]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
matrix: New directory.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
8a2fcf91
KH
3 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation,
4 Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
188fc5b5 19along with GCC; see the file COPYING. If not, write to
39d14dda
KC
20the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21Boston, MA 02110-1301, USA. */
c98f8742 22
ccf8e764
RH
23/* The purpose of this file is to define the characteristics of the i386,
24 independent of assembler syntax or operating system.
25
26 Three other files build on this one to describe a specific assembler syntax:
27 bsd386.h, att386.h, and sun386.h.
28
29 The actual tm.h file for a particular system should include
30 this file, and then the file for the appropriate assembler syntax.
31
32 Many macros that specify assembler syntax are omitted entirely from
33 this file because they really belong in the files for particular
34 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
35 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
36 that start with ASM_ or end in ASM_OP. */
37
26b5109f
RS
38#include "config/vxworks-dummy.h"
39
8c996513
JH
40/* Algorithm to expand string function with. */
41enum stringop_alg
42{
43 no_stringop,
44 libcall,
45 rep_prefix_1_byte,
46 rep_prefix_4_byte,
47 rep_prefix_8_byte,
48 loop_1_byte,
49 loop,
50 unrolled_loop
51};
ccf8e764 52
8c996513 53#define NAX_STRINGOP_ALGS 4
ccf8e764 54
8c996513
JH
55/* Specify what algorithm to use for stringops on known size.
56 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
57 known at compile time or estimated via feedback, the SIZE array
58 is walked in order until MAX is greater then the estimate (or -1
59 means infinity). Corresponding ALG is used then.
60 For example initializer:
61 {{256, loop}, {-1, rep_prefix_4_byte}}
62 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 63 be used otherwise. */
8c996513
JH
64struct stringop_algs
65{
66 const enum stringop_alg unknown_size;
67 const struct stringop_strategy {
68 const int max;
69 const enum stringop_alg alg;
70 } size [NAX_STRINGOP_ALGS];
71};
72
d4ba09c0
SC
73/* Define the specific costs for a given cpu */
74
75struct processor_costs {
8b60264b
KG
76 const int add; /* cost of an add instruction */
77 const int lea; /* cost of a lea instruction */
78 const int shift_var; /* variable shift costs */
79 const int shift_const; /* constant shift costs */
f676971a 80 const int mult_init[5]; /* cost of starting a multiply
4977bab6 81 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 82 const int mult_bit; /* cost of multiply per each bit set */
f676971a 83 const int divide[5]; /* cost of a divide/mod
4977bab6 84 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
85 int movsx; /* The cost of movsx operation. */
86 int movzx; /* The cost of movzx operation. */
8b60264b
KG
87 const int large_insn; /* insns larger than this cost more */
88 const int move_ratio; /* The threshold of number of scalar
ac775968 89 memory-to-memory move insns. */
8b60264b
KG
90 const int movzbl_load; /* cost of loading using movzbl */
91 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
92 in QImode, HImode and SImode relative
93 to reg-reg move (2). */
8b60264b 94 const int int_store[3]; /* cost of storing integer register
96e7ae40 95 in QImode, HImode and SImode */
8b60264b
KG
96 const int fp_move; /* cost of reg,reg fld/fst */
97 const int fp_load[3]; /* cost of loading FP register
96e7ae40 98 in SFmode, DFmode and XFmode */
8b60264b 99 const int fp_store[3]; /* cost of storing FP register
96e7ae40 100 in SFmode, DFmode and XFmode */
8b60264b
KG
101 const int mmx_move; /* cost of moving MMX register. */
102 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 103 in SImode and DImode */
8b60264b 104 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 105 in SImode and DImode */
8b60264b
KG
106 const int sse_move; /* cost of moving SSE register. */
107 const int sse_load[3]; /* cost of loading SSE register
fa79946e 108 in SImode, DImode and TImode*/
8b60264b 109 const int sse_store[3]; /* cost of storing SSE register
fa79946e 110 in SImode, DImode and TImode*/
8b60264b 111 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 112 integer and vice versa. */
f4365627
JH
113 const int prefetch_block; /* bytes moved to cache for prefetch. */
114 const int simultaneous_prefetches; /* number of parallel prefetch
115 operations. */
4977bab6 116 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
117 const int fadd; /* cost of FADD and FSUB instructions. */
118 const int fmul; /* cost of FMUL instruction. */
119 const int fdiv; /* cost of FDIV instruction. */
120 const int fabs; /* cost of FABS instruction. */
121 const int fchs; /* cost of FCHS instruction. */
122 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
123 /* Specify what algorithm
124 to use for stringops on unknown size. */
125 struct stringop_algs memcpy[2], memset[2];
d4ba09c0
SC
126};
127
8b60264b 128extern const struct processor_costs *ix86_cost;
d4ba09c0 129
c98f8742
JVA
130/* Macros used in the machine description to test the flags. */
131
ddd5a7c1 132/* configure can arrange to make this 2, to force a 486. */
e075ae69 133
35b528be 134#ifndef TARGET_CPU_DEFAULT
d326eaf0 135#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 136#endif
35b528be 137
004d3859
GK
138#ifndef TARGET_FPMATH_DEFAULT
139#define TARGET_FPMATH_DEFAULT \
140 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
141#endif
142
6ac49599 143#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 144
5791cc29
JT
145/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
146 compile-time constant. */
147#ifdef IN_LIBGCC2
6ac49599 148#undef TARGET_64BIT
5791cc29
JT
149#ifdef __x86_64__
150#define TARGET_64BIT 1
151#else
152#define TARGET_64BIT 0
153#endif
154#else
6ac49599
RS
155#ifndef TARGET_BI_ARCH
156#undef TARGET_64BIT
67adf6a9 157#if TARGET_64BIT_DEFAULT
0c2dc519
JH
158#define TARGET_64BIT 1
159#else
160#define TARGET_64BIT 0
161#endif
162#endif
5791cc29 163#endif
25f94bb5 164
750054a2
CT
165#define HAS_LONG_COND_BRANCH 1
166#define HAS_LONG_UNCOND_BRANCH 1
167
9e555526
RH
168#define TARGET_386 (ix86_tune == PROCESSOR_I386)
169#define TARGET_486 (ix86_tune == PROCESSOR_I486)
170#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
171#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 172#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
173#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
174#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
175#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
176#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 177#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 178#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 179#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
180#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
181#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
182#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 183#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 184
80fd744f
RH
185/* Feature tests against the various tunings. */
186enum ix86_tune_indices {
187 X86_TUNE_USE_LEAVE,
188 X86_TUNE_PUSH_MEMORY,
189 X86_TUNE_ZERO_EXTEND_WITH_AND,
190 X86_TUNE_USE_BIT_TEST,
191 X86_TUNE_UNROLL_STRLEN,
192 X86_TUNE_DEEP_BRANCH_PREDICTION,
193 X86_TUNE_BRANCH_PREDICTION_HINTS,
194 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 195 X86_TUNE_USE_SAHF,
80fd744f
RH
196 X86_TUNE_MOVX,
197 X86_TUNE_PARTIAL_REG_STALL,
198 X86_TUNE_PARTIAL_FLAG_REG_STALL,
199 X86_TUNE_USE_HIMODE_FIOP,
200 X86_TUNE_USE_SIMODE_FIOP,
201 X86_TUNE_USE_MOV0,
202 X86_TUNE_USE_CLTD,
203 X86_TUNE_USE_XCHGB,
204 X86_TUNE_SPLIT_LONG_MOVES,
205 X86_TUNE_READ_MODIFY_WRITE,
206 X86_TUNE_READ_MODIFY,
207 X86_TUNE_PROMOTE_QIMODE,
208 X86_TUNE_FAST_PREFIX,
209 X86_TUNE_SINGLE_STRINGOP,
210 X86_TUNE_QIMODE_MATH,
211 X86_TUNE_HIMODE_MATH,
212 X86_TUNE_PROMOTE_QI_REGS,
213 X86_TUNE_PROMOTE_HI_REGS,
214 X86_TUNE_ADD_ESP_4,
215 X86_TUNE_ADD_ESP_8,
216 X86_TUNE_SUB_ESP_4,
217 X86_TUNE_SUB_ESP_8,
218 X86_TUNE_INTEGER_DFMODE_MOVES,
219 X86_TUNE_PARTIAL_REG_DEPENDENCY,
220 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
221 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
222 X86_TUNE_SSE_SPLIT_REGS,
223 X86_TUNE_SSE_TYPELESS_STORES,
224 X86_TUNE_SSE_LOAD0_BY_PXOR,
225 X86_TUNE_MEMORY_MISMATCH_STALL,
226 X86_TUNE_PROLOGUE_USING_MOVE,
227 X86_TUNE_EPILOGUE_USING_MOVE,
228 X86_TUNE_SHIFT1,
229 X86_TUNE_USE_FFREEP,
230 X86_TUNE_INTER_UNIT_MOVES,
231 X86_TUNE_FOUR_JUMP_LIMIT,
232 X86_TUNE_SCHEDULE,
233 X86_TUNE_USE_BT,
234 X86_TUNE_USE_INCDEC,
235 X86_TUNE_PAD_RETURNS,
236 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
237 X86_TUNE_SHORTEN_X87_SSE,
238 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 239 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
240 X86_TUNE_SLOW_IMUL_IMM32_MEM,
241 X86_TUNE_SLOW_IMUL_IMM8,
242 X86_TUNE_MOVE_M1_VIA_OR,
243 X86_TUNE_NOT_UNPAIRABLE,
244 X86_TUNE_NOT_VECTORMODE,
80fd744f
RH
245
246 X86_TUNE_LAST
247};
248
249extern unsigned int ix86_tune_features[X86_TUNE_LAST];
250
251#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
252#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
253#define TARGET_ZERO_EXTEND_WITH_AND \
254 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
255#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
256#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
257#define TARGET_DEEP_BRANCH_PREDICTION \
258 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
259#define TARGET_BRANCH_PREDICTION_HINTS \
260 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
261#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
262#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
263#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
264#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
265#define TARGET_PARTIAL_FLAG_REG_STALL \
266 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
267#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
268#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
269#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
270#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
271#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
272#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
273#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
274#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
275#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
276#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
277#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
278#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
279#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
280#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
281#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
282#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
283#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
284#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
285#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
286#define TARGET_INTEGER_DFMODE_MOVES \
287 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
288#define TARGET_PARTIAL_REG_DEPENDENCY \
289 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
290#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
291 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
292#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
293 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
294#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
295#define TARGET_SSE_TYPELESS_STORES \
296 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
297#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
298#define TARGET_MEMORY_MISMATCH_STALL \
299 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
300#define TARGET_PROLOGUE_USING_MOVE \
301 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
302#define TARGET_EPILOGUE_USING_MOVE \
303 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
304#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
305#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
306#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
307#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
308#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
309#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
310#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
311#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
312#define TARGET_EXT_80387_CONSTANTS \
313 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
314#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
315#define TARGET_AVOID_VECTOR_DECODE \
316 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
317#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
318 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
319#define TARGET_SLOW_IMUL_IMM32_MEM \
320 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
321#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
322#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
323#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
324#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
80fd744f
RH
325
326/* Feature tests against the various architecture variations. */
327enum ix86_arch_indices {
328 X86_ARCH_CMOVE, /* || TARGET_SSE */
329 X86_ARCH_CMPXCHG,
330 X86_ARCH_CMPXCHG8B,
331 X86_ARCH_XADD,
332 X86_ARCH_BSWAP,
333
334 X86_ARCH_LAST
335};
336
337extern unsigned int ix86_arch_features[X86_ARCH_LAST];
338
339#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
340#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
341#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
342#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
343#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
344
5be6cb59
UB
345#define TARGET_CMPXCHG16B x86_cmpxchg16b
346#define TARGET_SAHF x86_sahf
347
80fd744f
RH
348#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
349
350extern int x86_prefetch_sse;
351#define TARGET_PREFETCH_SSE x86_prefetch_sse
352
80fd744f
RH
353#define ASSEMBLER_DIALECT (ix86_asm_dialect)
354
355#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
356#define TARGET_MIX_SSE_I387 \
357 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
358
359#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
360#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
361#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
362#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 363
67adf6a9
RH
364#ifndef TARGET_64BIT_DEFAULT
365#define TARGET_64BIT_DEFAULT 0
25f94bb5 366#endif
74dc3e94
RH
367#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
368#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
369#endif
25f94bb5 370
0ed4a390
JL
371/* Once GDB has been enhanced to deal with functions without frame
372 pointers, we can change this to allow for elimination of
373 the frame pointer in leaf functions. */
374#define TARGET_DEFAULT 0
67adf6a9 375
ccf8e764
RH
376/* Extra bits to force on w/ 64-bit mode. */
377#define TARGET_SUBTARGET64_DEFAULT 0
378
b069de3b
SS
379/* This is not really a target flag, but is done this way so that
380 it's analogous to similar code for Mach-O on PowerPC. darwin.h
381 redefines this to 1. */
382#define TARGET_MACHO 0
383
ccf8e764
RH
384/* Likewise, for the Windows 64-bit ABI. */
385#define TARGET_64BIT_MS_ABI 0
386
cc69336f
RH
387/* Subtargets may reset this to 1 in order to enable 96-bit long double
388 with the rounding mode forced to 53 bits. */
389#define TARGET_96_ROUND_53_LONG_DOUBLE 0
390
f5316dfe
MM
391/* Sometimes certain combinations of command options do not make
392 sense on a particular target machine. You can define a macro
393 `OVERRIDE_OPTIONS' to take account of this. This macro, if
394 defined, is executed once just after all the command options have
395 been parsed.
396
397 Don't use this macro to turn on various extra optimizations for
398 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
399
400#define OVERRIDE_OPTIONS override_options ()
401
d4ba09c0 402/* Define this to change the optimizations performed by default. */
d9a5f180
GS
403#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
404 optimization_options ((LEVEL), (SIZE))
d4ba09c0 405
682cd442
GK
406/* -march=native handling only makes sense with compiler running on
407 an x86 or x86_64 chip. If changing this condition, also change
408 the condition in driver-i386.c. */
409#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
410/* In driver-i386.c. */
411extern const char *host_detect_local_cpu (int argc, const char **argv);
412#define EXTRA_SPEC_FUNCTIONS \
413 { "local_cpu_detect", host_detect_local_cpu },
682cd442 414#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
415#endif
416
1cba2b96
EC
417/* Support for configure-time defaults of some command line options.
418 The order here is important so that -march doesn't squash the
419 tune or cpu values. */
7816bea0 420#define OPTION_DEFAULT_SPECS \
da2d4c01 421 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
422 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
423 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 424
241e1a89
SC
425/* Specs for the compiler proper */
426
628714d8 427#ifndef CC1_CPU_SPEC
fa959ce4 428#define CC1_CPU_SPEC_1 "\
9d913bbf 429%{mcpu=*:-mtune=%* \
d347d4c7 430%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 431%<mcpu=* \
c93e80a5
JH
432%{mintel-syntax:-masm=intel \
433%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
434%{mno-intel-syntax:-masm=att \
435%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 436
682cd442 437#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
438#define CC1_CPU_SPEC CC1_CPU_SPEC_1
439#else
440#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
441"%{march=native:%<march=native %:local_cpu_detect(arch) \
442 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
443%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
444#endif
241e1a89 445#endif
c98f8742 446\f
30efe578 447/* Target CPU builtins. */
1ba7b414
NB
448#define TARGET_CPU_CPP_BUILTINS() \
449 do \
450 { \
451 size_t arch_len = strlen (ix86_arch_string); \
9e555526 452 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 453 int last_arch_char = ix86_arch_string[arch_len - 1]; \
7706ca5d 454 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
455 \
456 if (TARGET_64BIT) \
457 { \
458 builtin_assert ("cpu=x86_64"); \
26b0ad13 459 builtin_assert ("machine=x86_64"); \
97242ddc
JH
460 builtin_define ("__amd64"); \
461 builtin_define ("__amd64__"); \
1ba7b414
NB
462 builtin_define ("__x86_64"); \
463 builtin_define ("__x86_64__"); \
464 } \
465 else \
466 { \
467 builtin_assert ("cpu=i386"); \
468 builtin_assert ("machine=i386"); \
469 builtin_define_std ("i386"); \
470 } \
471 \
9d913bbf 472 /* Built-ins based on -mtune= (or -march= if no \
9e555526 473 -mtune= given). */ \
1ba7b414
NB
474 if (TARGET_386) \
475 builtin_define ("__tune_i386__"); \
476 else if (TARGET_486) \
477 builtin_define ("__tune_i486__"); \
478 else if (TARGET_PENTIUM) \
479 { \
480 builtin_define ("__tune_i586__"); \
481 builtin_define ("__tune_pentium__"); \
9e555526 482 if (last_tune_char == 'x') \
1ba7b414
NB
483 builtin_define ("__tune_pentium_mmx__"); \
484 } \
485 else if (TARGET_PENTIUMPRO) \
486 { \
487 builtin_define ("__tune_i686__"); \
488 builtin_define ("__tune_pentiumpro__"); \
9e555526 489 switch (last_tune_char) \
2e37b0ce
RH
490 { \
491 case '3': \
492 builtin_define ("__tune_pentium3__"); \
5efb1046 493 /* FALLTHRU */ \
2e37b0ce
RH
494 case '2': \
495 builtin_define ("__tune_pentium2__"); \
496 break; \
497 } \
1ba7b414 498 } \
cfe1b18f
VM
499 else if (TARGET_GEODE) \
500 { \
501 builtin_define ("__tune_geode__"); \
502 } \
1ba7b414
NB
503 else if (TARGET_K6) \
504 { \
505 builtin_define ("__tune_k6__"); \
9e555526 506 if (last_tune_char == '2') \
1ba7b414 507 builtin_define ("__tune_k6_2__"); \
9e555526 508 else if (last_tune_char == '3') \
1ba7b414
NB
509 builtin_define ("__tune_k6_3__"); \
510 } \
511 else if (TARGET_ATHLON) \
512 { \
513 builtin_define ("__tune_athlon__"); \
514 /* Only plain "athlon" lacks SSE. */ \
9e555526 515 if (last_tune_char != 'n') \
1ba7b414
NB
516 builtin_define ("__tune_athlon_sse__"); \
517 } \
4977bab6
ZW
518 else if (TARGET_K8) \
519 builtin_define ("__tune_k8__"); \
21efb4d4
HJ
520 else if (TARGET_AMDFAM10) \
521 builtin_define ("__tune_amdfam10__"); \
1ba7b414
NB
522 else if (TARGET_PENTIUM4) \
523 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
524 else if (TARGET_NOCONA) \
525 builtin_define ("__tune_nocona__"); \
05f85dbb
VM
526 else if (TARGET_CORE2) \
527 builtin_define ("__tune_core2__"); \
1ba7b414
NB
528 \
529 if (TARGET_MMX) \
530 builtin_define ("__MMX__"); \
531 if (TARGET_3DNOW) \
532 builtin_define ("__3dNOW__"); \
533 if (TARGET_3DNOW_A) \
534 builtin_define ("__3dNOW_A__"); \
535 if (TARGET_SSE) \
536 builtin_define ("__SSE__"); \
537 if (TARGET_SSE2) \
538 builtin_define ("__SSE2__"); \
9e200aaf
KC
539 if (TARGET_SSE3) \
540 builtin_define ("__SSE3__"); \
b1875f52
L
541 if (TARGET_SSSE3) \
542 builtin_define ("__SSSE3__"); \
9a5cee02
L
543 if (TARGET_SSE4_1) \
544 builtin_define ("__SSE4_1__"); \
7706ca5d 545 if (TARGET_SSE4A) \
21efb4d4 546 builtin_define ("__SSE4A__"); \
48ddd46c
JH
547 if (TARGET_SSE_MATH && TARGET_SSE) \
548 builtin_define ("__SSE_MATH__"); \
549 if (TARGET_SSE_MATH && TARGET_SSE2) \
550 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
551 \
552 /* Built-ins based on -march=. */ \
553 if (ix86_arch == PROCESSOR_I486) \
554 { \
555 builtin_define ("__i486"); \
556 builtin_define ("__i486__"); \
557 } \
558 else if (ix86_arch == PROCESSOR_PENTIUM) \
559 { \
560 builtin_define ("__i586"); \
561 builtin_define ("__i586__"); \
562 builtin_define ("__pentium"); \
563 builtin_define ("__pentium__"); \
564 if (last_arch_char == 'x') \
565 builtin_define ("__pentium_mmx__"); \
566 } \
567 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
568 { \
569 builtin_define ("__i686"); \
570 builtin_define ("__i686__"); \
571 builtin_define ("__pentiumpro"); \
572 builtin_define ("__pentiumpro__"); \
573 } \
cfe1b18f
VM
574 else if (ix86_arch == PROCESSOR_GEODE) \
575 { \
576 builtin_define ("__geode"); \
577 builtin_define ("__geode__"); \
578 } \
1ba7b414
NB
579 else if (ix86_arch == PROCESSOR_K6) \
580 { \
581 \
582 builtin_define ("__k6"); \
583 builtin_define ("__k6__"); \
584 if (last_arch_char == '2') \
585 builtin_define ("__k6_2__"); \
586 else if (last_arch_char == '3') \
587 builtin_define ("__k6_3__"); \
588 } \
589 else if (ix86_arch == PROCESSOR_ATHLON) \
590 { \
591 builtin_define ("__athlon"); \
592 builtin_define ("__athlon__"); \
593 /* Only plain "athlon" lacks SSE. */ \
594 if (last_arch_char != 'n') \
595 builtin_define ("__athlon_sse__"); \
596 } \
4977bab6
ZW
597 else if (ix86_arch == PROCESSOR_K8) \
598 { \
599 builtin_define ("__k8"); \
600 builtin_define ("__k8__"); \
601 } \
21efb4d4
HJ
602 else if (ix86_arch == PROCESSOR_AMDFAM10) \
603 { \
604 builtin_define ("__amdfam10"); \
605 builtin_define ("__amdfam10__"); \
606 } \
1ba7b414
NB
607 else if (ix86_arch == PROCESSOR_PENTIUM4) \
608 { \
609 builtin_define ("__pentium4"); \
610 builtin_define ("__pentium4__"); \
611 } \
89c43c0a
VM
612 else if (ix86_arch == PROCESSOR_NOCONA) \
613 { \
614 builtin_define ("__nocona"); \
615 builtin_define ("__nocona__"); \
616 } \
05f85dbb
VM
617 else if (ix86_arch == PROCESSOR_CORE2) \
618 { \
619 builtin_define ("__core2"); \
620 builtin_define ("__core2__"); \
621 } \
1ba7b414 622 } \
30efe578
NB
623 while (0)
624
f4365627
JH
625#define TARGET_CPU_DEFAULT_i386 0
626#define TARGET_CPU_DEFAULT_i486 1
627#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
628#define TARGET_CPU_DEFAULT_pentium_mmx 3
629#define TARGET_CPU_DEFAULT_pentiumpro 4
630#define TARGET_CPU_DEFAULT_pentium2 5
631#define TARGET_CPU_DEFAULT_pentium3 6
632#define TARGET_CPU_DEFAULT_pentium4 7
cfe1b18f
VM
633#define TARGET_CPU_DEFAULT_geode 8
634#define TARGET_CPU_DEFAULT_k6 9
635#define TARGET_CPU_DEFAULT_k6_2 10
636#define TARGET_CPU_DEFAULT_k6_3 11
637#define TARGET_CPU_DEFAULT_athlon 12
638#define TARGET_CPU_DEFAULT_athlon_sse 13
639#define TARGET_CPU_DEFAULT_k8 14
640#define TARGET_CPU_DEFAULT_pentium_m 15
641#define TARGET_CPU_DEFAULT_prescott 16
642#define TARGET_CPU_DEFAULT_nocona 17
05f85dbb
VM
643#define TARGET_CPU_DEFAULT_core2 18
644#define TARGET_CPU_DEFAULT_generic 19
21efb4d4 645#define TARGET_CPU_DEFAULT_amdfam10 20
f4365627
JH
646
647#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
648 "pentiumpro", "pentium2", "pentium3", \
cfe1b18f 649 "pentium4", "geode", "k6", "k6-2", "k6-3", \
5bbeea44 650 "athlon", "athlon-4", "k8", \
d326eaf0 651 "pentium-m", "prescott", "nocona", \
21efb4d4 652 "core2", "generic", "amdfam10"}
0c2dc519 653
628714d8 654#ifndef CC1_SPEC
8015b78d 655#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
656#endif
657
658/* This macro defines names of additional specifications to put in the
659 specs that can be used in various specifications like CC1_SPEC. Its
660 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
661
662 Each subgrouping contains a string constant, that defines the
188fc5b5 663 specification name, and a string constant that used by the GCC driver
bcd86433
SC
664 program.
665
666 Do not define this macro if it does not need to do anything. */
667
668#ifndef SUBTARGET_EXTRA_SPECS
669#define SUBTARGET_EXTRA_SPECS
670#endif
671
672#define EXTRA_SPECS \
628714d8 673 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
674 SUBTARGET_EXTRA_SPECS
675\f
c98f8742
JVA
676/* target machine storage layout */
677
968a7562 678#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 679
d57a4b98
RH
680/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
681 FPU, assume that the fpcw is set to extended precision; when using
682 only SSE, rounding is correct; when using both SSE and the FPU,
683 the rounding precision is indeterminate, since either may be chosen
684 apparently at random. */
685#define TARGET_FLT_EVAL_METHOD \
5ccd517a 686 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 687
65d9c0ab
JH
688#define SHORT_TYPE_SIZE 16
689#define INT_TYPE_SIZE 32
690#define FLOAT_TYPE_SIZE 32
691#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
692#define DOUBLE_TYPE_SIZE 64
693#define LONG_LONG_TYPE_SIZE 64
694
67adf6a9 695#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 696#define MAX_BITS_PER_WORD 64
0c2dc519
JH
697#else
698#define MAX_BITS_PER_WORD 32
0c2dc519
JH
699#endif
700
c98f8742
JVA
701/* Define this if most significant byte of a word is the lowest numbered. */
702/* That is true on the 80386. */
703
704#define BITS_BIG_ENDIAN 0
705
706/* Define this if most significant byte of a word is the lowest numbered. */
707/* That is not true on the 80386. */
708#define BYTES_BIG_ENDIAN 0
709
710/* Define this if most significant word of a multiword number is the lowest
711 numbered. */
712/* Not true for 80386 */
713#define WORDS_BIG_ENDIAN 0
714
c98f8742 715/* Width of a word, in units (bytes). */
65d9c0ab 716#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
717#ifdef IN_LIBGCC2
718#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
719#else
720#define MIN_UNITS_PER_WORD 4
721#endif
c98f8742 722
c98f8742 723/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 724#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 725
e075ae69 726/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 727#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 728
d1f87653 729/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 730 aligned; the compiler cannot rely on having this alignment. */
e075ae69 731#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 732
ead903e9 733/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 734 entering main. This causes expand_main_function to forcibly align
1d482056
RH
735 the stack, which results in aligned frames for functions called from
736 main, though it does nothing for the alignment of main itself. */
737#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 738 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 739
ebff937c
SH
740/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
741 mandatory for the 64-bit ABI, and may or may not be true for other
742 operating systems. */
743#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
744
f963b5d9
RS
745/* Minimum allocation boundary for the code of a function. */
746#define FUNCTION_BOUNDARY 8
747
748/* C++ stores the virtual bit in the lowest bit of function pointers. */
749#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 750
892a2d68 751/* Alignment of field after `int : 0' in a structure. */
c98f8742 752
65d9c0ab 753#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
754
755/* Minimum size in bits of the largest boundary to which any
756 and all fundamental data types supported by the hardware
757 might need to be aligned. No data type wants to be aligned
17f24ff0 758 rounder than this.
fce5a9f2 759
d1f87653 760 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
761 and Pentium Pro XFmode values at 128 bit boundaries. */
762
763#define BIGGEST_ALIGNMENT 128
764
822eda12 765/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 766#define ALIGN_MODE_128(MODE) \
4501d314 767 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 768
17f24ff0 769/* The published ABIs say that doubles should be aligned on word
d1f87653 770 boundaries, so lower the alignment for structure fields unless
6fc605d8 771 -malign-double is set. */
e932b21b 772
e83f3cff
RH
773/* ??? Blah -- this macro is used directly by libobjc. Since it
774 supports no vector modes, cut out the complexity and fall back
775 on BIGGEST_FIELD_ALIGNMENT. */
776#ifdef IN_TARGET_LIBS
ef49d42e
JH
777#ifdef __x86_64__
778#define BIGGEST_FIELD_ALIGNMENT 128
779#else
e83f3cff 780#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 781#endif
e83f3cff 782#else
e932b21b
JH
783#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
784 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 785#endif
c98f8742 786
e5e8a8bf 787/* If defined, a C expression to compute the alignment given to a
a7180f70 788 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
789 and ALIGN is the alignment that the object would ordinarily have.
790 The value of this macro is used instead of that alignment to align
791 the object.
792
793 If this macro is not defined, then ALIGN is used.
794
795 The typical use of this macro is to increase alignment for string
796 constants to be word aligned so that `strcpy' calls that copy
797 constants can be done inline. */
798
d9a5f180 799#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 800
8a022443
JW
801/* If defined, a C expression to compute the alignment for a static
802 variable. TYPE is the data type, and ALIGN is the alignment that
803 the object would ordinarily have. The value of this macro is used
804 instead of that alignment to align the object.
805
806 If this macro is not defined, then ALIGN is used.
807
808 One use of this macro is to increase alignment of medium-size
809 data to make it all fit in fewer cache lines. Another is to
810 cause character arrays to be word-aligned so that `strcpy' calls
811 that copy constants to character arrays can be done inline. */
812
d9a5f180 813#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
814
815/* If defined, a C expression to compute the alignment for a local
816 variable. TYPE is the data type, and ALIGN is the alignment that
817 the object would ordinarily have. The value of this macro is used
818 instead of that alignment to align the object.
819
820 If this macro is not defined, then ALIGN is used.
821
822 One use of this macro is to increase alignment of medium-size
823 data to make it all fit in fewer cache lines. */
824
d9a5f180 825#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 826
53c17031
JH
827/* If defined, a C expression that gives the alignment boundary, in
828 bits, of an argument with the specified mode and type. If it is
829 not defined, `PARM_BOUNDARY' is used for all arguments. */
830
d9a5f180
GS
831#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
832 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 833
9cd10576 834/* Set this nonzero if move instructions will actually fail to work
c98f8742 835 when given unaligned data. */
b4ac57ab 836#define STRICT_ALIGNMENT 0
c98f8742
JVA
837
838/* If bit field type is int, don't let it cross an int,
839 and give entire struct the alignment of an int. */
43a88a8c 840/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 841#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
842\f
843/* Standard register usage. */
844
845/* This processor has special stack-like registers. See reg-stack.c
892a2d68 846 for details. */
c98f8742
JVA
847
848#define STACK_REGS
d9a5f180 849#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
850 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
851 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
852 || (MODE) == XFmode)
c98f8742
JVA
853
854/* Number of actual hardware registers.
855 The hardware registers are assigned numbers for the compiler
856 from 0 to just below FIRST_PSEUDO_REGISTER.
857 All registers that the compiler knows about must be given numbers,
858 even those that are not normally considered general registers.
859
860 In the 80386 we give the 8 general purpose registers the numbers 0-7.
861 We number the floating point registers 8-15.
862 Note that registers 0-7 can be accessed as a short or int,
863 while only 0-3 may be used with byte `mov' instructions.
864
865 Reg 16 does not correspond to any hardware register, but instead
866 appears in the RTL as an argument pointer prior to reload, and is
867 eliminated during reloading in favor of either the stack or frame
892a2d68 868 pointer. */
c98f8742 869
b0d95de8 870#define FIRST_PSEUDO_REGISTER 53
c98f8742 871
3073d01c
ML
872/* Number of hardware registers that go into the DWARF-2 unwind info.
873 If not defined, equals FIRST_PSEUDO_REGISTER. */
874
875#define DWARF_FRAME_REGISTERS 17
876
c98f8742
JVA
877/* 1 for registers that have pervasive standard uses
878 and are not available for the register allocator.
3f3f2124 879 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 880
3a4416fb
RS
881 The value is zero if the register is not fixed on either 32 or
882 64 bit targets, one if the register if fixed on both 32 and 64
883 bit targets, two if it is only fixed on 32bit targets and three
884 if its only fixed on 64bit targets.
885 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 886 */
a7180f70
BS
887#define FIXED_REGISTERS \
888/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 889{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
890/*arg,flags,fpsr,fpcr,frame*/ \
891 1, 1, 1, 1, 1, \
a7180f70
BS
892/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
893 0, 0, 0, 0, 0, 0, 0, 0, \
894/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
895 0, 0, 0, 0, 0, 0, 0, 0, \
896/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 897 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 898/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 899 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 900
c98f8742
JVA
901
902/* 1 for registers not available across function calls.
903 These must include the FIXED_REGISTERS and also any
904 registers that can be used without being saved.
905 The latter must include the registers where values are returned
906 and the register where structure-value addresses are passed.
fce5a9f2
EC
907 Aside from that, you can include as many other registers as you like.
908
9d72d996
JJ
909 The value is zero if the register is not call used on either 32 or
910 64 bit targets, one if the register if call used on both 32 and 64
911 bit targets, two if it is only call used on 32bit targets and three
912 if its only call used on 64bit targets.
3a4416fb 913 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 914*/
a7180f70
BS
915#define CALL_USED_REGISTERS \
916/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 917{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
918/*arg,flags,fpsr,fpcr,frame*/ \
919 1, 1, 1, 1, 1, \
a7180f70 920/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 921 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 922/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 923 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 924/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 925 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 926/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 927 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 928
3b3c6a3f
MM
929/* Order in which to allocate registers. Each register must be
930 listed once, even those in FIXED_REGISTERS. List frame pointer
931 late and fixed registers last. Note that, in general, we prefer
932 registers listed in CALL_USED_REGISTERS, keeping the others
933 available for storage of persistent values.
934
162f023b
JH
935 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
936 so this is just empty initializer for array. */
3b3c6a3f 937
162f023b
JH
938#define REG_ALLOC_ORDER \
939{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
940 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
941 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 942 48, 49, 50, 51, 52 }
3b3c6a3f 943
162f023b
JH
944/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
945 to be rearranged based on a particular function. When using sse math,
03c259ad 946 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 947
162f023b 948#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 949
f5316dfe 950
c98f8742 951/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 952#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 953do { \
3f3f2124 954 int i; \
b0fede98 955 unsigned int j; \
3f3f2124
JH
956 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
957 { \
3a4416fb
RS
958 if (fixed_regs[i] > 1) \
959 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
960 if (call_used_regs[i] > 1) \
961 call_used_regs[i] = (call_used_regs[i] \
962 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 963 } \
b0fede98 964 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 965 if (j != INVALID_REGNUM) \
a7180f70 966 { \
7706ca5d
L
967 fixed_regs[j] = 1; \
968 call_used_regs[j] = 1; \
a7180f70
BS
969 } \
970 if (! TARGET_MMX) \
971 { \
972 int i; \
973 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
974 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 975 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
976 } \
977 if (! TARGET_SSE) \
978 { \
979 int i; \
980 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
981 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 982 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
983 } \
984 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
985 { \
986 int i; \
987 HARD_REG_SET x; \
988 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
990 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
991 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
992 } \
993 if (! TARGET_64BIT) \
994 { \
995 int i; \
996 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
997 reg_names[i] = ""; \
998 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
999 reg_names[i] = ""; \
a7180f70 1000 } \
ccf8e764
RH
1001 if (TARGET_64BIT_MS_ABI) \
1002 { \
1003 call_used_regs[4 /*RSI*/] = 0; \
1004 call_used_regs[5 /*RDI*/] = 0; \
1005 } \
d9a5f180 1006 } while (0)
c98f8742
JVA
1007
1008/* Return number of consecutive hard regs needed starting at reg REGNO
1009 to hold something of mode MODE.
1010 This is ordinarily the length in words of a value of mode MODE
1011 but can be less for certain modes in special long registers.
1012
fce5a9f2 1013 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1014 registers. And only registers 0-3 may have mov byte instructions
1015 applied to them.
1016 */
1017
1018#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1019 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1020 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1021 : ((MODE) == XFmode \
92d0fb09 1022 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1023 : (MODE) == XCmode \
92d0fb09 1024 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1025 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1026
8521c414
JM
1027#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1028 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1029 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1030 ? 0 \
1031 : ((MODE) == XFmode || (MODE) == XCmode)) \
1032 : 0)
1033
1034#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1035
fbe5eb6d
BS
1036#define VALID_SSE2_REG_MODE(MODE) \
1037 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 1038 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1039
d9a5f180
GS
1040#define VALID_SSE_REG_MODE(MODE) \
1041 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 1042 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1043
47f339cf
BS
1044#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1045 ((MODE) == V2SFmode || (MODE) == SFmode)
1046
d9a5f180
GS
1047#define VALID_MMX_REG_MODE(MODE) \
1048 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
1049 || (MODE) == V2SImode || (MODE) == SImode)
1050
accde4cf
RH
1051/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1052 place emms and femms instructions. */
c4336539 1053#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1054
d9a5f180 1055#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
1056 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1057 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1058
d9a5f180
GS
1059#define VALID_INT_MODE_P(MODE) \
1060 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1061 || (MODE) == DImode \
1062 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1063 || (MODE) == CDImode \
f8a1ebc6
JH
1064 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1065 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1066
822eda12
JH
1067/* Return true for modes passed in SSE registers. */
1068#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 1069 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1070 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1071 || (MODE) == V4SFmode || (MODE) == V4SImode)
1072
e075ae69 1073/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1074
a946dd00 1075#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1076 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1077
1078/* Value is 1 if it is a good idea to tie two pseudo registers
1079 when one has mode MODE1 and one has mode MODE2.
1080 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1081 for any hard reg, then this must be 0 for correct output. */
1082
c1c5b5e3 1083#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1084
ff25ef99
ZD
1085/* It is possible to write patterns to move flags; but until someone
1086 does it, */
1087#define AVOID_CCMODE_COPIES
c98f8742 1088
e075ae69 1089/* Specify the modes required to caller save a given hard regno.
787dc842 1090 We do this on i386 to prevent flags from being saved at all.
e075ae69 1091
787dc842
JH
1092 Kill any attempts to combine saving of modes. */
1093
d9a5f180
GS
1094#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1095 (CC_REGNO_P (REGNO) ? VOIDmode \
1096 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 1097 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
1098 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1099 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1100 : (MODE))
c98f8742
JVA
1101/* Specify the registers used for certain standard purposes.
1102 The values of these macros are register numbers. */
1103
1104/* on the 386 the pc register is %eip, and is not usable as a general
1105 register. The ordinary mov instructions won't work */
1106/* #define PC_REGNUM */
1107
1108/* Register to use for pushing function arguments. */
1109#define STACK_POINTER_REGNUM 7
1110
1111/* Base register for access to local variables of the function. */
564d80f4
JH
1112#define HARD_FRAME_POINTER_REGNUM 6
1113
1114/* Base register for access to local variables of the function. */
b0d95de8 1115#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1116
1117/* First floating point reg */
1118#define FIRST_FLOAT_REG 8
1119
1120/* First & last stack-like regs */
1121#define FIRST_STACK_REG FIRST_FLOAT_REG
1122#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1123
a7180f70
BS
1124#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1125#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1126
a7180f70
BS
1127#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1128#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1129
3f3f2124
JH
1130#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1131#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1132
1133#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1134#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1135
c98f8742
JVA
1136/* Value should be nonzero if functions must have frame pointers.
1137 Zero means the frame pointer need not be set up (and parms
1138 may be accessed via the stack pointer) in functions that seem suitable.
1139 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1140#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1141
aabcd309 1142/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1143 requiring a frame pointer. */
1144#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1145#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1146#endif
1147
1148/* Make sure we can access arbitrary call frames. */
1149#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1150
1151/* Base register for access to arguments of the function. */
1152#define ARG_POINTER_REGNUM 16
1153
d2836273
JH
1154/* Register in which static-chain is passed to a function.
1155 We do use ECX as static chain register for 32 bit ABI. On the
1156 64bit ABI, ECX is an argument register, so we use R10 instead. */
1157#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1158
1159/* Register to hold the addressing base for position independent
5b43fed1
RH
1160 code access to data items. We don't use PIC pointer for 64bit
1161 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1162 pessimizing code dealing with EBX.
bd09bdeb
RH
1163
1164 To avoid clobbering a call-saved register unnecessarily, we renumber
1165 the pic register when possible. The change is visible after the
1166 prologue has been emitted. */
1167
1168#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1169
1170#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1171 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1172 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1173 : reload_completed ? REGNO (pic_offset_table_rtx) \
1174 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1175
5fc0e5df
KW
1176#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1177
713225d4
MM
1178/* A C expression which can inhibit the returning of certain function
1179 values in registers, based on the type of value. A nonzero value
1180 says to return the function value in memory, just as large
1181 structures are always returned. Here TYPE will be a C expression
1182 of type `tree', representing the data type of the value.
1183
1184 Note that values of mode `BLKmode' must be explicitly handled by
1185 this macro. Also, the option `-fpcc-struct-return' takes effect
1186 regardless of this macro. On most systems, it is possible to
1187 leave the macro undefined; this causes a default definition to be
1188 used, whose value is the constant 1 for `BLKmode' values, and 0
1189 otherwise.
1190
1191 Do not use this macro to indicate that structures and unions
1192 should always be returned in memory. You should instead use
1193 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1194
d9a5f180 1195#define RETURN_IN_MEMORY(TYPE) \
53c17031 1196 ix86_return_in_memory (TYPE)
713225d4 1197
c51e6d85 1198/* This is overridden by <cygwin.h>. */
5e062767
DS
1199#define MS_AGGREGATE_RETURN 0
1200
61fec9ff
JB
1201/* This is overridden by <netware.h>. */
1202#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1203\f
1204/* Define the classes of registers for register constraints in the
1205 machine description. Also define ranges of constants.
1206
1207 One of the classes must always be named ALL_REGS and include all hard regs.
1208 If there is more than one class, another class must be named NO_REGS
1209 and contain no registers.
1210
1211 The name GENERAL_REGS must be the name of a class (or an alias for
1212 another name such as ALL_REGS). This is the class of registers
1213 that is allowed by "g" or "r" in a register constraint.
1214 Also, registers outside this class are allocated only when
1215 instructions express preferences for them.
1216
1217 The classes must be numbered in nondecreasing order; that is,
1218 a larger-numbered class must never be contained completely
1219 in a smaller-numbered class.
1220
1221 For any two classes, it is very desirable that there be another
ab408a86
JVA
1222 class that represents their union.
1223
1224 It might seem that class BREG is unnecessary, since no useful 386
1225 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1226 and the "b" register constraint is useful in asms for syscalls.
1227
03c259ad 1228 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1229
1230enum reg_class
1231{
1232 NO_REGS,
e075ae69 1233 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1234 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1235 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1236 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1237 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1238 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1239 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1240 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1241 FLOAT_REGS,
a7180f70
BS
1242 SSE_REGS,
1243 MMX_REGS,
446988df
JH
1244 FP_TOP_SSE_REGS,
1245 FP_SECOND_SSE_REGS,
1246 FLOAT_SSE_REGS,
1247 FLOAT_INT_REGS,
1248 INT_SSE_REGS,
1249 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1250 ALL_REGS, LIM_REG_CLASSES
1251};
1252
d9a5f180
GS
1253#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1254
1255#define INTEGER_CLASS_P(CLASS) \
1256 reg_class_subset_p ((CLASS), GENERAL_REGS)
1257#define FLOAT_CLASS_P(CLASS) \
1258 reg_class_subset_p ((CLASS), FLOAT_REGS)
1259#define SSE_CLASS_P(CLASS) \
f75959a6 1260 ((CLASS) == SSE_REGS)
d9a5f180 1261#define MMX_CLASS_P(CLASS) \
f75959a6 1262 ((CLASS) == MMX_REGS)
d9a5f180
GS
1263#define MAYBE_INTEGER_CLASS_P(CLASS) \
1264 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1265#define MAYBE_FLOAT_CLASS_P(CLASS) \
1266 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1267#define MAYBE_SSE_CLASS_P(CLASS) \
1268 reg_classes_intersect_p (SSE_REGS, (CLASS))
1269#define MAYBE_MMX_CLASS_P(CLASS) \
1270 reg_classes_intersect_p (MMX_REGS, (CLASS))
1271
1272#define Q_CLASS_P(CLASS) \
1273 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1274
43f3a59d 1275/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1276
1277#define REG_CLASS_NAMES \
1278{ "NO_REGS", \
ab408a86 1279 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1280 "SIREG", "DIREG", \
e075ae69
RH
1281 "AD_REGS", \
1282 "Q_REGS", "NON_Q_REGS", \
c98f8742 1283 "INDEX_REGS", \
3f3f2124 1284 "LEGACY_REGS", \
c98f8742
JVA
1285 "GENERAL_REGS", \
1286 "FP_TOP_REG", "FP_SECOND_REG", \
1287 "FLOAT_REGS", \
a7180f70
BS
1288 "SSE_REGS", \
1289 "MMX_REGS", \
446988df
JH
1290 "FP_TOP_SSE_REGS", \
1291 "FP_SECOND_SSE_REGS", \
1292 "FLOAT_SSE_REGS", \
8fcaaa80 1293 "FLOAT_INT_REGS", \
446988df
JH
1294 "INT_SSE_REGS", \
1295 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1296 "ALL_REGS" }
1297
1298/* Define which registers fit in which classes.
1299 This is an initializer for a vector of HARD_REG_SET
1300 of length N_REG_CLASSES. */
1301
a7180f70 1302#define REG_CLASS_CONTENTS \
3f3f2124
JH
1303{ { 0x00, 0x0 }, \
1304 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1305 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1306 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1307 { 0x03, 0x0 }, /* AD_REGS */ \
1308 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1309 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1310 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1311 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1312 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1313 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1314 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
b0d95de8
UB
1315{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1316{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1317{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1318{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1319{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1320 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1321{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1322{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1323{ 0xffffffff,0x1fffff } \
e075ae69 1324}
c98f8742
JVA
1325
1326/* The same information, inverted:
1327 Return the class number of the smallest class containing
1328 reg number REGNO. This could be a conditional expression
1329 or could index an array. */
1330
c98f8742
JVA
1331#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1332
1333/* When defined, the compiler allows registers explicitly used in the
1334 rtl to be used as spill registers but prevents the compiler from
892a2d68 1335 extending the lifetime of these registers. */
c98f8742 1336
2922fe9e 1337#define SMALL_REGISTER_CLASSES 1
c98f8742 1338
fb84c7a0 1339#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1340
d9a5f180 1341#define GENERAL_REGNO_P(N) \
fb84c7a0 1342 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1343
1344#define GENERAL_REG_P(X) \
6189a572 1345 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1346
1347#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1348
fb84c7a0
UB
1349#define REX_INT_REGNO_P(N) \
1350 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1351#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1352
c98f8742 1353#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1354#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1355#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1356#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1357
54a88090 1358#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1359 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1360
fb84c7a0
UB
1361#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1362#define SSE_REGNO_P(N) \
1363 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1364 || REX_SSE_REGNO_P (N))
3f3f2124 1365
4977bab6 1366#define REX_SSE_REGNO_P(N) \
fb84c7a0 1367 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1368
d9a5f180
GS
1369#define SSE_REGNO(N) \
1370 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1371
d9a5f180 1372#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1373 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1374
d9a5f180 1375#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1376#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1377
fb84c7a0 1378#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1379#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1380
d9a5f180 1381#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1382
e075ae69
RH
1383#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1384#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1385
c98f8742
JVA
1386/* The class value for index registers, and the one for base regs. */
1387
1388#define INDEX_REG_CLASS INDEX_REGS
1389#define BASE_REG_CLASS GENERAL_REGS
1390
c98f8742 1391/* Place additional restrictions on the register class to use when it
4cbb525c 1392 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1393 register for which class CLASS would ordinarily be used. */
c98f8742 1394
d2836273
JH
1395#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1396 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1397 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1398 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1399 ? Q_REGS : (CLASS))
1400
1401/* Given an rtx X being reloaded into a reg required to be
1402 in class CLASS, return the class of reg to actually use.
1403 In general this is just CLASS; but on some machines
1404 in some cases it is preferable to use a more restrictive class.
1405 On the 80386 series, we prevent floating constants from being
1406 reloaded into floating registers (since no move-insn can do that)
1407 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1408
d398b3b1 1409/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1410 QImode must go into class Q_REGS.
d398b3b1 1411 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1412 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1413
d9a5f180
GS
1414#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1415 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1416
b5c82fa1
PB
1417/* Discourage putting floating-point values in SSE registers unless
1418 SSE math is being used, and likewise for the 387 registers. */
1419
1420#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1421 ix86_preferred_output_reload_class ((X), (CLASS))
1422
85ff473e 1423/* If we are copying between general and FP registers, we need a memory
f84aa48a 1424 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1425#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1426 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1427
1428/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1429 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1430 pseudo. */
1431
d9a5f180 1432#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1433 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1434 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1435 ? Q_REGS : NO_REGS)
c98f8742
JVA
1436
1437/* Return the maximum number of consecutive registers
1438 needed to represent mode MODE in a register of class CLASS. */
1439/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1440 except in the FP regs, where a single reg is always enough. */
a7180f70 1441#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1442 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1443 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1444 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1445 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1446
1447/* A C expression whose value is nonzero if pseudos that have been
1448 assigned to registers of class CLASS would likely be spilled
1449 because registers of CLASS are needed for spill registers.
1450
1451 The default value of this macro returns 1 if CLASS has exactly one
1452 register and zero otherwise. On most machines, this default
1453 should be used. Only define this macro to some other expression
1454 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1455 their hard registers were needed for spill registers. If this
f5316dfe
MM
1456 macro returns nonzero for those classes, those pseudos will only
1457 be allocated by `global.c', which knows how to reallocate the
1458 pseudo to another register. If there would not be another
1459 register available for reallocation, you should not change the
1460 definition of this macro since the only effect of such a
1461 definition would be to slow down register allocation. */
1462
1463#define CLASS_LIKELY_SPILLED_P(CLASS) \
1464 (((CLASS) == AREG) \
1465 || ((CLASS) == DREG) \
1466 || ((CLASS) == CREG) \
1467 || ((CLASS) == BREG) \
1468 || ((CLASS) == AD_REGS) \
1469 || ((CLASS) == SIREG) \
b0af5c03
JH
1470 || ((CLASS) == DIREG) \
1471 || ((CLASS) == FP_TOP_REG) \
1472 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1473
1272914c
RH
1474/* Return a class of registers that cannot change FROM mode to TO mode. */
1475
1476#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1477 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1478\f
1479/* Stack layout; function entry, exit and calling. */
1480
1481/* Define this if pushing a word on the stack
1482 makes the stack pointer a smaller address. */
1483#define STACK_GROWS_DOWNWARD
1484
a4d05547 1485/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1486 is at the high-address end of the local variables;
1487 that is, each additional local variable allocated
1488 goes at a more negative offset in the frame. */
f62c8a5c 1489#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1490
1491/* Offset within stack frame to start allocating local variables at.
1492 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1493 first local allocated. Otherwise, it is the offset to the BEGINNING
1494 of the first local allocated. */
1495#define STARTING_FRAME_OFFSET 0
1496
1497/* If we generate an insn to push BYTES bytes,
1498 this says how many the stack pointer really advances by.
6541fe75
JJ
1499 On 386, we have pushw instruction that decrements by exactly 2 no
1500 matter what the position was, there is no pushb.
1501 But as CIE data alignment factor on this arch is -4, we need to make
1502 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1503
d2836273
JH
1504 For 64bit ABI we round up to 8 bytes.
1505 */
c98f8742 1506
d2836273
JH
1507#define PUSH_ROUNDING(BYTES) \
1508 (TARGET_64BIT \
1509 ? (((BYTES) + 7) & (-8)) \
6541fe75 1510 : (((BYTES) + 3) & (-4)))
c98f8742 1511
f73ad30e
JH
1512/* If defined, the maximum amount of space required for outgoing arguments will
1513 be computed and placed into the variable
1514 `current_function_outgoing_args_size'. No space will be pushed onto the
1515 stack for each call; instead, the function prologue should increase the stack
1516 frame size by this amount. */
1517
1518#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1519
1520/* If defined, a C expression whose value is nonzero when we want to use PUSH
1521 instructions to pass outgoing arguments. */
1522
1523#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1524
2da4124d
L
1525/* We want the stack and args grow in opposite directions, even if
1526 PUSH_ARGS is 0. */
1527#define PUSH_ARGS_REVERSED 1
1528
c98f8742
JVA
1529/* Offset of first parameter from the argument pointer register value. */
1530#define FIRST_PARM_OFFSET(FNDECL) 0
1531
a7180f70
BS
1532/* Define this macro if functions should assume that stack space has been
1533 allocated for arguments even when their values are passed in registers.
1534
1535 The value of this macro is the size, in bytes, of the area reserved for
1536 arguments passed in registers for the function represented by FNDECL.
1537
1538 This space can be allocated by the caller, or be a part of the
1539 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1540 which. */
1541#define REG_PARM_STACK_SPACE(FNDECL) 0
1542
c98f8742
JVA
1543/* Value is the number of bytes of arguments automatically
1544 popped when returning from a subroutine call.
8b109b37 1545 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1546 FUNTYPE is the data type of the function (as a tree),
1547 or for a library call it is an identifier node for the subroutine name.
1548 SIZE is the number of bytes of arguments passed on the stack.
1549
1550 On the 80386, the RTD insn may be used to pop them if the number
1551 of args is fixed, but if the number is variable then the caller
1552 must pop them all. RTD can't be used for library calls now
1553 because the library is compiled with the Unix compiler.
1554 Use of RTD is a selectable option, since it is incompatible with
1555 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1556 the caller must always pop the args.
1557
1558 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1559
d9a5f180
GS
1560#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1561 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1562
53c17031
JH
1563#define FUNCTION_VALUE_REGNO_P(N) \
1564 ix86_function_value_regno_p (N)
c98f8742
JVA
1565
1566/* Define how to find the value returned by a library function
1567 assuming the value has mode MODE. */
1568
1569#define LIBCALL_VALUE(MODE) \
53c17031 1570 ix86_libcall_value (MODE)
c98f8742 1571
e9125c09
TW
1572/* Define the size of the result block used for communication between
1573 untyped_call and untyped_return. The block contains a DImode value
1574 followed by the block used by fnsave and frstor. */
1575
1576#define APPLY_RESULT_SIZE (8+108)
1577
b08de47e 1578/* 1 if N is a possible register number for function argument passing. */
53c17031 1579#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1580
1581/* Define a data type for recording info about an argument list
1582 during the scan of that argument list. This data type should
1583 hold all necessary information about the function itself
1584 and about the args processed so far, enough to enable macros
b08de47e 1585 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1586
e075ae69 1587typedef struct ix86_args {
fa283935 1588 int words; /* # words passed so far */
b08de47e
MM
1589 int nregs; /* # registers available for passing */
1590 int regno; /* next available register number */
9d72d996 1591 int fastcall; /* fastcall calling convention is used */
fa283935 1592 int sse_words; /* # sse words passed so far */
a7180f70 1593 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1594 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1595 int warn_mmx; /* True when we want to warn about MMX ABI. */
1596 int sse_regno; /* next available sse register number */
1597 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1598 int mmx_nregs; /* # mmx registers available for passing */
1599 int mmx_regno; /* next available mmx register number */
892a2d68 1600 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1601 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1602 be passed in SSE registers. Otherwise 0. */
b08de47e 1603} CUMULATIVE_ARGS;
c98f8742
JVA
1604
1605/* Initialize a variable CUM of type CUMULATIVE_ARGS
1606 for a call to a function whose data type is FNTYPE.
b08de47e 1607 For a library call, FNTYPE is 0. */
c98f8742 1608
0f6937fe 1609#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1610 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1611
1612/* Update the data in CUM to advance over an argument
1613 of mode MODE and data type TYPE.
1614 (TYPE is null for libcalls where that information may not be available.) */
1615
d9a5f180
GS
1616#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1617 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1618
1619/* Define where to put the arguments to a function.
1620 Value is zero to push the argument on the stack,
1621 or a hard register in which to store the argument.
1622
1623 MODE is the argument's machine mode.
1624 TYPE is the data type of the argument (as a tree).
1625 This is null for libcalls where that information may
1626 not be available.
1627 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1628 the preceding args and about the function being called.
1629 NAMED is nonzero if this argument is a named parameter
1630 (otherwise it is an extra parameter matching an ellipsis). */
1631
c98f8742 1632#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1633 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1634
ad919812 1635/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1636#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1637 ix86_va_start (VALIST, NEXTARG)
ad919812 1638
a5fe455b
ZW
1639#define TARGET_ASM_FILE_END ix86_file_end
1640#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1641
c98f8742
JVA
1642/* Output assembler code to FILE to increment profiler label # LABELNO
1643 for profiling a function entry. */
1644
a5fa1ecd
JH
1645#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1646
1647#define MCOUNT_NAME "_mcount"
1648
1649#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1650
1651/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1652 the stack pointer does not matter. The value is tested only in
1653 functions that have frame pointers.
1654 No definition is equivalent to always zero. */
fce5a9f2 1655/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1656 we have to restore it ourselves from the frame pointer, in order to
1657 use pop */
1658
1659#define EXIT_IGNORE_STACK 1
1660
c98f8742
JVA
1661/* Output assembler code for a block containing the constant parts
1662 of a trampoline, leaving space for the variable parts. */
1663
a269a03c 1664/* On the 386, the trampoline contains two instructions:
c98f8742 1665 mov #STATIC,ecx
a269a03c
JC
1666 jmp FUNCTION
1667 The trampoline is generated entirely at runtime. The operand of JMP
1668 is the address of FUNCTION relative to the instruction following the
1669 JMP (which is 5 bytes long). */
c98f8742
JVA
1670
1671/* Length in units of the trampoline for entering a nested function. */
1672
39d04363 1673#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1674
1675/* Emit RTL insns to initialize the variable parts of a trampoline.
1676 FNADDR is an RTX for the address of the function's pure code.
1677 CXT is an RTX for the static chain value for the function. */
1678
d9a5f180
GS
1679#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1680 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1681\f
1682/* Definitions for register eliminations.
1683
1684 This is an array of structures. Each structure initializes one pair
1685 of eliminable registers. The "from" register number is given first,
1686 followed by "to". Eliminations of the same "from" register are listed
1687 in order of preference.
1688
afc2cd05
NC
1689 There are two registers that can always be eliminated on the i386.
1690 The frame pointer and the arg pointer can be replaced by either the
1691 hard frame pointer or to the stack pointer, depending upon the
1692 circumstances. The hard frame pointer is not used before reload and
1693 so it is not eligible for elimination. */
c98f8742 1694
564d80f4
JH
1695#define ELIMINABLE_REGS \
1696{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1697 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1698 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1699 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1700
2c5a510c
RH
1701/* Given FROM and TO register numbers, say whether this elimination is
1702 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1703
1704 All other eliminations are valid. */
1705
2c5a510c
RH
1706#define CAN_ELIMINATE(FROM, TO) \
1707 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1708
1709/* Define the offset between two registers, one to be eliminated, and the other
1710 its replacement, at the start of a routine. */
1711
d9a5f180
GS
1712#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1713 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1714\f
1715/* Addressing modes, and classification of registers for them. */
1716
c98f8742
JVA
1717/* Macros to check register numbers against specific register classes. */
1718
1719/* These assume that REGNO is a hard or pseudo reg number.
1720 They give nonzero only if REGNO is a hard reg of the suitable class
1721 or a pseudo reg currently allocated to a suitable hard reg.
1722 Since they use reg_renumber, they are safe only once reg_renumber
1723 has been allocated, which happens in local-alloc.c. */
1724
3f3f2124
JH
1725#define REGNO_OK_FOR_INDEX_P(REGNO) \
1726 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1727 || REX_INT_REGNO_P (REGNO) \
1728 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1729 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1730
3f3f2124 1731#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1732 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1733 || (REGNO) == ARG_POINTER_REGNUM \
1734 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1735 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1736
c98f8742
JVA
1737/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1738 and check its validity for a certain class.
1739 We have two alternate definitions for each of them.
1740 The usual definition accepts all pseudo regs; the other rejects
1741 them unless they have been allocated suitable hard regs.
1742 The symbol REG_OK_STRICT causes the latter definition to be used.
1743
1744 Most source files want to accept pseudo regs in the hope that
1745 they will get allocated to the class that the insn wants them to be in.
1746 Source files for reload pass need to be strict.
1747 After reload, it makes no difference, since pseudo regs have
1748 been eliminated by then. */
1749
c98f8742 1750
ff482c8d 1751/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1752#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1753 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1754 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1755 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1756
3b3c6a3f 1757#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1758 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1759 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1760 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1761 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1762
3b3c6a3f
MM
1763/* Strict versions, hard registers only */
1764#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1765#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1766
3b3c6a3f 1767#ifndef REG_OK_STRICT
d9a5f180
GS
1768#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1769#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1770
1771#else
d9a5f180
GS
1772#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1773#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1774#endif
1775
1776/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1777 that is a valid memory address for an instruction.
1778 The MODE argument is the machine mode for the MEM expression
1779 that wants to use this address.
1780
1781 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1782 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1783
1784 See legitimize_pic_address in i386.c for details as to what
1785 constitutes a legitimate address when -fpic is used. */
1786
1787#define MAX_REGS_PER_ADDRESS 2
1788
f996902d 1789#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1790
1791/* Nonzero if the constant value X is a legitimate general operand.
1792 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1793
f996902d 1794#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1795
3b3c6a3f
MM
1796#ifdef REG_OK_STRICT
1797#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1798do { \
1799 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1800 goto ADDR; \
d9a5f180 1801} while (0)
c98f8742 1802
3b3c6a3f
MM
1803#else
1804#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1805do { \
1806 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1807 goto ADDR; \
d9a5f180 1808} while (0)
c98f8742 1809
3b3c6a3f
MM
1810#endif
1811
b949ea8b
JW
1812/* If defined, a C expression to determine the base term of address X.
1813 This macro is used in only one place: `find_base_term' in alias.c.
1814
1815 It is always safe for this macro to not be defined. It exists so
1816 that alias analysis can understand machine-dependent addresses.
1817
1818 The typical use of this macro is to handle addresses containing
1819 a label_ref or symbol_ref within an UNSPEC. */
1820
d9a5f180 1821#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1822
c98f8742
JVA
1823/* Try machine-dependent ways of modifying an illegitimate address
1824 to be legitimate. If we find one, return the new, valid address.
1825 This macro is used in only one place: `memory_address' in explow.c.
1826
1827 OLDX is the address as it was before break_out_memory_refs was called.
1828 In some cases it is useful to look at this to decide what needs to be done.
1829
1830 MODE and WIN are passed so that this macro can use
1831 GO_IF_LEGITIMATE_ADDRESS.
1832
1833 It is always safe for this macro to do nothing. It exists to recognize
1834 opportunities to optimize the output.
1835
1836 For the 80386, we handle X+REG by loading X into a register R and
1837 using R+REG. R will go in a general reg and indexing will be used.
1838 However, if REG is a broken-out memory address or multiplication,
1839 nothing needs to be done because REG can certainly go in a general reg.
1840
1841 When -fpic is used, special handling is needed for symbolic references.
1842 See comments by legitimize_pic_address in i386.c for details. */
1843
3b3c6a3f 1844#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1845do { \
1846 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1847 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1848 goto WIN; \
d9a5f180 1849} while (0)
c98f8742
JVA
1850
1851/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1852 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1853 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1854
f996902d 1855#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1856
1857#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1858 (GET_CODE (X) == SYMBOL_REF \
1859 || GET_CODE (X) == LABEL_REF \
1860 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1861
1862/* Go to LABEL if ADDR (a legitimate address expression)
1863 has an effect that depends on the machine mode it is used for.
1864 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1865 (the amount of decrement or increment being the length of the operand).
1866 These are now caught in recog.c. */
1867#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1868\f
b08de47e
MM
1869/* Max number of args passed in registers. If this is more than 3, we will
1870 have problems with ebx (register #4), since it is a caller save register and
1871 is also used as the pic register in ELF. So for now, don't allow more than
1872 3 registers to be passed in registers. */
1873
d2836273
JH
1874#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1875
bcf17554
JH
1876#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1877
1878#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1879
c98f8742
JVA
1880\f
1881/* Specify the machine mode that this machine uses
1882 for the index in the tablejump instruction. */
dc4d7240
JH
1883#define CASE_VECTOR_MODE \
1884 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1885
c98f8742
JVA
1886/* Define this as 1 if `char' should by default be signed; else as 0. */
1887#define DEFAULT_SIGNED_CHAR 1
1888
1889/* Max number of bytes we can move from memory to memory
1890 in one reasonably fast instruction. */
65d9c0ab
JH
1891#define MOVE_MAX 16
1892
1893/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1894 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1895 number of bytes we can move with a single instruction. */
65d9c0ab 1896#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1897
7e24ffc9 1898/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1899 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1900 Increasing the value will always make code faster, but eventually
1901 incurs high cost in increased code size.
c98f8742 1902
e2e52e1b 1903 If you don't define this, a reasonable default is used. */
c98f8742 1904
e2e52e1b 1905#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1906
45d78e7f
JJ
1907/* If a clear memory operation would take CLEAR_RATIO or more simple
1908 move-instruction sequences, we will do a clrmem or libcall instead. */
1909
1910#define CLEAR_RATIO (optimize_size ? 2 \
1911 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1912
c98f8742
JVA
1913/* Define if shifts truncate the shift count
1914 which implies one can omit a sign-extension or zero-extension
1915 of a shift count. */
892a2d68 1916/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1917
1918/* #define SHIFT_COUNT_TRUNCATED */
1919
1920/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1921 is done just by pretending it is already truncated. */
1922#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1923
d9f32422
JH
1924/* A macro to update M and UNSIGNEDP when an object whose type is
1925 TYPE and which has the specified mode and signedness is to be
1926 stored in a register. This macro is only called when TYPE is a
1927 scalar type.
1928
f710504c 1929 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1930 quantities to SImode. The choice depends on target type. */
1931
1932#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1933do { \
d9f32422
JH
1934 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1935 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1936 (MODE) = SImode; \
1937} while (0)
d9f32422 1938
c98f8742
JVA
1939/* Specify the machine mode that pointers have.
1940 After generation of rtl, the compiler makes no further distinction
1941 between pointers and any other objects of this machine mode. */
65d9c0ab 1942#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1943
1944/* A function address in a call instruction
1945 is a byte address (for indexing purposes)
1946 so give the MEM rtx a byte's mode. */
1947#define FUNCTION_MODE QImode
d4ba09c0 1948\f
96e7ae40
JH
1949/* A C expression for the cost of moving data from a register in class FROM to
1950 one in class TO. The classes are expressed using the enumeration values
1951 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1952 interpreted relative to that.
d4ba09c0 1953
96e7ae40
JH
1954 It is not required that the cost always equal 2 when FROM is the same as TO;
1955 on some machines it is expensive to move between registers if they are not
f84aa48a 1956 general registers. */
d4ba09c0 1957
f84aa48a 1958#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1959 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1960
1961/* A C expression for the cost of moving data of mode M between a
1962 register and memory. A value of 2 is the default; this cost is
1963 relative to those in `REGISTER_MOVE_COST'.
1964
1965 If moving between registers and memory is more expensive than
1966 between two registers, you should define this macro to express the
fa79946e 1967 relative cost. */
d4ba09c0 1968
d9a5f180
GS
1969#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1970 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1971
1972/* A C expression for the cost of a branch instruction. A value of 1
1973 is the default; other values are interpreted relative to that. */
1974
e075ae69 1975#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
1976
1977/* Define this macro as a C expression which is nonzero if accessing
1978 less than a word of memory (i.e. a `char' or a `short') is no
1979 faster than accessing a word of memory, i.e., if such access
1980 require more than one instruction or if there is no difference in
1981 cost between byte and (aligned) word loads.
1982
1983 When this macro is not defined, the compiler will access a field by
1984 finding the smallest containing object; when it is defined, a
1985 fullword load will be used if alignment permits. Unless bytes
1986 accesses are faster than word accesses, using word accesses is
1987 preferable since it may eliminate subsequent memory access if
1988 subsequent accesses occur to other fields in the same word of the
1989 structure, but to different bytes. */
1990
1991#define SLOW_BYTE_ACCESS 0
1992
1993/* Nonzero if access to memory by shorts is slow and undesirable. */
1994#define SLOW_SHORT_ACCESS 0
1995
d4ba09c0
SC
1996/* Define this macro to be the value 1 if unaligned accesses have a
1997 cost many times greater than aligned accesses, for example if they
1998 are emulated in a trap handler.
1999
9cd10576
KH
2000 When this macro is nonzero, the compiler will act as if
2001 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2002 moves. This can cause significantly more instructions to be
9cd10576 2003 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2004 accesses only add a cycle or two to the time for a memory access.
2005
2006 If the value of this macro is always zero, it need not be defined. */
2007
e1565e65 2008/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2009
d4ba09c0
SC
2010/* Define this macro if it is as good or better to call a constant
2011 function address than to call an address kept in a register.
2012
2013 Desirable on the 386 because a CALL with a constant address is
2014 faster than one with a register address. */
2015
2016#define NO_FUNCTION_CSE
c98f8742 2017\f
c572e5ba
JVA
2018/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2019 return the mode to be used for the comparison.
2020
2021 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2022 VOIDmode should be used in all other cases.
c572e5ba 2023
16189740 2024 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2025 possible, to allow for more combinations. */
c98f8742 2026
d9a5f180 2027#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2028
9cd10576 2029/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2030 reversed. */
2031
2032#define REVERSIBLE_CC_MODE(MODE) 1
2033
2034/* A C expression whose value is reversed condition code of the CODE for
2035 comparison done in CC_MODE mode. */
3c5cb3e4 2036#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2037
c98f8742
JVA
2038\f
2039/* Control the assembler format that we output, to the extent
2040 this does not vary between assemblers. */
2041
2042/* How to refer to registers in assembler output.
892a2d68 2043 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2044
a7b376ee 2045/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2046 For non floating point regs, the following are the HImode names.
2047
2048 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2049 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2050
a7180f70
BS
2051#define HI_REGISTER_NAMES \
2052{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2053 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2054 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2055 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2056 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2057 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2058 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2059
c98f8742
JVA
2060#define REGISTER_NAMES HI_REGISTER_NAMES
2061
2062/* Table of additional register names to use in user input. */
2063
2064#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2065{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2066 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2067 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2068 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2069 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2070 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2071
2072/* Note we are omitting these since currently I don't know how
2073to get gcc to use these, since they want the same but different
2074number as al, and ax.
2075*/
2076
c98f8742 2077#define QI_REGISTER_NAMES \
3f3f2124 2078{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2079
2080/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2081 of regs 0 through 3. */
c98f8742
JVA
2082
2083#define QI_HIGH_REGISTER_NAMES \
2084{"ah", "dh", "ch", "bh", }
2085
2086/* How to renumber registers for dbx and gdb. */
2087
d9a5f180
GS
2088#define DBX_REGISTER_NUMBER(N) \
2089 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2090
9a82e702
MS
2091extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2092extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2093extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2094
469ac993
JM
2095/* Before the prologue, RA is at 0(%esp). */
2096#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2097 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2098
e414ab29 2099/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2100#define RETURN_ADDR_RTX(COUNT, FRAME) \
2101 ((COUNT) == 0 \
2102 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2103 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2104
892a2d68 2105/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2106#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2107
a6ab3aad 2108/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2109#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2110
1020a5ab
RH
2111/* Describe how we implement __builtin_eh_return. */
2112#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2113#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2114
ad919812 2115
e4c4ebeb
RH
2116/* Select a format to encode pointers in exception handling data. CODE
2117 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2118 true if the symbol may be affected by dynamic relocations.
2119
2120 ??? All x86 object file formats are capable of representing this.
2121 After all, the relocation needed is the same as for the call insn.
2122 Whether or not a particular assembler allows us to enter such, I
2123 guess we'll have to see. */
d9a5f180 2124#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2125 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2126
c98f8742
JVA
2127/* This is how to output an insn to push a register on the stack.
2128 It need not be very fast code. */
2129
d9a5f180 2130#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2131do { \
2132 if (TARGET_64BIT) \
2133 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2134 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2135 else \
2136 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2137} while (0)
c98f8742
JVA
2138
2139/* This is how to output an insn to pop a register from the stack.
2140 It need not be very fast code. */
2141
d9a5f180 2142#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2143do { \
2144 if (TARGET_64BIT) \
2145 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2146 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2147 else \
2148 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2149} while (0)
c98f8742 2150
f88c65f7 2151/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2152
2153#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2154 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2155
f88c65f7 2156/* This is how to output an element of a case-vector that is relative. */
c98f8742 2157
33f7f353 2158#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2159 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2160
f7288899
EC
2161/* Under some conditions we need jump tables in the text section,
2162 because the assembler cannot handle label differences between
2163 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2164
2165#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2166 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2167 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2168
cea3bd3e
RH
2169/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2170 and switch back. For x86 we do this only to save a few bytes that
2171 would otherwise be unused in the text section. */
2172#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2173 asm (SECTION_OP "\n\t" \
2174 "call " USER_LABEL_PREFIX #FUNC "\n" \
2175 TEXT_SECTION_ASM_OP);
74b42c8b 2176\f
c98f8742
JVA
2177/* Print operand X (an rtx) in assembler syntax to file FILE.
2178 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2179 Effect of various CODE letters is described in i386.c near
2180 print_operand function. */
c98f8742 2181
d9a5f180 2182#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2183 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2184
2185#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2186 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2187
2188#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2189 print_operand_address ((FILE), (ADDR))
c98f8742 2190
f996902d
RH
2191#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2192do { \
2193 if (! output_addr_const_extra (FILE, (X))) \
2194 goto FAIL; \
2195} while (0);
d4ba09c0 2196\f
5bf0ebab
RH
2197/* Which processor to schedule for. The cpu attribute defines a list that
2198 mirrors this list, so changes to i386.md must be made at the same time. */
2199
2200enum processor_type
2201{
2202 PROCESSOR_I386, /* 80386 */
2203 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2204 PROCESSOR_PENTIUM,
2205 PROCESSOR_PENTIUMPRO,
cfe1b18f 2206 PROCESSOR_GEODE,
5bf0ebab
RH
2207 PROCESSOR_K6,
2208 PROCESSOR_ATHLON,
2209 PROCESSOR_PENTIUM4,
4977bab6 2210 PROCESSOR_K8,
89c43c0a 2211 PROCESSOR_NOCONA,
05f85dbb 2212 PROCESSOR_CORE2,
d326eaf0
JH
2213 PROCESSOR_GENERIC32,
2214 PROCESSOR_GENERIC64,
21efb4d4 2215 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2216 PROCESSOR_max
2217};
2218
9e555526 2219extern enum processor_type ix86_tune;
5bf0ebab 2220extern enum processor_type ix86_arch;
5bf0ebab
RH
2221
2222enum fpmath_unit
2223{
2224 FPMATH_387 = 1,
2225 FPMATH_SSE = 2
2226};
2227
2228extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2229
f996902d
RH
2230enum tls_dialect
2231{
2232 TLS_DIALECT_GNU,
5bf5a10b 2233 TLS_DIALECT_GNU2,
f996902d
RH
2234 TLS_DIALECT_SUN
2235};
2236
2237extern enum tls_dialect ix86_tls_dialect;
f996902d 2238
6189a572 2239enum cmodel {
5bf0ebab
RH
2240 CM_32, /* The traditional 32-bit ABI. */
2241 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2242 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2243 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2244 CM_LARGE, /* No assumptions. */
7dcbf659 2245 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2246 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2247 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2248};
2249
5bf0ebab 2250extern enum cmodel ix86_cmodel;
5bf0ebab 2251
8362f420
JH
2252/* Size of the RED_ZONE area. */
2253#define RED_ZONE_SIZE 128
2254/* Reserved area of the red zone for temporaries. */
2255#define RED_ZONE_RESERVE 8
c93e80a5
JH
2256
2257enum asm_dialect {
2258 ASM_ATT,
2259 ASM_INTEL
2260};
5bf0ebab 2261
80f33d06 2262extern enum asm_dialect ix86_asm_dialect;
95899b34 2263extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2264extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2265
2266/* Smallest class containing REGNO. */
2267extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2268
d9a5f180
GS
2269extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2270extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2271extern rtx ix86_compare_emitted;
22fb740d
JH
2272\f
2273/* To properly truncate FP values into integers, we need to set i387 control
2274 word. We can't emit proper mode switching code before reload, as spills
2275 generated by reload may truncate values incorrectly, but we still can avoid
2276 redundant computation of new control word by the mode switching pass.
2277 The fldcw instructions are still emitted redundantly, but this is probably
2278 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2279 the sequence.
22fb740d
JH
2280
2281 The machinery is to emit simple truncation instructions and split them
2282 before reload to instructions having USEs of two memory locations that
2283 are filled by this code to old and new control word.
fce5a9f2 2284
22fb740d
JH
2285 Post-reload pass may be later used to eliminate the redundant fildcw if
2286 needed. */
2287
ff680eb1
UB
2288enum ix86_entity
2289{
2290 I387_TRUNC = 0,
2291 I387_FLOOR,
2292 I387_CEIL,
2293 I387_MASK_PM,
2294 MAX_386_ENTITIES
2295};
2296
1cba2b96 2297enum ix86_stack_slot
ff680eb1
UB
2298{
2299 SLOT_TEMP = 0,
2300 SLOT_CW_STORED,
2301 SLOT_CW_TRUNC,
2302 SLOT_CW_FLOOR,
2303 SLOT_CW_CEIL,
2304 SLOT_CW_MASK_PM,
2305 MAX_386_STACK_LOCALS
2306};
22fb740d
JH
2307
2308/* Define this macro if the port needs extra instructions inserted
2309 for mode switching in an optimizing compilation. */
2310
ff680eb1
UB
2311#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2312 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2313
2314/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2315 initializer for an array of integers. Each initializer element N
2316 refers to an entity that needs mode switching, and specifies the
2317 number of different modes that might need to be set for this
2318 entity. The position of the initializer in the initializer -
2319 starting counting at zero - determines the integer that is used to
2320 refer to the mode-switched entity in question. */
2321
ff680eb1
UB
2322#define NUM_MODES_FOR_MODE_SWITCHING \
2323 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2324
2325/* ENTITY is an integer specifying a mode-switched entity. If
2326 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2327 return an integer value not larger than the corresponding element
2328 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2329 must be switched into prior to the execution of INSN. */
2330
2331#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2332
2333/* This macro specifies the order in which modes for ENTITY are
2334 processed. 0 is the highest priority. */
2335
d9a5f180 2336#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2337
2338/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2339 is the set of hard registers live at the point where the insn(s)
2340 are to be inserted. */
2341
2342#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2343 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2344 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2345 : 0)
ff680eb1 2346
0f0138b6
JH
2347\f
2348/* Avoid renaming of stack registers, as doing so in combination with
2349 scheduling just increases amount of live registers at time and in
2350 the turn amount of fxch instructions needed.
2351
43f3a59d 2352 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2353
d9a5f180 2354#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2355 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2356
3b3c6a3f 2357\f
e91f04de 2358#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2359\f
2360struct machine_function GTY(())
2361{
2362 struct stack_local_entry *stack_locals;
2363 const char *some_ld_name;
150cdc9e 2364 rtx force_align_arg_pointer;
fa1a0d02
JH
2365 int save_varrargs_registers;
2366 int accesses_prev_frame;
ff680eb1 2367 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2368 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2369 determine the style used. */
2370 int use_fast_prologue_epilogue;
d7394366
JH
2371 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2372 for. */
2373 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2374 /* If true, the current function needs the default PIC register, not
2375 an alternate register (on x86) and must not use the red zone (on
2376 x86_64), even if it's a leaf function. We don't want the
2377 function to be regarded as non-leaf because TLS calls need not
2378 affect register allocation. This flag is set when a TLS call
2379 instruction is expanded within a function, and never reset, even
2380 if all such instructions are optimized away. Use the
2381 ix86_current_function_calls_tls_descriptor macro for a better
2382 approximation. */
2383 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2384};
2385
2386#define ix86_stack_locals (cfun->machine->stack_locals)
2387#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2388#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2389#define ix86_tls_descriptor_calls_expanded_in_cfun \
2390 (cfun->machine->tls_descriptor_call_expanded_p)
2391/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2392 calls are optimized away, we try to detect cases in which it was
2393 optimized away. Since such instructions (use (reg REG_SP)), we can
2394 verify whether there's any such instruction live by testing that
2395 REG_SP is live. */
2396#define ix86_current_function_calls_tls_descriptor \
2397 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
249e6b63 2398
1bc7c5b6
ZW
2399/* Control behavior of x86_file_start. */
2400#define X86_FILE_START_VERSION_DIRECTIVE false
2401#define X86_FILE_START_FLTUSED false
2402
7dcbf659
JH
2403/* Flag to mark data that is in the large address area. */
2404#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2405#define SYMBOL_REF_FAR_ADDR_P(X) \
2406 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2407
2408/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2409 have defined always, to avoid ifdefing. */
2410#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2411#define SYMBOL_REF_DLLIMPORT_P(X) \
2412 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2413
2414#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2415#define SYMBOL_REF_DLLEXPORT_P(X) \
2416 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2417
c98f8742
JVA
2418/*
2419Local variables:
2420version-control: t
2421End:
2422*/