]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Make-lang.in: Change copyright header to refer to version 3 of the GNU General Public...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
8a2fcf91
KH
3 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation,
4 Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
188fc5b5 19along with GCC; see the file COPYING. If not, write to
39d14dda
KC
20the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21Boston, MA 02110-1301, USA. */
c98f8742 22
ccf8e764
RH
23/* The purpose of this file is to define the characteristics of the i386,
24 independent of assembler syntax or operating system.
25
26 Three other files build on this one to describe a specific assembler syntax:
27 bsd386.h, att386.h, and sun386.h.
28
29 The actual tm.h file for a particular system should include
30 this file, and then the file for the appropriate assembler syntax.
31
32 Many macros that specify assembler syntax are omitted entirely from
33 this file because they really belong in the files for particular
34 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
35 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
36 that start with ASM_ or end in ASM_OP. */
37
0a1c5e55
UB
38/* Redefines for option macros. */
39
40#define TARGET_64BIT OPTION_ISA_64BIT
41#define TARGET_MMX OPTION_ISA_MMX
42#define TARGET_3DNOW OPTION_ISA_3DNOW
43#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
44#define TARGET_SSE OPTION_ISA_SSE
45#define TARGET_SSE2 OPTION_ISA_SSE2
46#define TARGET_SSE3 OPTION_ISA_SSE3
47#define TARGET_SSSE3 OPTION_ISA_SSSE3
48#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 49#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
0a1c5e55
UB
50#define TARGET_SSE4A OPTION_ISA_SSE4A
51
26b5109f
RS
52#include "config/vxworks-dummy.h"
53
8c996513
JH
54/* Algorithm to expand string function with. */
55enum stringop_alg
56{
57 no_stringop,
58 libcall,
59 rep_prefix_1_byte,
60 rep_prefix_4_byte,
61 rep_prefix_8_byte,
62 loop_1_byte,
63 loop,
64 unrolled_loop
65};
ccf8e764 66
8c996513 67#define NAX_STRINGOP_ALGS 4
ccf8e764 68
8c996513
JH
69/* Specify what algorithm to use for stringops on known size.
70 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
71 known at compile time or estimated via feedback, the SIZE array
72 is walked in order until MAX is greater then the estimate (or -1
73 means infinity). Corresponding ALG is used then.
74 For example initializer:
75 {{256, loop}, {-1, rep_prefix_4_byte}}
76 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 77 be used otherwise. */
8c996513
JH
78struct stringop_algs
79{
80 const enum stringop_alg unknown_size;
81 const struct stringop_strategy {
82 const int max;
83 const enum stringop_alg alg;
84 } size [NAX_STRINGOP_ALGS];
85};
86
d4ba09c0
SC
87/* Define the specific costs for a given cpu */
88
89struct processor_costs {
8b60264b
KG
90 const int add; /* cost of an add instruction */
91 const int lea; /* cost of a lea instruction */
92 const int shift_var; /* variable shift costs */
93 const int shift_const; /* constant shift costs */
f676971a 94 const int mult_init[5]; /* cost of starting a multiply
4977bab6 95 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 96 const int mult_bit; /* cost of multiply per each bit set */
f676971a 97 const int divide[5]; /* cost of a divide/mod
4977bab6 98 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
99 int movsx; /* The cost of movsx operation. */
100 int movzx; /* The cost of movzx operation. */
8b60264b
KG
101 const int large_insn; /* insns larger than this cost more */
102 const int move_ratio; /* The threshold of number of scalar
ac775968 103 memory-to-memory move insns. */
8b60264b
KG
104 const int movzbl_load; /* cost of loading using movzbl */
105 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
106 in QImode, HImode and SImode relative
107 to reg-reg move (2). */
8b60264b 108 const int int_store[3]; /* cost of storing integer register
96e7ae40 109 in QImode, HImode and SImode */
8b60264b
KG
110 const int fp_move; /* cost of reg,reg fld/fst */
111 const int fp_load[3]; /* cost of loading FP register
96e7ae40 112 in SFmode, DFmode and XFmode */
8b60264b 113 const int fp_store[3]; /* cost of storing FP register
96e7ae40 114 in SFmode, DFmode and XFmode */
8b60264b
KG
115 const int mmx_move; /* cost of moving MMX register. */
116 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 117 in SImode and DImode */
8b60264b 118 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 119 in SImode and DImode */
8b60264b
KG
120 const int sse_move; /* cost of moving SSE register. */
121 const int sse_load[3]; /* cost of loading SSE register
fa79946e 122 in SImode, DImode and TImode*/
8b60264b 123 const int sse_store[3]; /* cost of storing SSE register
fa79946e 124 in SImode, DImode and TImode*/
8b60264b 125 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 126 integer and vice versa. */
46cb0441
ZD
127 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
128 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
129 const int prefetch_block; /* bytes moved to cache for prefetch. */
130 const int simultaneous_prefetches; /* number of parallel prefetch
131 operations. */
4977bab6 132 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
133 const int fadd; /* cost of FADD and FSUB instructions. */
134 const int fmul; /* cost of FMUL instruction. */
135 const int fdiv; /* cost of FDIV instruction. */
136 const int fabs; /* cost of FABS instruction. */
137 const int fchs; /* cost of FCHS instruction. */
138 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
139 /* Specify what algorithm
140 to use for stringops on unknown size. */
141 struct stringop_algs memcpy[2], memset[2];
d4ba09c0
SC
142};
143
8b60264b 144extern const struct processor_costs *ix86_cost;
d4ba09c0 145
c98f8742
JVA
146/* Macros used in the machine description to test the flags. */
147
ddd5a7c1 148/* configure can arrange to make this 2, to force a 486. */
e075ae69 149
35b528be 150#ifndef TARGET_CPU_DEFAULT
d326eaf0 151#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 152#endif
35b528be 153
004d3859
GK
154#ifndef TARGET_FPMATH_DEFAULT
155#define TARGET_FPMATH_DEFAULT \
156 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
157#endif
158
6ac49599 159#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 160
5791cc29
JT
161/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
162 compile-time constant. */
163#ifdef IN_LIBGCC2
6ac49599 164#undef TARGET_64BIT
5791cc29
JT
165#ifdef __x86_64__
166#define TARGET_64BIT 1
167#else
168#define TARGET_64BIT 0
169#endif
170#else
6ac49599
RS
171#ifndef TARGET_BI_ARCH
172#undef TARGET_64BIT
67adf6a9 173#if TARGET_64BIT_DEFAULT
0c2dc519
JH
174#define TARGET_64BIT 1
175#else
176#define TARGET_64BIT 0
177#endif
178#endif
5791cc29 179#endif
25f94bb5 180
750054a2
CT
181#define HAS_LONG_COND_BRANCH 1
182#define HAS_LONG_UNCOND_BRANCH 1
183
9e555526
RH
184#define TARGET_386 (ix86_tune == PROCESSOR_I386)
185#define TARGET_486 (ix86_tune == PROCESSOR_I486)
186#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
187#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 188#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
189#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
190#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
191#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
192#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 193#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 194#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 195#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
196#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
197#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
198#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 199#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 200
80fd744f
RH
201/* Feature tests against the various tunings. */
202enum ix86_tune_indices {
203 X86_TUNE_USE_LEAVE,
204 X86_TUNE_PUSH_MEMORY,
205 X86_TUNE_ZERO_EXTEND_WITH_AND,
206 X86_TUNE_USE_BIT_TEST,
207 X86_TUNE_UNROLL_STRLEN,
208 X86_TUNE_DEEP_BRANCH_PREDICTION,
209 X86_TUNE_BRANCH_PREDICTION_HINTS,
210 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 211 X86_TUNE_USE_SAHF,
80fd744f
RH
212 X86_TUNE_MOVX,
213 X86_TUNE_PARTIAL_REG_STALL,
214 X86_TUNE_PARTIAL_FLAG_REG_STALL,
215 X86_TUNE_USE_HIMODE_FIOP,
216 X86_TUNE_USE_SIMODE_FIOP,
217 X86_TUNE_USE_MOV0,
218 X86_TUNE_USE_CLTD,
219 X86_TUNE_USE_XCHGB,
220 X86_TUNE_SPLIT_LONG_MOVES,
221 X86_TUNE_READ_MODIFY_WRITE,
222 X86_TUNE_READ_MODIFY,
223 X86_TUNE_PROMOTE_QIMODE,
224 X86_TUNE_FAST_PREFIX,
225 X86_TUNE_SINGLE_STRINGOP,
226 X86_TUNE_QIMODE_MATH,
227 X86_TUNE_HIMODE_MATH,
228 X86_TUNE_PROMOTE_QI_REGS,
229 X86_TUNE_PROMOTE_HI_REGS,
230 X86_TUNE_ADD_ESP_4,
231 X86_TUNE_ADD_ESP_8,
232 X86_TUNE_SUB_ESP_4,
233 X86_TUNE_SUB_ESP_8,
234 X86_TUNE_INTEGER_DFMODE_MOVES,
235 X86_TUNE_PARTIAL_REG_DEPENDENCY,
236 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
237 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
238 X86_TUNE_SSE_SPLIT_REGS,
239 X86_TUNE_SSE_TYPELESS_STORES,
240 X86_TUNE_SSE_LOAD0_BY_PXOR,
241 X86_TUNE_MEMORY_MISMATCH_STALL,
242 X86_TUNE_PROLOGUE_USING_MOVE,
243 X86_TUNE_EPILOGUE_USING_MOVE,
244 X86_TUNE_SHIFT1,
245 X86_TUNE_USE_FFREEP,
246 X86_TUNE_INTER_UNIT_MOVES,
247 X86_TUNE_FOUR_JUMP_LIMIT,
248 X86_TUNE_SCHEDULE,
249 X86_TUNE_USE_BT,
250 X86_TUNE_USE_INCDEC,
251 X86_TUNE_PAD_RETURNS,
252 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
253 X86_TUNE_SHORTEN_X87_SSE,
254 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 255 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
256 X86_TUNE_SLOW_IMUL_IMM32_MEM,
257 X86_TUNE_SLOW_IMUL_IMM8,
258 X86_TUNE_MOVE_M1_VIA_OR,
259 X86_TUNE_NOT_UNPAIRABLE,
260 X86_TUNE_NOT_VECTORMODE,
80fd744f
RH
261
262 X86_TUNE_LAST
263};
264
265extern unsigned int ix86_tune_features[X86_TUNE_LAST];
266
267#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
268#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
269#define TARGET_ZERO_EXTEND_WITH_AND \
270 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
271#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
272#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
273#define TARGET_DEEP_BRANCH_PREDICTION \
274 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
275#define TARGET_BRANCH_PREDICTION_HINTS \
276 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
277#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
278#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
279#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
280#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
281#define TARGET_PARTIAL_FLAG_REG_STALL \
282 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
283#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
284#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
285#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
286#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
287#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
288#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
289#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
290#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
291#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
292#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
293#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
294#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
295#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
296#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
297#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
298#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
299#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
300#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
301#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
302#define TARGET_INTEGER_DFMODE_MOVES \
303 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
304#define TARGET_PARTIAL_REG_DEPENDENCY \
305 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
306#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
307 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
308#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
309 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
310#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
311#define TARGET_SSE_TYPELESS_STORES \
312 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
313#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
314#define TARGET_MEMORY_MISMATCH_STALL \
315 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
316#define TARGET_PROLOGUE_USING_MOVE \
317 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
318#define TARGET_EPILOGUE_USING_MOVE \
319 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
320#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
321#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
322#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
323#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
324#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
325#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
326#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
327#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
328#define TARGET_EXT_80387_CONSTANTS \
329 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
330#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
331#define TARGET_AVOID_VECTOR_DECODE \
332 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
333#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
334 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
335#define TARGET_SLOW_IMUL_IMM32_MEM \
336 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
337#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
338#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
339#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
340#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
80fd744f
RH
341
342/* Feature tests against the various architecture variations. */
343enum ix86_arch_indices {
344 X86_ARCH_CMOVE, /* || TARGET_SSE */
345 X86_ARCH_CMPXCHG,
346 X86_ARCH_CMPXCHG8B,
347 X86_ARCH_XADD,
348 X86_ARCH_BSWAP,
349
350 X86_ARCH_LAST
351};
352
353extern unsigned int ix86_arch_features[X86_ARCH_LAST];
354
355#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
356#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
357#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
358#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
359#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
360
361#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
362
363extern int x86_prefetch_sse;
0a1c5e55
UB
364
365#define TARGET_ABM x86_abm
366#define TARGET_CMPXCHG16B x86_cmpxchg16b
367#define TARGET_POPCNT x86_popcnt
80fd744f 368#define TARGET_PREFETCH_SSE x86_prefetch_sse
0a1c5e55 369#define TARGET_SAHF x86_sahf
6b889d89 370#define TARGET_RECIP x86_recip
80fd744f 371
80fd744f
RH
372#define ASSEMBLER_DIALECT (ix86_asm_dialect)
373
374#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
375#define TARGET_MIX_SSE_I387 \
376 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
377
378#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
379#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
380#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
381#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 382
0a1c5e55
UB
383extern int ix86_isa_flags;
384
67adf6a9
RH
385#ifndef TARGET_64BIT_DEFAULT
386#define TARGET_64BIT_DEFAULT 0
25f94bb5 387#endif
74dc3e94
RH
388#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
389#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
390#endif
25f94bb5 391
79f5e442
ZD
392/* Fence to use after loop using storent. */
393
394extern tree x86_mfence;
395#define FENCE_FOLLOWING_MOVNT x86_mfence
396
0ed4a390
JL
397/* Once GDB has been enhanced to deal with functions without frame
398 pointers, we can change this to allow for elimination of
399 the frame pointer in leaf functions. */
400#define TARGET_DEFAULT 0
67adf6a9 401
0a1c5e55
UB
402/* Extra bits to force. */
403#define TARGET_SUBTARGET_DEFAULT 0
404#define TARGET_SUBTARGET_ISA_DEFAULT 0
405
406/* Extra bits to force on w/ 32-bit mode. */
407#define TARGET_SUBTARGET32_DEFAULT 0
408#define TARGET_SUBTARGET32_ISA_DEFAULT 0
409
ccf8e764
RH
410/* Extra bits to force on w/ 64-bit mode. */
411#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 412#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 413
b069de3b
SS
414/* This is not really a target flag, but is done this way so that
415 it's analogous to similar code for Mach-O on PowerPC. darwin.h
416 redefines this to 1. */
417#define TARGET_MACHO 0
418
ccf8e764
RH
419/* Likewise, for the Windows 64-bit ABI. */
420#define TARGET_64BIT_MS_ABI 0
421
cc69336f
RH
422/* Subtargets may reset this to 1 in order to enable 96-bit long double
423 with the rounding mode forced to 53 bits. */
424#define TARGET_96_ROUND_53_LONG_DOUBLE 0
425
f5316dfe
MM
426/* Sometimes certain combinations of command options do not make
427 sense on a particular target machine. You can define a macro
428 `OVERRIDE_OPTIONS' to take account of this. This macro, if
429 defined, is executed once just after all the command options have
430 been parsed.
431
432 Don't use this macro to turn on various extra optimizations for
433 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
434
435#define OVERRIDE_OPTIONS override_options ()
436
d4ba09c0 437/* Define this to change the optimizations performed by default. */
d9a5f180
GS
438#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
439 optimization_options ((LEVEL), (SIZE))
d4ba09c0 440
682cd442
GK
441/* -march=native handling only makes sense with compiler running on
442 an x86 or x86_64 chip. If changing this condition, also change
443 the condition in driver-i386.c. */
444#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
445/* In driver-i386.c. */
446extern const char *host_detect_local_cpu (int argc, const char **argv);
447#define EXTRA_SPEC_FUNCTIONS \
448 { "local_cpu_detect", host_detect_local_cpu },
682cd442 449#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
450#endif
451
1cba2b96
EC
452/* Support for configure-time defaults of some command line options.
453 The order here is important so that -march doesn't squash the
454 tune or cpu values. */
7816bea0 455#define OPTION_DEFAULT_SPECS \
da2d4c01 456 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
457 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
458 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 459
241e1a89
SC
460/* Specs for the compiler proper */
461
628714d8 462#ifndef CC1_CPU_SPEC
fa959ce4 463#define CC1_CPU_SPEC_1 "\
9d913bbf 464%{mcpu=*:-mtune=%* \
d347d4c7 465%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 466%<mcpu=* \
c93e80a5
JH
467%{mintel-syntax:-masm=intel \
468%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
469%{mno-intel-syntax:-masm=att \
470%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 471
682cd442 472#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
473#define CC1_CPU_SPEC CC1_CPU_SPEC_1
474#else
475#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
476"%{march=native:%<march=native %:local_cpu_detect(arch) \
477 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
478%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
479#endif
241e1a89 480#endif
c98f8742 481\f
30efe578 482/* Target CPU builtins. */
1ba7b414
NB
483#define TARGET_CPU_CPP_BUILTINS() \
484 do \
485 { \
486 size_t arch_len = strlen (ix86_arch_string); \
9e555526 487 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 488 int last_arch_char = ix86_arch_string[arch_len - 1]; \
7706ca5d 489 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
490 \
491 if (TARGET_64BIT) \
492 { \
493 builtin_assert ("cpu=x86_64"); \
26b0ad13 494 builtin_assert ("machine=x86_64"); \
97242ddc
JH
495 builtin_define ("__amd64"); \
496 builtin_define ("__amd64__"); \
1ba7b414
NB
497 builtin_define ("__x86_64"); \
498 builtin_define ("__x86_64__"); \
499 } \
500 else \
501 { \
502 builtin_assert ("cpu=i386"); \
503 builtin_assert ("machine=i386"); \
504 builtin_define_std ("i386"); \
505 } \
506 \
9d913bbf 507 /* Built-ins based on -mtune= (or -march= if no \
9e555526 508 -mtune= given). */ \
1ba7b414
NB
509 if (TARGET_386) \
510 builtin_define ("__tune_i386__"); \
511 else if (TARGET_486) \
512 builtin_define ("__tune_i486__"); \
513 else if (TARGET_PENTIUM) \
514 { \
515 builtin_define ("__tune_i586__"); \
516 builtin_define ("__tune_pentium__"); \
9e555526 517 if (last_tune_char == 'x') \
1ba7b414
NB
518 builtin_define ("__tune_pentium_mmx__"); \
519 } \
520 else if (TARGET_PENTIUMPRO) \
521 { \
522 builtin_define ("__tune_i686__"); \
523 builtin_define ("__tune_pentiumpro__"); \
9e555526 524 switch (last_tune_char) \
2e37b0ce
RH
525 { \
526 case '3': \
527 builtin_define ("__tune_pentium3__"); \
5efb1046 528 /* FALLTHRU */ \
2e37b0ce
RH
529 case '2': \
530 builtin_define ("__tune_pentium2__"); \
531 break; \
532 } \
1ba7b414 533 } \
cfe1b18f
VM
534 else if (TARGET_GEODE) \
535 { \
536 builtin_define ("__tune_geode__"); \
537 } \
1ba7b414
NB
538 else if (TARGET_K6) \
539 { \
540 builtin_define ("__tune_k6__"); \
9e555526 541 if (last_tune_char == '2') \
1ba7b414 542 builtin_define ("__tune_k6_2__"); \
9e555526 543 else if (last_tune_char == '3') \
1ba7b414
NB
544 builtin_define ("__tune_k6_3__"); \
545 } \
546 else if (TARGET_ATHLON) \
547 { \
548 builtin_define ("__tune_athlon__"); \
549 /* Only plain "athlon" lacks SSE. */ \
9e555526 550 if (last_tune_char != 'n') \
1ba7b414
NB
551 builtin_define ("__tune_athlon_sse__"); \
552 } \
4977bab6
ZW
553 else if (TARGET_K8) \
554 builtin_define ("__tune_k8__"); \
21efb4d4
HJ
555 else if (TARGET_AMDFAM10) \
556 builtin_define ("__tune_amdfam10__"); \
1ba7b414
NB
557 else if (TARGET_PENTIUM4) \
558 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
559 else if (TARGET_NOCONA) \
560 builtin_define ("__tune_nocona__"); \
05f85dbb
VM
561 else if (TARGET_CORE2) \
562 builtin_define ("__tune_core2__"); \
1ba7b414
NB
563 \
564 if (TARGET_MMX) \
565 builtin_define ("__MMX__"); \
566 if (TARGET_3DNOW) \
567 builtin_define ("__3dNOW__"); \
568 if (TARGET_3DNOW_A) \
569 builtin_define ("__3dNOW_A__"); \
570 if (TARGET_SSE) \
571 builtin_define ("__SSE__"); \
572 if (TARGET_SSE2) \
573 builtin_define ("__SSE2__"); \
9e200aaf
KC
574 if (TARGET_SSE3) \
575 builtin_define ("__SSE3__"); \
b1875f52
L
576 if (TARGET_SSSE3) \
577 builtin_define ("__SSSE3__"); \
9a5cee02
L
578 if (TARGET_SSE4_1) \
579 builtin_define ("__SSE4_1__"); \
3b8dd071
L
580 if (TARGET_SSE4_2) \
581 builtin_define ("__SSE4_2__"); \
7706ca5d 582 if (TARGET_SSE4A) \
21efb4d4 583 builtin_define ("__SSE4A__"); \
48ddd46c
JH
584 if (TARGET_SSE_MATH && TARGET_SSE) \
585 builtin_define ("__SSE_MATH__"); \
586 if (TARGET_SSE_MATH && TARGET_SSE2) \
587 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
588 \
589 /* Built-ins based on -march=. */ \
590 if (ix86_arch == PROCESSOR_I486) \
591 { \
592 builtin_define ("__i486"); \
593 builtin_define ("__i486__"); \
594 } \
595 else if (ix86_arch == PROCESSOR_PENTIUM) \
596 { \
597 builtin_define ("__i586"); \
598 builtin_define ("__i586__"); \
599 builtin_define ("__pentium"); \
600 builtin_define ("__pentium__"); \
601 if (last_arch_char == 'x') \
602 builtin_define ("__pentium_mmx__"); \
603 } \
604 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
605 { \
606 builtin_define ("__i686"); \
607 builtin_define ("__i686__"); \
608 builtin_define ("__pentiumpro"); \
609 builtin_define ("__pentiumpro__"); \
610 } \
cfe1b18f
VM
611 else if (ix86_arch == PROCESSOR_GEODE) \
612 { \
613 builtin_define ("__geode"); \
614 builtin_define ("__geode__"); \
615 } \
1ba7b414
NB
616 else if (ix86_arch == PROCESSOR_K6) \
617 { \
618 \
619 builtin_define ("__k6"); \
620 builtin_define ("__k6__"); \
621 if (last_arch_char == '2') \
622 builtin_define ("__k6_2__"); \
623 else if (last_arch_char == '3') \
624 builtin_define ("__k6_3__"); \
625 } \
626 else if (ix86_arch == PROCESSOR_ATHLON) \
627 { \
628 builtin_define ("__athlon"); \
629 builtin_define ("__athlon__"); \
630 /* Only plain "athlon" lacks SSE. */ \
631 if (last_arch_char != 'n') \
632 builtin_define ("__athlon_sse__"); \
633 } \
4977bab6
ZW
634 else if (ix86_arch == PROCESSOR_K8) \
635 { \
636 builtin_define ("__k8"); \
637 builtin_define ("__k8__"); \
638 } \
21efb4d4
HJ
639 else if (ix86_arch == PROCESSOR_AMDFAM10) \
640 { \
641 builtin_define ("__amdfam10"); \
642 builtin_define ("__amdfam10__"); \
643 } \
1ba7b414
NB
644 else if (ix86_arch == PROCESSOR_PENTIUM4) \
645 { \
646 builtin_define ("__pentium4"); \
647 builtin_define ("__pentium4__"); \
648 } \
89c43c0a
VM
649 else if (ix86_arch == PROCESSOR_NOCONA) \
650 { \
651 builtin_define ("__nocona"); \
652 builtin_define ("__nocona__"); \
653 } \
05f85dbb
VM
654 else if (ix86_arch == PROCESSOR_CORE2) \
655 { \
656 builtin_define ("__core2"); \
657 builtin_define ("__core2__"); \
658 } \
1ba7b414 659 } \
30efe578
NB
660 while (0)
661
f4365627
JH
662#define TARGET_CPU_DEFAULT_i386 0
663#define TARGET_CPU_DEFAULT_i486 1
664#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
665#define TARGET_CPU_DEFAULT_pentium_mmx 3
666#define TARGET_CPU_DEFAULT_pentiumpro 4
667#define TARGET_CPU_DEFAULT_pentium2 5
668#define TARGET_CPU_DEFAULT_pentium3 6
669#define TARGET_CPU_DEFAULT_pentium4 7
cfe1b18f
VM
670#define TARGET_CPU_DEFAULT_geode 8
671#define TARGET_CPU_DEFAULT_k6 9
672#define TARGET_CPU_DEFAULT_k6_2 10
673#define TARGET_CPU_DEFAULT_k6_3 11
674#define TARGET_CPU_DEFAULT_athlon 12
675#define TARGET_CPU_DEFAULT_athlon_sse 13
676#define TARGET_CPU_DEFAULT_k8 14
677#define TARGET_CPU_DEFAULT_pentium_m 15
678#define TARGET_CPU_DEFAULT_prescott 16
679#define TARGET_CPU_DEFAULT_nocona 17
05f85dbb
VM
680#define TARGET_CPU_DEFAULT_core2 18
681#define TARGET_CPU_DEFAULT_generic 19
21efb4d4 682#define TARGET_CPU_DEFAULT_amdfam10 20
f4365627
JH
683
684#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
685 "pentiumpro", "pentium2", "pentium3", \
cfe1b18f 686 "pentium4", "geode", "k6", "k6-2", "k6-3", \
5bbeea44 687 "athlon", "athlon-4", "k8", \
d326eaf0 688 "pentium-m", "prescott", "nocona", \
21efb4d4 689 "core2", "generic", "amdfam10"}
0c2dc519 690
628714d8 691#ifndef CC1_SPEC
8015b78d 692#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
693#endif
694
695/* This macro defines names of additional specifications to put in the
696 specs that can be used in various specifications like CC1_SPEC. Its
697 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
698
699 Each subgrouping contains a string constant, that defines the
188fc5b5 700 specification name, and a string constant that used by the GCC driver
bcd86433
SC
701 program.
702
703 Do not define this macro if it does not need to do anything. */
704
705#ifndef SUBTARGET_EXTRA_SPECS
706#define SUBTARGET_EXTRA_SPECS
707#endif
708
709#define EXTRA_SPECS \
628714d8 710 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
711 SUBTARGET_EXTRA_SPECS
712\f
c98f8742
JVA
713/* target machine storage layout */
714
968a7562 715#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 716
d57a4b98
RH
717/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
718 FPU, assume that the fpcw is set to extended precision; when using
719 only SSE, rounding is correct; when using both SSE and the FPU,
720 the rounding precision is indeterminate, since either may be chosen
721 apparently at random. */
722#define TARGET_FLT_EVAL_METHOD \
5ccd517a 723 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 724
65d9c0ab
JH
725#define SHORT_TYPE_SIZE 16
726#define INT_TYPE_SIZE 32
727#define FLOAT_TYPE_SIZE 32
728#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
729#define DOUBLE_TYPE_SIZE 64
730#define LONG_LONG_TYPE_SIZE 64
731
67adf6a9 732#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 733#define MAX_BITS_PER_WORD 64
0c2dc519
JH
734#else
735#define MAX_BITS_PER_WORD 32
0c2dc519
JH
736#endif
737
c98f8742
JVA
738/* Define this if most significant byte of a word is the lowest numbered. */
739/* That is true on the 80386. */
740
741#define BITS_BIG_ENDIAN 0
742
743/* Define this if most significant byte of a word is the lowest numbered. */
744/* That is not true on the 80386. */
745#define BYTES_BIG_ENDIAN 0
746
747/* Define this if most significant word of a multiword number is the lowest
748 numbered. */
749/* Not true for 80386 */
750#define WORDS_BIG_ENDIAN 0
751
c98f8742 752/* Width of a word, in units (bytes). */
65d9c0ab 753#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
754#ifdef IN_LIBGCC2
755#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
756#else
757#define MIN_UNITS_PER_WORD 4
758#endif
c98f8742 759
c98f8742 760/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 761#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 762
e075ae69 763/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 764#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 765
d1f87653 766/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 767 aligned; the compiler cannot rely on having this alignment. */
e075ae69 768#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 769
ead903e9 770/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 771 entering main. This causes expand_main_function to forcibly align
1d482056
RH
772 the stack, which results in aligned frames for functions called from
773 main, though it does nothing for the alignment of main itself. */
774#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 775 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 776
ebff937c
SH
777/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
778 mandatory for the 64-bit ABI, and may or may not be true for other
779 operating systems. */
780#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
781
f963b5d9
RS
782/* Minimum allocation boundary for the code of a function. */
783#define FUNCTION_BOUNDARY 8
784
785/* C++ stores the virtual bit in the lowest bit of function pointers. */
786#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 787
892a2d68 788/* Alignment of field after `int : 0' in a structure. */
c98f8742 789
65d9c0ab 790#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
791
792/* Minimum size in bits of the largest boundary to which any
793 and all fundamental data types supported by the hardware
794 might need to be aligned. No data type wants to be aligned
17f24ff0 795 rounder than this.
fce5a9f2 796
d1f87653 797 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
798 and Pentium Pro XFmode values at 128 bit boundaries. */
799
800#define BIGGEST_ALIGNMENT 128
801
822eda12 802/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 803#define ALIGN_MODE_128(MODE) \
4501d314 804 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 805
17f24ff0 806/* The published ABIs say that doubles should be aligned on word
d1f87653 807 boundaries, so lower the alignment for structure fields unless
6fc605d8 808 -malign-double is set. */
e932b21b 809
e83f3cff
RH
810/* ??? Blah -- this macro is used directly by libobjc. Since it
811 supports no vector modes, cut out the complexity and fall back
812 on BIGGEST_FIELD_ALIGNMENT. */
813#ifdef IN_TARGET_LIBS
ef49d42e
JH
814#ifdef __x86_64__
815#define BIGGEST_FIELD_ALIGNMENT 128
816#else
e83f3cff 817#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 818#endif
e83f3cff 819#else
e932b21b
JH
820#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
821 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 822#endif
c98f8742 823
e5e8a8bf 824/* If defined, a C expression to compute the alignment given to a
a7180f70 825 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
826 and ALIGN is the alignment that the object would ordinarily have.
827 The value of this macro is used instead of that alignment to align
828 the object.
829
830 If this macro is not defined, then ALIGN is used.
831
832 The typical use of this macro is to increase alignment for string
833 constants to be word aligned so that `strcpy' calls that copy
834 constants can be done inline. */
835
d9a5f180 836#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 837
8a022443
JW
838/* If defined, a C expression to compute the alignment for a static
839 variable. TYPE is the data type, and ALIGN is the alignment that
840 the object would ordinarily have. The value of this macro is used
841 instead of that alignment to align the object.
842
843 If this macro is not defined, then ALIGN is used.
844
845 One use of this macro is to increase alignment of medium-size
846 data to make it all fit in fewer cache lines. Another is to
847 cause character arrays to be word-aligned so that `strcpy' calls
848 that copy constants to character arrays can be done inline. */
849
d9a5f180 850#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
851
852/* If defined, a C expression to compute the alignment for a local
853 variable. TYPE is the data type, and ALIGN is the alignment that
854 the object would ordinarily have. The value of this macro is used
855 instead of that alignment to align the object.
856
857 If this macro is not defined, then ALIGN is used.
858
859 One use of this macro is to increase alignment of medium-size
860 data to make it all fit in fewer cache lines. */
861
d9a5f180 862#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 863
53c17031
JH
864/* If defined, a C expression that gives the alignment boundary, in
865 bits, of an argument with the specified mode and type. If it is
866 not defined, `PARM_BOUNDARY' is used for all arguments. */
867
d9a5f180
GS
868#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
869 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 870
9cd10576 871/* Set this nonzero if move instructions will actually fail to work
c98f8742 872 when given unaligned data. */
b4ac57ab 873#define STRICT_ALIGNMENT 0
c98f8742
JVA
874
875/* If bit field type is int, don't let it cross an int,
876 and give entire struct the alignment of an int. */
43a88a8c 877/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 878#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
879\f
880/* Standard register usage. */
881
882/* This processor has special stack-like registers. See reg-stack.c
892a2d68 883 for details. */
c98f8742
JVA
884
885#define STACK_REGS
d9a5f180 886#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
887 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
888 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
889 || (MODE) == XFmode)
c98f8742
JVA
890
891/* Number of actual hardware registers.
892 The hardware registers are assigned numbers for the compiler
893 from 0 to just below FIRST_PSEUDO_REGISTER.
894 All registers that the compiler knows about must be given numbers,
895 even those that are not normally considered general registers.
896
897 In the 80386 we give the 8 general purpose registers the numbers 0-7.
898 We number the floating point registers 8-15.
899 Note that registers 0-7 can be accessed as a short or int,
900 while only 0-3 may be used with byte `mov' instructions.
901
902 Reg 16 does not correspond to any hardware register, but instead
903 appears in the RTL as an argument pointer prior to reload, and is
904 eliminated during reloading in favor of either the stack or frame
892a2d68 905 pointer. */
c98f8742 906
b0d95de8 907#define FIRST_PSEUDO_REGISTER 53
c98f8742 908
3073d01c
ML
909/* Number of hardware registers that go into the DWARF-2 unwind info.
910 If not defined, equals FIRST_PSEUDO_REGISTER. */
911
912#define DWARF_FRAME_REGISTERS 17
913
c98f8742
JVA
914/* 1 for registers that have pervasive standard uses
915 and are not available for the register allocator.
3f3f2124 916 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 917
3a4416fb
RS
918 The value is zero if the register is not fixed on either 32 or
919 64 bit targets, one if the register if fixed on both 32 and 64
920 bit targets, two if it is only fixed on 32bit targets and three
921 if its only fixed on 64bit targets.
922 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 923 */
a7180f70
BS
924#define FIXED_REGISTERS \
925/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 926{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
927/*arg,flags,fpsr,fpcr,frame*/ \
928 1, 1, 1, 1, 1, \
a7180f70
BS
929/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
930 0, 0, 0, 0, 0, 0, 0, 0, \
931/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
932 0, 0, 0, 0, 0, 0, 0, 0, \
933/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 934 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 935/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 936 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 937
c98f8742
JVA
938
939/* 1 for registers not available across function calls.
940 These must include the FIXED_REGISTERS and also any
941 registers that can be used without being saved.
942 The latter must include the registers where values are returned
943 and the register where structure-value addresses are passed.
fce5a9f2
EC
944 Aside from that, you can include as many other registers as you like.
945
9d72d996
JJ
946 The value is zero if the register is not call used on either 32 or
947 64 bit targets, one if the register if call used on both 32 and 64
948 bit targets, two if it is only call used on 32bit targets and three
949 if its only call used on 64bit targets.
3a4416fb 950 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 951*/
a7180f70
BS
952#define CALL_USED_REGISTERS \
953/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 954{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
955/*arg,flags,fpsr,fpcr,frame*/ \
956 1, 1, 1, 1, 1, \
a7180f70 957/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 958 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 959/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 960 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 961/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 962 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 963/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 964 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 965
3b3c6a3f
MM
966/* Order in which to allocate registers. Each register must be
967 listed once, even those in FIXED_REGISTERS. List frame pointer
968 late and fixed registers last. Note that, in general, we prefer
969 registers listed in CALL_USED_REGISTERS, keeping the others
970 available for storage of persistent values.
971
162f023b
JH
972 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
973 so this is just empty initializer for array. */
3b3c6a3f 974
162f023b
JH
975#define REG_ALLOC_ORDER \
976{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
977 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
978 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 979 48, 49, 50, 51, 52 }
3b3c6a3f 980
162f023b
JH
981/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
982 to be rearranged based on a particular function. When using sse math,
03c259ad 983 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 984
162f023b 985#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 986
f5316dfe 987
c98f8742 988/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 989#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 990do { \
3f3f2124 991 int i; \
b0fede98 992 unsigned int j; \
3f3f2124
JH
993 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
994 { \
3a4416fb
RS
995 if (fixed_regs[i] > 1) \
996 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
997 if (call_used_regs[i] > 1) \
998 call_used_regs[i] = (call_used_regs[i] \
999 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 1000 } \
b0fede98 1001 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 1002 if (j != INVALID_REGNUM) \
a7180f70 1003 { \
7706ca5d
L
1004 fixed_regs[j] = 1; \
1005 call_used_regs[j] = 1; \
a7180f70
BS
1006 } \
1007 if (! TARGET_MMX) \
1008 { \
1009 int i; \
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1011 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 1012 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1013 } \
1014 if (! TARGET_SSE) \
1015 { \
1016 int i; \
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1018 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 1019 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1020 } \
1021 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1022 { \
1023 int i; \
1024 HARD_REG_SET x; \
1025 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1026 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1027 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
1028 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1029 } \
1030 if (! TARGET_64BIT) \
1031 { \
1032 int i; \
1033 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1034 reg_names[i] = ""; \
1035 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1036 reg_names[i] = ""; \
a7180f70 1037 } \
ccf8e764
RH
1038 if (TARGET_64BIT_MS_ABI) \
1039 { \
1040 call_used_regs[4 /*RSI*/] = 0; \
1041 call_used_regs[5 /*RDI*/] = 0; \
1042 } \
d9a5f180 1043 } while (0)
c98f8742
JVA
1044
1045/* Return number of consecutive hard regs needed starting at reg REGNO
1046 to hold something of mode MODE.
1047 This is ordinarily the length in words of a value of mode MODE
1048 but can be less for certain modes in special long registers.
1049
fce5a9f2 1050 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1051 registers. And only registers 0-3 may have mov byte instructions
1052 applied to them.
1053 */
1054
1055#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1056 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1057 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1058 : ((MODE) == XFmode \
92d0fb09 1059 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1060 : (MODE) == XCmode \
92d0fb09 1061 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1062 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1063
8521c414
JM
1064#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1065 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1066 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1067 ? 0 \
1068 : ((MODE) == XFmode || (MODE) == XCmode)) \
1069 : 0)
1070
1071#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1072
fbe5eb6d
BS
1073#define VALID_SSE2_REG_MODE(MODE) \
1074 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 1075 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1076
d9a5f180
GS
1077#define VALID_SSE_REG_MODE(MODE) \
1078 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 1079 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1080
47f339cf
BS
1081#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1082 ((MODE) == V2SFmode || (MODE) == SFmode)
1083
d9a5f180
GS
1084#define VALID_MMX_REG_MODE(MODE) \
1085 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
1086 || (MODE) == V2SImode || (MODE) == SImode)
1087
accde4cf
RH
1088/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1089 place emms and femms instructions. */
c4336539 1090#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1091
d9a5f180 1092#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
1093 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1094 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1095
d9a5f180
GS
1096#define VALID_INT_MODE_P(MODE) \
1097 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1098 || (MODE) == DImode \
1099 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1100 || (MODE) == CDImode \
f8a1ebc6
JH
1101 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1102 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1103
822eda12
JH
1104/* Return true for modes passed in SSE registers. */
1105#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 1106 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1107 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1108 || (MODE) == V4SFmode || (MODE) == V4SImode)
1109
e075ae69 1110/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1111
a946dd00 1112#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1113 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1114
1115/* Value is 1 if it is a good idea to tie two pseudo registers
1116 when one has mode MODE1 and one has mode MODE2.
1117 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1118 for any hard reg, then this must be 0 for correct output. */
1119
c1c5b5e3 1120#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1121
ff25ef99
ZD
1122/* It is possible to write patterns to move flags; but until someone
1123 does it, */
1124#define AVOID_CCMODE_COPIES
c98f8742 1125
e075ae69 1126/* Specify the modes required to caller save a given hard regno.
787dc842 1127 We do this on i386 to prevent flags from being saved at all.
e075ae69 1128
787dc842
JH
1129 Kill any attempts to combine saving of modes. */
1130
d9a5f180
GS
1131#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1132 (CC_REGNO_P (REGNO) ? VOIDmode \
1133 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 1134 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
1135 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1136 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1137 : (MODE))
c98f8742
JVA
1138/* Specify the registers used for certain standard purposes.
1139 The values of these macros are register numbers. */
1140
1141/* on the 386 the pc register is %eip, and is not usable as a general
1142 register. The ordinary mov instructions won't work */
1143/* #define PC_REGNUM */
1144
1145/* Register to use for pushing function arguments. */
1146#define STACK_POINTER_REGNUM 7
1147
1148/* Base register for access to local variables of the function. */
564d80f4
JH
1149#define HARD_FRAME_POINTER_REGNUM 6
1150
1151/* Base register for access to local variables of the function. */
b0d95de8 1152#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1153
1154/* First floating point reg */
1155#define FIRST_FLOAT_REG 8
1156
1157/* First & last stack-like regs */
1158#define FIRST_STACK_REG FIRST_FLOAT_REG
1159#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1160
a7180f70
BS
1161#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1162#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1163
a7180f70
BS
1164#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1165#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1166
3f3f2124
JH
1167#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1168#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1169
1170#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1171#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1172
c98f8742
JVA
1173/* Value should be nonzero if functions must have frame pointers.
1174 Zero means the frame pointer need not be set up (and parms
1175 may be accessed via the stack pointer) in functions that seem suitable.
1176 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1177#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1178
aabcd309 1179/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1180 requiring a frame pointer. */
1181#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1182#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1183#endif
1184
1185/* Make sure we can access arbitrary call frames. */
1186#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1187
1188/* Base register for access to arguments of the function. */
1189#define ARG_POINTER_REGNUM 16
1190
d2836273
JH
1191/* Register in which static-chain is passed to a function.
1192 We do use ECX as static chain register for 32 bit ABI. On the
1193 64bit ABI, ECX is an argument register, so we use R10 instead. */
1194#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1195
1196/* Register to hold the addressing base for position independent
5b43fed1
RH
1197 code access to data items. We don't use PIC pointer for 64bit
1198 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1199 pessimizing code dealing with EBX.
bd09bdeb
RH
1200
1201 To avoid clobbering a call-saved register unnecessarily, we renumber
1202 the pic register when possible. The change is visible after the
1203 prologue has been emitted. */
1204
1205#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1206
1207#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1208 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1209 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1210 : reload_completed ? REGNO (pic_offset_table_rtx) \
1211 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1212
5fc0e5df
KW
1213#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1214
713225d4
MM
1215/* A C expression which can inhibit the returning of certain function
1216 values in registers, based on the type of value. A nonzero value
1217 says to return the function value in memory, just as large
1218 structures are always returned. Here TYPE will be a C expression
1219 of type `tree', representing the data type of the value.
1220
1221 Note that values of mode `BLKmode' must be explicitly handled by
1222 this macro. Also, the option `-fpcc-struct-return' takes effect
1223 regardless of this macro. On most systems, it is possible to
1224 leave the macro undefined; this causes a default definition to be
1225 used, whose value is the constant 1 for `BLKmode' values, and 0
1226 otherwise.
1227
1228 Do not use this macro to indicate that structures and unions
1229 should always be returned in memory. You should instead use
1230 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1231
d9a5f180 1232#define RETURN_IN_MEMORY(TYPE) \
53c17031 1233 ix86_return_in_memory (TYPE)
713225d4 1234
c51e6d85 1235/* This is overridden by <cygwin.h>. */
5e062767
DS
1236#define MS_AGGREGATE_RETURN 0
1237
61fec9ff
JB
1238/* This is overridden by <netware.h>. */
1239#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1240\f
1241/* Define the classes of registers for register constraints in the
1242 machine description. Also define ranges of constants.
1243
1244 One of the classes must always be named ALL_REGS and include all hard regs.
1245 If there is more than one class, another class must be named NO_REGS
1246 and contain no registers.
1247
1248 The name GENERAL_REGS must be the name of a class (or an alias for
1249 another name such as ALL_REGS). This is the class of registers
1250 that is allowed by "g" or "r" in a register constraint.
1251 Also, registers outside this class are allocated only when
1252 instructions express preferences for them.
1253
1254 The classes must be numbered in nondecreasing order; that is,
1255 a larger-numbered class must never be contained completely
1256 in a smaller-numbered class.
1257
1258 For any two classes, it is very desirable that there be another
ab408a86
JVA
1259 class that represents their union.
1260
1261 It might seem that class BREG is unnecessary, since no useful 386
1262 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1263 and the "b" register constraint is useful in asms for syscalls.
1264
03c259ad 1265 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1266
1267enum reg_class
1268{
1269 NO_REGS,
e075ae69 1270 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1271 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1272 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1273 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1274 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1275 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1276 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1277 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1278 FLOAT_REGS,
06f4e35d 1279 SSE_FIRST_REG,
a7180f70
BS
1280 SSE_REGS,
1281 MMX_REGS,
446988df
JH
1282 FP_TOP_SSE_REGS,
1283 FP_SECOND_SSE_REGS,
1284 FLOAT_SSE_REGS,
1285 FLOAT_INT_REGS,
1286 INT_SSE_REGS,
1287 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1288 ALL_REGS, LIM_REG_CLASSES
1289};
1290
d9a5f180
GS
1291#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1292
1293#define INTEGER_CLASS_P(CLASS) \
1294 reg_class_subset_p ((CLASS), GENERAL_REGS)
1295#define FLOAT_CLASS_P(CLASS) \
1296 reg_class_subset_p ((CLASS), FLOAT_REGS)
1297#define SSE_CLASS_P(CLASS) \
06f4e35d 1298 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1299#define MMX_CLASS_P(CLASS) \
f75959a6 1300 ((CLASS) == MMX_REGS)
d9a5f180
GS
1301#define MAYBE_INTEGER_CLASS_P(CLASS) \
1302 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1303#define MAYBE_FLOAT_CLASS_P(CLASS) \
1304 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1305#define MAYBE_SSE_CLASS_P(CLASS) \
1306 reg_classes_intersect_p (SSE_REGS, (CLASS))
1307#define MAYBE_MMX_CLASS_P(CLASS) \
1308 reg_classes_intersect_p (MMX_REGS, (CLASS))
1309
1310#define Q_CLASS_P(CLASS) \
1311 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1312
43f3a59d 1313/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1314
1315#define REG_CLASS_NAMES \
1316{ "NO_REGS", \
ab408a86 1317 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1318 "SIREG", "DIREG", \
e075ae69
RH
1319 "AD_REGS", \
1320 "Q_REGS", "NON_Q_REGS", \
c98f8742 1321 "INDEX_REGS", \
3f3f2124 1322 "LEGACY_REGS", \
c98f8742
JVA
1323 "GENERAL_REGS", \
1324 "FP_TOP_REG", "FP_SECOND_REG", \
1325 "FLOAT_REGS", \
cb482895 1326 "SSE_FIRST_REG", \
a7180f70
BS
1327 "SSE_REGS", \
1328 "MMX_REGS", \
446988df
JH
1329 "FP_TOP_SSE_REGS", \
1330 "FP_SECOND_SSE_REGS", \
1331 "FLOAT_SSE_REGS", \
8fcaaa80 1332 "FLOAT_INT_REGS", \
446988df
JH
1333 "INT_SSE_REGS", \
1334 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1335 "ALL_REGS" }
1336
1337/* Define which registers fit in which classes.
1338 This is an initializer for a vector of HARD_REG_SET
1339 of length N_REG_CLASSES. */
1340
a7180f70 1341#define REG_CLASS_CONTENTS \
3f3f2124
JH
1342{ { 0x00, 0x0 }, \
1343 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1344 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1345 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1346 { 0x03, 0x0 }, /* AD_REGS */ \
1347 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1348 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1349 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1350 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1351 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1352 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1353 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1354 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1355{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1356{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1357{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1358{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1359{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1360 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1361{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1362{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1363{ 0xffffffff,0x1fffff } \
e075ae69 1364}
c98f8742
JVA
1365
1366/* The same information, inverted:
1367 Return the class number of the smallest class containing
1368 reg number REGNO. This could be a conditional expression
1369 or could index an array. */
1370
c98f8742
JVA
1371#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1372
1373/* When defined, the compiler allows registers explicitly used in the
1374 rtl to be used as spill registers but prevents the compiler from
892a2d68 1375 extending the lifetime of these registers. */
c98f8742 1376
2922fe9e 1377#define SMALL_REGISTER_CLASSES 1
c98f8742 1378
fb84c7a0 1379#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1380
d9a5f180 1381#define GENERAL_REGNO_P(N) \
fb84c7a0 1382 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1383
1384#define GENERAL_REG_P(X) \
6189a572 1385 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1386
1387#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1388
fb84c7a0
UB
1389#define REX_INT_REGNO_P(N) \
1390 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1391#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1392
c98f8742 1393#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1394#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1395#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1396#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1397
54a88090 1398#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1399 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1400
fb84c7a0
UB
1401#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1402#define SSE_REGNO_P(N) \
1403 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1404 || REX_SSE_REGNO_P (N))
3f3f2124 1405
4977bab6 1406#define REX_SSE_REGNO_P(N) \
fb84c7a0 1407 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1408
d9a5f180
GS
1409#define SSE_REGNO(N) \
1410 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1411
d9a5f180 1412#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1413 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1414
d9a5f180 1415#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1416#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1417
fb84c7a0 1418#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1419#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1420
d9a5f180 1421#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1422
e075ae69
RH
1423#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1424#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1425
c98f8742
JVA
1426/* The class value for index registers, and the one for base regs. */
1427
1428#define INDEX_REG_CLASS INDEX_REGS
1429#define BASE_REG_CLASS GENERAL_REGS
1430
c98f8742 1431/* Place additional restrictions on the register class to use when it
4cbb525c 1432 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1433 register for which class CLASS would ordinarily be used. */
c98f8742 1434
d2836273
JH
1435#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1436 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1437 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1438 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1439 ? Q_REGS : (CLASS))
1440
1441/* Given an rtx X being reloaded into a reg required to be
1442 in class CLASS, return the class of reg to actually use.
1443 In general this is just CLASS; but on some machines
1444 in some cases it is preferable to use a more restrictive class.
1445 On the 80386 series, we prevent floating constants from being
1446 reloaded into floating registers (since no move-insn can do that)
1447 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1448
d398b3b1 1449/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1450 QImode must go into class Q_REGS.
d398b3b1 1451 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1452 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1453
d9a5f180
GS
1454#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1455 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1456
b5c82fa1
PB
1457/* Discourage putting floating-point values in SSE registers unless
1458 SSE math is being used, and likewise for the 387 registers. */
1459
1460#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1461 ix86_preferred_output_reload_class ((X), (CLASS))
1462
85ff473e 1463/* If we are copying between general and FP registers, we need a memory
f84aa48a 1464 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1465#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1466 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1467
1468/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1469 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1470 pseudo. */
1471
d9a5f180 1472#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1473 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1474 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1475 ? Q_REGS : NO_REGS)
c98f8742
JVA
1476
1477/* Return the maximum number of consecutive registers
1478 needed to represent mode MODE in a register of class CLASS. */
1479/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1480 except in the FP regs, where a single reg is always enough. */
a7180f70 1481#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1482 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1483 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1484 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1485 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1486
1487/* A C expression whose value is nonzero if pseudos that have been
1488 assigned to registers of class CLASS would likely be spilled
1489 because registers of CLASS are needed for spill registers.
1490
1491 The default value of this macro returns 1 if CLASS has exactly one
1492 register and zero otherwise. On most machines, this default
1493 should be used. Only define this macro to some other expression
1494 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1495 their hard registers were needed for spill registers. If this
f5316dfe
MM
1496 macro returns nonzero for those classes, those pseudos will only
1497 be allocated by `global.c', which knows how to reallocate the
1498 pseudo to another register. If there would not be another
1499 register available for reallocation, you should not change the
1500 definition of this macro since the only effect of such a
1501 definition would be to slow down register allocation. */
1502
1503#define CLASS_LIKELY_SPILLED_P(CLASS) \
1504 (((CLASS) == AREG) \
1505 || ((CLASS) == DREG) \
1506 || ((CLASS) == CREG) \
1507 || ((CLASS) == BREG) \
1508 || ((CLASS) == AD_REGS) \
1509 || ((CLASS) == SIREG) \
b0af5c03
JH
1510 || ((CLASS) == DIREG) \
1511 || ((CLASS) == FP_TOP_REG) \
1512 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1513
1272914c
RH
1514/* Return a class of registers that cannot change FROM mode to TO mode. */
1515
1516#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1517 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1518\f
1519/* Stack layout; function entry, exit and calling. */
1520
1521/* Define this if pushing a word on the stack
1522 makes the stack pointer a smaller address. */
1523#define STACK_GROWS_DOWNWARD
1524
a4d05547 1525/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1526 is at the high-address end of the local variables;
1527 that is, each additional local variable allocated
1528 goes at a more negative offset in the frame. */
f62c8a5c 1529#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1530
1531/* Offset within stack frame to start allocating local variables at.
1532 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1533 first local allocated. Otherwise, it is the offset to the BEGINNING
1534 of the first local allocated. */
1535#define STARTING_FRAME_OFFSET 0
1536
1537/* If we generate an insn to push BYTES bytes,
1538 this says how many the stack pointer really advances by.
6541fe75
JJ
1539 On 386, we have pushw instruction that decrements by exactly 2 no
1540 matter what the position was, there is no pushb.
1541 But as CIE data alignment factor on this arch is -4, we need to make
1542 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1543
d2836273
JH
1544 For 64bit ABI we round up to 8 bytes.
1545 */
c98f8742 1546
d2836273
JH
1547#define PUSH_ROUNDING(BYTES) \
1548 (TARGET_64BIT \
1549 ? (((BYTES) + 7) & (-8)) \
6541fe75 1550 : (((BYTES) + 3) & (-4)))
c98f8742 1551
f73ad30e
JH
1552/* If defined, the maximum amount of space required for outgoing arguments will
1553 be computed and placed into the variable
1554 `current_function_outgoing_args_size'. No space will be pushed onto the
1555 stack for each call; instead, the function prologue should increase the stack
1556 frame size by this amount. */
1557
1558#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1559
1560/* If defined, a C expression whose value is nonzero when we want to use PUSH
1561 instructions to pass outgoing arguments. */
1562
1563#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1564
2da4124d
L
1565/* We want the stack and args grow in opposite directions, even if
1566 PUSH_ARGS is 0. */
1567#define PUSH_ARGS_REVERSED 1
1568
c98f8742
JVA
1569/* Offset of first parameter from the argument pointer register value. */
1570#define FIRST_PARM_OFFSET(FNDECL) 0
1571
a7180f70
BS
1572/* Define this macro if functions should assume that stack space has been
1573 allocated for arguments even when their values are passed in registers.
1574
1575 The value of this macro is the size, in bytes, of the area reserved for
1576 arguments passed in registers for the function represented by FNDECL.
1577
1578 This space can be allocated by the caller, or be a part of the
1579 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1580 which. */
1581#define REG_PARM_STACK_SPACE(FNDECL) 0
1582
c98f8742
JVA
1583/* Value is the number of bytes of arguments automatically
1584 popped when returning from a subroutine call.
8b109b37 1585 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1586 FUNTYPE is the data type of the function (as a tree),
1587 or for a library call it is an identifier node for the subroutine name.
1588 SIZE is the number of bytes of arguments passed on the stack.
1589
1590 On the 80386, the RTD insn may be used to pop them if the number
1591 of args is fixed, but if the number is variable then the caller
1592 must pop them all. RTD can't be used for library calls now
1593 because the library is compiled with the Unix compiler.
1594 Use of RTD is a selectable option, since it is incompatible with
1595 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1596 the caller must always pop the args.
1597
1598 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1599
d9a5f180
GS
1600#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1601 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1602
53c17031
JH
1603#define FUNCTION_VALUE_REGNO_P(N) \
1604 ix86_function_value_regno_p (N)
c98f8742
JVA
1605
1606/* Define how to find the value returned by a library function
1607 assuming the value has mode MODE. */
1608
1609#define LIBCALL_VALUE(MODE) \
53c17031 1610 ix86_libcall_value (MODE)
c98f8742 1611
e9125c09
TW
1612/* Define the size of the result block used for communication between
1613 untyped_call and untyped_return. The block contains a DImode value
1614 followed by the block used by fnsave and frstor. */
1615
1616#define APPLY_RESULT_SIZE (8+108)
1617
b08de47e 1618/* 1 if N is a possible register number for function argument passing. */
53c17031 1619#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1620
1621/* Define a data type for recording info about an argument list
1622 during the scan of that argument list. This data type should
1623 hold all necessary information about the function itself
1624 and about the args processed so far, enough to enable macros
b08de47e 1625 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1626
e075ae69 1627typedef struct ix86_args {
fa283935 1628 int words; /* # words passed so far */
b08de47e
MM
1629 int nregs; /* # registers available for passing */
1630 int regno; /* next available register number */
9d72d996 1631 int fastcall; /* fastcall calling convention is used */
fa283935 1632 int sse_words; /* # sse words passed so far */
a7180f70 1633 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1634 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1635 int warn_mmx; /* True when we want to warn about MMX ABI. */
1636 int sse_regno; /* next available sse register number */
1637 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1638 int mmx_nregs; /* # mmx registers available for passing */
1639 int mmx_regno; /* next available mmx register number */
892a2d68 1640 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1641 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1642 be passed in SSE registers. Otherwise 0. */
b08de47e 1643} CUMULATIVE_ARGS;
c98f8742
JVA
1644
1645/* Initialize a variable CUM of type CUMULATIVE_ARGS
1646 for a call to a function whose data type is FNTYPE.
b08de47e 1647 For a library call, FNTYPE is 0. */
c98f8742 1648
0f6937fe 1649#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1650 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1651
1652/* Update the data in CUM to advance over an argument
1653 of mode MODE and data type TYPE.
1654 (TYPE is null for libcalls where that information may not be available.) */
1655
d9a5f180
GS
1656#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1657 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1658
1659/* Define where to put the arguments to a function.
1660 Value is zero to push the argument on the stack,
1661 or a hard register in which to store the argument.
1662
1663 MODE is the argument's machine mode.
1664 TYPE is the data type of the argument (as a tree).
1665 This is null for libcalls where that information may
1666 not be available.
1667 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1668 the preceding args and about the function being called.
1669 NAMED is nonzero if this argument is a named parameter
1670 (otherwise it is an extra parameter matching an ellipsis). */
1671
c98f8742 1672#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1673 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1674
ad919812 1675/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1676#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1677 ix86_va_start (VALIST, NEXTARG)
ad919812 1678
a5fe455b
ZW
1679#define TARGET_ASM_FILE_END ix86_file_end
1680#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1681
c98f8742
JVA
1682/* Output assembler code to FILE to increment profiler label # LABELNO
1683 for profiling a function entry. */
1684
a5fa1ecd
JH
1685#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1686
1687#define MCOUNT_NAME "_mcount"
1688
1689#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1690
1691/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1692 the stack pointer does not matter. The value is tested only in
1693 functions that have frame pointers.
1694 No definition is equivalent to always zero. */
fce5a9f2 1695/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1696 we have to restore it ourselves from the frame pointer, in order to
1697 use pop */
1698
1699#define EXIT_IGNORE_STACK 1
1700
c98f8742
JVA
1701/* Output assembler code for a block containing the constant parts
1702 of a trampoline, leaving space for the variable parts. */
1703
a269a03c 1704/* On the 386, the trampoline contains two instructions:
c98f8742 1705 mov #STATIC,ecx
a269a03c
JC
1706 jmp FUNCTION
1707 The trampoline is generated entirely at runtime. The operand of JMP
1708 is the address of FUNCTION relative to the instruction following the
1709 JMP (which is 5 bytes long). */
c98f8742
JVA
1710
1711/* Length in units of the trampoline for entering a nested function. */
1712
39d04363 1713#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1714
1715/* Emit RTL insns to initialize the variable parts of a trampoline.
1716 FNADDR is an RTX for the address of the function's pure code.
1717 CXT is an RTX for the static chain value for the function. */
1718
d9a5f180
GS
1719#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1720 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1721\f
1722/* Definitions for register eliminations.
1723
1724 This is an array of structures. Each structure initializes one pair
1725 of eliminable registers. The "from" register number is given first,
1726 followed by "to". Eliminations of the same "from" register are listed
1727 in order of preference.
1728
afc2cd05
NC
1729 There are two registers that can always be eliminated on the i386.
1730 The frame pointer and the arg pointer can be replaced by either the
1731 hard frame pointer or to the stack pointer, depending upon the
1732 circumstances. The hard frame pointer is not used before reload and
1733 so it is not eligible for elimination. */
c98f8742 1734
564d80f4
JH
1735#define ELIMINABLE_REGS \
1736{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1737 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1738 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1739 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1740
2c5a510c
RH
1741/* Given FROM and TO register numbers, say whether this elimination is
1742 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1743
1744 All other eliminations are valid. */
1745
2c5a510c
RH
1746#define CAN_ELIMINATE(FROM, TO) \
1747 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1748
1749/* Define the offset between two registers, one to be eliminated, and the other
1750 its replacement, at the start of a routine. */
1751
d9a5f180
GS
1752#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1753 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1754\f
1755/* Addressing modes, and classification of registers for them. */
1756
c98f8742
JVA
1757/* Macros to check register numbers against specific register classes. */
1758
1759/* These assume that REGNO is a hard or pseudo reg number.
1760 They give nonzero only if REGNO is a hard reg of the suitable class
1761 or a pseudo reg currently allocated to a suitable hard reg.
1762 Since they use reg_renumber, they are safe only once reg_renumber
1763 has been allocated, which happens in local-alloc.c. */
1764
3f3f2124
JH
1765#define REGNO_OK_FOR_INDEX_P(REGNO) \
1766 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1767 || REX_INT_REGNO_P (REGNO) \
1768 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1769 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1770
3f3f2124 1771#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1772 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1773 || (REGNO) == ARG_POINTER_REGNUM \
1774 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1775 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1776
c98f8742
JVA
1777/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1778 and check its validity for a certain class.
1779 We have two alternate definitions for each of them.
1780 The usual definition accepts all pseudo regs; the other rejects
1781 them unless they have been allocated suitable hard regs.
1782 The symbol REG_OK_STRICT causes the latter definition to be used.
1783
1784 Most source files want to accept pseudo regs in the hope that
1785 they will get allocated to the class that the insn wants them to be in.
1786 Source files for reload pass need to be strict.
1787 After reload, it makes no difference, since pseudo regs have
1788 been eliminated by then. */
1789
c98f8742 1790
ff482c8d 1791/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1792#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1793 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1794 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1795 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1796
3b3c6a3f 1797#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1798 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1799 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1800 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1801 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1802
3b3c6a3f
MM
1803/* Strict versions, hard registers only */
1804#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1805#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1806
3b3c6a3f 1807#ifndef REG_OK_STRICT
d9a5f180
GS
1808#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1809#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1810
1811#else
d9a5f180
GS
1812#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1813#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1814#endif
1815
1816/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1817 that is a valid memory address for an instruction.
1818 The MODE argument is the machine mode for the MEM expression
1819 that wants to use this address.
1820
1821 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1822 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1823
1824 See legitimize_pic_address in i386.c for details as to what
1825 constitutes a legitimate address when -fpic is used. */
1826
1827#define MAX_REGS_PER_ADDRESS 2
1828
f996902d 1829#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1830
1831/* Nonzero if the constant value X is a legitimate general operand.
1832 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1833
f996902d 1834#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1835
3b3c6a3f
MM
1836#ifdef REG_OK_STRICT
1837#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1838do { \
1839 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1840 goto ADDR; \
d9a5f180 1841} while (0)
c98f8742 1842
3b3c6a3f
MM
1843#else
1844#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1845do { \
1846 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1847 goto ADDR; \
d9a5f180 1848} while (0)
c98f8742 1849
3b3c6a3f
MM
1850#endif
1851
b949ea8b
JW
1852/* If defined, a C expression to determine the base term of address X.
1853 This macro is used in only one place: `find_base_term' in alias.c.
1854
1855 It is always safe for this macro to not be defined. It exists so
1856 that alias analysis can understand machine-dependent addresses.
1857
1858 The typical use of this macro is to handle addresses containing
1859 a label_ref or symbol_ref within an UNSPEC. */
1860
d9a5f180 1861#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1862
c98f8742
JVA
1863/* Try machine-dependent ways of modifying an illegitimate address
1864 to be legitimate. If we find one, return the new, valid address.
1865 This macro is used in only one place: `memory_address' in explow.c.
1866
1867 OLDX is the address as it was before break_out_memory_refs was called.
1868 In some cases it is useful to look at this to decide what needs to be done.
1869
1870 MODE and WIN are passed so that this macro can use
1871 GO_IF_LEGITIMATE_ADDRESS.
1872
1873 It is always safe for this macro to do nothing. It exists to recognize
1874 opportunities to optimize the output.
1875
1876 For the 80386, we handle X+REG by loading X into a register R and
1877 using R+REG. R will go in a general reg and indexing will be used.
1878 However, if REG is a broken-out memory address or multiplication,
1879 nothing needs to be done because REG can certainly go in a general reg.
1880
1881 When -fpic is used, special handling is needed for symbolic references.
1882 See comments by legitimize_pic_address in i386.c for details. */
1883
3b3c6a3f 1884#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1885do { \
1886 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1887 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1888 goto WIN; \
d9a5f180 1889} while (0)
c98f8742
JVA
1890
1891/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1892 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1893 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1894
f996902d 1895#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1896
1897#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1898 (GET_CODE (X) == SYMBOL_REF \
1899 || GET_CODE (X) == LABEL_REF \
1900 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1901
1902/* Go to LABEL if ADDR (a legitimate address expression)
1903 has an effect that depends on the machine mode it is used for.
1904 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1905 (the amount of decrement or increment being the length of the operand).
1906 These are now caught in recog.c. */
1907#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1908\f
b08de47e
MM
1909/* Max number of args passed in registers. If this is more than 3, we will
1910 have problems with ebx (register #4), since it is a caller save register and
1911 is also used as the pic register in ELF. So for now, don't allow more than
1912 3 registers to be passed in registers. */
1913
d2836273
JH
1914#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1915
bcf17554
JH
1916#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1917
1918#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1919
c98f8742
JVA
1920\f
1921/* Specify the machine mode that this machine uses
1922 for the index in the tablejump instruction. */
dc4d7240
JH
1923#define CASE_VECTOR_MODE \
1924 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1925
c98f8742
JVA
1926/* Define this as 1 if `char' should by default be signed; else as 0. */
1927#define DEFAULT_SIGNED_CHAR 1
1928
1929/* Max number of bytes we can move from memory to memory
1930 in one reasonably fast instruction. */
65d9c0ab
JH
1931#define MOVE_MAX 16
1932
1933/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1934 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1935 number of bytes we can move with a single instruction. */
65d9c0ab 1936#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1937
7e24ffc9 1938/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1939 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1940 Increasing the value will always make code faster, but eventually
1941 incurs high cost in increased code size.
c98f8742 1942
e2e52e1b 1943 If you don't define this, a reasonable default is used. */
c98f8742 1944
e2e52e1b 1945#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1946
45d78e7f
JJ
1947/* If a clear memory operation would take CLEAR_RATIO or more simple
1948 move-instruction sequences, we will do a clrmem or libcall instead. */
1949
1950#define CLEAR_RATIO (optimize_size ? 2 \
1951 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1952
c98f8742
JVA
1953/* Define if shifts truncate the shift count
1954 which implies one can omit a sign-extension or zero-extension
1955 of a shift count. */
892a2d68 1956/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1957
1958/* #define SHIFT_COUNT_TRUNCATED */
1959
1960/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1961 is done just by pretending it is already truncated. */
1962#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1963
d9f32422
JH
1964/* A macro to update M and UNSIGNEDP when an object whose type is
1965 TYPE and which has the specified mode and signedness is to be
1966 stored in a register. This macro is only called when TYPE is a
1967 scalar type.
1968
f710504c 1969 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1970 quantities to SImode. The choice depends on target type. */
1971
1972#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1973do { \
d9f32422
JH
1974 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1975 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1976 (MODE) = SImode; \
1977} while (0)
d9f32422 1978
c98f8742
JVA
1979/* Specify the machine mode that pointers have.
1980 After generation of rtl, the compiler makes no further distinction
1981 between pointers and any other objects of this machine mode. */
65d9c0ab 1982#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1983
1984/* A function address in a call instruction
1985 is a byte address (for indexing purposes)
1986 so give the MEM rtx a byte's mode. */
1987#define FUNCTION_MODE QImode
d4ba09c0 1988\f
96e7ae40
JH
1989/* A C expression for the cost of moving data from a register in class FROM to
1990 one in class TO. The classes are expressed using the enumeration values
1991 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1992 interpreted relative to that.
d4ba09c0 1993
96e7ae40
JH
1994 It is not required that the cost always equal 2 when FROM is the same as TO;
1995 on some machines it is expensive to move between registers if they are not
f84aa48a 1996 general registers. */
d4ba09c0 1997
f84aa48a 1998#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1999 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2000
2001/* A C expression for the cost of moving data of mode M between a
2002 register and memory. A value of 2 is the default; this cost is
2003 relative to those in `REGISTER_MOVE_COST'.
2004
2005 If moving between registers and memory is more expensive than
2006 between two registers, you should define this macro to express the
fa79946e 2007 relative cost. */
d4ba09c0 2008
d9a5f180
GS
2009#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2010 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2011
2012/* A C expression for the cost of a branch instruction. A value of 1
2013 is the default; other values are interpreted relative to that. */
2014
e075ae69 2015#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2016
2017/* Define this macro as a C expression which is nonzero if accessing
2018 less than a word of memory (i.e. a `char' or a `short') is no
2019 faster than accessing a word of memory, i.e., if such access
2020 require more than one instruction or if there is no difference in
2021 cost between byte and (aligned) word loads.
2022
2023 When this macro is not defined, the compiler will access a field by
2024 finding the smallest containing object; when it is defined, a
2025 fullword load will be used if alignment permits. Unless bytes
2026 accesses are faster than word accesses, using word accesses is
2027 preferable since it may eliminate subsequent memory access if
2028 subsequent accesses occur to other fields in the same word of the
2029 structure, but to different bytes. */
2030
2031#define SLOW_BYTE_ACCESS 0
2032
2033/* Nonzero if access to memory by shorts is slow and undesirable. */
2034#define SLOW_SHORT_ACCESS 0
2035
d4ba09c0
SC
2036/* Define this macro to be the value 1 if unaligned accesses have a
2037 cost many times greater than aligned accesses, for example if they
2038 are emulated in a trap handler.
2039
9cd10576
KH
2040 When this macro is nonzero, the compiler will act as if
2041 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2042 moves. This can cause significantly more instructions to be
9cd10576 2043 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2044 accesses only add a cycle or two to the time for a memory access.
2045
2046 If the value of this macro is always zero, it need not be defined. */
2047
e1565e65 2048/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2049
d4ba09c0
SC
2050/* Define this macro if it is as good or better to call a constant
2051 function address than to call an address kept in a register.
2052
2053 Desirable on the 386 because a CALL with a constant address is
2054 faster than one with a register address. */
2055
2056#define NO_FUNCTION_CSE
c98f8742 2057\f
c572e5ba
JVA
2058/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2059 return the mode to be used for the comparison.
2060
2061 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2062 VOIDmode should be used in all other cases.
c572e5ba 2063
16189740 2064 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2065 possible, to allow for more combinations. */
c98f8742 2066
d9a5f180 2067#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2068
9cd10576 2069/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2070 reversed. */
2071
2072#define REVERSIBLE_CC_MODE(MODE) 1
2073
2074/* A C expression whose value is reversed condition code of the CODE for
2075 comparison done in CC_MODE mode. */
3c5cb3e4 2076#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2077
c98f8742
JVA
2078\f
2079/* Control the assembler format that we output, to the extent
2080 this does not vary between assemblers. */
2081
2082/* How to refer to registers in assembler output.
892a2d68 2083 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2084
a7b376ee 2085/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2086 For non floating point regs, the following are the HImode names.
2087
2088 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2089 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2090
a7180f70
BS
2091#define HI_REGISTER_NAMES \
2092{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2093 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2094 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2095 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2096 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2097 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2098 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2099
c98f8742
JVA
2100#define REGISTER_NAMES HI_REGISTER_NAMES
2101
2102/* Table of additional register names to use in user input. */
2103
2104#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2105{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2106 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2107 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2108 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2109 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2110 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2111
2112/* Note we are omitting these since currently I don't know how
2113to get gcc to use these, since they want the same but different
2114number as al, and ax.
2115*/
2116
c98f8742 2117#define QI_REGISTER_NAMES \
3f3f2124 2118{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2119
2120/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2121 of regs 0 through 3. */
c98f8742
JVA
2122
2123#define QI_HIGH_REGISTER_NAMES \
2124{"ah", "dh", "ch", "bh", }
2125
2126/* How to renumber registers for dbx and gdb. */
2127
d9a5f180
GS
2128#define DBX_REGISTER_NUMBER(N) \
2129 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2130
9a82e702
MS
2131extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2132extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2133extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2134
469ac993
JM
2135/* Before the prologue, RA is at 0(%esp). */
2136#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2137 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2138
e414ab29 2139/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2140#define RETURN_ADDR_RTX(COUNT, FRAME) \
2141 ((COUNT) == 0 \
2142 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2143 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2144
892a2d68 2145/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2146#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2147
a6ab3aad 2148/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2149#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2150
1020a5ab
RH
2151/* Describe how we implement __builtin_eh_return. */
2152#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2153#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2154
ad919812 2155
e4c4ebeb
RH
2156/* Select a format to encode pointers in exception handling data. CODE
2157 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2158 true if the symbol may be affected by dynamic relocations.
2159
2160 ??? All x86 object file formats are capable of representing this.
2161 After all, the relocation needed is the same as for the call insn.
2162 Whether or not a particular assembler allows us to enter such, I
2163 guess we'll have to see. */
d9a5f180 2164#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2165 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2166
c98f8742
JVA
2167/* This is how to output an insn to push a register on the stack.
2168 It need not be very fast code. */
2169
d9a5f180 2170#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2171do { \
2172 if (TARGET_64BIT) \
2173 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2174 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2175 else \
2176 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2177} while (0)
c98f8742
JVA
2178
2179/* This is how to output an insn to pop a register from the stack.
2180 It need not be very fast code. */
2181
d9a5f180 2182#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2183do { \
2184 if (TARGET_64BIT) \
2185 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2186 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2187 else \
2188 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2189} while (0)
c98f8742 2190
f88c65f7 2191/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2192
2193#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2194 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2195
f88c65f7 2196/* This is how to output an element of a case-vector that is relative. */
c98f8742 2197
33f7f353 2198#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2199 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2200
f7288899
EC
2201/* Under some conditions we need jump tables in the text section,
2202 because the assembler cannot handle label differences between
2203 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2204
2205#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2206 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2207 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2208
cea3bd3e
RH
2209/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2210 and switch back. For x86 we do this only to save a few bytes that
2211 would otherwise be unused in the text section. */
2212#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2213 asm (SECTION_OP "\n\t" \
2214 "call " USER_LABEL_PREFIX #FUNC "\n" \
2215 TEXT_SECTION_ASM_OP);
74b42c8b 2216\f
c98f8742
JVA
2217/* Print operand X (an rtx) in assembler syntax to file FILE.
2218 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2219 Effect of various CODE letters is described in i386.c near
2220 print_operand function. */
c98f8742 2221
d9a5f180 2222#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2223 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2224
2225#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2226 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2227
2228#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2229 print_operand_address ((FILE), (ADDR))
c98f8742 2230
f996902d
RH
2231#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2232do { \
2233 if (! output_addr_const_extra (FILE, (X))) \
2234 goto FAIL; \
2235} while (0);
d4ba09c0 2236\f
5bf0ebab
RH
2237/* Which processor to schedule for. The cpu attribute defines a list that
2238 mirrors this list, so changes to i386.md must be made at the same time. */
2239
2240enum processor_type
2241{
2242 PROCESSOR_I386, /* 80386 */
2243 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2244 PROCESSOR_PENTIUM,
2245 PROCESSOR_PENTIUMPRO,
cfe1b18f 2246 PROCESSOR_GEODE,
5bf0ebab
RH
2247 PROCESSOR_K6,
2248 PROCESSOR_ATHLON,
2249 PROCESSOR_PENTIUM4,
4977bab6 2250 PROCESSOR_K8,
89c43c0a 2251 PROCESSOR_NOCONA,
05f85dbb 2252 PROCESSOR_CORE2,
d326eaf0
JH
2253 PROCESSOR_GENERIC32,
2254 PROCESSOR_GENERIC64,
21efb4d4 2255 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2256 PROCESSOR_max
2257};
2258
9e555526 2259extern enum processor_type ix86_tune;
5bf0ebab 2260extern enum processor_type ix86_arch;
5bf0ebab
RH
2261
2262enum fpmath_unit
2263{
2264 FPMATH_387 = 1,
2265 FPMATH_SSE = 2
2266};
2267
2268extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2269
f996902d
RH
2270enum tls_dialect
2271{
2272 TLS_DIALECT_GNU,
5bf5a10b 2273 TLS_DIALECT_GNU2,
f996902d
RH
2274 TLS_DIALECT_SUN
2275};
2276
2277extern enum tls_dialect ix86_tls_dialect;
f996902d 2278
6189a572 2279enum cmodel {
5bf0ebab
RH
2280 CM_32, /* The traditional 32-bit ABI. */
2281 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2282 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2283 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2284 CM_LARGE, /* No assumptions. */
7dcbf659 2285 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2286 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2287 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2288};
2289
5bf0ebab 2290extern enum cmodel ix86_cmodel;
5bf0ebab 2291
8362f420
JH
2292/* Size of the RED_ZONE area. */
2293#define RED_ZONE_SIZE 128
2294/* Reserved area of the red zone for temporaries. */
2295#define RED_ZONE_RESERVE 8
c93e80a5
JH
2296
2297enum asm_dialect {
2298 ASM_ATT,
2299 ASM_INTEL
2300};
5bf0ebab 2301
80f33d06 2302extern enum asm_dialect ix86_asm_dialect;
95899b34 2303extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2304extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2305
2306/* Smallest class containing REGNO. */
2307extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2308
d9a5f180
GS
2309extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2310extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2311extern rtx ix86_compare_emitted;
22fb740d
JH
2312\f
2313/* To properly truncate FP values into integers, we need to set i387 control
2314 word. We can't emit proper mode switching code before reload, as spills
2315 generated by reload may truncate values incorrectly, but we still can avoid
2316 redundant computation of new control word by the mode switching pass.
2317 The fldcw instructions are still emitted redundantly, but this is probably
2318 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2319 the sequence.
22fb740d
JH
2320
2321 The machinery is to emit simple truncation instructions and split them
2322 before reload to instructions having USEs of two memory locations that
2323 are filled by this code to old and new control word.
fce5a9f2 2324
22fb740d
JH
2325 Post-reload pass may be later used to eliminate the redundant fildcw if
2326 needed. */
2327
ff680eb1
UB
2328enum ix86_entity
2329{
2330 I387_TRUNC = 0,
2331 I387_FLOOR,
2332 I387_CEIL,
2333 I387_MASK_PM,
2334 MAX_386_ENTITIES
2335};
2336
1cba2b96 2337enum ix86_stack_slot
ff680eb1 2338{
80dcd3aa
UB
2339 SLOT_VIRTUAL = 0,
2340 SLOT_TEMP,
ff680eb1
UB
2341 SLOT_CW_STORED,
2342 SLOT_CW_TRUNC,
2343 SLOT_CW_FLOOR,
2344 SLOT_CW_CEIL,
2345 SLOT_CW_MASK_PM,
2346 MAX_386_STACK_LOCALS
2347};
22fb740d
JH
2348
2349/* Define this macro if the port needs extra instructions inserted
2350 for mode switching in an optimizing compilation. */
2351
ff680eb1
UB
2352#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2353 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2354
2355/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2356 initializer for an array of integers. Each initializer element N
2357 refers to an entity that needs mode switching, and specifies the
2358 number of different modes that might need to be set for this
2359 entity. The position of the initializer in the initializer -
2360 starting counting at zero - determines the integer that is used to
2361 refer to the mode-switched entity in question. */
2362
ff680eb1
UB
2363#define NUM_MODES_FOR_MODE_SWITCHING \
2364 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2365
2366/* ENTITY is an integer specifying a mode-switched entity. If
2367 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2368 return an integer value not larger than the corresponding element
2369 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2370 must be switched into prior to the execution of INSN. */
2371
2372#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2373
2374/* This macro specifies the order in which modes for ENTITY are
2375 processed. 0 is the highest priority. */
2376
d9a5f180 2377#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2378
2379/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2380 is the set of hard registers live at the point where the insn(s)
2381 are to be inserted. */
2382
2383#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2384 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2385 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2386 : 0)
ff680eb1 2387
0f0138b6
JH
2388\f
2389/* Avoid renaming of stack registers, as doing so in combination with
2390 scheduling just increases amount of live registers at time and in
2391 the turn amount of fxch instructions needed.
2392
43f3a59d 2393 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2394
d9a5f180 2395#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2396 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2397
3b3c6a3f 2398\f
e91f04de 2399#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2400\f
2401struct machine_function GTY(())
2402{
2403 struct stack_local_entry *stack_locals;
2404 const char *some_ld_name;
150cdc9e 2405 rtx force_align_arg_pointer;
fa1a0d02
JH
2406 int save_varrargs_registers;
2407 int accesses_prev_frame;
ff680eb1 2408 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2409 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2410 determine the style used. */
2411 int use_fast_prologue_epilogue;
d7394366
JH
2412 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2413 for. */
2414 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2415 /* If true, the current function needs the default PIC register, not
2416 an alternate register (on x86) and must not use the red zone (on
2417 x86_64), even if it's a leaf function. We don't want the
2418 function to be regarded as non-leaf because TLS calls need not
2419 affect register allocation. This flag is set when a TLS call
2420 instruction is expanded within a function, and never reset, even
2421 if all such instructions are optimized away. Use the
2422 ix86_current_function_calls_tls_descriptor macro for a better
2423 approximation. */
2424 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2425};
2426
2427#define ix86_stack_locals (cfun->machine->stack_locals)
2428#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2429#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2430#define ix86_tls_descriptor_calls_expanded_in_cfun \
2431 (cfun->machine->tls_descriptor_call_expanded_p)
2432/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2433 calls are optimized away, we try to detect cases in which it was
2434 optimized away. Since such instructions (use (reg REG_SP)), we can
2435 verify whether there's any such instruction live by testing that
2436 REG_SP is live. */
2437#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2438 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2439
1bc7c5b6
ZW
2440/* Control behavior of x86_file_start. */
2441#define X86_FILE_START_VERSION_DIRECTIVE false
2442#define X86_FILE_START_FLTUSED false
2443
7dcbf659
JH
2444/* Flag to mark data that is in the large address area. */
2445#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2446#define SYMBOL_REF_FAR_ADDR_P(X) \
2447 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2448
2449/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2450 have defined always, to avoid ifdefing. */
2451#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2452#define SYMBOL_REF_DLLIMPORT_P(X) \
2453 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2454
2455#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2456#define SYMBOL_REF_DLLEXPORT_P(X) \
2457 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2458
c98f8742
JVA
2459/*
2460Local variables:
2461version-control: t
2462End:
2463*/