]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Replace REAL_VALUE_TO_TARGET_LONG_DOUBLE with real_to_target
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
eb5bb0fd 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72 54#define TARGET_AVX OPTION_ISA_AVX
7afac110 55#define TARGET_AVX2 OPTION_ISA_AVX2
95879c72 56#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 57#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 58#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 59#define TARGET_XOP OPTION_ISA_XOP
3e901069 60#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 61#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7 62#define TARGET_ABM OPTION_ISA_ABM
91afcfa3 63#define TARGET_BMI OPTION_ISA_BMI
82feeb8d 64#define TARGET_BMI2 OPTION_ISA_BMI2
5fcafa60 65#define TARGET_LZCNT OPTION_ISA_LZCNT
94d13ad1 66#define TARGET_TBM OPTION_ISA_TBM
ab442df7
MM
67#define TARGET_POPCNT OPTION_ISA_POPCNT
68#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 69#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 70#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
71#define TARGET_AES OPTION_ISA_AES
72#define TARGET_PCLMUL OPTION_ISA_PCLMUL
73#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
74#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
75#define TARGET_RDRND OPTION_ISA_RDRND
76#define TARGET_F16C OPTION_ISA_F16C
bf2eaa3f 77#define TARGET_RTM OPTION_ISA_RTM
5dcfdccd 78#define TARGET_HLE OPTION_ISA_HLE
4c340b5d 79#define TARGET_RDSEED OPTION_ISA_RDSEED
e61c94dd 80#define TARGET_PRFCHW OPTION_ISA_PRFCHW
d05e383b 81#define TARGET_ADX OPTION_ISA_ADX
ab442df7 82
1ab8b791
L
83#define TARGET_LP64 OPTION_ABI_64
84#define TARGET_X32 OPTION_ABI_X32
04e1d06b 85
cbf2e4d4
HJ
86/* SSE4.1 defines round instructions */
87#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 88#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 89
26b5109f
RS
90#include "config/vxworks-dummy.h"
91
7eb68c06 92#include "config/i386/i386-opts.h"
ccf8e764 93
c69fa2d4 94#define MAX_STRINGOP_ALGS 4
ccf8e764 95
8c996513
JH
96/* Specify what algorithm to use for stringops on known size.
97 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
98 known at compile time or estimated via feedback, the SIZE array
99 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 100 means infinity). Corresponding ALG is used then.
8c996513 101 For example initializer:
4f3f76e6 102 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 103 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 104 be used otherwise. */
8c996513
JH
105struct stringop_algs
106{
107 const enum stringop_alg unknown_size;
108 const struct stringop_strategy {
109 const int max;
110 const enum stringop_alg alg;
c69fa2d4 111 } size [MAX_STRINGOP_ALGS];
8c996513
JH
112};
113
d4ba09c0
SC
114/* Define the specific costs for a given cpu */
115
116struct processor_costs {
8b60264b
KG
117 const int add; /* cost of an add instruction */
118 const int lea; /* cost of a lea instruction */
119 const int shift_var; /* variable shift costs */
120 const int shift_const; /* constant shift costs */
f676971a 121 const int mult_init[5]; /* cost of starting a multiply
4977bab6 122 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 123 const int mult_bit; /* cost of multiply per each bit set */
f676971a 124 const int divide[5]; /* cost of a divide/mod
4977bab6 125 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
126 int movsx; /* The cost of movsx operation. */
127 int movzx; /* The cost of movzx operation. */
8b60264b
KG
128 const int large_insn; /* insns larger than this cost more */
129 const int move_ratio; /* The threshold of number of scalar
ac775968 130 memory-to-memory move insns. */
8b60264b
KG
131 const int movzbl_load; /* cost of loading using movzbl */
132 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
133 in QImode, HImode and SImode relative
134 to reg-reg move (2). */
8b60264b 135 const int int_store[3]; /* cost of storing integer register
96e7ae40 136 in QImode, HImode and SImode */
8b60264b
KG
137 const int fp_move; /* cost of reg,reg fld/fst */
138 const int fp_load[3]; /* cost of loading FP register
96e7ae40 139 in SFmode, DFmode and XFmode */
8b60264b 140 const int fp_store[3]; /* cost of storing FP register
96e7ae40 141 in SFmode, DFmode and XFmode */
8b60264b
KG
142 const int mmx_move; /* cost of moving MMX register. */
143 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 144 in SImode and DImode */
8b60264b 145 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 146 in SImode and DImode */
8b60264b
KG
147 const int sse_move; /* cost of moving SSE register. */
148 const int sse_load[3]; /* cost of loading SSE register
fa79946e 149 in SImode, DImode and TImode*/
8b60264b 150 const int sse_store[3]; /* cost of storing SSE register
fa79946e 151 in SImode, DImode and TImode*/
8b60264b 152 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 153 integer and vice versa. */
46cb0441
ZD
154 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
155 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
156 const int prefetch_block; /* bytes moved to cache for prefetch. */
157 const int simultaneous_prefetches; /* number of parallel prefetch
158 operations. */
4977bab6 159 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
160 const int fadd; /* cost of FADD and FSUB instructions. */
161 const int fmul; /* cost of FMUL instruction. */
162 const int fdiv; /* cost of FDIV instruction. */
163 const int fabs; /* cost of FABS instruction. */
164 const int fchs; /* cost of FCHS instruction. */
165 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 166 /* Specify what algorithm
bee51209
L
167 to use for stringops on unknown size. */
168 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
169 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
170 load and store. */
171 const int scalar_load_cost; /* Cost of scalar load. */
172 const int scalar_store_cost; /* Cost of scalar store. */
173 const int vec_stmt_cost; /* Cost of any vector operation, excluding
174 load, store, vector-to-scalar and
175 scalar-to-vector operation. */
176 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
177 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 178 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
179 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
180 const int vec_store_cost; /* Cost of vector store. */
181 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
182 cost model. */
183 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
184 vectorizer cost model. */
d4ba09c0
SC
185};
186
8b60264b 187extern const struct processor_costs *ix86_cost;
b2077fd2
JH
188extern const struct processor_costs ix86_size_cost;
189
190#define ix86_cur_cost() \
191 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 192
c98f8742
JVA
193/* Macros used in the machine description to test the flags. */
194
ddd5a7c1 195/* configure can arrange to make this 2, to force a 486. */
e075ae69 196
35b528be 197#ifndef TARGET_CPU_DEFAULT
d326eaf0 198#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 199#endif
35b528be 200
004d3859
GK
201#ifndef TARGET_FPMATH_DEFAULT
202#define TARGET_FPMATH_DEFAULT \
203 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
204#endif
205
6ac49599 206#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 207
5791cc29
JT
208/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
209 compile-time constant. */
210#ifdef IN_LIBGCC2
6ac49599 211#undef TARGET_64BIT
5791cc29
JT
212#ifdef __x86_64__
213#define TARGET_64BIT 1
214#else
215#define TARGET_64BIT 0
216#endif
217#else
6ac49599
RS
218#ifndef TARGET_BI_ARCH
219#undef TARGET_64BIT
67adf6a9 220#if TARGET_64BIT_DEFAULT
0c2dc519
JH
221#define TARGET_64BIT 1
222#else
223#define TARGET_64BIT 0
224#endif
225#endif
5791cc29 226#endif
25f94bb5 227
750054a2
CT
228#define HAS_LONG_COND_BRANCH 1
229#define HAS_LONG_UNCOND_BRANCH 1
230
9e555526
RH
231#define TARGET_386 (ix86_tune == PROCESSOR_I386)
232#define TARGET_486 (ix86_tune == PROCESSOR_I486)
233#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
234#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 235#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
236#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
237#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
238#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
239#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 240#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 241#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
ab247762
MK
242#define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
243#define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
244#define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
b2b01543
BS
245#define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
246#define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
247#define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
d326eaf0
JH
248#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
249#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
250#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 251#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 252#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 253#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
14b52538 254#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 255#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 256#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 257
80fd744f
RH
258/* Feature tests against the various tunings. */
259enum ix86_tune_indices {
260 X86_TUNE_USE_LEAVE,
261 X86_TUNE_PUSH_MEMORY,
262 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 263 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
264 X86_TUNE_BRANCH_PREDICTION_HINTS,
265 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 266 X86_TUNE_USE_SAHF,
80fd744f
RH
267 X86_TUNE_MOVX,
268 X86_TUNE_PARTIAL_REG_STALL,
269 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 270 X86_TUNE_LCP_STALL,
80fd744f
RH
271 X86_TUNE_USE_HIMODE_FIOP,
272 X86_TUNE_USE_SIMODE_FIOP,
273 X86_TUNE_USE_MOV0,
274 X86_TUNE_USE_CLTD,
275 X86_TUNE_USE_XCHGB,
276 X86_TUNE_SPLIT_LONG_MOVES,
277 X86_TUNE_READ_MODIFY_WRITE,
278 X86_TUNE_READ_MODIFY,
279 X86_TUNE_PROMOTE_QIMODE,
280 X86_TUNE_FAST_PREFIX,
281 X86_TUNE_SINGLE_STRINGOP,
282 X86_TUNE_QIMODE_MATH,
283 X86_TUNE_HIMODE_MATH,
284 X86_TUNE_PROMOTE_QI_REGS,
285 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
286 X86_TUNE_SINGLE_POP,
287 X86_TUNE_DOUBLE_POP,
288 X86_TUNE_SINGLE_PUSH,
289 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
290 X86_TUNE_INTEGER_DFMODE_MOVES,
291 X86_TUNE_PARTIAL_REG_DEPENDENCY,
292 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
293 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
294 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
295 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
296 X86_TUNE_SSE_SPLIT_REGS,
297 X86_TUNE_SSE_TYPELESS_STORES,
298 X86_TUNE_SSE_LOAD0_BY_PXOR,
299 X86_TUNE_MEMORY_MISMATCH_STALL,
300 X86_TUNE_PROLOGUE_USING_MOVE,
301 X86_TUNE_EPILOGUE_USING_MOVE,
302 X86_TUNE_SHIFT1,
303 X86_TUNE_USE_FFREEP,
304 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 305 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
306 X86_TUNE_FOUR_JUMP_LIMIT,
307 X86_TUNE_SCHEDULE,
308 X86_TUNE_USE_BT,
309 X86_TUNE_USE_INCDEC,
310 X86_TUNE_PAD_RETURNS,
e7ed95a2 311 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 312 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
313 X86_TUNE_SHORTEN_X87_SSE,
314 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 315 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
316 X86_TUNE_SLOW_IMUL_IMM32_MEM,
317 X86_TUNE_SLOW_IMUL_IMM8,
318 X86_TUNE_MOVE_M1_VIA_OR,
319 X86_TUNE_NOT_UNPAIRABLE,
320 X86_TUNE_NOT_VECTORMODE,
54723b46 321 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 322 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 323 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 324 X86_TUNE_OPT_AGU,
e72eba85 325 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 326 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 327 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
328 X86_TUNE_REASSOC_INT_TO_PARALLEL,
329 X86_TUNE_REASSOC_FP_TO_PARALLEL,
80fd744f
RH
330
331 X86_TUNE_LAST
332};
333
ab442df7 334extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
335
336#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
337#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
338#define TARGET_ZERO_EXTEND_WITH_AND \
339 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 340#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
341#define TARGET_BRANCH_PREDICTION_HINTS \
342 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
343#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
344#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
345#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
346#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
347#define TARGET_PARTIAL_FLAG_REG_STALL \
348 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
349#define TARGET_LCP_STALL \
350 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
351#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
352#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
353#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
354#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
355#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
356#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
357#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
358#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
359#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
360#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
361#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
362#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
363#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
364#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
365#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
366#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
367#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
368#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
369#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
370#define TARGET_INTEGER_DFMODE_MOVES \
371 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
372#define TARGET_PARTIAL_REG_DEPENDENCY \
373 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
374#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
375 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
376#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
378#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
379 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
380#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
381 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
382#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
383#define TARGET_SSE_TYPELESS_STORES \
384 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
385#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
386#define TARGET_MEMORY_MISMATCH_STALL \
387 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
388#define TARGET_PROLOGUE_USING_MOVE \
389 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
390#define TARGET_EPILOGUE_USING_MOVE \
391 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
392#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
393#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
394#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
395#define TARGET_INTER_UNIT_CONVERSIONS\
396 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
397#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
398#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
399#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
400#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
401#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
402#define TARGET_PAD_SHORT_FUNCTION \
403 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
404#define TARGET_EXT_80387_CONSTANTS \
405 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
406#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
407#define TARGET_AVOID_VECTOR_DECODE \
408 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
409#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
410 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
411#define TARGET_SLOW_IMUL_IMM32_MEM \
412 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
413#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
414#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
415#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
416#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
417#define TARGET_USE_VECTOR_FP_CONVERTS \
418 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
419#define TARGET_USE_VECTOR_CONVERTS \
420 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
421#define TARGET_FUSE_CMP_AND_BRANCH \
422 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 423#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
424#define TARGET_VECTORIZE_DOUBLE \
425 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
426#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
427 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
428#define TARGET_AVX128_OPTIMAL \
429 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
430#define TARGET_REASSOC_INT_TO_PARALLEL \
431 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
432#define TARGET_REASSOC_FP_TO_PARALLEL \
433 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
434
80fd744f
RH
435/* Feature tests against the various architecture variations. */
436enum ix86_arch_indices {
cef31f9c 437 X86_ARCH_CMOV,
80fd744f
RH
438 X86_ARCH_CMPXCHG,
439 X86_ARCH_CMPXCHG8B,
440 X86_ARCH_XADD,
441 X86_ARCH_BSWAP,
442
443 X86_ARCH_LAST
444};
4f3f76e6 445
ab442df7 446extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 447
cef31f9c 448#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
449#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
450#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
451#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
452#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
453
cef31f9c
UB
454/* For sane SSE instruction set generation we need fcomi instruction.
455 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
456 expands to a sequence that includes conditional move. */
457#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
458
80fd744f
RH
459#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
460
461extern int x86_prefetch_sse;
0a1c5e55 462
80fd744f
RH
463#define TARGET_PREFETCH_SSE x86_prefetch_sse
464
80fd744f
RH
465#define ASSEMBLER_DIALECT (ix86_asm_dialect)
466
467#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
468#define TARGET_MIX_SSE_I387 \
469 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
470
471#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
472#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
473#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 474#define TARGET_SUN_TLS 0
1ef45b77 475
67adf6a9
RH
476#ifndef TARGET_64BIT_DEFAULT
477#define TARGET_64BIT_DEFAULT 0
25f94bb5 478#endif
74dc3e94
RH
479#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
480#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
481#endif
25f94bb5 482
79f5e442
ZD
483/* Fence to use after loop using storent. */
484
485extern tree x86_mfence;
486#define FENCE_FOLLOWING_MOVNT x86_mfence
487
0ed4a390
JL
488/* Once GDB has been enhanced to deal with functions without frame
489 pointers, we can change this to allow for elimination of
490 the frame pointer in leaf functions. */
491#define TARGET_DEFAULT 0
67adf6a9 492
0a1c5e55
UB
493/* Extra bits to force. */
494#define TARGET_SUBTARGET_DEFAULT 0
495#define TARGET_SUBTARGET_ISA_DEFAULT 0
496
497/* Extra bits to force on w/ 32-bit mode. */
498#define TARGET_SUBTARGET32_DEFAULT 0
499#define TARGET_SUBTARGET32_ISA_DEFAULT 0
500
ccf8e764
RH
501/* Extra bits to force on w/ 64-bit mode. */
502#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 503#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 504
fee3eacd
IS
505/* Replace MACH-O, ifdefs by in-line tests, where possible.
506 (a) Macros defined in config/i386/darwin.h */
b069de3b 507#define TARGET_MACHO 0
9005471b 508#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
509#define MACHOPIC_ATT_STUB 0
510/* (b) Macros defined in config/darwin.h */
511#define MACHO_DYNAMIC_NO_PIC_P 0
512#define MACHOPIC_INDIRECT 0
513#define MACHOPIC_PURE 0
9005471b
IS
514
515/* For the Windows 64-bit ABI. */
7c800926
KT
516#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
517
6510e8bb
KT
518/* For the Windows 32-bit ABI. */
519#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
520
f81c9774
RH
521/* This is re-defined by cygming.h. */
522#define TARGET_SEH 0
523
51212b32 524/* The default abi used by target. */
7c800926 525#define DEFAULT_ABI SYSV_ABI
ccf8e764 526
cc69336f
RH
527/* Subtargets may reset this to 1 in order to enable 96-bit long double
528 with the rounding mode forced to 53 bits. */
529#define TARGET_96_ROUND_53_LONG_DOUBLE 0
530
682cd442
GK
531/* -march=native handling only makes sense with compiler running on
532 an x86 or x86_64 chip. If changing this condition, also change
533 the condition in driver-i386.c. */
534#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
535/* In driver-i386.c. */
536extern const char *host_detect_local_cpu (int argc, const char **argv);
537#define EXTRA_SPEC_FUNCTIONS \
538 { "local_cpu_detect", host_detect_local_cpu },
682cd442 539#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
540#endif
541
8981c15b
JM
542#if TARGET_64BIT_DEFAULT
543#define OPT_ARCH64 "!m32"
544#define OPT_ARCH32 "m32"
545#else
f0ea7581
L
546#define OPT_ARCH64 "m64|mx32"
547#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
548#endif
549
1cba2b96
EC
550/* Support for configure-time defaults of some command line options.
551 The order here is important so that -march doesn't squash the
552 tune or cpu values. */
ce998900 553#define OPTION_DEFAULT_SPECS \
da2d4c01 554 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
555 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
556 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 557 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
558 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
559 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
560 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
561 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
562 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 563
241e1a89
SC
564/* Specs for the compiler proper */
565
628714d8 566#ifndef CC1_CPU_SPEC
eb5bb0fd 567#define CC1_CPU_SPEC_1 ""
fa959ce4 568
682cd442 569#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
570#define CC1_CPU_SPEC CC1_CPU_SPEC_1
571#else
572#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
573"%{march=native:%>march=native %:local_cpu_detect(arch) \
574 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
575%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 576#endif
241e1a89 577#endif
c98f8742 578\f
30efe578 579/* Target CPU builtins. */
ab442df7
MM
580#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
581
582/* Target Pragmas. */
583#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 584
c2f17e19
UB
585enum target_cpu_default
586{
587 TARGET_CPU_DEFAULT_generic = 0,
588
589 TARGET_CPU_DEFAULT_i386,
590 TARGET_CPU_DEFAULT_i486,
591 TARGET_CPU_DEFAULT_pentium,
592 TARGET_CPU_DEFAULT_pentium_mmx,
593 TARGET_CPU_DEFAULT_pentiumpro,
594 TARGET_CPU_DEFAULT_pentium2,
595 TARGET_CPU_DEFAULT_pentium3,
596 TARGET_CPU_DEFAULT_pentium4,
597 TARGET_CPU_DEFAULT_pentium_m,
598 TARGET_CPU_DEFAULT_prescott,
599 TARGET_CPU_DEFAULT_nocona,
600 TARGET_CPU_DEFAULT_core2,
9d8477b6 601 TARGET_CPU_DEFAULT_corei7,
b6837b94 602 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
603
604 TARGET_CPU_DEFAULT_geode,
605 TARGET_CPU_DEFAULT_k6,
606 TARGET_CPU_DEFAULT_k6_2,
607 TARGET_CPU_DEFAULT_k6_3,
608 TARGET_CPU_DEFAULT_athlon,
609 TARGET_CPU_DEFAULT_athlon_sse,
610 TARGET_CPU_DEFAULT_k8,
611 TARGET_CPU_DEFAULT_amdfam10,
1133125e 612 TARGET_CPU_DEFAULT_bdver1,
4d652a18 613 TARGET_CPU_DEFAULT_bdver2,
14b52538 614 TARGET_CPU_DEFAULT_btver1,
e32bfc16 615 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
616
617 TARGET_CPU_DEFAULT_max
618};
0c2dc519 619
628714d8 620#ifndef CC1_SPEC
8015b78d 621#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
622#endif
623
624/* This macro defines names of additional specifications to put in the
625 specs that can be used in various specifications like CC1_SPEC. Its
626 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
627
628 Each subgrouping contains a string constant, that defines the
188fc5b5 629 specification name, and a string constant that used by the GCC driver
bcd86433
SC
630 program.
631
632 Do not define this macro if it does not need to do anything. */
633
634#ifndef SUBTARGET_EXTRA_SPECS
635#define SUBTARGET_EXTRA_SPECS
636#endif
637
638#define EXTRA_SPECS \
628714d8 639 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
640 SUBTARGET_EXTRA_SPECS
641\f
ce998900 642
d57a4b98
RH
643/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
644 FPU, assume that the fpcw is set to extended precision; when using
645 only SSE, rounding is correct; when using both SSE and the FPU,
646 the rounding precision is indeterminate, since either may be chosen
647 apparently at random. */
648#define TARGET_FLT_EVAL_METHOD \
5ccd517a 649 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 650
8ce94e44
JM
651/* Whether to allow x87 floating-point arithmetic on MODE (one of
652 SFmode, DFmode and XFmode) in the current excess precision
653 configuration. */
654#define X87_ENABLE_ARITH(MODE) \
655 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
656
657/* Likewise, whether to allow direct conversions from integer mode
658 IMODE (HImode, SImode or DImode) to MODE. */
659#define X87_ENABLE_FLOAT(MODE, IMODE) \
660 (flag_excess_precision == EXCESS_PRECISION_FAST \
661 || (MODE) == XFmode \
662 || ((MODE) == DFmode && (IMODE) == SImode) \
663 || (IMODE) == HImode)
664
979c67a5
UB
665/* target machine storage layout */
666
65d9c0ab
JH
667#define SHORT_TYPE_SIZE 16
668#define INT_TYPE_SIZE 32
f0ea7581
L
669#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
670#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 671#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 672#define FLOAT_TYPE_SIZE 32
65d9c0ab 673#define DOUBLE_TYPE_SIZE 64
979c67a5
UB
674#define LONG_DOUBLE_TYPE_SIZE 80
675
676#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 677
67adf6a9 678#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 679#define MAX_BITS_PER_WORD 64
0c2dc519
JH
680#else
681#define MAX_BITS_PER_WORD 32
0c2dc519
JH
682#endif
683
c98f8742
JVA
684/* Define this if most significant byte of a word is the lowest numbered. */
685/* That is true on the 80386. */
686
687#define BITS_BIG_ENDIAN 0
688
689/* Define this if most significant byte of a word is the lowest numbered. */
690/* That is not true on the 80386. */
691#define BYTES_BIG_ENDIAN 0
692
693/* Define this if most significant word of a multiword number is the lowest
694 numbered. */
695/* Not true for 80386 */
696#define WORDS_BIG_ENDIAN 0
697
c98f8742 698/* Width of a word, in units (bytes). */
4ae8027b 699#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
700
701#ifndef IN_LIBGCC2
2e64c636
JH
702#define MIN_UNITS_PER_WORD 4
703#endif
c98f8742 704
c98f8742 705/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 706#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 707
e075ae69 708/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 709#define STACK_BOUNDARY \
51212b32 710 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 711
2e3f842f
L
712/* Stack boundary of the main function guaranteed by OS. */
713#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
714
de1132d1 715/* Minimum stack boundary. */
5bfb2af2 716#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 717
d1f87653 718/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 719 aligned; the compiler cannot rely on having this alignment. */
e075ae69 720#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 721
de1132d1 722/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
723 both 32bit and 64bit, to support codes that need 128 bit stack
724 alignment for SSE instructions, but can't realign the stack. */
725#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
726
727/* 1 if -mstackrealign should be turned on by default. It will
728 generate an alternate prologue and epilogue that realigns the
729 runtime stack if nessary. This supports mixing codes that keep a
730 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 731 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
732#define STACK_REALIGN_DEFAULT 0
733
734/* Boundary (in *bits*) on which the incoming stack is aligned. */
735#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 736
a2851b75
TG
737/* According to Windows x64 software convention, the maximum stack allocatable
738 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
739 instructions allowed to adjust the stack pointer in the epilog, forcing the
740 use of frame pointer for frames larger than 2 GB. This theorical limit
741 is reduced by 256, an over-estimated upper bound for the stack use by the
742 prologue.
743 We define only one threshold for both the prolog and the epilog. When the
4e523f33 744 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
745 regs, then save them, and then allocate the remaining. There is no SEH
746 unwind info for this later allocation. */
747#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
748
ebff937c
SH
749/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
750 mandatory for the 64-bit ABI, and may or may not be true for other
751 operating systems. */
752#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
753
f963b5d9
RS
754/* Minimum allocation boundary for the code of a function. */
755#define FUNCTION_BOUNDARY 8
756
757/* C++ stores the virtual bit in the lowest bit of function pointers. */
758#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 759
c98f8742
JVA
760/* Minimum size in bits of the largest boundary to which any
761 and all fundamental data types supported by the hardware
762 might need to be aligned. No data type wants to be aligned
17f24ff0 763 rounder than this.
fce5a9f2 764
d1f87653 765 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
766 and Pentium Pro XFmode values at 128 bit boundaries. */
767
2824d6e5 768#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 769
2e3f842f
L
770/* Maximum stack alignment. */
771#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
772
6e4f1168
L
773/* Alignment value for attribute ((aligned)). It is a constant since
774 it is the part of the ABI. We shouldn't change it with -mavx. */
775#define ATTRIBUTE_ALIGNED_VALUE 128
776
822eda12 777/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 778#define ALIGN_MODE_128(MODE) \
4501d314 779 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 780
17f24ff0 781/* The published ABIs say that doubles should be aligned on word
d1f87653 782 boundaries, so lower the alignment for structure fields unless
6fc605d8 783 -malign-double is set. */
e932b21b 784
e83f3cff
RH
785/* ??? Blah -- this macro is used directly by libobjc. Since it
786 supports no vector modes, cut out the complexity and fall back
787 on BIGGEST_FIELD_ALIGNMENT. */
788#ifdef IN_TARGET_LIBS
ef49d42e
JH
789#ifdef __x86_64__
790#define BIGGEST_FIELD_ALIGNMENT 128
791#else
e83f3cff 792#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 793#endif
e83f3cff 794#else
e932b21b
JH
795#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
796 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 797#endif
c98f8742 798
e5e8a8bf 799/* If defined, a C expression to compute the alignment given to a
a7180f70 800 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
801 and ALIGN is the alignment that the object would ordinarily have.
802 The value of this macro is used instead of that alignment to align
803 the object.
804
805 If this macro is not defined, then ALIGN is used.
806
807 The typical use of this macro is to increase alignment for string
808 constants to be word aligned so that `strcpy' calls that copy
809 constants can be done inline. */
810
d9a5f180 811#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 812
8a022443
JW
813/* If defined, a C expression to compute the alignment for a static
814 variable. TYPE is the data type, and ALIGN is the alignment that
815 the object would ordinarily have. The value of this macro is used
816 instead of that alignment to align the object.
817
818 If this macro is not defined, then ALIGN is used.
819
820 One use of this macro is to increase alignment of medium-size
821 data to make it all fit in fewer cache lines. Another is to
822 cause character arrays to be word-aligned so that `strcpy' calls
823 that copy constants to character arrays can be done inline. */
824
d9a5f180 825#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
826
827/* If defined, a C expression to compute the alignment for a local
828 variable. TYPE is the data type, and ALIGN is the alignment that
829 the object would ordinarily have. The value of this macro is used
830 instead of that alignment to align the object.
831
832 If this macro is not defined, then ALIGN is used.
833
834 One use of this macro is to increase alignment of medium-size
835 data to make it all fit in fewer cache lines. */
836
76fe54f0
L
837#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
838 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
839
840/* If defined, a C expression to compute the alignment for stack slot.
841 TYPE is the data type, MODE is the widest mode available, and ALIGN
842 is the alignment that the slot would ordinarily have. The value of
843 this macro is used instead of that alignment to align the slot.
844
845 If this macro is not defined, then ALIGN is used when TYPE is NULL,
846 Otherwise, LOCAL_ALIGNMENT will be used.
847
848 One use of this macro is to set alignment of stack slot to the
849 maximum alignment of all possible modes which the slot may have. */
850
851#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
852 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 853
9bfaf89d
JJ
854/* If defined, a C expression to compute the alignment for a local
855 variable DECL.
856
857 If this macro is not defined, then
858 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
859
860 One use of this macro is to increase alignment of medium-size
861 data to make it all fit in fewer cache lines. */
862
863#define LOCAL_DECL_ALIGNMENT(DECL) \
864 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
865
ae58e548
JJ
866/* If defined, a C expression to compute the minimum required alignment
867 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
868 MODE, assuming normal alignment ALIGN.
869
870 If this macro is not defined, then (ALIGN) will be used. */
871
872#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
873 ix86_minimum_alignment (EXP, MODE, ALIGN)
874
9bfaf89d 875
9cd10576 876/* Set this nonzero if move instructions will actually fail to work
c98f8742 877 when given unaligned data. */
b4ac57ab 878#define STRICT_ALIGNMENT 0
c98f8742
JVA
879
880/* If bit field type is int, don't let it cross an int,
881 and give entire struct the alignment of an int. */
43a88a8c 882/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 883#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
884\f
885/* Standard register usage. */
886
887/* This processor has special stack-like registers. See reg-stack.c
892a2d68 888 for details. */
c98f8742
JVA
889
890#define STACK_REGS
ce998900 891
d9a5f180 892#define IS_STACK_MODE(MODE) \
63001560
UB
893 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
894 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 895 || (MODE) == XFmode)
c98f8742
JVA
896
897/* Number of actual hardware registers.
898 The hardware registers are assigned numbers for the compiler
899 from 0 to just below FIRST_PSEUDO_REGISTER.
900 All registers that the compiler knows about must be given numbers,
901 even those that are not normally considered general registers.
902
903 In the 80386 we give the 8 general purpose registers the numbers 0-7.
904 We number the floating point registers 8-15.
905 Note that registers 0-7 can be accessed as a short or int,
906 while only 0-3 may be used with byte `mov' instructions.
907
908 Reg 16 does not correspond to any hardware register, but instead
909 appears in the RTL as an argument pointer prior to reload, and is
910 eliminated during reloading in favor of either the stack or frame
892a2d68 911 pointer. */
c98f8742 912
b0d95de8 913#define FIRST_PSEUDO_REGISTER 53
c98f8742 914
3073d01c
ML
915/* Number of hardware registers that go into the DWARF-2 unwind info.
916 If not defined, equals FIRST_PSEUDO_REGISTER. */
917
918#define DWARF_FRAME_REGISTERS 17
919
c98f8742
JVA
920/* 1 for registers that have pervasive standard uses
921 and are not available for the register allocator.
3f3f2124 922 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 923
621bc046
UB
924 REX registers are disabled for 32bit targets in
925 TARGET_CONDITIONAL_REGISTER_USAGE. */
926
a7180f70
BS
927#define FIXED_REGISTERS \
928/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 929{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
930/*arg,flags,fpsr,fpcr,frame*/ \
931 1, 1, 1, 1, 1, \
a7180f70
BS
932/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
933 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 934/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
935 0, 0, 0, 0, 0, 0, 0, 0, \
936/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 937 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 938/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 939 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
940
941/* 1 for registers not available across function calls.
942 These must include the FIXED_REGISTERS and also any
943 registers that can be used without being saved.
944 The latter must include the registers where values are returned
945 and the register where structure-value addresses are passed.
fce5a9f2
EC
946 Aside from that, you can include as many other registers as you like.
947
621bc046
UB
948 Value is set to 1 if the register is call used unconditionally.
949 Bit one is set if the register is call used on TARGET_32BIT ABI.
950 Bit two is set if the register is call used on TARGET_64BIT ABI.
951 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
952
953 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
954
a7180f70
BS
955#define CALL_USED_REGISTERS \
956/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 957{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
958/*arg,flags,fpsr,fpcr,frame*/ \
959 1, 1, 1, 1, 1, \
a7180f70 960/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 961 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 962/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 963 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 964/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 965 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 966/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 967 6, 6, 6, 6, 6, 6, 6, 6 }
c98f8742 968
3b3c6a3f
MM
969/* Order in which to allocate registers. Each register must be
970 listed once, even those in FIXED_REGISTERS. List frame pointer
971 late and fixed registers last. Note that, in general, we prefer
972 registers listed in CALL_USED_REGISTERS, keeping the others
973 available for storage of persistent values.
974
5a733826 975 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 976 so this is just empty initializer for array. */
3b3c6a3f 977
162f023b
JH
978#define REG_ALLOC_ORDER \
979{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
980 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
981 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 982 48, 49, 50, 51, 52 }
3b3c6a3f 983
5a733826 984/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 985 to be rearranged based on a particular function. When using sse math,
03c259ad 986 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 987
5a733826 988#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 989
f5316dfe 990
7c800926
KT
991#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
992
c98f8742
JVA
993/* Return number of consecutive hard regs needed starting at reg REGNO
994 to hold something of mode MODE.
995 This is ordinarily the length in words of a value of mode MODE
996 but can be less for certain modes in special long registers.
997
fce5a9f2 998 Actually there are no two word move instructions for consecutive
c98f8742 999 registers. And only registers 0-3 may have mov byte instructions
63001560 1000 applied to them. */
c98f8742 1001
ce998900 1002#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1003 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1004 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1005 : ((MODE) == XFmode \
92d0fb09 1006 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1007 : (MODE) == XCmode \
92d0fb09 1008 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1009 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1010
8521c414
JM
1011#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1012 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1013 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1014 ? 0 \
1015 : ((MODE) == XFmode || (MODE) == XCmode)) \
1016 : 0)
1017
1018#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1019
95879c72
L
1020#define VALID_AVX256_REG_MODE(MODE) \
1021 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1022 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1023 || (MODE) == V4DFmode)
95879c72 1024
ce998900
UB
1025#define VALID_SSE2_REG_MODE(MODE) \
1026 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1027 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1028
d9a5f180 1029#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1030 ((MODE) == V1TImode || (MODE) == TImode \
1031 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1032 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1033
47f339cf 1034#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1035 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1036
d9a5f180 1037#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1038 ((MODE == V1DImode) || (MODE) == DImode \
1039 || (MODE) == V2SImode || (MODE) == SImode \
1040 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1041
ce998900
UB
1042#define VALID_DFP_MODE_P(MODE) \
1043 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1044
d9a5f180 1045#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1046 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1047 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1048
d9a5f180 1049#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1050 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1051 || (MODE) == DImode \
1052 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1053 || (MODE) == CDImode \
1054 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1055 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1056
822eda12 1057/* Return true for modes passed in SSE registers. */
ce998900 1058#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1059 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1060 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1061 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1062 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1063 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1064 || (MODE) == V2TImode)
822eda12 1065
e075ae69 1066/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1067
a946dd00 1068#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1070
1071/* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
c1c5b5e3 1076#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1077
ff25ef99
ZD
1078/* It is possible to write patterns to move flags; but until someone
1079 does it, */
1080#define AVOID_CCMODE_COPIES
c98f8742 1081
e075ae69 1082/* Specify the modes required to caller save a given hard regno.
787dc842 1083 We do this on i386 to prevent flags from being saved at all.
e075ae69 1084
787dc842
JH
1085 Kill any attempts to combine saving of modes. */
1086
d9a5f180
GS
1087#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1088 (CC_REGNO_P (REGNO) ? VOIDmode \
1089 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1090 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1091 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
fc27f749 1092 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
d2836273 1093 : (MODE))
ce998900 1094
51ba747a
RH
1095/* The only ABI that saves SSE registers across calls is Win64 (thus no
1096 need to check the current ABI here), and with AVX enabled Win64 only
1097 guarantees that the low 16 bytes are saved. */
1098#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1099 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1100
c98f8742
JVA
1101/* Specify the registers used for certain standard purposes.
1102 The values of these macros are register numbers. */
1103
1104/* on the 386 the pc register is %eip, and is not usable as a general
1105 register. The ordinary mov instructions won't work */
1106/* #define PC_REGNUM */
1107
1108/* Register to use for pushing function arguments. */
1109#define STACK_POINTER_REGNUM 7
1110
1111/* Base register for access to local variables of the function. */
564d80f4
JH
1112#define HARD_FRAME_POINTER_REGNUM 6
1113
1114/* Base register for access to local variables of the function. */
b0d95de8 1115#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1116
1117/* First floating point reg */
1118#define FIRST_FLOAT_REG 8
1119
1120/* First & last stack-like regs */
1121#define FIRST_STACK_REG FIRST_FLOAT_REG
1122#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1123
a7180f70
BS
1124#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1125#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1126
a7180f70
BS
1127#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1128#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1129
3f3f2124
JH
1130#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1131#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1132
1133#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1134#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1135
aabcd309 1136/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1137 requiring a frame pointer. */
1138#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1139#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1140#endif
1141
1142/* Make sure we can access arbitrary call frames. */
1143#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1144
1145/* Base register for access to arguments of the function. */
1146#define ARG_POINTER_REGNUM 16
1147
c98f8742 1148/* Register to hold the addressing base for position independent
5b43fed1
RH
1149 code access to data items. We don't use PIC pointer for 64bit
1150 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1151 pessimizing code dealing with EBX.
bd09bdeb
RH
1152
1153 To avoid clobbering a call-saved register unnecessarily, we renumber
1154 the pic register when possible. The change is visible after the
1155 prologue has been emitted. */
1156
2e3f842f 1157#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1158
1159#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1160 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1161 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1162 : reload_completed ? REGNO (pic_offset_table_rtx) \
1163 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1164
5fc0e5df
KW
1165#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1166
c51e6d85 1167/* This is overridden by <cygwin.h>. */
5e062767
DS
1168#define MS_AGGREGATE_RETURN 0
1169
61fec9ff 1170#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1171\f
1172/* Define the classes of registers for register constraints in the
1173 machine description. Also define ranges of constants.
1174
1175 One of the classes must always be named ALL_REGS and include all hard regs.
1176 If there is more than one class, another class must be named NO_REGS
1177 and contain no registers.
1178
1179 The name GENERAL_REGS must be the name of a class (or an alias for
1180 another name such as ALL_REGS). This is the class of registers
1181 that is allowed by "g" or "r" in a register constraint.
1182 Also, registers outside this class are allocated only when
1183 instructions express preferences for them.
1184
1185 The classes must be numbered in nondecreasing order; that is,
1186 a larger-numbered class must never be contained completely
1187 in a smaller-numbered class.
1188
1189 For any two classes, it is very desirable that there be another
ab408a86
JVA
1190 class that represents their union.
1191
1192 It might seem that class BREG is unnecessary, since no useful 386
1193 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1194 and the "b" register constraint is useful in asms for syscalls.
1195
03c259ad 1196 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1197
1198enum reg_class
1199{
1200 NO_REGS,
e075ae69 1201 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1202 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1203 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1204 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1205 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1206 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1207 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1208 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1209 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1210 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1211 FLOAT_REGS,
06f4e35d 1212 SSE_FIRST_REG,
a7180f70
BS
1213 SSE_REGS,
1214 MMX_REGS,
446988df
JH
1215 FP_TOP_SSE_REGS,
1216 FP_SECOND_SSE_REGS,
1217 FLOAT_SSE_REGS,
1218 FLOAT_INT_REGS,
1219 INT_SSE_REGS,
1220 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1221 ALL_REGS, LIM_REG_CLASSES
1222};
1223
d9a5f180
GS
1224#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1225
1226#define INTEGER_CLASS_P(CLASS) \
1227 reg_class_subset_p ((CLASS), GENERAL_REGS)
1228#define FLOAT_CLASS_P(CLASS) \
1229 reg_class_subset_p ((CLASS), FLOAT_REGS)
1230#define SSE_CLASS_P(CLASS) \
06f4e35d 1231 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1232#define MMX_CLASS_P(CLASS) \
f75959a6 1233 ((CLASS) == MMX_REGS)
d9a5f180
GS
1234#define MAYBE_INTEGER_CLASS_P(CLASS) \
1235 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1236#define MAYBE_FLOAT_CLASS_P(CLASS) \
1237 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1238#define MAYBE_SSE_CLASS_P(CLASS) \
1239 reg_classes_intersect_p (SSE_REGS, (CLASS))
1240#define MAYBE_MMX_CLASS_P(CLASS) \
1241 reg_classes_intersect_p (MMX_REGS, (CLASS))
1242
1243#define Q_CLASS_P(CLASS) \
1244 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1245
43f3a59d 1246/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1247
1248#define REG_CLASS_NAMES \
1249{ "NO_REGS", \
ab408a86 1250 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1251 "SIREG", "DIREG", \
e075ae69
RH
1252 "AD_REGS", \
1253 "Q_REGS", "NON_Q_REGS", \
c98f8742 1254 "INDEX_REGS", \
3f3f2124 1255 "LEGACY_REGS", \
621bc046 1256 "CLOBBERED_REGS", \
c98f8742
JVA
1257 "GENERAL_REGS", \
1258 "FP_TOP_REG", "FP_SECOND_REG", \
1259 "FLOAT_REGS", \
cb482895 1260 "SSE_FIRST_REG", \
a7180f70
BS
1261 "SSE_REGS", \
1262 "MMX_REGS", \
446988df
JH
1263 "FP_TOP_SSE_REGS", \
1264 "FP_SECOND_SSE_REGS", \
1265 "FLOAT_SSE_REGS", \
8fcaaa80 1266 "FLOAT_INT_REGS", \
446988df
JH
1267 "INT_SSE_REGS", \
1268 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1269 "ALL_REGS" }
1270
ac2e563f
RH
1271/* Define which registers fit in which classes. This is an initializer
1272 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1273
621bc046
UB
1274 Note that CLOBBERED_REGS are calculated by
1275 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1276
a7180f70 1277#define REG_CLASS_CONTENTS \
3f3f2124
JH
1278{ { 0x00, 0x0 }, \
1279 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1280 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1281 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1282 { 0x03, 0x0 }, /* AD_REGS */ \
1283 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1284 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1285 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1286 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
621bc046 1287 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
b0d95de8 1288 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1289 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1290 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1291 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1292{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1293{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1294{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1295{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1296{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b197fc48
UB
1297 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1298{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1299{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
b0d95de8 1300{ 0xffffffff,0x1fffff } \
e075ae69 1301}
c98f8742
JVA
1302
1303/* The same information, inverted:
1304 Return the class number of the smallest class containing
1305 reg number REGNO. This could be a conditional expression
1306 or could index an array. */
1307
c98f8742
JVA
1308#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1309
42db504c
SB
1310/* When this hook returns true for MODE, the compiler allows
1311 registers explicitly used in the rtl to be used as spill registers
1312 but prevents the compiler from extending the lifetime of these
1313 registers. */
1314#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1315
fc27f749
UB
1316#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1317#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1318
1319#define GENERAL_REG_P(X) \
6189a572 1320 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1321#define GENERAL_REGNO_P(N) \
1322 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1323
fc27f749
UB
1324#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1325#define ANY_QI_REGNO_P(N) \
1326 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1327
fc27f749 1328#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1329#define REX_INT_REGNO_P(N) \
1330 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1331
c98f8742 1332#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1333#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1334
446988df 1335#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1336#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1337
54a88090 1338#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1339 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1340
fc27f749 1341#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1342#define SSE_REGNO_P(N) \
1343 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1344 || REX_SSE_REGNO_P (N))
3f3f2124 1345
4977bab6 1346#define REX_SSE_REGNO_P(N) \
fb84c7a0 1347 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1348
d9a5f180
GS
1349#define SSE_REGNO(N) \
1350 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1351
d9a5f180 1352#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1353 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1354
cbf2e4d4
HJ
1355#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1356 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1357 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1358
fc27f749 1359#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1360#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1361
fc27f749 1362#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
fb84c7a0 1363#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1364
fc27f749 1365#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1366
e075ae69
RH
1367#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1368#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1369
c98f8742
JVA
1370/* The class value for index registers, and the one for base regs. */
1371
1372#define INDEX_REG_CLASS INDEX_REGS
1373#define BASE_REG_CLASS GENERAL_REGS
1374
c98f8742 1375/* Place additional restrictions on the register class to use when it
4cbb525c 1376 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1377 register for which class CLASS would ordinarily be used.
1378
1379 We avoid classes containing registers from multiple units due to
1380 the limitation in ix86_secondary_memory_needed. We limit these
1381 classes to their "natural mode" single unit register class, depending
1382 on the unit availability.
1383
1384 Please note that reg_class_subset_p is not commutative, so these
1385 conditions mean "... if (CLASS) includes ALL registers from the
1386 register set." */
1387
1388#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1389 (((MODE) == QImode && !TARGET_64BIT \
1390 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1391 : (((MODE) == SImode || (MODE) == DImode) \
1392 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1393 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1394 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1395 : (X87_FLOAT_MODE_P (MODE) \
1396 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1397 : (CLASS))
c98f8742 1398
85ff473e 1399/* If we are copying between general and FP registers, we need a memory
f84aa48a 1400 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1401#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1402 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1403
c62b3659
UB
1404/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1405 There is no need to emit full 64 bit move on 64 bit targets
1406 for integral modes that can be moved using 32 bit move. */
1407#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1408 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1409 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1410 : MODE)
1411
1272914c
RH
1412/* Return a class of registers that cannot change FROM mode to TO mode. */
1413
1414#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1415 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1416\f
1417/* Stack layout; function entry, exit and calling. */
1418
1419/* Define this if pushing a word on the stack
1420 makes the stack pointer a smaller address. */
1421#define STACK_GROWS_DOWNWARD
1422
a4d05547 1423/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1424 is at the high-address end of the local variables;
1425 that is, each additional local variable allocated
1426 goes at a more negative offset in the frame. */
f62c8a5c 1427#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1428
1429/* Offset within stack frame to start allocating local variables at.
1430 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1431 first local allocated. Otherwise, it is the offset to the BEGINNING
1432 of the first local allocated. */
1433#define STARTING_FRAME_OFFSET 0
1434
8c2b2fae
UB
1435/* If we generate an insn to push BYTES bytes, this says how many the stack
1436 pointer really advances by. On 386, we have pushw instruction that
1437 decrements by exactly 2 no matter what the position was, there is no pushb.
1438
1439 But as CIE data alignment factor on this arch is -4 for 32bit targets
1440 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1441 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1442
d2836273 1443#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1444 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1445
1446/* If defined, the maximum amount of space required for outgoing arguments
1447 will be computed and placed into the variable `crtl->outgoing_args_size'.
1448 No space will be pushed onto the stack for each call; instead, the
1449 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1450
6510e8bb
KT
1451 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1452 function prologue and apilogue. This is not possible without
9aa5c1b2 1453 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1454
6c6094f1 1455#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1456 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1457
1458/* If defined, a C expression whose value is nonzero when we want to use PUSH
1459 instructions to pass outgoing arguments. */
1460
1461#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1462
2da4124d
L
1463/* We want the stack and args grow in opposite directions, even if
1464 PUSH_ARGS is 0. */
1465#define PUSH_ARGS_REVERSED 1
1466
c98f8742
JVA
1467/* Offset of first parameter from the argument pointer register value. */
1468#define FIRST_PARM_OFFSET(FNDECL) 0
1469
a7180f70
BS
1470/* Define this macro if functions should assume that stack space has been
1471 allocated for arguments even when their values are passed in registers.
1472
1473 The value of this macro is the size, in bytes, of the area reserved for
1474 arguments passed in registers for the function represented by FNDECL.
1475
1476 This space can be allocated by the caller, or be a part of the
1477 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1478 which. */
7c800926
KT
1479#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1480
4ae8027b 1481#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1482 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1483
c98f8742
JVA
1484/* Define how to find the value returned by a library function
1485 assuming the value has mode MODE. */
1486
4ae8027b 1487#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1488
e9125c09
TW
1489/* Define the size of the result block used for communication between
1490 untyped_call and untyped_return. The block contains a DImode value
1491 followed by the block used by fnsave and frstor. */
1492
1493#define APPLY_RESULT_SIZE (8+108)
1494
b08de47e 1495/* 1 if N is a possible register number for function argument passing. */
53c17031 1496#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1497
1498/* Define a data type for recording info about an argument list
1499 during the scan of that argument list. This data type should
1500 hold all necessary information about the function itself
1501 and about the args processed so far, enough to enable macros
b08de47e 1502 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1503
e075ae69 1504typedef struct ix86_args {
fa283935 1505 int words; /* # words passed so far */
b08de47e
MM
1506 int nregs; /* # registers available for passing */
1507 int regno; /* next available register number */
3e65f251
KT
1508 int fastcall; /* fastcall or thiscall calling convention
1509 is used */
fa283935 1510 int sse_words; /* # sse words passed so far */
a7180f70 1511 int sse_nregs; /* # sse registers available for passing */
95879c72 1512 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1513 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1514 int warn_mmx; /* True when we want to warn about MMX ABI. */
1515 int sse_regno; /* next available sse register number */
1516 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1517 int mmx_nregs; /* # mmx registers available for passing */
1518 int mmx_regno; /* next available mmx register number */
892a2d68 1519 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1520 int caller; /* true if it is caller. */
2824d6e5
UB
1521 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1522 SFmode/DFmode arguments should be passed
1523 in SSE registers. Otherwise 0. */
51212b32 1524 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1525 MS_ABI for ms abi. */
b08de47e 1526} CUMULATIVE_ARGS;
c98f8742
JVA
1527
1528/* Initialize a variable CUM of type CUMULATIVE_ARGS
1529 for a call to a function whose data type is FNTYPE.
b08de47e 1530 For a library call, FNTYPE is 0. */
c98f8742 1531
0f6937fe 1532#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1533 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1534 (N_NAMED_ARGS) != -1)
c98f8742 1535
c98f8742
JVA
1536/* Output assembler code to FILE to increment profiler label # LABELNO
1537 for profiling a function entry. */
1538
a5fa1ecd
JH
1539#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1540
1541#define MCOUNT_NAME "_mcount"
1542
3c5273a9
KT
1543#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1544
a5fa1ecd 1545#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1546
1547/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1548 the stack pointer does not matter. The value is tested only in
1549 functions that have frame pointers.
1550 No definition is equivalent to always zero. */
fce5a9f2 1551/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1552 we have to restore it ourselves from the frame pointer, in order to
1553 use pop */
1554
1555#define EXIT_IGNORE_STACK 1
1556
c98f8742
JVA
1557/* Output assembler code for a block containing the constant parts
1558 of a trampoline, leaving space for the variable parts. */
1559
a269a03c 1560/* On the 386, the trampoline contains two instructions:
c98f8742 1561 mov #STATIC,ecx
a269a03c
JC
1562 jmp FUNCTION
1563 The trampoline is generated entirely at runtime. The operand of JMP
1564 is the address of FUNCTION relative to the instruction following the
1565 JMP (which is 5 bytes long). */
c98f8742
JVA
1566
1567/* Length in units of the trampoline for entering a nested function. */
1568
3452586b 1569#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1570\f
1571/* Definitions for register eliminations.
1572
1573 This is an array of structures. Each structure initializes one pair
1574 of eliminable registers. The "from" register number is given first,
1575 followed by "to". Eliminations of the same "from" register are listed
1576 in order of preference.
1577
afc2cd05
NC
1578 There are two registers that can always be eliminated on the i386.
1579 The frame pointer and the arg pointer can be replaced by either the
1580 hard frame pointer or to the stack pointer, depending upon the
1581 circumstances. The hard frame pointer is not used before reload and
1582 so it is not eligible for elimination. */
c98f8742 1583
564d80f4
JH
1584#define ELIMINABLE_REGS \
1585{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1586 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1587 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1588 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1589
c98f8742
JVA
1590/* Define the offset between two registers, one to be eliminated, and the other
1591 its replacement, at the start of a routine. */
1592
d9a5f180
GS
1593#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1594 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1595\f
1596/* Addressing modes, and classification of registers for them. */
1597
c98f8742
JVA
1598/* Macros to check register numbers against specific register classes. */
1599
1600/* These assume that REGNO is a hard or pseudo reg number.
1601 They give nonzero only if REGNO is a hard reg of the suitable class
1602 or a pseudo reg currently allocated to a suitable hard reg.
1603 Since they use reg_renumber, they are safe only once reg_renumber
1604 has been allocated, which happens in local-alloc.c. */
1605
3f3f2124
JH
1606#define REGNO_OK_FOR_INDEX_P(REGNO) \
1607 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1608 || REX_INT_REGNO_P (REGNO) \
1609 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1610 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1611
3f3f2124 1612#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1613 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1614 || (REGNO) == ARG_POINTER_REGNUM \
1615 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1616 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1617
c98f8742
JVA
1618/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1619 and check its validity for a certain class.
1620 We have two alternate definitions for each of them.
1621 The usual definition accepts all pseudo regs; the other rejects
1622 them unless they have been allocated suitable hard regs.
1623 The symbol REG_OK_STRICT causes the latter definition to be used.
1624
1625 Most source files want to accept pseudo regs in the hope that
1626 they will get allocated to the class that the insn wants them to be in.
1627 Source files for reload pass need to be strict.
1628 After reload, it makes no difference, since pseudo regs have
1629 been eliminated by then. */
1630
c98f8742 1631
ff482c8d 1632/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1633#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1634 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1635 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1636 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1637
3b3c6a3f 1638#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1639 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1640 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1641 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1642 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1643
3b3c6a3f
MM
1644/* Strict versions, hard registers only */
1645#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1646#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1647
3b3c6a3f 1648#ifndef REG_OK_STRICT
d9a5f180
GS
1649#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1650#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1651
1652#else
d9a5f180
GS
1653#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1654#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1655#endif
1656
331d9186 1657/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1658 that is a valid memory address for an instruction.
1659 The MODE argument is the machine mode for the MEM expression
1660 that wants to use this address.
1661
331d9186 1662 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1663 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1664
1665 See legitimize_pic_address in i386.c for details as to what
1666 constitutes a legitimate address when -fpic is used. */
1667
1668#define MAX_REGS_PER_ADDRESS 2
1669
f996902d 1670#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1671
ae1547cc
UB
1672/* Try a machine-dependent way of reloading an illegitimate address
1673 operand. If we find one, push the reload and jump to WIN. This
1674 macro is used in only one place: `find_reloads_address' in reload.c. */
1675
1676#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1677do { \
1678 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1679 (int)(TYPE), (INDL))) \
1680 goto WIN; \
1681} while (0)
1682
b949ea8b
JW
1683/* If defined, a C expression to determine the base term of address X.
1684 This macro is used in only one place: `find_base_term' in alias.c.
1685
1686 It is always safe for this macro to not be defined. It exists so
1687 that alias analysis can understand machine-dependent addresses.
1688
1689 The typical use of this macro is to handle addresses containing
1690 a label_ref or symbol_ref within an UNSPEC. */
1691
d9a5f180 1692#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1693
c98f8742 1694/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1695 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1696 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1697
f996902d 1698#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1699
1700#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1701 (GET_CODE (X) == SYMBOL_REF \
1702 || GET_CODE (X) == LABEL_REF \
1703 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1704\f
b08de47e
MM
1705/* Max number of args passed in registers. If this is more than 3, we will
1706 have problems with ebx (register #4), since it is a caller save register and
1707 is also used as the pic register in ELF. So for now, don't allow more than
1708 3 registers to be passed in registers. */
1709
7c800926
KT
1710/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1711#define X86_64_REGPARM_MAX 6
72fa3605 1712#define X86_64_MS_REGPARM_MAX 4
7c800926 1713
72fa3605 1714#define X86_32_REGPARM_MAX 3
7c800926 1715
4ae8027b 1716#define REGPARM_MAX \
2824d6e5
UB
1717 (TARGET_64BIT \
1718 ? (TARGET_64BIT_MS_ABI \
1719 ? X86_64_MS_REGPARM_MAX \
1720 : X86_64_REGPARM_MAX) \
4ae8027b 1721 : X86_32_REGPARM_MAX)
d2836273 1722
72fa3605
UB
1723#define X86_64_SSE_REGPARM_MAX 8
1724#define X86_64_MS_SSE_REGPARM_MAX 4
1725
b6010cab 1726#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1727
4ae8027b 1728#define SSE_REGPARM_MAX \
2824d6e5
UB
1729 (TARGET_64BIT \
1730 ? (TARGET_64BIT_MS_ABI \
1731 ? X86_64_MS_SSE_REGPARM_MAX \
1732 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1733 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1734
1735#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1736\f
1737/* Specify the machine mode that this machine uses
1738 for the index in the tablejump instruction. */
dc4d7240 1739#define CASE_VECTOR_MODE \
6025b127 1740 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1741
c98f8742
JVA
1742/* Define this as 1 if `char' should by default be signed; else as 0. */
1743#define DEFAULT_SIGNED_CHAR 1
1744
1745/* Max number of bytes we can move from memory to memory
1746 in one reasonably fast instruction. */
65d9c0ab
JH
1747#define MOVE_MAX 16
1748
1749/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1750 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1751 number of bytes we can move with a single instruction. */
63001560 1752#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1753
7e24ffc9 1754/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1755 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1756 Increasing the value will always make code faster, but eventually
1757 incurs high cost in increased code size.
c98f8742 1758
e2e52e1b 1759 If you don't define this, a reasonable default is used. */
c98f8742 1760
e04ad03d 1761#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1762
45d78e7f
JJ
1763/* If a clear memory operation would take CLEAR_RATIO or more simple
1764 move-instruction sequences, we will do a clrmem or libcall instead. */
1765
e04ad03d 1766#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1767
53f00dde
UB
1768/* Define if shifts truncate the shift count which implies one can
1769 omit a sign-extension or zero-extension of a shift count.
1770
1771 On i386, shifts do truncate the count. But bit test instructions
1772 take the modulo of the bit offset operand. */
c98f8742
JVA
1773
1774/* #define SHIFT_COUNT_TRUNCATED */
1775
1776/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1777 is done just by pretending it is already truncated. */
1778#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1779
d9f32422
JH
1780/* A macro to update M and UNSIGNEDP when an object whose type is
1781 TYPE and which has the specified mode and signedness is to be
1782 stored in a register. This macro is only called when TYPE is a
1783 scalar type.
1784
f710504c 1785 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1786 quantities to SImode. The choice depends on target type. */
1787
1788#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1789do { \
d9f32422
JH
1790 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1791 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1792 (MODE) = SImode; \
1793} while (0)
d9f32422 1794
c98f8742
JVA
1795/* Specify the machine mode that pointers have.
1796 After generation of rtl, the compiler makes no further distinction
1797 between pointers and any other objects of this machine mode. */
28968d91 1798#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1799
f0ea7581
L
1800/* A C expression whose value is zero if pointers that need to be extended
1801 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1802 greater then zero if they are zero-extended and less then zero if the
1803 ptr_extend instruction should be used. */
1804
1805#define POINTERS_EXTEND_UNSIGNED 1
1806
c98f8742
JVA
1807/* A function address in a call instruction
1808 is a byte address (for indexing purposes)
1809 so give the MEM rtx a byte's mode. */
1810#define FUNCTION_MODE QImode
d4ba09c0 1811\f
d4ba09c0 1812
d4ba09c0
SC
1813/* A C expression for the cost of a branch instruction. A value of 1
1814 is the default; other values are interpreted relative to that. */
1815
3a4fd356
JH
1816#define BRANCH_COST(speed_p, predictable_p) \
1817 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1818
e327d1a3
L
1819/* An integer expression for the size in bits of the largest integer machine
1820 mode that should actually be used. We allow pairs of registers. */
1821#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1822
d4ba09c0
SC
1823/* Define this macro as a C expression which is nonzero if accessing
1824 less than a word of memory (i.e. a `char' or a `short') is no
1825 faster than accessing a word of memory, i.e., if such access
1826 require more than one instruction or if there is no difference in
1827 cost between byte and (aligned) word loads.
1828
1829 When this macro is not defined, the compiler will access a field by
1830 finding the smallest containing object; when it is defined, a
1831 fullword load will be used if alignment permits. Unless bytes
1832 accesses are faster than word accesses, using word accesses is
1833 preferable since it may eliminate subsequent memory access if
1834 subsequent accesses occur to other fields in the same word of the
1835 structure, but to different bytes. */
1836
1837#define SLOW_BYTE_ACCESS 0
1838
1839/* Nonzero if access to memory by shorts is slow and undesirable. */
1840#define SLOW_SHORT_ACCESS 0
1841
d4ba09c0
SC
1842/* Define this macro to be the value 1 if unaligned accesses have a
1843 cost many times greater than aligned accesses, for example if they
1844 are emulated in a trap handler.
1845
9cd10576
KH
1846 When this macro is nonzero, the compiler will act as if
1847 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1848 moves. This can cause significantly more instructions to be
9cd10576 1849 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1850 accesses only add a cycle or two to the time for a memory access.
1851
1852 If the value of this macro is always zero, it need not be defined. */
1853
e1565e65 1854/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1855
d4ba09c0
SC
1856/* Define this macro if it is as good or better to call a constant
1857 function address than to call an address kept in a register.
1858
1859 Desirable on the 386 because a CALL with a constant address is
1860 faster than one with a register address. */
1861
1862#define NO_FUNCTION_CSE
c98f8742 1863\f
c572e5ba
JVA
1864/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1865 return the mode to be used for the comparison.
1866
1867 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1868 VOIDmode should be used in all other cases.
c572e5ba 1869
16189740 1870 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1871 possible, to allow for more combinations. */
c98f8742 1872
d9a5f180 1873#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1874
9cd10576 1875/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1876 reversed. */
1877
1878#define REVERSIBLE_CC_MODE(MODE) 1
1879
1880/* A C expression whose value is reversed condition code of the CODE for
1881 comparison done in CC_MODE mode. */
3c5cb3e4 1882#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1883
c98f8742
JVA
1884\f
1885/* Control the assembler format that we output, to the extent
1886 this does not vary between assemblers. */
1887
1888/* How to refer to registers in assembler output.
892a2d68 1889 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1890
a7b376ee 1891/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1892 For non floating point regs, the following are the HImode names.
1893
1894 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1895 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1896 "y" code. */
c98f8742 1897
a7180f70
BS
1898#define HI_REGISTER_NAMES \
1899{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1900 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1901 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1902 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1903 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1904 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1905 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1906
c98f8742
JVA
1907#define REGISTER_NAMES HI_REGISTER_NAMES
1908
1909/* Table of additional register names to use in user input. */
1910
1911#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1912{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1913 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1914 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1915 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1916 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1917 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1918
1919/* Note we are omitting these since currently I don't know how
1920to get gcc to use these, since they want the same but different
1921number as al, and ax.
1922*/
1923
c98f8742 1924#define QI_REGISTER_NAMES \
3f3f2124 1925{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1926
1927/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1928 of regs 0 through 3. */
c98f8742
JVA
1929
1930#define QI_HIGH_REGISTER_NAMES \
1931{"ah", "dh", "ch", "bh", }
1932
1933/* How to renumber registers for dbx and gdb. */
1934
d9a5f180
GS
1935#define DBX_REGISTER_NUMBER(N) \
1936 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1937
9a82e702
MS
1938extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1939extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1940extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1941
469ac993
JM
1942/* Before the prologue, RA is at 0(%esp). */
1943#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1944 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1945
e414ab29 1946/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1947#define RETURN_ADDR_RTX(COUNT, FRAME) \
1948 ((COUNT) == 0 \
0a81f074
RS
1949 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1950 -UNITS_PER_WORD)) \
1951 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 1952
892a2d68 1953/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1954#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1955
a6ab3aad 1956/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1957#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1958
1020a5ab 1959/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1960#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1961#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1962
ad919812 1963
e4c4ebeb
RH
1964/* Select a format to encode pointers in exception handling data. CODE
1965 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1966 true if the symbol may be affected by dynamic relocations.
1967
1968 ??? All x86 object file formats are capable of representing this.
1969 After all, the relocation needed is the same as for the call insn.
1970 Whether or not a particular assembler allows us to enter such, I
1971 guess we'll have to see. */
d9a5f180 1972#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1973 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1974
c98f8742
JVA
1975/* This is how to output an insn to push a register on the stack.
1976 It need not be very fast code. */
1977
d9a5f180 1978#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1979do { \
1980 if (TARGET_64BIT) \
1981 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1982 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1983 else \
1984 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1985} while (0)
c98f8742
JVA
1986
1987/* This is how to output an insn to pop a register from the stack.
1988 It need not be very fast code. */
1989
d9a5f180 1990#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1991do { \
1992 if (TARGET_64BIT) \
1993 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1994 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1995 else \
1996 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1997} while (0)
c98f8742 1998
f88c65f7 1999/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2000
2001#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2002 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2003
f88c65f7 2004/* This is how to output an element of a case-vector that is relative. */
c98f8742 2005
33f7f353 2006#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2007 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2008
63001560 2009/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2010
2011#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2012{ \
2013 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2014 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2015}
2016
2017/* A C statement or statements which output an assembler instruction
2018 opcode to the stdio stream STREAM. The macro-operand PTR is a
2019 variable of type `char *' which points to the opcode name in
2020 its "internal" form--the form that is written in the machine
2021 description. */
2022
2023#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2024 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2025
6a90d232
L
2026/* A C statement to output to the stdio stream FILE an assembler
2027 command to pad the location counter to a multiple of 1<<LOG
2028 bytes if it is within MAX_SKIP bytes. */
2029
2030#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2031#undef ASM_OUTPUT_MAX_SKIP_PAD
2032#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2033 if ((LOG) != 0) \
2034 { \
2035 if ((MAX_SKIP) == 0) \
2036 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2037 else \
2038 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2039 }
2040#endif
2041
135a687e
KT
2042/* Write the extra assembler code needed to declare a function
2043 properly. */
2044
2045#undef ASM_OUTPUT_FUNCTION_LABEL
2046#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2047 ix86_asm_output_function_label (FILE, NAME, DECL)
2048
f7288899
EC
2049/* Under some conditions we need jump tables in the text section,
2050 because the assembler cannot handle label differences between
2051 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2052
2053#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2054 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2055 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2056
cea3bd3e
RH
2057/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2058 and switch back. For x86 we do this only to save a few bytes that
2059 would otherwise be unused in the text section. */
ad211091
KT
2060#define CRT_MKSTR2(VAL) #VAL
2061#define CRT_MKSTR(x) CRT_MKSTR2(x)
2062
2063#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2064 asm (SECTION_OP "\n\t" \
2065 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2066 TEXT_SECTION_ASM_OP);
74b42c8b 2067\f
b2b01543 2068/* Which processor to tune code generation for. */
5bf0ebab
RH
2069
2070enum processor_type
2071{
8383d43c 2072 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2073 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2074 PROCESSOR_PENTIUM,
2075 PROCESSOR_PENTIUMPRO,
cfe1b18f 2076 PROCESSOR_GEODE,
5bf0ebab
RH
2077 PROCESSOR_K6,
2078 PROCESSOR_ATHLON,
2079 PROCESSOR_PENTIUM4,
4977bab6 2080 PROCESSOR_K8,
89c43c0a 2081 PROCESSOR_NOCONA,
ab247762
MK
2082 PROCESSOR_CORE2_32,
2083 PROCESSOR_CORE2_64,
b2b01543
BS
2084 PROCESSOR_COREI7_32,
2085 PROCESSOR_COREI7_64,
d326eaf0
JH
2086 PROCESSOR_GENERIC32,
2087 PROCESSOR_GENERIC64,
21efb4d4 2088 PROCESSOR_AMDFAM10,
1133125e 2089 PROCESSOR_BDVER1,
4d652a18 2090 PROCESSOR_BDVER2,
14b52538 2091 PROCESSOR_BTVER1,
e32bfc16 2092 PROCESSOR_BTVER2,
b6837b94 2093 PROCESSOR_ATOM,
5bf0ebab
RH
2094 PROCESSOR_max
2095};
2096
9e555526 2097extern enum processor_type ix86_tune;
5bf0ebab 2098extern enum processor_type ix86_arch;
5bf0ebab 2099
8362f420
JH
2100/* Size of the RED_ZONE area. */
2101#define RED_ZONE_SIZE 128
2102/* Reserved area of the red zone for temporaries. */
2103#define RED_ZONE_RESERVE 8
c93e80a5 2104
95899b34 2105extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2106extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2107
2108/* Smallest class containing REGNO. */
2109extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2110
0948ccb2
PB
2111enum ix86_fpcmp_strategy {
2112 IX86_FPCMP_SAHF,
2113 IX86_FPCMP_COMI,
2114 IX86_FPCMP_ARITH
2115};
22fb740d
JH
2116\f
2117/* To properly truncate FP values into integers, we need to set i387 control
2118 word. We can't emit proper mode switching code before reload, as spills
2119 generated by reload may truncate values incorrectly, but we still can avoid
2120 redundant computation of new control word by the mode switching pass.
2121 The fldcw instructions are still emitted redundantly, but this is probably
2122 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2123 the sequence.
22fb740d
JH
2124
2125 The machinery is to emit simple truncation instructions and split them
2126 before reload to instructions having USEs of two memory locations that
2127 are filled by this code to old and new control word.
fce5a9f2 2128
22fb740d
JH
2129 Post-reload pass may be later used to eliminate the redundant fildcw if
2130 needed. */
2131
ff680eb1
UB
2132enum ix86_entity
2133{
2134 I387_TRUNC = 0,
2135 I387_FLOOR,
2136 I387_CEIL,
2137 I387_MASK_PM,
2138 MAX_386_ENTITIES
2139};
2140
1cba2b96 2141enum ix86_stack_slot
ff680eb1 2142{
80dcd3aa
UB
2143 SLOT_VIRTUAL = 0,
2144 SLOT_TEMP,
ff680eb1
UB
2145 SLOT_CW_STORED,
2146 SLOT_CW_TRUNC,
2147 SLOT_CW_FLOOR,
2148 SLOT_CW_CEIL,
2149 SLOT_CW_MASK_PM,
2150 MAX_386_STACK_LOCALS
2151};
22fb740d
JH
2152
2153/* Define this macro if the port needs extra instructions inserted
2154 for mode switching in an optimizing compilation. */
2155
ff680eb1
UB
2156#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2157 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2158
2159/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2160 initializer for an array of integers. Each initializer element N
2161 refers to an entity that needs mode switching, and specifies the
2162 number of different modes that might need to be set for this
2163 entity. The position of the initializer in the initializer -
2164 starting counting at zero - determines the integer that is used to
2165 refer to the mode-switched entity in question. */
2166
ff680eb1
UB
2167#define NUM_MODES_FOR_MODE_SWITCHING \
2168 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2169
2170/* ENTITY is an integer specifying a mode-switched entity. If
2171 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2172 return an integer value not larger than the corresponding element
2173 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2174 must be switched into prior to the execution of INSN. */
2175
2176#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2177
2178/* This macro specifies the order in which modes for ENTITY are
2179 processed. 0 is the highest priority. */
2180
d9a5f180 2181#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2182
2183/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2184 is the set of hard registers live at the point where the insn(s)
2185 are to be inserted. */
2186
2187#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2188 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2189 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2190 : 0)
ff680eb1 2191
0f0138b6
JH
2192\f
2193/* Avoid renaming of stack registers, as doing so in combination with
2194 scheduling just increases amount of live registers at time and in
2195 the turn amount of fxch instructions needed.
2196
43f3a59d 2197 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2198
d9a5f180 2199#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2200 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2201
3b3c6a3f 2202\f
e91f04de 2203#define FASTCALL_PREFIX '@'
fa1a0d02 2204\f
ec7ded37 2205/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2206
604a6be9 2207#ifndef USED_FOR_TARGET
ec7ded37 2208struct GTY(()) machine_frame_state
cd9c1ca8 2209{
ec7ded37
RH
2210 /* This pair tracks the currently active CFA as reg+offset. When reg
2211 is drap_reg, we don't bother trying to record here the real CFA when
2212 it might really be a DW_CFA_def_cfa_expression. */
2213 rtx cfa_reg;
2214 HOST_WIDE_INT cfa_offset;
2215
2216 /* The current offset (canonically from the CFA) of ESP and EBP.
2217 When stack frame re-alignment is active, these may not be relative
2218 to the CFA. However, in all cases they are relative to the offsets
2219 of the saved registers stored in ix86_frame. */
2220 HOST_WIDE_INT sp_offset;
2221 HOST_WIDE_INT fp_offset;
2222
2223 /* The size of the red-zone that may be assumed for the purposes of
2224 eliding register restore notes in the epilogue. This may be zero
2225 if no red-zone is in effect, or may be reduced from the real
2226 red-zone value by a maximum runtime stack re-alignment value. */
2227 int red_zone_offset;
2228
2229 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2230 value within the frame. If false then the offset above should be
2231 ignored. Note that DRAP, if valid, *always* points to the CFA and
2232 thus has an offset of zero. */
2233 BOOL_BITFIELD sp_valid : 1;
2234 BOOL_BITFIELD fp_valid : 1;
2235 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2236
2237 /* Indicate whether the local stack frame has been re-aligned. When
2238 set, the SP/FP offsets above are relative to the aligned frame
2239 and not the CFA. */
2240 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2241};
2242
f81c9774
RH
2243/* Private to winnt.c. */
2244struct seh_frame_state;
2245
d1b38208 2246struct GTY(()) machine_function {
fa1a0d02
JH
2247 struct stack_local_entry *stack_locals;
2248 const char *some_ld_name;
4aab97f9
L
2249 int varargs_gpr_size;
2250 int varargs_fpr_size;
ff680eb1 2251 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2252
2253 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2254 has been computed for. */
2255 int use_fast_prologue_epilogue_nregs;
2256
7458026b
ILT
2257 /* For -fsplit-stack support: A stack local which holds a pointer to
2258 the stack arguments for a function with a variable number of
2259 arguments. This is set at the start of the function and is used
2260 to initialize the overflow_arg_area field of the va_list
2261 structure. */
2262 rtx split_stack_varargs_pointer;
2263
3452586b
RH
2264 /* This value is used for amd64 targets and specifies the current abi
2265 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2266 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2267
2268 /* Nonzero if the function accesses a previous frame. */
2269 BOOL_BITFIELD accesses_prev_frame : 1;
2270
2271 /* Nonzero if the function requires a CLD in the prologue. */
2272 BOOL_BITFIELD needs_cld : 1;
2273
922e3e33
UB
2274 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2275 expander to determine the style used. */
3452586b
RH
2276 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2277
5bf5a10b
AO
2278 /* If true, the current function needs the default PIC register, not
2279 an alternate register (on x86) and must not use the red zone (on
2280 x86_64), even if it's a leaf function. We don't want the
2281 function to be regarded as non-leaf because TLS calls need not
2282 affect register allocation. This flag is set when a TLS call
2283 instruction is expanded within a function, and never reset, even
2284 if all such instructions are optimized away. Use the
2285 ix86_current_function_calls_tls_descriptor macro for a better
2286 approximation. */
3452586b
RH
2287 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2288
2289 /* If true, the current function has a STATIC_CHAIN is placed on the
2290 stack below the return address. */
2291 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2292
2767a7f2
L
2293 /* Nonzero if caller passes 256bit AVX modes. */
2294 BOOL_BITFIELD caller_pass_avx256_p : 1;
2295
2296 /* Nonzero if caller returns 256bit AVX modes. */
2297 BOOL_BITFIELD caller_return_avx256_p : 1;
2298
2299 /* Nonzero if the current callee passes 256bit AVX modes. */
2300 BOOL_BITFIELD callee_pass_avx256_p : 1;
2301
2302 /* Nonzero if the current callee returns 256bit AVX modes. */
2303 BOOL_BITFIELD callee_return_avx256_p : 1;
2304
617e6634
L
2305 /* Nonzero if rescan vzerouppers in the current function is needed. */
2306 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2307
ec7ded37
RH
2308 /* During prologue/epilogue generation, the current frame state.
2309 Otherwise, the frame state at the end of the prologue. */
2310 struct machine_frame_state fs;
f81c9774
RH
2311
2312 /* During SEH output, this is non-null. */
2313 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2314};
cd9c1ca8 2315#endif
fa1a0d02
JH
2316
2317#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2318#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2319#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2320#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2321#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2322#define ix86_tls_descriptor_calls_expanded_in_cfun \
2323 (cfun->machine->tls_descriptor_call_expanded_p)
2324/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2325 calls are optimized away, we try to detect cases in which it was
2326 optimized away. Since such instructions (use (reg REG_SP)), we can
2327 verify whether there's any such instruction live by testing that
2328 REG_SP is live. */
2329#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2330 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2331#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2332
1bc7c5b6
ZW
2333/* Control behavior of x86_file_start. */
2334#define X86_FILE_START_VERSION_DIRECTIVE false
2335#define X86_FILE_START_FLTUSED false
2336
7dcbf659
JH
2337/* Flag to mark data that is in the large address area. */
2338#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2339#define SYMBOL_REF_FAR_ADDR_P(X) \
2340 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2341
2342/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2343 have defined always, to avoid ifdefing. */
2344#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2345#define SYMBOL_REF_DLLIMPORT_P(X) \
2346 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2347
2348#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2349#define SYMBOL_REF_DLLEXPORT_P(X) \
2350 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2351
7942e47e
RY
2352extern void debug_ready_dispatch (void);
2353extern void debug_dispatch_window (int);
2354
91afcfa3
QN
2355/* The value at zero is only defined for the BMI instructions
2356 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2357#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2358 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2359#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2360 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2361
2362
b8ce4e94
KT
2363/* Flags returned by ix86_get_callcvt (). */
2364#define IX86_CALLCVT_CDECL 0x1
2365#define IX86_CALLCVT_STDCALL 0x2
2366#define IX86_CALLCVT_FASTCALL 0x4
2367#define IX86_CALLCVT_THISCALL 0x8
2368#define IX86_CALLCVT_REGPARM 0x10
2369#define IX86_CALLCVT_SSEREGPARM 0x20
2370
2371#define IX86_BASE_CALLCVT(FLAGS) \
2372 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2373 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2374
b86b9f44
MM
2375#define RECIP_MASK_NONE 0x00
2376#define RECIP_MASK_DIV 0x01
2377#define RECIP_MASK_SQRT 0x02
2378#define RECIP_MASK_VEC_DIV 0x04
2379#define RECIP_MASK_VEC_SQRT 0x08
2380#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2381 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2382#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2383
2384#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2385#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2386#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2387#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2388
5dcfdccd
KY
2389#define IX86_HLE_ACQUIRE (1 << 16)
2390#define IX86_HLE_RELEASE (1 << 17)
2391
c98f8742
JVA
2392/*
2393Local variables:
2394version-control: t
2395End:
2396*/