]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
* gcc.dg/vect/vect-bool-cmp.c: Revert unwanted change.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
818ab71a 2 Copyright (C) 1988-2016 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
90922d36 84#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 85#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 86#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 87#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 88#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 89#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 90#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 91#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 92#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 93#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
94#define TARGET_ROUND TARGET_ISA_ROUND
95#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 96#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 97#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 98#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 99#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 100#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 101#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 102#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 103#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 104#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 105#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 106#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 107#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 108#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 109#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 110#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 111#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 112#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 113#define TARGET_AES TARGET_ISA_AES
bf7b5747 114#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
115#define TARGET_SHA TARGET_ISA_SHA
116#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
117#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
119#define TARGET_CLZERO TARGET_ISA_CLZERO
120#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
121#define TARGET_XSAVEC TARGET_ISA_XSAVEC
122#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
123#define TARGET_XSAVES TARGET_ISA_XSAVES
124#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 125#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 126#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
127#define TARGET_CMPXCHG16B TARGET_ISA_CX16
128#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 129#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 130#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 131#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 132#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 133#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 134#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
135#define TARGET_RTM TARGET_ISA_RTM
136#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 137#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 138#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 139#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 140#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 141#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 142#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 143#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 144#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 145#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 146#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 147#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 148#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 149#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 150#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
151#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
152#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
153#define TARGET_MPX TARGET_ISA_MPX
154#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
36e9b73e
IT
155#define TARGET_PCOMMIT TARGET_ISA_PCOMMIT
156#define TARGET_PCOMMIT_P(x) TARGET_ISA_PCOMMIT_P(x)
9c3bca11
IT
157#define TARGET_CLWB TARGET_ISA_CLWB
158#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
159#define TARGET_MWAITX TARGET_ISA_MWAITX
160#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
161#define TARGET_PKU TARGET_ISA_PKU
162#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
163
ab442df7 164
90922d36 165#define TARGET_LP64 TARGET_ABI_64
bf7b5747 166#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 167#define TARGET_X32 TARGET_ABI_X32
bf7b5747 168#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
169#define TARGET_16BIT TARGET_CODE16
170#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 171
cbf2e4d4
HJ
172/* SSE4.1 defines round instructions */
173#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 174#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 175
26b5109f
RS
176#include "config/vxworks-dummy.h"
177
7eb68c06 178#include "config/i386/i386-opts.h"
ccf8e764 179
c69fa2d4 180#define MAX_STRINGOP_ALGS 4
ccf8e764 181
8c996513
JH
182/* Specify what algorithm to use for stringops on known size.
183 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
184 known at compile time or estimated via feedback, the SIZE array
185 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 186 means infinity). Corresponding ALG is used then.
340ef734
JH
187 When NOALIGN is true the code guaranting the alignment of the memory
188 block is skipped.
189
8c996513 190 For example initializer:
4f3f76e6 191 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 192 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 193 be used otherwise. */
8c996513
JH
194struct stringop_algs
195{
196 const enum stringop_alg unknown_size;
197 const struct stringop_strategy {
198 const int max;
199 const enum stringop_alg alg;
340ef734 200 int noalign;
c69fa2d4 201 } size [MAX_STRINGOP_ALGS];
8c996513
JH
202};
203
d4ba09c0
SC
204/* Define the specific costs for a given cpu */
205
206struct processor_costs {
8b60264b
KG
207 const int add; /* cost of an add instruction */
208 const int lea; /* cost of a lea instruction */
209 const int shift_var; /* variable shift costs */
210 const int shift_const; /* constant shift costs */
f676971a 211 const int mult_init[5]; /* cost of starting a multiply
4977bab6 212 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 213 const int mult_bit; /* cost of multiply per each bit set */
f676971a 214 const int divide[5]; /* cost of a divide/mod
4977bab6 215 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
216 int movsx; /* The cost of movsx operation. */
217 int movzx; /* The cost of movzx operation. */
8b60264b
KG
218 const int large_insn; /* insns larger than this cost more */
219 const int move_ratio; /* The threshold of number of scalar
ac775968 220 memory-to-memory move insns. */
8b60264b
KG
221 const int movzbl_load; /* cost of loading using movzbl */
222 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
223 in QImode, HImode and SImode relative
224 to reg-reg move (2). */
8b60264b 225 const int int_store[3]; /* cost of storing integer register
96e7ae40 226 in QImode, HImode and SImode */
8b60264b
KG
227 const int fp_move; /* cost of reg,reg fld/fst */
228 const int fp_load[3]; /* cost of loading FP register
96e7ae40 229 in SFmode, DFmode and XFmode */
8b60264b 230 const int fp_store[3]; /* cost of storing FP register
96e7ae40 231 in SFmode, DFmode and XFmode */
8b60264b
KG
232 const int mmx_move; /* cost of moving MMX register. */
233 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 234 in SImode and DImode */
8b60264b 235 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 236 in SImode and DImode */
8b60264b
KG
237 const int sse_move; /* cost of moving SSE register. */
238 const int sse_load[3]; /* cost of loading SSE register
fa79946e 239 in SImode, DImode and TImode*/
8b60264b 240 const int sse_store[3]; /* cost of storing SSE register
fa79946e 241 in SImode, DImode and TImode*/
8b60264b 242 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 243 integer and vice versa. */
46cb0441
ZD
244 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
245 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
246 const int prefetch_block; /* bytes moved to cache for prefetch. */
247 const int simultaneous_prefetches; /* number of parallel prefetch
248 operations. */
4977bab6 249 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
250 const int fadd; /* cost of FADD and FSUB instructions. */
251 const int fmul; /* cost of FMUL instruction. */
252 const int fdiv; /* cost of FDIV instruction. */
253 const int fabs; /* cost of FABS instruction. */
254 const int fchs; /* cost of FCHS instruction. */
255 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 256 /* Specify what algorithm
bee51209 257 to use for stringops on unknown size. */
ad83025e 258 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
259 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
260 load and store. */
261 const int scalar_load_cost; /* Cost of scalar load. */
262 const int scalar_store_cost; /* Cost of scalar store. */
263 const int vec_stmt_cost; /* Cost of any vector operation, excluding
264 load, store, vector-to-scalar and
265 scalar-to-vector operation. */
266 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
267 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 268 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
269 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
270 const int vec_store_cost; /* Cost of vector store. */
271 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
272 cost model. */
273 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
274 vectorizer cost model. */
d4ba09c0
SC
275};
276
8b60264b 277extern const struct processor_costs *ix86_cost;
b2077fd2
JH
278extern const struct processor_costs ix86_size_cost;
279
280#define ix86_cur_cost() \
281 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 282
c98f8742
JVA
283/* Macros used in the machine description to test the flags. */
284
b97de419 285/* configure can arrange to change it. */
e075ae69 286
35b528be 287#ifndef TARGET_CPU_DEFAULT
b97de419 288#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 289#endif
35b528be 290
004d3859
GK
291#ifndef TARGET_FPMATH_DEFAULT
292#define TARGET_FPMATH_DEFAULT \
293 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
294#endif
295
bf7b5747
ST
296#ifndef TARGET_FPMATH_DEFAULT_P
297#define TARGET_FPMATH_DEFAULT_P(x) \
298 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
299#endif
300
c207fd99
L
301/* If the i387 is disabled or -miamcu is used , then do not return
302 values in it. */
303#define TARGET_FLOAT_RETURNS_IN_80387 \
304 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
305#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
306 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 307
5791cc29
JT
308/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
309 compile-time constant. */
310#ifdef IN_LIBGCC2
6ac49599 311#undef TARGET_64BIT
5791cc29
JT
312#ifdef __x86_64__
313#define TARGET_64BIT 1
314#else
315#define TARGET_64BIT 0
316#endif
317#else
6ac49599
RS
318#ifndef TARGET_BI_ARCH
319#undef TARGET_64BIT
e49080ec 320#undef TARGET_64BIT_P
67adf6a9 321#if TARGET_64BIT_DEFAULT
0c2dc519 322#define TARGET_64BIT 1
e49080ec 323#define TARGET_64BIT_P(x) 1
0c2dc519
JH
324#else
325#define TARGET_64BIT 0
e49080ec 326#define TARGET_64BIT_P(x) 0
0c2dc519
JH
327#endif
328#endif
5791cc29 329#endif
25f94bb5 330
750054a2
CT
331#define HAS_LONG_COND_BRANCH 1
332#define HAS_LONG_UNCOND_BRANCH 1
333
9e555526
RH
334#define TARGET_386 (ix86_tune == PROCESSOR_I386)
335#define TARGET_486 (ix86_tune == PROCESSOR_I486)
336#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
337#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 338#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
339#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
340#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
341#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
342#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 343#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 344#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 345#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
346#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
347#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 348#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
349#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
350#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 351#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
06caf59d 352#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 353#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 354#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 355#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 356#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 357#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 358#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 359#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 360#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 361#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 362#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 363
80fd744f
RH
364/* Feature tests against the various tunings. */
365enum ix86_tune_indices {
4b8bc035 366#undef DEF_TUNE
3ad20bd4 367#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
368#include "x86-tune.def"
369#undef DEF_TUNE
370X86_TUNE_LAST
80fd744f
RH
371};
372
ab442df7 373extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
374
375#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
376#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
377#define TARGET_ZERO_EXTEND_WITH_AND \
378 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 379#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
380#define TARGET_BRANCH_PREDICTION_HINTS \
381 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
382#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
383#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
384#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
385#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
386#define TARGET_PARTIAL_FLAG_REG_STALL \
387 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
388#define TARGET_LCP_STALL \
389 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
390#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
391#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
392#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
393#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
394#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
395#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
396#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
397#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
398#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
399#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
400#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
401#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
402 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
403#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
404#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
405#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
406#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
407#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
408#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
409#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
410#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
411#define TARGET_INTEGER_DFMODE_MOVES \
412 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
413#define TARGET_PARTIAL_REG_DEPENDENCY \
414 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
415#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
416 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
417#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
418 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
419#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
420 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
421#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
422 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
423#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
424#define TARGET_SSE_TYPELESS_STORES \
425 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
426#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
427#define TARGET_MEMORY_MISMATCH_STALL \
428 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
429#define TARGET_PROLOGUE_USING_MOVE \
430 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
431#define TARGET_EPILOGUE_USING_MOVE \
432 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
433#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
434#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
435#define TARGET_INTER_UNIT_MOVES_TO_VEC \
436 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
437#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
438 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
439#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 440 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
441#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
442#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
443#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
444#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
445#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
446#define TARGET_PAD_SHORT_FUNCTION \
447 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
448#define TARGET_EXT_80387_CONSTANTS \
449 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
450#define TARGET_AVOID_VECTOR_DECODE \
451 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
452#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
453 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
454#define TARGET_SLOW_IMUL_IMM32_MEM \
455 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
456#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
457#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
458#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
459#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
460#define TARGET_USE_VECTOR_FP_CONVERTS \
461 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
462#define TARGET_USE_VECTOR_CONVERTS \
463 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
464#define TARGET_SLOW_PSHUFB \
465 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
466#define TARGET_VECTOR_PARALLEL_EXECUTION \
467 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
8e0dc054
JJ
468#define TARGET_AVOID_4BYTE_PREFIXES \
469 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
470#define TARGET_FUSE_CMP_AND_BRANCH_32 \
471 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
472#define TARGET_FUSE_CMP_AND_BRANCH_64 \
473 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 474#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
475 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
476 : TARGET_FUSE_CMP_AND_BRANCH_32)
477#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
478 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
479#define TARGET_FUSE_ALU_AND_BRANCH \
480 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 481#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
482#define TARGET_AVOID_LEA_FOR_ADDR \
483 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
484#define TARGET_VECTORIZE_DOUBLE \
485 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
486#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
487 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
488#define TARGET_AVX128_OPTIMAL \
489 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
490#define TARGET_REASSOC_INT_TO_PARALLEL \
491 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
492#define TARGET_REASSOC_FP_TO_PARALLEL \
493 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
494#define TARGET_GENERAL_REGS_SSE_SPILL \
495 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
496#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
497 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 498#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 499 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
500#define TARGET_ADJUST_UNROLL \
501 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
502#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
503 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
504#define TARGET_ONE_IF_CONV_INSN \
505 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 506
80fd744f
RH
507/* Feature tests against the various architecture variations. */
508enum ix86_arch_indices {
cef31f9c 509 X86_ARCH_CMOV,
80fd744f
RH
510 X86_ARCH_CMPXCHG,
511 X86_ARCH_CMPXCHG8B,
512 X86_ARCH_XADD,
513 X86_ARCH_BSWAP,
514
515 X86_ARCH_LAST
516};
4f3f76e6 517
ab442df7 518extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 519
cef31f9c 520#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
521#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
522#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
523#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
524#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
525
cef31f9c
UB
526/* For sane SSE instruction set generation we need fcomi instruction.
527 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
528 expands to a sequence that includes conditional move. */
529#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
530
80fd744f
RH
531#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
532
cb261eb7 533extern unsigned char x86_prefetch_sse;
80fd744f
RH
534#define TARGET_PREFETCH_SSE x86_prefetch_sse
535
80fd744f
RH
536#define ASSEMBLER_DIALECT (ix86_asm_dialect)
537
538#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
539#define TARGET_MIX_SSE_I387 \
540 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
541
5fa578f0
UB
542#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
543#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
544#define TARGET_HARD_XF_REGS (TARGET_80387)
545
80fd744f
RH
546#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
547#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
548#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 549#define TARGET_SUN_TLS 0
1ef45b77 550
67adf6a9
RH
551#ifndef TARGET_64BIT_DEFAULT
552#define TARGET_64BIT_DEFAULT 0
25f94bb5 553#endif
74dc3e94
RH
554#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
555#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
556#endif
25f94bb5 557
e0ea8797
AH
558#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
559#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
560
79f5e442
ZD
561/* Fence to use after loop using storent. */
562
563extern tree x86_mfence;
564#define FENCE_FOLLOWING_MOVNT x86_mfence
565
0ed4a390
JL
566/* Once GDB has been enhanced to deal with functions without frame
567 pointers, we can change this to allow for elimination of
568 the frame pointer in leaf functions. */
569#define TARGET_DEFAULT 0
67adf6a9 570
0a1c5e55
UB
571/* Extra bits to force. */
572#define TARGET_SUBTARGET_DEFAULT 0
573#define TARGET_SUBTARGET_ISA_DEFAULT 0
574
575/* Extra bits to force on w/ 32-bit mode. */
576#define TARGET_SUBTARGET32_DEFAULT 0
577#define TARGET_SUBTARGET32_ISA_DEFAULT 0
578
ccf8e764
RH
579/* Extra bits to force on w/ 64-bit mode. */
580#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 581#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 582
fee3eacd
IS
583/* Replace MACH-O, ifdefs by in-line tests, where possible.
584 (a) Macros defined in config/i386/darwin.h */
b069de3b 585#define TARGET_MACHO 0
9005471b 586#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
587#define MACHOPIC_ATT_STUB 0
588/* (b) Macros defined in config/darwin.h */
589#define MACHO_DYNAMIC_NO_PIC_P 0
590#define MACHOPIC_INDIRECT 0
591#define MACHOPIC_PURE 0
9005471b 592
5a579c3b
LE
593/* For the RDOS */
594#define TARGET_RDOS 0
595
9005471b 596/* For the Windows 64-bit ABI. */
7c800926
KT
597#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
598
6510e8bb
KT
599/* For the Windows 32-bit ABI. */
600#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
601
f81c9774
RH
602/* This is re-defined by cygming.h. */
603#define TARGET_SEH 0
604
51212b32 605/* The default abi used by target. */
7c800926 606#define DEFAULT_ABI SYSV_ABI
ccf8e764 607
b8b3f0ca 608/* The default TLS segment register used by target. */
00402c94
RH
609#define DEFAULT_TLS_SEG_REG \
610 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 611
cc69336f
RH
612/* Subtargets may reset this to 1 in order to enable 96-bit long double
613 with the rounding mode forced to 53 bits. */
614#define TARGET_96_ROUND_53_LONG_DOUBLE 0
615
682cd442
GK
616/* -march=native handling only makes sense with compiler running on
617 an x86 or x86_64 chip. If changing this condition, also change
618 the condition in driver-i386.c. */
619#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
620/* In driver-i386.c. */
621extern const char *host_detect_local_cpu (int argc, const char **argv);
622#define EXTRA_SPEC_FUNCTIONS \
623 { "local_cpu_detect", host_detect_local_cpu },
682cd442 624#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
625#endif
626
8981c15b
JM
627#if TARGET_64BIT_DEFAULT
628#define OPT_ARCH64 "!m32"
629#define OPT_ARCH32 "m32"
630#else
f0ea7581
L
631#define OPT_ARCH64 "m64|mx32"
632#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
633#endif
634
1cba2b96
EC
635/* Support for configure-time defaults of some command line options.
636 The order here is important so that -march doesn't squash the
637 tune or cpu values. */
ce998900 638#define OPTION_DEFAULT_SPECS \
da2d4c01 639 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
640 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
641 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 642 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
643 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
644 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
645 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
646 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
647 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 648
241e1a89
SC
649/* Specs for the compiler proper */
650
628714d8 651#ifndef CC1_CPU_SPEC
eb5bb0fd 652#define CC1_CPU_SPEC_1 ""
fa959ce4 653
682cd442 654#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
655#define CC1_CPU_SPEC CC1_CPU_SPEC_1
656#else
657#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
658"%{march=native:%>march=native %:local_cpu_detect(arch) \
659 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
660%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 661#endif
241e1a89 662#endif
c98f8742 663\f
30efe578 664/* Target CPU builtins. */
ab442df7
MM
665#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
666
667/* Target Pragmas. */
668#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 669
628714d8 670#ifndef CC1_SPEC
8015b78d 671#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
672#endif
673
674/* This macro defines names of additional specifications to put in the
675 specs that can be used in various specifications like CC1_SPEC. Its
676 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
677
678 Each subgrouping contains a string constant, that defines the
188fc5b5 679 specification name, and a string constant that used by the GCC driver
bcd86433
SC
680 program.
681
682 Do not define this macro if it does not need to do anything. */
683
684#ifndef SUBTARGET_EXTRA_SPECS
685#define SUBTARGET_EXTRA_SPECS
686#endif
687
688#define EXTRA_SPECS \
628714d8 689 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
690 SUBTARGET_EXTRA_SPECS
691\f
ce998900 692
d57a4b98
RH
693/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
694 FPU, assume that the fpcw is set to extended precision; when using
695 only SSE, rounding is correct; when using both SSE and the FPU,
696 the rounding precision is indeterminate, since either may be chosen
697 apparently at random. */
6235f59c
UB
698#define TARGET_FLT_EVAL_METHOD \
699 (TARGET_80387 \
700 ? (TARGET_MIX_SSE_I387 ? -1 \
701 : (TARGET_SSE_MATH ? (TARGET_SSE2 ? 0 : -1) : 2)) \
702 : 0)
0038aea6 703
8ce94e44
JM
704/* Whether to allow x87 floating-point arithmetic on MODE (one of
705 SFmode, DFmode and XFmode) in the current excess precision
706 configuration. */
707#define X87_ENABLE_ARITH(MODE) \
708 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
709
710/* Likewise, whether to allow direct conversions from integer mode
711 IMODE (HImode, SImode or DImode) to MODE. */
712#define X87_ENABLE_FLOAT(MODE, IMODE) \
713 (flag_excess_precision == EXCESS_PRECISION_FAST \
714 || (MODE) == XFmode \
715 || ((MODE) == DFmode && (IMODE) == SImode) \
716 || (IMODE) == HImode)
717
979c67a5
UB
718/* target machine storage layout */
719
65d9c0ab
JH
720#define SHORT_TYPE_SIZE 16
721#define INT_TYPE_SIZE 32
f0ea7581
L
722#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
723#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 724#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 725#define FLOAT_TYPE_SIZE 32
65d9c0ab 726#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
727#define LONG_DOUBLE_TYPE_SIZE \
728 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 729
c637141a 730#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 731
67adf6a9 732#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 733#define MAX_BITS_PER_WORD 64
0c2dc519
JH
734#else
735#define MAX_BITS_PER_WORD 32
0c2dc519
JH
736#endif
737
c98f8742
JVA
738/* Define this if most significant byte of a word is the lowest numbered. */
739/* That is true on the 80386. */
740
741#define BITS_BIG_ENDIAN 0
742
743/* Define this if most significant byte of a word is the lowest numbered. */
744/* That is not true on the 80386. */
745#define BYTES_BIG_ENDIAN 0
746
747/* Define this if most significant word of a multiword number is the lowest
748 numbered. */
749/* Not true for 80386 */
750#define WORDS_BIG_ENDIAN 0
751
c98f8742 752/* Width of a word, in units (bytes). */
4ae8027b 753#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
754
755#ifndef IN_LIBGCC2
2e64c636
JH
756#define MIN_UNITS_PER_WORD 4
757#endif
c98f8742 758
c98f8742 759/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 760#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 761
e075ae69 762/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 763#define STACK_BOUNDARY \
51212b32 764 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 765
2e3f842f
L
766/* Stack boundary of the main function guaranteed by OS. */
767#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
768
de1132d1 769/* Minimum stack boundary. */
cba9c789 770#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 771
d1f87653 772/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 773 aligned; the compiler cannot rely on having this alignment. */
e075ae69 774#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 775
de1132d1 776/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
777 both 32bit and 64bit, to support codes that need 128 bit stack
778 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
779#define PREFERRED_STACK_BOUNDARY_DEFAULT \
780 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
781
782/* 1 if -mstackrealign should be turned on by default. It will
783 generate an alternate prologue and epilogue that realigns the
784 runtime stack if nessary. This supports mixing codes that keep a
785 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 786 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
787#define STACK_REALIGN_DEFAULT 0
788
789/* Boundary (in *bits*) on which the incoming stack is aligned. */
790#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 791
a2851b75
TG
792/* According to Windows x64 software convention, the maximum stack allocatable
793 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
794 instructions allowed to adjust the stack pointer in the epilog, forcing the
795 use of frame pointer for frames larger than 2 GB. This theorical limit
796 is reduced by 256, an over-estimated upper bound for the stack use by the
797 prologue.
798 We define only one threshold for both the prolog and the epilog. When the
4e523f33 799 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
800 regs, then save them, and then allocate the remaining. There is no SEH
801 unwind info for this later allocation. */
802#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
803
ebff937c
SH
804/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
805 mandatory for the 64-bit ABI, and may or may not be true for other
806 operating systems. */
807#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
808
f963b5d9
RS
809/* Minimum allocation boundary for the code of a function. */
810#define FUNCTION_BOUNDARY 8
811
812/* C++ stores the virtual bit in the lowest bit of function pointers. */
813#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 814
c98f8742
JVA
815/* Minimum size in bits of the largest boundary to which any
816 and all fundamental data types supported by the hardware
817 might need to be aligned. No data type wants to be aligned
17f24ff0 818 rounder than this.
fce5a9f2 819
d1f87653 820 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
821 and Pentium Pro XFmode values at 128 bit boundaries.
822
823 When increasing the maximum, also update
824 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 825
3f97cb0b 826#define BIGGEST_ALIGNMENT \
0076c82f 827 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 828
2e3f842f
L
829/* Maximum stack alignment. */
830#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
831
6e4f1168
L
832/* Alignment value for attribute ((aligned)). It is a constant since
833 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 834#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 835
822eda12 836/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 837#define ALIGN_MODE_128(MODE) \
4501d314 838 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 839
17f24ff0 840/* The published ABIs say that doubles should be aligned on word
d1f87653 841 boundaries, so lower the alignment for structure fields unless
6fc605d8 842 -malign-double is set. */
e932b21b 843
e83f3cff
RH
844/* ??? Blah -- this macro is used directly by libobjc. Since it
845 supports no vector modes, cut out the complexity and fall back
846 on BIGGEST_FIELD_ALIGNMENT. */
847#ifdef IN_TARGET_LIBS
ef49d42e
JH
848#ifdef __x86_64__
849#define BIGGEST_FIELD_ALIGNMENT 128
850#else
e83f3cff 851#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 852#endif
e83f3cff 853#else
e932b21b 854#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
1a6e82b8 855 x86_field_alignment ((FIELD), (COMPUTED))
e83f3cff 856#endif
c98f8742 857
e5e8a8bf 858/* If defined, a C expression to compute the alignment given to a
a7180f70 859 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
860 and ALIGN is the alignment that the object would ordinarily have.
861 The value of this macro is used instead of that alignment to align
862 the object.
863
864 If this macro is not defined, then ALIGN is used.
865
866 The typical use of this macro is to increase alignment for string
867 constants to be word aligned so that `strcpy' calls that copy
868 constants can be done inline. */
869
d9a5f180 870#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 871
8a022443
JW
872/* If defined, a C expression to compute the alignment for a static
873 variable. TYPE is the data type, and ALIGN is the alignment that
874 the object would ordinarily have. The value of this macro is used
875 instead of that alignment to align the object.
876
877 If this macro is not defined, then ALIGN is used.
878
879 One use of this macro is to increase alignment of medium-size
880 data to make it all fit in fewer cache lines. Another is to
881 cause character arrays to be word-aligned so that `strcpy' calls
882 that copy constants to character arrays can be done inline. */
883
df8a1d28
JJ
884#define DATA_ALIGNMENT(TYPE, ALIGN) \
885 ix86_data_alignment ((TYPE), (ALIGN), true)
886
887/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
888 some alignment increase, instead of optimization only purposes. E.g.
889 AMD x86-64 psABI says that variables with array type larger than 15 bytes
890 must be aligned to 16 byte boundaries.
891
892 If this macro is not defined, then ALIGN is used. */
893
894#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
895 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
896
897/* If defined, a C expression to compute the alignment for a local
898 variable. TYPE is the data type, and ALIGN is the alignment that
899 the object would ordinarily have. The value of this macro is used
900 instead of that alignment to align the object.
901
902 If this macro is not defined, then ALIGN is used.
903
904 One use of this macro is to increase alignment of medium-size
905 data to make it all fit in fewer cache lines. */
906
76fe54f0
L
907#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
908 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
909
910/* If defined, a C expression to compute the alignment for stack slot.
911 TYPE is the data type, MODE is the widest mode available, and ALIGN
912 is the alignment that the slot would ordinarily have. The value of
913 this macro is used instead of that alignment to align the slot.
914
915 If this macro is not defined, then ALIGN is used when TYPE is NULL,
916 Otherwise, LOCAL_ALIGNMENT will be used.
917
918 One use of this macro is to set alignment of stack slot to the
919 maximum alignment of all possible modes which the slot may have. */
920
921#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
922 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 923
9bfaf89d
JJ
924/* If defined, a C expression to compute the alignment for a local
925 variable DECL.
926
927 If this macro is not defined, then
928 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
929
930 One use of this macro is to increase alignment of medium-size
931 data to make it all fit in fewer cache lines. */
932
933#define LOCAL_DECL_ALIGNMENT(DECL) \
934 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
935
ae58e548
JJ
936/* If defined, a C expression to compute the minimum required alignment
937 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
938 MODE, assuming normal alignment ALIGN.
939
940 If this macro is not defined, then (ALIGN) will be used. */
941
942#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 943 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 944
9bfaf89d 945
9cd10576 946/* Set this nonzero if move instructions will actually fail to work
c98f8742 947 when given unaligned data. */
b4ac57ab 948#define STRICT_ALIGNMENT 0
c98f8742
JVA
949
950/* If bit field type is int, don't let it cross an int,
951 and give entire struct the alignment of an int. */
43a88a8c 952/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 953#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
954\f
955/* Standard register usage. */
956
957/* This processor has special stack-like registers. See reg-stack.c
892a2d68 958 for details. */
c98f8742
JVA
959
960#define STACK_REGS
ce998900 961
f48b4284
UB
962#define IS_STACK_MODE(MODE) \
963 (X87_FLOAT_MODE_P (MODE) \
964 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
965 || TARGET_MIX_SSE_I387))
c98f8742
JVA
966
967/* Number of actual hardware registers.
968 The hardware registers are assigned numbers for the compiler
969 from 0 to just below FIRST_PSEUDO_REGISTER.
970 All registers that the compiler knows about must be given numbers,
971 even those that are not normally considered general registers.
972
973 In the 80386 we give the 8 general purpose registers the numbers 0-7.
974 We number the floating point registers 8-15.
975 Note that registers 0-7 can be accessed as a short or int,
976 while only 0-3 may be used with byte `mov' instructions.
977
978 Reg 16 does not correspond to any hardware register, but instead
979 appears in the RTL as an argument pointer prior to reload, and is
980 eliminated during reloading in favor of either the stack or frame
892a2d68 981 pointer. */
c98f8742 982
05416670 983#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 984
3073d01c
ML
985/* Number of hardware registers that go into the DWARF-2 unwind info.
986 If not defined, equals FIRST_PSEUDO_REGISTER. */
987
988#define DWARF_FRAME_REGISTERS 17
989
c98f8742
JVA
990/* 1 for registers that have pervasive standard uses
991 and are not available for the register allocator.
3f3f2124 992 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 993
621bc046
UB
994 REX registers are disabled for 32bit targets in
995 TARGET_CONDITIONAL_REGISTER_USAGE. */
996
a7180f70
BS
997#define FIXED_REGISTERS \
998/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 999{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
1000/*arg,flags,fpsr,fpcr,frame*/ \
1001 1, 1, 1, 1, 1, \
a7180f70
BS
1002/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1003 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1004/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1005 0, 0, 0, 0, 0, 0, 0, 0, \
1006/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1007 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1008/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1009 0, 0, 0, 0, 0, 0, 0, 0, \
1010/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1011 0, 0, 0, 0, 0, 0, 0, 0, \
1012/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1013 0, 0, 0, 0, 0, 0, 0, 0, \
1014/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1015 0, 0, 0, 0, 0, 0, 0, 0, \
1016/* b0, b1, b2, b3*/ \
1017 0, 0, 0, 0 }
c98f8742
JVA
1018
1019/* 1 for registers not available across function calls.
1020 These must include the FIXED_REGISTERS and also any
1021 registers that can be used without being saved.
1022 The latter must include the registers where values are returned
1023 and the register where structure-value addresses are passed.
fce5a9f2
EC
1024 Aside from that, you can include as many other registers as you like.
1025
621bc046
UB
1026 Value is set to 1 if the register is call used unconditionally.
1027 Bit one is set if the register is call used on TARGET_32BIT ABI.
1028 Bit two is set if the register is call used on TARGET_64BIT ABI.
1029 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1030
1031 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1032
1f3ccbc8
L
1033#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1034 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1035
a7180f70
BS
1036#define CALL_USED_REGISTERS \
1037/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1038{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1039/*arg,flags,fpsr,fpcr,frame*/ \
1040 1, 1, 1, 1, 1, \
a7180f70 1041/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1042 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1043/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1044 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1045/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1046 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1047/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1048 6, 6, 6, 6, 6, 6, 6, 6, \
1049/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1050 6, 6, 6, 6, 6, 6, 6, 6, \
1051/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1052 6, 6, 6, 6, 6, 6, 6, 6, \
1053 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1054 1, 1, 1, 1, 1, 1, 1, 1, \
1055/* b0, b1, b2, b3*/ \
1056 1, 1, 1, 1 }
c98f8742 1057
3b3c6a3f
MM
1058/* Order in which to allocate registers. Each register must be
1059 listed once, even those in FIXED_REGISTERS. List frame pointer
1060 late and fixed registers last. Note that, in general, we prefer
1061 registers listed in CALL_USED_REGISTERS, keeping the others
1062 available for storage of persistent values.
1063
5a733826 1064 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1065 so this is just empty initializer for array. */
3b3c6a3f 1066
162f023b
JH
1067#define REG_ALLOC_ORDER \
1068{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1069 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1070 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1071 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1072 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1073 78, 79, 80 }
3b3c6a3f 1074
5a733826 1075/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1076 to be rearranged based on a particular function. When using sse math,
03c259ad 1077 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1078
5a733826 1079#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1080
f5316dfe 1081
7c800926
KT
1082#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1083
c98f8742
JVA
1084/* Return number of consecutive hard regs needed starting at reg REGNO
1085 to hold something of mode MODE.
1086 This is ordinarily the length in words of a value of mode MODE
1087 but can be less for certain modes in special long registers.
1088
fce5a9f2 1089 Actually there are no two word move instructions for consecutive
c98f8742 1090 registers. And only registers 0-3 may have mov byte instructions
63001560 1091 applied to them. */
c98f8742 1092
ce998900 1093#define HARD_REGNO_NREGS(REGNO, MODE) \
d5e254e1
IE
1094 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1095 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
92d0fb09 1096 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1097 : ((MODE) == XFmode \
92d0fb09 1098 ? (TARGET_64BIT ? 2 : 3) \
1a6e82b8
UB
1099 : ((MODE) == XCmode \
1100 ? (TARGET_64BIT ? 4 : 6) \
1101 : CEIL (GET_MODE_SIZE (MODE), UNITS_PER_WORD))))
c98f8742 1102
8521c414
JM
1103#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1104 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1105 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1106 ? 0 \
1107 : ((MODE) == XFmode || (MODE) == XCmode)) \
1108 : 0)
1109
1110#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1111
95879c72
L
1112#define VALID_AVX256_REG_MODE(MODE) \
1113 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1114 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1115 || (MODE) == V4DFmode)
95879c72 1116
4ac005ba 1117#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1118 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1119
3f97cb0b
AI
1120#define VALID_AVX512F_SCALAR_MODE(MODE) \
1121 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1122 || (MODE) == SFmode)
1123
1124#define VALID_AVX512F_REG_MODE(MODE) \
1125 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1126 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1127 || (MODE) == V4TImode)
1128
05416670 1129#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1130 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1131 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1132 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1133
ce998900
UB
1134#define VALID_SSE2_REG_MODE(MODE) \
1135 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1136 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1137
d9a5f180 1138#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1139 ((MODE) == V1TImode || (MODE) == TImode \
1140 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1141 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1142
47f339cf 1143#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1144 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1145
d9a5f180 1146#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1147 ((MODE == V1DImode) || (MODE) == DImode \
1148 || (MODE) == V2SImode || (MODE) == SImode \
1149 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1150
05416670
UB
1151#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1152
1153#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1154
d5e254e1
IE
1155#define VALID_BND_REG_MODE(MODE) \
1156 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1157
ce998900
UB
1158#define VALID_DFP_MODE_P(MODE) \
1159 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1160
d9a5f180 1161#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1162 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1163 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1164
d9a5f180 1165#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1166 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1167 || (MODE) == DImode \
1168 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1169 || (MODE) == CDImode \
1170 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1171 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1172
822eda12 1173/* Return true for modes passed in SSE registers. */
ce998900 1174#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1175 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1176 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1177 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1178 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1179 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1180 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1181 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1182 || (MODE) == V16SFmode)
822eda12 1183
05416670
UB
1184#define X87_FLOAT_MODE_P(MODE) \
1185 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1186
05416670
UB
1187#define SSE_FLOAT_MODE_P(MODE) \
1188 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1189
1190#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1191 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1192 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1193
e075ae69 1194/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1195
a946dd00 1196#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1197 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1198
1199/* Value is 1 if it is a good idea to tie two pseudo registers
1200 when one has mode MODE1 and one has mode MODE2.
1201 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1202 for any hard reg, then this must be 0 for correct output. */
1203
1a6e82b8
UB
1204#define MODES_TIEABLE_P(MODE1, MODE2) \
1205 ix86_modes_tieable_p ((MODE1), (MODE2))
d2836273 1206
ff25ef99
ZD
1207/* It is possible to write patterns to move flags; but until someone
1208 does it, */
1209#define AVOID_CCMODE_COPIES
c98f8742 1210
e075ae69 1211/* Specify the modes required to caller save a given hard regno.
787dc842 1212 We do this on i386 to prevent flags from being saved at all.
e075ae69 1213
787dc842
JH
1214 Kill any attempts to combine saving of modes. */
1215
d9a5f180
GS
1216#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1217 (CC_REGNO_P (REGNO) ? VOIDmode \
1218 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1219 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1220 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1221 || MASK_REGNO_P (REGNO)) ? SImode \
1222 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1223 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1224 : (MODE))
ce998900 1225
51ba747a
RH
1226/* The only ABI that saves SSE registers across calls is Win64 (thus no
1227 need to check the current ABI here), and with AVX enabled Win64 only
1228 guarantees that the low 16 bytes are saved. */
1229#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1230 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1231
c98f8742
JVA
1232/* Specify the registers used for certain standard purposes.
1233 The values of these macros are register numbers. */
1234
1235/* on the 386 the pc register is %eip, and is not usable as a general
1236 register. The ordinary mov instructions won't work */
1237/* #define PC_REGNUM */
1238
05416670
UB
1239/* Base register for access to arguments of the function. */
1240#define ARG_POINTER_REGNUM ARGP_REG
1241
c98f8742 1242/* Register to use for pushing function arguments. */
05416670 1243#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1244
1245/* Base register for access to local variables of the function. */
05416670
UB
1246#define FRAME_POINTER_REGNUM FRAME_REG
1247#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1248
05416670
UB
1249#define FIRST_INT_REG AX_REG
1250#define LAST_INT_REG SP_REG
c98f8742 1251
05416670
UB
1252#define FIRST_QI_REG AX_REG
1253#define LAST_QI_REG BX_REG
c98f8742
JVA
1254
1255/* First & last stack-like regs */
05416670
UB
1256#define FIRST_STACK_REG ST0_REG
1257#define LAST_STACK_REG ST7_REG
c98f8742 1258
05416670
UB
1259#define FIRST_SSE_REG XMM0_REG
1260#define LAST_SSE_REG XMM7_REG
fce5a9f2 1261
05416670
UB
1262#define FIRST_MMX_REG MM0_REG
1263#define LAST_MMX_REG MM7_REG
a7180f70 1264
05416670
UB
1265#define FIRST_REX_INT_REG R8_REG
1266#define LAST_REX_INT_REG R15_REG
3f3f2124 1267
05416670
UB
1268#define FIRST_REX_SSE_REG XMM8_REG
1269#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1270
05416670
UB
1271#define FIRST_EXT_REX_SSE_REG XMM16_REG
1272#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1273
05416670
UB
1274#define FIRST_MASK_REG MASK0_REG
1275#define LAST_MASK_REG MASK7_REG
85a77221 1276
05416670
UB
1277#define FIRST_BND_REG BND0_REG
1278#define LAST_BND_REG BND3_REG
d5e254e1 1279
aabcd309 1280/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1281 requiring a frame pointer. */
1282#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1283#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1284#endif
1285
1286/* Make sure we can access arbitrary call frames. */
1287#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1288
c98f8742 1289/* Register to hold the addressing base for position independent
5b43fed1
RH
1290 code access to data items. We don't use PIC pointer for 64bit
1291 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1292 pessimizing code dealing with EBX.
bd09bdeb
RH
1293
1294 To avoid clobbering a call-saved register unnecessarily, we renumber
1295 the pic register when possible. The change is visible after the
1296 prologue has been emitted. */
1297
e8b5eb25 1298#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1299
bcb21886 1300#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1301 (ix86_use_pseudo_pic_reg () \
1302 ? (pic_offset_table_rtx \
1303 ? INVALID_REGNUM \
1304 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1305 : INVALID_REGNUM)
c98f8742 1306
5fc0e5df
KW
1307#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1308
c51e6d85 1309/* This is overridden by <cygwin.h>. */
5e062767
DS
1310#define MS_AGGREGATE_RETURN 0
1311
61fec9ff 1312#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1313\f
1314/* Define the classes of registers for register constraints in the
1315 machine description. Also define ranges of constants.
1316
1317 One of the classes must always be named ALL_REGS and include all hard regs.
1318 If there is more than one class, another class must be named NO_REGS
1319 and contain no registers.
1320
1321 The name GENERAL_REGS must be the name of a class (or an alias for
1322 another name such as ALL_REGS). This is the class of registers
1323 that is allowed by "g" or "r" in a register constraint.
1324 Also, registers outside this class are allocated only when
1325 instructions express preferences for them.
1326
1327 The classes must be numbered in nondecreasing order; that is,
1328 a larger-numbered class must never be contained completely
2e24efd3
AM
1329 in a smaller-numbered class. This is why CLOBBERED_REGS class
1330 is listed early, even though in 64-bit mode it contains more
1331 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1332
1333 For any two classes, it is very desirable that there be another
ab408a86
JVA
1334 class that represents their union.
1335
1336 It might seem that class BREG is unnecessary, since no useful 386
1337 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1338 and the "b" register constraint is useful in asms for syscalls.
1339
03c259ad 1340 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1341
1342enum reg_class
1343{
1344 NO_REGS,
e075ae69 1345 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1346 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1347 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1348 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1349 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1350 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1351 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1352 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1353 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1354 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1355 FLOAT_REGS,
06f4e35d 1356 SSE_FIRST_REG,
45392c76 1357 NO_REX_SSE_REGS,
a7180f70 1358 SSE_REGS,
3f97cb0b 1359 EVEX_SSE_REGS,
d5e254e1 1360 BND_REGS,
3f97cb0b 1361 ALL_SSE_REGS,
a7180f70 1362 MMX_REGS,
446988df
JH
1363 FP_TOP_SSE_REGS,
1364 FP_SECOND_SSE_REGS,
1365 FLOAT_SSE_REGS,
1366 FLOAT_INT_REGS,
1367 INT_SSE_REGS,
1368 FLOAT_INT_SSE_REGS,
85a77221
AI
1369 MASK_EVEX_REGS,
1370 MASK_REGS,
c98f8742
JVA
1371 ALL_REGS, LIM_REG_CLASSES
1372};
1373
d9a5f180
GS
1374#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1375
1376#define INTEGER_CLASS_P(CLASS) \
1377 reg_class_subset_p ((CLASS), GENERAL_REGS)
1378#define FLOAT_CLASS_P(CLASS) \
1379 reg_class_subset_p ((CLASS), FLOAT_REGS)
1380#define SSE_CLASS_P(CLASS) \
3f97cb0b 1381 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1382#define MMX_CLASS_P(CLASS) \
f75959a6 1383 ((CLASS) == MMX_REGS)
d9a5f180
GS
1384#define MAYBE_INTEGER_CLASS_P(CLASS) \
1385 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1386#define MAYBE_FLOAT_CLASS_P(CLASS) \
1387 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1388#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1389 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1390#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1391 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1392#define MAYBE_MASK_CLASS_P(CLASS) \
1393 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1394
1395#define Q_CLASS_P(CLASS) \
1396 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1397
0bd72901
UB
1398#define MAYBE_NON_Q_CLASS_P(CLASS) \
1399 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1400
43f3a59d 1401/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1402
1403#define REG_CLASS_NAMES \
1404{ "NO_REGS", \
ab408a86 1405 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1406 "SIREG", "DIREG", \
e075ae69 1407 "AD_REGS", \
2e24efd3 1408 "CLOBBERED_REGS", \
e075ae69 1409 "Q_REGS", "NON_Q_REGS", \
c98f8742 1410 "INDEX_REGS", \
3f3f2124 1411 "LEGACY_REGS", \
c98f8742
JVA
1412 "GENERAL_REGS", \
1413 "FP_TOP_REG", "FP_SECOND_REG", \
1414 "FLOAT_REGS", \
cb482895 1415 "SSE_FIRST_REG", \
45392c76 1416 "NO_REX_SSE_REGS", \
a7180f70 1417 "SSE_REGS", \
3f97cb0b 1418 "EVEX_SSE_REGS", \
d5e254e1 1419 "BND_REGS", \
3f97cb0b 1420 "ALL_SSE_REGS", \
a7180f70 1421 "MMX_REGS", \
446988df
JH
1422 "FP_TOP_SSE_REGS", \
1423 "FP_SECOND_SSE_REGS", \
1424 "FLOAT_SSE_REGS", \
8fcaaa80 1425 "FLOAT_INT_REGS", \
446988df
JH
1426 "INT_SSE_REGS", \
1427 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1428 "MASK_EVEX_REGS", \
1429 "MASK_REGS", \
c98f8742
JVA
1430 "ALL_REGS" }
1431
ac2e563f
RH
1432/* Define which registers fit in which classes. This is an initializer
1433 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1434
621bc046
UB
1435 Note that CLOBBERED_REGS are calculated by
1436 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1437
3f97cb0b 1438#define REG_CLASS_CONTENTS \
d5e254e1
IE
1439{ { 0x00, 0x0, 0x0 }, \
1440 { 0x01, 0x0, 0x0 }, /* AREG */ \
1441 { 0x02, 0x0, 0x0 }, /* DREG */ \
1442 { 0x04, 0x0, 0x0 }, /* CREG */ \
1443 { 0x08, 0x0, 0x0 }, /* BREG */ \
1444 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1445 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1446 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1447 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1448 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1449 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1450 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1451 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1452 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1453 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1454 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1455 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1456 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1457{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1458{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1459 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1460 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1461{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1462{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1463{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1464{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1465{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1466{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1467{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1468{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1469 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1470 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
d0470103 1471{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1472}
c98f8742
JVA
1473
1474/* The same information, inverted:
1475 Return the class number of the smallest class containing
1476 reg number REGNO. This could be a conditional expression
1477 or could index an array. */
1478
1a6e82b8 1479#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1480
42db504c
SB
1481/* When this hook returns true for MODE, the compiler allows
1482 registers explicitly used in the rtl to be used as spill registers
1483 but prevents the compiler from extending the lifetime of these
1484 registers. */
1485#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1486
fc27f749 1487#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1488#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1489
1490#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1491#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1492
1493#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1494#define REX_INT_REGNO_P(N) \
1495 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1496
58b0b34c 1497#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1498#define GENERAL_REGNO_P(N) \
58b0b34c 1499 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1500
fc27f749
UB
1501#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1502#define ANY_QI_REGNO_P(N) \
1503 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1504
66aaf16f
UB
1505#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1506#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1507
fc27f749 1508#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1509#define SSE_REGNO_P(N) \
1510 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1511 || REX_SSE_REGNO_P (N) \
1512 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1513
4977bab6 1514#define REX_SSE_REGNO_P(N) \
fb84c7a0 1515 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1516
0a48088a
IT
1517#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1518
3f97cb0b
AI
1519#define EXT_REX_SSE_REGNO_P(N) \
1520 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1521
05416670
UB
1522#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1523#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1524
9e4a4dd6 1525#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1526#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1527
fc27f749 1528#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1529#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1530
e075ae69
RH
1531#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1532#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1533
58b0b34c 1534#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1535#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1536
05416670
UB
1537/* First floating point reg */
1538#define FIRST_FLOAT_REG FIRST_STACK_REG
1539#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1540
1541#define SSE_REGNO(N) \
1542 ((N) < 8 ? FIRST_SSE_REG + (N) \
1543 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1544 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1545
c98f8742
JVA
1546/* The class value for index registers, and the one for base regs. */
1547
1548#define INDEX_REG_CLASS INDEX_REGS
1549#define BASE_REG_CLASS GENERAL_REGS
1550
c98f8742 1551/* Place additional restrictions on the register class to use when it
4cbb525c 1552 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1553 register for which class CLASS would ordinarily be used.
1554
1555 We avoid classes containing registers from multiple units due to
1556 the limitation in ix86_secondary_memory_needed. We limit these
1557 classes to their "natural mode" single unit register class, depending
1558 on the unit availability.
1559
1560 Please note that reg_class_subset_p is not commutative, so these
1561 conditions mean "... if (CLASS) includes ALL registers from the
1562 register set." */
1563
1564#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1565 (((MODE) == QImode && !TARGET_64BIT \
1566 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1567 : (((MODE) == SImode || (MODE) == DImode) \
1568 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1569 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1570 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1571 : (X87_FLOAT_MODE_P (MODE) \
1572 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1573 : (CLASS))
c98f8742 1574
85ff473e 1575/* If we are copying between general and FP registers, we need a memory
f84aa48a 1576 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1577#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1578 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1579
c62b3659
UB
1580/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1581 There is no need to emit full 64 bit move on 64 bit targets
1582 for integral modes that can be moved using 32 bit move. */
1583#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1584 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1585 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1586 : MODE)
1587
1272914c
RH
1588/* Return a class of registers that cannot change FROM mode to TO mode. */
1589
1590#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1591 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1592\f
1593/* Stack layout; function entry, exit and calling. */
1594
1595/* Define this if pushing a word on the stack
1596 makes the stack pointer a smaller address. */
62f9f30b 1597#define STACK_GROWS_DOWNWARD 1
c98f8742 1598
a4d05547 1599/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1600 is at the high-address end of the local variables;
1601 that is, each additional local variable allocated
1602 goes at a more negative offset in the frame. */
f62c8a5c 1603#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1604
1605/* Offset within stack frame to start allocating local variables at.
1606 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1607 first local allocated. Otherwise, it is the offset to the BEGINNING
1608 of the first local allocated. */
1609#define STARTING_FRAME_OFFSET 0
1610
8c2b2fae
UB
1611/* If we generate an insn to push BYTES bytes, this says how many the stack
1612 pointer really advances by. On 386, we have pushw instruction that
1613 decrements by exactly 2 no matter what the position was, there is no pushb.
1614
1615 But as CIE data alignment factor on this arch is -4 for 32bit targets
1616 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1617 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1618
1a6e82b8 1619#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1620
1621/* If defined, the maximum amount of space required for outgoing arguments
1622 will be computed and placed into the variable `crtl->outgoing_args_size'.
1623 No space will be pushed onto the stack for each call; instead, the
1624 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1625
1626 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1627 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1628 mode the difference is less drastic but visible.
1629
1630 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1631 actually grow with accumulation. Is that because accumulated args
41ee845b 1632 unwind info became unnecesarily bloated?
f830ddc2
RH
1633
1634 With the 64-bit MS ABI, we can generate correct code with or without
1635 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1636 generated without accumulated args is terrible.
41ee845b
JH
1637
1638 If stack probes are required, the space used for large function
1639 arguments on the stack must also be probed, so enable
f8071c05
L
1640 -maccumulate-outgoing-args so this happens in the prologue.
1641
1642 We must use argument accumulation in interrupt function if stack
1643 may be realigned to avoid DRAP. */
f73ad30e 1644
6c6094f1 1645#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1646 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1647 && optimize_function_for_speed_p (cfun)) \
1648 || (cfun->machine->func_type != TYPE_NORMAL \
1649 && crtl->stack_realign_needed) \
1650 || TARGET_STACK_PROBE \
1651 || TARGET_64BIT_MS_ABI \
ff734e26 1652 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1653
1654/* If defined, a C expression whose value is nonzero when we want to use PUSH
1655 instructions to pass outgoing arguments. */
1656
1657#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1658
2da4124d
L
1659/* We want the stack and args grow in opposite directions, even if
1660 PUSH_ARGS is 0. */
1661#define PUSH_ARGS_REVERSED 1
1662
c98f8742
JVA
1663/* Offset of first parameter from the argument pointer register value. */
1664#define FIRST_PARM_OFFSET(FNDECL) 0
1665
a7180f70
BS
1666/* Define this macro if functions should assume that stack space has been
1667 allocated for arguments even when their values are passed in registers.
1668
1669 The value of this macro is the size, in bytes, of the area reserved for
1670 arguments passed in registers for the function represented by FNDECL.
1671
1672 This space can be allocated by the caller, or be a part of the
1673 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1674 which. */
7c800926
KT
1675#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1676
4ae8027b 1677#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1678 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1679
c98f8742
JVA
1680/* Define how to find the value returned by a library function
1681 assuming the value has mode MODE. */
1682
4ae8027b 1683#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1684
e9125c09
TW
1685/* Define the size of the result block used for communication between
1686 untyped_call and untyped_return. The block contains a DImode value
1687 followed by the block used by fnsave and frstor. */
1688
1689#define APPLY_RESULT_SIZE (8+108)
1690
b08de47e 1691/* 1 if N is a possible register number for function argument passing. */
53c17031 1692#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1693
1694/* Define a data type for recording info about an argument list
1695 during the scan of that argument list. This data type should
1696 hold all necessary information about the function itself
1697 and about the args processed so far, enough to enable macros
b08de47e 1698 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1699
e075ae69 1700typedef struct ix86_args {
fa283935 1701 int words; /* # words passed so far */
b08de47e
MM
1702 int nregs; /* # registers available for passing */
1703 int regno; /* next available register number */
3e65f251
KT
1704 int fastcall; /* fastcall or thiscall calling convention
1705 is used */
fa283935 1706 int sse_words; /* # sse words passed so far */
a7180f70 1707 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1708 int warn_avx512f; /* True when we want to warn
1709 about AVX512F ABI. */
95879c72 1710 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1711 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1712 int warn_mmx; /* True when we want to warn about MMX ABI. */
1713 int sse_regno; /* next available sse register number */
1714 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1715 int mmx_nregs; /* # mmx registers available for passing */
1716 int mmx_regno; /* next available mmx register number */
892a2d68 1717 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1718 int caller; /* true if it is caller. */
2824d6e5
UB
1719 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1720 SFmode/DFmode arguments should be passed
1721 in SSE registers. Otherwise 0. */
d5e254e1
IE
1722 int bnd_regno; /* next available bnd register number */
1723 int bnds_in_bt; /* number of bounds expected in BT. */
1724 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1725 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1726 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1727 MS_ABI for ms abi. */
e66fc623 1728 tree decl; /* Callee decl. */
b08de47e 1729} CUMULATIVE_ARGS;
c98f8742
JVA
1730
1731/* Initialize a variable CUM of type CUMULATIVE_ARGS
1732 for a call to a function whose data type is FNTYPE.
b08de47e 1733 For a library call, FNTYPE is 0. */
c98f8742 1734
0f6937fe 1735#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1736 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1737 (N_NAMED_ARGS) != -1)
c98f8742 1738
c98f8742
JVA
1739/* Output assembler code to FILE to increment profiler label # LABELNO
1740 for profiling a function entry. */
1741
1a6e82b8
UB
1742#define FUNCTION_PROFILER(FILE, LABELNO) \
1743 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1744
1745#define MCOUNT_NAME "_mcount"
1746
3c5273a9
KT
1747#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1748
a5fa1ecd 1749#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1750
1751/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1752 the stack pointer does not matter. The value is tested only in
1753 functions that have frame pointers.
1754 No definition is equivalent to always zero. */
fce5a9f2 1755/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1756 we have to restore it ourselves from the frame pointer, in order to
1757 use pop */
1758
1759#define EXIT_IGNORE_STACK 1
1760
f8071c05
L
1761/* Define this macro as a C expression that is nonzero for registers
1762 used by the epilogue or the `return' pattern. */
1763
1764#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1765
c98f8742
JVA
1766/* Output assembler code for a block containing the constant parts
1767 of a trampoline, leaving space for the variable parts. */
1768
a269a03c 1769/* On the 386, the trampoline contains two instructions:
c98f8742 1770 mov #STATIC,ecx
a269a03c
JC
1771 jmp FUNCTION
1772 The trampoline is generated entirely at runtime. The operand of JMP
1773 is the address of FUNCTION relative to the instruction following the
1774 JMP (which is 5 bytes long). */
c98f8742
JVA
1775
1776/* Length in units of the trampoline for entering a nested function. */
1777
3452586b 1778#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1779\f
1780/* Definitions for register eliminations.
1781
1782 This is an array of structures. Each structure initializes one pair
1783 of eliminable registers. The "from" register number is given first,
1784 followed by "to". Eliminations of the same "from" register are listed
1785 in order of preference.
1786
afc2cd05
NC
1787 There are two registers that can always be eliminated on the i386.
1788 The frame pointer and the arg pointer can be replaced by either the
1789 hard frame pointer or to the stack pointer, depending upon the
1790 circumstances. The hard frame pointer is not used before reload and
1791 so it is not eligible for elimination. */
c98f8742 1792
564d80f4
JH
1793#define ELIMINABLE_REGS \
1794{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1795 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1796 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1797 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1798
c98f8742
JVA
1799/* Define the offset between two registers, one to be eliminated, and the other
1800 its replacement, at the start of a routine. */
1801
d9a5f180
GS
1802#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1803 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1804\f
1805/* Addressing modes, and classification of registers for them. */
1806
c98f8742
JVA
1807/* Macros to check register numbers against specific register classes. */
1808
1809/* These assume that REGNO is a hard or pseudo reg number.
1810 They give nonzero only if REGNO is a hard reg of the suitable class
1811 or a pseudo reg currently allocated to a suitable hard reg.
1812 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1813 has been allocated, which happens in reginfo.c during register
1814 allocation. */
c98f8742 1815
3f3f2124
JH
1816#define REGNO_OK_FOR_INDEX_P(REGNO) \
1817 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1818 || REX_INT_REGNO_P (REGNO) \
1819 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1820 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1821
3f3f2124 1822#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1823 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1824 || (REGNO) == ARG_POINTER_REGNUM \
1825 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1826 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1827
c98f8742
JVA
1828/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1829 and check its validity for a certain class.
1830 We have two alternate definitions for each of them.
1831 The usual definition accepts all pseudo regs; the other rejects
1832 them unless they have been allocated suitable hard regs.
1833 The symbol REG_OK_STRICT causes the latter definition to be used.
1834
1835 Most source files want to accept pseudo regs in the hope that
1836 they will get allocated to the class that the insn wants them to be in.
1837 Source files for reload pass need to be strict.
1838 After reload, it makes no difference, since pseudo regs have
1839 been eliminated by then. */
1840
c98f8742 1841
ff482c8d 1842/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1843#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1844 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1845 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1846 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1847
3b3c6a3f 1848#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1849 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1850 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1851 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1852 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1853
3b3c6a3f
MM
1854/* Strict versions, hard registers only */
1855#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1856#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1857
3b3c6a3f 1858#ifndef REG_OK_STRICT
d9a5f180
GS
1859#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1860#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1861
1862#else
d9a5f180
GS
1863#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1864#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1865#endif
1866
331d9186 1867/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1868 that is a valid memory address for an instruction.
1869 The MODE argument is the machine mode for the MEM expression
1870 that wants to use this address.
1871
331d9186 1872 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1873 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1874
1875 See legitimize_pic_address in i386.c for details as to what
1876 constitutes a legitimate address when -fpic is used. */
1877
1878#define MAX_REGS_PER_ADDRESS 2
1879
f996902d 1880#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1881
b949ea8b
JW
1882/* If defined, a C expression to determine the base term of address X.
1883 This macro is used in only one place: `find_base_term' in alias.c.
1884
1885 It is always safe for this macro to not be defined. It exists so
1886 that alias analysis can understand machine-dependent addresses.
1887
1888 The typical use of this macro is to handle addresses containing
1889 a label_ref or symbol_ref within an UNSPEC. */
1890
d9a5f180 1891#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1892
c98f8742 1893/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1894 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1895 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1896
f996902d 1897#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1898
1899#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1900 (GET_CODE (X) == SYMBOL_REF \
1901 || GET_CODE (X) == LABEL_REF \
1902 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1903\f
b08de47e
MM
1904/* Max number of args passed in registers. If this is more than 3, we will
1905 have problems with ebx (register #4), since it is a caller save register and
1906 is also used as the pic register in ELF. So for now, don't allow more than
1907 3 registers to be passed in registers. */
1908
7c800926
KT
1909/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1910#define X86_64_REGPARM_MAX 6
72fa3605 1911#define X86_64_MS_REGPARM_MAX 4
7c800926 1912
72fa3605 1913#define X86_32_REGPARM_MAX 3
7c800926 1914
4ae8027b 1915#define REGPARM_MAX \
2824d6e5
UB
1916 (TARGET_64BIT \
1917 ? (TARGET_64BIT_MS_ABI \
1918 ? X86_64_MS_REGPARM_MAX \
1919 : X86_64_REGPARM_MAX) \
4ae8027b 1920 : X86_32_REGPARM_MAX)
d2836273 1921
72fa3605
UB
1922#define X86_64_SSE_REGPARM_MAX 8
1923#define X86_64_MS_SSE_REGPARM_MAX 4
1924
b6010cab 1925#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1926
4ae8027b 1927#define SSE_REGPARM_MAX \
2824d6e5
UB
1928 (TARGET_64BIT \
1929 ? (TARGET_64BIT_MS_ABI \
1930 ? X86_64_MS_SSE_REGPARM_MAX \
1931 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1932 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1933
1934#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1935\f
1936/* Specify the machine mode that this machine uses
1937 for the index in the tablejump instruction. */
dc4d7240 1938#define CASE_VECTOR_MODE \
6025b127 1939 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1940
c98f8742
JVA
1941/* Define this as 1 if `char' should by default be signed; else as 0. */
1942#define DEFAULT_SIGNED_CHAR 1
1943
1944/* Max number of bytes we can move from memory to memory
1945 in one reasonably fast instruction. */
65d9c0ab
JH
1946#define MOVE_MAX 16
1947
1948/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1949 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1950 number of bytes we can move with a single instruction. */
63001560 1951#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1952
7e24ffc9 1953/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1954 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1955 Increasing the value will always make code faster, but eventually
1956 incurs high cost in increased code size.
c98f8742 1957
e2e52e1b 1958 If you don't define this, a reasonable default is used. */
c98f8742 1959
e04ad03d 1960#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1961
45d78e7f
JJ
1962/* If a clear memory operation would take CLEAR_RATIO or more simple
1963 move-instruction sequences, we will do a clrmem or libcall instead. */
1964
e04ad03d 1965#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1966
53f00dde
UB
1967/* Define if shifts truncate the shift count which implies one can
1968 omit a sign-extension or zero-extension of a shift count.
1969
1970 On i386, shifts do truncate the count. But bit test instructions
1971 take the modulo of the bit offset operand. */
c98f8742
JVA
1972
1973/* #define SHIFT_COUNT_TRUNCATED */
1974
1975/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1976 is done just by pretending it is already truncated. */
1977#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1978
d9f32422
JH
1979/* A macro to update M and UNSIGNEDP when an object whose type is
1980 TYPE and which has the specified mode and signedness is to be
1981 stored in a register. This macro is only called when TYPE is a
1982 scalar type.
1983
f710504c 1984 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1985 quantities to SImode. The choice depends on target type. */
1986
1987#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1988do { \
d9f32422
JH
1989 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1990 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1991 (MODE) = SImode; \
1992} while (0)
d9f32422 1993
c98f8742
JVA
1994/* Specify the machine mode that pointers have.
1995 After generation of rtl, the compiler makes no further distinction
1996 between pointers and any other objects of this machine mode. */
28968d91 1997#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1998
d5e254e1
IE
1999/* Specify the machine mode that bounds have. */
2000#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
2001
f0ea7581
L
2002/* A C expression whose value is zero if pointers that need to be extended
2003 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
2004 greater then zero if they are zero-extended and less then zero if the
2005 ptr_extend instruction should be used. */
2006
2007#define POINTERS_EXTEND_UNSIGNED 1
2008
c98f8742
JVA
2009/* A function address in a call instruction
2010 is a byte address (for indexing purposes)
2011 so give the MEM rtx a byte's mode. */
2012#define FUNCTION_MODE QImode
d4ba09c0 2013\f
d4ba09c0 2014
d4ba09c0
SC
2015/* A C expression for the cost of a branch instruction. A value of 1
2016 is the default; other values are interpreted relative to that. */
2017
3a4fd356
JH
2018#define BRANCH_COST(speed_p, predictable_p) \
2019 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 2020
e327d1a3
L
2021/* An integer expression for the size in bits of the largest integer machine
2022 mode that should actually be used. We allow pairs of registers. */
2023#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2024
d4ba09c0
SC
2025/* Define this macro as a C expression which is nonzero if accessing
2026 less than a word of memory (i.e. a `char' or a `short') is no
2027 faster than accessing a word of memory, i.e., if such access
2028 require more than one instruction or if there is no difference in
2029 cost between byte and (aligned) word loads.
2030
2031 When this macro is not defined, the compiler will access a field by
2032 finding the smallest containing object; when it is defined, a
2033 fullword load will be used if alignment permits. Unless bytes
2034 accesses are faster than word accesses, using word accesses is
2035 preferable since it may eliminate subsequent memory access if
2036 subsequent accesses occur to other fields in the same word of the
2037 structure, but to different bytes. */
2038
2039#define SLOW_BYTE_ACCESS 0
2040
2041/* Nonzero if access to memory by shorts is slow and undesirable. */
2042#define SLOW_SHORT_ACCESS 0
2043
d4ba09c0
SC
2044/* Define this macro to be the value 1 if unaligned accesses have a
2045 cost many times greater than aligned accesses, for example if they
2046 are emulated in a trap handler.
2047
9cd10576
KH
2048 When this macro is nonzero, the compiler will act as if
2049 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2050 moves. This can cause significantly more instructions to be
9cd10576 2051 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2052 accesses only add a cycle or two to the time for a memory access.
2053
2054 If the value of this macro is always zero, it need not be defined. */
2055
e1565e65 2056/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2057
d4ba09c0
SC
2058/* Define this macro if it is as good or better to call a constant
2059 function address than to call an address kept in a register.
2060
2061 Desirable on the 386 because a CALL with a constant address is
2062 faster than one with a register address. */
2063
1e8552c2 2064#define NO_FUNCTION_CSE 1
c98f8742 2065\f
c572e5ba
JVA
2066/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2067 return the mode to be used for the comparison.
2068
2069 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2070 VOIDmode should be used in all other cases.
c572e5ba 2071
16189740 2072 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2073 possible, to allow for more combinations. */
c98f8742 2074
d9a5f180 2075#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2076
9cd10576 2077/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2078 reversed. */
2079
2080#define REVERSIBLE_CC_MODE(MODE) 1
2081
2082/* A C expression whose value is reversed condition code of the CODE for
2083 comparison done in CC_MODE mode. */
3c5cb3e4 2084#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2085
c98f8742
JVA
2086\f
2087/* Control the assembler format that we output, to the extent
2088 this does not vary between assemblers. */
2089
2090/* How to refer to registers in assembler output.
892a2d68 2091 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2092
a7b376ee 2093/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2094 For non floating point regs, the following are the HImode names.
2095
2096 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2097 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2098 "y" code. */
c98f8742 2099
a7180f70
BS
2100#define HI_REGISTER_NAMES \
2101{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2102 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2103 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2104 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2105 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2106 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2107 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2108 "xmm16", "xmm17", "xmm18", "xmm19", \
2109 "xmm20", "xmm21", "xmm22", "xmm23", \
2110 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2111 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2112 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2113 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2114
c98f8742
JVA
2115#define REGISTER_NAMES HI_REGISTER_NAMES
2116
2117/* Table of additional register names to use in user input. */
2118
2119#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2120{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2121 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2122 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2123 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2124 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2125 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2126 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2127 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2128 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2129 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2130 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2131 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2132 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2133 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2134 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2135 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2136 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2137 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2138 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2139 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2140 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2141 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2142
2143/* Note we are omitting these since currently I don't know how
2144to get gcc to use these, since they want the same but different
2145number as al, and ax.
2146*/
2147
c98f8742 2148#define QI_REGISTER_NAMES \
3f3f2124 2149{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2150
2151/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2152 of regs 0 through 3. */
c98f8742
JVA
2153
2154#define QI_HIGH_REGISTER_NAMES \
2155{"ah", "dh", "ch", "bh", }
2156
2157/* How to renumber registers for dbx and gdb. */
2158
d9a5f180
GS
2159#define DBX_REGISTER_NUMBER(N) \
2160 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2161
9a82e702
MS
2162extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2163extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2164extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2165
780a5b71
UB
2166extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2167
469ac993
JM
2168/* Before the prologue, RA is at 0(%esp). */
2169#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2170 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2171
e414ab29 2172/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2173#define RETURN_ADDR_RTX(COUNT, FRAME) \
2174 ((COUNT) == 0 \
2175 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2176 -UNITS_PER_WORD)) \
2177 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2178
892a2d68 2179/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2180#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2181
a6ab3aad 2182/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2183#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2184
1020a5ab 2185/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2186#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2187#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2188
ad919812 2189
e4c4ebeb
RH
2190/* Select a format to encode pointers in exception handling data. CODE
2191 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2192 true if the symbol may be affected by dynamic relocations.
2193
2194 ??? All x86 object file formats are capable of representing this.
2195 After all, the relocation needed is the same as for the call insn.
2196 Whether or not a particular assembler allows us to enter such, I
2197 guess we'll have to see. */
d9a5f180 2198#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2199 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2200
c98f8742
JVA
2201/* This is how to output an insn to push a register on the stack.
2202 It need not be very fast code. */
2203
d9a5f180 2204#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2205do { \
2206 if (TARGET_64BIT) \
2207 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2208 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2209 else \
2210 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2211} while (0)
c98f8742
JVA
2212
2213/* This is how to output an insn to pop a register from the stack.
2214 It need not be very fast code. */
2215
d9a5f180 2216#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2217do { \
2218 if (TARGET_64BIT) \
2219 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2220 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2221 else \
2222 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2223} while (0)
c98f8742 2224
f88c65f7 2225/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2226
2227#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2228 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2229
f88c65f7 2230/* This is how to output an element of a case-vector that is relative. */
c98f8742 2231
33f7f353 2232#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2233 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2234
63001560 2235/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2236
2237#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2238{ \
2239 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2240 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2241}
2242
2243/* A C statement or statements which output an assembler instruction
2244 opcode to the stdio stream STREAM. The macro-operand PTR is a
2245 variable of type `char *' which points to the opcode name in
2246 its "internal" form--the form that is written in the machine
2247 description. */
2248
2249#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2250 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2251
6a90d232
L
2252/* A C statement to output to the stdio stream FILE an assembler
2253 command to pad the location counter to a multiple of 1<<LOG
2254 bytes if it is within MAX_SKIP bytes. */
2255
2256#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2257#undef ASM_OUTPUT_MAX_SKIP_PAD
2258#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2259 if ((LOG) != 0) \
2260 { \
2261 if ((MAX_SKIP) == 0) \
2262 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2263 else \
2264 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2265 }
2266#endif
2267
135a687e
KT
2268/* Write the extra assembler code needed to declare a function
2269 properly. */
2270
2271#undef ASM_OUTPUT_FUNCTION_LABEL
2272#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2273 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2274
f7288899
EC
2275/* Under some conditions we need jump tables in the text section,
2276 because the assembler cannot handle label differences between
2277 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2278
2279#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2280 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2281 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2282
cea3bd3e
RH
2283/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2284 and switch back. For x86 we do this only to save a few bytes that
2285 would otherwise be unused in the text section. */
ad211091
KT
2286#define CRT_MKSTR2(VAL) #VAL
2287#define CRT_MKSTR(x) CRT_MKSTR2(x)
2288
2289#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2290 asm (SECTION_OP "\n\t" \
2291 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2292 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2293
2294/* Default threshold for putting data in large sections
2295 with x86-64 medium memory model */
2296#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2297
2298/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2299
2300#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2301do { \
2302 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2303 && get_attr_maybe_prefix_bnd (INSN)) \
2304 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2305} while (0)
74b42c8b 2306\f
b97de419
L
2307/* Which processor to tune code generation for. These must be in sync
2308 with processor_target_table in i386.c. */
5bf0ebab
RH
2309
2310enum processor_type
2311{
b97de419
L
2312 PROCESSOR_GENERIC = 0,
2313 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2314 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2315 PROCESSOR_PENTIUM,
2d6b2e28 2316 PROCESSOR_LAKEMONT,
5bf0ebab 2317 PROCESSOR_PENTIUMPRO,
5bf0ebab 2318 PROCESSOR_PENTIUM4,
89c43c0a 2319 PROCESSOR_NOCONA,
340ef734 2320 PROCESSOR_CORE2,
d3c11974
L
2321 PROCESSOR_NEHALEM,
2322 PROCESSOR_SANDYBRIDGE,
3a579e09 2323 PROCESSOR_HASWELL,
d3c11974
L
2324 PROCESSOR_BONNELL,
2325 PROCESSOR_SILVERMONT,
52747219 2326 PROCESSOR_KNL,
06caf59d 2327 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2328 PROCESSOR_INTEL,
b97de419
L
2329 PROCESSOR_GEODE,
2330 PROCESSOR_K6,
2331 PROCESSOR_ATHLON,
2332 PROCESSOR_K8,
21efb4d4 2333 PROCESSOR_AMDFAM10,
1133125e 2334 PROCESSOR_BDVER1,
4d652a18 2335 PROCESSOR_BDVER2,
eb2f2b44 2336 PROCESSOR_BDVER3,
ed97ad47 2337 PROCESSOR_BDVER4,
14b52538 2338 PROCESSOR_BTVER1,
e32bfc16 2339 PROCESSOR_BTVER2,
9ce29eb0 2340 PROCESSOR_ZNVER1,
5bf0ebab
RH
2341 PROCESSOR_max
2342};
2343
9e555526 2344extern enum processor_type ix86_tune;
5bf0ebab 2345extern enum processor_type ix86_arch;
5bf0ebab 2346
8362f420
JH
2347/* Size of the RED_ZONE area. */
2348#define RED_ZONE_SIZE 128
2349/* Reserved area of the red zone for temporaries. */
2350#define RED_ZONE_RESERVE 8
c93e80a5 2351
95899b34 2352extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2353extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2354
2355/* Smallest class containing REGNO. */
2356extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2357
0948ccb2
PB
2358enum ix86_fpcmp_strategy {
2359 IX86_FPCMP_SAHF,
2360 IX86_FPCMP_COMI,
2361 IX86_FPCMP_ARITH
2362};
22fb740d
JH
2363\f
2364/* To properly truncate FP values into integers, we need to set i387 control
2365 word. We can't emit proper mode switching code before reload, as spills
2366 generated by reload may truncate values incorrectly, but we still can avoid
2367 redundant computation of new control word by the mode switching pass.
2368 The fldcw instructions are still emitted redundantly, but this is probably
2369 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2370 the sequence.
22fb740d
JH
2371
2372 The machinery is to emit simple truncation instructions and split them
2373 before reload to instructions having USEs of two memory locations that
2374 are filled by this code to old and new control word.
fce5a9f2 2375
22fb740d
JH
2376 Post-reload pass may be later used to eliminate the redundant fildcw if
2377 needed. */
2378
c7ca8ef8
UB
2379enum ix86_stack_slot
2380{
2381 SLOT_TEMP = 0,
2382 SLOT_CW_STORED,
2383 SLOT_CW_TRUNC,
2384 SLOT_CW_FLOOR,
2385 SLOT_CW_CEIL,
2386 SLOT_CW_MASK_PM,
2387 MAX_386_STACK_LOCALS
2388};
2389
ff680eb1
UB
2390enum ix86_entity
2391{
c7ca8ef8
UB
2392 X86_DIRFLAG = 0,
2393 AVX_U128,
ff97910d 2394 I387_TRUNC,
ff680eb1
UB
2395 I387_FLOOR,
2396 I387_CEIL,
2397 I387_MASK_PM,
2398 MAX_386_ENTITIES
2399};
2400
c7ca8ef8 2401enum x86_dirflag_state
ff680eb1 2402{
c7ca8ef8
UB
2403 X86_DIRFLAG_RESET,
2404 X86_DIRFLAG_ANY
ff680eb1 2405};
22fb740d 2406
ff97910d
VY
2407enum avx_u128_state
2408{
2409 AVX_U128_CLEAN,
2410 AVX_U128_DIRTY,
2411 AVX_U128_ANY
2412};
2413
22fb740d
JH
2414/* Define this macro if the port needs extra instructions inserted
2415 for mode switching in an optimizing compilation. */
2416
ff680eb1
UB
2417#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2418 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2419
2420/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2421 initializer for an array of integers. Each initializer element N
2422 refers to an entity that needs mode switching, and specifies the
2423 number of different modes that might need to be set for this
2424 entity. The position of the initializer in the initializer -
2425 starting counting at zero - determines the integer that is used to
2426 refer to the mode-switched entity in question. */
2427
c7ca8ef8
UB
2428#define NUM_MODES_FOR_MODE_SWITCHING \
2429 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2430 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2431
0f0138b6
JH
2432\f
2433/* Avoid renaming of stack registers, as doing so in combination with
2434 scheduling just increases amount of live registers at time and in
2435 the turn amount of fxch instructions needed.
2436
3f97cb0b
AI
2437 ??? Maybe Pentium chips benefits from renaming, someone can try....
2438
2439 Don't rename evex to non-evex sse registers. */
0f0138b6 2440
1a6e82b8
UB
2441#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2442 (!STACK_REGNO_P (SRC) \
2443 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2444
3b3c6a3f 2445\f
e91f04de 2446#define FASTCALL_PREFIX '@'
fa1a0d02 2447\f
ec7ded37 2448/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2449
604a6be9 2450#ifndef USED_FOR_TARGET
ec7ded37 2451struct GTY(()) machine_frame_state
cd9c1ca8 2452{
ec7ded37
RH
2453 /* This pair tracks the currently active CFA as reg+offset. When reg
2454 is drap_reg, we don't bother trying to record here the real CFA when
2455 it might really be a DW_CFA_def_cfa_expression. */
2456 rtx cfa_reg;
2457 HOST_WIDE_INT cfa_offset;
2458
2459 /* The current offset (canonically from the CFA) of ESP and EBP.
2460 When stack frame re-alignment is active, these may not be relative
2461 to the CFA. However, in all cases they are relative to the offsets
2462 of the saved registers stored in ix86_frame. */
2463 HOST_WIDE_INT sp_offset;
2464 HOST_WIDE_INT fp_offset;
2465
2466 /* The size of the red-zone that may be assumed for the purposes of
2467 eliding register restore notes in the epilogue. This may be zero
2468 if no red-zone is in effect, or may be reduced from the real
2469 red-zone value by a maximum runtime stack re-alignment value. */
2470 int red_zone_offset;
2471
2472 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2473 value within the frame. If false then the offset above should be
2474 ignored. Note that DRAP, if valid, *always* points to the CFA and
2475 thus has an offset of zero. */
2476 BOOL_BITFIELD sp_valid : 1;
2477 BOOL_BITFIELD fp_valid : 1;
2478 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2479
2480 /* Indicate whether the local stack frame has been re-aligned. When
2481 set, the SP/FP offsets above are relative to the aligned frame
2482 and not the CFA. */
2483 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2484};
2485
f81c9774
RH
2486/* Private to winnt.c. */
2487struct seh_frame_state;
2488
f8071c05
L
2489enum function_type
2490{
2491 TYPE_UNKNOWN = 0,
2492 TYPE_NORMAL,
2493 /* The current function is an interrupt service routine with a
2494 pointer argument as specified by the "interrupt" attribute. */
2495 TYPE_INTERRUPT,
2496 /* The current function is an interrupt service routine with a
2497 pointer argument and an integer argument as specified by the
2498 "interrupt" attribute. */
2499 TYPE_EXCEPTION
2500};
2501
d1b38208 2502struct GTY(()) machine_function {
fa1a0d02
JH
2503 struct stack_local_entry *stack_locals;
2504 const char *some_ld_name;
4aab97f9
L
2505 int varargs_gpr_size;
2506 int varargs_fpr_size;
ff680eb1 2507 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2508
2509 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2510 has been computed for. */
2511 int use_fast_prologue_epilogue_nregs;
2512
7458026b
ILT
2513 /* For -fsplit-stack support: A stack local which holds a pointer to
2514 the stack arguments for a function with a variable number of
2515 arguments. This is set at the start of the function and is used
2516 to initialize the overflow_arg_area field of the va_list
2517 structure. */
2518 rtx split_stack_varargs_pointer;
2519
3452586b
RH
2520 /* This value is used for amd64 targets and specifies the current abi
2521 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2522 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2523
2524 /* Nonzero if the function accesses a previous frame. */
2525 BOOL_BITFIELD accesses_prev_frame : 1;
2526
922e3e33
UB
2527 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2528 expander to determine the style used. */
3452586b
RH
2529 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2530
1e4490dc
UB
2531 /* Nonzero if the current function calls pc thunk and
2532 must not use the red zone. */
2533 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2534
5bf5a10b
AO
2535 /* If true, the current function needs the default PIC register, not
2536 an alternate register (on x86) and must not use the red zone (on
2537 x86_64), even if it's a leaf function. We don't want the
2538 function to be regarded as non-leaf because TLS calls need not
2539 affect register allocation. This flag is set when a TLS call
2540 instruction is expanded within a function, and never reset, even
2541 if all such instructions are optimized away. Use the
2542 ix86_current_function_calls_tls_descriptor macro for a better
2543 approximation. */
3452586b
RH
2544 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2545
2546 /* If true, the current function has a STATIC_CHAIN is placed on the
2547 stack below the return address. */
2548 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2549
529a6471
JJ
2550 /* If true, it is safe to not save/restore DRAP register. */
2551 BOOL_BITFIELD no_drap_save_restore : 1;
2552
f8071c05
L
2553 /* Function type. */
2554 ENUM_BITFIELD(function_type) func_type : 2;
2555
2556 /* If true, the current function is a function specified with
2557 the "interrupt" or "no_caller_saved_registers" attribute. */
2558 BOOL_BITFIELD no_caller_saved_registers : 1;
2559
a0ff7835
L
2560 /* If true, there is register available for argument passing. This
2561 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2562 if there is scratch register available for indirect sibcall. In
2563 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2564 pass arguments and can be used for indirect sibcall. */
2565 BOOL_BITFIELD arg_reg_available : 1;
2566
ec7ded37
RH
2567 /* During prologue/epilogue generation, the current frame state.
2568 Otherwise, the frame state at the end of the prologue. */
2569 struct machine_frame_state fs;
f81c9774
RH
2570
2571 /* During SEH output, this is non-null. */
2572 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2573};
cd9c1ca8 2574#endif
fa1a0d02
JH
2575
2576#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2577#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2578#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2579#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2580#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2581#define ix86_tls_descriptor_calls_expanded_in_cfun \
2582 (cfun->machine->tls_descriptor_call_expanded_p)
2583/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2584 calls are optimized away, we try to detect cases in which it was
2585 optimized away. Since such instructions (use (reg REG_SP)), we can
2586 verify whether there's any such instruction live by testing that
2587 REG_SP is live. */
2588#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2589 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2590#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2591
1bc7c5b6
ZW
2592/* Control behavior of x86_file_start. */
2593#define X86_FILE_START_VERSION_DIRECTIVE false
2594#define X86_FILE_START_FLTUSED false
2595
7dcbf659
JH
2596/* Flag to mark data that is in the large address area. */
2597#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2598#define SYMBOL_REF_FAR_ADDR_P(X) \
2599 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2600
2601/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2602 have defined always, to avoid ifdefing. */
2603#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2604#define SYMBOL_REF_DLLIMPORT_P(X) \
2605 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2606
2607#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2608#define SYMBOL_REF_DLLEXPORT_P(X) \
2609 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2610
82c0e1a0
KT
2611#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2612#define SYMBOL_REF_STUBVAR_P(X) \
2613 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2614
7942e47e
RY
2615extern void debug_ready_dispatch (void);
2616extern void debug_dispatch_window (int);
2617
91afcfa3
QN
2618/* The value at zero is only defined for the BMI instructions
2619 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2620#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2621 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2622#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2623 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2624
2625
b8ce4e94
KT
2626/* Flags returned by ix86_get_callcvt (). */
2627#define IX86_CALLCVT_CDECL 0x1
2628#define IX86_CALLCVT_STDCALL 0x2
2629#define IX86_CALLCVT_FASTCALL 0x4
2630#define IX86_CALLCVT_THISCALL 0x8
2631#define IX86_CALLCVT_REGPARM 0x10
2632#define IX86_CALLCVT_SSEREGPARM 0x20
2633
2634#define IX86_BASE_CALLCVT(FLAGS) \
2635 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2636 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2637
b86b9f44
MM
2638#define RECIP_MASK_NONE 0x00
2639#define RECIP_MASK_DIV 0x01
2640#define RECIP_MASK_SQRT 0x02
2641#define RECIP_MASK_VEC_DIV 0x04
2642#define RECIP_MASK_VEC_SQRT 0x08
2643#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2644 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2645#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2646
2647#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2648#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2649#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2650#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2651
5dcfdccd
KY
2652#define IX86_HLE_ACQUIRE (1 << 16)
2653#define IX86_HLE_RELEASE (1 << 17)
2654
e83b8e2e
JJ
2655/* For switching between functions with different target attributes. */
2656#define SWITCHABLE_TARGET 1
2657
44d0de8d
UB
2658#define TARGET_SUPPORTS_WIDE_INT 1
2659
c98f8742
JVA
2660/*
2661Local variables:
2662version-control: t
2663End:
2664*/