]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
gcc.c (LINK_COMMAND_SPEC): Link with gcov with -fprofile-generate=.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
66647d44 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
54#define TARGET_AVX OPTION_ISA_AVX
55#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 56#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
57#define TARGET_SSE5 OPTION_ISA_SSE5
58#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
59#define TARGET_ABM OPTION_ISA_ABM
60#define TARGET_POPCNT OPTION_ISA_POPCNT
61#define TARGET_SAHF OPTION_ISA_SAHF
62#define TARGET_AES OPTION_ISA_AES
63#define TARGET_PCLMUL OPTION_ISA_PCLMUL
64#define TARGET_CMPXCHG16B OPTION_ISA_CX16
65
04e1d06b
MM
66
67/* SSE5 and SSE4.1 define the same round instructions */
68#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
69#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 70
26b5109f
RS
71#include "config/vxworks-dummy.h"
72
8c996513
JH
73/* Algorithm to expand string function with. */
74enum stringop_alg
75{
76 no_stringop,
77 libcall,
78 rep_prefix_1_byte,
79 rep_prefix_4_byte,
80 rep_prefix_8_byte,
81 loop_1_byte,
82 loop,
83 unrolled_loop
84};
ccf8e764 85
8c996513 86#define NAX_STRINGOP_ALGS 4
ccf8e764 87
8c996513
JH
88/* Specify what algorithm to use for stringops on known size.
89 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
90 known at compile time or estimated via feedback, the SIZE array
91 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 92 means infinity). Corresponding ALG is used then.
8c996513 93 For example initializer:
4f3f76e6 94 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 95 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 96 be used otherwise. */
8c996513
JH
97struct stringop_algs
98{
99 const enum stringop_alg unknown_size;
100 const struct stringop_strategy {
101 const int max;
102 const enum stringop_alg alg;
103 } size [NAX_STRINGOP_ALGS];
104};
105
d4ba09c0
SC
106/* Define the specific costs for a given cpu */
107
108struct processor_costs {
8b60264b
KG
109 const int add; /* cost of an add instruction */
110 const int lea; /* cost of a lea instruction */
111 const int shift_var; /* variable shift costs */
112 const int shift_const; /* constant shift costs */
f676971a 113 const int mult_init[5]; /* cost of starting a multiply
4977bab6 114 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 115 const int mult_bit; /* cost of multiply per each bit set */
f676971a 116 const int divide[5]; /* cost of a divide/mod
4977bab6 117 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
118 int movsx; /* The cost of movsx operation. */
119 int movzx; /* The cost of movzx operation. */
8b60264b
KG
120 const int large_insn; /* insns larger than this cost more */
121 const int move_ratio; /* The threshold of number of scalar
ac775968 122 memory-to-memory move insns. */
8b60264b
KG
123 const int movzbl_load; /* cost of loading using movzbl */
124 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
125 in QImode, HImode and SImode relative
126 to reg-reg move (2). */
8b60264b 127 const int int_store[3]; /* cost of storing integer register
96e7ae40 128 in QImode, HImode and SImode */
8b60264b
KG
129 const int fp_move; /* cost of reg,reg fld/fst */
130 const int fp_load[3]; /* cost of loading FP register
96e7ae40 131 in SFmode, DFmode and XFmode */
8b60264b 132 const int fp_store[3]; /* cost of storing FP register
96e7ae40 133 in SFmode, DFmode and XFmode */
8b60264b
KG
134 const int mmx_move; /* cost of moving MMX register. */
135 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 136 in SImode and DImode */
8b60264b 137 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 138 in SImode and DImode */
8b60264b
KG
139 const int sse_move; /* cost of moving SSE register. */
140 const int sse_load[3]; /* cost of loading SSE register
fa79946e 141 in SImode, DImode and TImode*/
8b60264b 142 const int sse_store[3]; /* cost of storing SSE register
fa79946e 143 in SImode, DImode and TImode*/
8b60264b 144 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 145 integer and vice versa. */
46cb0441
ZD
146 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
147 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
148 const int prefetch_block; /* bytes moved to cache for prefetch. */
149 const int simultaneous_prefetches; /* number of parallel prefetch
150 operations. */
4977bab6 151 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
152 const int fadd; /* cost of FADD and FSUB instructions. */
153 const int fmul; /* cost of FMUL instruction. */
154 const int fdiv; /* cost of FDIV instruction. */
155 const int fabs; /* cost of FABS instruction. */
156 const int fchs; /* cost of FCHS instruction. */
157 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
158 /* Specify what algorithm
159 to use for stringops on unknown size. */
160 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
161 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
162 load and store. */
163 const int scalar_load_cost; /* Cost of scalar load. */
164 const int scalar_store_cost; /* Cost of scalar store. */
165 const int vec_stmt_cost; /* Cost of any vector operation, excluding
166 load, store, vector-to-scalar and
167 scalar-to-vector operation. */
168 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
169 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 170 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
171 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
172 const int vec_store_cost; /* Cost of vector store. */
173 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
174 cost model. */
175 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
176 vectorizer cost model. */
d4ba09c0
SC
177};
178
8b60264b 179extern const struct processor_costs *ix86_cost;
b2077fd2
JH
180extern const struct processor_costs ix86_size_cost;
181
182#define ix86_cur_cost() \
183 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 184
c98f8742
JVA
185/* Macros used in the machine description to test the flags. */
186
ddd5a7c1 187/* configure can arrange to make this 2, to force a 486. */
e075ae69 188
35b528be 189#ifndef TARGET_CPU_DEFAULT
d326eaf0 190#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 191#endif
35b528be 192
004d3859
GK
193#ifndef TARGET_FPMATH_DEFAULT
194#define TARGET_FPMATH_DEFAULT \
195 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
196#endif
197
6ac49599 198#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 199
5791cc29
JT
200/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
201 compile-time constant. */
202#ifdef IN_LIBGCC2
6ac49599 203#undef TARGET_64BIT
5791cc29
JT
204#ifdef __x86_64__
205#define TARGET_64BIT 1
206#else
207#define TARGET_64BIT 0
208#endif
209#else
6ac49599
RS
210#ifndef TARGET_BI_ARCH
211#undef TARGET_64BIT
67adf6a9 212#if TARGET_64BIT_DEFAULT
0c2dc519
JH
213#define TARGET_64BIT 1
214#else
215#define TARGET_64BIT 0
216#endif
217#endif
5791cc29 218#endif
25f94bb5 219
750054a2
CT
220#define HAS_LONG_COND_BRANCH 1
221#define HAS_LONG_UNCOND_BRANCH 1
222
9e555526
RH
223#define TARGET_386 (ix86_tune == PROCESSOR_I386)
224#define TARGET_486 (ix86_tune == PROCESSOR_I486)
225#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
226#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 227#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
228#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
229#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
230#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
231#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 232#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 233#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 234#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
235#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
236#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
237#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 238#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
b6837b94 239#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 240
80fd744f
RH
241/* Feature tests against the various tunings. */
242enum ix86_tune_indices {
243 X86_TUNE_USE_LEAVE,
244 X86_TUNE_PUSH_MEMORY,
245 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
246 X86_TUNE_UNROLL_STRLEN,
247 X86_TUNE_DEEP_BRANCH_PREDICTION,
248 X86_TUNE_BRANCH_PREDICTION_HINTS,
249 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 250 X86_TUNE_USE_SAHF,
80fd744f
RH
251 X86_TUNE_MOVX,
252 X86_TUNE_PARTIAL_REG_STALL,
253 X86_TUNE_PARTIAL_FLAG_REG_STALL,
254 X86_TUNE_USE_HIMODE_FIOP,
255 X86_TUNE_USE_SIMODE_FIOP,
256 X86_TUNE_USE_MOV0,
257 X86_TUNE_USE_CLTD,
258 X86_TUNE_USE_XCHGB,
259 X86_TUNE_SPLIT_LONG_MOVES,
260 X86_TUNE_READ_MODIFY_WRITE,
261 X86_TUNE_READ_MODIFY,
262 X86_TUNE_PROMOTE_QIMODE,
263 X86_TUNE_FAST_PREFIX,
264 X86_TUNE_SINGLE_STRINGOP,
265 X86_TUNE_QIMODE_MATH,
266 X86_TUNE_HIMODE_MATH,
267 X86_TUNE_PROMOTE_QI_REGS,
268 X86_TUNE_PROMOTE_HI_REGS,
269 X86_TUNE_ADD_ESP_4,
270 X86_TUNE_ADD_ESP_8,
271 X86_TUNE_SUB_ESP_4,
272 X86_TUNE_SUB_ESP_8,
273 X86_TUNE_INTEGER_DFMODE_MOVES,
274 X86_TUNE_PARTIAL_REG_DEPENDENCY,
275 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
276 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
277 X86_TUNE_SSE_SPLIT_REGS,
278 X86_TUNE_SSE_TYPELESS_STORES,
279 X86_TUNE_SSE_LOAD0_BY_PXOR,
280 X86_TUNE_MEMORY_MISMATCH_STALL,
281 X86_TUNE_PROLOGUE_USING_MOVE,
282 X86_TUNE_EPILOGUE_USING_MOVE,
283 X86_TUNE_SHIFT1,
284 X86_TUNE_USE_FFREEP,
285 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 286 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
287 X86_TUNE_FOUR_JUMP_LIMIT,
288 X86_TUNE_SCHEDULE,
289 X86_TUNE_USE_BT,
290 X86_TUNE_USE_INCDEC,
291 X86_TUNE_PAD_RETURNS,
292 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
293 X86_TUNE_SHORTEN_X87_SSE,
294 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 295 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
296 X86_TUNE_SLOW_IMUL_IMM32_MEM,
297 X86_TUNE_SLOW_IMUL_IMM8,
298 X86_TUNE_MOVE_M1_VIA_OR,
299 X86_TUNE_NOT_UNPAIRABLE,
300 X86_TUNE_NOT_VECTORMODE,
54723b46 301 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 302 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 303 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 304 X86_TUNE_OPT_AGU,
80fd744f
RH
305
306 X86_TUNE_LAST
307};
308
ab442df7 309extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
310
311#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
312#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
313#define TARGET_ZERO_EXTEND_WITH_AND \
314 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
315#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
316#define TARGET_DEEP_BRANCH_PREDICTION \
317 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
318#define TARGET_BRANCH_PREDICTION_HINTS \
319 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
320#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
321#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
322#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
323#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
324#define TARGET_PARTIAL_FLAG_REG_STALL \
325 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
326#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
327#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
328#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
329#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
330#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
331#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
332#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
333#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
334#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
335#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
336#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
337#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
338#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
339#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
340#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
341#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
342#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
343#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
344#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
345#define TARGET_INTEGER_DFMODE_MOVES \
346 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
347#define TARGET_PARTIAL_REG_DEPENDENCY \
348 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
349#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
350 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
351#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
352 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
353#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
354#define TARGET_SSE_TYPELESS_STORES \
355 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
356#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
357#define TARGET_MEMORY_MISMATCH_STALL \
358 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
359#define TARGET_PROLOGUE_USING_MOVE \
360 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
361#define TARGET_EPILOGUE_USING_MOVE \
362 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
363#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
364#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
365#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
366#define TARGET_INTER_UNIT_CONVERSIONS\
367 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
368#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
369#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
370#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
371#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
372#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
373#define TARGET_EXT_80387_CONSTANTS \
374 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
375#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
376#define TARGET_AVOID_VECTOR_DECODE \
377 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
378#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
379 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
380#define TARGET_SLOW_IMUL_IMM32_MEM \
381 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
382#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
383#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
384#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
385#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
386#define TARGET_USE_VECTOR_FP_CONVERTS \
387 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
388#define TARGET_USE_VECTOR_CONVERTS \
389 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
390#define TARGET_FUSE_CMP_AND_BRANCH \
391 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 392#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
80fd744f
RH
393
394/* Feature tests against the various architecture variations. */
395enum ix86_arch_indices {
396 X86_ARCH_CMOVE, /* || TARGET_SSE */
397 X86_ARCH_CMPXCHG,
398 X86_ARCH_CMPXCHG8B,
399 X86_ARCH_XADD,
400 X86_ARCH_BSWAP,
401
402 X86_ARCH_LAST
403};
4f3f76e6 404
ab442df7 405extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
406
407#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
408#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
409#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
410#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
411#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
412
413#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
414
415extern int x86_prefetch_sse;
0a1c5e55 416
80fd744f
RH
417#define TARGET_PREFETCH_SSE x86_prefetch_sse
418
80fd744f
RH
419#define ASSEMBLER_DIALECT (ix86_asm_dialect)
420
421#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
422#define TARGET_MIX_SSE_I387 \
423 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
424
425#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
426#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
427#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
428#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 429
0a1c5e55
UB
430extern int ix86_isa_flags;
431
67adf6a9
RH
432#ifndef TARGET_64BIT_DEFAULT
433#define TARGET_64BIT_DEFAULT 0
25f94bb5 434#endif
74dc3e94
RH
435#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
436#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
437#endif
25f94bb5 438
79f5e442
ZD
439/* Fence to use after loop using storent. */
440
441extern tree x86_mfence;
442#define FENCE_FOLLOWING_MOVNT x86_mfence
443
0ed4a390
JL
444/* Once GDB has been enhanced to deal with functions without frame
445 pointers, we can change this to allow for elimination of
446 the frame pointer in leaf functions. */
447#define TARGET_DEFAULT 0
67adf6a9 448
0a1c5e55
UB
449/* Extra bits to force. */
450#define TARGET_SUBTARGET_DEFAULT 0
451#define TARGET_SUBTARGET_ISA_DEFAULT 0
452
453/* Extra bits to force on w/ 32-bit mode. */
454#define TARGET_SUBTARGET32_DEFAULT 0
455#define TARGET_SUBTARGET32_ISA_DEFAULT 0
456
ccf8e764
RH
457/* Extra bits to force on w/ 64-bit mode. */
458#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 459#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 460
b069de3b
SS
461/* This is not really a target flag, but is done this way so that
462 it's analogous to similar code for Mach-O on PowerPC. darwin.h
463 redefines this to 1. */
464#define TARGET_MACHO 0
465
ccf8e764 466/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
467#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
468
469/* Available call abi. */
35cbb299 470enum calling_abi
7c800926
KT
471{
472 SYSV_ABI = 0,
473 MS_ABI = 1
474};
475
51212b32
L
476/* The abi used by target. */
477extern enum calling_abi ix86_abi;
478
479/* The default abi used by target. */
7c800926 480#define DEFAULT_ABI SYSV_ABI
ccf8e764 481
cc69336f
RH
482/* Subtargets may reset this to 1 in order to enable 96-bit long double
483 with the rounding mode forced to 53 bits. */
484#define TARGET_96_ROUND_53_LONG_DOUBLE 0
485
f5316dfe
MM
486/* Sometimes certain combinations of command options do not make
487 sense on a particular target machine. You can define a macro
488 `OVERRIDE_OPTIONS' to take account of this. This macro, if
489 defined, is executed once just after all the command options have
490 been parsed.
491
492 Don't use this macro to turn on various extra optimizations for
493 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
494
ab442df7 495#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 496
d4ba09c0 497/* Define this to change the optimizations performed by default. */
d9a5f180
GS
498#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
499 optimization_options ((LEVEL), (SIZE))
d4ba09c0 500
682cd442
GK
501/* -march=native handling only makes sense with compiler running on
502 an x86 or x86_64 chip. If changing this condition, also change
503 the condition in driver-i386.c. */
504#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
505/* In driver-i386.c. */
506extern const char *host_detect_local_cpu (int argc, const char **argv);
507#define EXTRA_SPEC_FUNCTIONS \
508 { "local_cpu_detect", host_detect_local_cpu },
682cd442 509#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
510#endif
511
8981c15b
JM
512#if TARGET_64BIT_DEFAULT
513#define OPT_ARCH64 "!m32"
514#define OPT_ARCH32 "m32"
515#else
516#define OPT_ARCH64 "m64"
517#define OPT_ARCH32 "!m64"
518#endif
519
1cba2b96
EC
520/* Support for configure-time defaults of some command line options.
521 The order here is important so that -march doesn't squash the
522 tune or cpu values. */
ce998900 523#define OPTION_DEFAULT_SPECS \
da2d4c01 524 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
525 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
526 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 527 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
528 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
529 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
530 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
531 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
532 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 533
241e1a89
SC
534/* Specs for the compiler proper */
535
628714d8 536#ifndef CC1_CPU_SPEC
fa959ce4 537#define CC1_CPU_SPEC_1 "\
9d913bbf 538%{mcpu=*:-mtune=%* \
d347d4c7 539%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 540%<mcpu=* \
c93e80a5
JH
541%{mintel-syntax:-masm=intel \
542%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
543%{mno-intel-syntax:-masm=att \
544%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 545
682cd442 546#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
547#define CC1_CPU_SPEC CC1_CPU_SPEC_1
548#else
549#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
550"%{march=native:%<march=native %:local_cpu_detect(arch) \
551 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
552%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
553#endif
241e1a89 554#endif
c98f8742 555\f
30efe578 556/* Target CPU builtins. */
ab442df7
MM
557#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
558
559/* Target Pragmas. */
560#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 561
c2f17e19
UB
562enum target_cpu_default
563{
564 TARGET_CPU_DEFAULT_generic = 0,
565
566 TARGET_CPU_DEFAULT_i386,
567 TARGET_CPU_DEFAULT_i486,
568 TARGET_CPU_DEFAULT_pentium,
569 TARGET_CPU_DEFAULT_pentium_mmx,
570 TARGET_CPU_DEFAULT_pentiumpro,
571 TARGET_CPU_DEFAULT_pentium2,
572 TARGET_CPU_DEFAULT_pentium3,
573 TARGET_CPU_DEFAULT_pentium4,
574 TARGET_CPU_DEFAULT_pentium_m,
575 TARGET_CPU_DEFAULT_prescott,
576 TARGET_CPU_DEFAULT_nocona,
577 TARGET_CPU_DEFAULT_core2,
b6837b94 578 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
579
580 TARGET_CPU_DEFAULT_geode,
581 TARGET_CPU_DEFAULT_k6,
582 TARGET_CPU_DEFAULT_k6_2,
583 TARGET_CPU_DEFAULT_k6_3,
584 TARGET_CPU_DEFAULT_athlon,
585 TARGET_CPU_DEFAULT_athlon_sse,
586 TARGET_CPU_DEFAULT_k8,
587 TARGET_CPU_DEFAULT_amdfam10,
588
589 TARGET_CPU_DEFAULT_max
590};
0c2dc519 591
628714d8 592#ifndef CC1_SPEC
8015b78d 593#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
594#endif
595
596/* This macro defines names of additional specifications to put in the
597 specs that can be used in various specifications like CC1_SPEC. Its
598 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
599
600 Each subgrouping contains a string constant, that defines the
188fc5b5 601 specification name, and a string constant that used by the GCC driver
bcd86433
SC
602 program.
603
604 Do not define this macro if it does not need to do anything. */
605
606#ifndef SUBTARGET_EXTRA_SPECS
607#define SUBTARGET_EXTRA_SPECS
608#endif
609
610#define EXTRA_SPECS \
628714d8 611 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
612 SUBTARGET_EXTRA_SPECS
613\f
ce998900 614
d57a4b98
RH
615/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
616 FPU, assume that the fpcw is set to extended precision; when using
617 only SSE, rounding is correct; when using both SSE and the FPU,
618 the rounding precision is indeterminate, since either may be chosen
619 apparently at random. */
620#define TARGET_FLT_EVAL_METHOD \
5ccd517a 621 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 622
8ce94e44
JM
623/* Whether to allow x87 floating-point arithmetic on MODE (one of
624 SFmode, DFmode and XFmode) in the current excess precision
625 configuration. */
626#define X87_ENABLE_ARITH(MODE) \
627 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
628
629/* Likewise, whether to allow direct conversions from integer mode
630 IMODE (HImode, SImode or DImode) to MODE. */
631#define X87_ENABLE_FLOAT(MODE, IMODE) \
632 (flag_excess_precision == EXCESS_PRECISION_FAST \
633 || (MODE) == XFmode \
634 || ((MODE) == DFmode && (IMODE) == SImode) \
635 || (IMODE) == HImode)
636
979c67a5
UB
637/* target machine storage layout */
638
65d9c0ab
JH
639#define SHORT_TYPE_SIZE 16
640#define INT_TYPE_SIZE 32
641#define FLOAT_TYPE_SIZE 32
642#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
643#define DOUBLE_TYPE_SIZE 64
644#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
645#define LONG_DOUBLE_TYPE_SIZE 80
646
647#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 648
67adf6a9 649#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 650#define MAX_BITS_PER_WORD 64
0c2dc519
JH
651#else
652#define MAX_BITS_PER_WORD 32
0c2dc519
JH
653#endif
654
c98f8742
JVA
655/* Define this if most significant byte of a word is the lowest numbered. */
656/* That is true on the 80386. */
657
658#define BITS_BIG_ENDIAN 0
659
660/* Define this if most significant byte of a word is the lowest numbered. */
661/* That is not true on the 80386. */
662#define BYTES_BIG_ENDIAN 0
663
664/* Define this if most significant word of a multiword number is the lowest
665 numbered. */
666/* Not true for 80386 */
667#define WORDS_BIG_ENDIAN 0
668
c98f8742 669/* Width of a word, in units (bytes). */
4ae8027b 670#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
671#ifdef IN_LIBGCC2
672#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
673#else
674#define MIN_UNITS_PER_WORD 4
675#endif
c98f8742 676
c98f8742 677/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 678#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 679
e075ae69 680/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 681#define STACK_BOUNDARY \
51212b32 682 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 683
2e3f842f
L
684/* Stack boundary of the main function guaranteed by OS. */
685#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
686
de1132d1
L
687/* Minimum stack boundary. */
688#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 689
d1f87653 690/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 691 aligned; the compiler cannot rely on having this alignment. */
e075ae69 692#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 693
de1132d1 694/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
695 both 32bit and 64bit, to support codes that need 128 bit stack
696 alignment for SSE instructions, but can't realign the stack. */
697#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
698
699/* 1 if -mstackrealign should be turned on by default. It will
700 generate an alternate prologue and epilogue that realigns the
701 runtime stack if nessary. This supports mixing codes that keep a
702 4-byte aligned stack, as specified by i386 psABI, with codes that
703 need a 16-byte aligned stack, as required by SSE instructions. If
704 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
705 128, stacks for all functions may be realigned. */
706#define STACK_REALIGN_DEFAULT 0
707
708/* Boundary (in *bits*) on which the incoming stack is aligned. */
709#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 710
ebff937c
SH
711/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
712 mandatory for the 64-bit ABI, and may or may not be true for other
713 operating systems. */
714#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
715
f963b5d9
RS
716/* Minimum allocation boundary for the code of a function. */
717#define FUNCTION_BOUNDARY 8
718
719/* C++ stores the virtual bit in the lowest bit of function pointers. */
720#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 721
892a2d68 722/* Alignment of field after `int : 0' in a structure. */
c98f8742 723
65d9c0ab 724#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
725
726/* Minimum size in bits of the largest boundary to which any
727 and all fundamental data types supported by the hardware
728 might need to be aligned. No data type wants to be aligned
17f24ff0 729 rounder than this.
fce5a9f2 730
d1f87653 731 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
732 and Pentium Pro XFmode values at 128 bit boundaries. */
733
95879c72 734#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
17f24ff0 735
2e3f842f
L
736/* Maximum stack alignment. */
737#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
738
6e4f1168
L
739/* Alignment value for attribute ((aligned)). It is a constant since
740 it is the part of the ABI. We shouldn't change it with -mavx. */
741#define ATTRIBUTE_ALIGNED_VALUE 128
742
822eda12 743/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 744#define ALIGN_MODE_128(MODE) \
4501d314 745 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 746
17f24ff0 747/* The published ABIs say that doubles should be aligned on word
d1f87653 748 boundaries, so lower the alignment for structure fields unless
6fc605d8 749 -malign-double is set. */
e932b21b 750
e83f3cff
RH
751/* ??? Blah -- this macro is used directly by libobjc. Since it
752 supports no vector modes, cut out the complexity and fall back
753 on BIGGEST_FIELD_ALIGNMENT. */
754#ifdef IN_TARGET_LIBS
ef49d42e
JH
755#ifdef __x86_64__
756#define BIGGEST_FIELD_ALIGNMENT 128
757#else
e83f3cff 758#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 759#endif
e83f3cff 760#else
e932b21b
JH
761#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
762 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 763#endif
c98f8742 764
e5e8a8bf 765/* If defined, a C expression to compute the alignment given to a
a7180f70 766 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
767 and ALIGN is the alignment that the object would ordinarily have.
768 The value of this macro is used instead of that alignment to align
769 the object.
770
771 If this macro is not defined, then ALIGN is used.
772
773 The typical use of this macro is to increase alignment for string
774 constants to be word aligned so that `strcpy' calls that copy
775 constants can be done inline. */
776
d9a5f180 777#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 778
8a022443
JW
779/* If defined, a C expression to compute the alignment for a static
780 variable. TYPE is the data type, and ALIGN is the alignment that
781 the object would ordinarily have. The value of this macro is used
782 instead of that alignment to align the object.
783
784 If this macro is not defined, then ALIGN is used.
785
786 One use of this macro is to increase alignment of medium-size
787 data to make it all fit in fewer cache lines. Another is to
788 cause character arrays to be word-aligned so that `strcpy' calls
789 that copy constants to character arrays can be done inline. */
790
d9a5f180 791#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
792
793/* If defined, a C expression to compute the alignment for a local
794 variable. TYPE is the data type, and ALIGN is the alignment that
795 the object would ordinarily have. The value of this macro is used
796 instead of that alignment to align the object.
797
798 If this macro is not defined, then ALIGN is used.
799
800 One use of this macro is to increase alignment of medium-size
801 data to make it all fit in fewer cache lines. */
802
76fe54f0
L
803#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
804 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
805
806/* If defined, a C expression to compute the alignment for stack slot.
807 TYPE is the data type, MODE is the widest mode available, and ALIGN
808 is the alignment that the slot would ordinarily have. The value of
809 this macro is used instead of that alignment to align the slot.
810
811 If this macro is not defined, then ALIGN is used when TYPE is NULL,
812 Otherwise, LOCAL_ALIGNMENT will be used.
813
814 One use of this macro is to set alignment of stack slot to the
815 maximum alignment of all possible modes which the slot may have. */
816
817#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
818 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 819
9bfaf89d
JJ
820/* If defined, a C expression to compute the alignment for a local
821 variable DECL.
822
823 If this macro is not defined, then
824 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
825
826 One use of this macro is to increase alignment of medium-size
827 data to make it all fit in fewer cache lines. */
828
829#define LOCAL_DECL_ALIGNMENT(DECL) \
830 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
831
832
53c17031
JH
833/* If defined, a C expression that gives the alignment boundary, in
834 bits, of an argument with the specified mode and type. If it is
835 not defined, `PARM_BOUNDARY' is used for all arguments. */
836
d9a5f180
GS
837#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
838 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 839
9cd10576 840/* Set this nonzero if move instructions will actually fail to work
c98f8742 841 when given unaligned data. */
b4ac57ab 842#define STRICT_ALIGNMENT 0
c98f8742
JVA
843
844/* If bit field type is int, don't let it cross an int,
845 and give entire struct the alignment of an int. */
43a88a8c 846/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 847#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
848\f
849/* Standard register usage. */
850
851/* This processor has special stack-like registers. See reg-stack.c
892a2d68 852 for details. */
c98f8742
JVA
853
854#define STACK_REGS
ce998900 855
d9a5f180 856#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
857 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
858 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
859 || (MODE) == XFmode)
c98f8742
JVA
860
861/* Number of actual hardware registers.
862 The hardware registers are assigned numbers for the compiler
863 from 0 to just below FIRST_PSEUDO_REGISTER.
864 All registers that the compiler knows about must be given numbers,
865 even those that are not normally considered general registers.
866
867 In the 80386 we give the 8 general purpose registers the numbers 0-7.
868 We number the floating point registers 8-15.
869 Note that registers 0-7 can be accessed as a short or int,
870 while only 0-3 may be used with byte `mov' instructions.
871
872 Reg 16 does not correspond to any hardware register, but instead
873 appears in the RTL as an argument pointer prior to reload, and is
874 eliminated during reloading in favor of either the stack or frame
892a2d68 875 pointer. */
c98f8742 876
b0d95de8 877#define FIRST_PSEUDO_REGISTER 53
c98f8742 878
3073d01c
ML
879/* Number of hardware registers that go into the DWARF-2 unwind info.
880 If not defined, equals FIRST_PSEUDO_REGISTER. */
881
882#define DWARF_FRAME_REGISTERS 17
883
c98f8742
JVA
884/* 1 for registers that have pervasive standard uses
885 and are not available for the register allocator.
3f3f2124 886 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 887
3a4416fb
RS
888 The value is zero if the register is not fixed on either 32 or
889 64 bit targets, one if the register if fixed on both 32 and 64
890 bit targets, two if it is only fixed on 32bit targets and three
891 if its only fixed on 64bit targets.
892 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 893 */
a7180f70
BS
894#define FIXED_REGISTERS \
895/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 896{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
897/*arg,flags,fpsr,fpcr,frame*/ \
898 1, 1, 1, 1, 1, \
a7180f70
BS
899/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
900 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 901/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
902 0, 0, 0, 0, 0, 0, 0, 0, \
903/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 904 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 905/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 906 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 907
c98f8742
JVA
908
909/* 1 for registers not available across function calls.
910 These must include the FIXED_REGISTERS and also any
911 registers that can be used without being saved.
912 The latter must include the registers where values are returned
913 and the register where structure-value addresses are passed.
fce5a9f2
EC
914 Aside from that, you can include as many other registers as you like.
915
9d72d996
JJ
916 The value is zero if the register is not call used on either 32 or
917 64 bit targets, one if the register if call used on both 32 and 64
918 bit targets, two if it is only call used on 32bit targets and three
919 if its only call used on 64bit targets.
3a4416fb 920 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 921*/
a7180f70
BS
922#define CALL_USED_REGISTERS \
923/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 924{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
925/*arg,flags,fpsr,fpcr,frame*/ \
926 1, 1, 1, 1, 1, \
a7180f70 927/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 928 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 929/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 930 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 931/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 932 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 933/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 934 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 935
3b3c6a3f
MM
936/* Order in which to allocate registers. Each register must be
937 listed once, even those in FIXED_REGISTERS. List frame pointer
938 late and fixed registers last. Note that, in general, we prefer
939 registers listed in CALL_USED_REGISTERS, keeping the others
940 available for storage of persistent values.
941
162f023b
JH
942 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
943 so this is just empty initializer for array. */
3b3c6a3f 944
162f023b
JH
945#define REG_ALLOC_ORDER \
946{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
947 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
948 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 949 48, 49, 50, 51, 52 }
3b3c6a3f 950
162f023b
JH
951/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
952 to be rearranged based on a particular function. When using sse math,
03c259ad 953 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 954
162f023b 955#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 956
f5316dfe 957
7c800926
KT
958#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
959
c98f8742 960/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 961#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 962do { \
3f3f2124 963 int i; \
b0fede98 964 unsigned int j; \
3f3f2124
JH
965 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
966 { \
3a4416fb
RS
967 if (fixed_regs[i] > 1) \
968 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
969 if (call_used_regs[i] > 1) \
970 call_used_regs[i] = (call_used_regs[i] \
971 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 972 } \
b0fede98 973 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 974 if (j != INVALID_REGNUM) \
962aae34 975 fixed_regs[j] = call_used_regs[j] = 1; \
0705d3f4 976 if (TARGET_64BIT \
6b5629db 977 && ((cfun && cfun->machine->call_abi == MS_ABI) \
51212b32 978 || (!cfun && ix86_abi == MS_ABI))) \
0705d3f4 979 { \
6c6094f1
UB
980 call_used_regs[SI_REG] = 0; \
981 call_used_regs[DI_REG] = 0; \
982 call_used_regs[XMM6_REG] = 0; \
983 call_used_regs[XMM7_REG] = 0; \
434426d2
UB
984 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
985 call_used_regs[i] = 0; \
0705d3f4 986 } \
a7180f70 987 if (! TARGET_MMX) \
6b5629db
UB
988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
989 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
990 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70 991 if (! TARGET_SSE) \
6b5629db
UB
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
993 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
994 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
995 if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) \
962aae34
UB
996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
997 if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) \
998 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
33270999
AO
999 if (! TARGET_64BIT) \
1000 { \
33270999
AO
1001 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1002 reg_names[i] = ""; \
1003 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1004 reg_names[i] = ""; \
a7180f70 1005 } \
d9a5f180 1006 } while (0)
c98f8742
JVA
1007
1008/* Return number of consecutive hard regs needed starting at reg REGNO
1009 to hold something of mode MODE.
1010 This is ordinarily the length in words of a value of mode MODE
1011 but can be less for certain modes in special long registers.
1012
fce5a9f2 1013 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1014 registers. And only registers 0-3 may have mov byte instructions
1015 applied to them.
1016 */
1017
ce998900 1018#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1019 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1020 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1021 : ((MODE) == XFmode \
92d0fb09 1022 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1023 : (MODE) == XCmode \
92d0fb09 1024 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1025 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1026
8521c414
JM
1027#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1028 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1029 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1030 ? 0 \
1031 : ((MODE) == XFmode || (MODE) == XCmode)) \
1032 : 0)
1033
1034#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1035
95879c72
L
1036#define VALID_AVX256_REG_MODE(MODE) \
1037 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1038 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1039
ce998900
UB
1040#define VALID_SSE2_REG_MODE(MODE) \
1041 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1042 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1043
d9a5f180 1044#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1045 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1046 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1047
47f339cf 1048#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1049 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1050
d9a5f180 1051#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1052 ((MODE == V1DImode) || (MODE) == DImode \
1053 || (MODE) == V2SImode || (MODE) == SImode \
1054 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1055
accde4cf 1056/* ??? No autovectorization into MMX or 3DNOW until we can reliably
95879c72
L
1057 place emms and femms instructions.
1058 FIXME: AVX has 32byte floating point vector operations and 16byte
1059 integer vector operations. But vectorizer doesn't support
1060 different sizes for integer and floating point vectors. We limit
1061 vector size to 16byte. */
1062#define UNITS_PER_SIMD_WORD(MODE) \
1063 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1064 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
0bf43309 1065
ce998900
UB
1066#define VALID_DFP_MODE_P(MODE) \
1067 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1068
d9a5f180 1069#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1070 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1071 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1072
d9a5f180 1073#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1074 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1075 || (MODE) == DImode \
1076 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1077 || (MODE) == CDImode \
1078 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1079 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1080
822eda12 1081/* Return true for modes passed in SSE registers. */
ce998900
UB
1082#define SSE_REG_MODE_P(MODE) \
1083 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12 1084 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
95879c72
L
1085 || (MODE) == V4SFmode || (MODE) == V4SImode || (MODE) == V32QImode \
1086 || (MODE) == V16HImode || (MODE) == V8SImode || (MODE) == V4DImode \
1087 || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1088
e075ae69 1089/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1090
a946dd00 1091#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1092 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1093
1094/* Value is 1 if it is a good idea to tie two pseudo registers
1095 when one has mode MODE1 and one has mode MODE2.
1096 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1097 for any hard reg, then this must be 0 for correct output. */
1098
c1c5b5e3 1099#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1100
ff25ef99
ZD
1101/* It is possible to write patterns to move flags; but until someone
1102 does it, */
1103#define AVOID_CCMODE_COPIES
c98f8742 1104
e075ae69 1105/* Specify the modes required to caller save a given hard regno.
787dc842 1106 We do this on i386 to prevent flags from being saved at all.
e075ae69 1107
787dc842
JH
1108 Kill any attempts to combine saving of modes. */
1109
d9a5f180
GS
1110#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1111 (CC_REGNO_P (REGNO) ? VOIDmode \
1112 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1113 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1114 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1115 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1116 : (MODE))
ce998900 1117
c98f8742
JVA
1118/* Specify the registers used for certain standard purposes.
1119 The values of these macros are register numbers. */
1120
1121/* on the 386 the pc register is %eip, and is not usable as a general
1122 register. The ordinary mov instructions won't work */
1123/* #define PC_REGNUM */
1124
1125/* Register to use for pushing function arguments. */
1126#define STACK_POINTER_REGNUM 7
1127
1128/* Base register for access to local variables of the function. */
564d80f4
JH
1129#define HARD_FRAME_POINTER_REGNUM 6
1130
1131/* Base register for access to local variables of the function. */
b0d95de8 1132#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1133
1134/* First floating point reg */
1135#define FIRST_FLOAT_REG 8
1136
1137/* First & last stack-like regs */
1138#define FIRST_STACK_REG FIRST_FLOAT_REG
1139#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1140
a7180f70
BS
1141#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1142#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1143
a7180f70
BS
1144#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1145#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1146
3f3f2124
JH
1147#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1148#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1149
1150#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1151#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1152
c98f8742
JVA
1153/* Value should be nonzero if functions must have frame pointers.
1154 Zero means the frame pointer need not be set up (and parms
1155 may be accessed via the stack pointer) in functions that seem suitable.
1156 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1157#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1158
aabcd309 1159/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1160 requiring a frame pointer. */
1161#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1162#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1163#endif
1164
1165/* Make sure we can access arbitrary call frames. */
1166#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1167
1168/* Base register for access to arguments of the function. */
1169#define ARG_POINTER_REGNUM 16
1170
d2836273
JH
1171/* Register in which static-chain is passed to a function.
1172 We do use ECX as static chain register for 32 bit ABI. On the
1173 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1174#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1175
1176/* Register to hold the addressing base for position independent
5b43fed1
RH
1177 code access to data items. We don't use PIC pointer for 64bit
1178 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1179 pessimizing code dealing with EBX.
bd09bdeb
RH
1180
1181 To avoid clobbering a call-saved register unnecessarily, we renumber
1182 the pic register when possible. The change is visible after the
1183 prologue has been emitted. */
1184
2e3f842f 1185#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1186
1187#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1188 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1189 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1190 : reload_completed ? REGNO (pic_offset_table_rtx) \
1191 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1192
5fc0e5df
KW
1193#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1194
c51e6d85 1195/* This is overridden by <cygwin.h>. */
5e062767
DS
1196#define MS_AGGREGATE_RETURN 0
1197
61fec9ff
JB
1198/* This is overridden by <netware.h>. */
1199#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1200\f
1201/* Define the classes of registers for register constraints in the
1202 machine description. Also define ranges of constants.
1203
1204 One of the classes must always be named ALL_REGS and include all hard regs.
1205 If there is more than one class, another class must be named NO_REGS
1206 and contain no registers.
1207
1208 The name GENERAL_REGS must be the name of a class (or an alias for
1209 another name such as ALL_REGS). This is the class of registers
1210 that is allowed by "g" or "r" in a register constraint.
1211 Also, registers outside this class are allocated only when
1212 instructions express preferences for them.
1213
1214 The classes must be numbered in nondecreasing order; that is,
1215 a larger-numbered class must never be contained completely
1216 in a smaller-numbered class.
1217
1218 For any two classes, it is very desirable that there be another
ab408a86
JVA
1219 class that represents their union.
1220
1221 It might seem that class BREG is unnecessary, since no useful 386
1222 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1223 and the "b" register constraint is useful in asms for syscalls.
1224
03c259ad 1225 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1226
1227enum reg_class
1228{
1229 NO_REGS,
e075ae69 1230 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1231 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1232 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1233 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1234 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1235 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1236 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1237 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1238 FLOAT_REGS,
06f4e35d 1239 SSE_FIRST_REG,
a7180f70
BS
1240 SSE_REGS,
1241 MMX_REGS,
446988df
JH
1242 FP_TOP_SSE_REGS,
1243 FP_SECOND_SSE_REGS,
1244 FLOAT_SSE_REGS,
1245 FLOAT_INT_REGS,
1246 INT_SSE_REGS,
1247 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1248 ALL_REGS, LIM_REG_CLASSES
1249};
1250
d9a5f180
GS
1251#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1252
1253#define INTEGER_CLASS_P(CLASS) \
1254 reg_class_subset_p ((CLASS), GENERAL_REGS)
1255#define FLOAT_CLASS_P(CLASS) \
1256 reg_class_subset_p ((CLASS), FLOAT_REGS)
1257#define SSE_CLASS_P(CLASS) \
06f4e35d 1258 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1259#define MMX_CLASS_P(CLASS) \
f75959a6 1260 ((CLASS) == MMX_REGS)
d9a5f180
GS
1261#define MAYBE_INTEGER_CLASS_P(CLASS) \
1262 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1263#define MAYBE_FLOAT_CLASS_P(CLASS) \
1264 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1265#define MAYBE_SSE_CLASS_P(CLASS) \
1266 reg_classes_intersect_p (SSE_REGS, (CLASS))
1267#define MAYBE_MMX_CLASS_P(CLASS) \
1268 reg_classes_intersect_p (MMX_REGS, (CLASS))
1269
1270#define Q_CLASS_P(CLASS) \
1271 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1272
43f3a59d 1273/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1274
1275#define REG_CLASS_NAMES \
1276{ "NO_REGS", \
ab408a86 1277 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1278 "SIREG", "DIREG", \
e075ae69
RH
1279 "AD_REGS", \
1280 "Q_REGS", "NON_Q_REGS", \
c98f8742 1281 "INDEX_REGS", \
3f3f2124 1282 "LEGACY_REGS", \
c98f8742
JVA
1283 "GENERAL_REGS", \
1284 "FP_TOP_REG", "FP_SECOND_REG", \
1285 "FLOAT_REGS", \
cb482895 1286 "SSE_FIRST_REG", \
a7180f70
BS
1287 "SSE_REGS", \
1288 "MMX_REGS", \
446988df
JH
1289 "FP_TOP_SSE_REGS", \
1290 "FP_SECOND_SSE_REGS", \
1291 "FLOAT_SSE_REGS", \
8fcaaa80 1292 "FLOAT_INT_REGS", \
446988df
JH
1293 "INT_SSE_REGS", \
1294 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1295 "ALL_REGS" }
1296
1297/* Define which registers fit in which classes.
1298 This is an initializer for a vector of HARD_REG_SET
1299 of length N_REG_CLASSES. */
1300
a7180f70 1301#define REG_CLASS_CONTENTS \
3f3f2124
JH
1302{ { 0x00, 0x0 }, \
1303 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1304 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1305 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1306 { 0x03, 0x0 }, /* AD_REGS */ \
1307 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1308 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1309 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1310 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1311 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1312 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1313 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1314 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1315{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1316{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1317{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1318{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1319{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1320 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1321{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1322{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1323{ 0xffffffff,0x1fffff } \
e075ae69 1324}
c98f8742 1325
058e97ec
VM
1326/* The following macro defines cover classes for Integrated Register
1327 Allocator. Cover classes is a set of non-intersected register
1328 classes covering all hard registers used for register allocation
1329 purpose. Any move between two registers of a cover class should be
1330 cheaper than load or store of the registers. The macro value is
1331 array of register classes with LIM_REG_CLASSES used as the end
1332 marker. */
1333
1334#define IRA_COVER_CLASSES \
1335{ \
1336 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1337}
1338
c98f8742
JVA
1339/* The same information, inverted:
1340 Return the class number of the smallest class containing
1341 reg number REGNO. This could be a conditional expression
1342 or could index an array. */
1343
c98f8742
JVA
1344#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1345
1346/* When defined, the compiler allows registers explicitly used in the
1347 rtl to be used as spill registers but prevents the compiler from
892a2d68 1348 extending the lifetime of these registers. */
c98f8742 1349
2922fe9e 1350#define SMALL_REGISTER_CLASSES 1
c98f8742 1351
6c6094f1 1352#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1353
d9a5f180 1354#define GENERAL_REGNO_P(N) \
fb84c7a0 1355 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1356
1357#define GENERAL_REG_P(X) \
6189a572 1358 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1359
1360#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1361
fb84c7a0
UB
1362#define REX_INT_REGNO_P(N) \
1363 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1364#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1365
c98f8742 1366#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1367#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1368#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1369#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1370
54a88090 1371#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1372 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1373
fb84c7a0
UB
1374#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1375#define SSE_REGNO_P(N) \
1376 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1377 || REX_SSE_REGNO_P (N))
3f3f2124 1378
4977bab6 1379#define REX_SSE_REGNO_P(N) \
fb84c7a0 1380 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1381
d9a5f180
GS
1382#define SSE_REGNO(N) \
1383 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1384
d9a5f180 1385#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1386 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1387
d6023b50
UB
1388#define SSE_VEC_FLOAT_MODE_P(MODE) \
1389 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1390
95879c72
L
1391#define AVX_FLOAT_MODE_P(MODE) \
1392 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1393
1394#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1395 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1396
1397#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1398 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1399
1400#define AVX_VEC_FLOAT_MODE_P(MODE) \
1401 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1402 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1403
d9a5f180 1404#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1405#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1406
fb84c7a0 1407#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1408#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1409
d9a5f180 1410#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1411
e075ae69
RH
1412#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1413#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1414
c98f8742
JVA
1415/* The class value for index registers, and the one for base regs. */
1416
1417#define INDEX_REG_CLASS INDEX_REGS
1418#define BASE_REG_CLASS GENERAL_REGS
1419
c98f8742 1420/* Place additional restrictions on the register class to use when it
4cbb525c 1421 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1422 register for which class CLASS would ordinarily be used. */
c98f8742 1423
d2836273
JH
1424#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1425 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1426 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1427 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1428 ? Q_REGS : (CLASS))
1429
1430/* Given an rtx X being reloaded into a reg required to be
1431 in class CLASS, return the class of reg to actually use.
1432 In general this is just CLASS; but on some machines
1433 in some cases it is preferable to use a more restrictive class.
1434 On the 80386 series, we prevent floating constants from being
1435 reloaded into floating registers (since no move-insn can do that)
1436 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1437
d398b3b1 1438/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1439 QImode must go into class Q_REGS.
d398b3b1 1440 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1441 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1442
d9a5f180
GS
1443#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1444 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1445
b5c82fa1
PB
1446/* Discourage putting floating-point values in SSE registers unless
1447 SSE math is being used, and likewise for the 387 registers. */
1448
1449#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1450 ix86_preferred_output_reload_class ((X), (CLASS))
1451
85ff473e 1452/* If we are copying between general and FP registers, we need a memory
f84aa48a 1453 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1454#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1455 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1456
c62b3659
UB
1457/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1458 There is no need to emit full 64 bit move on 64 bit targets
1459 for integral modes that can be moved using 32 bit move. */
1460#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1461 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1462 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1463 : MODE)
1464
c98f8742
JVA
1465/* Return the maximum number of consecutive registers
1466 needed to represent mode MODE in a register of class CLASS. */
1467/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1468 except in the FP regs, where a single reg is always enough. */
a7180f70 1469#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1470 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1471 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1472 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1473 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1474
1475/* A C expression whose value is nonzero if pseudos that have been
1476 assigned to registers of class CLASS would likely be spilled
1477 because registers of CLASS are needed for spill registers.
1478
1479 The default value of this macro returns 1 if CLASS has exactly one
1480 register and zero otherwise. On most machines, this default
1481 should be used. Only define this macro to some other expression
1482 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1483 their hard registers were needed for spill registers. If this
f5316dfe
MM
1484 macro returns nonzero for those classes, those pseudos will only
1485 be allocated by `global.c', which knows how to reallocate the
1486 pseudo to another register. If there would not be another
1487 register available for reallocation, you should not change the
1488 definition of this macro since the only effect of such a
1489 definition would be to slow down register allocation. */
1490
1491#define CLASS_LIKELY_SPILLED_P(CLASS) \
1492 (((CLASS) == AREG) \
1493 || ((CLASS) == DREG) \
1494 || ((CLASS) == CREG) \
1495 || ((CLASS) == BREG) \
1496 || ((CLASS) == AD_REGS) \
1497 || ((CLASS) == SIREG) \
b0af5c03
JH
1498 || ((CLASS) == DIREG) \
1499 || ((CLASS) == FP_TOP_REG) \
1500 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1501
1272914c
RH
1502/* Return a class of registers that cannot change FROM mode to TO mode. */
1503
1504#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1505 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1506\f
1507/* Stack layout; function entry, exit and calling. */
1508
1509/* Define this if pushing a word on the stack
1510 makes the stack pointer a smaller address. */
1511#define STACK_GROWS_DOWNWARD
1512
a4d05547 1513/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1514 is at the high-address end of the local variables;
1515 that is, each additional local variable allocated
1516 goes at a more negative offset in the frame. */
f62c8a5c 1517#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1518
1519/* Offset within stack frame to start allocating local variables at.
1520 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1521 first local allocated. Otherwise, it is the offset to the BEGINNING
1522 of the first local allocated. */
1523#define STARTING_FRAME_OFFSET 0
1524
1525/* If we generate an insn to push BYTES bytes,
1526 this says how many the stack pointer really advances by.
6541fe75
JJ
1527 On 386, we have pushw instruction that decrements by exactly 2 no
1528 matter what the position was, there is no pushb.
1529 But as CIE data alignment factor on this arch is -4, we need to make
1530 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1531
d2836273
JH
1532 For 64bit ABI we round up to 8 bytes.
1533 */
c98f8742 1534
d2836273
JH
1535#define PUSH_ROUNDING(BYTES) \
1536 (TARGET_64BIT \
1537 ? (((BYTES) + 7) & (-8)) \
6541fe75 1538 : (((BYTES) + 3) & (-4)))
c98f8742 1539
f73ad30e
JH
1540/* If defined, the maximum amount of space required for outgoing arguments will
1541 be computed and placed into the variable
38173d38 1542 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e 1543 stack for each call; instead, the function prologue should increase the stack
9aa5c1b2
JH
1544 frame size by this amount.
1545
1546 MS ABI seem to require 16 byte alignment everywhere except for function
1547 prologue and apilogue. This is not possible without
1548 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1549
6c6094f1
UB
1550#define ACCUMULATE_OUTGOING_ARGS \
1551 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
f73ad30e
JH
1552
1553/* If defined, a C expression whose value is nonzero when we want to use PUSH
1554 instructions to pass outgoing arguments. */
1555
1556#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1557
2da4124d
L
1558/* We want the stack and args grow in opposite directions, even if
1559 PUSH_ARGS is 0. */
1560#define PUSH_ARGS_REVERSED 1
1561
c98f8742
JVA
1562/* Offset of first parameter from the argument pointer register value. */
1563#define FIRST_PARM_OFFSET(FNDECL) 0
1564
a7180f70
BS
1565/* Define this macro if functions should assume that stack space has been
1566 allocated for arguments even when their values are passed in registers.
1567
1568 The value of this macro is the size, in bytes, of the area reserved for
1569 arguments passed in registers for the function represented by FNDECL.
1570
1571 This space can be allocated by the caller, or be a part of the
1572 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1573 which. */
7c800926
KT
1574#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1575
4ae8027b
UB
1576#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1577 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1578
c98f8742
JVA
1579/* Value is the number of bytes of arguments automatically
1580 popped when returning from a subroutine call.
8b109b37 1581 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1582 FUNTYPE is the data type of the function (as a tree),
1583 or for a library call it is an identifier node for the subroutine name.
1584 SIZE is the number of bytes of arguments passed on the stack.
1585
1586 On the 80386, the RTD insn may be used to pop them if the number
1587 of args is fixed, but if the number is variable then the caller
1588 must pop them all. RTD can't be used for library calls now
1589 because the library is compiled with the Unix compiler.
1590 Use of RTD is a selectable option, since it is incompatible with
1591 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1592 the caller must always pop the args.
1593
1594 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1595
d9a5f180
GS
1596#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1597 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1598
4ae8027b 1599#define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
c98f8742
JVA
1600
1601/* Define how to find the value returned by a library function
1602 assuming the value has mode MODE. */
1603
4ae8027b 1604#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1605
e9125c09
TW
1606/* Define the size of the result block used for communication between
1607 untyped_call and untyped_return. The block contains a DImode value
1608 followed by the block used by fnsave and frstor. */
1609
1610#define APPLY_RESULT_SIZE (8+108)
1611
b08de47e 1612/* 1 if N is a possible register number for function argument passing. */
53c17031 1613#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1614
1615/* Define a data type for recording info about an argument list
1616 during the scan of that argument list. This data type should
1617 hold all necessary information about the function itself
1618 and about the args processed so far, enough to enable macros
b08de47e 1619 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1620
e075ae69 1621typedef struct ix86_args {
fa283935 1622 int words; /* # words passed so far */
b08de47e
MM
1623 int nregs; /* # registers available for passing */
1624 int regno; /* next available register number */
9d72d996 1625 int fastcall; /* fastcall calling convention is used */
fa283935 1626 int sse_words; /* # sse words passed so far */
a7180f70 1627 int sse_nregs; /* # sse registers available for passing */
95879c72 1628 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1629 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1630 int warn_mmx; /* True when we want to warn about MMX ABI. */
1631 int sse_regno; /* next available sse register number */
1632 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1633 int mmx_nregs; /* # mmx registers available for passing */
1634 int mmx_regno; /* next available mmx register number */
892a2d68 1635 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1636 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1637 be passed in SSE registers. Otherwise 0. */
51212b32 1638 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1639 MS_ABI for ms abi. */
b08de47e 1640} CUMULATIVE_ARGS;
c98f8742
JVA
1641
1642/* Initialize a variable CUM of type CUMULATIVE_ARGS
1643 for a call to a function whose data type is FNTYPE.
b08de47e 1644 For a library call, FNTYPE is 0. */
c98f8742 1645
0f6937fe 1646#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1647 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1648
1649/* Update the data in CUM to advance over an argument
1650 of mode MODE and data type TYPE.
1651 (TYPE is null for libcalls where that information may not be available.) */
1652
d9a5f180
GS
1653#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1654 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1655
1656/* Define where to put the arguments to a function.
1657 Value is zero to push the argument on the stack,
1658 or a hard register in which to store the argument.
1659
1660 MODE is the argument's machine mode.
1661 TYPE is the data type of the argument (as a tree).
1662 This is null for libcalls where that information may
1663 not be available.
1664 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1665 the preceding args and about the function being called.
1666 NAMED is nonzero if this argument is a named parameter
1667 (otherwise it is an extra parameter matching an ellipsis). */
1668
c98f8742 1669#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1670 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1671
a5fe455b
ZW
1672#define TARGET_ASM_FILE_END ix86_file_end
1673#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1674
c98f8742
JVA
1675/* Output assembler code to FILE to increment profiler label # LABELNO
1676 for profiling a function entry. */
1677
a5fa1ecd
JH
1678#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1679
1680#define MCOUNT_NAME "_mcount"
1681
1682#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1683
1684/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1685 the stack pointer does not matter. The value is tested only in
1686 functions that have frame pointers.
1687 No definition is equivalent to always zero. */
fce5a9f2 1688/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1689 we have to restore it ourselves from the frame pointer, in order to
1690 use pop */
1691
1692#define EXIT_IGNORE_STACK 1
1693
c98f8742
JVA
1694/* Output assembler code for a block containing the constant parts
1695 of a trampoline, leaving space for the variable parts. */
1696
a269a03c 1697/* On the 386, the trampoline contains two instructions:
c98f8742 1698 mov #STATIC,ecx
a269a03c
JC
1699 jmp FUNCTION
1700 The trampoline is generated entirely at runtime. The operand of JMP
1701 is the address of FUNCTION relative to the instruction following the
1702 JMP (which is 5 bytes long). */
c98f8742
JVA
1703
1704/* Length in units of the trampoline for entering a nested function. */
1705
39d04363 1706#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1707
1708/* Emit RTL insns to initialize the variable parts of a trampoline.
1709 FNADDR is an RTX for the address of the function's pure code.
1710 CXT is an RTX for the static chain value for the function. */
1711
d9a5f180
GS
1712#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1713 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1714\f
1715/* Definitions for register eliminations.
1716
1717 This is an array of structures. Each structure initializes one pair
1718 of eliminable registers. The "from" register number is given first,
1719 followed by "to". Eliminations of the same "from" register are listed
1720 in order of preference.
1721
afc2cd05
NC
1722 There are two registers that can always be eliminated on the i386.
1723 The frame pointer and the arg pointer can be replaced by either the
1724 hard frame pointer or to the stack pointer, depending upon the
1725 circumstances. The hard frame pointer is not used before reload and
1726 so it is not eligible for elimination. */
c98f8742 1727
564d80f4
JH
1728#define ELIMINABLE_REGS \
1729{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1730 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1731 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1732 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1733
2c5a510c 1734/* Given FROM and TO register numbers, say whether this elimination is
2e3f842f 1735 allowed. */
c98f8742 1736
2e3f842f 1737#define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
c98f8742
JVA
1738
1739/* Define the offset between two registers, one to be eliminated, and the other
1740 its replacement, at the start of a routine. */
1741
d9a5f180
GS
1742#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1743 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1744\f
1745/* Addressing modes, and classification of registers for them. */
1746
c98f8742
JVA
1747/* Macros to check register numbers against specific register classes. */
1748
1749/* These assume that REGNO is a hard or pseudo reg number.
1750 They give nonzero only if REGNO is a hard reg of the suitable class
1751 or a pseudo reg currently allocated to a suitable hard reg.
1752 Since they use reg_renumber, they are safe only once reg_renumber
1753 has been allocated, which happens in local-alloc.c. */
1754
3f3f2124
JH
1755#define REGNO_OK_FOR_INDEX_P(REGNO) \
1756 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1757 || REX_INT_REGNO_P (REGNO) \
1758 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1759 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1760
3f3f2124 1761#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1762 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1763 || (REGNO) == ARG_POINTER_REGNUM \
1764 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1765 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1766
c98f8742
JVA
1767/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1768 and check its validity for a certain class.
1769 We have two alternate definitions for each of them.
1770 The usual definition accepts all pseudo regs; the other rejects
1771 them unless they have been allocated suitable hard regs.
1772 The symbol REG_OK_STRICT causes the latter definition to be used.
1773
1774 Most source files want to accept pseudo regs in the hope that
1775 they will get allocated to the class that the insn wants them to be in.
1776 Source files for reload pass need to be strict.
1777 After reload, it makes no difference, since pseudo regs have
1778 been eliminated by then. */
1779
c98f8742 1780
ff482c8d 1781/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1782#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1783 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1784 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1785 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1786
3b3c6a3f 1787#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1788 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1789 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1790 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1791 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1792
3b3c6a3f
MM
1793/* Strict versions, hard registers only */
1794#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1795#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1796
3b3c6a3f 1797#ifndef REG_OK_STRICT
d9a5f180
GS
1798#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1799#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1800
1801#else
d9a5f180
GS
1802#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1803#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1804#endif
1805
1806/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1807 that is a valid memory address for an instruction.
1808 The MODE argument is the machine mode for the MEM expression
1809 that wants to use this address.
1810
1811 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1812 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1813
1814 See legitimize_pic_address in i386.c for details as to what
1815 constitutes a legitimate address when -fpic is used. */
1816
1817#define MAX_REGS_PER_ADDRESS 2
1818
f996902d 1819#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1820
1821/* Nonzero if the constant value X is a legitimate general operand.
1822 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1823
f996902d 1824#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1825
3b3c6a3f
MM
1826#ifdef REG_OK_STRICT
1827#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1828do { \
1829 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1830 goto ADDR; \
d9a5f180 1831} while (0)
c98f8742 1832
3b3c6a3f
MM
1833#else
1834#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1835do { \
1836 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1837 goto ADDR; \
d9a5f180 1838} while (0)
c98f8742 1839
3b3c6a3f
MM
1840#endif
1841
b949ea8b
JW
1842/* If defined, a C expression to determine the base term of address X.
1843 This macro is used in only one place: `find_base_term' in alias.c.
1844
1845 It is always safe for this macro to not be defined. It exists so
1846 that alias analysis can understand machine-dependent addresses.
1847
1848 The typical use of this macro is to handle addresses containing
1849 a label_ref or symbol_ref within an UNSPEC. */
1850
d9a5f180 1851#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1852
c98f8742
JVA
1853/* Try machine-dependent ways of modifying an illegitimate address
1854 to be legitimate. If we find one, return the new, valid address.
1855 This macro is used in only one place: `memory_address' in explow.c.
1856
1857 OLDX is the address as it was before break_out_memory_refs was called.
1858 In some cases it is useful to look at this to decide what needs to be done.
1859
1860 MODE and WIN are passed so that this macro can use
1861 GO_IF_LEGITIMATE_ADDRESS.
1862
1863 It is always safe for this macro to do nothing. It exists to recognize
1864 opportunities to optimize the output.
1865
1866 For the 80386, we handle X+REG by loading X into a register R and
1867 using R+REG. R will go in a general reg and indexing will be used.
1868 However, if REG is a broken-out memory address or multiplication,
1869 nothing needs to be done because REG can certainly go in a general reg.
1870
1871 When -fpic is used, special handling is needed for symbolic references.
1872 See comments by legitimize_pic_address in i386.c for details. */
1873
3b3c6a3f 1874#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1875do { \
1876 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1877 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1878 goto WIN; \
d9a5f180 1879} while (0)
c98f8742
JVA
1880
1881/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1882 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1883 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1884
f996902d 1885#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1886
1887#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1888 (GET_CODE (X) == SYMBOL_REF \
1889 || GET_CODE (X) == LABEL_REF \
1890 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1891\f
b08de47e
MM
1892/* Max number of args passed in registers. If this is more than 3, we will
1893 have problems with ebx (register #4), since it is a caller save register and
1894 is also used as the pic register in ELF. So for now, don't allow more than
1895 3 registers to be passed in registers. */
1896
7c800926
KT
1897/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1898#define X86_64_REGPARM_MAX 6
1899#define X64_REGPARM_MAX 4
1900#define X86_32_REGPARM_MAX 3
1901
1902#define X86_64_SSE_REGPARM_MAX 8
1903#define X64_SSE_REGPARM_MAX 4
1904#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1905
4ae8027b
UB
1906#define REGPARM_MAX \
1907 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1908 : X86_64_REGPARM_MAX) \
1909 : X86_32_REGPARM_MAX)
d2836273 1910
4ae8027b
UB
1911#define SSE_REGPARM_MAX \
1912 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1913 : X86_64_SSE_REGPARM_MAX) \
1914 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1915
1916#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1917
c98f8742
JVA
1918\f
1919/* Specify the machine mode that this machine uses
1920 for the index in the tablejump instruction. */
dc4d7240
JH
1921#define CASE_VECTOR_MODE \
1922 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1923
c98f8742
JVA
1924/* Define this as 1 if `char' should by default be signed; else as 0. */
1925#define DEFAULT_SIGNED_CHAR 1
1926
1927/* Max number of bytes we can move from memory to memory
1928 in one reasonably fast instruction. */
65d9c0ab
JH
1929#define MOVE_MAX 16
1930
1931/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1932 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1933 number of bytes we can move with a single instruction. */
65d9c0ab 1934#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1935
7e24ffc9 1936/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1937 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1938 Increasing the value will always make code faster, but eventually
1939 incurs high cost in increased code size.
c98f8742 1940
e2e52e1b 1941 If you don't define this, a reasonable default is used. */
c98f8742 1942
e04ad03d 1943#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1944
45d78e7f
JJ
1945/* If a clear memory operation would take CLEAR_RATIO or more simple
1946 move-instruction sequences, we will do a clrmem or libcall instead. */
1947
e04ad03d 1948#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1949
c98f8742
JVA
1950/* Define if shifts truncate the shift count
1951 which implies one can omit a sign-extension or zero-extension
1952 of a shift count. */
892a2d68 1953/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1954
1955/* #define SHIFT_COUNT_TRUNCATED */
1956
1957/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1958 is done just by pretending it is already truncated. */
1959#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1960
d9f32422
JH
1961/* A macro to update M and UNSIGNEDP when an object whose type is
1962 TYPE and which has the specified mode and signedness is to be
1963 stored in a register. This macro is only called when TYPE is a
1964 scalar type.
1965
f710504c 1966 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1967 quantities to SImode. The choice depends on target type. */
1968
1969#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1970do { \
d9f32422
JH
1971 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1972 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1973 (MODE) = SImode; \
1974} while (0)
d9f32422 1975
c98f8742
JVA
1976/* Specify the machine mode that pointers have.
1977 After generation of rtl, the compiler makes no further distinction
1978 between pointers and any other objects of this machine mode. */
65d9c0ab 1979#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1980
1981/* A function address in a call instruction
1982 is a byte address (for indexing purposes)
1983 so give the MEM rtx a byte's mode. */
1984#define FUNCTION_MODE QImode
d4ba09c0 1985\f
96e7ae40
JH
1986/* A C expression for the cost of moving data from a register in class FROM to
1987 one in class TO. The classes are expressed using the enumeration values
1988 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1989 interpreted relative to that.
d4ba09c0 1990
96e7ae40
JH
1991 It is not required that the cost always equal 2 when FROM is the same as TO;
1992 on some machines it is expensive to move between registers if they are not
f84aa48a 1993 general registers. */
d4ba09c0 1994
f84aa48a 1995#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1996 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1997
1998/* A C expression for the cost of moving data of mode M between a
1999 register and memory. A value of 2 is the default; this cost is
2000 relative to those in `REGISTER_MOVE_COST'.
2001
2002 If moving between registers and memory is more expensive than
2003 between two registers, you should define this macro to express the
fa79946e 2004 relative cost. */
d4ba09c0 2005
d9a5f180
GS
2006#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2007 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2008
2009/* A C expression for the cost of a branch instruction. A value of 1
2010 is the default; other values are interpreted relative to that. */
2011
3a4fd356
JH
2012#define BRANCH_COST(speed_p, predictable_p) \
2013 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
2014
2015/* Define this macro as a C expression which is nonzero if accessing
2016 less than a word of memory (i.e. a `char' or a `short') is no
2017 faster than accessing a word of memory, i.e., if such access
2018 require more than one instruction or if there is no difference in
2019 cost between byte and (aligned) word loads.
2020
2021 When this macro is not defined, the compiler will access a field by
2022 finding the smallest containing object; when it is defined, a
2023 fullword load will be used if alignment permits. Unless bytes
2024 accesses are faster than word accesses, using word accesses is
2025 preferable since it may eliminate subsequent memory access if
2026 subsequent accesses occur to other fields in the same word of the
2027 structure, but to different bytes. */
2028
2029#define SLOW_BYTE_ACCESS 0
2030
2031/* Nonzero if access to memory by shorts is slow and undesirable. */
2032#define SLOW_SHORT_ACCESS 0
2033
d4ba09c0
SC
2034/* Define this macro to be the value 1 if unaligned accesses have a
2035 cost many times greater than aligned accesses, for example if they
2036 are emulated in a trap handler.
2037
9cd10576
KH
2038 When this macro is nonzero, the compiler will act as if
2039 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2040 moves. This can cause significantly more instructions to be
9cd10576 2041 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2042 accesses only add a cycle or two to the time for a memory access.
2043
2044 If the value of this macro is always zero, it need not be defined. */
2045
e1565e65 2046/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2047
d4ba09c0
SC
2048/* Define this macro if it is as good or better to call a constant
2049 function address than to call an address kept in a register.
2050
2051 Desirable on the 386 because a CALL with a constant address is
2052 faster than one with a register address. */
2053
2054#define NO_FUNCTION_CSE
c98f8742 2055\f
c572e5ba
JVA
2056/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2057 return the mode to be used for the comparison.
2058
2059 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2060 VOIDmode should be used in all other cases.
c572e5ba 2061
16189740 2062 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2063 possible, to allow for more combinations. */
c98f8742 2064
d9a5f180 2065#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2066
9cd10576 2067/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2068 reversed. */
2069
2070#define REVERSIBLE_CC_MODE(MODE) 1
2071
2072/* A C expression whose value is reversed condition code of the CODE for
2073 comparison done in CC_MODE mode. */
3c5cb3e4 2074#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2075
c98f8742
JVA
2076\f
2077/* Control the assembler format that we output, to the extent
2078 this does not vary between assemblers. */
2079
2080/* How to refer to registers in assembler output.
892a2d68 2081 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2082
a7b376ee 2083/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2084 For non floating point regs, the following are the HImode names.
2085
2086 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2087 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2088
a7180f70
BS
2089#define HI_REGISTER_NAMES \
2090{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2091 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2092 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2093 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2094 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2095 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2096 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2097
c98f8742
JVA
2098#define REGISTER_NAMES HI_REGISTER_NAMES
2099
2100/* Table of additional register names to use in user input. */
2101
2102#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2103{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2104 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2105 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2106 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2107 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2108 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2109
2110/* Note we are omitting these since currently I don't know how
2111to get gcc to use these, since they want the same but different
2112number as al, and ax.
2113*/
2114
c98f8742 2115#define QI_REGISTER_NAMES \
3f3f2124 2116{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2117
2118/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2119 of regs 0 through 3. */
c98f8742
JVA
2120
2121#define QI_HIGH_REGISTER_NAMES \
2122{"ah", "dh", "ch", "bh", }
2123
2124/* How to renumber registers for dbx and gdb. */
2125
d9a5f180
GS
2126#define DBX_REGISTER_NUMBER(N) \
2127 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2128
9a82e702
MS
2129extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2130extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2131extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2132
469ac993
JM
2133/* Before the prologue, RA is at 0(%esp). */
2134#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2135 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2136
e414ab29 2137/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2138#define RETURN_ADDR_RTX(COUNT, FRAME) \
2139 ((COUNT) == 0 \
2140 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2141 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2142
892a2d68 2143/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2144#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2145
a6ab3aad 2146/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2147#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2148
1020a5ab
RH
2149/* Describe how we implement __builtin_eh_return. */
2150#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2151#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2152
ad919812 2153
e4c4ebeb
RH
2154/* Select a format to encode pointers in exception handling data. CODE
2155 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2156 true if the symbol may be affected by dynamic relocations.
2157
2158 ??? All x86 object file formats are capable of representing this.
2159 After all, the relocation needed is the same as for the call insn.
2160 Whether or not a particular assembler allows us to enter such, I
2161 guess we'll have to see. */
d9a5f180 2162#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2163 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2164
c98f8742
JVA
2165/* This is how to output an insn to push a register on the stack.
2166 It need not be very fast code. */
2167
d9a5f180 2168#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2169do { \
2170 if (TARGET_64BIT) \
2171 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2172 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2173 else \
2174 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2175} while (0)
c98f8742
JVA
2176
2177/* This is how to output an insn to pop a register from the stack.
2178 It need not be very fast code. */
2179
d9a5f180 2180#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2181do { \
2182 if (TARGET_64BIT) \
2183 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2184 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2185 else \
2186 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2187} while (0)
c98f8742 2188
f88c65f7 2189/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2190
2191#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2192 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2193
f88c65f7 2194/* This is how to output an element of a case-vector that is relative. */
c98f8742 2195
33f7f353 2196#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2197 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2198
95879c72
L
2199/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2200 true. */
2201
2202#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2203{ \
2204 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2205 { \
2206 if (TARGET_AVX) \
2207 (PTR) += 1; \
2208 else \
2209 (PTR) += 2; \
2210 } \
2211}
2212
2213/* A C statement or statements which output an assembler instruction
2214 opcode to the stdio stream STREAM. The macro-operand PTR is a
2215 variable of type `char *' which points to the opcode name in
2216 its "internal" form--the form that is written in the machine
2217 description. */
2218
2219#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2220 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2221
f7288899
EC
2222/* Under some conditions we need jump tables in the text section,
2223 because the assembler cannot handle label differences between
2224 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2225
2226#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2227 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2228 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2229
cea3bd3e
RH
2230/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2231 and switch back. For x86 we do this only to save a few bytes that
2232 would otherwise be unused in the text section. */
2233#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2234 asm (SECTION_OP "\n\t" \
2235 "call " USER_LABEL_PREFIX #FUNC "\n" \
2236 TEXT_SECTION_ASM_OP);
74b42c8b 2237\f
c98f8742
JVA
2238/* Print operand X (an rtx) in assembler syntax to file FILE.
2239 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2240 Effect of various CODE letters is described in i386.c near
2241 print_operand function. */
c98f8742 2242
d9a5f180 2243#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2244 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2245
2246#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2247 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2248
2249#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2250 print_operand_address ((FILE), (ADDR))
c98f8742 2251
f996902d
RH
2252#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2253do { \
2254 if (! output_addr_const_extra (FILE, (X))) \
2255 goto FAIL; \
2256} while (0);
d4ba09c0 2257\f
5bf0ebab
RH
2258/* Which processor to schedule for. The cpu attribute defines a list that
2259 mirrors this list, so changes to i386.md must be made at the same time. */
2260
2261enum processor_type
2262{
8383d43c 2263 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2264 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2265 PROCESSOR_PENTIUM,
2266 PROCESSOR_PENTIUMPRO,
cfe1b18f 2267 PROCESSOR_GEODE,
5bf0ebab
RH
2268 PROCESSOR_K6,
2269 PROCESSOR_ATHLON,
2270 PROCESSOR_PENTIUM4,
4977bab6 2271 PROCESSOR_K8,
89c43c0a 2272 PROCESSOR_NOCONA,
05f85dbb 2273 PROCESSOR_CORE2,
d326eaf0
JH
2274 PROCESSOR_GENERIC32,
2275 PROCESSOR_GENERIC64,
21efb4d4 2276 PROCESSOR_AMDFAM10,
b6837b94 2277 PROCESSOR_ATOM,
5bf0ebab
RH
2278 PROCESSOR_max
2279};
2280
9e555526 2281extern enum processor_type ix86_tune;
5bf0ebab 2282extern enum processor_type ix86_arch;
5bf0ebab
RH
2283
2284enum fpmath_unit
2285{
2286 FPMATH_387 = 1,
2287 FPMATH_SSE = 2
2288};
2289
2290extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2291
f996902d
RH
2292enum tls_dialect
2293{
2294 TLS_DIALECT_GNU,
5bf5a10b 2295 TLS_DIALECT_GNU2,
f996902d
RH
2296 TLS_DIALECT_SUN
2297};
2298
2299extern enum tls_dialect ix86_tls_dialect;
f996902d 2300
6189a572 2301enum cmodel {
5bf0ebab
RH
2302 CM_32, /* The traditional 32-bit ABI. */
2303 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2304 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2305 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2306 CM_LARGE, /* No assumptions. */
7dcbf659 2307 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2308 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2309 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2310};
2311
5bf0ebab 2312extern enum cmodel ix86_cmodel;
5bf0ebab 2313
8362f420
JH
2314/* Size of the RED_ZONE area. */
2315#define RED_ZONE_SIZE 128
2316/* Reserved area of the red zone for temporaries. */
2317#define RED_ZONE_RESERVE 8
c93e80a5
JH
2318
2319enum asm_dialect {
2320 ASM_ATT,
2321 ASM_INTEL
2322};
5bf0ebab 2323
80f33d06 2324extern enum asm_dialect ix86_asm_dialect;
95899b34 2325extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2326extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2327extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2328
2329/* Smallest class containing REGNO. */
2330extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2331
d9a5f180
GS
2332extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2333extern rtx ix86_compare_op1; /* operand 1 for comparisons */
22fb740d
JH
2334\f
2335/* To properly truncate FP values into integers, we need to set i387 control
2336 word. We can't emit proper mode switching code before reload, as spills
2337 generated by reload may truncate values incorrectly, but we still can avoid
2338 redundant computation of new control word by the mode switching pass.
2339 The fldcw instructions are still emitted redundantly, but this is probably
2340 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2341 the sequence.
22fb740d
JH
2342
2343 The machinery is to emit simple truncation instructions and split them
2344 before reload to instructions having USEs of two memory locations that
2345 are filled by this code to old and new control word.
fce5a9f2 2346
22fb740d
JH
2347 Post-reload pass may be later used to eliminate the redundant fildcw if
2348 needed. */
2349
ff680eb1
UB
2350enum ix86_entity
2351{
2352 I387_TRUNC = 0,
2353 I387_FLOOR,
2354 I387_CEIL,
2355 I387_MASK_PM,
2356 MAX_386_ENTITIES
2357};
2358
1cba2b96 2359enum ix86_stack_slot
ff680eb1 2360{
80dcd3aa
UB
2361 SLOT_VIRTUAL = 0,
2362 SLOT_TEMP,
ff680eb1
UB
2363 SLOT_CW_STORED,
2364 SLOT_CW_TRUNC,
2365 SLOT_CW_FLOOR,
2366 SLOT_CW_CEIL,
2367 SLOT_CW_MASK_PM,
2368 MAX_386_STACK_LOCALS
2369};
22fb740d
JH
2370
2371/* Define this macro if the port needs extra instructions inserted
2372 for mode switching in an optimizing compilation. */
2373
ff680eb1
UB
2374#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2375 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2376
2377/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2378 initializer for an array of integers. Each initializer element N
2379 refers to an entity that needs mode switching, and specifies the
2380 number of different modes that might need to be set for this
2381 entity. The position of the initializer in the initializer -
2382 starting counting at zero - determines the integer that is used to
2383 refer to the mode-switched entity in question. */
2384
ff680eb1
UB
2385#define NUM_MODES_FOR_MODE_SWITCHING \
2386 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2387
2388/* ENTITY is an integer specifying a mode-switched entity. If
2389 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2390 return an integer value not larger than the corresponding element
2391 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2392 must be switched into prior to the execution of INSN. */
2393
2394#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2395
2396/* This macro specifies the order in which modes for ENTITY are
2397 processed. 0 is the highest priority. */
2398
d9a5f180 2399#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2400
2401/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2402 is the set of hard registers live at the point where the insn(s)
2403 are to be inserted. */
2404
2405#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2406 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2407 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2408 : 0)
ff680eb1 2409
0f0138b6
JH
2410\f
2411/* Avoid renaming of stack registers, as doing so in combination with
2412 scheduling just increases amount of live registers at time and in
2413 the turn amount of fxch instructions needed.
2414
43f3a59d 2415 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2416
d9a5f180 2417#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2418 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2419
3b3c6a3f 2420\f
e91f04de 2421#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2422\f
2423struct machine_function GTY(())
2424{
2425 struct stack_local_entry *stack_locals;
2426 const char *some_ld_name;
4aab97f9
L
2427 int varargs_gpr_size;
2428 int varargs_fpr_size;
fa1a0d02 2429 int accesses_prev_frame;
ff680eb1 2430 int optimize_mode_switching[MAX_386_ENTITIES];
922e3e33
UB
2431 int needs_cld;
2432 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2433 expander to determine the style used. */
d9b40e8d 2434 int use_fast_prologue_epilogue;
d7394366
JH
2435 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2436 for. */
2437 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2438 /* If true, the current function needs the default PIC register, not
2439 an alternate register (on x86) and must not use the red zone (on
2440 x86_64), even if it's a leaf function. We don't want the
2441 function to be regarded as non-leaf because TLS calls need not
2442 affect register allocation. This flag is set when a TLS call
2443 instruction is expanded within a function, and never reset, even
2444 if all such instructions are optimized away. Use the
2445 ix86_current_function_calls_tls_descriptor macro for a better
2446 approximation. */
2447 int tls_descriptor_call_expanded_p;
7c800926
KT
2448 /* This value is used for amd64 targets and specifies the current abi
2449 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
51212b32 2450 enum calling_abi call_abi;
fa1a0d02
JH
2451};
2452
2453#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2454#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2455#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2456#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2457#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2458#define ix86_tls_descriptor_calls_expanded_in_cfun \
2459 (cfun->machine->tls_descriptor_call_expanded_p)
2460/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2461 calls are optimized away, we try to detect cases in which it was
2462 optimized away. Since such instructions (use (reg REG_SP)), we can
2463 verify whether there's any such instruction live by testing that
2464 REG_SP is live. */
2465#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2466 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2467
1bc7c5b6
ZW
2468/* Control behavior of x86_file_start. */
2469#define X86_FILE_START_VERSION_DIRECTIVE false
2470#define X86_FILE_START_FLTUSED false
2471
7dcbf659
JH
2472/* Flag to mark data that is in the large address area. */
2473#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2474#define SYMBOL_REF_FAR_ADDR_P(X) \
2475 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2476
2477/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2478 have defined always, to avoid ifdefing. */
2479#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2480#define SYMBOL_REF_DLLIMPORT_P(X) \
2481 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2482
2483#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2484#define SYMBOL_REF_DLLEXPORT_P(X) \
2485 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2486
e70444a8
HJ
2487/* Model costs for vectorizer. */
2488
2489/* Cost of conditional branch. */
2490#undef TARG_COND_BRANCH_COST
2491#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2492
4ae8027b
UB
2493/* Enum through the target specific extra va_list types.
2494 Please, do not iterate the base va_list type name. */
35cbb299 2495#define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
4ae8027b 2496 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
35cbb299 2497
e70444a8
HJ
2498/* Cost of any scalar operation, excluding load and store. */
2499#undef TARG_SCALAR_STMT_COST
2500#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2501
2502/* Cost of scalar load. */
2503#undef TARG_SCALAR_LOAD_COST
2504#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2505
2506/* Cost of scalar store. */
2507#undef TARG_SCALAR_STORE_COST
2508#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2509
2510/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2511 operation. */
e70444a8
HJ
2512#undef TARG_VEC_STMT_COST
2513#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2514
2515/* Cost of vector to scalar operation. */
2516#undef TARG_VEC_TO_SCALAR_COST
2517#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2518
2519/* Cost of scalar to vector operation. */
2520#undef TARG_SCALAR_TO_VEC_COST
2521#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2522
2523/* Cost of aligned vector load. */
2524#undef TARG_VEC_LOAD_COST
2525#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2526
2527/* Cost of misaligned vector load. */
2528#undef TARG_VEC_UNALIGNED_LOAD_COST
2529#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2530
2531/* Cost of vector store. */
2532#undef TARG_VEC_STORE_COST
2533#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2534
2535/* Cost of conditional taken branch for vectorizer cost model. */
2536#undef TARG_COND_TAKEN_BRANCH_COST
2537#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2538
2539/* Cost of conditional not taken branch for vectorizer cost model. */
2540#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2541#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2542
c98f8742
JVA
2543/*
2544Local variables:
2545version-control: t
2546End:
2547*/