]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Daily bump.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d2af65b9 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
54#define TARGET_AVX OPTION_ISA_AVX
55#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 56#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 57#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 58#define TARGET_XOP OPTION_ISA_XOP
3e901069 59#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 60#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
61#define TARGET_ABM OPTION_ISA_ABM
62#define TARGET_POPCNT OPTION_ISA_POPCNT
63#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 64#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 65#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
66#define TARGET_AES OPTION_ISA_AES
67#define TARGET_PCLMUL OPTION_ISA_PCLMUL
68#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
69#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
70#define TARGET_RDRND OPTION_ISA_RDRND
71#define TARGET_F16C OPTION_ISA_F16C
ab442df7 72
04e1d06b 73
cbf2e4d4
HJ
74/* SSE4.1 defines round instructions */
75#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 76#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 77
26b5109f
RS
78#include "config/vxworks-dummy.h"
79
8c996513
JH
80/* Algorithm to expand string function with. */
81enum stringop_alg
82{
83 no_stringop,
84 libcall,
85 rep_prefix_1_byte,
86 rep_prefix_4_byte,
87 rep_prefix_8_byte,
88 loop_1_byte,
89 loop,
90 unrolled_loop
91};
ccf8e764 92
c69fa2d4 93#define MAX_STRINGOP_ALGS 4
ccf8e764 94
8c996513
JH
95/* Specify what algorithm to use for stringops on known size.
96 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
97 known at compile time or estimated via feedback, the SIZE array
98 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 99 means infinity). Corresponding ALG is used then.
8c996513 100 For example initializer:
4f3f76e6 101 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 102 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 103 be used otherwise. */
8c996513
JH
104struct stringop_algs
105{
106 const enum stringop_alg unknown_size;
107 const struct stringop_strategy {
108 const int max;
109 const enum stringop_alg alg;
c69fa2d4 110 } size [MAX_STRINGOP_ALGS];
8c996513
JH
111};
112
d4ba09c0
SC
113/* Define the specific costs for a given cpu */
114
115struct processor_costs {
8b60264b
KG
116 const int add; /* cost of an add instruction */
117 const int lea; /* cost of a lea instruction */
118 const int shift_var; /* variable shift costs */
119 const int shift_const; /* constant shift costs */
f676971a 120 const int mult_init[5]; /* cost of starting a multiply
4977bab6 121 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 122 const int mult_bit; /* cost of multiply per each bit set */
f676971a 123 const int divide[5]; /* cost of a divide/mod
4977bab6 124 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
125 int movsx; /* The cost of movsx operation. */
126 int movzx; /* The cost of movzx operation. */
8b60264b
KG
127 const int large_insn; /* insns larger than this cost more */
128 const int move_ratio; /* The threshold of number of scalar
ac775968 129 memory-to-memory move insns. */
8b60264b
KG
130 const int movzbl_load; /* cost of loading using movzbl */
131 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
132 in QImode, HImode and SImode relative
133 to reg-reg move (2). */
8b60264b 134 const int int_store[3]; /* cost of storing integer register
96e7ae40 135 in QImode, HImode and SImode */
8b60264b
KG
136 const int fp_move; /* cost of reg,reg fld/fst */
137 const int fp_load[3]; /* cost of loading FP register
96e7ae40 138 in SFmode, DFmode and XFmode */
8b60264b 139 const int fp_store[3]; /* cost of storing FP register
96e7ae40 140 in SFmode, DFmode and XFmode */
8b60264b
KG
141 const int mmx_move; /* cost of moving MMX register. */
142 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 143 in SImode and DImode */
8b60264b 144 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 145 in SImode and DImode */
8b60264b
KG
146 const int sse_move; /* cost of moving SSE register. */
147 const int sse_load[3]; /* cost of loading SSE register
fa79946e 148 in SImode, DImode and TImode*/
8b60264b 149 const int sse_store[3]; /* cost of storing SSE register
fa79946e 150 in SImode, DImode and TImode*/
8b60264b 151 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 152 integer and vice versa. */
46cb0441
ZD
153 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
154 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
155 const int prefetch_block; /* bytes moved to cache for prefetch. */
156 const int simultaneous_prefetches; /* number of parallel prefetch
157 operations. */
4977bab6 158 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
159 const int fadd; /* cost of FADD and FSUB instructions. */
160 const int fmul; /* cost of FMUL instruction. */
161 const int fdiv; /* cost of FDIV instruction. */
162 const int fabs; /* cost of FABS instruction. */
163 const int fchs; /* cost of FCHS instruction. */
164 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
165 /* Specify what algorithm
166 to use for stringops on unknown size. */
167 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
168 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
169 load and store. */
170 const int scalar_load_cost; /* Cost of scalar load. */
171 const int scalar_store_cost; /* Cost of scalar store. */
172 const int vec_stmt_cost; /* Cost of any vector operation, excluding
173 load, store, vector-to-scalar and
174 scalar-to-vector operation. */
175 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
176 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 177 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
178 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
179 const int vec_store_cost; /* Cost of vector store. */
180 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
181 cost model. */
182 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
183 vectorizer cost model. */
d4ba09c0
SC
184};
185
8b60264b 186extern const struct processor_costs *ix86_cost;
b2077fd2
JH
187extern const struct processor_costs ix86_size_cost;
188
189#define ix86_cur_cost() \
190 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 191
c98f8742
JVA
192/* Macros used in the machine description to test the flags. */
193
ddd5a7c1 194/* configure can arrange to make this 2, to force a 486. */
e075ae69 195
35b528be 196#ifndef TARGET_CPU_DEFAULT
d326eaf0 197#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 198#endif
35b528be 199
004d3859
GK
200#ifndef TARGET_FPMATH_DEFAULT
201#define TARGET_FPMATH_DEFAULT \
202 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
203#endif
204
6ac49599 205#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 206
5791cc29
JT
207/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
208 compile-time constant. */
209#ifdef IN_LIBGCC2
6ac49599 210#undef TARGET_64BIT
5791cc29
JT
211#ifdef __x86_64__
212#define TARGET_64BIT 1
213#else
214#define TARGET_64BIT 0
215#endif
216#else
6ac49599
RS
217#ifndef TARGET_BI_ARCH
218#undef TARGET_64BIT
67adf6a9 219#if TARGET_64BIT_DEFAULT
0c2dc519
JH
220#define TARGET_64BIT 1
221#else
222#define TARGET_64BIT 0
223#endif
224#endif
5791cc29 225#endif
25f94bb5 226
750054a2
CT
227#define HAS_LONG_COND_BRANCH 1
228#define HAS_LONG_UNCOND_BRANCH 1
229
9e555526
RH
230#define TARGET_386 (ix86_tune == PROCESSOR_I386)
231#define TARGET_486 (ix86_tune == PROCESSOR_I486)
232#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
233#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 234#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
235#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
236#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
237#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
238#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 239#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 240#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 241#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
242#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
243#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
244#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 245#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 246#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
b6837b94 247#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 248
80fd744f
RH
249/* Feature tests against the various tunings. */
250enum ix86_tune_indices {
251 X86_TUNE_USE_LEAVE,
252 X86_TUNE_PUSH_MEMORY,
253 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
254 X86_TUNE_UNROLL_STRLEN,
255 X86_TUNE_DEEP_BRANCH_PREDICTION,
256 X86_TUNE_BRANCH_PREDICTION_HINTS,
257 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 258 X86_TUNE_USE_SAHF,
80fd744f
RH
259 X86_TUNE_MOVX,
260 X86_TUNE_PARTIAL_REG_STALL,
261 X86_TUNE_PARTIAL_FLAG_REG_STALL,
262 X86_TUNE_USE_HIMODE_FIOP,
263 X86_TUNE_USE_SIMODE_FIOP,
264 X86_TUNE_USE_MOV0,
265 X86_TUNE_USE_CLTD,
266 X86_TUNE_USE_XCHGB,
267 X86_TUNE_SPLIT_LONG_MOVES,
268 X86_TUNE_READ_MODIFY_WRITE,
269 X86_TUNE_READ_MODIFY,
270 X86_TUNE_PROMOTE_QIMODE,
271 X86_TUNE_FAST_PREFIX,
272 X86_TUNE_SINGLE_STRINGOP,
273 X86_TUNE_QIMODE_MATH,
274 X86_TUNE_HIMODE_MATH,
275 X86_TUNE_PROMOTE_QI_REGS,
276 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
277 X86_TUNE_SINGLE_POP,
278 X86_TUNE_DOUBLE_POP,
279 X86_TUNE_SINGLE_PUSH,
280 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
281 X86_TUNE_INTEGER_DFMODE_MOVES,
282 X86_TUNE_PARTIAL_REG_DEPENDENCY,
283 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
284 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
285 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
286 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
287 X86_TUNE_SSE_SPLIT_REGS,
288 X86_TUNE_SSE_TYPELESS_STORES,
289 X86_TUNE_SSE_LOAD0_BY_PXOR,
290 X86_TUNE_MEMORY_MISMATCH_STALL,
291 X86_TUNE_PROLOGUE_USING_MOVE,
292 X86_TUNE_EPILOGUE_USING_MOVE,
293 X86_TUNE_SHIFT1,
294 X86_TUNE_USE_FFREEP,
295 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 296 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
297 X86_TUNE_FOUR_JUMP_LIMIT,
298 X86_TUNE_SCHEDULE,
299 X86_TUNE_USE_BT,
300 X86_TUNE_USE_INCDEC,
301 X86_TUNE_PAD_RETURNS,
e7ed95a2 302 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 303 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
304 X86_TUNE_SHORTEN_X87_SSE,
305 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 306 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
307 X86_TUNE_SLOW_IMUL_IMM32_MEM,
308 X86_TUNE_SLOW_IMUL_IMM8,
309 X86_TUNE_MOVE_M1_VIA_OR,
310 X86_TUNE_NOT_UNPAIRABLE,
311 X86_TUNE_NOT_VECTORMODE,
54723b46 312 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 313 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 314 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 315 X86_TUNE_OPT_AGU,
e72eba85 316 X86_TUNE_VECTORIZE_DOUBLE,
80fd744f
RH
317
318 X86_TUNE_LAST
319};
320
ab442df7 321extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
322
323#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
324#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
325#define TARGET_ZERO_EXTEND_WITH_AND \
326 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
327#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
328#define TARGET_DEEP_BRANCH_PREDICTION \
329 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
330#define TARGET_BRANCH_PREDICTION_HINTS \
331 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
332#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
333#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
334#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
335#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
336#define TARGET_PARTIAL_FLAG_REG_STALL \
337 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
338#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
339#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
340#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
341#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
342#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
343#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
344#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
345#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
346#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
347#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
348#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
349#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
350#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
351#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
352#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
353#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
354#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
355#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
356#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
357#define TARGET_INTEGER_DFMODE_MOVES \
358 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
359#define TARGET_PARTIAL_REG_DEPENDENCY \
360 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
361#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
362 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
363#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
364 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
365#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
366 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
367#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
368 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
369#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
370#define TARGET_SSE_TYPELESS_STORES \
371 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
372#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
373#define TARGET_MEMORY_MISMATCH_STALL \
374 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
375#define TARGET_PROLOGUE_USING_MOVE \
376 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
377#define TARGET_EPILOGUE_USING_MOVE \
378 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
379#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
380#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
381#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
382#define TARGET_INTER_UNIT_CONVERSIONS\
383 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
384#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
385#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
386#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
387#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
388#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
389#define TARGET_PAD_SHORT_FUNCTION \
390 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
391#define TARGET_EXT_80387_CONSTANTS \
392 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
393#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
394#define TARGET_AVOID_VECTOR_DECODE \
395 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
396#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
397 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
398#define TARGET_SLOW_IMUL_IMM32_MEM \
399 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
400#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
401#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
402#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
403#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
404#define TARGET_USE_VECTOR_FP_CONVERTS \
405 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
406#define TARGET_USE_VECTOR_CONVERTS \
407 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
408#define TARGET_FUSE_CMP_AND_BRANCH \
409 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 410#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
411#define TARGET_VECTORIZE_DOUBLE \
412 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
80fd744f
RH
413
414/* Feature tests against the various architecture variations. */
415enum ix86_arch_indices {
416 X86_ARCH_CMOVE, /* || TARGET_SSE */
417 X86_ARCH_CMPXCHG,
418 X86_ARCH_CMPXCHG8B,
419 X86_ARCH_XADD,
420 X86_ARCH_BSWAP,
421
422 X86_ARCH_LAST
423};
4f3f76e6 424
ab442df7 425extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
426
427#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
428#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
429#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
430#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
431#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
432
433#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
434
435extern int x86_prefetch_sse;
0a1c5e55 436
80fd744f
RH
437#define TARGET_PREFETCH_SSE x86_prefetch_sse
438
80fd744f
RH
439#define ASSEMBLER_DIALECT (ix86_asm_dialect)
440
441#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
442#define TARGET_MIX_SSE_I387 \
443 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
444
445#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
446#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
447#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 448#define TARGET_SUN_TLS 0
1ef45b77 449
67adf6a9
RH
450#ifndef TARGET_64BIT_DEFAULT
451#define TARGET_64BIT_DEFAULT 0
25f94bb5 452#endif
74dc3e94
RH
453#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
454#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
455#endif
25f94bb5 456
79f5e442
ZD
457/* Fence to use after loop using storent. */
458
459extern tree x86_mfence;
460#define FENCE_FOLLOWING_MOVNT x86_mfence
461
0ed4a390
JL
462/* Once GDB has been enhanced to deal with functions without frame
463 pointers, we can change this to allow for elimination of
464 the frame pointer in leaf functions. */
465#define TARGET_DEFAULT 0
67adf6a9 466
0a1c5e55
UB
467/* Extra bits to force. */
468#define TARGET_SUBTARGET_DEFAULT 0
469#define TARGET_SUBTARGET_ISA_DEFAULT 0
470
471/* Extra bits to force on w/ 32-bit mode. */
472#define TARGET_SUBTARGET32_DEFAULT 0
473#define TARGET_SUBTARGET32_ISA_DEFAULT 0
474
ccf8e764
RH
475/* Extra bits to force on w/ 64-bit mode. */
476#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 477#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 478
b069de3b
SS
479/* This is not really a target flag, but is done this way so that
480 it's analogous to similar code for Mach-O on PowerPC. darwin.h
481 redefines this to 1. */
482#define TARGET_MACHO 0
483
9005471b
IS
484/* Branch island 'stubs' are emitted for earlier versions of darwin.
485 This provides a default (over-ridden in darwin.h.) */
486#ifndef TARGET_MACHO_BRANCH_ISLANDS
487#define TARGET_MACHO_BRANCH_ISLANDS 0
488#endif
489
490/* For the Windows 64-bit ABI. */
7c800926
KT
491#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
492
493/* Available call abi. */
35cbb299 494enum calling_abi
7c800926
KT
495{
496 SYSV_ABI = 0,
497 MS_ABI = 1
498};
499
51212b32
L
500/* The abi used by target. */
501extern enum calling_abi ix86_abi;
502
503/* The default abi used by target. */
7c800926 504#define DEFAULT_ABI SYSV_ABI
ccf8e764 505
cc69336f
RH
506/* Subtargets may reset this to 1 in order to enable 96-bit long double
507 with the rounding mode forced to 53 bits. */
508#define TARGET_96_ROUND_53_LONG_DOUBLE 0
509
682cd442
GK
510/* -march=native handling only makes sense with compiler running on
511 an x86 or x86_64 chip. If changing this condition, also change
512 the condition in driver-i386.c. */
513#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
514/* In driver-i386.c. */
515extern const char *host_detect_local_cpu (int argc, const char **argv);
516#define EXTRA_SPEC_FUNCTIONS \
517 { "local_cpu_detect", host_detect_local_cpu },
682cd442 518#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
519#endif
520
8981c15b
JM
521#if TARGET_64BIT_DEFAULT
522#define OPT_ARCH64 "!m32"
523#define OPT_ARCH32 "m32"
524#else
525#define OPT_ARCH64 "m64"
526#define OPT_ARCH32 "!m64"
527#endif
528
1cba2b96
EC
529/* Support for configure-time defaults of some command line options.
530 The order here is important so that -march doesn't squash the
531 tune or cpu values. */
ce998900 532#define OPTION_DEFAULT_SPECS \
da2d4c01 533 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
534 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
535 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 536 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
537 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
538 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
539 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
540 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
541 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 542
241e1a89
SC
543/* Specs for the compiler proper */
544
628714d8 545#ifndef CC1_CPU_SPEC
fa959ce4 546#define CC1_CPU_SPEC_1 "\
5c1a2bb1 547%{msse5:-mavx \
2d2bd949 548%n'-msse5' was removed.\n}"
fa959ce4 549
682cd442 550#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
551#define CC1_CPU_SPEC CC1_CPU_SPEC_1
552#else
553#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
554"%{march=native:%<march=native %:local_cpu_detect(arch) \
555 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
556%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
557#endif
241e1a89 558#endif
c98f8742 559\f
30efe578 560/* Target CPU builtins. */
ab442df7
MM
561#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
562
563/* Target Pragmas. */
564#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 565
c2f17e19
UB
566enum target_cpu_default
567{
568 TARGET_CPU_DEFAULT_generic = 0,
569
570 TARGET_CPU_DEFAULT_i386,
571 TARGET_CPU_DEFAULT_i486,
572 TARGET_CPU_DEFAULT_pentium,
573 TARGET_CPU_DEFAULT_pentium_mmx,
574 TARGET_CPU_DEFAULT_pentiumpro,
575 TARGET_CPU_DEFAULT_pentium2,
576 TARGET_CPU_DEFAULT_pentium3,
577 TARGET_CPU_DEFAULT_pentium4,
578 TARGET_CPU_DEFAULT_pentium_m,
579 TARGET_CPU_DEFAULT_prescott,
580 TARGET_CPU_DEFAULT_nocona,
581 TARGET_CPU_DEFAULT_core2,
b6837b94 582 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
583
584 TARGET_CPU_DEFAULT_geode,
585 TARGET_CPU_DEFAULT_k6,
586 TARGET_CPU_DEFAULT_k6_2,
587 TARGET_CPU_DEFAULT_k6_3,
588 TARGET_CPU_DEFAULT_athlon,
589 TARGET_CPU_DEFAULT_athlon_sse,
590 TARGET_CPU_DEFAULT_k8,
591 TARGET_CPU_DEFAULT_amdfam10,
1133125e 592 TARGET_CPU_DEFAULT_bdver1,
c2f17e19
UB
593
594 TARGET_CPU_DEFAULT_max
595};
0c2dc519 596
628714d8 597#ifndef CC1_SPEC
8015b78d 598#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
599#endif
600
601/* This macro defines names of additional specifications to put in the
602 specs that can be used in various specifications like CC1_SPEC. Its
603 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
604
605 Each subgrouping contains a string constant, that defines the
188fc5b5 606 specification name, and a string constant that used by the GCC driver
bcd86433
SC
607 program.
608
609 Do not define this macro if it does not need to do anything. */
610
611#ifndef SUBTARGET_EXTRA_SPECS
612#define SUBTARGET_EXTRA_SPECS
613#endif
614
615#define EXTRA_SPECS \
628714d8 616 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
617 SUBTARGET_EXTRA_SPECS
618\f
ce998900 619
d57a4b98
RH
620/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
621 FPU, assume that the fpcw is set to extended precision; when using
622 only SSE, rounding is correct; when using both SSE and the FPU,
623 the rounding precision is indeterminate, since either may be chosen
624 apparently at random. */
625#define TARGET_FLT_EVAL_METHOD \
5ccd517a 626 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 627
8ce94e44
JM
628/* Whether to allow x87 floating-point arithmetic on MODE (one of
629 SFmode, DFmode and XFmode) in the current excess precision
630 configuration. */
631#define X87_ENABLE_ARITH(MODE) \
632 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
633
634/* Likewise, whether to allow direct conversions from integer mode
635 IMODE (HImode, SImode or DImode) to MODE. */
636#define X87_ENABLE_FLOAT(MODE, IMODE) \
637 (flag_excess_precision == EXCESS_PRECISION_FAST \
638 || (MODE) == XFmode \
639 || ((MODE) == DFmode && (IMODE) == SImode) \
640 || (IMODE) == HImode)
641
979c67a5
UB
642/* target machine storage layout */
643
65d9c0ab
JH
644#define SHORT_TYPE_SIZE 16
645#define INT_TYPE_SIZE 32
a96ad348 646#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 647#define FLOAT_TYPE_SIZE 32
65d9c0ab 648#define DOUBLE_TYPE_SIZE 64
979c67a5
UB
649#define LONG_DOUBLE_TYPE_SIZE 80
650
651#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 652
67adf6a9 653#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 654#define MAX_BITS_PER_WORD 64
0c2dc519
JH
655#else
656#define MAX_BITS_PER_WORD 32
0c2dc519
JH
657#endif
658
c98f8742
JVA
659/* Define this if most significant byte of a word is the lowest numbered. */
660/* That is true on the 80386. */
661
662#define BITS_BIG_ENDIAN 0
663
664/* Define this if most significant byte of a word is the lowest numbered. */
665/* That is not true on the 80386. */
666#define BYTES_BIG_ENDIAN 0
667
668/* Define this if most significant word of a multiword number is the lowest
669 numbered. */
670/* Not true for 80386 */
671#define WORDS_BIG_ENDIAN 0
672
c98f8742 673/* Width of a word, in units (bytes). */
4ae8027b 674#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
675
676#ifndef IN_LIBGCC2
2e64c636
JH
677#define MIN_UNITS_PER_WORD 4
678#endif
c98f8742 679
c98f8742 680/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 681#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 682
e075ae69 683/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 684#define STACK_BOUNDARY \
51212b32 685 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 686
2e3f842f
L
687/* Stack boundary of the main function guaranteed by OS. */
688#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
689
de1132d1
L
690/* Minimum stack boundary. */
691#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 692
d1f87653 693/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 694 aligned; the compiler cannot rely on having this alignment. */
e075ae69 695#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 696
de1132d1 697/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
698 both 32bit and 64bit, to support codes that need 128 bit stack
699 alignment for SSE instructions, but can't realign the stack. */
700#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
701
702/* 1 if -mstackrealign should be turned on by default. It will
703 generate an alternate prologue and epilogue that realigns the
704 runtime stack if nessary. This supports mixing codes that keep a
705 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 706 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
707#define STACK_REALIGN_DEFAULT 0
708
709/* Boundary (in *bits*) on which the incoming stack is aligned. */
710#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 711
ebff937c
SH
712/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
713 mandatory for the 64-bit ABI, and may or may not be true for other
714 operating systems. */
715#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
716
f963b5d9
RS
717/* Minimum allocation boundary for the code of a function. */
718#define FUNCTION_BOUNDARY 8
719
720/* C++ stores the virtual bit in the lowest bit of function pointers. */
721#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 722
c98f8742
JVA
723/* Minimum size in bits of the largest boundary to which any
724 and all fundamental data types supported by the hardware
725 might need to be aligned. No data type wants to be aligned
17f24ff0 726 rounder than this.
fce5a9f2 727
d1f87653 728 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
729 and Pentium Pro XFmode values at 128 bit boundaries. */
730
2824d6e5 731#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 732
2e3f842f
L
733/* Maximum stack alignment. */
734#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
735
6e4f1168
L
736/* Alignment value for attribute ((aligned)). It is a constant since
737 it is the part of the ABI. We shouldn't change it with -mavx. */
738#define ATTRIBUTE_ALIGNED_VALUE 128
739
822eda12 740/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 741#define ALIGN_MODE_128(MODE) \
4501d314 742 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 743
17f24ff0 744/* The published ABIs say that doubles should be aligned on word
d1f87653 745 boundaries, so lower the alignment for structure fields unless
6fc605d8 746 -malign-double is set. */
e932b21b 747
e83f3cff
RH
748/* ??? Blah -- this macro is used directly by libobjc. Since it
749 supports no vector modes, cut out the complexity and fall back
750 on BIGGEST_FIELD_ALIGNMENT. */
751#ifdef IN_TARGET_LIBS
ef49d42e
JH
752#ifdef __x86_64__
753#define BIGGEST_FIELD_ALIGNMENT 128
754#else
e83f3cff 755#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 756#endif
e83f3cff 757#else
e932b21b
JH
758#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
759 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 760#endif
c98f8742 761
e5e8a8bf 762/* If defined, a C expression to compute the alignment given to a
a7180f70 763 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
764 and ALIGN is the alignment that the object would ordinarily have.
765 The value of this macro is used instead of that alignment to align
766 the object.
767
768 If this macro is not defined, then ALIGN is used.
769
770 The typical use of this macro is to increase alignment for string
771 constants to be word aligned so that `strcpy' calls that copy
772 constants can be done inline. */
773
d9a5f180 774#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 775
8a022443
JW
776/* If defined, a C expression to compute the alignment for a static
777 variable. TYPE is the data type, and ALIGN is the alignment that
778 the object would ordinarily have. The value of this macro is used
779 instead of that alignment to align the object.
780
781 If this macro is not defined, then ALIGN is used.
782
783 One use of this macro is to increase alignment of medium-size
784 data to make it all fit in fewer cache lines. Another is to
785 cause character arrays to be word-aligned so that `strcpy' calls
786 that copy constants to character arrays can be done inline. */
787
d9a5f180 788#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
789
790/* If defined, a C expression to compute the alignment for a local
791 variable. TYPE is the data type, and ALIGN is the alignment that
792 the object would ordinarily have. The value of this macro is used
793 instead of that alignment to align the object.
794
795 If this macro is not defined, then ALIGN is used.
796
797 One use of this macro is to increase alignment of medium-size
798 data to make it all fit in fewer cache lines. */
799
76fe54f0
L
800#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
801 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
802
803/* If defined, a C expression to compute the alignment for stack slot.
804 TYPE is the data type, MODE is the widest mode available, and ALIGN
805 is the alignment that the slot would ordinarily have. The value of
806 this macro is used instead of that alignment to align the slot.
807
808 If this macro is not defined, then ALIGN is used when TYPE is NULL,
809 Otherwise, LOCAL_ALIGNMENT will be used.
810
811 One use of this macro is to set alignment of stack slot to the
812 maximum alignment of all possible modes which the slot may have. */
813
814#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
815 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 816
9bfaf89d
JJ
817/* If defined, a C expression to compute the alignment for a local
818 variable DECL.
819
820 If this macro is not defined, then
821 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
822
823 One use of this macro is to increase alignment of medium-size
824 data to make it all fit in fewer cache lines. */
825
826#define LOCAL_DECL_ALIGNMENT(DECL) \
827 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
828
ae58e548
JJ
829/* If defined, a C expression to compute the minimum required alignment
830 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
831 MODE, assuming normal alignment ALIGN.
832
833 If this macro is not defined, then (ALIGN) will be used. */
834
835#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
836 ix86_minimum_alignment (EXP, MODE, ALIGN)
837
9bfaf89d 838
53c17031
JH
839/* If defined, a C expression that gives the alignment boundary, in
840 bits, of an argument with the specified mode and type. If it is
841 not defined, `PARM_BOUNDARY' is used for all arguments. */
842
d9a5f180
GS
843#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
844 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 845
9cd10576 846/* Set this nonzero if move instructions will actually fail to work
c98f8742 847 when given unaligned data. */
b4ac57ab 848#define STRICT_ALIGNMENT 0
c98f8742
JVA
849
850/* If bit field type is int, don't let it cross an int,
851 and give entire struct the alignment of an int. */
43a88a8c 852/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 853#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
854\f
855/* Standard register usage. */
856
857/* This processor has special stack-like registers. See reg-stack.c
892a2d68 858 for details. */
c98f8742
JVA
859
860#define STACK_REGS
ce998900 861
d9a5f180 862#define IS_STACK_MODE(MODE) \
63001560
UB
863 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
864 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 865 || (MODE) == XFmode)
c98f8742 866
1833192f
VM
867/* Cover class containing the stack registers. */
868#define STACK_REG_COVER_CLASS FLOAT_REGS
869
c98f8742
JVA
870/* Number of actual hardware registers.
871 The hardware registers are assigned numbers for the compiler
872 from 0 to just below FIRST_PSEUDO_REGISTER.
873 All registers that the compiler knows about must be given numbers,
874 even those that are not normally considered general registers.
875
876 In the 80386 we give the 8 general purpose registers the numbers 0-7.
877 We number the floating point registers 8-15.
878 Note that registers 0-7 can be accessed as a short or int,
879 while only 0-3 may be used with byte `mov' instructions.
880
881 Reg 16 does not correspond to any hardware register, but instead
882 appears in the RTL as an argument pointer prior to reload, and is
883 eliminated during reloading in favor of either the stack or frame
892a2d68 884 pointer. */
c98f8742 885
b0d95de8 886#define FIRST_PSEUDO_REGISTER 53
c98f8742 887
3073d01c
ML
888/* Number of hardware registers that go into the DWARF-2 unwind info.
889 If not defined, equals FIRST_PSEUDO_REGISTER. */
890
891#define DWARF_FRAME_REGISTERS 17
892
c98f8742
JVA
893/* 1 for registers that have pervasive standard uses
894 and are not available for the register allocator.
3f3f2124 895 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 896
3a4416fb
RS
897 The value is zero if the register is not fixed on either 32 or
898 64 bit targets, one if the register if fixed on both 32 and 64
899 bit targets, two if it is only fixed on 32bit targets and three
900 if its only fixed on 64bit targets.
901 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 902 */
a7180f70
BS
903#define FIXED_REGISTERS \
904/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 905{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
906/*arg,flags,fpsr,fpcr,frame*/ \
907 1, 1, 1, 1, 1, \
a7180f70
BS
908/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
909 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 910/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
911 0, 0, 0, 0, 0, 0, 0, 0, \
912/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 913 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 914/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 915 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 916
c98f8742
JVA
917
918/* 1 for registers not available across function calls.
919 These must include the FIXED_REGISTERS and also any
920 registers that can be used without being saved.
921 The latter must include the registers where values are returned
922 and the register where structure-value addresses are passed.
fce5a9f2
EC
923 Aside from that, you can include as many other registers as you like.
924
9d72d996
JJ
925 The value is zero if the register is not call used on either 32 or
926 64 bit targets, one if the register if call used on both 32 and 64
927 bit targets, two if it is only call used on 32bit targets and three
928 if its only call used on 64bit targets.
3a4416fb 929 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 930*/
a7180f70
BS
931#define CALL_USED_REGISTERS \
932/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 933{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
934/*arg,flags,fpsr,fpcr,frame*/ \
935 1, 1, 1, 1, 1, \
a7180f70 936/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 937 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 938/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 939 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 940/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 941 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 942/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 943 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 944
3b3c6a3f
MM
945/* Order in which to allocate registers. Each register must be
946 listed once, even those in FIXED_REGISTERS. List frame pointer
947 late and fixed registers last. Note that, in general, we prefer
948 registers listed in CALL_USED_REGISTERS, keeping the others
949 available for storage of persistent values.
950
5a733826 951 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 952 so this is just empty initializer for array. */
3b3c6a3f 953
162f023b
JH
954#define REG_ALLOC_ORDER \
955{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
956 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
957 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 958 48, 49, 50, 51, 52 }
3b3c6a3f 959
5a733826 960/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 961 to be rearranged based on a particular function. When using sse math,
03c259ad 962 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 963
5a733826 964#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 965
f5316dfe 966
7c800926
KT
967#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
968
c98f8742 969/* Macro to conditionally modify fixed_regs/call_used_regs. */
ac2e563f 970#define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
c98f8742
JVA
971
972/* Return number of consecutive hard regs needed starting at reg REGNO
973 to hold something of mode MODE.
974 This is ordinarily the length in words of a value of mode MODE
975 but can be less for certain modes in special long registers.
976
fce5a9f2 977 Actually there are no two word move instructions for consecutive
c98f8742 978 registers. And only registers 0-3 may have mov byte instructions
63001560 979 applied to them. */
c98f8742 980
ce998900 981#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
982 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
983 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 984 : ((MODE) == XFmode \
92d0fb09 985 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 986 : (MODE) == XCmode \
92d0fb09 987 ? (TARGET_64BIT ? 4 : 6) \
2b589241 988 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 989
8521c414
JM
990#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
991 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
992 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
993 ? 0 \
994 : ((MODE) == XFmode || (MODE) == XCmode)) \
995 : 0)
996
997#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
998
95879c72
L
999#define VALID_AVX256_REG_MODE(MODE) \
1000 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1001 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1002
ce998900
UB
1003#define VALID_SSE2_REG_MODE(MODE) \
1004 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1005 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1006
d9a5f180 1007#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1008 ((MODE) == V1TImode || (MODE) == TImode \
1009 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1010 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1011
47f339cf 1012#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1013 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1014
d9a5f180 1015#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1016 ((MODE == V1DImode) || (MODE) == DImode \
1017 || (MODE) == V2SImode || (MODE) == SImode \
1018 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1019
ce998900
UB
1020#define VALID_DFP_MODE_P(MODE) \
1021 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1022
d9a5f180 1023#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1024 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1025 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1026
d9a5f180 1027#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1028 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1029 || (MODE) == DImode \
1030 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1031 || (MODE) == CDImode \
1032 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1033 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1034
822eda12 1035/* Return true for modes passed in SSE registers. */
ce998900 1036#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1037 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1038 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1039 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1040 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1041 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1042
e075ae69 1043/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1044
a946dd00 1045#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1046 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1047
1048/* Value is 1 if it is a good idea to tie two pseudo registers
1049 when one has mode MODE1 and one has mode MODE2.
1050 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1051 for any hard reg, then this must be 0 for correct output. */
1052
c1c5b5e3 1053#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1054
ff25ef99
ZD
1055/* It is possible to write patterns to move flags; but until someone
1056 does it, */
1057#define AVOID_CCMODE_COPIES
c98f8742 1058
e075ae69 1059/* Specify the modes required to caller save a given hard regno.
787dc842 1060 We do this on i386 to prevent flags from being saved at all.
e075ae69 1061
787dc842
JH
1062 Kill any attempts to combine saving of modes. */
1063
d9a5f180
GS
1064#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1065 (CC_REGNO_P (REGNO) ? VOIDmode \
1066 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1067 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1068 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1069 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1070 : (MODE))
ce998900 1071
51ba747a
RH
1072/* The only ABI that saves SSE registers across calls is Win64 (thus no
1073 need to check the current ABI here), and with AVX enabled Win64 only
1074 guarantees that the low 16 bytes are saved. */
1075#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1076 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1077
c98f8742
JVA
1078/* Specify the registers used for certain standard purposes.
1079 The values of these macros are register numbers. */
1080
1081/* on the 386 the pc register is %eip, and is not usable as a general
1082 register. The ordinary mov instructions won't work */
1083/* #define PC_REGNUM */
1084
1085/* Register to use for pushing function arguments. */
1086#define STACK_POINTER_REGNUM 7
1087
1088/* Base register for access to local variables of the function. */
564d80f4
JH
1089#define HARD_FRAME_POINTER_REGNUM 6
1090
1091/* Base register for access to local variables of the function. */
b0d95de8 1092#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1093
1094/* First floating point reg */
1095#define FIRST_FLOAT_REG 8
1096
1097/* First & last stack-like regs */
1098#define FIRST_STACK_REG FIRST_FLOAT_REG
1099#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1100
a7180f70
BS
1101#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1102#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1103
a7180f70
BS
1104#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1105#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1106
3f3f2124
JH
1107#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1108#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1109
1110#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1111#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1112
aabcd309 1113/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1114 requiring a frame pointer. */
1115#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1116#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1117#endif
1118
1119/* Make sure we can access arbitrary call frames. */
1120#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1121
1122/* Base register for access to arguments of the function. */
1123#define ARG_POINTER_REGNUM 16
1124
c98f8742 1125/* Register to hold the addressing base for position independent
5b43fed1
RH
1126 code access to data items. We don't use PIC pointer for 64bit
1127 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1128 pessimizing code dealing with EBX.
bd09bdeb
RH
1129
1130 To avoid clobbering a call-saved register unnecessarily, we renumber
1131 the pic register when possible. The change is visible after the
1132 prologue has been emitted. */
1133
2e3f842f 1134#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1135
1136#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1137 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1138 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1139 : reload_completed ? REGNO (pic_offset_table_rtx) \
1140 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1141
5fc0e5df
KW
1142#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1143
c51e6d85 1144/* This is overridden by <cygwin.h>. */
5e062767
DS
1145#define MS_AGGREGATE_RETURN 0
1146
61fec9ff
JB
1147/* This is overridden by <netware.h>. */
1148#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1149\f
1150/* Define the classes of registers for register constraints in the
1151 machine description. Also define ranges of constants.
1152
1153 One of the classes must always be named ALL_REGS and include all hard regs.
1154 If there is more than one class, another class must be named NO_REGS
1155 and contain no registers.
1156
1157 The name GENERAL_REGS must be the name of a class (or an alias for
1158 another name such as ALL_REGS). This is the class of registers
1159 that is allowed by "g" or "r" in a register constraint.
1160 Also, registers outside this class are allocated only when
1161 instructions express preferences for them.
1162
1163 The classes must be numbered in nondecreasing order; that is,
1164 a larger-numbered class must never be contained completely
1165 in a smaller-numbered class.
1166
1167 For any two classes, it is very desirable that there be another
ab408a86
JVA
1168 class that represents their union.
1169
1170 It might seem that class BREG is unnecessary, since no useful 386
1171 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1172 and the "b" register constraint is useful in asms for syscalls.
1173
03c259ad 1174 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1175
1176enum reg_class
1177{
1178 NO_REGS,
e075ae69 1179 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1180 AD_REGS, /* %eax/%edx for DImode */
ac2e563f 1181 CLOBBERED_REGS, /* call-clobbered integers */
c98f8742 1182 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1183 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1184 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1185 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1186 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1187 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1188 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1189 FLOAT_REGS,
06f4e35d 1190 SSE_FIRST_REG,
a7180f70
BS
1191 SSE_REGS,
1192 MMX_REGS,
446988df
JH
1193 FP_TOP_SSE_REGS,
1194 FP_SECOND_SSE_REGS,
1195 FLOAT_SSE_REGS,
1196 FLOAT_INT_REGS,
1197 INT_SSE_REGS,
1198 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1199 ALL_REGS, LIM_REG_CLASSES
1200};
1201
d9a5f180
GS
1202#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1203
1204#define INTEGER_CLASS_P(CLASS) \
1205 reg_class_subset_p ((CLASS), GENERAL_REGS)
1206#define FLOAT_CLASS_P(CLASS) \
1207 reg_class_subset_p ((CLASS), FLOAT_REGS)
1208#define SSE_CLASS_P(CLASS) \
06f4e35d 1209 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1210#define MMX_CLASS_P(CLASS) \
f75959a6 1211 ((CLASS) == MMX_REGS)
d9a5f180
GS
1212#define MAYBE_INTEGER_CLASS_P(CLASS) \
1213 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1214#define MAYBE_FLOAT_CLASS_P(CLASS) \
1215 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1216#define MAYBE_SSE_CLASS_P(CLASS) \
1217 reg_classes_intersect_p (SSE_REGS, (CLASS))
1218#define MAYBE_MMX_CLASS_P(CLASS) \
1219 reg_classes_intersect_p (MMX_REGS, (CLASS))
1220
1221#define Q_CLASS_P(CLASS) \
1222 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1223
43f3a59d 1224/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1225
1226#define REG_CLASS_NAMES \
1227{ "NO_REGS", \
ab408a86 1228 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1229 "SIREG", "DIREG", \
e075ae69 1230 "AD_REGS", \
ac2e563f 1231 "CLOBBERED_REGS", \
e075ae69 1232 "Q_REGS", "NON_Q_REGS", \
c98f8742 1233 "INDEX_REGS", \
3f3f2124 1234 "LEGACY_REGS", \
c98f8742
JVA
1235 "GENERAL_REGS", \
1236 "FP_TOP_REG", "FP_SECOND_REG", \
1237 "FLOAT_REGS", \
cb482895 1238 "SSE_FIRST_REG", \
a7180f70
BS
1239 "SSE_REGS", \
1240 "MMX_REGS", \
446988df
JH
1241 "FP_TOP_SSE_REGS", \
1242 "FP_SECOND_SSE_REGS", \
1243 "FLOAT_SSE_REGS", \
8fcaaa80 1244 "FLOAT_INT_REGS", \
446988df
JH
1245 "INT_SSE_REGS", \
1246 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1247 "ALL_REGS" }
1248
ac2e563f
RH
1249/* Define which registers fit in which classes. This is an initializer
1250 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1251
1252 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1253 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
c98f8742 1254
a7180f70 1255#define REG_CLASS_CONTENTS \
3f3f2124
JH
1256{ { 0x00, 0x0 }, \
1257 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1258 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1259 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1260 { 0x03, 0x0 }, /* AD_REGS */ \
ac2e563f 1261 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
3f3f2124 1262 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1263 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1264 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1265 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1266 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1267 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1268 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1269 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1270{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1271{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1272{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1273{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1274{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1275 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1276{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1277{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1278{ 0xffffffff,0x1fffff } \
e075ae69 1279}
c98f8742
JVA
1280
1281/* The same information, inverted:
1282 Return the class number of the smallest class containing
1283 reg number REGNO. This could be a conditional expression
1284 or could index an array. */
1285
c98f8742
JVA
1286#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1287
42db504c
SB
1288/* When this hook returns true for MODE, the compiler allows
1289 registers explicitly used in the rtl to be used as spill registers
1290 but prevents the compiler from extending the lifetime of these
1291 registers. */
1292#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1293
6c6094f1 1294#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1295
d9a5f180 1296#define GENERAL_REGNO_P(N) \
fb84c7a0 1297 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1298
1299#define GENERAL_REG_P(X) \
6189a572 1300 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1301
1302#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1303
fb84c7a0
UB
1304#define REX_INT_REGNO_P(N) \
1305 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1306#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1307
c98f8742 1308#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1309#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1310#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1311#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1312
54a88090 1313#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1314 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1315
fb84c7a0
UB
1316#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1317#define SSE_REGNO_P(N) \
1318 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1319 || REX_SSE_REGNO_P (N))
3f3f2124 1320
4977bab6 1321#define REX_SSE_REGNO_P(N) \
fb84c7a0 1322 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1323
d9a5f180
GS
1324#define SSE_REGNO(N) \
1325 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1326
d9a5f180 1327#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1328 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1329
d6023b50
UB
1330#define SSE_VEC_FLOAT_MODE_P(MODE) \
1331 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1332
95879c72
L
1333#define AVX_FLOAT_MODE_P(MODE) \
1334 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1335
1336#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1337 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1338
1339#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1340 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1341
1342#define AVX_VEC_FLOAT_MODE_P(MODE) \
1343 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1344 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1345
cbf2e4d4
HJ
1346#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1347 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1348 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1349
d9a5f180 1350#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1351#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1352
fb84c7a0 1353#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1354#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1355
d9a5f180 1356#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1357
e075ae69
RH
1358#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1359#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1360
c98f8742
JVA
1361/* The class value for index registers, and the one for base regs. */
1362
1363#define INDEX_REG_CLASS INDEX_REGS
1364#define BASE_REG_CLASS GENERAL_REGS
1365
c98f8742 1366/* Place additional restrictions on the register class to use when it
4cbb525c 1367 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1368 register for which class CLASS would ordinarily be used. */
c98f8742 1369
d2836273
JH
1370#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1371 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1372 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1373 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1374 ? Q_REGS : (CLASS))
1375
85ff473e 1376/* If we are copying between general and FP registers, we need a memory
f84aa48a 1377 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1378#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1379 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1380
c62b3659
UB
1381/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1382 There is no need to emit full 64 bit move on 64 bit targets
1383 for integral modes that can be moved using 32 bit move. */
1384#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1385 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1386 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1387 : MODE)
1388
c98f8742
JVA
1389/* Return the maximum number of consecutive registers
1390 needed to represent mode MODE in a register of class CLASS. */
1391/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1392 except in the FP regs, where a single reg is always enough. */
a7180f70 1393#define CLASS_MAX_NREGS(CLASS, MODE) \
63001560
UB
1394 (MAYBE_INTEGER_CLASS_P (CLASS) \
1395 ? ((MODE) == XFmode \
1396 ? (TARGET_64BIT ? 2 : 3) \
1397 : (MODE) == XCmode \
1398 ? (TARGET_64BIT ? 4 : 6) \
1399 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
1400 : (COMPLEX_MODE_P (MODE) ? 2 : 1))
f5316dfe 1401
1272914c
RH
1402/* Return a class of registers that cannot change FROM mode to TO mode. */
1403
1404#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1405 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1406\f
1407/* Stack layout; function entry, exit and calling. */
1408
1409/* Define this if pushing a word on the stack
1410 makes the stack pointer a smaller address. */
1411#define STACK_GROWS_DOWNWARD
1412
a4d05547 1413/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1414 is at the high-address end of the local variables;
1415 that is, each additional local variable allocated
1416 goes at a more negative offset in the frame. */
f62c8a5c 1417#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1418
1419/* Offset within stack frame to start allocating local variables at.
1420 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1421 first local allocated. Otherwise, it is the offset to the BEGINNING
1422 of the first local allocated. */
1423#define STARTING_FRAME_OFFSET 0
1424
8c2b2fae
UB
1425/* If we generate an insn to push BYTES bytes, this says how many the stack
1426 pointer really advances by. On 386, we have pushw instruction that
1427 decrements by exactly 2 no matter what the position was, there is no pushb.
1428
1429 But as CIE data alignment factor on this arch is -4 for 32bit targets
1430 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1431 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1432
d2836273 1433#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1434 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1435
1436/* If defined, the maximum amount of space required for outgoing arguments
1437 will be computed and placed into the variable `crtl->outgoing_args_size'.
1438 No space will be pushed onto the stack for each call; instead, the
1439 function prologue should increase the stack frame size by this amount.
9aa5c1b2
JH
1440
1441 MS ABI seem to require 16 byte alignment everywhere except for function
1442 prologue and apilogue. This is not possible without
1443 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1444
6c6094f1
UB
1445#define ACCUMULATE_OUTGOING_ARGS \
1446 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
f73ad30e
JH
1447
1448/* If defined, a C expression whose value is nonzero when we want to use PUSH
1449 instructions to pass outgoing arguments. */
1450
1451#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1452
2da4124d
L
1453/* We want the stack and args grow in opposite directions, even if
1454 PUSH_ARGS is 0. */
1455#define PUSH_ARGS_REVERSED 1
1456
c98f8742
JVA
1457/* Offset of first parameter from the argument pointer register value. */
1458#define FIRST_PARM_OFFSET(FNDECL) 0
1459
a7180f70
BS
1460/* Define this macro if functions should assume that stack space has been
1461 allocated for arguments even when their values are passed in registers.
1462
1463 The value of this macro is the size, in bytes, of the area reserved for
1464 arguments passed in registers for the function represented by FNDECL.
1465
1466 This space can be allocated by the caller, or be a part of the
1467 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1468 which. */
7c800926
KT
1469#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1470
4ae8027b
UB
1471#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1472 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1473
c98f8742
JVA
1474/* Define how to find the value returned by a library function
1475 assuming the value has mode MODE. */
1476
4ae8027b 1477#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1478
e9125c09
TW
1479/* Define the size of the result block used for communication between
1480 untyped_call and untyped_return. The block contains a DImode value
1481 followed by the block used by fnsave and frstor. */
1482
1483#define APPLY_RESULT_SIZE (8+108)
1484
b08de47e 1485/* 1 if N is a possible register number for function argument passing. */
53c17031 1486#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1487
1488/* Define a data type for recording info about an argument list
1489 during the scan of that argument list. This data type should
1490 hold all necessary information about the function itself
1491 and about the args processed so far, enough to enable macros
b08de47e 1492 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1493
e075ae69 1494typedef struct ix86_args {
fa283935 1495 int words; /* # words passed so far */
b08de47e
MM
1496 int nregs; /* # registers available for passing */
1497 int regno; /* next available register number */
3e65f251
KT
1498 int fastcall; /* fastcall or thiscall calling convention
1499 is used */
fa283935 1500 int sse_words; /* # sse words passed so far */
a7180f70 1501 int sse_nregs; /* # sse registers available for passing */
95879c72 1502 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1503 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1504 int warn_mmx; /* True when we want to warn about MMX ABI. */
1505 int sse_regno; /* next available sse register number */
1506 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1507 int mmx_nregs; /* # mmx registers available for passing */
1508 int mmx_regno; /* next available mmx register number */
892a2d68 1509 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1510 int caller; /* true if it is caller. */
2824d6e5
UB
1511 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1512 SFmode/DFmode arguments should be passed
1513 in SSE registers. Otherwise 0. */
51212b32 1514 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1515 MS_ABI for ms abi. */
b08de47e 1516} CUMULATIVE_ARGS;
c98f8742
JVA
1517
1518/* Initialize a variable CUM of type CUMULATIVE_ARGS
1519 for a call to a function whose data type is FNTYPE.
b08de47e 1520 For a library call, FNTYPE is 0. */
c98f8742 1521
0f6937fe 1522#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1523 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1524 (N_NAMED_ARGS) != -1)
c98f8742 1525
c98f8742
JVA
1526/* Output assembler code to FILE to increment profiler label # LABELNO
1527 for profiling a function entry. */
1528
a5fa1ecd
JH
1529#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1530
1531#define MCOUNT_NAME "_mcount"
1532
3c5273a9
KT
1533#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1534
a5fa1ecd 1535#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1536
1537/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1538 the stack pointer does not matter. The value is tested only in
1539 functions that have frame pointers.
1540 No definition is equivalent to always zero. */
fce5a9f2 1541/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1542 we have to restore it ourselves from the frame pointer, in order to
1543 use pop */
1544
1545#define EXIT_IGNORE_STACK 1
1546
c98f8742
JVA
1547/* Output assembler code for a block containing the constant parts
1548 of a trampoline, leaving space for the variable parts. */
1549
a269a03c 1550/* On the 386, the trampoline contains two instructions:
c98f8742 1551 mov #STATIC,ecx
a269a03c
JC
1552 jmp FUNCTION
1553 The trampoline is generated entirely at runtime. The operand of JMP
1554 is the address of FUNCTION relative to the instruction following the
1555 JMP (which is 5 bytes long). */
c98f8742
JVA
1556
1557/* Length in units of the trampoline for entering a nested function. */
1558
3452586b 1559#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1560\f
1561/* Definitions for register eliminations.
1562
1563 This is an array of structures. Each structure initializes one pair
1564 of eliminable registers. The "from" register number is given first,
1565 followed by "to". Eliminations of the same "from" register are listed
1566 in order of preference.
1567
afc2cd05
NC
1568 There are two registers that can always be eliminated on the i386.
1569 The frame pointer and the arg pointer can be replaced by either the
1570 hard frame pointer or to the stack pointer, depending upon the
1571 circumstances. The hard frame pointer is not used before reload and
1572 so it is not eligible for elimination. */
c98f8742 1573
564d80f4
JH
1574#define ELIMINABLE_REGS \
1575{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1576 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1577 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1578 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1579
c98f8742
JVA
1580/* Define the offset between two registers, one to be eliminated, and the other
1581 its replacement, at the start of a routine. */
1582
d9a5f180
GS
1583#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1584 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1585\f
1586/* Addressing modes, and classification of registers for them. */
1587
c98f8742
JVA
1588/* Macros to check register numbers against specific register classes. */
1589
1590/* These assume that REGNO is a hard or pseudo reg number.
1591 They give nonzero only if REGNO is a hard reg of the suitable class
1592 or a pseudo reg currently allocated to a suitable hard reg.
1593 Since they use reg_renumber, they are safe only once reg_renumber
1594 has been allocated, which happens in local-alloc.c. */
1595
3f3f2124
JH
1596#define REGNO_OK_FOR_INDEX_P(REGNO) \
1597 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1598 || REX_INT_REGNO_P (REGNO) \
1599 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1600 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1601
3f3f2124 1602#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1603 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1604 || (REGNO) == ARG_POINTER_REGNUM \
1605 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1606 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1607
c98f8742
JVA
1608/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1609 and check its validity for a certain class.
1610 We have two alternate definitions for each of them.
1611 The usual definition accepts all pseudo regs; the other rejects
1612 them unless they have been allocated suitable hard regs.
1613 The symbol REG_OK_STRICT causes the latter definition to be used.
1614
1615 Most source files want to accept pseudo regs in the hope that
1616 they will get allocated to the class that the insn wants them to be in.
1617 Source files for reload pass need to be strict.
1618 After reload, it makes no difference, since pseudo regs have
1619 been eliminated by then. */
1620
c98f8742 1621
ff482c8d 1622/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1623#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1624 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1625 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1626 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1627
3b3c6a3f 1628#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1629 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1630 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1631 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1632 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1633
3b3c6a3f
MM
1634/* Strict versions, hard registers only */
1635#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1636#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1637
3b3c6a3f 1638#ifndef REG_OK_STRICT
d9a5f180
GS
1639#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1640#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1641
1642#else
d9a5f180
GS
1643#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1644#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1645#endif
1646
331d9186 1647/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1648 that is a valid memory address for an instruction.
1649 The MODE argument is the machine mode for the MEM expression
1650 that wants to use this address.
1651
331d9186 1652 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1653 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1654
1655 See legitimize_pic_address in i386.c for details as to what
1656 constitutes a legitimate address when -fpic is used. */
1657
1658#define MAX_REGS_PER_ADDRESS 2
1659
f996902d 1660#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1661
1662/* Nonzero if the constant value X is a legitimate general operand.
1663 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1664
f996902d 1665#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1666
b949ea8b
JW
1667/* If defined, a C expression to determine the base term of address X.
1668 This macro is used in only one place: `find_base_term' in alias.c.
1669
1670 It is always safe for this macro to not be defined. It exists so
1671 that alias analysis can understand machine-dependent addresses.
1672
1673 The typical use of this macro is to handle addresses containing
1674 a label_ref or symbol_ref within an UNSPEC. */
1675
d9a5f180 1676#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1677
c98f8742 1678/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1679 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1680 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1681
f996902d 1682#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1683
1684#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1685 (GET_CODE (X) == SYMBOL_REF \
1686 || GET_CODE (X) == LABEL_REF \
1687 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1688\f
b08de47e
MM
1689/* Max number of args passed in registers. If this is more than 3, we will
1690 have problems with ebx (register #4), since it is a caller save register and
1691 is also used as the pic register in ELF. So for now, don't allow more than
1692 3 registers to be passed in registers. */
1693
7c800926
KT
1694/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1695#define X86_64_REGPARM_MAX 6
72fa3605 1696#define X86_64_MS_REGPARM_MAX 4
7c800926 1697
72fa3605 1698#define X86_32_REGPARM_MAX 3
7c800926 1699
4ae8027b 1700#define REGPARM_MAX \
2824d6e5
UB
1701 (TARGET_64BIT \
1702 ? (TARGET_64BIT_MS_ABI \
1703 ? X86_64_MS_REGPARM_MAX \
1704 : X86_64_REGPARM_MAX) \
4ae8027b 1705 : X86_32_REGPARM_MAX)
d2836273 1706
72fa3605
UB
1707#define X86_64_SSE_REGPARM_MAX 8
1708#define X86_64_MS_SSE_REGPARM_MAX 4
1709
b6010cab 1710#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1711
4ae8027b 1712#define SSE_REGPARM_MAX \
2824d6e5
UB
1713 (TARGET_64BIT \
1714 ? (TARGET_64BIT_MS_ABI \
1715 ? X86_64_MS_SSE_REGPARM_MAX \
1716 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1717 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1718
1719#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1720\f
1721/* Specify the machine mode that this machine uses
1722 for the index in the tablejump instruction. */
dc4d7240
JH
1723#define CASE_VECTOR_MODE \
1724 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1725
c98f8742
JVA
1726/* Define this as 1 if `char' should by default be signed; else as 0. */
1727#define DEFAULT_SIGNED_CHAR 1
1728
1729/* Max number of bytes we can move from memory to memory
1730 in one reasonably fast instruction. */
65d9c0ab
JH
1731#define MOVE_MAX 16
1732
1733/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1734 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1735 number of bytes we can move with a single instruction. */
63001560 1736#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1737
7e24ffc9 1738/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1739 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1740 Increasing the value will always make code faster, but eventually
1741 incurs high cost in increased code size.
c98f8742 1742
e2e52e1b 1743 If you don't define this, a reasonable default is used. */
c98f8742 1744
e04ad03d 1745#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1746
45d78e7f
JJ
1747/* If a clear memory operation would take CLEAR_RATIO or more simple
1748 move-instruction sequences, we will do a clrmem or libcall instead. */
1749
e04ad03d 1750#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1751
53f00dde
UB
1752/* Define if shifts truncate the shift count which implies one can
1753 omit a sign-extension or zero-extension of a shift count.
1754
1755 On i386, shifts do truncate the count. But bit test instructions
1756 take the modulo of the bit offset operand. */
c98f8742
JVA
1757
1758/* #define SHIFT_COUNT_TRUNCATED */
1759
1760/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1761 is done just by pretending it is already truncated. */
1762#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1763
d9f32422
JH
1764/* A macro to update M and UNSIGNEDP when an object whose type is
1765 TYPE and which has the specified mode and signedness is to be
1766 stored in a register. This macro is only called when TYPE is a
1767 scalar type.
1768
f710504c 1769 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1770 quantities to SImode. The choice depends on target type. */
1771
1772#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1773do { \
d9f32422
JH
1774 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1775 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1776 (MODE) = SImode; \
1777} while (0)
d9f32422 1778
c98f8742
JVA
1779/* Specify the machine mode that pointers have.
1780 After generation of rtl, the compiler makes no further distinction
1781 between pointers and any other objects of this machine mode. */
65d9c0ab 1782#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1783
1784/* A function address in a call instruction
1785 is a byte address (for indexing purposes)
1786 so give the MEM rtx a byte's mode. */
1787#define FUNCTION_MODE QImode
d4ba09c0 1788\f
d4ba09c0 1789
d4ba09c0
SC
1790/* A C expression for the cost of a branch instruction. A value of 1
1791 is the default; other values are interpreted relative to that. */
1792
3a4fd356
JH
1793#define BRANCH_COST(speed_p, predictable_p) \
1794 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1795
1796/* Define this macro as a C expression which is nonzero if accessing
1797 less than a word of memory (i.e. a `char' or a `short') is no
1798 faster than accessing a word of memory, i.e., if such access
1799 require more than one instruction or if there is no difference in
1800 cost between byte and (aligned) word loads.
1801
1802 When this macro is not defined, the compiler will access a field by
1803 finding the smallest containing object; when it is defined, a
1804 fullword load will be used if alignment permits. Unless bytes
1805 accesses are faster than word accesses, using word accesses is
1806 preferable since it may eliminate subsequent memory access if
1807 subsequent accesses occur to other fields in the same word of the
1808 structure, but to different bytes. */
1809
1810#define SLOW_BYTE_ACCESS 0
1811
1812/* Nonzero if access to memory by shorts is slow and undesirable. */
1813#define SLOW_SHORT_ACCESS 0
1814
d4ba09c0
SC
1815/* Define this macro to be the value 1 if unaligned accesses have a
1816 cost many times greater than aligned accesses, for example if they
1817 are emulated in a trap handler.
1818
9cd10576
KH
1819 When this macro is nonzero, the compiler will act as if
1820 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1821 moves. This can cause significantly more instructions to be
9cd10576 1822 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1823 accesses only add a cycle or two to the time for a memory access.
1824
1825 If the value of this macro is always zero, it need not be defined. */
1826
e1565e65 1827/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1828
d4ba09c0
SC
1829/* Define this macro if it is as good or better to call a constant
1830 function address than to call an address kept in a register.
1831
1832 Desirable on the 386 because a CALL with a constant address is
1833 faster than one with a register address. */
1834
1835#define NO_FUNCTION_CSE
c98f8742 1836\f
c572e5ba
JVA
1837/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1838 return the mode to be used for the comparison.
1839
1840 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1841 VOIDmode should be used in all other cases.
c572e5ba 1842
16189740 1843 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1844 possible, to allow for more combinations. */
c98f8742 1845
d9a5f180 1846#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1847
9cd10576 1848/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1849 reversed. */
1850
1851#define REVERSIBLE_CC_MODE(MODE) 1
1852
1853/* A C expression whose value is reversed condition code of the CODE for
1854 comparison done in CC_MODE mode. */
3c5cb3e4 1855#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1856
c98f8742
JVA
1857\f
1858/* Control the assembler format that we output, to the extent
1859 this does not vary between assemblers. */
1860
1861/* How to refer to registers in assembler output.
892a2d68 1862 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1863
a7b376ee 1864/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1865 For non floating point regs, the following are the HImode names.
1866
1867 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1868 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1869 "y" code. */
c98f8742 1870
a7180f70
BS
1871#define HI_REGISTER_NAMES \
1872{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1873 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1874 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1875 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1876 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1877 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1878 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1879
c98f8742
JVA
1880#define REGISTER_NAMES HI_REGISTER_NAMES
1881
1882/* Table of additional register names to use in user input. */
1883
1884#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1885{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1886 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1887 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1888 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1889 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1890 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1891
1892/* Note we are omitting these since currently I don't know how
1893to get gcc to use these, since they want the same but different
1894number as al, and ax.
1895*/
1896
c98f8742 1897#define QI_REGISTER_NAMES \
3f3f2124 1898{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1899
1900/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1901 of regs 0 through 3. */
c98f8742
JVA
1902
1903#define QI_HIGH_REGISTER_NAMES \
1904{"ah", "dh", "ch", "bh", }
1905
1906/* How to renumber registers for dbx and gdb. */
1907
d9a5f180
GS
1908#define DBX_REGISTER_NUMBER(N) \
1909 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1910
9a82e702
MS
1911extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1912extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1913extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1914
469ac993
JM
1915/* Before the prologue, RA is at 0(%esp). */
1916#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1917 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1918
e414ab29 1919/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1920#define RETURN_ADDR_RTX(COUNT, FRAME) \
1921 ((COUNT) == 0 \
1922 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1923 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1924
892a2d68 1925/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1926#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1927
a6ab3aad 1928/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1929#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1930
1020a5ab 1931/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1932#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1933#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1934
ad919812 1935
e4c4ebeb
RH
1936/* Select a format to encode pointers in exception handling data. CODE
1937 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1938 true if the symbol may be affected by dynamic relocations.
1939
1940 ??? All x86 object file formats are capable of representing this.
1941 After all, the relocation needed is the same as for the call insn.
1942 Whether or not a particular assembler allows us to enter such, I
1943 guess we'll have to see. */
d9a5f180 1944#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1945 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1946
c98f8742
JVA
1947/* This is how to output an insn to push a register on the stack.
1948 It need not be very fast code. */
1949
d9a5f180 1950#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1951do { \
1952 if (TARGET_64BIT) \
1953 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1954 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1955 else \
1956 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1957} while (0)
c98f8742
JVA
1958
1959/* This is how to output an insn to pop a register from the stack.
1960 It need not be very fast code. */
1961
d9a5f180 1962#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1963do { \
1964 if (TARGET_64BIT) \
1965 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1966 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1967 else \
1968 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1969} while (0)
c98f8742 1970
f88c65f7 1971/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
1972
1973#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 1974 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 1975
f88c65f7 1976/* This is how to output an element of a case-vector that is relative. */
c98f8742 1977
33f7f353 1978#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 1979 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 1980
63001560 1981/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
1982
1983#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1984{ \
1985 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 1986 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
1987}
1988
1989/* A C statement or statements which output an assembler instruction
1990 opcode to the stdio stream STREAM. The macro-operand PTR is a
1991 variable of type `char *' which points to the opcode name in
1992 its "internal" form--the form that is written in the machine
1993 description. */
1994
1995#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1996 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1997
6a90d232
L
1998/* A C statement to output to the stdio stream FILE an assembler
1999 command to pad the location counter to a multiple of 1<<LOG
2000 bytes if it is within MAX_SKIP bytes. */
2001
2002#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2003#undef ASM_OUTPUT_MAX_SKIP_PAD
2004#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2005 if ((LOG) != 0) \
2006 { \
2007 if ((MAX_SKIP) == 0) \
2008 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2009 else \
2010 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2011 }
2012#endif
2013
135a687e
KT
2014/* Write the extra assembler code needed to declare a function
2015 properly. */
2016
2017#undef ASM_OUTPUT_FUNCTION_LABEL
2018#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2019 ix86_asm_output_function_label (FILE, NAME, DECL)
2020
f7288899
EC
2021/* Under some conditions we need jump tables in the text section,
2022 because the assembler cannot handle label differences between
2023 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2024
2025#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2026 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2027 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2028
cea3bd3e
RH
2029/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2030 and switch back. For x86 we do this only to save a few bytes that
2031 would otherwise be unused in the text section. */
ad211091
KT
2032#define CRT_MKSTR2(VAL) #VAL
2033#define CRT_MKSTR(x) CRT_MKSTR2(x)
2034
2035#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2036 asm (SECTION_OP "\n\t" \
2037 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2038 TEXT_SECTION_ASM_OP);
74b42c8b 2039\f
5bf0ebab
RH
2040/* Which processor to schedule for. The cpu attribute defines a list that
2041 mirrors this list, so changes to i386.md must be made at the same time. */
2042
2043enum processor_type
2044{
8383d43c 2045 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2046 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2047 PROCESSOR_PENTIUM,
2048 PROCESSOR_PENTIUMPRO,
cfe1b18f 2049 PROCESSOR_GEODE,
5bf0ebab
RH
2050 PROCESSOR_K6,
2051 PROCESSOR_ATHLON,
2052 PROCESSOR_PENTIUM4,
4977bab6 2053 PROCESSOR_K8,
89c43c0a 2054 PROCESSOR_NOCONA,
05f85dbb 2055 PROCESSOR_CORE2,
d326eaf0
JH
2056 PROCESSOR_GENERIC32,
2057 PROCESSOR_GENERIC64,
21efb4d4 2058 PROCESSOR_AMDFAM10,
1133125e 2059 PROCESSOR_BDVER1,
b6837b94 2060 PROCESSOR_ATOM,
5bf0ebab
RH
2061 PROCESSOR_max
2062};
2063
9e555526 2064extern enum processor_type ix86_tune;
5bf0ebab 2065extern enum processor_type ix86_arch;
5bf0ebab
RH
2066
2067enum fpmath_unit
2068{
2069 FPMATH_387 = 1,
2070 FPMATH_SSE = 2
2071};
2072
2073extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2074
f996902d
RH
2075enum tls_dialect
2076{
2077 TLS_DIALECT_GNU,
5bf5a10b 2078 TLS_DIALECT_GNU2,
f996902d
RH
2079 TLS_DIALECT_SUN
2080};
2081
2082extern enum tls_dialect ix86_tls_dialect;
f996902d 2083
6189a572 2084enum cmodel {
5bf0ebab
RH
2085 CM_32, /* The traditional 32-bit ABI. */
2086 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2087 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2088 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2089 CM_LARGE, /* No assumptions. */
7dcbf659 2090 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2091 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2092 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2093};
2094
5bf0ebab 2095extern enum cmodel ix86_cmodel;
5bf0ebab 2096
8362f420
JH
2097/* Size of the RED_ZONE area. */
2098#define RED_ZONE_SIZE 128
2099/* Reserved area of the red zone for temporaries. */
2100#define RED_ZONE_RESERVE 8
c93e80a5
JH
2101
2102enum asm_dialect {
2103 ASM_ATT,
2104 ASM_INTEL
2105};
5bf0ebab 2106
80f33d06 2107extern enum asm_dialect ix86_asm_dialect;
95899b34 2108extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2109extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2110extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2111
2112/* Smallest class containing REGNO. */
2113extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2114
0948ccb2
PB
2115enum ix86_fpcmp_strategy {
2116 IX86_FPCMP_SAHF,
2117 IX86_FPCMP_COMI,
2118 IX86_FPCMP_ARITH
2119};
22fb740d
JH
2120\f
2121/* To properly truncate FP values into integers, we need to set i387 control
2122 word. We can't emit proper mode switching code before reload, as spills
2123 generated by reload may truncate values incorrectly, but we still can avoid
2124 redundant computation of new control word by the mode switching pass.
2125 The fldcw instructions are still emitted redundantly, but this is probably
2126 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2127 the sequence.
22fb740d
JH
2128
2129 The machinery is to emit simple truncation instructions and split them
2130 before reload to instructions having USEs of two memory locations that
2131 are filled by this code to old and new control word.
fce5a9f2 2132
22fb740d
JH
2133 Post-reload pass may be later used to eliminate the redundant fildcw if
2134 needed. */
2135
ff680eb1
UB
2136enum ix86_entity
2137{
2138 I387_TRUNC = 0,
2139 I387_FLOOR,
2140 I387_CEIL,
2141 I387_MASK_PM,
2142 MAX_386_ENTITIES
2143};
2144
1cba2b96 2145enum ix86_stack_slot
ff680eb1 2146{
80dcd3aa
UB
2147 SLOT_VIRTUAL = 0,
2148 SLOT_TEMP,
ff680eb1
UB
2149 SLOT_CW_STORED,
2150 SLOT_CW_TRUNC,
2151 SLOT_CW_FLOOR,
2152 SLOT_CW_CEIL,
2153 SLOT_CW_MASK_PM,
2154 MAX_386_STACK_LOCALS
2155};
22fb740d
JH
2156
2157/* Define this macro if the port needs extra instructions inserted
2158 for mode switching in an optimizing compilation. */
2159
ff680eb1
UB
2160#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2161 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2162
2163/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2164 initializer for an array of integers. Each initializer element N
2165 refers to an entity that needs mode switching, and specifies the
2166 number of different modes that might need to be set for this
2167 entity. The position of the initializer in the initializer -
2168 starting counting at zero - determines the integer that is used to
2169 refer to the mode-switched entity in question. */
2170
ff680eb1
UB
2171#define NUM_MODES_FOR_MODE_SWITCHING \
2172 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2173
2174/* ENTITY is an integer specifying a mode-switched entity. If
2175 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2176 return an integer value not larger than the corresponding element
2177 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2178 must be switched into prior to the execution of INSN. */
2179
2180#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2181
2182/* This macro specifies the order in which modes for ENTITY are
2183 processed. 0 is the highest priority. */
2184
d9a5f180 2185#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2186
2187/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2188 is the set of hard registers live at the point where the insn(s)
2189 are to be inserted. */
2190
2191#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2192 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2193 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2194 : 0)
ff680eb1 2195
0f0138b6
JH
2196\f
2197/* Avoid renaming of stack registers, as doing so in combination with
2198 scheduling just increases amount of live registers at time and in
2199 the turn amount of fxch instructions needed.
2200
43f3a59d 2201 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2202
d9a5f180 2203#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2204 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2205
3b3c6a3f 2206\f
e91f04de 2207#define FASTCALL_PREFIX '@'
fa1a0d02 2208\f
ec7ded37 2209/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2210
604a6be9 2211#ifndef USED_FOR_TARGET
ec7ded37 2212struct GTY(()) machine_frame_state
cd9c1ca8 2213{
ec7ded37
RH
2214 /* This pair tracks the currently active CFA as reg+offset. When reg
2215 is drap_reg, we don't bother trying to record here the real CFA when
2216 it might really be a DW_CFA_def_cfa_expression. */
2217 rtx cfa_reg;
2218 HOST_WIDE_INT cfa_offset;
2219
2220 /* The current offset (canonically from the CFA) of ESP and EBP.
2221 When stack frame re-alignment is active, these may not be relative
2222 to the CFA. However, in all cases they are relative to the offsets
2223 of the saved registers stored in ix86_frame. */
2224 HOST_WIDE_INT sp_offset;
2225 HOST_WIDE_INT fp_offset;
2226
2227 /* The size of the red-zone that may be assumed for the purposes of
2228 eliding register restore notes in the epilogue. This may be zero
2229 if no red-zone is in effect, or may be reduced from the real
2230 red-zone value by a maximum runtime stack re-alignment value. */
2231 int red_zone_offset;
2232
2233 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2234 value within the frame. If false then the offset above should be
2235 ignored. Note that DRAP, if valid, *always* points to the CFA and
2236 thus has an offset of zero. */
2237 BOOL_BITFIELD sp_valid : 1;
2238 BOOL_BITFIELD fp_valid : 1;
2239 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2240
2241 /* Indicate whether the local stack frame has been re-aligned. When
2242 set, the SP/FP offsets above are relative to the aligned frame
2243 and not the CFA. */
2244 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2245};
2246
d1b38208 2247struct GTY(()) machine_function {
fa1a0d02
JH
2248 struct stack_local_entry *stack_locals;
2249 const char *some_ld_name;
4aab97f9
L
2250 int varargs_gpr_size;
2251 int varargs_fpr_size;
ff680eb1 2252 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2253
2254 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2255 has been computed for. */
2256 int use_fast_prologue_epilogue_nregs;
2257
7458026b
ILT
2258 /* For -fsplit-stack support: A stack local which holds a pointer to
2259 the stack arguments for a function with a variable number of
2260 arguments. This is set at the start of the function and is used
2261 to initialize the overflow_arg_area field of the va_list
2262 structure. */
2263 rtx split_stack_varargs_pointer;
2264
3452586b
RH
2265 /* This value is used for amd64 targets and specifies the current abi
2266 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2267 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2268
2269 /* Nonzero if the function accesses a previous frame. */
2270 BOOL_BITFIELD accesses_prev_frame : 1;
2271
2272 /* Nonzero if the function requires a CLD in the prologue. */
2273 BOOL_BITFIELD needs_cld : 1;
2274
922e3e33
UB
2275 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2276 expander to determine the style used. */
3452586b
RH
2277 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2278
5bf5a10b
AO
2279 /* If true, the current function needs the default PIC register, not
2280 an alternate register (on x86) and must not use the red zone (on
2281 x86_64), even if it's a leaf function. We don't want the
2282 function to be regarded as non-leaf because TLS calls need not
2283 affect register allocation. This flag is set when a TLS call
2284 instruction is expanded within a function, and never reset, even
2285 if all such instructions are optimized away. Use the
2286 ix86_current_function_calls_tls_descriptor macro for a better
2287 approximation. */
3452586b
RH
2288 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2289
2290 /* If true, the current function has a STATIC_CHAIN is placed on the
2291 stack below the return address. */
2292 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2293
2767a7f2
L
2294 /* Nonzero if the current function uses vzeroupper. */
2295 BOOL_BITFIELD use_vzeroupper_p : 1;
2296
2297 /* Nonzero if the current function uses 256bit AVX regisers. */
2298 BOOL_BITFIELD use_avx256_p : 1;
2299
2300 /* Nonzero if caller passes 256bit AVX modes. */
2301 BOOL_BITFIELD caller_pass_avx256_p : 1;
2302
2303 /* Nonzero if caller returns 256bit AVX modes. */
2304 BOOL_BITFIELD caller_return_avx256_p : 1;
2305
2306 /* Nonzero if the current callee passes 256bit AVX modes. */
2307 BOOL_BITFIELD callee_pass_avx256_p : 1;
2308
2309 /* Nonzero if the current callee returns 256bit AVX modes. */
2310 BOOL_BITFIELD callee_return_avx256_p : 1;
2311
ec7ded37
RH
2312 /* During prologue/epilogue generation, the current frame state.
2313 Otherwise, the frame state at the end of the prologue. */
2314 struct machine_frame_state fs;
fa1a0d02 2315};
cd9c1ca8 2316#endif
fa1a0d02
JH
2317
2318#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2319#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2320#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2321#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2322#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2323#define ix86_tls_descriptor_calls_expanded_in_cfun \
2324 (cfun->machine->tls_descriptor_call_expanded_p)
2325/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2326 calls are optimized away, we try to detect cases in which it was
2327 optimized away. Since such instructions (use (reg REG_SP)), we can
2328 verify whether there's any such instruction live by testing that
2329 REG_SP is live. */
2330#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2331 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2332#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2333
1bc7c5b6
ZW
2334/* Control behavior of x86_file_start. */
2335#define X86_FILE_START_VERSION_DIRECTIVE false
2336#define X86_FILE_START_FLTUSED false
2337
7dcbf659
JH
2338/* Flag to mark data that is in the large address area. */
2339#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2340#define SYMBOL_REF_FAR_ADDR_P(X) \
2341 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2342
2343/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2344 have defined always, to avoid ifdefing. */
2345#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2346#define SYMBOL_REF_DLLIMPORT_P(X) \
2347 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2348
2349#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2350#define SYMBOL_REF_DLLEXPORT_P(X) \
2351 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2352
7942e47e
RY
2353extern void debug_ready_dispatch (void);
2354extern void debug_dispatch_window (int);
2355
c98f8742
JVA
2356/*
2357Local variables:
2358version-control: t
2359End:
2360*/