]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Add D front-end, libphobos library, and D2 testsuite.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
85ec4feb 2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
90922d36 96#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 97#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 98#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 99#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 100#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 101#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 102#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 103#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 104#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 105#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 106#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 107#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
108#define TARGET_PCONFIG TARGET_ISA_PCONFIG
109#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
112#define TARGET_SGX TARGET_ISA_SGX
113#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
114#define TARGET_RDPID TARGET_ISA_RDPID
115#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
116#define TARGET_GFNI TARGET_ISA_GFNI
117#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
118#define TARGET_VAES TARGET_ISA_VAES
119#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
120#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 122#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 123#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 124#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 125#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 126#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 127#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 128#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 129#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 130#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 131#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 132#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 133#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 134#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 135#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 136#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 137#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 138#define TARGET_AES TARGET_ISA_AES
bf7b5747 139#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
140#define TARGET_SHA TARGET_ISA_SHA
141#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
142#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
144#define TARGET_CLZERO TARGET_ISA_CLZERO
145#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
146#define TARGET_XSAVEC TARGET_ISA_XSAVEC
147#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148#define TARGET_XSAVES TARGET_ISA_XSAVES
149#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 150#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 151#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
152#define TARGET_CMPXCHG16B TARGET_ISA_CX16
153#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 154#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 155#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 156#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 157#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 158#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 159#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
160#define TARGET_RTM TARGET_ISA_RTM
161#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 162#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 163#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 164#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 165#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 166#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 167#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 168#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 169#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 170#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 171#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 172#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 173#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 174#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 175#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
176#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
178#define TARGET_CLWB TARGET_ISA_CLWB
179#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
180#define TARGET_MWAITX TARGET_ISA_MWAITX
181#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
182#define TARGET_PKU TARGET_ISA_PKU
183#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
184#define TARGET_SHSTK TARGET_ISA_SHSTK
185#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
186#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
187#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
188#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
189#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
190#define TARGET_WAITPKG TARGET_ISA_WAITPKG
191#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
192#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
193#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41a4ef22 194
90922d36 195#define TARGET_LP64 TARGET_ABI_64
bf7b5747 196#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 197#define TARGET_X32 TARGET_ABI_X32
bf7b5747 198#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
199#define TARGET_16BIT TARGET_CODE16
200#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 201
26b5109f
RS
202#include "config/vxworks-dummy.h"
203
7eb68c06 204#include "config/i386/i386-opts.h"
ccf8e764 205
c69fa2d4 206#define MAX_STRINGOP_ALGS 4
ccf8e764 207
8c996513
JH
208/* Specify what algorithm to use for stringops on known size.
209 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
210 known at compile time or estimated via feedback, the SIZE array
211 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 212 means infinity). Corresponding ALG is used then.
340ef734
JH
213 When NOALIGN is true the code guaranting the alignment of the memory
214 block is skipped.
215
8c996513 216 For example initializer:
4f3f76e6 217 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 218 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 219 be used otherwise. */
8c996513
JH
220struct stringop_algs
221{
222 const enum stringop_alg unknown_size;
223 const struct stringop_strategy {
224 const int max;
225 const enum stringop_alg alg;
340ef734 226 int noalign;
c69fa2d4 227 } size [MAX_STRINGOP_ALGS];
8c996513
JH
228};
229
d4ba09c0
SC
230/* Define the specific costs for a given cpu */
231
232struct processor_costs {
8b60264b
KG
233 const int add; /* cost of an add instruction */
234 const int lea; /* cost of a lea instruction */
235 const int shift_var; /* variable shift costs */
236 const int shift_const; /* constant shift costs */
f676971a 237 const int mult_init[5]; /* cost of starting a multiply
4977bab6 238 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 239 const int mult_bit; /* cost of multiply per each bit set */
f676971a 240 const int divide[5]; /* cost of a divide/mod
4977bab6 241 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
242 int movsx; /* The cost of movsx operation. */
243 int movzx; /* The cost of movzx operation. */
8b60264b
KG
244 const int large_insn; /* insns larger than this cost more */
245 const int move_ratio; /* The threshold of number of scalar
ac775968 246 memory-to-memory move insns. */
8b60264b
KG
247 const int movzbl_load; /* cost of loading using movzbl */
248 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
249 in QImode, HImode and SImode relative
250 to reg-reg move (2). */
8b60264b 251 const int int_store[3]; /* cost of storing integer register
96e7ae40 252 in QImode, HImode and SImode */
8b60264b
KG
253 const int fp_move; /* cost of reg,reg fld/fst */
254 const int fp_load[3]; /* cost of loading FP register
96e7ae40 255 in SFmode, DFmode and XFmode */
8b60264b 256 const int fp_store[3]; /* cost of storing FP register
96e7ae40 257 in SFmode, DFmode and XFmode */
8b60264b
KG
258 const int mmx_move; /* cost of moving MMX register. */
259 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 260 in SImode and DImode */
8b60264b 261 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 262 in SImode and DImode */
df41dbaf
JH
263 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
264 zmm_move;
265 const int sse_load[5]; /* cost of loading SSE register
266 in 32bit, 64bit, 128bit, 256bit and 512bit */
267 const int sse_unaligned_load[5];/* cost of unaligned load. */
268 const int sse_store[5]; /* cost of storing SSE register
269 in SImode, DImode and TImode. */
270 const int sse_unaligned_store[5];/* cost of unaligned store. */
8b60264b 271 const int mmxsse_to_integer; /* cost of moving mmxsse register to
df41dbaf
JH
272 integer. */
273 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
a4fe6139
JH
274 const int gather_static, gather_per_elt; /* Cost of gather load is computed
275 as static + per_item * nelts. */
276 const int scatter_static, scatter_per_elt; /* Cost of gather store is
277 computed as static + per_item * nelts. */
46cb0441
ZD
278 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
279 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
280 const int prefetch_block; /* bytes moved to cache for prefetch. */
281 const int simultaneous_prefetches; /* number of parallel prefetch
282 operations. */
4977bab6 283 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
284 const int fadd; /* cost of FADD and FSUB instructions. */
285 const int fmul; /* cost of FMUL instruction. */
286 const int fdiv; /* cost of FDIV instruction. */
287 const int fabs; /* cost of FABS instruction. */
288 const int fchs; /* cost of FCHS instruction. */
289 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 290 /* Specify what algorithm
bee51209 291 to use for stringops on unknown size. */
c53c148c 292 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
293 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
294 const int mulss; /* cost of MULSS instructions. */
295 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
296 const int fmass; /* cost of FMASS instructions. */
297 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
298 const int divss; /* cost of DIVSS instructions. */
299 const int divsd; /* cost of DIVSD instructions. */
300 const int sqrtss; /* cost of SQRTSS instructions. */
301 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
302 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
303 /* Specify reassociation width for integer,
304 fp, vector integer and vector fp
305 operations. Generally should correspond
306 to number of instructions executed in
307 parallel. See also
308 ix86_reassociation_width. */
ad83025e 309 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
310 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
311 cost model. */
312 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
313 vectorizer cost model. */
7dc58b50
ML
314
315 /* The "0:0:8" label alignment specified for some processors generates
316 secondary 8-byte alignment only for those label/jump/loop targets
317 which have primary alignment. */
318 const char *const align_loop; /* Loop alignment. */
319 const char *const align_jump; /* Jump alignment. */
320 const char *const align_label; /* Label alignment. */
321 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
322};
323
8b60264b 324extern const struct processor_costs *ix86_cost;
b2077fd2
JH
325extern const struct processor_costs ix86_size_cost;
326
327#define ix86_cur_cost() \
328 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 329
c98f8742
JVA
330/* Macros used in the machine description to test the flags. */
331
b97de419 332/* configure can arrange to change it. */
e075ae69 333
35b528be 334#ifndef TARGET_CPU_DEFAULT
b97de419 335#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 336#endif
35b528be 337
004d3859
GK
338#ifndef TARGET_FPMATH_DEFAULT
339#define TARGET_FPMATH_DEFAULT \
340 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
341#endif
342
bf7b5747
ST
343#ifndef TARGET_FPMATH_DEFAULT_P
344#define TARGET_FPMATH_DEFAULT_P(x) \
345 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
346#endif
347
c207fd99
L
348/* If the i387 is disabled or -miamcu is used , then do not return
349 values in it. */
350#define TARGET_FLOAT_RETURNS_IN_80387 \
351 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
352#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
353 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 354
5791cc29
JT
355/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
356 compile-time constant. */
357#ifdef IN_LIBGCC2
6ac49599 358#undef TARGET_64BIT
5791cc29
JT
359#ifdef __x86_64__
360#define TARGET_64BIT 1
361#else
362#define TARGET_64BIT 0
363#endif
364#else
6ac49599
RS
365#ifndef TARGET_BI_ARCH
366#undef TARGET_64BIT
e49080ec 367#undef TARGET_64BIT_P
67adf6a9 368#if TARGET_64BIT_DEFAULT
0c2dc519 369#define TARGET_64BIT 1
e49080ec 370#define TARGET_64BIT_P(x) 1
0c2dc519
JH
371#else
372#define TARGET_64BIT 0
e49080ec 373#define TARGET_64BIT_P(x) 0
0c2dc519
JH
374#endif
375#endif
5791cc29 376#endif
25f94bb5 377
750054a2
CT
378#define HAS_LONG_COND_BRANCH 1
379#define HAS_LONG_UNCOND_BRANCH 1
380
9e555526
RH
381#define TARGET_386 (ix86_tune == PROCESSOR_I386)
382#define TARGET_486 (ix86_tune == PROCESSOR_I486)
383#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
384#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 385#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
386#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
387#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
388#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
389#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 390#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 391#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 392#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
393#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
394#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 395#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
396#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
397#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 398#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 399#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 400#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 401#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 402#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 403#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 404#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 405#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
406#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
407#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
9a7f94d7 408#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 409#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 410#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 411#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 412#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 413#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 414#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 415#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 416#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 417#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 418
80fd744f
RH
419/* Feature tests against the various tunings. */
420enum ix86_tune_indices {
4b8bc035 421#undef DEF_TUNE
3ad20bd4 422#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
423#include "x86-tune.def"
424#undef DEF_TUNE
425X86_TUNE_LAST
80fd744f
RH
426};
427
ab442df7 428extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
429
430#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
431#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
432#define TARGET_ZERO_EXTEND_WITH_AND \
433 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 434#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
435#define TARGET_BRANCH_PREDICTION_HINTS \
436 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
437#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
438#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
439#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
440#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
441#define TARGET_PARTIAL_FLAG_REG_STALL \
442 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
443#define TARGET_LCP_STALL \
444 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
445#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
446#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
447#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
448#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
449#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
450#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
451#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
452#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
453#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
454#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
455#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
456#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
457 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
458#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
459#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
460#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
461#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
462#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
463#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
464#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
465#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
466#define TARGET_INTEGER_DFMODE_MOVES \
467 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
468#define TARGET_PARTIAL_REG_DEPENDENCY \
469 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
470#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
471 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
472#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
473 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
474#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
475 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
476#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
477 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
478#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
479#define TARGET_SSE_TYPELESS_STORES \
480 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
481#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
482#define TARGET_MEMORY_MISMATCH_STALL \
483 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
484#define TARGET_PROLOGUE_USING_MOVE \
485 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
486#define TARGET_EPILOGUE_USING_MOVE \
487 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
488#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
489#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
490#define TARGET_INTER_UNIT_MOVES_TO_VEC \
491 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
492#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
493 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
494#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 495 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
496#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
497#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
498#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
499#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
500#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
501#define TARGET_PAD_SHORT_FUNCTION \
502 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
503#define TARGET_EXT_80387_CONSTANTS \
504 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
505#define TARGET_AVOID_VECTOR_DECODE \
506 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
507#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
508 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
509#define TARGET_SLOW_IMUL_IMM32_MEM \
510 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
511#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
512#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
513#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
514#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
515#define TARGET_USE_VECTOR_FP_CONVERTS \
516 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
517#define TARGET_USE_VECTOR_CONVERTS \
518 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
519#define TARGET_SLOW_PSHUFB \
520 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
521#define TARGET_AVOID_4BYTE_PREFIXES \
522 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
523#define TARGET_USE_GATHER \
524 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
525#define TARGET_FUSE_CMP_AND_BRANCH_32 \
526 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
527#define TARGET_FUSE_CMP_AND_BRANCH_64 \
528 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 529#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
530 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
531 : TARGET_FUSE_CMP_AND_BRANCH_32)
532#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
533 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
534#define TARGET_FUSE_ALU_AND_BRANCH \
535 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 536#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
537#define TARGET_AVOID_LEA_FOR_ADDR \
538 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
539#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
540 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
541#define TARGET_AVX128_OPTIMAL \
542 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
543#define TARGET_GENERAL_REGS_SSE_SPILL \
544 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
545#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
546 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 547#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 548 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
549#define TARGET_ADJUST_UNROLL \
550 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
551#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
552 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
553#define TARGET_ONE_IF_CONV_INSN \
554 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
555#define TARGET_EMIT_VZEROUPPER \
556 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 557
80fd744f
RH
558/* Feature tests against the various architecture variations. */
559enum ix86_arch_indices {
cef31f9c 560 X86_ARCH_CMOV,
80fd744f
RH
561 X86_ARCH_CMPXCHG,
562 X86_ARCH_CMPXCHG8B,
563 X86_ARCH_XADD,
564 X86_ARCH_BSWAP,
565
566 X86_ARCH_LAST
567};
4f3f76e6 568
ab442df7 569extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 570
cef31f9c 571#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
572#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
573#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
574#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
575#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
576
cef31f9c
UB
577/* For sane SSE instruction set generation we need fcomi instruction.
578 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
579 expands to a sequence that includes conditional move. */
580#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
581
80fd744f
RH
582#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
583
cb261eb7 584extern unsigned char x86_prefetch_sse;
80fd744f
RH
585#define TARGET_PREFETCH_SSE x86_prefetch_sse
586
80fd744f
RH
587#define ASSEMBLER_DIALECT (ix86_asm_dialect)
588
589#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
590#define TARGET_MIX_SSE_I387 \
591 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
592
5fa578f0
UB
593#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
594#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
595#define TARGET_HARD_XF_REGS (TARGET_80387)
596
80fd744f
RH
597#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
598#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
599#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 600#define TARGET_SUN_TLS 0
1ef45b77 601
67adf6a9
RH
602#ifndef TARGET_64BIT_DEFAULT
603#define TARGET_64BIT_DEFAULT 0
25f94bb5 604#endif
74dc3e94
RH
605#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
606#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
607#endif
25f94bb5 608
e0ea8797
AH
609#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
610#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
611
79f5e442
ZD
612/* Fence to use after loop using storent. */
613
614extern tree x86_mfence;
615#define FENCE_FOLLOWING_MOVNT x86_mfence
616
0ed4a390
JL
617/* Once GDB has been enhanced to deal with functions without frame
618 pointers, we can change this to allow for elimination of
619 the frame pointer in leaf functions. */
620#define TARGET_DEFAULT 0
67adf6a9 621
0a1c5e55
UB
622/* Extra bits to force. */
623#define TARGET_SUBTARGET_DEFAULT 0
624#define TARGET_SUBTARGET_ISA_DEFAULT 0
625
626/* Extra bits to force on w/ 32-bit mode. */
627#define TARGET_SUBTARGET32_DEFAULT 0
628#define TARGET_SUBTARGET32_ISA_DEFAULT 0
629
ccf8e764
RH
630/* Extra bits to force on w/ 64-bit mode. */
631#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 632#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 633
fee3eacd
IS
634/* Replace MACH-O, ifdefs by in-line tests, where possible.
635 (a) Macros defined in config/i386/darwin.h */
b069de3b 636#define TARGET_MACHO 0
9005471b 637#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
638#define MACHOPIC_ATT_STUB 0
639/* (b) Macros defined in config/darwin.h */
640#define MACHO_DYNAMIC_NO_PIC_P 0
641#define MACHOPIC_INDIRECT 0
642#define MACHOPIC_PURE 0
9005471b 643
5a579c3b
LE
644/* For the RDOS */
645#define TARGET_RDOS 0
646
9005471b 647/* For the Windows 64-bit ABI. */
7c800926
KT
648#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
649
6510e8bb
KT
650/* For the Windows 32-bit ABI. */
651#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
652
f81c9774
RH
653/* This is re-defined by cygming.h. */
654#define TARGET_SEH 0
655
51212b32 656/* The default abi used by target. */
7c800926 657#define DEFAULT_ABI SYSV_ABI
ccf8e764 658
b8b3f0ca 659/* The default TLS segment register used by target. */
00402c94
RH
660#define DEFAULT_TLS_SEG_REG \
661 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 662
cc69336f
RH
663/* Subtargets may reset this to 1 in order to enable 96-bit long double
664 with the rounding mode forced to 53 bits. */
665#define TARGET_96_ROUND_53_LONG_DOUBLE 0
666
682cd442
GK
667/* -march=native handling only makes sense with compiler running on
668 an x86 or x86_64 chip. If changing this condition, also change
669 the condition in driver-i386.c. */
670#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
671/* In driver-i386.c. */
672extern const char *host_detect_local_cpu (int argc, const char **argv);
673#define EXTRA_SPEC_FUNCTIONS \
674 { "local_cpu_detect", host_detect_local_cpu },
682cd442 675#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
676#endif
677
8981c15b
JM
678#if TARGET_64BIT_DEFAULT
679#define OPT_ARCH64 "!m32"
680#define OPT_ARCH32 "m32"
681#else
f0ea7581
L
682#define OPT_ARCH64 "m64|mx32"
683#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
684#endif
685
1cba2b96
EC
686/* Support for configure-time defaults of some command line options.
687 The order here is important so that -march doesn't squash the
688 tune or cpu values. */
ce998900 689#define OPTION_DEFAULT_SPECS \
da2d4c01 690 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
691 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
692 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 693 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
694 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
695 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
696 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
697 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
698 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 699
241e1a89
SC
700/* Specs for the compiler proper */
701
628714d8 702#ifndef CC1_CPU_SPEC
eb5bb0fd 703#define CC1_CPU_SPEC_1 ""
fa959ce4 704
682cd442 705#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
706#define CC1_CPU_SPEC CC1_CPU_SPEC_1
707#else
708#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
709"%{march=native:%>march=native %:local_cpu_detect(arch) \
710 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
711%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 712#endif
241e1a89 713#endif
c98f8742 714\f
30efe578 715/* Target CPU builtins. */
ab442df7
MM
716#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
717
718/* Target Pragmas. */
719#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 720
b4c522fa
IB
721/* Target CPU versions for D. */
722#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
723
628714d8 724#ifndef CC1_SPEC
8015b78d 725#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
726#endif
727
728/* This macro defines names of additional specifications to put in the
729 specs that can be used in various specifications like CC1_SPEC. Its
730 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
731
732 Each subgrouping contains a string constant, that defines the
188fc5b5 733 specification name, and a string constant that used by the GCC driver
bcd86433
SC
734 program.
735
736 Do not define this macro if it does not need to do anything. */
737
738#ifndef SUBTARGET_EXTRA_SPECS
739#define SUBTARGET_EXTRA_SPECS
740#endif
741
742#define EXTRA_SPECS \
628714d8 743 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
744 SUBTARGET_EXTRA_SPECS
745\f
ce998900 746
8ce94e44
JM
747/* Whether to allow x87 floating-point arithmetic on MODE (one of
748 SFmode, DFmode and XFmode) in the current excess precision
749 configuration. */
b8cab8a5
UB
750#define X87_ENABLE_ARITH(MODE) \
751 (flag_unsafe_math_optimizations \
752 || flag_excess_precision == EXCESS_PRECISION_FAST \
753 || (MODE) == XFmode)
8ce94e44
JM
754
755/* Likewise, whether to allow direct conversions from integer mode
756 IMODE (HImode, SImode or DImode) to MODE. */
757#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
758 (flag_unsafe_math_optimizations \
759 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
760 || (MODE) == XFmode \
761 || ((MODE) == DFmode && (IMODE) == SImode) \
762 || (IMODE) == HImode)
763
979c67a5
UB
764/* target machine storage layout */
765
65d9c0ab
JH
766#define SHORT_TYPE_SIZE 16
767#define INT_TYPE_SIZE 32
f0ea7581
L
768#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
769#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 770#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 771#define FLOAT_TYPE_SIZE 32
65d9c0ab 772#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
773#define LONG_DOUBLE_TYPE_SIZE \
774 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 775
c637141a 776#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 777
67adf6a9 778#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 779#define MAX_BITS_PER_WORD 64
0c2dc519
JH
780#else
781#define MAX_BITS_PER_WORD 32
0c2dc519
JH
782#endif
783
c98f8742
JVA
784/* Define this if most significant byte of a word is the lowest numbered. */
785/* That is true on the 80386. */
786
787#define BITS_BIG_ENDIAN 0
788
789/* Define this if most significant byte of a word is the lowest numbered. */
790/* That is not true on the 80386. */
791#define BYTES_BIG_ENDIAN 0
792
793/* Define this if most significant word of a multiword number is the lowest
794 numbered. */
795/* Not true for 80386 */
796#define WORDS_BIG_ENDIAN 0
797
c98f8742 798/* Width of a word, in units (bytes). */
4ae8027b 799#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
800
801#ifndef IN_LIBGCC2
2e64c636
JH
802#define MIN_UNITS_PER_WORD 4
803#endif
c98f8742 804
c98f8742 805/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 806#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 807
e075ae69 808/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 809#define STACK_BOUNDARY \
51212b32 810 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 811
2e3f842f
L
812/* Stack boundary of the main function guaranteed by OS. */
813#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
814
de1132d1 815/* Minimum stack boundary. */
cba9c789 816#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 817
d1f87653 818/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 819 aligned; the compiler cannot rely on having this alignment. */
e075ae69 820#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 821
de1132d1 822/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
823 both 32bit and 64bit, to support codes that need 128 bit stack
824 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
825#define PREFERRED_STACK_BOUNDARY_DEFAULT \
826 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
827
828/* 1 if -mstackrealign should be turned on by default. It will
829 generate an alternate prologue and epilogue that realigns the
830 runtime stack if nessary. This supports mixing codes that keep a
831 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 832 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
833#define STACK_REALIGN_DEFAULT 0
834
835/* Boundary (in *bits*) on which the incoming stack is aligned. */
836#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 837
a2851b75
TG
838/* According to Windows x64 software convention, the maximum stack allocatable
839 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
840 instructions allowed to adjust the stack pointer in the epilog, forcing the
841 use of frame pointer for frames larger than 2 GB. This theorical limit
842 is reduced by 256, an over-estimated upper bound for the stack use by the
843 prologue.
844 We define only one threshold for both the prolog and the epilog. When the
4e523f33 845 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
846 regs, then save them, and then allocate the remaining. There is no SEH
847 unwind info for this later allocation. */
848#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
849
ebff937c
SH
850/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
851 mandatory for the 64-bit ABI, and may or may not be true for other
852 operating systems. */
853#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
854
f963b5d9
RS
855/* Minimum allocation boundary for the code of a function. */
856#define FUNCTION_BOUNDARY 8
857
858/* C++ stores the virtual bit in the lowest bit of function pointers. */
859#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 860
c98f8742
JVA
861/* Minimum size in bits of the largest boundary to which any
862 and all fundamental data types supported by the hardware
863 might need to be aligned. No data type wants to be aligned
17f24ff0 864 rounder than this.
fce5a9f2 865
d1f87653 866 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
867 and Pentium Pro XFmode values at 128 bit boundaries.
868
869 When increasing the maximum, also update
870 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 871
3f97cb0b 872#define BIGGEST_ALIGNMENT \
0076c82f 873 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 874
2e3f842f
L
875/* Maximum stack alignment. */
876#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
877
6e4f1168
L
878/* Alignment value for attribute ((aligned)). It is a constant since
879 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 880#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 881
822eda12 882/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 883#define ALIGN_MODE_128(MODE) \
4501d314 884 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 885
17f24ff0 886/* The published ABIs say that doubles should be aligned on word
d1f87653 887 boundaries, so lower the alignment for structure fields unless
6fc605d8 888 -malign-double is set. */
e932b21b 889
e83f3cff
RH
890/* ??? Blah -- this macro is used directly by libobjc. Since it
891 supports no vector modes, cut out the complexity and fall back
892 on BIGGEST_FIELD_ALIGNMENT. */
893#ifdef IN_TARGET_LIBS
ef49d42e
JH
894#ifdef __x86_64__
895#define BIGGEST_FIELD_ALIGNMENT 128
896#else
e83f3cff 897#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 898#endif
e83f3cff 899#else
a4cf4b64
RB
900#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
901 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 902#endif
c98f8742 903
8a022443
JW
904/* If defined, a C expression to compute the alignment for a static
905 variable. TYPE is the data type, and ALIGN is the alignment that
906 the object would ordinarily have. The value of this macro is used
907 instead of that alignment to align the object.
908
909 If this macro is not defined, then ALIGN is used.
910
911 One use of this macro is to increase alignment of medium-size
912 data to make it all fit in fewer cache lines. Another is to
913 cause character arrays to be word-aligned so that `strcpy' calls
914 that copy constants to character arrays can be done inline. */
915
df8a1d28
JJ
916#define DATA_ALIGNMENT(TYPE, ALIGN) \
917 ix86_data_alignment ((TYPE), (ALIGN), true)
918
919/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
920 some alignment increase, instead of optimization only purposes. E.g.
921 AMD x86-64 psABI says that variables with array type larger than 15 bytes
922 must be aligned to 16 byte boundaries.
923
924 If this macro is not defined, then ALIGN is used. */
925
926#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
927 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
928
929/* If defined, a C expression to compute the alignment for a local
930 variable. TYPE is the data type, and ALIGN is the alignment that
931 the object would ordinarily have. The value of this macro is used
932 instead of that alignment to align the object.
933
934 If this macro is not defined, then ALIGN is used.
935
936 One use of this macro is to increase alignment of medium-size
937 data to make it all fit in fewer cache lines. */
938
76fe54f0
L
939#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
940 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
941
942/* If defined, a C expression to compute the alignment for stack slot.
943 TYPE is the data type, MODE is the widest mode available, and ALIGN
944 is the alignment that the slot would ordinarily have. The value of
945 this macro is used instead of that alignment to align the slot.
946
947 If this macro is not defined, then ALIGN is used when TYPE is NULL,
948 Otherwise, LOCAL_ALIGNMENT will be used.
949
950 One use of this macro is to set alignment of stack slot to the
951 maximum alignment of all possible modes which the slot may have. */
952
953#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
954 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 955
9bfaf89d
JJ
956/* If defined, a C expression to compute the alignment for a local
957 variable DECL.
958
959 If this macro is not defined, then
960 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
961
962 One use of this macro is to increase alignment of medium-size
963 data to make it all fit in fewer cache lines. */
964
965#define LOCAL_DECL_ALIGNMENT(DECL) \
966 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
967
ae58e548
JJ
968/* If defined, a C expression to compute the minimum required alignment
969 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
970 MODE, assuming normal alignment ALIGN.
971
972 If this macro is not defined, then (ALIGN) will be used. */
973
974#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 975 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 976
9bfaf89d 977
9cd10576 978/* Set this nonzero if move instructions will actually fail to work
c98f8742 979 when given unaligned data. */
b4ac57ab 980#define STRICT_ALIGNMENT 0
c98f8742
JVA
981
982/* If bit field type is int, don't let it cross an int,
983 and give entire struct the alignment of an int. */
43a88a8c 984/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 985#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
986\f
987/* Standard register usage. */
988
989/* This processor has special stack-like registers. See reg-stack.c
892a2d68 990 for details. */
c98f8742
JVA
991
992#define STACK_REGS
ce998900 993
f48b4284
UB
994#define IS_STACK_MODE(MODE) \
995 (X87_FLOAT_MODE_P (MODE) \
996 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
997 || TARGET_MIX_SSE_I387))
c98f8742
JVA
998
999/* Number of actual hardware registers.
1000 The hardware registers are assigned numbers for the compiler
1001 from 0 to just below FIRST_PSEUDO_REGISTER.
1002 All registers that the compiler knows about must be given numbers,
1003 even those that are not normally considered general registers.
1004
1005 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1006 We number the floating point registers 8-15.
1007 Note that registers 0-7 can be accessed as a short or int,
1008 while only 0-3 may be used with byte `mov' instructions.
1009
1010 Reg 16 does not correspond to any hardware register, but instead
1011 appears in the RTL as an argument pointer prior to reload, and is
1012 eliminated during reloading in favor of either the stack or frame
892a2d68 1013 pointer. */
c98f8742 1014
05416670 1015#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1016
3073d01c
ML
1017/* Number of hardware registers that go into the DWARF-2 unwind info.
1018 If not defined, equals FIRST_PSEUDO_REGISTER. */
1019
1020#define DWARF_FRAME_REGISTERS 17
1021
c98f8742
JVA
1022/* 1 for registers that have pervasive standard uses
1023 and are not available for the register allocator.
3f3f2124 1024 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1025
621bc046
UB
1026 REX registers are disabled for 32bit targets in
1027 TARGET_CONDITIONAL_REGISTER_USAGE. */
1028
a7180f70
BS
1029#define FIXED_REGISTERS \
1030/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1031{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1032/*arg,flags,fpsr,frame*/ \
1033 1, 1, 1, 1, \
a7180f70
BS
1034/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1035 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1036/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1037 0, 0, 0, 0, 0, 0, 0, 0, \
1038/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1039 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1040/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1041 0, 0, 0, 0, 0, 0, 0, 0, \
1042/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1043 0, 0, 0, 0, 0, 0, 0, 0, \
1044/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1045 0, 0, 0, 0, 0, 0, 0, 0, \
1046/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1047 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1048
1049/* 1 for registers not available across function calls.
1050 These must include the FIXED_REGISTERS and also any
1051 registers that can be used without being saved.
1052 The latter must include the registers where values are returned
1053 and the register where structure-value addresses are passed.
fce5a9f2
EC
1054 Aside from that, you can include as many other registers as you like.
1055
621bc046
UB
1056 Value is set to 1 if the register is call used unconditionally.
1057 Bit one is set if the register is call used on TARGET_32BIT ABI.
1058 Bit two is set if the register is call used on TARGET_64BIT ABI.
1059 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1060
1061 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1062
1f3ccbc8
L
1063#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1064 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1065
a7180f70
BS
1066#define CALL_USED_REGISTERS \
1067/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1068{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1069/*arg,flags,fpsr,frame*/ \
1070 1, 1, 1, 1, \
a7180f70 1071/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1072 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1073/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1074 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1075/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1076 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1077/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1078 6, 6, 6, 6, 6, 6, 6, 6, \
1079/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1080 6, 6, 6, 6, 6, 6, 6, 6, \
1081/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1082 6, 6, 6, 6, 6, 6, 6, 6, \
1083 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1084 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1085
3b3c6a3f
MM
1086/* Order in which to allocate registers. Each register must be
1087 listed once, even those in FIXED_REGISTERS. List frame pointer
1088 late and fixed registers last. Note that, in general, we prefer
1089 registers listed in CALL_USED_REGISTERS, keeping the others
1090 available for storage of persistent values.
1091
5a733826 1092 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1093 so this is just empty initializer for array. */
3b3c6a3f 1094
eaa17c21
UB
1095#define REG_ALLOC_ORDER \
1096{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1097 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1098 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1099 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1100 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1101
5a733826 1102/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1103 to be rearranged based on a particular function. When using sse math,
03c259ad 1104 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1105
5a733826 1106#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1107
f5316dfe 1108
7c800926
KT
1109#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1110
8521c414 1111#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1112 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1113 && GENERAL_REGNO_P (REGNO) \
1114 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1115
1116#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1117
95879c72
L
1118#define VALID_AVX256_REG_MODE(MODE) \
1119 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1120 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1121 || (MODE) == V4DFmode)
95879c72 1122
4ac005ba 1123#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1124 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1125
3f97cb0b
AI
1126#define VALID_AVX512F_SCALAR_MODE(MODE) \
1127 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1128 || (MODE) == SFmode)
1129
1130#define VALID_AVX512F_REG_MODE(MODE) \
1131 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1132 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1133 || (MODE) == V4TImode)
1134
e6f146d2
SP
1135#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1136 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1137
05416670 1138#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1139 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1140 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1141 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1142
ce998900
UB
1143#define VALID_SSE2_REG_MODE(MODE) \
1144 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1145 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1146
d9a5f180 1147#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1148 ((MODE) == V1TImode || (MODE) == TImode \
1149 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1150 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1151
47f339cf 1152#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1153 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1154
d9a5f180 1155#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1156 ((MODE == V1DImode) || (MODE) == DImode \
1157 || (MODE) == V2SImode || (MODE) == SImode \
1158 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1159
05416670
UB
1160#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1161
1162#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1163
ce998900
UB
1164#define VALID_DFP_MODE_P(MODE) \
1165 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1166
d9a5f180 1167#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1168 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1169 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1170
d9a5f180 1171#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1172 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1173 || (MODE) == DImode \
1174 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1175 || (MODE) == CDImode \
1176 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1177 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1178
822eda12 1179/* Return true for modes passed in SSE registers. */
ce998900 1180#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1181 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1182 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1183 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1184 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1185 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1186 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1187 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1188 || (MODE) == V16SFmode)
822eda12 1189
05416670
UB
1190#define X87_FLOAT_MODE_P(MODE) \
1191 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1192
05416670
UB
1193#define SSE_FLOAT_MODE_P(MODE) \
1194 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1195
1196#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1197 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1198 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1199
ff25ef99
ZD
1200/* It is possible to write patterns to move flags; but until someone
1201 does it, */
1202#define AVOID_CCMODE_COPIES
c98f8742 1203
e075ae69 1204/* Specify the modes required to caller save a given hard regno.
787dc842 1205 We do this on i386 to prevent flags from being saved at all.
e075ae69 1206
787dc842
JH
1207 Kill any attempts to combine saving of modes. */
1208
d9a5f180
GS
1209#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1210 (CC_REGNO_P (REGNO) ? VOIDmode \
1211 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1212 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1213 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1214 && TARGET_PARTIAL_REG_STALL) \
85a77221 1215 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1216 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1217 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1218 : (MODE))
ce998900 1219
c98f8742
JVA
1220/* Specify the registers used for certain standard purposes.
1221 The values of these macros are register numbers. */
1222
1223/* on the 386 the pc register is %eip, and is not usable as a general
1224 register. The ordinary mov instructions won't work */
1225/* #define PC_REGNUM */
1226
05416670
UB
1227/* Base register for access to arguments of the function. */
1228#define ARG_POINTER_REGNUM ARGP_REG
1229
c98f8742 1230/* Register to use for pushing function arguments. */
05416670 1231#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1232
1233/* Base register for access to local variables of the function. */
05416670
UB
1234#define FRAME_POINTER_REGNUM FRAME_REG
1235#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1236
05416670
UB
1237#define FIRST_INT_REG AX_REG
1238#define LAST_INT_REG SP_REG
c98f8742 1239
05416670
UB
1240#define FIRST_QI_REG AX_REG
1241#define LAST_QI_REG BX_REG
c98f8742
JVA
1242
1243/* First & last stack-like regs */
05416670
UB
1244#define FIRST_STACK_REG ST0_REG
1245#define LAST_STACK_REG ST7_REG
c98f8742 1246
05416670
UB
1247#define FIRST_SSE_REG XMM0_REG
1248#define LAST_SSE_REG XMM7_REG
fce5a9f2 1249
05416670
UB
1250#define FIRST_MMX_REG MM0_REG
1251#define LAST_MMX_REG MM7_REG
a7180f70 1252
05416670
UB
1253#define FIRST_REX_INT_REG R8_REG
1254#define LAST_REX_INT_REG R15_REG
3f3f2124 1255
05416670
UB
1256#define FIRST_REX_SSE_REG XMM8_REG
1257#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1258
05416670
UB
1259#define FIRST_EXT_REX_SSE_REG XMM16_REG
1260#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1261
05416670
UB
1262#define FIRST_MASK_REG MASK0_REG
1263#define LAST_MASK_REG MASK7_REG
85a77221 1264
aabcd309 1265/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1266 requiring a frame pointer. */
1267#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1268#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1269#endif
1270
1271/* Make sure we can access arbitrary call frames. */
1272#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1273
c98f8742 1274/* Register to hold the addressing base for position independent
5b43fed1
RH
1275 code access to data items. We don't use PIC pointer for 64bit
1276 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1277 pessimizing code dealing with EBX.
bd09bdeb
RH
1278
1279 To avoid clobbering a call-saved register unnecessarily, we renumber
1280 the pic register when possible. The change is visible after the
1281 prologue has been emitted. */
1282
e8b5eb25 1283#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1284
bcb21886 1285#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1286 (ix86_use_pseudo_pic_reg () \
1287 ? (pic_offset_table_rtx \
1288 ? INVALID_REGNUM \
1289 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1290 : INVALID_REGNUM)
c98f8742 1291
5fc0e5df
KW
1292#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1293
c51e6d85 1294/* This is overridden by <cygwin.h>. */
5e062767
DS
1295#define MS_AGGREGATE_RETURN 0
1296
61fec9ff 1297#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1298\f
1299/* Define the classes of registers for register constraints in the
1300 machine description. Also define ranges of constants.
1301
1302 One of the classes must always be named ALL_REGS and include all hard regs.
1303 If there is more than one class, another class must be named NO_REGS
1304 and contain no registers.
1305
1306 The name GENERAL_REGS must be the name of a class (or an alias for
1307 another name such as ALL_REGS). This is the class of registers
1308 that is allowed by "g" or "r" in a register constraint.
1309 Also, registers outside this class are allocated only when
1310 instructions express preferences for them.
1311
1312 The classes must be numbered in nondecreasing order; that is,
1313 a larger-numbered class must never be contained completely
2e24efd3
AM
1314 in a smaller-numbered class. This is why CLOBBERED_REGS class
1315 is listed early, even though in 64-bit mode it contains more
1316 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1317
1318 For any two classes, it is very desirable that there be another
ab408a86
JVA
1319 class that represents their union.
1320
eaa17c21 1321 The flags and fpsr registers are in no class. */
c98f8742
JVA
1322
1323enum reg_class
1324{
1325 NO_REGS,
e075ae69 1326 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1327 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1328 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1329 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1330 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1331 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1332 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1333 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1334 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1335 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1336 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1337 FLOAT_REGS,
06f4e35d 1338 SSE_FIRST_REG,
45392c76 1339 NO_REX_SSE_REGS,
a7180f70 1340 SSE_REGS,
3f97cb0b 1341 ALL_SSE_REGS,
a7180f70 1342 MMX_REGS,
446988df
JH
1343 FLOAT_SSE_REGS,
1344 FLOAT_INT_REGS,
1345 INT_SSE_REGS,
1346 FLOAT_INT_SSE_REGS,
85a77221 1347 MASK_REGS,
d18cbbf6
UB
1348 ALL_MASK_REGS,
1349 ALL_REGS,
1350 LIM_REG_CLASSES
c98f8742
JVA
1351};
1352
d9a5f180
GS
1353#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1354
1355#define INTEGER_CLASS_P(CLASS) \
1356 reg_class_subset_p ((CLASS), GENERAL_REGS)
1357#define FLOAT_CLASS_P(CLASS) \
1358 reg_class_subset_p ((CLASS), FLOAT_REGS)
1359#define SSE_CLASS_P(CLASS) \
3f97cb0b 1360 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1361#define MMX_CLASS_P(CLASS) \
f75959a6 1362 ((CLASS) == MMX_REGS)
4ed04e93 1363#define MASK_CLASS_P(CLASS) \
d18cbbf6 1364 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1365#define MAYBE_INTEGER_CLASS_P(CLASS) \
1366 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1367#define MAYBE_FLOAT_CLASS_P(CLASS) \
1368 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1369#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1370 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1371#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1372 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1373#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1374 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1375
1376#define Q_CLASS_P(CLASS) \
1377 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1378
0bd72901
UB
1379#define MAYBE_NON_Q_CLASS_P(CLASS) \
1380 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1381
43f3a59d 1382/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1383
1384#define REG_CLASS_NAMES \
1385{ "NO_REGS", \
ab408a86 1386 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1387 "SIREG", "DIREG", \
e075ae69 1388 "AD_REGS", \
2e24efd3 1389 "CLOBBERED_REGS", \
e075ae69 1390 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1391 "TLS_GOTBASE_REGS", \
c98f8742 1392 "INDEX_REGS", \
3f3f2124 1393 "LEGACY_REGS", \
c98f8742
JVA
1394 "GENERAL_REGS", \
1395 "FP_TOP_REG", "FP_SECOND_REG", \
1396 "FLOAT_REGS", \
cb482895 1397 "SSE_FIRST_REG", \
45392c76 1398 "NO_REX_SSE_REGS", \
a7180f70 1399 "SSE_REGS", \
3f97cb0b 1400 "ALL_SSE_REGS", \
a7180f70 1401 "MMX_REGS", \
446988df 1402 "FLOAT_SSE_REGS", \
8fcaaa80 1403 "FLOAT_INT_REGS", \
446988df
JH
1404 "INT_SSE_REGS", \
1405 "FLOAT_INT_SSE_REGS", \
85a77221 1406 "MASK_REGS", \
d18cbbf6 1407 "ALL_MASK_REGS", \
c98f8742
JVA
1408 "ALL_REGS" }
1409
ac2e563f
RH
1410/* Define which registers fit in which classes. This is an initializer
1411 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1412
621bc046
UB
1413 Note that CLOBBERED_REGS are calculated by
1414 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1415
d18cbbf6 1416#define REG_CLASS_CONTENTS \
eaa17c21
UB
1417{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1418 { 0x01, 0x0, 0x0 }, /* AREG */ \
1419 { 0x02, 0x0, 0x0 }, /* DREG */ \
1420 { 0x04, 0x0, 0x0 }, /* CREG */ \
1421 { 0x08, 0x0, 0x0 }, /* BREG */ \
1422 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1423 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1424 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1425 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1426 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1427 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1428 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1429 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1430 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1431 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1432 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1433 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1434 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1435 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1436 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1437 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1438 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1439{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1440 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1441 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1442 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1443 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1444 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1445 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1446{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1447}
c98f8742
JVA
1448
1449/* The same information, inverted:
1450 Return the class number of the smallest class containing
1451 reg number REGNO. This could be a conditional expression
1452 or could index an array. */
1453
1a6e82b8 1454#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1455
42db504c
SB
1456/* When this hook returns true for MODE, the compiler allows
1457 registers explicitly used in the rtl to be used as spill registers
1458 but prevents the compiler from extending the lifetime of these
1459 registers. */
1460#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1461
fc27f749 1462#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1463#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1464
1465#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1466#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1467
1468#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1469#define REX_INT_REGNO_P(N) \
1470 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1471
58b0b34c 1472#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1473#define GENERAL_REGNO_P(N) \
58b0b34c 1474 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1475
fc27f749
UB
1476#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1477#define ANY_QI_REGNO_P(N) \
1478 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1479
66aaf16f
UB
1480#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1481#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1482
fc27f749 1483#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1484#define SSE_REGNO_P(N) \
1485 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1486 || REX_SSE_REGNO_P (N) \
1487 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1488
4977bab6 1489#define REX_SSE_REGNO_P(N) \
fb84c7a0 1490 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1491
0a48088a
IT
1492#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1493
3f97cb0b
AI
1494#define EXT_REX_SSE_REGNO_P(N) \
1495 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1496
05416670
UB
1497#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1498#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1499
9e4a4dd6 1500#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1501#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1502
fc27f749 1503#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1504#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1505
e075ae69 1506#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1507#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1508
5fbb13a7
KY
1509#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1510#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1511 || (N) == XMM4_REG \
1512 || (N) == XMM8_REG \
1513 || (N) == XMM12_REG \
1514 || (N) == XMM16_REG \
1515 || (N) == XMM20_REG \
1516 || (N) == XMM24_REG \
1517 || (N) == XMM28_REG)
1518
05416670
UB
1519/* First floating point reg */
1520#define FIRST_FLOAT_REG FIRST_STACK_REG
1521#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1522
02469d3a
UB
1523#define GET_SSE_REGNO(N) \
1524 ((N) < 8 ? FIRST_SSE_REG + (N) \
1525 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1526 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1527
c98f8742
JVA
1528/* The class value for index registers, and the one for base regs. */
1529
1530#define INDEX_REG_CLASS INDEX_REGS
1531#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1532\f
1533/* Stack layout; function entry, exit and calling. */
1534
1535/* Define this if pushing a word on the stack
1536 makes the stack pointer a smaller address. */
62f9f30b 1537#define STACK_GROWS_DOWNWARD 1
c98f8742 1538
a4d05547 1539/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1540 is at the high-address end of the local variables;
1541 that is, each additional local variable allocated
1542 goes at a more negative offset in the frame. */
f62c8a5c 1543#define FRAME_GROWS_DOWNWARD 1
c98f8742 1544
7b4df2bf 1545#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1546
1547/* If defined, the maximum amount of space required for outgoing arguments
1548 will be computed and placed into the variable `crtl->outgoing_args_size'.
1549 No space will be pushed onto the stack for each call; instead, the
1550 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1551
1552 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1553 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1554 mode the difference is less drastic but visible.
1555
1556 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1557 actually grow with accumulation. Is that because accumulated args
41ee845b 1558 unwind info became unnecesarily bloated?
f830ddc2
RH
1559
1560 With the 64-bit MS ABI, we can generate correct code with or without
1561 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1562 generated without accumulated args is terrible.
41ee845b
JH
1563
1564 If stack probes are required, the space used for large function
1565 arguments on the stack must also be probed, so enable
f8071c05
L
1566 -maccumulate-outgoing-args so this happens in the prologue.
1567
1568 We must use argument accumulation in interrupt function if stack
1569 may be realigned to avoid DRAP. */
f73ad30e 1570
6c6094f1 1571#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1572 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1573 && optimize_function_for_speed_p (cfun)) \
1574 || (cfun->machine->func_type != TYPE_NORMAL \
1575 && crtl->stack_realign_needed) \
1576 || TARGET_STACK_PROBE \
1577 || TARGET_64BIT_MS_ABI \
ff734e26 1578 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1579
1580/* If defined, a C expression whose value is nonzero when we want to use PUSH
1581 instructions to pass outgoing arguments. */
1582
1583#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1584
2da4124d
L
1585/* We want the stack and args grow in opposite directions, even if
1586 PUSH_ARGS is 0. */
1587#define PUSH_ARGS_REVERSED 1
1588
c98f8742
JVA
1589/* Offset of first parameter from the argument pointer register value. */
1590#define FIRST_PARM_OFFSET(FNDECL) 0
1591
a7180f70
BS
1592/* Define this macro if functions should assume that stack space has been
1593 allocated for arguments even when their values are passed in registers.
1594
1595 The value of this macro is the size, in bytes, of the area reserved for
1596 arguments passed in registers for the function represented by FNDECL.
1597
1598 This space can be allocated by the caller, or be a part of the
1599 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1600 which. */
7c800926
KT
1601#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1602
4ae8027b 1603#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1604 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1605
c98f8742
JVA
1606/* Define how to find the value returned by a library function
1607 assuming the value has mode MODE. */
1608
4ae8027b 1609#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1610
e9125c09
TW
1611/* Define the size of the result block used for communication between
1612 untyped_call and untyped_return. The block contains a DImode value
1613 followed by the block used by fnsave and frstor. */
1614
1615#define APPLY_RESULT_SIZE (8+108)
1616
b08de47e 1617/* 1 if N is a possible register number for function argument passing. */
53c17031 1618#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1619
1620/* Define a data type for recording info about an argument list
1621 during the scan of that argument list. This data type should
1622 hold all necessary information about the function itself
1623 and about the args processed so far, enough to enable macros
b08de47e 1624 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1625
e075ae69 1626typedef struct ix86_args {
fa283935 1627 int words; /* # words passed so far */
b08de47e
MM
1628 int nregs; /* # registers available for passing */
1629 int regno; /* next available register number */
3e65f251
KT
1630 int fastcall; /* fastcall or thiscall calling convention
1631 is used */
fa283935 1632 int sse_words; /* # sse words passed so far */
a7180f70 1633 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1634 int warn_avx512f; /* True when we want to warn
1635 about AVX512F ABI. */
95879c72 1636 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1637 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1638 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1639 int warn_empty; /* True when we want to warn about empty classes
1640 passing ABI change. */
fa283935
UB
1641 int sse_regno; /* next available sse register number */
1642 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1643 int mmx_nregs; /* # mmx registers available for passing */
1644 int mmx_regno; /* next available mmx register number */
892a2d68 1645 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1646 int caller; /* true if it is caller. */
2824d6e5
UB
1647 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1648 SFmode/DFmode arguments should be passed
1649 in SSE registers. Otherwise 0. */
d5e254e1 1650 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1651 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1652 MS_ABI for ms abi. */
e66fc623 1653 tree decl; /* Callee decl. */
b08de47e 1654} CUMULATIVE_ARGS;
c98f8742
JVA
1655
1656/* Initialize a variable CUM of type CUMULATIVE_ARGS
1657 for a call to a function whose data type is FNTYPE.
b08de47e 1658 For a library call, FNTYPE is 0. */
c98f8742 1659
0f6937fe 1660#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1661 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1662 (N_NAMED_ARGS) != -1)
c98f8742 1663
c98f8742
JVA
1664/* Output assembler code to FILE to increment profiler label # LABELNO
1665 for profiling a function entry. */
1666
1a6e82b8
UB
1667#define FUNCTION_PROFILER(FILE, LABELNO) \
1668 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1669
1670#define MCOUNT_NAME "_mcount"
1671
3c5273a9
KT
1672#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1673
a5fa1ecd 1674#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1675
1676/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1677 the stack pointer does not matter. The value is tested only in
1678 functions that have frame pointers.
1679 No definition is equivalent to always zero. */
fce5a9f2 1680/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1681 we have to restore it ourselves from the frame pointer, in order to
1682 use pop */
1683
1684#define EXIT_IGNORE_STACK 1
1685
f8071c05
L
1686/* Define this macro as a C expression that is nonzero for registers
1687 used by the epilogue or the `return' pattern. */
1688
1689#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1690
c98f8742
JVA
1691/* Output assembler code for a block containing the constant parts
1692 of a trampoline, leaving space for the variable parts. */
1693
a269a03c 1694/* On the 386, the trampoline contains two instructions:
c98f8742 1695 mov #STATIC,ecx
a269a03c
JC
1696 jmp FUNCTION
1697 The trampoline is generated entirely at runtime. The operand of JMP
1698 is the address of FUNCTION relative to the instruction following the
1699 JMP (which is 5 bytes long). */
c98f8742
JVA
1700
1701/* Length in units of the trampoline for entering a nested function. */
1702
6514899f 1703#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1704\f
1705/* Definitions for register eliminations.
1706
1707 This is an array of structures. Each structure initializes one pair
1708 of eliminable registers. The "from" register number is given first,
1709 followed by "to". Eliminations of the same "from" register are listed
1710 in order of preference.
1711
afc2cd05
NC
1712 There are two registers that can always be eliminated on the i386.
1713 The frame pointer and the arg pointer can be replaced by either the
1714 hard frame pointer or to the stack pointer, depending upon the
1715 circumstances. The hard frame pointer is not used before reload and
1716 so it is not eligible for elimination. */
c98f8742 1717
564d80f4
JH
1718#define ELIMINABLE_REGS \
1719{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1720 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1721 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1722 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1723
c98f8742
JVA
1724/* Define the offset between two registers, one to be eliminated, and the other
1725 its replacement, at the start of a routine. */
1726
d9a5f180
GS
1727#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1728 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1729\f
1730/* Addressing modes, and classification of registers for them. */
1731
c98f8742
JVA
1732/* Macros to check register numbers against specific register classes. */
1733
1734/* These assume that REGNO is a hard or pseudo reg number.
1735 They give nonzero only if REGNO is a hard reg of the suitable class
1736 or a pseudo reg currently allocated to a suitable hard reg.
1737 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1738 has been allocated, which happens in reginfo.c during register
1739 allocation. */
c98f8742 1740
3f3f2124
JH
1741#define REGNO_OK_FOR_INDEX_P(REGNO) \
1742 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1743 || REX_INT_REGNO_P (REGNO) \
1744 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1745 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1746
3f3f2124 1747#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1748 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1749 || (REGNO) == ARG_POINTER_REGNUM \
1750 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1751 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1752
c98f8742
JVA
1753/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1754 and check its validity for a certain class.
1755 We have two alternate definitions for each of them.
1756 The usual definition accepts all pseudo regs; the other rejects
1757 them unless they have been allocated suitable hard regs.
1758 The symbol REG_OK_STRICT causes the latter definition to be used.
1759
1760 Most source files want to accept pseudo regs in the hope that
1761 they will get allocated to the class that the insn wants them to be in.
1762 Source files for reload pass need to be strict.
1763 After reload, it makes no difference, since pseudo regs have
1764 been eliminated by then. */
1765
c98f8742 1766
ff482c8d 1767/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1768#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1769 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1770 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1771 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1772
3b3c6a3f 1773#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1774 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1775 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1776 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1777 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1778
3b3c6a3f
MM
1779/* Strict versions, hard registers only */
1780#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1781#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1782
3b3c6a3f 1783#ifndef REG_OK_STRICT
d9a5f180
GS
1784#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1785#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1786
1787#else
d9a5f180
GS
1788#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1789#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1790#endif
1791
331d9186 1792/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1793 that is a valid memory address for an instruction.
1794 The MODE argument is the machine mode for the MEM expression
1795 that wants to use this address.
1796
331d9186 1797 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1798 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1799
1800 See legitimize_pic_address in i386.c for details as to what
1801 constitutes a legitimate address when -fpic is used. */
1802
1803#define MAX_REGS_PER_ADDRESS 2
1804
f996902d 1805#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1806
b949ea8b
JW
1807/* If defined, a C expression to determine the base term of address X.
1808 This macro is used in only one place: `find_base_term' in alias.c.
1809
1810 It is always safe for this macro to not be defined. It exists so
1811 that alias analysis can understand machine-dependent addresses.
1812
1813 The typical use of this macro is to handle addresses containing
1814 a label_ref or symbol_ref within an UNSPEC. */
1815
d9a5f180 1816#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1817
c98f8742 1818/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1819 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1820 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1821
f996902d 1822#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1823
1824#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1825 (GET_CODE (X) == SYMBOL_REF \
1826 || GET_CODE (X) == LABEL_REF \
1827 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1828\f
b08de47e
MM
1829/* Max number of args passed in registers. If this is more than 3, we will
1830 have problems with ebx (register #4), since it is a caller save register and
1831 is also used as the pic register in ELF. So for now, don't allow more than
1832 3 registers to be passed in registers. */
1833
7c800926
KT
1834/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1835#define X86_64_REGPARM_MAX 6
72fa3605 1836#define X86_64_MS_REGPARM_MAX 4
7c800926 1837
72fa3605 1838#define X86_32_REGPARM_MAX 3
7c800926 1839
4ae8027b 1840#define REGPARM_MAX \
2824d6e5
UB
1841 (TARGET_64BIT \
1842 ? (TARGET_64BIT_MS_ABI \
1843 ? X86_64_MS_REGPARM_MAX \
1844 : X86_64_REGPARM_MAX) \
4ae8027b 1845 : X86_32_REGPARM_MAX)
d2836273 1846
72fa3605
UB
1847#define X86_64_SSE_REGPARM_MAX 8
1848#define X86_64_MS_SSE_REGPARM_MAX 4
1849
b6010cab 1850#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1851
4ae8027b 1852#define SSE_REGPARM_MAX \
2824d6e5
UB
1853 (TARGET_64BIT \
1854 ? (TARGET_64BIT_MS_ABI \
1855 ? X86_64_MS_SSE_REGPARM_MAX \
1856 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1857 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1858
1859#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1860\f
1861/* Specify the machine mode that this machine uses
1862 for the index in the tablejump instruction. */
dc4d7240 1863#define CASE_VECTOR_MODE \
6025b127 1864 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1865
c98f8742
JVA
1866/* Define this as 1 if `char' should by default be signed; else as 0. */
1867#define DEFAULT_SIGNED_CHAR 1
1868
1869/* Max number of bytes we can move from memory to memory
1870 in one reasonably fast instruction. */
65d9c0ab
JH
1871#define MOVE_MAX 16
1872
1873/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1874 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1875 number of bytes we can move with a single instruction.
1876
1877 ??? We should use TImode in 32-bit mode and use OImode or XImode
1878 if they are available. But since by_pieces_ninsns determines the
1879 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1880 64-bit mode. */
1881#define MOVE_MAX_PIECES \
1882 ((TARGET_64BIT \
1883 && TARGET_SSE2 \
1884 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1885 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1886 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1887
7e24ffc9 1888/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1889 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1890 Increasing the value will always make code faster, but eventually
1891 incurs high cost in increased code size.
c98f8742 1892
e2e52e1b 1893 If you don't define this, a reasonable default is used. */
c98f8742 1894
e04ad03d 1895#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1896
45d78e7f
JJ
1897/* If a clear memory operation would take CLEAR_RATIO or more simple
1898 move-instruction sequences, we will do a clrmem or libcall instead. */
1899
e04ad03d 1900#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1901
53f00dde
UB
1902/* Define if shifts truncate the shift count which implies one can
1903 omit a sign-extension or zero-extension of a shift count.
1904
1905 On i386, shifts do truncate the count. But bit test instructions
1906 take the modulo of the bit offset operand. */
c98f8742
JVA
1907
1908/* #define SHIFT_COUNT_TRUNCATED */
1909
d9f32422
JH
1910/* A macro to update M and UNSIGNEDP when an object whose type is
1911 TYPE and which has the specified mode and signedness is to be
1912 stored in a register. This macro is only called when TYPE is a
1913 scalar type.
1914
f710504c 1915 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1916 quantities to SImode. The choice depends on target type. */
1917
1918#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1919do { \
d9f32422
JH
1920 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1921 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1922 (MODE) = SImode; \
1923} while (0)
d9f32422 1924
c98f8742
JVA
1925/* Specify the machine mode that pointers have.
1926 After generation of rtl, the compiler makes no further distinction
1927 between pointers and any other objects of this machine mode. */
28968d91 1928#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1929
5e1e91c4
L
1930/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1931 NONLOCAL needs space to save both shadow stack and stack pointers.
1932
1933 FIXME: We only need to save and restore stack pointer in ptr_mode.
1934 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1935 to save and restore stack pointer. See
1936 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1937 */
1938#define STACK_SAVEAREA_MODE(LEVEL) \
1939 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1940
f0ea7581
L
1941/* A C expression whose value is zero if pointers that need to be extended
1942 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1943 greater then zero if they are zero-extended and less then zero if the
1944 ptr_extend instruction should be used. */
1945
1946#define POINTERS_EXTEND_UNSIGNED 1
1947
c98f8742
JVA
1948/* A function address in a call instruction
1949 is a byte address (for indexing purposes)
1950 so give the MEM rtx a byte's mode. */
1951#define FUNCTION_MODE QImode
d4ba09c0 1952\f
d4ba09c0 1953
d4ba09c0
SC
1954/* A C expression for the cost of a branch instruction. A value of 1
1955 is the default; other values are interpreted relative to that. */
1956
3a4fd356
JH
1957#define BRANCH_COST(speed_p, predictable_p) \
1958 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1959
e327d1a3
L
1960/* An integer expression for the size in bits of the largest integer machine
1961 mode that should actually be used. We allow pairs of registers. */
1962#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1963
d4ba09c0
SC
1964/* Define this macro as a C expression which is nonzero if accessing
1965 less than a word of memory (i.e. a `char' or a `short') is no
1966 faster than accessing a word of memory, i.e., if such access
1967 require more than one instruction or if there is no difference in
1968 cost between byte and (aligned) word loads.
1969
1970 When this macro is not defined, the compiler will access a field by
1971 finding the smallest containing object; when it is defined, a
1972 fullword load will be used if alignment permits. Unless bytes
1973 accesses are faster than word accesses, using word accesses is
1974 preferable since it may eliminate subsequent memory access if
1975 subsequent accesses occur to other fields in the same word of the
1976 structure, but to different bytes. */
1977
1978#define SLOW_BYTE_ACCESS 0
1979
1980/* Nonzero if access to memory by shorts is slow and undesirable. */
1981#define SLOW_SHORT_ACCESS 0
1982
d4ba09c0
SC
1983/* Define this macro if it is as good or better to call a constant
1984 function address than to call an address kept in a register.
1985
1986 Desirable on the 386 because a CALL with a constant address is
1987 faster than one with a register address. */
1988
1e8552c2 1989#define NO_FUNCTION_CSE 1
c98f8742 1990\f
c572e5ba
JVA
1991/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1992 return the mode to be used for the comparison.
1993
1994 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1995 VOIDmode should be used in all other cases.
c572e5ba 1996
16189740 1997 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1998 possible, to allow for more combinations. */
c98f8742 1999
d9a5f180 2000#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2001
9cd10576 2002/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2003 reversed. */
2004
2005#define REVERSIBLE_CC_MODE(MODE) 1
2006
2007/* A C expression whose value is reversed condition code of the CODE for
2008 comparison done in CC_MODE mode. */
3c5cb3e4 2009#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2010
c98f8742
JVA
2011\f
2012/* Control the assembler format that we output, to the extent
2013 this does not vary between assemblers. */
2014
2015/* How to refer to registers in assembler output.
892a2d68 2016 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2017
a7b376ee 2018/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2019 For non floating point regs, the following are the HImode names.
2020
2021 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2022 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2023 "y" code. */
c98f8742 2024
a7180f70
BS
2025#define HI_REGISTER_NAMES \
2026{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2027 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2028 "argp", "flags", "fpsr", "frame", \
a7180f70 2029 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2030 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2031 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2032 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2033 "xmm16", "xmm17", "xmm18", "xmm19", \
2034 "xmm20", "xmm21", "xmm22", "xmm23", \
2035 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2036 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2037 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2038
c98f8742
JVA
2039#define REGISTER_NAMES HI_REGISTER_NAMES
2040
2041/* Table of additional register names to use in user input. */
2042
eaa17c21
UB
2043#define ADDITIONAL_REGISTER_NAMES \
2044{ \
2045 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2046 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2047 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2048 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2049 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
2050 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2051 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2052 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2053 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2054 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2055 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2056 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2057 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2058 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2059 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2060 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2061 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2062 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2063 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2064 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2065 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2066 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2067}
c98f8742
JVA
2068
2069/* Note we are omitting these since currently I don't know how
2070to get gcc to use these, since they want the same but different
2071number as al, and ax.
2072*/
2073
c98f8742 2074#define QI_REGISTER_NAMES \
3f3f2124 2075{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2076
2077/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2078 of regs 0 through 3. */
c98f8742
JVA
2079
2080#define QI_HIGH_REGISTER_NAMES \
2081{"ah", "dh", "ch", "bh", }
2082
2083/* How to renumber registers for dbx and gdb. */
2084
d9a5f180
GS
2085#define DBX_REGISTER_NUMBER(N) \
2086 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2087
9a82e702
MS
2088extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2089extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2090extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2091
469ac993
JM
2092/* Before the prologue, RA is at 0(%esp). */
2093#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2094 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2095
e414ab29 2096/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2097#define RETURN_ADDR_RTX(COUNT, FRAME) \
2098 ((COUNT) == 0 \
2099 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2100 -UNITS_PER_WORD)) \
2101 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2102
892a2d68 2103/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2104#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2105
a10b3cf1
L
2106/* Before the prologue, there are return address and error code for
2107 exception handler on the top of the frame. */
2108#define INCOMING_FRAME_SP_OFFSET \
2109 (cfun->machine->func_type == TYPE_EXCEPTION \
2110 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2111
26fc730d
JJ
2112/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2113 .cfi_startproc. */
2114#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2115
1020a5ab 2116/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2117#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2118#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2119
ad919812 2120
e4c4ebeb
RH
2121/* Select a format to encode pointers in exception handling data. CODE
2122 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2123 true if the symbol may be affected by dynamic relocations.
2124
2125 ??? All x86 object file formats are capable of representing this.
2126 After all, the relocation needed is the same as for the call insn.
2127 Whether or not a particular assembler allows us to enter such, I
2128 guess we'll have to see. */
d9a5f180 2129#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2130 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2131
ec1895c1
UB
2132/* These are a couple of extensions to the formats accepted
2133 by asm_fprintf:
2134 %z prints out opcode suffix for word-mode instruction
2135 %r prints out word-mode name for reg_names[arg] */
2136#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2137 case 'z': \
2138 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2139 break; \
2140 \
2141 case 'r': \
2142 { \
2143 unsigned int regno = va_arg ((ARGS), int); \
2144 if (LEGACY_INT_REGNO_P (regno)) \
2145 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2146 fputs (reg_names[regno], (FILE)); \
2147 break; \
2148 }
2149
2150/* This is how to output an insn to push a register on the stack. */
2151
2152#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2153 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2154
2155/* This is how to output an insn to pop a register from the stack. */
c98f8742 2156
d9a5f180 2157#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2158 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2159
f88c65f7 2160/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2161
2162#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2163 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2164
f88c65f7 2165/* This is how to output an element of a case-vector that is relative. */
c98f8742 2166
33f7f353 2167#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2168 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2169
63001560 2170/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2171
2172#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2173{ \
2174 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2175 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2176}
2177
2178/* A C statement or statements which output an assembler instruction
2179 opcode to the stdio stream STREAM. The macro-operand PTR is a
2180 variable of type `char *' which points to the opcode name in
2181 its "internal" form--the form that is written in the machine
2182 description. */
2183
2184#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2185 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2186
6a90d232
L
2187/* A C statement to output to the stdio stream FILE an assembler
2188 command to pad the location counter to a multiple of 1<<LOG
2189 bytes if it is within MAX_SKIP bytes. */
2190
2191#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2192#undef ASM_OUTPUT_MAX_SKIP_PAD
2193#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2194 if ((LOG) != 0) \
2195 { \
dd047c67 2196 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2197 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2198 else \
2199 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2200 }
2201#endif
2202
135a687e
KT
2203/* Write the extra assembler code needed to declare a function
2204 properly. */
2205
2206#undef ASM_OUTPUT_FUNCTION_LABEL
2207#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2208 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2209
f7288899
EC
2210/* Under some conditions we need jump tables in the text section,
2211 because the assembler cannot handle label differences between
2212 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2213
2214#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2215 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2216 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2217
cea3bd3e
RH
2218/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2219 and switch back. For x86 we do this only to save a few bytes that
2220 would otherwise be unused in the text section. */
ad211091
KT
2221#define CRT_MKSTR2(VAL) #VAL
2222#define CRT_MKSTR(x) CRT_MKSTR2(x)
2223
2224#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2225 asm (SECTION_OP "\n\t" \
2226 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2227 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2228
2229/* Default threshold for putting data in large sections
2230 with x86-64 medium memory model */
2231#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2232\f
b97de419
L
2233/* Which processor to tune code generation for. These must be in sync
2234 with processor_target_table in i386.c. */
5bf0ebab
RH
2235
2236enum processor_type
2237{
b97de419
L
2238 PROCESSOR_GENERIC = 0,
2239 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2240 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2241 PROCESSOR_PENTIUM,
2d6b2e28 2242 PROCESSOR_LAKEMONT,
5bf0ebab 2243 PROCESSOR_PENTIUMPRO,
5bf0ebab 2244 PROCESSOR_PENTIUM4,
89c43c0a 2245 PROCESSOR_NOCONA,
340ef734 2246 PROCESSOR_CORE2,
d3c11974
L
2247 PROCESSOR_NEHALEM,
2248 PROCESSOR_SANDYBRIDGE,
3a579e09 2249 PROCESSOR_HASWELL,
d3c11974
L
2250 PROCESSOR_BONNELL,
2251 PROCESSOR_SILVERMONT,
50e461df 2252 PROCESSOR_GOLDMONT,
74b2bb19 2253 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2254 PROCESSOR_TREMONT,
52747219 2255 PROCESSOR_KNL,
cace2309 2256 PROCESSOR_KNM,
176a3386 2257 PROCESSOR_SKYLAKE,
06caf59d 2258 PROCESSOR_SKYLAKE_AVX512,
c234d831 2259 PROCESSOR_CANNONLAKE,
79ab5364
JK
2260 PROCESSOR_ICELAKE_CLIENT,
2261 PROCESSOR_ICELAKE_SERVER,
9a7f94d7 2262 PROCESSOR_INTEL,
b97de419
L
2263 PROCESSOR_GEODE,
2264 PROCESSOR_K6,
2265 PROCESSOR_ATHLON,
2266 PROCESSOR_K8,
21efb4d4 2267 PROCESSOR_AMDFAM10,
1133125e 2268 PROCESSOR_BDVER1,
4d652a18 2269 PROCESSOR_BDVER2,
eb2f2b44 2270 PROCESSOR_BDVER3,
ed97ad47 2271 PROCESSOR_BDVER4,
14b52538 2272 PROCESSOR_BTVER1,
e32bfc16 2273 PROCESSOR_BTVER2,
9ce29eb0 2274 PROCESSOR_ZNVER1,
5bf0ebab
RH
2275 PROCESSOR_max
2276};
2277
c98c2430 2278#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
7dc58b50 2279extern const char *const processor_names[PROCESSOR_max];
c98c2430
ML
2280
2281#include "wide-int-bitmask.h"
2282
2283const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2284const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2285const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2286const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2287const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2288const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2289const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2290const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2291const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2292const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2293const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2294const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2295const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2296const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2297const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2298const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2299const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2300const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2301const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2302const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2303const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2304const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2305const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2306const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2307const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2308const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2309const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2310const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2311const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2312const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2313const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2314const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2315const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2316const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2317const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2318const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2319const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2320const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2321const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2322const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2323const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2324const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2325const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2326const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2327/* Hole after PTA_MPX was removed. */
2328const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2329const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2330const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2331const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2332const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2333const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2334const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2335const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2336const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2337const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2338const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2339const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2340const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2341const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2342const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2343const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2344const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2345const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2346const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2347const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2348const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2349const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2350const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2351const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2352const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2353const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2354const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2355const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2356const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
2357
2358const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2359 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2360const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2361 | PTA_POPCNT;
2362const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_AES | PTA_PCLMUL;
2363const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2364 | PTA_XSAVEOPT;
2365const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2366 | PTA_RDRND | PTA_F16C;
2367const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2368 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2369const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2370 | PTA_RDSEED;
2371const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_CLFLUSHOPT
2372 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2373const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2374 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2375 | PTA_CLWB;
2376const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2377 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2378 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2379const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2380 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2381 | PTA_RDPID | PTA_CLWB;
2382const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2383 | PTA_WBNOINVD;
2384const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2385 | PTA_AVX512F | PTA_AVX512CD;
2386const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2387const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
2388const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_SHA | PTA_XSAVE
2389 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2390 | PTA_FSGSBASE;
2391const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2392 | PTA_SGX;
2393const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2394 | PTA_GFNI;
2395const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2396 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2397
2398#ifndef GENERATOR_FILE
2399
2400#include "insn-attr-common.h"
2401
2402struct pta
2403{
2404 const char *const name; /* processor name or nickname. */
2405 const enum processor_type processor;
2406 const enum attr_cpu schedule;
2407 const wide_int_bitmask flags;
2408};
2409
2410extern const pta processor_alias_table[];
2411extern int const pta_size;
2412#endif
2413
2414#endif
2415
9e555526 2416extern enum processor_type ix86_tune;
5bf0ebab 2417extern enum processor_type ix86_arch;
5bf0ebab 2418
8362f420
JH
2419/* Size of the RED_ZONE area. */
2420#define RED_ZONE_SIZE 128
2421/* Reserved area of the red zone for temporaries. */
2422#define RED_ZONE_RESERVE 8
c93e80a5 2423
95899b34 2424extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2425extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2426
2427/* Smallest class containing REGNO. */
2428extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2429
0948ccb2
PB
2430enum ix86_fpcmp_strategy {
2431 IX86_FPCMP_SAHF,
2432 IX86_FPCMP_COMI,
2433 IX86_FPCMP_ARITH
2434};
22fb740d
JH
2435\f
2436/* To properly truncate FP values into integers, we need to set i387 control
2437 word. We can't emit proper mode switching code before reload, as spills
2438 generated by reload may truncate values incorrectly, but we still can avoid
2439 redundant computation of new control word by the mode switching pass.
2440 The fldcw instructions are still emitted redundantly, but this is probably
2441 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2442 the sequence.
22fb740d
JH
2443
2444 The machinery is to emit simple truncation instructions and split them
2445 before reload to instructions having USEs of two memory locations that
2446 are filled by this code to old and new control word.
fce5a9f2 2447
22fb740d
JH
2448 Post-reload pass may be later used to eliminate the redundant fildcw if
2449 needed. */
2450
c7ca8ef8
UB
2451enum ix86_stack_slot
2452{
2453 SLOT_TEMP = 0,
2454 SLOT_CW_STORED,
2455 SLOT_CW_TRUNC,
2456 SLOT_CW_FLOOR,
2457 SLOT_CW_CEIL,
80008279 2458 SLOT_STV_TEMP,
c7ca8ef8
UB
2459 MAX_386_STACK_LOCALS
2460};
2461
ff680eb1
UB
2462enum ix86_entity
2463{
c7ca8ef8
UB
2464 X86_DIRFLAG = 0,
2465 AVX_U128,
ff97910d 2466 I387_TRUNC,
ff680eb1
UB
2467 I387_FLOOR,
2468 I387_CEIL,
ff680eb1
UB
2469 MAX_386_ENTITIES
2470};
2471
c7ca8ef8 2472enum x86_dirflag_state
ff680eb1 2473{
c7ca8ef8
UB
2474 X86_DIRFLAG_RESET,
2475 X86_DIRFLAG_ANY
ff680eb1 2476};
22fb740d 2477
ff97910d
VY
2478enum avx_u128_state
2479{
2480 AVX_U128_CLEAN,
2481 AVX_U128_DIRTY,
2482 AVX_U128_ANY
2483};
2484
22fb740d
JH
2485/* Define this macro if the port needs extra instructions inserted
2486 for mode switching in an optimizing compilation. */
2487
ff680eb1
UB
2488#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2489 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2490
2491/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2492 initializer for an array of integers. Each initializer element N
2493 refers to an entity that needs mode switching, and specifies the
2494 number of different modes that might need to be set for this
2495 entity. The position of the initializer in the initializer -
2496 starting counting at zero - determines the integer that is used to
2497 refer to the mode-switched entity in question. */
2498
c7ca8ef8
UB
2499#define NUM_MODES_FOR_MODE_SWITCHING \
2500 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2501 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2502
0f0138b6
JH
2503\f
2504/* Avoid renaming of stack registers, as doing so in combination with
2505 scheduling just increases amount of live registers at time and in
2506 the turn amount of fxch instructions needed.
2507
3f97cb0b
AI
2508 ??? Maybe Pentium chips benefits from renaming, someone can try....
2509
2510 Don't rename evex to non-evex sse registers. */
0f0138b6 2511
1a6e82b8
UB
2512#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2513 (!STACK_REGNO_P (SRC) \
2514 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2515
3b3c6a3f 2516\f
e91f04de 2517#define FASTCALL_PREFIX '@'
fa1a0d02 2518\f
77560086
BE
2519#ifndef USED_FOR_TARGET
2520/* Structure describing stack frame layout.
2521 Stack grows downward:
2522
2523 [arguments]
2524 <- ARG_POINTER
2525 saved pc
2526
2527 saved static chain if ix86_static_chain_on_stack
2528
2529 saved frame pointer if frame_pointer_needed
2530 <- HARD_FRAME_POINTER
2531 [saved regs]
2532 <- reg_save_offset
2533 [padding0]
2534 <- stack_realign_offset
2535 [saved SSE regs]
2536 OR
2537 [stub-saved registers for ms x64 --> sysv clobbers
2538 <- Start of out-of-line, stub-saved/restored regs
2539 (see libgcc/config/i386/(sav|res)ms64*.S)
2540 [XMM6-15]
2541 [RSI]
2542 [RDI]
2543 [?RBX] only if RBX is clobbered
2544 [?RBP] only if RBP and RBX are clobbered
2545 [?R12] only if R12 and all previous regs are clobbered
2546 [?R13] only if R13 and all previous regs are clobbered
2547 [?R14] only if R14 and all previous regs are clobbered
2548 [?R15] only if R15 and all previous regs are clobbered
2549 <- end of stub-saved/restored regs
2550 [padding1]
2551 ]
5d9d834d 2552 <- sse_reg_save_offset
77560086
BE
2553 [padding2]
2554 | <- FRAME_POINTER
2555 [va_arg registers] |
2556 |
2557 [frame] |
2558 |
2559 [padding2] | = to_allocate
2560 <- STACK_POINTER
2561 */
2562struct GTY(()) ix86_frame
2563{
2564 int nsseregs;
2565 int nregs;
2566 int va_arg_size;
2567 int red_zone_size;
2568 int outgoing_arguments_size;
2569
2570 /* The offsets relative to ARG_POINTER. */
2571 HOST_WIDE_INT frame_pointer_offset;
2572 HOST_WIDE_INT hard_frame_pointer_offset;
2573 HOST_WIDE_INT stack_pointer_offset;
2574 HOST_WIDE_INT hfp_save_offset;
2575 HOST_WIDE_INT reg_save_offset;
122f9da1 2576 HOST_WIDE_INT stack_realign_allocate;
77560086 2577 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2578 HOST_WIDE_INT sse_reg_save_offset;
2579
2580 /* When save_regs_using_mov is set, emit prologue using
2581 move instead of push instructions. */
2582 bool save_regs_using_mov;
2583};
2584
122f9da1
DS
2585/* Machine specific frame tracking during prologue/epilogue generation. All
2586 values are positive, but since the x86 stack grows downward, are subtratced
2587 from the CFA to produce a valid address. */
cd9c1ca8 2588
ec7ded37 2589struct GTY(()) machine_frame_state
cd9c1ca8 2590{
ec7ded37
RH
2591 /* This pair tracks the currently active CFA as reg+offset. When reg
2592 is drap_reg, we don't bother trying to record here the real CFA when
2593 it might really be a DW_CFA_def_cfa_expression. */
2594 rtx cfa_reg;
2595 HOST_WIDE_INT cfa_offset;
2596
2597 /* The current offset (canonically from the CFA) of ESP and EBP.
2598 When stack frame re-alignment is active, these may not be relative
2599 to the CFA. However, in all cases they are relative to the offsets
2600 of the saved registers stored in ix86_frame. */
2601 HOST_WIDE_INT sp_offset;
2602 HOST_WIDE_INT fp_offset;
2603
2604 /* The size of the red-zone that may be assumed for the purposes of
2605 eliding register restore notes in the epilogue. This may be zero
2606 if no red-zone is in effect, or may be reduced from the real
2607 red-zone value by a maximum runtime stack re-alignment value. */
2608 int red_zone_offset;
2609
2610 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2611 value within the frame. If false then the offset above should be
2612 ignored. Note that DRAP, if valid, *always* points to the CFA and
2613 thus has an offset of zero. */
2614 BOOL_BITFIELD sp_valid : 1;
2615 BOOL_BITFIELD fp_valid : 1;
2616 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2617
2618 /* Indicate whether the local stack frame has been re-aligned. When
2619 set, the SP/FP offsets above are relative to the aligned frame
2620 and not the CFA. */
2621 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2622
2623 /* Indicates whether the stack pointer has been re-aligned. When set,
2624 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2625 should only be used for offsets > sp_realigned_offset, while
2626 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2627 The flags realigned and sp_realigned are mutually exclusive. */
2628 BOOL_BITFIELD sp_realigned : 1;
2629
122f9da1
DS
2630 /* If sp_realigned is set, this is the last valid offset from the CFA
2631 that can be used for access with the frame pointer. */
2632 HOST_WIDE_INT sp_realigned_fp_last;
2633
2634 /* If sp_realigned is set, this is the offset from the CFA that the stack
2635 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2636 Access via the stack pointer is only valid for offsets that are greater than
2637 this value. */
d6d4d770 2638 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2639};
2640
f81c9774
RH
2641/* Private to winnt.c. */
2642struct seh_frame_state;
2643
f8071c05
L
2644enum function_type
2645{
2646 TYPE_UNKNOWN = 0,
2647 TYPE_NORMAL,
2648 /* The current function is an interrupt service routine with a
2649 pointer argument as specified by the "interrupt" attribute. */
2650 TYPE_INTERRUPT,
2651 /* The current function is an interrupt service routine with a
2652 pointer argument and an integer argument as specified by the
2653 "interrupt" attribute. */
2654 TYPE_EXCEPTION
2655};
2656
d1b38208 2657struct GTY(()) machine_function {
fa1a0d02 2658 struct stack_local_entry *stack_locals;
4aab97f9
L
2659 int varargs_gpr_size;
2660 int varargs_fpr_size;
ff680eb1 2661 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2662
77560086
BE
2663 /* Cached initial frame layout for the current function. */
2664 struct ix86_frame frame;
3452586b 2665
7458026b
ILT
2666 /* For -fsplit-stack support: A stack local which holds a pointer to
2667 the stack arguments for a function with a variable number of
2668 arguments. This is set at the start of the function and is used
2669 to initialize the overflow_arg_area field of the va_list
2670 structure. */
2671 rtx split_stack_varargs_pointer;
2672
3452586b
RH
2673 /* This value is used for amd64 targets and specifies the current abi
2674 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2675 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2676
2677 /* Nonzero if the function accesses a previous frame. */
2678 BOOL_BITFIELD accesses_prev_frame : 1;
2679
922e3e33
UB
2680 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2681 expander to determine the style used. */
3452586b
RH
2682 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2683
1e4490dc
UB
2684 /* Nonzero if the current function calls pc thunk and
2685 must not use the red zone. */
2686 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2687
5bf5a10b
AO
2688 /* If true, the current function needs the default PIC register, not
2689 an alternate register (on x86) and must not use the red zone (on
2690 x86_64), even if it's a leaf function. We don't want the
2691 function to be regarded as non-leaf because TLS calls need not
2692 affect register allocation. This flag is set when a TLS call
2693 instruction is expanded within a function, and never reset, even
2694 if all such instructions are optimized away. Use the
2695 ix86_current_function_calls_tls_descriptor macro for a better
2696 approximation. */
3452586b
RH
2697 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2698
2699 /* If true, the current function has a STATIC_CHAIN is placed on the
2700 stack below the return address. */
2701 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2702
529a6471
JJ
2703 /* If true, it is safe to not save/restore DRAP register. */
2704 BOOL_BITFIELD no_drap_save_restore : 1;
2705
f8071c05
L
2706 /* Function type. */
2707 ENUM_BITFIELD(function_type) func_type : 2;
2708
da99fd4a
L
2709 /* How to generate indirec branch. */
2710 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2711
2712 /* If true, the current function has local indirect jumps, like
2713 "indirect_jump" or "tablejump". */
2714 BOOL_BITFIELD has_local_indirect_jump : 1;
2715
45e14019
L
2716 /* How to generate function return. */
2717 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2718
f8071c05
L
2719 /* If true, the current function is a function specified with
2720 the "interrupt" or "no_caller_saved_registers" attribute. */
2721 BOOL_BITFIELD no_caller_saved_registers : 1;
2722
a0ff7835
L
2723 /* If true, there is register available for argument passing. This
2724 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2725 if there is scratch register available for indirect sibcall. In
2726 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2727 pass arguments and can be used for indirect sibcall. */
2728 BOOL_BITFIELD arg_reg_available : 1;
2729
d6d4d770 2730 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2731 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2732 BOOL_BITFIELD call_ms2sysv : 1;
2733
2734 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2735 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2736 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2737
d6d4d770
DS
2738 /* This is the number of extra registers saved by stub (valid range is
2739 0-6). Each additional register is only saved/restored by the stubs
2740 if all successive ones are. (Will always be zero when using a hard
2741 frame pointer.) */
2742 unsigned int call_ms2sysv_extra_regs:3;
2743
35c95658
L
2744 /* Nonzero if the function places outgoing arguments on stack. */
2745 BOOL_BITFIELD outgoing_args_on_stack : 1;
2746
708c728d
L
2747 /* If true, ENDBR is queued at function entrance. */
2748 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2749
cd3410cc
L
2750 /* The largest alignment, in bytes, of stack slot actually used. */
2751 unsigned int max_used_stack_alignment;
2752
ec7ded37
RH
2753 /* During prologue/epilogue generation, the current frame state.
2754 Otherwise, the frame state at the end of the prologue. */
2755 struct machine_frame_state fs;
f81c9774
RH
2756
2757 /* During SEH output, this is non-null. */
2758 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2759};
cd9c1ca8 2760#endif
fa1a0d02
JH
2761
2762#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2763#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2764#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2765#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2766#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2767#define ix86_tls_descriptor_calls_expanded_in_cfun \
2768 (cfun->machine->tls_descriptor_call_expanded_p)
2769/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2770 calls are optimized away, we try to detect cases in which it was
2771 optimized away. Since such instructions (use (reg REG_SP)), we can
2772 verify whether there's any such instruction live by testing that
2773 REG_SP is live. */
2774#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2775 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2776#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2777#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2778
1bc7c5b6
ZW
2779/* Control behavior of x86_file_start. */
2780#define X86_FILE_START_VERSION_DIRECTIVE false
2781#define X86_FILE_START_FLTUSED false
2782
7dcbf659
JH
2783/* Flag to mark data that is in the large address area. */
2784#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2785#define SYMBOL_REF_FAR_ADDR_P(X) \
2786 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2787
2788/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2789 have defined always, to avoid ifdefing. */
2790#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2791#define SYMBOL_REF_DLLIMPORT_P(X) \
2792 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2793
2794#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2795#define SYMBOL_REF_DLLEXPORT_P(X) \
2796 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2797
82c0e1a0
KT
2798#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2799#define SYMBOL_REF_STUBVAR_P(X) \
2800 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2801
7942e47e
RY
2802extern void debug_ready_dispatch (void);
2803extern void debug_dispatch_window (int);
2804
91afcfa3
QN
2805/* The value at zero is only defined for the BMI instructions
2806 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2807#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2808 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2809#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2810 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2811
2812
b8ce4e94
KT
2813/* Flags returned by ix86_get_callcvt (). */
2814#define IX86_CALLCVT_CDECL 0x1
2815#define IX86_CALLCVT_STDCALL 0x2
2816#define IX86_CALLCVT_FASTCALL 0x4
2817#define IX86_CALLCVT_THISCALL 0x8
2818#define IX86_CALLCVT_REGPARM 0x10
2819#define IX86_CALLCVT_SSEREGPARM 0x20
2820
2821#define IX86_BASE_CALLCVT(FLAGS) \
2822 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2823 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2824
b86b9f44
MM
2825#define RECIP_MASK_NONE 0x00
2826#define RECIP_MASK_DIV 0x01
2827#define RECIP_MASK_SQRT 0x02
2828#define RECIP_MASK_VEC_DIV 0x04
2829#define RECIP_MASK_VEC_SQRT 0x08
2830#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2831 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2832#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2833
2834#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2835#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2836#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2837#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2838
ab2c4ec8
SS
2839/* Use 128-bit AVX instructions in the auto-vectorizer. */
2840#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2841/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2842#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2843 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2844
c2c601b2
L
2845#define TARGET_INDIRECT_BRANCH_REGISTER \
2846 (ix86_indirect_branch_register \
2847 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2848
5dcfdccd
KY
2849#define IX86_HLE_ACQUIRE (1 << 16)
2850#define IX86_HLE_RELEASE (1 << 17)
2851
e83b8e2e
JJ
2852/* For switching between functions with different target attributes. */
2853#define SWITCHABLE_TARGET 1
2854
44d0de8d
UB
2855#define TARGET_SUPPORTS_WIDE_INT 1
2856
c98f8742
JVA
2857/*
2858Local variables:
2859version-control: t
2860End:
2861*/