined. */
2055
e1565e65 2056/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2057
d4ba09c0
SC
2058/* Define this macro if it is as good or better to call a constant
2059 function address than to call an address kept in a register.
2060
2061 Desirable on the 386 because a CALL with a constant address is
2062 faster than one with a register address. */
2063
1e8552c2 2064#define NO_FUNCTION_CSE 1
c98f8742 2065\f
c572e5ba
JVA
2066/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2067 return the mode to be used for the comparison.
2068
2069 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2070 VOIDmode should be used in all other cases.
c572e5ba 2071
16189740 2072 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2073 possible, to allow for more combinations. */
c98f8742 2074
d9a5f180 2075#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2076
9cd10576 2077/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2078 reversed. */
2079
2080#define REVERSIBLE_CC_MODE(MODE) 1
2081
2082/* A C expression whose value is reversed condition code of the CODE for
2083 comparison done in CC_MODE mode. */
3c5cb3e4 2084#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2085
c98f8742
JVA
2086\f
2087/* Control the assembler format that we output, to the extent
2088 this does not vary between assemblers. */
2089
2090/* How to refer to registers in assembler output.
892a2d68 2091 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2092
a7b376ee 2093/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2094 For non floating point regs, the following are the HImode names.
2095
2096 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2097 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2098 "y" code. */
c98f8742 2099
a7180f70
BS
2100#define HI_REGISTER_NAMES \
2101{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2102 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2103 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2104 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2105 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2106 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2107 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2108 "xmm16", "xmm17", "xmm18", "xmm19", \
2109 "xmm20", "xmm21", "xmm22", "xmm23", \
2110 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2111 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2112 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2113 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2114
c98f8742
JVA
2115#define REGISTER_NAMES HI_REGISTER_NAMES
2116
2117/* Table of additional register names to use in user input. */
2118
2119#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2120{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2121 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2122 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2123 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2124 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2125 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2126 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2127 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2128 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2129 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2130 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2131 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2132 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2133 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2134 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2135 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2136 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2137 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2138 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2139 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2140 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2141 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2142
2143/* Note we are omitting these since currently I don't know how
2144to get gcc to use these, since they want the same but different
2145number as al, and ax.
2146*/
2147
c98f8742 2148#define QI_REGISTER_NAMES \
3f3f2124 2149{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2150
2151/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2152 of regs 0 through 3. */
c98f8742
JVA
2153
2154#define QI_HIGH_REGISTER_NAMES \
2155{"ah", "dh", "ch", "bh", }
2156
2157/* How to renumber registers for dbx and gdb. */
2158
d9a5f180
GS
2159#define DBX_REGISTER_NUMBER(N) \
2160 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2161
9a82e702
MS
2162extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2163extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2164extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2165
469ac993
JM
2166/* Before the prologue, RA is at 0(%esp). */
2167#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2168 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2169
e414ab29 2170/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2171#define RETURN_ADDR_RTX(COUNT, FRAME) \
2172 ((COUNT) == 0 \
2173 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2174 -UNITS_PER_WORD)) \
2175 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2176
892a2d68 2177/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2178#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2179
a10b3cf1
L
2180/* Before the prologue, there are return address and error code for
2181 exception handler on the top of the frame. */
2182#define INCOMING_FRAME_SP_OFFSET \
2183 (cfun->machine->func_type == TYPE_EXCEPTION \
2184 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2185
1020a5ab 2186/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2187#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2188#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2189
ad919812 2190
e4c4ebeb
RH
2191/* Select a format to encode pointers in exception handling data. CODE
2192 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2193 true if the symbol may be affected by dynamic relocations.
2194
2195 ??? All x86 object file formats are capable of representing this.
2196 After all, the relocation needed is the same as for the call insn.
2197 Whether or not a particular assembler allows us to enter such, I
2198 guess we'll have to see. */
d9a5f180 2199#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2200 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2201
ec1895c1
UB
2202/* These are a couple of extensions to the formats accepted
2203 by asm_fprintf:
2204 %z prints out opcode suffix for word-mode instruction
2205 %r prints out word-mode name for reg_names[arg] */
2206#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2207 case 'z': \
2208 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2209 break; \
2210 \
2211 case 'r': \
2212 { \
2213 unsigned int regno = va_arg ((ARGS), int); \
2214 if (LEGACY_INT_REGNO_P (regno)) \
2215 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2216 fputs (reg_names[regno], (FILE)); \
2217 break; \
2218 }
2219
2220/* This is how to output an insn to push a register on the stack. */
2221
2222#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2223 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2224
2225/* This is how to output an insn to pop a register from the stack. */
c98f8742 2226
d9a5f180 2227#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2228 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2229
f88c65f7 2230/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2231
2232#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2233 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2234
f88c65f7 2235/* This is how to output an element of a case-vector that is relative. */
c98f8742 2236
33f7f353 2237#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2238 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2239
63001560 2240/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2241
2242#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2243{ \
2244 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2245 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2246}
2247
2248/* A C statement or statements which output an assembler instruction
2249 opcode to the stdio stream STREAM. The macro-operand PTR is a
2250 variable of type `char *' which points to the opcode name in
2251 its "internal" form--the form that is written in the machine
2252 description. */
2253
2254#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2255 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2256
6a90d232
L
2257/* A C statement to output to the stdio stream FILE an assembler
2258 command to pad the location counter to a multiple of 1<<LOG
2259 bytes if it is within MAX_SKIP bytes. */
2260
2261#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2262#undef ASM_OUTPUT_MAX_SKIP_PAD
2263#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2264 if ((LOG) != 0) \
2265 { \
2266 if ((MAX_SKIP) == 0) \
2267 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2268 else \
2269 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2270 }
2271#endif
2272
135a687e
KT
2273/* Write the extra assembler code needed to declare a function
2274 properly. */
2275
2276#undef ASM_OUTPUT_FUNCTION_LABEL
2277#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2278 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2279
f7288899
EC
2280/* Under some conditions we need jump tables in the text section,
2281 because the assembler cannot handle label differences between
2282 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2283
2284#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2285 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2286 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2287
cea3bd3e
RH
2288/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2289 and switch back. For x86 we do this only to save a few bytes that
2290 would otherwise be unused in the text section. */
ad211091
KT
2291#define CRT_MKSTR2(VAL) #VAL
2292#define CRT_MKSTR(x) CRT_MKSTR2(x)
2293
2294#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2295 asm (SECTION_OP "\n\t" \
2296 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2297 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2298
2299/* Default threshold for putting data in large sections
2300 with x86-64 medium memory model */
2301#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2302
2303/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2304
2305#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2306do { \
2307 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2308 && get_attr_maybe_prefix_bnd (INSN)) \
2309 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2310} while (0)
74b42c8b 2311\f
b97de419
L
2312/* Which processor to tune code generation for. These must be in sync
2313 with processor_target_table in i386.c. */
5bf0ebab
RH
2314
2315enum processor_type
2316{
b97de419
L
2317 PROCESSOR_GENERIC = 0,
2318 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2319 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2320 PROCESSOR_PENTIUM,
2d6b2e28 2321 PROCESSOR_LAKEMONT,
5bf0ebab 2322 PROCESSOR_PENTIUMPRO,
5bf0ebab 2323 PROCESSOR_PENTIUM4,
89c43c0a 2324 PROCESSOR_NOCONA,
340ef734 2325 PROCESSOR_CORE2,
d3c11974
L
2326 PROCESSOR_NEHALEM,
2327 PROCESSOR_SANDYBRIDGE,
3a579e09 2328 PROCESSOR_HASWELL,
d3c11974
L
2329 PROCESSOR_BONNELL,
2330 PROCESSOR_SILVERMONT,
52747219 2331 PROCESSOR_KNL,
06caf59d 2332 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2333 PROCESSOR_INTEL,
b97de419
L
2334 PROCESSOR_GEODE,
2335 PROCESSOR_K6,
2336 PROCESSOR_ATHLON,
2337 PROCESSOR_K8,
21efb4d4 2338 PROCESSOR_AMDFAM10,
1133125e 2339 PROCESSOR_BDVER1,
4d652a18 2340 PROCESSOR_BDVER2,
eb2f2b44 2341 PROCESSOR_BDVER3,
ed97ad47 2342 PROCESSOR_BDVER4,
14b52538 2343 PROCESSOR_BTVER1,
e32bfc16 2344 PROCESSOR_BTVER2,
9ce29eb0 2345 PROCESSOR_ZNVER1,
5bf0ebab
RH
2346 PROCESSOR_max
2347};
2348
9e555526 2349extern enum processor_type ix86_tune;
5bf0ebab 2350extern enum processor_type ix86_arch;
5bf0ebab 2351
8362f420
JH
2352/* Size of the RED_ZONE area. */
2353#define RED_ZONE_SIZE 128
2354/* Reserved area of the red zone for temporaries. */
2355#define RED_ZONE_RESERVE 8
c93e80a5 2356
95899b34 2357extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2358extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2359
2360/* Smallest class containing REGNO. */
2361extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2362
0948ccb2
PB
2363enum ix86_fpcmp_strategy {
2364 IX86_FPCMP_SAHF,
2365 IX86_FPCMP_COMI,
2366 IX86_FPCMP_ARITH
2367};
22fb740d
JH
2368\f
2369/* To properly truncate FP values into integers, we need to set i387 control
2370 word. We can't emit proper mode switching code before reload, as spills
2371 generated by reload may truncate values incorrectly, but we still can avoid
2372 redundant computation of new control word by the mode switching pass.
2373 The fldcw instructions are still emitted redundantly, but this is probably
2374 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2375 the sequence.
22fb740d
JH
2376
2377 The machinery is to emit simple truncation instructions and split them
2378 before reload to instructions having USEs of two memory locations that
2379 are filled by this code to old and new control word.
fce5a9f2 2380
22fb740d
JH
2381 Post-reload pass may be later used to eliminate the redundant fildcw if
2382 needed. */
2383
c7ca8ef8
UB
2384enum ix86_stack_slot
2385{
2386 SLOT_TEMP = 0,
2387 SLOT_CW_STORED,
2388 SLOT_CW_TRUNC,
2389 SLOT_CW_FLOOR,
2390 SLOT_CW_CEIL,
2391 SLOT_CW_MASK_PM,
80008279 2392 SLOT_STV_TEMP,
c7ca8ef8
UB
2393 MAX_386_STACK_LOCALS
2394};
2395
ff680eb1
UB
2396enum ix86_entity
2397{
c7ca8ef8
UB
2398 X86_DIRFLAG = 0,
2399 AVX_U128,
ff97910d 2400 I387_TRUNC,
ff680eb1
UB
2401 I387_FLOOR,
2402 I387_CEIL,
2403 I387_MASK_PM,
2404 MAX_386_ENTITIES
2405};
2406
c7ca8ef8 2407enum x86_dirflag_state
ff680eb1 2408{
c7ca8ef8
UB
2409 X86_DIRFLAG_RESET,
2410 X86_DIRFLAG_ANY
ff680eb1 2411};
22fb740d 2412
ff97910d
VY
2413enum avx_u128_state
2414{
2415 AVX_U128_CLEAN,
2416 AVX_U128_DIRTY,
2417 AVX_U128_ANY
2418};
2419
22fb740d
JH
2420/* Define this macro if the port needs extra instructions inserted
2421 for mode switching in an optimizing compilation. */
2422
ff680eb1
UB
2423#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2424 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2425
2426/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2427 initializer for an array of integers. Each initializer element N
2428 refers to an entity that needs mode switching, and specifies the
2429 number of different modes that might need to be set for this
2430 entity. The position of the initializer in the initializer -
2431 starting counting at zero - determines the integer that is used to
2432 refer to the mode-switched entity in question. */
2433
c7ca8ef8
UB
2434#define NUM_MODES_FOR_MODE_SWITCHING \
2435 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2436 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2437
0f0138b6
JH
2438\f
2439/* Avoid renaming of stack registers, as doing so in combination with
2440 scheduling just increases amount of live registers at time and in
2441 the turn amount of fxch instructions needed.
2442
3f97cb0b
AI
2443 ??? Maybe Pentium chips benefits from renaming, someone can try....
2444
2445 Don't rename evex to non-evex sse registers. */
0f0138b6 2446
1a6e82b8
UB
2447#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2448 (!STACK_REGNO_P (SRC) \
2449 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2450
3b3c6a3f 2451\f
e91f04de 2452#define FASTCALL_PREFIX '@'
fa1a0d02 2453\f
77560086
BE
2454#ifndef USED_FOR_TARGET
2455/* Structure describing stack frame layout.
2456 Stack grows downward:
2457
2458 [arguments]
2459 <- ARG_POINTER
2460 saved pc
2461
2462 saved static chain if ix86_static_chain_on_stack
2463
2464 saved frame pointer if frame_pointer_needed
2465 <- HARD_FRAME_POINTER
2466 [saved regs]
2467 <- reg_save_offset
2468 [padding0]
2469 <- stack_realign_offset
2470 [saved SSE regs]
2471 OR
2472 [stub-saved registers for ms x64 --> sysv clobbers
2473 <- Start of out-of-line, stub-saved/restored regs
2474 (see libgcc/config/i386/(sav|res)ms64*.S)
2475 [XMM6-15]
2476 [RSI]
2477 [RDI]
2478 [?RBX] only if RBX is clobbered
2479 [?RBP] only if RBP and RBX are clobbered
2480 [?R12] only if R12 and all previous regs are clobbered
2481 [?R13] only if R13 and all previous regs are clobbered
2482 [?R14] only if R14 and all previous regs are clobbered
2483 [?R15] only if R15 and all previous regs are clobbered
2484 <- end of stub-saved/restored regs
2485 [padding1]
2486 ]
2487 <- outlined_save_offset
2488 <- sse_regs_save_offset
2489 [padding2]
2490 | <- FRAME_POINTER
2491 [va_arg registers] |
2492 |
2493 [frame] |
2494 |
2495 [padding2] | = to_allocate
2496 <- STACK_POINTER
2497 */
2498struct GTY(()) ix86_frame
2499{
2500 int nsseregs;
2501 int nregs;
2502 int va_arg_size;
2503 int red_zone_size;
2504 int outgoing_arguments_size;
2505
2506 /* The offsets relative to ARG_POINTER. */
2507 HOST_WIDE_INT frame_pointer_offset;
2508 HOST_WIDE_INT hard_frame_pointer_offset;
2509 HOST_WIDE_INT stack_pointer_offset;
2510 HOST_WIDE_INT hfp_save_offset;
2511 HOST_WIDE_INT reg_save_offset;
2512 HOST_WIDE_INT stack_realign_allocate_offset;
2513 HOST_WIDE_INT stack_realign_offset;
2514 HOST_WIDE_INT outlined_save_offset;
2515 HOST_WIDE_INT sse_reg_save_offset;
2516
2517 /* When save_regs_using_mov is set, emit prologue using
2518 move instead of push instructions. */
2519 bool save_regs_using_mov;
2520};
2521
ec7ded37 2522/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2523
ec7ded37 2524struct GTY(()) machine_frame_state
cd9c1ca8 2525{
ec7ded37
RH
2526 /* This pair tracks the currently active CFA as reg+offset. When reg
2527 is drap_reg, we don't bother trying to record here the real CFA when
2528 it might really be a DW_CFA_def_cfa_expression. */
2529 rtx cfa_reg;
2530 HOST_WIDE_INT cfa_offset;
2531
2532 /* The current offset (canonically from the CFA) of ESP and EBP.
2533 When stack frame re-alignment is active, these may not be relative
2534 to the CFA. However, in all cases they are relative to the offsets
2535 of the saved registers stored in ix86_frame. */
2536 HOST_WIDE_INT sp_offset;
2537 HOST_WIDE_INT fp_offset;
2538
2539 /* The size of the red-zone that may be assumed for the purposes of
2540 eliding register restore notes in the epilogue. This may be zero
2541 if no red-zone is in effect, or may be reduced from the real
2542 red-zone value by a maximum runtime stack re-alignment value. */
2543 int red_zone_offset;
2544
2545 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2546 value within the frame. If false then the offset above should be
2547 ignored. Note that DRAP, if valid, *always* points to the CFA and
2548 thus has an offset of zero. */
2549 BOOL_BITFIELD sp_valid : 1;
2550 BOOL_BITFIELD fp_valid : 1;
2551 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2552
2553 /* Indicate whether the local stack frame has been re-aligned. When
2554 set, the SP/FP offsets above are relative to the aligned frame
2555 and not the CFA. */
2556 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2557
2558 /* Indicates whether the stack pointer has been re-aligned. When set,
2559 SP/FP continue to be relative to the CFA, but the stack pointer
2560 should only be used for offsets >= sp_realigned_offset, while
2561 the frame pointer should be used for offsets < sp_realigned_offset.
2562 The flags realigned and sp_realigned are mutually exclusive. */
2563 BOOL_BITFIELD sp_realigned : 1;
2564
2565 /* If sp_realigned is set, this is the offset from the CFA that the
2566 stack pointer was realigned to. */
2567 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2568};
2569
f81c9774
RH
2570/* Private to winnt.c. */
2571struct seh_frame_state;
2572
f8071c05
L
2573enum function_type
2574{
2575 TYPE_UNKNOWN = 0,
2576 TYPE_NORMAL,
2577 /* The current function is an interrupt service routine with a
2578 pointer argument as specified by the "interrupt" attribute. */
2579 TYPE_INTERRUPT,
2580 /* The current function is an interrupt service routine with a
2581 pointer argument and an integer argument as specified by the
2582 "interrupt" attribute. */
2583 TYPE_EXCEPTION
2584};
2585
d1b38208 2586struct GTY(()) machine_function {
fa1a0d02 2587 struct stack_local_entry *stack_locals;
4aab97f9
L
2588 int varargs_gpr_size;
2589 int varargs_fpr_size;
ff680eb1 2590 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2591
77560086
BE
2592 /* Cached initial frame layout for the current function. */
2593 struct ix86_frame frame;
3452586b 2594
7458026b
ILT
2595 /* For -fsplit-stack support: A stack local which holds a pointer to
2596 the stack arguments for a function with a variable number of
2597 arguments. This is set at the start of the function and is used
2598 to initialize the overflow_arg_area field of the va_list
2599 structure. */
2600 rtx split_stack_varargs_pointer;
2601
3452586b
RH
2602 /* This value is used for amd64 targets and specifies the current abi
2603 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2604 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2605
2606 /* Nonzero if the function accesses a previous frame. */
2607 BOOL_BITFIELD accesses_prev_frame : 1;
2608
922e3e33
UB
2609 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2610 expander to determine the style used. */
3452586b
RH
2611 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2612
1e4490dc
UB
2613 /* Nonzero if the current function calls pc thunk and
2614 must not use the red zone. */
2615 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2616
5bf5a10b
AO
2617 /* If true, the current function needs the default PIC register, not
2618 an alternate register (on x86) and must not use the red zone (on
2619 x86_64), even if it's a leaf function. We don't want the
2620 function to be regarded as non-leaf because TLS calls need not
2621 affect register allocation. This flag is set when a TLS call
2622 instruction is expanded within a function, and never reset, even
2623 if all such instructions are optimized away. Use the
2624 ix86_current_function_calls_tls_descriptor macro for a better
2625 approximation. */
3452586b
RH
2626 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2627
2628 /* If true, the current function has a STATIC_CHAIN is placed on the
2629 stack below the return address. */
2630 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2631
529a6471
JJ
2632 /* If true, it is safe to not save/restore DRAP register. */
2633 BOOL_BITFIELD no_drap_save_restore : 1;
2634
f8071c05
L
2635 /* Function type. */
2636 ENUM_BITFIELD(function_type) func_type : 2;
2637
2638 /* If true, the current function is a function specified with
2639 the "interrupt" or "no_caller_saved_registers" attribute. */
2640 BOOL_BITFIELD no_caller_saved_registers : 1;
2641
a0ff7835
L
2642 /* If true, there is register available for argument passing. This
2643 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2644 if there is scratch register available for indirect sibcall. In
2645 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2646 pass arguments and can be used for indirect sibcall. */
2647 BOOL_BITFIELD arg_reg_available : 1;
2648
d6d4d770
DS
2649 /* If true, we're out-of-lining reg save/restore for regs clobbered
2650 by ms_abi functions calling a sysv function. */
2651 BOOL_BITFIELD call_ms2sysv : 1;
2652
2653 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2654 needs padding. */
2655 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2656
2657 /* If true, the size of the stub save area plus inline int reg saves will
2658 result in an 8 byte offset, so needs padding. */
2659 BOOL_BITFIELD call_ms2sysv_pad_out : 1;
2660
2661 /* This is the number of extra registers saved by stub (valid range is
2662 0-6). Each additional register is only saved/restored by the stubs
2663 if all successive ones are. (Will always be zero when using a hard
2664 frame pointer.) */
2665 unsigned int call_ms2sysv_extra_regs:3;
2666
35c95658
L
2667 /* Nonzero if the function places outgoing arguments on stack. */
2668 BOOL_BITFIELD outgoing_args_on_stack : 1;
2669
ec7ded37
RH
2670 /* During prologue/epilogue generation, the current frame state.
2671 Otherwise, the frame state at the end of the prologue. */
2672 struct machine_frame_state fs;
f81c9774
RH
2673
2674 /* During SEH output, this is non-null. */
2675 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2676};
cd9c1ca8 2677#endif
fa1a0d02
JH
2678
2679#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2680#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2681#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2682#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2683#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2684#define ix86_tls_descriptor_calls_expanded_in_cfun \
2685 (cfun->machine->tls_descriptor_call_expanded_p)
2686/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2687 calls are optimized away, we try to detect cases in which it was
2688 optimized away. Since such instructions (use (reg REG_SP)), we can
2689 verify whether there's any such instruction live by testing that
2690 REG_SP is live. */
2691#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2692 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2693#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2694
1bc7c5b6
ZW
2695/* Control behavior of x86_file_start. */
2696#define X86_FILE_START_VERSION_DIRECTIVE false
2697#define X86_FILE_START_FLTUSED false
2698
7dcbf659
JH
2699/* Flag to mark data that is in the large address area. */
2700#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2701#define SYMBOL_REF_FAR_ADDR_P(X) \
2702 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2703
2704/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2705 have defined always, to avoid ifdefing. */
2706#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2707#define SYMBOL_REF_DLLIMPORT_P(X) \
2708 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2709
2710#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2711#define SYMBOL_REF_DLLEXPORT_P(X) \
2712 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2713
82c0e1a0
KT
2714#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2715#define SYMBOL_REF_STUBVAR_P(X) \
2716 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2717
7942e47e
RY
2718extern void debug_ready_dispatch (void);
2719extern void debug_dispatch_window (int);
2720
91afcfa3
QN
2721/* The value at zero is only defined for the BMI instructions
2722 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2723#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2724 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2725#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2726 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2727
2728
b8ce4e94
KT
2729/* Flags returned by ix86_get_callcvt (). */
2730#define IX86_CALLCVT_CDECL 0x1
2731#define IX86_CALLCVT_STDCALL 0x2
2732#define IX86_CALLCVT_FASTCALL 0x4
2733#define IX86_CALLCVT_THISCALL 0x8
2734#define IX86_CALLCVT_REGPARM 0x10
2735#define IX86_CALLCVT_SSEREGPARM 0x20
2736
2737#define IX86_BASE_CALLCVT(FLAGS) \
2738 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2739 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2740
b86b9f44
MM
2741#define RECIP_MASK_NONE 0x00
2742#define RECIP_MASK_DIV 0x01
2743#define RECIP_MASK_SQRT 0x02
2744#define RECIP_MASK_VEC_DIV 0x04
2745#define RECIP_MASK_VEC_SQRT 0x08
2746#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2747 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2748#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2749
2750#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2751#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2752#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2753#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2754
5dcfdccd
KY
2755#define IX86_HLE_ACQUIRE (1 << 16)
2756#define IX86_HLE_RELEASE (1 << 17)
2757
e83b8e2e
JJ
2758/* For switching between functions with different target attributes. */
2759#define SWITCHABLE_TARGET 1
2760
44d0de8d
UB
2761#define TARGET_SUPPORTS_WIDE_INT 1
2762
c98f8742
JVA
2763/*
2764Local variables:
2765version-control: t
2766End:
2767*/