]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
* ChangeLog: Fix whitespace.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
eb5bb0fd 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72 54#define TARGET_AVX OPTION_ISA_AVX
7afac110 55#define TARGET_AVX2 OPTION_ISA_AVX2
95879c72 56#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 57#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 58#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 59#define TARGET_XOP OPTION_ISA_XOP
3e901069 60#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 61#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7 62#define TARGET_ABM OPTION_ISA_ABM
91afcfa3 63#define TARGET_BMI OPTION_ISA_BMI
82feeb8d 64#define TARGET_BMI2 OPTION_ISA_BMI2
5fcafa60 65#define TARGET_LZCNT OPTION_ISA_LZCNT
94d13ad1 66#define TARGET_TBM OPTION_ISA_TBM
ab442df7
MM
67#define TARGET_POPCNT OPTION_ISA_POPCNT
68#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 69#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 70#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
71#define TARGET_AES OPTION_ISA_AES
72#define TARGET_PCLMUL OPTION_ISA_PCLMUL
73#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
74#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
75#define TARGET_RDRND OPTION_ISA_RDRND
76#define TARGET_F16C OPTION_ISA_F16C
bf2eaa3f 77#define TARGET_RTM OPTION_ISA_RTM
5dcfdccd 78#define TARGET_HLE OPTION_ISA_HLE
4c340b5d 79#define TARGET_RDSEED OPTION_ISA_RDSEED
e61c94dd 80#define TARGET_PRFCHW OPTION_ISA_PRFCHW
d05e383b 81#define TARGET_ADX OPTION_ISA_ADX
ab442df7 82
1ab8b791
L
83#define TARGET_LP64 OPTION_ABI_64
84#define TARGET_X32 OPTION_ABI_X32
04e1d06b 85
cbf2e4d4
HJ
86/* SSE4.1 defines round instructions */
87#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 88#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 89
26b5109f
RS
90#include "config/vxworks-dummy.h"
91
7eb68c06 92#include "config/i386/i386-opts.h"
ccf8e764 93
c69fa2d4 94#define MAX_STRINGOP_ALGS 4
ccf8e764 95
8c996513
JH
96/* Specify what algorithm to use for stringops on known size.
97 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
98 known at compile time or estimated via feedback, the SIZE array
99 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 100 means infinity). Corresponding ALG is used then.
8c996513 101 For example initializer:
4f3f76e6 102 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 103 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 104 be used otherwise. */
8c996513
JH
105struct stringop_algs
106{
107 const enum stringop_alg unknown_size;
108 const struct stringop_strategy {
109 const int max;
110 const enum stringop_alg alg;
c69fa2d4 111 } size [MAX_STRINGOP_ALGS];
8c996513
JH
112};
113
d4ba09c0
SC
114/* Define the specific costs for a given cpu */
115
116struct processor_costs {
8b60264b
KG
117 const int add; /* cost of an add instruction */
118 const int lea; /* cost of a lea instruction */
119 const int shift_var; /* variable shift costs */
120 const int shift_const; /* constant shift costs */
f676971a 121 const int mult_init[5]; /* cost of starting a multiply
4977bab6 122 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 123 const int mult_bit; /* cost of multiply per each bit set */
f676971a 124 const int divide[5]; /* cost of a divide/mod
4977bab6 125 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
126 int movsx; /* The cost of movsx operation. */
127 int movzx; /* The cost of movzx operation. */
8b60264b
KG
128 const int large_insn; /* insns larger than this cost more */
129 const int move_ratio; /* The threshold of number of scalar
ac775968 130 memory-to-memory move insns. */
8b60264b
KG
131 const int movzbl_load; /* cost of loading using movzbl */
132 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
133 in QImode, HImode and SImode relative
134 to reg-reg move (2). */
8b60264b 135 const int int_store[3]; /* cost of storing integer register
96e7ae40 136 in QImode, HImode and SImode */
8b60264b
KG
137 const int fp_move; /* cost of reg,reg fld/fst */
138 const int fp_load[3]; /* cost of loading FP register
96e7ae40 139 in SFmode, DFmode and XFmode */
8b60264b 140 const int fp_store[3]; /* cost of storing FP register
96e7ae40 141 in SFmode, DFmode and XFmode */
8b60264b
KG
142 const int mmx_move; /* cost of moving MMX register. */
143 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 144 in SImode and DImode */
8b60264b 145 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 146 in SImode and DImode */
8b60264b
KG
147 const int sse_move; /* cost of moving SSE register. */
148 const int sse_load[3]; /* cost of loading SSE register
fa79946e 149 in SImode, DImode and TImode*/
8b60264b 150 const int sse_store[3]; /* cost of storing SSE register
fa79946e 151 in SImode, DImode and TImode*/
8b60264b 152 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 153 integer and vice versa. */
46cb0441
ZD
154 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
155 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
156 const int prefetch_block; /* bytes moved to cache for prefetch. */
157 const int simultaneous_prefetches; /* number of parallel prefetch
158 operations. */
4977bab6 159 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
160 const int fadd; /* cost of FADD and FSUB instructions. */
161 const int fmul; /* cost of FMUL instruction. */
162 const int fdiv; /* cost of FDIV instruction. */
163 const int fabs; /* cost of FABS instruction. */
164 const int fchs; /* cost of FCHS instruction. */
165 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 166 /* Specify what algorithm
bee51209
L
167 to use for stringops on unknown size. */
168 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
169 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
170 load and store. */
171 const int scalar_load_cost; /* Cost of scalar load. */
172 const int scalar_store_cost; /* Cost of scalar store. */
173 const int vec_stmt_cost; /* Cost of any vector operation, excluding
174 load, store, vector-to-scalar and
175 scalar-to-vector operation. */
176 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
177 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 178 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
179 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
180 const int vec_store_cost; /* Cost of vector store. */
181 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
182 cost model. */
183 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
184 vectorizer cost model. */
d4ba09c0
SC
185};
186
8b60264b 187extern const struct processor_costs *ix86_cost;
b2077fd2
JH
188extern const struct processor_costs ix86_size_cost;
189
190#define ix86_cur_cost() \
191 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 192
c98f8742
JVA
193/* Macros used in the machine description to test the flags. */
194
ddd5a7c1 195/* configure can arrange to make this 2, to force a 486. */
e075ae69 196
35b528be 197#ifndef TARGET_CPU_DEFAULT
d326eaf0 198#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 199#endif
35b528be 200
004d3859
GK
201#ifndef TARGET_FPMATH_DEFAULT
202#define TARGET_FPMATH_DEFAULT \
203 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
204#endif
205
6ac49599 206#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 207
5791cc29
JT
208/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
209 compile-time constant. */
210#ifdef IN_LIBGCC2
6ac49599 211#undef TARGET_64BIT
5791cc29
JT
212#ifdef __x86_64__
213#define TARGET_64BIT 1
214#else
215#define TARGET_64BIT 0
216#endif
217#else
6ac49599
RS
218#ifndef TARGET_BI_ARCH
219#undef TARGET_64BIT
67adf6a9 220#if TARGET_64BIT_DEFAULT
0c2dc519
JH
221#define TARGET_64BIT 1
222#else
223#define TARGET_64BIT 0
224#endif
225#endif
5791cc29 226#endif
25f94bb5 227
750054a2
CT
228#define HAS_LONG_COND_BRANCH 1
229#define HAS_LONG_UNCOND_BRANCH 1
230
9e555526
RH
231#define TARGET_386 (ix86_tune == PROCESSOR_I386)
232#define TARGET_486 (ix86_tune == PROCESSOR_I486)
233#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
234#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 235#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
236#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
237#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
238#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
239#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 240#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 241#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
ab247762
MK
242#define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
243#define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
244#define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
b2b01543
BS
245#define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
246#define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
247#define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
d326eaf0
JH
248#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
249#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
250#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 251#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 252#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 253#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
14b52538 254#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 255#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 256#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 257
80fd744f
RH
258/* Feature tests against the various tunings. */
259enum ix86_tune_indices {
260 X86_TUNE_USE_LEAVE,
261 X86_TUNE_PUSH_MEMORY,
262 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 263 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
264 X86_TUNE_BRANCH_PREDICTION_HINTS,
265 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 266 X86_TUNE_USE_SAHF,
80fd744f
RH
267 X86_TUNE_MOVX,
268 X86_TUNE_PARTIAL_REG_STALL,
269 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 270 X86_TUNE_LCP_STALL,
80fd744f
RH
271 X86_TUNE_USE_HIMODE_FIOP,
272 X86_TUNE_USE_SIMODE_FIOP,
273 X86_TUNE_USE_MOV0,
274 X86_TUNE_USE_CLTD,
275 X86_TUNE_USE_XCHGB,
276 X86_TUNE_SPLIT_LONG_MOVES,
277 X86_TUNE_READ_MODIFY_WRITE,
278 X86_TUNE_READ_MODIFY,
279 X86_TUNE_PROMOTE_QIMODE,
280 X86_TUNE_FAST_PREFIX,
281 X86_TUNE_SINGLE_STRINGOP,
282 X86_TUNE_QIMODE_MATH,
283 X86_TUNE_HIMODE_MATH,
284 X86_TUNE_PROMOTE_QI_REGS,
285 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
286 X86_TUNE_SINGLE_POP,
287 X86_TUNE_DOUBLE_POP,
288 X86_TUNE_SINGLE_PUSH,
289 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
290 X86_TUNE_INTEGER_DFMODE_MOVES,
291 X86_TUNE_PARTIAL_REG_DEPENDENCY,
292 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
293 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
294 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
295 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
296 X86_TUNE_SSE_SPLIT_REGS,
297 X86_TUNE_SSE_TYPELESS_STORES,
298 X86_TUNE_SSE_LOAD0_BY_PXOR,
299 X86_TUNE_MEMORY_MISMATCH_STALL,
300 X86_TUNE_PROLOGUE_USING_MOVE,
301 X86_TUNE_EPILOGUE_USING_MOVE,
302 X86_TUNE_SHIFT1,
303 X86_TUNE_USE_FFREEP,
304 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 305 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
306 X86_TUNE_FOUR_JUMP_LIMIT,
307 X86_TUNE_SCHEDULE,
308 X86_TUNE_USE_BT,
309 X86_TUNE_USE_INCDEC,
310 X86_TUNE_PAD_RETURNS,
e7ed95a2 311 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 312 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
313 X86_TUNE_SHORTEN_X87_SSE,
314 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 315 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
316 X86_TUNE_SLOW_IMUL_IMM32_MEM,
317 X86_TUNE_SLOW_IMUL_IMM8,
318 X86_TUNE_MOVE_M1_VIA_OR,
319 X86_TUNE_NOT_UNPAIRABLE,
320 X86_TUNE_NOT_VECTORMODE,
54723b46 321 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 322 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 323 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 324 X86_TUNE_OPT_AGU,
e72eba85 325 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 326 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 327 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
328 X86_TUNE_REASSOC_INT_TO_PARALLEL,
329 X86_TUNE_REASSOC_FP_TO_PARALLEL,
80fd744f
RH
330
331 X86_TUNE_LAST
332};
333
ab442df7 334extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
335
336#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
337#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
338#define TARGET_ZERO_EXTEND_WITH_AND \
339 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 340#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
341#define TARGET_BRANCH_PREDICTION_HINTS \
342 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
343#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
344#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
345#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
346#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
347#define TARGET_PARTIAL_FLAG_REG_STALL \
348 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
349#define TARGET_LCP_STALL \
350 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
351#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
352#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
353#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
354#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
355#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
356#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
357#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
358#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
359#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
360#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
361#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
362#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
363#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
364#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
365#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
366#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
367#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
368#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
369#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
370#define TARGET_INTEGER_DFMODE_MOVES \
371 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
372#define TARGET_PARTIAL_REG_DEPENDENCY \
373 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
374#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
375 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
376#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
378#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
379 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
380#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
381 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
382#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
383#define TARGET_SSE_TYPELESS_STORES \
384 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
385#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
386#define TARGET_MEMORY_MISMATCH_STALL \
387 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
388#define TARGET_PROLOGUE_USING_MOVE \
389 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
390#define TARGET_EPILOGUE_USING_MOVE \
391 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
392#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
393#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
394#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
395#define TARGET_INTER_UNIT_CONVERSIONS\
396 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
397#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
398#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
399#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
400#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
401#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
402#define TARGET_PAD_SHORT_FUNCTION \
403 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
404#define TARGET_EXT_80387_CONSTANTS \
405 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
406#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
407#define TARGET_AVOID_VECTOR_DECODE \
408 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
409#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
410 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
411#define TARGET_SLOW_IMUL_IMM32_MEM \
412 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
413#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
414#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
415#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
416#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
417#define TARGET_USE_VECTOR_FP_CONVERTS \
418 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
419#define TARGET_USE_VECTOR_CONVERTS \
420 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
421#define TARGET_FUSE_CMP_AND_BRANCH \
422 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 423#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
424#define TARGET_VECTORIZE_DOUBLE \
425 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
426#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
427 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
428#define TARGET_AVX128_OPTIMAL \
429 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
430#define TARGET_REASSOC_INT_TO_PARALLEL \
431 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
432#define TARGET_REASSOC_FP_TO_PARALLEL \
433 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
434
80fd744f
RH
435/* Feature tests against the various architecture variations. */
436enum ix86_arch_indices {
cef31f9c 437 X86_ARCH_CMOV,
80fd744f
RH
438 X86_ARCH_CMPXCHG,
439 X86_ARCH_CMPXCHG8B,
440 X86_ARCH_XADD,
441 X86_ARCH_BSWAP,
442
443 X86_ARCH_LAST
444};
4f3f76e6 445
ab442df7 446extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 447
cef31f9c 448#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
449#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
450#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
451#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
452#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
453
cef31f9c
UB
454/* For sane SSE instruction set generation we need fcomi instruction.
455 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
456 expands to a sequence that includes conditional move. */
457#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
458
80fd744f
RH
459#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
460
461extern int x86_prefetch_sse;
0a1c5e55 462
80fd744f
RH
463#define TARGET_PREFETCH_SSE x86_prefetch_sse
464
80fd744f
RH
465#define ASSEMBLER_DIALECT (ix86_asm_dialect)
466
467#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
468#define TARGET_MIX_SSE_I387 \
469 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
470
471#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
472#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
473#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 474#define TARGET_SUN_TLS 0
1ef45b77 475
67adf6a9
RH
476#ifndef TARGET_64BIT_DEFAULT
477#define TARGET_64BIT_DEFAULT 0
25f94bb5 478#endif
74dc3e94
RH
479#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
480#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
481#endif
25f94bb5 482
79f5e442
ZD
483/* Fence to use after loop using storent. */
484
485extern tree x86_mfence;
486#define FENCE_FOLLOWING_MOVNT x86_mfence
487
0ed4a390
JL
488/* Once GDB has been enhanced to deal with functions without frame
489 pointers, we can change this to allow for elimination of
490 the frame pointer in leaf functions. */
491#define TARGET_DEFAULT 0
67adf6a9 492
0a1c5e55
UB
493/* Extra bits to force. */
494#define TARGET_SUBTARGET_DEFAULT 0
495#define TARGET_SUBTARGET_ISA_DEFAULT 0
496
497/* Extra bits to force on w/ 32-bit mode. */
498#define TARGET_SUBTARGET32_DEFAULT 0
499#define TARGET_SUBTARGET32_ISA_DEFAULT 0
500
ccf8e764
RH
501/* Extra bits to force on w/ 64-bit mode. */
502#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 503#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 504
fee3eacd
IS
505/* Replace MACH-O, ifdefs by in-line tests, where possible.
506 (a) Macros defined in config/i386/darwin.h */
b069de3b 507#define TARGET_MACHO 0
9005471b 508#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
509#define MACHOPIC_ATT_STUB 0
510/* (b) Macros defined in config/darwin.h */
511#define MACHO_DYNAMIC_NO_PIC_P 0
512#define MACHOPIC_INDIRECT 0
513#define MACHOPIC_PURE 0
9005471b
IS
514
515/* For the Windows 64-bit ABI. */
7c800926
KT
516#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
517
6510e8bb
KT
518/* For the Windows 32-bit ABI. */
519#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
520
f81c9774
RH
521/* This is re-defined by cygming.h. */
522#define TARGET_SEH 0
523
51212b32 524/* The default abi used by target. */
7c800926 525#define DEFAULT_ABI SYSV_ABI
ccf8e764 526
cc69336f
RH
527/* Subtargets may reset this to 1 in order to enable 96-bit long double
528 with the rounding mode forced to 53 bits. */
529#define TARGET_96_ROUND_53_LONG_DOUBLE 0
530
682cd442
GK
531/* -march=native handling only makes sense with compiler running on
532 an x86 or x86_64 chip. If changing this condition, also change
533 the condition in driver-i386.c. */
534#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
535/* In driver-i386.c. */
536extern const char *host_detect_local_cpu (int argc, const char **argv);
537#define EXTRA_SPEC_FUNCTIONS \
538 { "local_cpu_detect", host_detect_local_cpu },
682cd442 539#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
540#endif
541
8981c15b
JM
542#if TARGET_64BIT_DEFAULT
543#define OPT_ARCH64 "!m32"
544#define OPT_ARCH32 "m32"
545#else
f0ea7581
L
546#define OPT_ARCH64 "m64|mx32"
547#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
548#endif
549
1cba2b96
EC
550/* Support for configure-time defaults of some command line options.
551 The order here is important so that -march doesn't squash the
552 tune or cpu values. */
ce998900 553#define OPTION_DEFAULT_SPECS \
da2d4c01 554 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
555 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
556 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 557 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
558 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
559 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
560 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
561 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
562 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 563
241e1a89
SC
564/* Specs for the compiler proper */
565
628714d8 566#ifndef CC1_CPU_SPEC
eb5bb0fd 567#define CC1_CPU_SPEC_1 ""
fa959ce4 568
682cd442 569#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
570#define CC1_CPU_SPEC CC1_CPU_SPEC_1
571#else
572#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
573"%{march=native:%>march=native %:local_cpu_detect(arch) \
574 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
575%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 576#endif
241e1a89 577#endif
c98f8742 578\f
30efe578 579/* Target CPU builtins. */
ab442df7
MM
580#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
581
582/* Target Pragmas. */
583#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 584
c2f17e19
UB
585enum target_cpu_default
586{
587 TARGET_CPU_DEFAULT_generic = 0,
588
589 TARGET_CPU_DEFAULT_i386,
590 TARGET_CPU_DEFAULT_i486,
591 TARGET_CPU_DEFAULT_pentium,
592 TARGET_CPU_DEFAULT_pentium_mmx,
593 TARGET_CPU_DEFAULT_pentiumpro,
594 TARGET_CPU_DEFAULT_pentium2,
595 TARGET_CPU_DEFAULT_pentium3,
596 TARGET_CPU_DEFAULT_pentium4,
597 TARGET_CPU_DEFAULT_pentium_m,
598 TARGET_CPU_DEFAULT_prescott,
599 TARGET_CPU_DEFAULT_nocona,
600 TARGET_CPU_DEFAULT_core2,
9d8477b6 601 TARGET_CPU_DEFAULT_corei7,
b6837b94 602 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
603
604 TARGET_CPU_DEFAULT_geode,
605 TARGET_CPU_DEFAULT_k6,
606 TARGET_CPU_DEFAULT_k6_2,
607 TARGET_CPU_DEFAULT_k6_3,
608 TARGET_CPU_DEFAULT_athlon,
609 TARGET_CPU_DEFAULT_athlon_sse,
610 TARGET_CPU_DEFAULT_k8,
611 TARGET_CPU_DEFAULT_amdfam10,
1133125e 612 TARGET_CPU_DEFAULT_bdver1,
4d652a18 613 TARGET_CPU_DEFAULT_bdver2,
14b52538 614 TARGET_CPU_DEFAULT_btver1,
e32bfc16 615 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
616
617 TARGET_CPU_DEFAULT_max
618};
0c2dc519 619
628714d8 620#ifndef CC1_SPEC
8015b78d 621#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
622#endif
623
624/* This macro defines names of additional specifications to put in the
625 specs that can be used in various specifications like CC1_SPEC. Its
626 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
627
628 Each subgrouping contains a string constant, that defines the
188fc5b5 629 specification name, and a string constant that used by the GCC driver
bcd86433
SC
630 program.
631
632 Do not define this macro if it does not need to do anything. */
633
634#ifndef SUBTARGET_EXTRA_SPECS
635#define SUBTARGET_EXTRA_SPECS
636#endif
637
638#define EXTRA_SPECS \
628714d8 639 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
640 SUBTARGET_EXTRA_SPECS
641\f
ce998900 642
d57a4b98
RH
643/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
644 FPU, assume that the fpcw is set to extended precision; when using
645 only SSE, rounding is correct; when using both SSE and the FPU,
646 the rounding precision is indeterminate, since either may be chosen
647 apparently at random. */
648#define TARGET_FLT_EVAL_METHOD \
5ccd517a 649 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 650
8ce94e44
JM
651/* Whether to allow x87 floating-point arithmetic on MODE (one of
652 SFmode, DFmode and XFmode) in the current excess precision
653 configuration. */
654#define X87_ENABLE_ARITH(MODE) \
655 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
656
657/* Likewise, whether to allow direct conversions from integer mode
658 IMODE (HImode, SImode or DImode) to MODE. */
659#define X87_ENABLE_FLOAT(MODE, IMODE) \
660 (flag_excess_precision == EXCESS_PRECISION_FAST \
661 || (MODE) == XFmode \
662 || ((MODE) == DFmode && (IMODE) == SImode) \
663 || (IMODE) == HImode)
664
979c67a5
UB
665/* target machine storage layout */
666
65d9c0ab
JH
667#define SHORT_TYPE_SIZE 16
668#define INT_TYPE_SIZE 32
f0ea7581
L
669#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
670#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 671#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 672#define FLOAT_TYPE_SIZE 32
65d9c0ab 673#define DOUBLE_TYPE_SIZE 64
c637141a 674#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 675
c637141a
L
676/* Define this to set long double type size to use in libgcc2.c, which can
677 not depend on target_flags. */
678#ifdef __LONG_DOUBLE_64__
679#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
680#else
681#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
682#endif
683
684#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 685
67adf6a9 686#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 687#define MAX_BITS_PER_WORD 64
0c2dc519
JH
688#else
689#define MAX_BITS_PER_WORD 32
0c2dc519
JH
690#endif
691
c98f8742
JVA
692/* Define this if most significant byte of a word is the lowest numbered. */
693/* That is true on the 80386. */
694
695#define BITS_BIG_ENDIAN 0
696
697/* Define this if most significant byte of a word is the lowest numbered. */
698/* That is not true on the 80386. */
699#define BYTES_BIG_ENDIAN 0
700
701/* Define this if most significant word of a multiword number is the lowest
702 numbered. */
703/* Not true for 80386 */
704#define WORDS_BIG_ENDIAN 0
705
c98f8742 706/* Width of a word, in units (bytes). */
4ae8027b 707#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
708
709#ifndef IN_LIBGCC2
2e64c636
JH
710#define MIN_UNITS_PER_WORD 4
711#endif
c98f8742 712
c98f8742 713/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 714#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 715
e075ae69 716/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 717#define STACK_BOUNDARY \
51212b32 718 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 719
2e3f842f
L
720/* Stack boundary of the main function guaranteed by OS. */
721#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
722
de1132d1 723/* Minimum stack boundary. */
5bfb2af2 724#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 725
d1f87653 726/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 727 aligned; the compiler cannot rely on having this alignment. */
e075ae69 728#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 729
de1132d1 730/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
731 both 32bit and 64bit, to support codes that need 128 bit stack
732 alignment for SSE instructions, but can't realign the stack. */
733#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
734
735/* 1 if -mstackrealign should be turned on by default. It will
736 generate an alternate prologue and epilogue that realigns the
737 runtime stack if nessary. This supports mixing codes that keep a
738 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 739 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
740#define STACK_REALIGN_DEFAULT 0
741
742/* Boundary (in *bits*) on which the incoming stack is aligned. */
743#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 744
a2851b75
TG
745/* According to Windows x64 software convention, the maximum stack allocatable
746 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
747 instructions allowed to adjust the stack pointer in the epilog, forcing the
748 use of frame pointer for frames larger than 2 GB. This theorical limit
749 is reduced by 256, an over-estimated upper bound for the stack use by the
750 prologue.
751 We define only one threshold for both the prolog and the epilog. When the
4e523f33 752 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
753 regs, then save them, and then allocate the remaining. There is no SEH
754 unwind info for this later allocation. */
755#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
756
ebff937c
SH
757/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
758 mandatory for the 64-bit ABI, and may or may not be true for other
759 operating systems. */
760#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
761
f963b5d9
RS
762/* Minimum allocation boundary for the code of a function. */
763#define FUNCTION_BOUNDARY 8
764
765/* C++ stores the virtual bit in the lowest bit of function pointers. */
766#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 767
c98f8742
JVA
768/* Minimum size in bits of the largest boundary to which any
769 and all fundamental data types supported by the hardware
770 might need to be aligned. No data type wants to be aligned
17f24ff0 771 rounder than this.
fce5a9f2 772
d1f87653 773 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
774 and Pentium Pro XFmode values at 128 bit boundaries. */
775
2824d6e5 776#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 777
2e3f842f
L
778/* Maximum stack alignment. */
779#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
780
6e4f1168
L
781/* Alignment value for attribute ((aligned)). It is a constant since
782 it is the part of the ABI. We shouldn't change it with -mavx. */
783#define ATTRIBUTE_ALIGNED_VALUE 128
784
822eda12 785/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 786#define ALIGN_MODE_128(MODE) \
4501d314 787 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 788
17f24ff0 789/* The published ABIs say that doubles should be aligned on word
d1f87653 790 boundaries, so lower the alignment for structure fields unless
6fc605d8 791 -malign-double is set. */
e932b21b 792
e83f3cff
RH
793/* ??? Blah -- this macro is used directly by libobjc. Since it
794 supports no vector modes, cut out the complexity and fall back
795 on BIGGEST_FIELD_ALIGNMENT. */
796#ifdef IN_TARGET_LIBS
ef49d42e
JH
797#ifdef __x86_64__
798#define BIGGEST_FIELD_ALIGNMENT 128
799#else
e83f3cff 800#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 801#endif
e83f3cff 802#else
e932b21b
JH
803#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
804 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 805#endif
c98f8742 806
e5e8a8bf 807/* If defined, a C expression to compute the alignment given to a
a7180f70 808 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
809 and ALIGN is the alignment that the object would ordinarily have.
810 The value of this macro is used instead of that alignment to align
811 the object.
812
813 If this macro is not defined, then ALIGN is used.
814
815 The typical use of this macro is to increase alignment for string
816 constants to be word aligned so that `strcpy' calls that copy
817 constants can be done inline. */
818
d9a5f180 819#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 820
8a022443
JW
821/* If defined, a C expression to compute the alignment for a static
822 variable. TYPE is the data type, and ALIGN is the alignment that
823 the object would ordinarily have. The value of this macro is used
824 instead of that alignment to align the object.
825
826 If this macro is not defined, then ALIGN is used.
827
828 One use of this macro is to increase alignment of medium-size
829 data to make it all fit in fewer cache lines. Another is to
830 cause character arrays to be word-aligned so that `strcpy' calls
831 that copy constants to character arrays can be done inline. */
832
d9a5f180 833#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
834
835/* If defined, a C expression to compute the alignment for a local
836 variable. TYPE is the data type, and ALIGN is the alignment that
837 the object would ordinarily have. The value of this macro is used
838 instead of that alignment to align the object.
839
840 If this macro is not defined, then ALIGN is used.
841
842 One use of this macro is to increase alignment of medium-size
843 data to make it all fit in fewer cache lines. */
844
76fe54f0
L
845#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
846 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
847
848/* If defined, a C expression to compute the alignment for stack slot.
849 TYPE is the data type, MODE is the widest mode available, and ALIGN
850 is the alignment that the slot would ordinarily have. The value of
851 this macro is used instead of that alignment to align the slot.
852
853 If this macro is not defined, then ALIGN is used when TYPE is NULL,
854 Otherwise, LOCAL_ALIGNMENT will be used.
855
856 One use of this macro is to set alignment of stack slot to the
857 maximum alignment of all possible modes which the slot may have. */
858
859#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
860 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 861
9bfaf89d
JJ
862/* If defined, a C expression to compute the alignment for a local
863 variable DECL.
864
865 If this macro is not defined, then
866 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
867
868 One use of this macro is to increase alignment of medium-size
869 data to make it all fit in fewer cache lines. */
870
871#define LOCAL_DECL_ALIGNMENT(DECL) \
872 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
873
ae58e548
JJ
874/* If defined, a C expression to compute the minimum required alignment
875 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
876 MODE, assuming normal alignment ALIGN.
877
878 If this macro is not defined, then (ALIGN) will be used. */
879
880#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
881 ix86_minimum_alignment (EXP, MODE, ALIGN)
882
9bfaf89d 883
9cd10576 884/* Set this nonzero if move instructions will actually fail to work
c98f8742 885 when given unaligned data. */
b4ac57ab 886#define STRICT_ALIGNMENT 0
c98f8742
JVA
887
888/* If bit field type is int, don't let it cross an int,
889 and give entire struct the alignment of an int. */
43a88a8c 890/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 891#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
892\f
893/* Standard register usage. */
894
895/* This processor has special stack-like registers. See reg-stack.c
892a2d68 896 for details. */
c98f8742
JVA
897
898#define STACK_REGS
ce998900 899
d9a5f180 900#define IS_STACK_MODE(MODE) \
63001560
UB
901 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
902 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 903 || (MODE) == XFmode)
c98f8742
JVA
904
905/* Number of actual hardware registers.
906 The hardware registers are assigned numbers for the compiler
907 from 0 to just below FIRST_PSEUDO_REGISTER.
908 All registers that the compiler knows about must be given numbers,
909 even those that are not normally considered general registers.
910
911 In the 80386 we give the 8 general purpose registers the numbers 0-7.
912 We number the floating point registers 8-15.
913 Note that registers 0-7 can be accessed as a short or int,
914 while only 0-3 may be used with byte `mov' instructions.
915
916 Reg 16 does not correspond to any hardware register, but instead
917 appears in the RTL as an argument pointer prior to reload, and is
918 eliminated during reloading in favor of either the stack or frame
892a2d68 919 pointer. */
c98f8742 920
b0d95de8 921#define FIRST_PSEUDO_REGISTER 53
c98f8742 922
3073d01c
ML
923/* Number of hardware registers that go into the DWARF-2 unwind info.
924 If not defined, equals FIRST_PSEUDO_REGISTER. */
925
926#define DWARF_FRAME_REGISTERS 17
927
c98f8742
JVA
928/* 1 for registers that have pervasive standard uses
929 and are not available for the register allocator.
3f3f2124 930 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 931
621bc046
UB
932 REX registers are disabled for 32bit targets in
933 TARGET_CONDITIONAL_REGISTER_USAGE. */
934
a7180f70
BS
935#define FIXED_REGISTERS \
936/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 937{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
938/*arg,flags,fpsr,fpcr,frame*/ \
939 1, 1, 1, 1, 1, \
a7180f70
BS
940/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
941 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 942/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
943 0, 0, 0, 0, 0, 0, 0, 0, \
944/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 945 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 946/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 947 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
948
949/* 1 for registers not available across function calls.
950 These must include the FIXED_REGISTERS and also any
951 registers that can be used without being saved.
952 The latter must include the registers where values are returned
953 and the register where structure-value addresses are passed.
fce5a9f2
EC
954 Aside from that, you can include as many other registers as you like.
955
621bc046
UB
956 Value is set to 1 if the register is call used unconditionally.
957 Bit one is set if the register is call used on TARGET_32BIT ABI.
958 Bit two is set if the register is call used on TARGET_64BIT ABI.
959 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
960
961 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
962
a7180f70
BS
963#define CALL_USED_REGISTERS \
964/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 965{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
966/*arg,flags,fpsr,fpcr,frame*/ \
967 1, 1, 1, 1, 1, \
a7180f70 968/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 969 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 970/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 971 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 972/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 973 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 974/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 975 6, 6, 6, 6, 6, 6, 6, 6 }
c98f8742 976
3b3c6a3f
MM
977/* Order in which to allocate registers. Each register must be
978 listed once, even those in FIXED_REGISTERS. List frame pointer
979 late and fixed registers last. Note that, in general, we prefer
980 registers listed in CALL_USED_REGISTERS, keeping the others
981 available for storage of persistent values.
982
5a733826 983 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 984 so this is just empty initializer for array. */
3b3c6a3f 985
162f023b
JH
986#define REG_ALLOC_ORDER \
987{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
988 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
989 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 990 48, 49, 50, 51, 52 }
3b3c6a3f 991
5a733826 992/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 993 to be rearranged based on a particular function. When using sse math,
03c259ad 994 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 995
5a733826 996#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 997
f5316dfe 998
7c800926
KT
999#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1000
c98f8742
JVA
1001/* Return number of consecutive hard regs needed starting at reg REGNO
1002 to hold something of mode MODE.
1003 This is ordinarily the length in words of a value of mode MODE
1004 but can be less for certain modes in special long registers.
1005
fce5a9f2 1006 Actually there are no two word move instructions for consecutive
c98f8742 1007 registers. And only registers 0-3 may have mov byte instructions
63001560 1008 applied to them. */
c98f8742 1009
ce998900 1010#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1011 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1012 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1013 : ((MODE) == XFmode \
92d0fb09 1014 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1015 : (MODE) == XCmode \
92d0fb09 1016 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1017 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1018
8521c414
JM
1019#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1020 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1021 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1022 ? 0 \
1023 : ((MODE) == XFmode || (MODE) == XCmode)) \
1024 : 0)
1025
1026#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1027
95879c72
L
1028#define VALID_AVX256_REG_MODE(MODE) \
1029 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1030 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1031 || (MODE) == V4DFmode)
95879c72 1032
ce998900
UB
1033#define VALID_SSE2_REG_MODE(MODE) \
1034 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1035 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1036
d9a5f180 1037#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1038 ((MODE) == V1TImode || (MODE) == TImode \
1039 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1040 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1041
47f339cf 1042#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1043 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1044
d9a5f180 1045#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1046 ((MODE == V1DImode) || (MODE) == DImode \
1047 || (MODE) == V2SImode || (MODE) == SImode \
1048 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1049
ce998900
UB
1050#define VALID_DFP_MODE_P(MODE) \
1051 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1052
d9a5f180 1053#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1054 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1055 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1056
d9a5f180 1057#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1058 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1059 || (MODE) == DImode \
1060 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1061 || (MODE) == CDImode \
1062 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1063 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1064
822eda12 1065/* Return true for modes passed in SSE registers. */
ce998900 1066#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1067 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1068 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1069 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1070 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1071 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1072 || (MODE) == V2TImode)
822eda12 1073
e075ae69 1074/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1075
a946dd00 1076#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1077 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1078
1079/* Value is 1 if it is a good idea to tie two pseudo registers
1080 when one has mode MODE1 and one has mode MODE2.
1081 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1082 for any hard reg, then this must be 0 for correct output. */
1083
c1c5b5e3 1084#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1085
ff25ef99
ZD
1086/* It is possible to write patterns to move flags; but until someone
1087 does it, */
1088#define AVOID_CCMODE_COPIES
c98f8742 1089
e075ae69 1090/* Specify the modes required to caller save a given hard regno.
787dc842 1091 We do this on i386 to prevent flags from being saved at all.
e075ae69 1092
787dc842
JH
1093 Kill any attempts to combine saving of modes. */
1094
d9a5f180
GS
1095#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1096 (CC_REGNO_P (REGNO) ? VOIDmode \
1097 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1098 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1099 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
fc27f749 1100 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
d2836273 1101 : (MODE))
ce998900 1102
51ba747a
RH
1103/* The only ABI that saves SSE registers across calls is Win64 (thus no
1104 need to check the current ABI here), and with AVX enabled Win64 only
1105 guarantees that the low 16 bytes are saved. */
1106#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1107 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1108
c98f8742
JVA
1109/* Specify the registers used for certain standard purposes.
1110 The values of these macros are register numbers. */
1111
1112/* on the 386 the pc register is %eip, and is not usable as a general
1113 register. The ordinary mov instructions won't work */
1114/* #define PC_REGNUM */
1115
1116/* Register to use for pushing function arguments. */
1117#define STACK_POINTER_REGNUM 7
1118
1119/* Base register for access to local variables of the function. */
564d80f4
JH
1120#define HARD_FRAME_POINTER_REGNUM 6
1121
1122/* Base register for access to local variables of the function. */
b0d95de8 1123#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1124
1125/* First floating point reg */
1126#define FIRST_FLOAT_REG 8
1127
1128/* First & last stack-like regs */
1129#define FIRST_STACK_REG FIRST_FLOAT_REG
1130#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1131
a7180f70
BS
1132#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1133#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1134
a7180f70
BS
1135#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1136#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1137
3f3f2124
JH
1138#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1139#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1140
1141#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1142#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1143
aabcd309 1144/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1145 requiring a frame pointer. */
1146#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1147#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1148#endif
1149
1150/* Make sure we can access arbitrary call frames. */
1151#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1152
1153/* Base register for access to arguments of the function. */
1154#define ARG_POINTER_REGNUM 16
1155
c98f8742 1156/* Register to hold the addressing base for position independent
5b43fed1
RH
1157 code access to data items. We don't use PIC pointer for 64bit
1158 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1159 pessimizing code dealing with EBX.
bd09bdeb
RH
1160
1161 To avoid clobbering a call-saved register unnecessarily, we renumber
1162 the pic register when possible. The change is visible after the
1163 prologue has been emitted. */
1164
2e3f842f 1165#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1166
1167#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1168 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1169 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1170 : reload_completed ? REGNO (pic_offset_table_rtx) \
1171 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1172
5fc0e5df
KW
1173#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1174
c51e6d85 1175/* This is overridden by <cygwin.h>. */
5e062767
DS
1176#define MS_AGGREGATE_RETURN 0
1177
61fec9ff 1178#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1179\f
1180/* Define the classes of registers for register constraints in the
1181 machine description. Also define ranges of constants.
1182
1183 One of the classes must always be named ALL_REGS and include all hard regs.
1184 If there is more than one class, another class must be named NO_REGS
1185 and contain no registers.
1186
1187 The name GENERAL_REGS must be the name of a class (or an alias for
1188 another name such as ALL_REGS). This is the class of registers
1189 that is allowed by "g" or "r" in a register constraint.
1190 Also, registers outside this class are allocated only when
1191 instructions express preferences for them.
1192
1193 The classes must be numbered in nondecreasing order; that is,
1194 a larger-numbered class must never be contained completely
1195 in a smaller-numbered class.
1196
1197 For any two classes, it is very desirable that there be another
ab408a86
JVA
1198 class that represents their union.
1199
1200 It might seem that class BREG is unnecessary, since no useful 386
1201 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1202 and the "b" register constraint is useful in asms for syscalls.
1203
03c259ad 1204 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1205
1206enum reg_class
1207{
1208 NO_REGS,
e075ae69 1209 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1210 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1211 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1212 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1213 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1214 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1215 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1216 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1217 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1218 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1219 FLOAT_REGS,
06f4e35d 1220 SSE_FIRST_REG,
a7180f70
BS
1221 SSE_REGS,
1222 MMX_REGS,
446988df
JH
1223 FP_TOP_SSE_REGS,
1224 FP_SECOND_SSE_REGS,
1225 FLOAT_SSE_REGS,
1226 FLOAT_INT_REGS,
1227 INT_SSE_REGS,
1228 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1229 ALL_REGS, LIM_REG_CLASSES
1230};
1231
d9a5f180
GS
1232#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1233
1234#define INTEGER_CLASS_P(CLASS) \
1235 reg_class_subset_p ((CLASS), GENERAL_REGS)
1236#define FLOAT_CLASS_P(CLASS) \
1237 reg_class_subset_p ((CLASS), FLOAT_REGS)
1238#define SSE_CLASS_P(CLASS) \
06f4e35d 1239 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1240#define MMX_CLASS_P(CLASS) \
f75959a6 1241 ((CLASS) == MMX_REGS)
d9a5f180
GS
1242#define MAYBE_INTEGER_CLASS_P(CLASS) \
1243 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1244#define MAYBE_FLOAT_CLASS_P(CLASS) \
1245 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1246#define MAYBE_SSE_CLASS_P(CLASS) \
1247 reg_classes_intersect_p (SSE_REGS, (CLASS))
1248#define MAYBE_MMX_CLASS_P(CLASS) \
1249 reg_classes_intersect_p (MMX_REGS, (CLASS))
1250
1251#define Q_CLASS_P(CLASS) \
1252 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1253
43f3a59d 1254/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1255
1256#define REG_CLASS_NAMES \
1257{ "NO_REGS", \
ab408a86 1258 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1259 "SIREG", "DIREG", \
e075ae69
RH
1260 "AD_REGS", \
1261 "Q_REGS", "NON_Q_REGS", \
c98f8742 1262 "INDEX_REGS", \
3f3f2124 1263 "LEGACY_REGS", \
621bc046 1264 "CLOBBERED_REGS", \
c98f8742
JVA
1265 "GENERAL_REGS", \
1266 "FP_TOP_REG", "FP_SECOND_REG", \
1267 "FLOAT_REGS", \
cb482895 1268 "SSE_FIRST_REG", \
a7180f70
BS
1269 "SSE_REGS", \
1270 "MMX_REGS", \
446988df
JH
1271 "FP_TOP_SSE_REGS", \
1272 "FP_SECOND_SSE_REGS", \
1273 "FLOAT_SSE_REGS", \
8fcaaa80 1274 "FLOAT_INT_REGS", \
446988df
JH
1275 "INT_SSE_REGS", \
1276 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1277 "ALL_REGS" }
1278
ac2e563f
RH
1279/* Define which registers fit in which classes. This is an initializer
1280 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1281
621bc046
UB
1282 Note that CLOBBERED_REGS are calculated by
1283 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1284
a7180f70 1285#define REG_CLASS_CONTENTS \
3f3f2124
JH
1286{ { 0x00, 0x0 }, \
1287 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1288 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1289 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1290 { 0x03, 0x0 }, /* AD_REGS */ \
1291 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1292 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1293 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1294 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
621bc046 1295 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
b0d95de8 1296 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1297 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1298 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1299 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1300{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1301{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1302{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1303{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1304{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b197fc48
UB
1305 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1306{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1307{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
b0d95de8 1308{ 0xffffffff,0x1fffff } \
e075ae69 1309}
c98f8742
JVA
1310
1311/* The same information, inverted:
1312 Return the class number of the smallest class containing
1313 reg number REGNO. This could be a conditional expression
1314 or could index an array. */
1315
c98f8742
JVA
1316#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1317
42db504c
SB
1318/* When this hook returns true for MODE, the compiler allows
1319 registers explicitly used in the rtl to be used as spill registers
1320 but prevents the compiler from extending the lifetime of these
1321 registers. */
1322#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1323
fc27f749
UB
1324#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1325#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1326
1327#define GENERAL_REG_P(X) \
6189a572 1328 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1329#define GENERAL_REGNO_P(N) \
1330 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1331
fc27f749
UB
1332#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1333#define ANY_QI_REGNO_P(N) \
1334 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1335
fc27f749 1336#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1337#define REX_INT_REGNO_P(N) \
1338 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1339
c98f8742 1340#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1341#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1342
446988df 1343#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1344#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1345
54a88090 1346#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1347 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1348
fc27f749 1349#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1350#define SSE_REGNO_P(N) \
1351 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1352 || REX_SSE_REGNO_P (N))
3f3f2124 1353
4977bab6 1354#define REX_SSE_REGNO_P(N) \
fb84c7a0 1355 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1356
d9a5f180
GS
1357#define SSE_REGNO(N) \
1358 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1359
d9a5f180 1360#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1361 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1362
cbf2e4d4
HJ
1363#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1364 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1365 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1366
fc27f749 1367#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1368#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1369
fc27f749 1370#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
fb84c7a0 1371#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1372
fc27f749 1373#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1374
e075ae69
RH
1375#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1376#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1377
c98f8742
JVA
1378/* The class value for index registers, and the one for base regs. */
1379
1380#define INDEX_REG_CLASS INDEX_REGS
1381#define BASE_REG_CLASS GENERAL_REGS
1382
c98f8742 1383/* Place additional restrictions on the register class to use when it
4cbb525c 1384 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1385 register for which class CLASS would ordinarily be used.
1386
1387 We avoid classes containing registers from multiple units due to
1388 the limitation in ix86_secondary_memory_needed. We limit these
1389 classes to their "natural mode" single unit register class, depending
1390 on the unit availability.
1391
1392 Please note that reg_class_subset_p is not commutative, so these
1393 conditions mean "... if (CLASS) includes ALL registers from the
1394 register set." */
1395
1396#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1397 (((MODE) == QImode && !TARGET_64BIT \
1398 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1399 : (((MODE) == SImode || (MODE) == DImode) \
1400 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1401 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1402 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1403 : (X87_FLOAT_MODE_P (MODE) \
1404 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1405 : (CLASS))
c98f8742 1406
85ff473e 1407/* If we are copying between general and FP registers, we need a memory
f84aa48a 1408 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1409#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1410 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1411
c62b3659
UB
1412/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1413 There is no need to emit full 64 bit move on 64 bit targets
1414 for integral modes that can be moved using 32 bit move. */
1415#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1416 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1417 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1418 : MODE)
1419
1272914c
RH
1420/* Return a class of registers that cannot change FROM mode to TO mode. */
1421
1422#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1423 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1424\f
1425/* Stack layout; function entry, exit and calling. */
1426
1427/* Define this if pushing a word on the stack
1428 makes the stack pointer a smaller address. */
1429#define STACK_GROWS_DOWNWARD
1430
a4d05547 1431/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1432 is at the high-address end of the local variables;
1433 that is, each additional local variable allocated
1434 goes at a more negative offset in the frame. */
f62c8a5c 1435#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1436
1437/* Offset within stack frame to start allocating local variables at.
1438 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1439 first local allocated. Otherwise, it is the offset to the BEGINNING
1440 of the first local allocated. */
1441#define STARTING_FRAME_OFFSET 0
1442
8c2b2fae
UB
1443/* If we generate an insn to push BYTES bytes, this says how many the stack
1444 pointer really advances by. On 386, we have pushw instruction that
1445 decrements by exactly 2 no matter what the position was, there is no pushb.
1446
1447 But as CIE data alignment factor on this arch is -4 for 32bit targets
1448 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1449 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1450
d2836273 1451#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1452 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1453
1454/* If defined, the maximum amount of space required for outgoing arguments
1455 will be computed and placed into the variable `crtl->outgoing_args_size'.
1456 No space will be pushed onto the stack for each call; instead, the
1457 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1458
6510e8bb
KT
1459 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1460 function prologue and apilogue. This is not possible without
9aa5c1b2 1461 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1462
6c6094f1 1463#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1464 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1465
1466/* If defined, a C expression whose value is nonzero when we want to use PUSH
1467 instructions to pass outgoing arguments. */
1468
1469#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1470
2da4124d
L
1471/* We want the stack and args grow in opposite directions, even if
1472 PUSH_ARGS is 0. */
1473#define PUSH_ARGS_REVERSED 1
1474
c98f8742
JVA
1475/* Offset of first parameter from the argument pointer register value. */
1476#define FIRST_PARM_OFFSET(FNDECL) 0
1477
a7180f70
BS
1478/* Define this macro if functions should assume that stack space has been
1479 allocated for arguments even when their values are passed in registers.
1480
1481 The value of this macro is the size, in bytes, of the area reserved for
1482 arguments passed in registers for the function represented by FNDECL.
1483
1484 This space can be allocated by the caller, or be a part of the
1485 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1486 which. */
7c800926
KT
1487#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1488
4ae8027b 1489#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1490 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1491
c98f8742
JVA
1492/* Define how to find the value returned by a library function
1493 assuming the value has mode MODE. */
1494
4ae8027b 1495#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1496
e9125c09
TW
1497/* Define the size of the result block used for communication between
1498 untyped_call and untyped_return. The block contains a DImode value
1499 followed by the block used by fnsave and frstor. */
1500
1501#define APPLY_RESULT_SIZE (8+108)
1502
b08de47e 1503/* 1 if N is a possible register number for function argument passing. */
53c17031 1504#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1505
1506/* Define a data type for recording info about an argument list
1507 during the scan of that argument list. This data type should
1508 hold all necessary information about the function itself
1509 and about the args processed so far, enough to enable macros
b08de47e 1510 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1511
e075ae69 1512typedef struct ix86_args {
fa283935 1513 int words; /* # words passed so far */
b08de47e
MM
1514 int nregs; /* # registers available for passing */
1515 int regno; /* next available register number */
3e65f251
KT
1516 int fastcall; /* fastcall or thiscall calling convention
1517 is used */
fa283935 1518 int sse_words; /* # sse words passed so far */
a7180f70 1519 int sse_nregs; /* # sse registers available for passing */
95879c72 1520 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1521 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1522 int warn_mmx; /* True when we want to warn about MMX ABI. */
1523 int sse_regno; /* next available sse register number */
1524 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1525 int mmx_nregs; /* # mmx registers available for passing */
1526 int mmx_regno; /* next available mmx register number */
892a2d68 1527 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1528 int caller; /* true if it is caller. */
2824d6e5
UB
1529 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1530 SFmode/DFmode arguments should be passed
1531 in SSE registers. Otherwise 0. */
51212b32 1532 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1533 MS_ABI for ms abi. */
b08de47e 1534} CUMULATIVE_ARGS;
c98f8742
JVA
1535
1536/* Initialize a variable CUM of type CUMULATIVE_ARGS
1537 for a call to a function whose data type is FNTYPE.
b08de47e 1538 For a library call, FNTYPE is 0. */
c98f8742 1539
0f6937fe 1540#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1541 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1542 (N_NAMED_ARGS) != -1)
c98f8742 1543
c98f8742
JVA
1544/* Output assembler code to FILE to increment profiler label # LABELNO
1545 for profiling a function entry. */
1546
a5fa1ecd
JH
1547#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1548
1549#define MCOUNT_NAME "_mcount"
1550
3c5273a9
KT
1551#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1552
a5fa1ecd 1553#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1554
1555/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1556 the stack pointer does not matter. The value is tested only in
1557 functions that have frame pointers.
1558 No definition is equivalent to always zero. */
fce5a9f2 1559/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1560 we have to restore it ourselves from the frame pointer, in order to
1561 use pop */
1562
1563#define EXIT_IGNORE_STACK 1
1564
c98f8742
JVA
1565/* Output assembler code for a block containing the constant parts
1566 of a trampoline, leaving space for the variable parts. */
1567
a269a03c 1568/* On the 386, the trampoline contains two instructions:
c98f8742 1569 mov #STATIC,ecx
a269a03c
JC
1570 jmp FUNCTION
1571 The trampoline is generated entirely at runtime. The operand of JMP
1572 is the address of FUNCTION relative to the instruction following the
1573 JMP (which is 5 bytes long). */
c98f8742
JVA
1574
1575/* Length in units of the trampoline for entering a nested function. */
1576
3452586b 1577#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1578\f
1579/* Definitions for register eliminations.
1580
1581 This is an array of structures. Each structure initializes one pair
1582 of eliminable registers. The "from" register number is given first,
1583 followed by "to". Eliminations of the same "from" register are listed
1584 in order of preference.
1585
afc2cd05
NC
1586 There are two registers that can always be eliminated on the i386.
1587 The frame pointer and the arg pointer can be replaced by either the
1588 hard frame pointer or to the stack pointer, depending upon the
1589 circumstances. The hard frame pointer is not used before reload and
1590 so it is not eligible for elimination. */
c98f8742 1591
564d80f4
JH
1592#define ELIMINABLE_REGS \
1593{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1594 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1595 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1596 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1597
c98f8742
JVA
1598/* Define the offset between two registers, one to be eliminated, and the other
1599 its replacement, at the start of a routine. */
1600
d9a5f180
GS
1601#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1602 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1603\f
1604/* Addressing modes, and classification of registers for them. */
1605
c98f8742
JVA
1606/* Macros to check register numbers against specific register classes. */
1607
1608/* These assume that REGNO is a hard or pseudo reg number.
1609 They give nonzero only if REGNO is a hard reg of the suitable class
1610 or a pseudo reg currently allocated to a suitable hard reg.
1611 Since they use reg_renumber, they are safe only once reg_renumber
1612 has been allocated, which happens in local-alloc.c. */
1613
3f3f2124
JH
1614#define REGNO_OK_FOR_INDEX_P(REGNO) \
1615 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1616 || REX_INT_REGNO_P (REGNO) \
1617 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1618 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1619
3f3f2124 1620#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1621 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1622 || (REGNO) == ARG_POINTER_REGNUM \
1623 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1624 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1625
c98f8742
JVA
1626/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1627 and check its validity for a certain class.
1628 We have two alternate definitions for each of them.
1629 The usual definition accepts all pseudo regs; the other rejects
1630 them unless they have been allocated suitable hard regs.
1631 The symbol REG_OK_STRICT causes the latter definition to be used.
1632
1633 Most source files want to accept pseudo regs in the hope that
1634 they will get allocated to the class that the insn wants them to be in.
1635 Source files for reload pass need to be strict.
1636 After reload, it makes no difference, since pseudo regs have
1637 been eliminated by then. */
1638
c98f8742 1639
ff482c8d 1640/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1641#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1642 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1643 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1644 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1645
3b3c6a3f 1646#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1647 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1648 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1649 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1650 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1651
3b3c6a3f
MM
1652/* Strict versions, hard registers only */
1653#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1654#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1655
3b3c6a3f 1656#ifndef REG_OK_STRICT
d9a5f180
GS
1657#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1658#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1659
1660#else
d9a5f180
GS
1661#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1662#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1663#endif
1664
331d9186 1665/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1666 that is a valid memory address for an instruction.
1667 The MODE argument is the machine mode for the MEM expression
1668 that wants to use this address.
1669
331d9186 1670 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1671 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1672
1673 See legitimize_pic_address in i386.c for details as to what
1674 constitutes a legitimate address when -fpic is used. */
1675
1676#define MAX_REGS_PER_ADDRESS 2
1677
f996902d 1678#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1679
ae1547cc
UB
1680/* Try a machine-dependent way of reloading an illegitimate address
1681 operand. If we find one, push the reload and jump to WIN. This
1682 macro is used in only one place: `find_reloads_address' in reload.c. */
1683
1684#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1685do { \
1686 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1687 (int)(TYPE), (INDL))) \
1688 goto WIN; \
1689} while (0)
1690
b949ea8b
JW
1691/* If defined, a C expression to determine the base term of address X.
1692 This macro is used in only one place: `find_base_term' in alias.c.
1693
1694 It is always safe for this macro to not be defined. It exists so
1695 that alias analysis can understand machine-dependent addresses.
1696
1697 The typical use of this macro is to handle addresses containing
1698 a label_ref or symbol_ref within an UNSPEC. */
1699
d9a5f180 1700#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1701
c98f8742 1702/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1703 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1704 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1705
f996902d 1706#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1707
1708#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1709 (GET_CODE (X) == SYMBOL_REF \
1710 || GET_CODE (X) == LABEL_REF \
1711 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1712\f
b08de47e
MM
1713/* Max number of args passed in registers. If this is more than 3, we will
1714 have problems with ebx (register #4), since it is a caller save register and
1715 is also used as the pic register in ELF. So for now, don't allow more than
1716 3 registers to be passed in registers. */
1717
7c800926
KT
1718/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1719#define X86_64_REGPARM_MAX 6
72fa3605 1720#define X86_64_MS_REGPARM_MAX 4
7c800926 1721
72fa3605 1722#define X86_32_REGPARM_MAX 3
7c800926 1723
4ae8027b 1724#define REGPARM_MAX \
2824d6e5
UB
1725 (TARGET_64BIT \
1726 ? (TARGET_64BIT_MS_ABI \
1727 ? X86_64_MS_REGPARM_MAX \
1728 : X86_64_REGPARM_MAX) \
4ae8027b 1729 : X86_32_REGPARM_MAX)
d2836273 1730
72fa3605
UB
1731#define X86_64_SSE_REGPARM_MAX 8
1732#define X86_64_MS_SSE_REGPARM_MAX 4
1733
b6010cab 1734#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1735
4ae8027b 1736#define SSE_REGPARM_MAX \
2824d6e5
UB
1737 (TARGET_64BIT \
1738 ? (TARGET_64BIT_MS_ABI \
1739 ? X86_64_MS_SSE_REGPARM_MAX \
1740 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1741 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1742
1743#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1744\f
1745/* Specify the machine mode that this machine uses
1746 for the index in the tablejump instruction. */
dc4d7240 1747#define CASE_VECTOR_MODE \
6025b127 1748 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1749
c98f8742
JVA
1750/* Define this as 1 if `char' should by default be signed; else as 0. */
1751#define DEFAULT_SIGNED_CHAR 1
1752
1753/* Max number of bytes we can move from memory to memory
1754 in one reasonably fast instruction. */
65d9c0ab
JH
1755#define MOVE_MAX 16
1756
1757/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1758 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1759 number of bytes we can move with a single instruction. */
63001560 1760#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1761
7e24ffc9 1762/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1763 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1764 Increasing the value will always make code faster, but eventually
1765 incurs high cost in increased code size.
c98f8742 1766
e2e52e1b 1767 If you don't define this, a reasonable default is used. */
c98f8742 1768
e04ad03d 1769#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1770
45d78e7f
JJ
1771/* If a clear memory operation would take CLEAR_RATIO or more simple
1772 move-instruction sequences, we will do a clrmem or libcall instead. */
1773
e04ad03d 1774#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1775
53f00dde
UB
1776/* Define if shifts truncate the shift count which implies one can
1777 omit a sign-extension or zero-extension of a shift count.
1778
1779 On i386, shifts do truncate the count. But bit test instructions
1780 take the modulo of the bit offset operand. */
c98f8742
JVA
1781
1782/* #define SHIFT_COUNT_TRUNCATED */
1783
1784/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1785 is done just by pretending it is already truncated. */
1786#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1787
d9f32422
JH
1788/* A macro to update M and UNSIGNEDP when an object whose type is
1789 TYPE and which has the specified mode and signedness is to be
1790 stored in a register. This macro is only called when TYPE is a
1791 scalar type.
1792
f710504c 1793 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1794 quantities to SImode. The choice depends on target type. */
1795
1796#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1797do { \
d9f32422
JH
1798 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1799 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1800 (MODE) = SImode; \
1801} while (0)
d9f32422 1802
c98f8742
JVA
1803/* Specify the machine mode that pointers have.
1804 After generation of rtl, the compiler makes no further distinction
1805 between pointers and any other objects of this machine mode. */
28968d91 1806#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1807
f0ea7581
L
1808/* A C expression whose value is zero if pointers that need to be extended
1809 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1810 greater then zero if they are zero-extended and less then zero if the
1811 ptr_extend instruction should be used. */
1812
1813#define POINTERS_EXTEND_UNSIGNED 1
1814
c98f8742
JVA
1815/* A function address in a call instruction
1816 is a byte address (for indexing purposes)
1817 so give the MEM rtx a byte's mode. */
1818#define FUNCTION_MODE QImode
d4ba09c0 1819\f
d4ba09c0 1820
d4ba09c0
SC
1821/* A C expression for the cost of a branch instruction. A value of 1
1822 is the default; other values are interpreted relative to that. */
1823
3a4fd356
JH
1824#define BRANCH_COST(speed_p, predictable_p) \
1825 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1826
e327d1a3
L
1827/* An integer expression for the size in bits of the largest integer machine
1828 mode that should actually be used. We allow pairs of registers. */
1829#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1830
d4ba09c0
SC
1831/* Define this macro as a C expression which is nonzero if accessing
1832 less than a word of memory (i.e. a `char' or a `short') is no
1833 faster than accessing a word of memory, i.e., if such access
1834 require more than one instruction or if there is no difference in
1835 cost between byte and (aligned) word loads.
1836
1837 When this macro is not defined, the compiler will access a field by
1838 finding the smallest containing object; when it is defined, a
1839 fullword load will be used if alignment permits. Unless bytes
1840 accesses are faster than word accesses, using word accesses is
1841 preferable since it may eliminate subsequent memory access if
1842 subsequent accesses occur to other fields in the same word of the
1843 structure, but to different bytes. */
1844
1845#define SLOW_BYTE_ACCESS 0
1846
1847/* Nonzero if access to memory by shorts is slow and undesirable. */
1848#define SLOW_SHORT_ACCESS 0
1849
d4ba09c0
SC
1850/* Define this macro to be the value 1 if unaligned accesses have a
1851 cost many times greater than aligned accesses, for example if they
1852 are emulated in a trap handler.
1853
9cd10576
KH
1854 When this macro is nonzero, the compiler will act as if
1855 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1856 moves. This can cause significantly more instructions to be
9cd10576 1857 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1858 accesses only add a cycle or two to the time for a memory access.
1859
1860 If the value of this macro is always zero, it need not be defined. */
1861
e1565e65 1862/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1863
d4ba09c0
SC
1864/* Define this macro if it is as good or better to call a constant
1865 function address than to call an address kept in a register.
1866
1867 Desirable on the 386 because a CALL with a constant address is
1868 faster than one with a register address. */
1869
1870#define NO_FUNCTION_CSE
c98f8742 1871\f
c572e5ba
JVA
1872/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1873 return the mode to be used for the comparison.
1874
1875 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1876 VOIDmode should be used in all other cases.
c572e5ba 1877
16189740 1878 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1879 possible, to allow for more combinations. */
c98f8742 1880
d9a5f180 1881#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1882
9cd10576 1883/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1884 reversed. */
1885
1886#define REVERSIBLE_CC_MODE(MODE) 1
1887
1888/* A C expression whose value is reversed condition code of the CODE for
1889 comparison done in CC_MODE mode. */
3c5cb3e4 1890#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1891
c98f8742
JVA
1892\f
1893/* Control the assembler format that we output, to the extent
1894 this does not vary between assemblers. */
1895
1896/* How to refer to registers in assembler output.
892a2d68 1897 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1898
a7b376ee 1899/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1900 For non floating point regs, the following are the HImode names.
1901
1902 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1903 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1904 "y" code. */
c98f8742 1905
a7180f70
BS
1906#define HI_REGISTER_NAMES \
1907{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1908 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1909 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1910 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1911 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1912 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1913 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1914
c98f8742
JVA
1915#define REGISTER_NAMES HI_REGISTER_NAMES
1916
1917/* Table of additional register names to use in user input. */
1918
1919#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1920{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1921 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1922 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1923 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1924 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1925 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1926
1927/* Note we are omitting these since currently I don't know how
1928to get gcc to use these, since they want the same but different
1929number as al, and ax.
1930*/
1931
c98f8742 1932#define QI_REGISTER_NAMES \
3f3f2124 1933{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1934
1935/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1936 of regs 0 through 3. */
c98f8742
JVA
1937
1938#define QI_HIGH_REGISTER_NAMES \
1939{"ah", "dh", "ch", "bh", }
1940
1941/* How to renumber registers for dbx and gdb. */
1942
d9a5f180
GS
1943#define DBX_REGISTER_NUMBER(N) \
1944 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1945
9a82e702
MS
1946extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1947extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1948extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1949
469ac993
JM
1950/* Before the prologue, RA is at 0(%esp). */
1951#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1952 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1953
e414ab29 1954/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1955#define RETURN_ADDR_RTX(COUNT, FRAME) \
1956 ((COUNT) == 0 \
0a81f074
RS
1957 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1958 -UNITS_PER_WORD)) \
1959 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 1960
892a2d68 1961/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1962#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1963
a6ab3aad 1964/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1965#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1966
1020a5ab 1967/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1968#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1969#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1970
ad919812 1971
e4c4ebeb
RH
1972/* Select a format to encode pointers in exception handling data. CODE
1973 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1974 true if the symbol may be affected by dynamic relocations.
1975
1976 ??? All x86 object file formats are capable of representing this.
1977 After all, the relocation needed is the same as for the call insn.
1978 Whether or not a particular assembler allows us to enter such, I
1979 guess we'll have to see. */
d9a5f180 1980#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1981 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1982
c98f8742
JVA
1983/* This is how to output an insn to push a register on the stack.
1984 It need not be very fast code. */
1985
d9a5f180 1986#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1987do { \
1988 if (TARGET_64BIT) \
1989 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1990 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1991 else \
1992 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1993} while (0)
c98f8742
JVA
1994
1995/* This is how to output an insn to pop a register from the stack.
1996 It need not be very fast code. */
1997
d9a5f180 1998#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1999do { \
2000 if (TARGET_64BIT) \
2001 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2002 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2003 else \
2004 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2005} while (0)
c98f8742 2006
f88c65f7 2007/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2008
2009#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2010 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2011
f88c65f7 2012/* This is how to output an element of a case-vector that is relative. */
c98f8742 2013
33f7f353 2014#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2015 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2016
63001560 2017/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2018
2019#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2020{ \
2021 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2022 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2023}
2024
2025/* A C statement or statements which output an assembler instruction
2026 opcode to the stdio stream STREAM. The macro-operand PTR is a
2027 variable of type `char *' which points to the opcode name in
2028 its "internal" form--the form that is written in the machine
2029 description. */
2030
2031#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2032 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2033
6a90d232
L
2034/* A C statement to output to the stdio stream FILE an assembler
2035 command to pad the location counter to a multiple of 1<<LOG
2036 bytes if it is within MAX_SKIP bytes. */
2037
2038#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2039#undef ASM_OUTPUT_MAX_SKIP_PAD
2040#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2041 if ((LOG) != 0) \
2042 { \
2043 if ((MAX_SKIP) == 0) \
2044 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2045 else \
2046 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2047 }
2048#endif
2049
135a687e
KT
2050/* Write the extra assembler code needed to declare a function
2051 properly. */
2052
2053#undef ASM_OUTPUT_FUNCTION_LABEL
2054#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2055 ix86_asm_output_function_label (FILE, NAME, DECL)
2056
f7288899
EC
2057/* Under some conditions we need jump tables in the text section,
2058 because the assembler cannot handle label differences between
2059 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2060
2061#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2062 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2063 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2064
cea3bd3e
RH
2065/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2066 and switch back. For x86 we do this only to save a few bytes that
2067 would otherwise be unused in the text section. */
ad211091
KT
2068#define CRT_MKSTR2(VAL) #VAL
2069#define CRT_MKSTR(x) CRT_MKSTR2(x)
2070
2071#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2072 asm (SECTION_OP "\n\t" \
2073 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2074 TEXT_SECTION_ASM_OP);
74b42c8b 2075\f
b2b01543 2076/* Which processor to tune code generation for. */
5bf0ebab
RH
2077
2078enum processor_type
2079{
8383d43c 2080 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2081 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2082 PROCESSOR_PENTIUM,
2083 PROCESSOR_PENTIUMPRO,
cfe1b18f 2084 PROCESSOR_GEODE,
5bf0ebab
RH
2085 PROCESSOR_K6,
2086 PROCESSOR_ATHLON,
2087 PROCESSOR_PENTIUM4,
4977bab6 2088 PROCESSOR_K8,
89c43c0a 2089 PROCESSOR_NOCONA,
ab247762
MK
2090 PROCESSOR_CORE2_32,
2091 PROCESSOR_CORE2_64,
b2b01543
BS
2092 PROCESSOR_COREI7_32,
2093 PROCESSOR_COREI7_64,
d326eaf0
JH
2094 PROCESSOR_GENERIC32,
2095 PROCESSOR_GENERIC64,
21efb4d4 2096 PROCESSOR_AMDFAM10,
1133125e 2097 PROCESSOR_BDVER1,
4d652a18 2098 PROCESSOR_BDVER2,
14b52538 2099 PROCESSOR_BTVER1,
e32bfc16 2100 PROCESSOR_BTVER2,
b6837b94 2101 PROCESSOR_ATOM,
5bf0ebab
RH
2102 PROCESSOR_max
2103};
2104
9e555526 2105extern enum processor_type ix86_tune;
5bf0ebab 2106extern enum processor_type ix86_arch;
5bf0ebab 2107
8362f420
JH
2108/* Size of the RED_ZONE area. */
2109#define RED_ZONE_SIZE 128
2110/* Reserved area of the red zone for temporaries. */
2111#define RED_ZONE_RESERVE 8
c93e80a5 2112
95899b34 2113extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2114extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2115
2116/* Smallest class containing REGNO. */
2117extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2118
0948ccb2
PB
2119enum ix86_fpcmp_strategy {
2120 IX86_FPCMP_SAHF,
2121 IX86_FPCMP_COMI,
2122 IX86_FPCMP_ARITH
2123};
22fb740d
JH
2124\f
2125/* To properly truncate FP values into integers, we need to set i387 control
2126 word. We can't emit proper mode switching code before reload, as spills
2127 generated by reload may truncate values incorrectly, but we still can avoid
2128 redundant computation of new control word by the mode switching pass.
2129 The fldcw instructions are still emitted redundantly, but this is probably
2130 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2131 the sequence.
22fb740d
JH
2132
2133 The machinery is to emit simple truncation instructions and split them
2134 before reload to instructions having USEs of two memory locations that
2135 are filled by this code to old and new control word.
fce5a9f2 2136
22fb740d
JH
2137 Post-reload pass may be later used to eliminate the redundant fildcw if
2138 needed. */
2139
ff680eb1
UB
2140enum ix86_entity
2141{
2142 I387_TRUNC = 0,
2143 I387_FLOOR,
2144 I387_CEIL,
2145 I387_MASK_PM,
2146 MAX_386_ENTITIES
2147};
2148
1cba2b96 2149enum ix86_stack_slot
ff680eb1 2150{
80dcd3aa
UB
2151 SLOT_VIRTUAL = 0,
2152 SLOT_TEMP,
ff680eb1
UB
2153 SLOT_CW_STORED,
2154 SLOT_CW_TRUNC,
2155 SLOT_CW_FLOOR,
2156 SLOT_CW_CEIL,
2157 SLOT_CW_MASK_PM,
2158 MAX_386_STACK_LOCALS
2159};
22fb740d
JH
2160
2161/* Define this macro if the port needs extra instructions inserted
2162 for mode switching in an optimizing compilation. */
2163
ff680eb1
UB
2164#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2165 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2166
2167/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2168 initializer for an array of integers. Each initializer element N
2169 refers to an entity that needs mode switching, and specifies the
2170 number of different modes that might need to be set for this
2171 entity. The position of the initializer in the initializer -
2172 starting counting at zero - determines the integer that is used to
2173 refer to the mode-switched entity in question. */
2174
ff680eb1
UB
2175#define NUM_MODES_FOR_MODE_SWITCHING \
2176 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2177
2178/* ENTITY is an integer specifying a mode-switched entity. If
2179 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2180 return an integer value not larger than the corresponding element
2181 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2182 must be switched into prior to the execution of INSN. */
2183
2184#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2185
2186/* This macro specifies the order in which modes for ENTITY are
2187 processed. 0 is the highest priority. */
2188
d9a5f180 2189#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2190
2191/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2192 is the set of hard registers live at the point where the insn(s)
2193 are to be inserted. */
2194
2195#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2196 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2197 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2198 : 0)
ff680eb1 2199
0f0138b6
JH
2200\f
2201/* Avoid renaming of stack registers, as doing so in combination with
2202 scheduling just increases amount of live registers at time and in
2203 the turn amount of fxch instructions needed.
2204
43f3a59d 2205 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2206
d9a5f180 2207#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2208 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2209
3b3c6a3f 2210\f
e91f04de 2211#define FASTCALL_PREFIX '@'
fa1a0d02 2212\f
ec7ded37 2213/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2214
604a6be9 2215#ifndef USED_FOR_TARGET
ec7ded37 2216struct GTY(()) machine_frame_state
cd9c1ca8 2217{
ec7ded37
RH
2218 /* This pair tracks the currently active CFA as reg+offset. When reg
2219 is drap_reg, we don't bother trying to record here the real CFA when
2220 it might really be a DW_CFA_def_cfa_expression. */
2221 rtx cfa_reg;
2222 HOST_WIDE_INT cfa_offset;
2223
2224 /* The current offset (canonically from the CFA) of ESP and EBP.
2225 When stack frame re-alignment is active, these may not be relative
2226 to the CFA. However, in all cases they are relative to the offsets
2227 of the saved registers stored in ix86_frame. */
2228 HOST_WIDE_INT sp_offset;
2229 HOST_WIDE_INT fp_offset;
2230
2231 /* The size of the red-zone that may be assumed for the purposes of
2232 eliding register restore notes in the epilogue. This may be zero
2233 if no red-zone is in effect, or may be reduced from the real
2234 red-zone value by a maximum runtime stack re-alignment value. */
2235 int red_zone_offset;
2236
2237 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2238 value within the frame. If false then the offset above should be
2239 ignored. Note that DRAP, if valid, *always* points to the CFA and
2240 thus has an offset of zero. */
2241 BOOL_BITFIELD sp_valid : 1;
2242 BOOL_BITFIELD fp_valid : 1;
2243 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2244
2245 /* Indicate whether the local stack frame has been re-aligned. When
2246 set, the SP/FP offsets above are relative to the aligned frame
2247 and not the CFA. */
2248 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2249};
2250
f81c9774
RH
2251/* Private to winnt.c. */
2252struct seh_frame_state;
2253
d1b38208 2254struct GTY(()) machine_function {
fa1a0d02
JH
2255 struct stack_local_entry *stack_locals;
2256 const char *some_ld_name;
4aab97f9
L
2257 int varargs_gpr_size;
2258 int varargs_fpr_size;
ff680eb1 2259 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2260
2261 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2262 has been computed for. */
2263 int use_fast_prologue_epilogue_nregs;
2264
7458026b
ILT
2265 /* For -fsplit-stack support: A stack local which holds a pointer to
2266 the stack arguments for a function with a variable number of
2267 arguments. This is set at the start of the function and is used
2268 to initialize the overflow_arg_area field of the va_list
2269 structure. */
2270 rtx split_stack_varargs_pointer;
2271
3452586b
RH
2272 /* This value is used for amd64 targets and specifies the current abi
2273 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2274 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2275
2276 /* Nonzero if the function accesses a previous frame. */
2277 BOOL_BITFIELD accesses_prev_frame : 1;
2278
2279 /* Nonzero if the function requires a CLD in the prologue. */
2280 BOOL_BITFIELD needs_cld : 1;
2281
922e3e33
UB
2282 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2283 expander to determine the style used. */
3452586b
RH
2284 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2285
5bf5a10b
AO
2286 /* If true, the current function needs the default PIC register, not
2287 an alternate register (on x86) and must not use the red zone (on
2288 x86_64), even if it's a leaf function. We don't want the
2289 function to be regarded as non-leaf because TLS calls need not
2290 affect register allocation. This flag is set when a TLS call
2291 instruction is expanded within a function, and never reset, even
2292 if all such instructions are optimized away. Use the
2293 ix86_current_function_calls_tls_descriptor macro for a better
2294 approximation. */
3452586b
RH
2295 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2296
2297 /* If true, the current function has a STATIC_CHAIN is placed on the
2298 stack below the return address. */
2299 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2300
2767a7f2
L
2301 /* Nonzero if caller passes 256bit AVX modes. */
2302 BOOL_BITFIELD caller_pass_avx256_p : 1;
2303
2304 /* Nonzero if caller returns 256bit AVX modes. */
2305 BOOL_BITFIELD caller_return_avx256_p : 1;
2306
2307 /* Nonzero if the current callee passes 256bit AVX modes. */
2308 BOOL_BITFIELD callee_pass_avx256_p : 1;
2309
2310 /* Nonzero if the current callee returns 256bit AVX modes. */
2311 BOOL_BITFIELD callee_return_avx256_p : 1;
2312
617e6634
L
2313 /* Nonzero if rescan vzerouppers in the current function is needed. */
2314 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2315
ec7ded37
RH
2316 /* During prologue/epilogue generation, the current frame state.
2317 Otherwise, the frame state at the end of the prologue. */
2318 struct machine_frame_state fs;
f81c9774
RH
2319
2320 /* During SEH output, this is non-null. */
2321 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2322};
cd9c1ca8 2323#endif
fa1a0d02
JH
2324
2325#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2326#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2327#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2328#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2329#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2330#define ix86_tls_descriptor_calls_expanded_in_cfun \
2331 (cfun->machine->tls_descriptor_call_expanded_p)
2332/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2333 calls are optimized away, we try to detect cases in which it was
2334 optimized away. Since such instructions (use (reg REG_SP)), we can
2335 verify whether there's any such instruction live by testing that
2336 REG_SP is live. */
2337#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2338 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2339#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2340
1bc7c5b6
ZW
2341/* Control behavior of x86_file_start. */
2342#define X86_FILE_START_VERSION_DIRECTIVE false
2343#define X86_FILE_START_FLTUSED false
2344
7dcbf659
JH
2345/* Flag to mark data that is in the large address area. */
2346#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2347#define SYMBOL_REF_FAR_ADDR_P(X) \
2348 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2349
2350/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2351 have defined always, to avoid ifdefing. */
2352#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2353#define SYMBOL_REF_DLLIMPORT_P(X) \
2354 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2355
2356#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2357#define SYMBOL_REF_DLLEXPORT_P(X) \
2358 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2359
7942e47e
RY
2360extern void debug_ready_dispatch (void);
2361extern void debug_dispatch_window (int);
2362
91afcfa3
QN
2363/* The value at zero is only defined for the BMI instructions
2364 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2365#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2366 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2367#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2368 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2369
2370
b8ce4e94
KT
2371/* Flags returned by ix86_get_callcvt (). */
2372#define IX86_CALLCVT_CDECL 0x1
2373#define IX86_CALLCVT_STDCALL 0x2
2374#define IX86_CALLCVT_FASTCALL 0x4
2375#define IX86_CALLCVT_THISCALL 0x8
2376#define IX86_CALLCVT_REGPARM 0x10
2377#define IX86_CALLCVT_SSEREGPARM 0x20
2378
2379#define IX86_BASE_CALLCVT(FLAGS) \
2380 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2381 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2382
b86b9f44
MM
2383#define RECIP_MASK_NONE 0x00
2384#define RECIP_MASK_DIV 0x01
2385#define RECIP_MASK_SQRT 0x02
2386#define RECIP_MASK_VEC_DIV 0x04
2387#define RECIP_MASK_VEC_SQRT 0x08
2388#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2389 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2390#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2391
2392#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2393#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2394#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2395#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2396
5dcfdccd
KY
2397#define IX86_HLE_ACQUIRE (1 << 16)
2398#define IX86_HLE_RELEASE (1 << 17)
2399
c98f8742
JVA
2400/*
2401Local variables:
2402version-control: t
2403End:
2404*/