]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
ChangeLog: Fix my email address in previous two entries.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2f83c7d6
NC
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
0a1c5e55 49#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
50#define TARGET_SSE5 OPTION_ISA_SSE5
51#define TARGET_ROUND OPTION_ISA_ROUND
52
53/* SSE5 and SSE4.1 define the same round instructions */
54#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
55#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 56
26b5109f
RS
57#include "config/vxworks-dummy.h"
58
8c996513
JH
59/* Algorithm to expand string function with. */
60enum stringop_alg
61{
62 no_stringop,
63 libcall,
64 rep_prefix_1_byte,
65 rep_prefix_4_byte,
66 rep_prefix_8_byte,
67 loop_1_byte,
68 loop,
69 unrolled_loop
70};
ccf8e764 71
8c996513 72#define NAX_STRINGOP_ALGS 4
ccf8e764 73
8c996513
JH
74/* Specify what algorithm to use for stringops on known size.
75 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
76 known at compile time or estimated via feedback, the SIZE array
77 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 78 means infinity). Corresponding ALG is used then.
8c996513 79 For example initializer:
4f3f76e6 80 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 81 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 82 be used otherwise. */
8c996513
JH
83struct stringop_algs
84{
85 const enum stringop_alg unknown_size;
86 const struct stringop_strategy {
87 const int max;
88 const enum stringop_alg alg;
89 } size [NAX_STRINGOP_ALGS];
90};
91
d4ba09c0
SC
92/* Define the specific costs for a given cpu */
93
94struct processor_costs {
8b60264b
KG
95 const int add; /* cost of an add instruction */
96 const int lea; /* cost of a lea instruction */
97 const int shift_var; /* variable shift costs */
98 const int shift_const; /* constant shift costs */
f676971a 99 const int mult_init[5]; /* cost of starting a multiply
4977bab6 100 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 101 const int mult_bit; /* cost of multiply per each bit set */
f676971a 102 const int divide[5]; /* cost of a divide/mod
4977bab6 103 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
104 int movsx; /* The cost of movsx operation. */
105 int movzx; /* The cost of movzx operation. */
8b60264b
KG
106 const int large_insn; /* insns larger than this cost more */
107 const int move_ratio; /* The threshold of number of scalar
ac775968 108 memory-to-memory move insns. */
8b60264b
KG
109 const int movzbl_load; /* cost of loading using movzbl */
110 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
111 in QImode, HImode and SImode relative
112 to reg-reg move (2). */
8b60264b 113 const int int_store[3]; /* cost of storing integer register
96e7ae40 114 in QImode, HImode and SImode */
8b60264b
KG
115 const int fp_move; /* cost of reg,reg fld/fst */
116 const int fp_load[3]; /* cost of loading FP register
96e7ae40 117 in SFmode, DFmode and XFmode */
8b60264b 118 const int fp_store[3]; /* cost of storing FP register
96e7ae40 119 in SFmode, DFmode and XFmode */
8b60264b
KG
120 const int mmx_move; /* cost of moving MMX register. */
121 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 122 in SImode and DImode */
8b60264b 123 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 124 in SImode and DImode */
8b60264b
KG
125 const int sse_move; /* cost of moving SSE register. */
126 const int sse_load[3]; /* cost of loading SSE register
fa79946e 127 in SImode, DImode and TImode*/
8b60264b 128 const int sse_store[3]; /* cost of storing SSE register
fa79946e 129 in SImode, DImode and TImode*/
8b60264b 130 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 131 integer and vice versa. */
46cb0441
ZD
132 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
133 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
134 const int prefetch_block; /* bytes moved to cache for prefetch. */
135 const int simultaneous_prefetches; /* number of parallel prefetch
136 operations. */
4977bab6 137 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
138 const int fadd; /* cost of FADD and FSUB instructions. */
139 const int fmul; /* cost of FMUL instruction. */
140 const int fdiv; /* cost of FDIV instruction. */
141 const int fabs; /* cost of FABS instruction. */
142 const int fchs; /* cost of FCHS instruction. */
143 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
144 /* Specify what algorithm
145 to use for stringops on unknown size. */
146 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
147 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
148 load and store. */
149 const int scalar_load_cost; /* Cost of scalar load. */
150 const int scalar_store_cost; /* Cost of scalar store. */
151 const int vec_stmt_cost; /* Cost of any vector operation, excluding
152 load, store, vector-to-scalar and
153 scalar-to-vector operation. */
154 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
155 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 156 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
157 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
158 const int vec_store_cost; /* Cost of vector store. */
159 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
160 cost model. */
161 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
162 vectorizer cost model. */
d4ba09c0
SC
163};
164
8b60264b 165extern const struct processor_costs *ix86_cost;
d4ba09c0 166
c98f8742
JVA
167/* Macros used in the machine description to test the flags. */
168
ddd5a7c1 169/* configure can arrange to make this 2, to force a 486. */
e075ae69 170
35b528be 171#ifndef TARGET_CPU_DEFAULT
d326eaf0 172#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 173#endif
35b528be 174
004d3859
GK
175#ifndef TARGET_FPMATH_DEFAULT
176#define TARGET_FPMATH_DEFAULT \
177 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
178#endif
179
6ac49599 180#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 181
5791cc29
JT
182/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
183 compile-time constant. */
184#ifdef IN_LIBGCC2
6ac49599 185#undef TARGET_64BIT
5791cc29
JT
186#ifdef __x86_64__
187#define TARGET_64BIT 1
188#else
189#define TARGET_64BIT 0
190#endif
191#else
6ac49599
RS
192#ifndef TARGET_BI_ARCH
193#undef TARGET_64BIT
67adf6a9 194#if TARGET_64BIT_DEFAULT
0c2dc519
JH
195#define TARGET_64BIT 1
196#else
197#define TARGET_64BIT 0
198#endif
199#endif
5791cc29 200#endif
25f94bb5 201
750054a2
CT
202#define HAS_LONG_COND_BRANCH 1
203#define HAS_LONG_UNCOND_BRANCH 1
204
9e555526
RH
205#define TARGET_386 (ix86_tune == PROCESSOR_I386)
206#define TARGET_486 (ix86_tune == PROCESSOR_I486)
207#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
208#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 209#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
210#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
211#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
212#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
213#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 214#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 215#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 216#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
217#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
218#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
219#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 220#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 221
80fd744f
RH
222/* Feature tests against the various tunings. */
223enum ix86_tune_indices {
224 X86_TUNE_USE_LEAVE,
225 X86_TUNE_PUSH_MEMORY,
226 X86_TUNE_ZERO_EXTEND_WITH_AND,
227 X86_TUNE_USE_BIT_TEST,
228 X86_TUNE_UNROLL_STRLEN,
229 X86_TUNE_DEEP_BRANCH_PREDICTION,
230 X86_TUNE_BRANCH_PREDICTION_HINTS,
231 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 232 X86_TUNE_USE_SAHF,
80fd744f
RH
233 X86_TUNE_MOVX,
234 X86_TUNE_PARTIAL_REG_STALL,
235 X86_TUNE_PARTIAL_FLAG_REG_STALL,
236 X86_TUNE_USE_HIMODE_FIOP,
237 X86_TUNE_USE_SIMODE_FIOP,
238 X86_TUNE_USE_MOV0,
239 X86_TUNE_USE_CLTD,
240 X86_TUNE_USE_XCHGB,
241 X86_TUNE_SPLIT_LONG_MOVES,
242 X86_TUNE_READ_MODIFY_WRITE,
243 X86_TUNE_READ_MODIFY,
244 X86_TUNE_PROMOTE_QIMODE,
245 X86_TUNE_FAST_PREFIX,
246 X86_TUNE_SINGLE_STRINGOP,
247 X86_TUNE_QIMODE_MATH,
248 X86_TUNE_HIMODE_MATH,
249 X86_TUNE_PROMOTE_QI_REGS,
250 X86_TUNE_PROMOTE_HI_REGS,
251 X86_TUNE_ADD_ESP_4,
252 X86_TUNE_ADD_ESP_8,
253 X86_TUNE_SUB_ESP_4,
254 X86_TUNE_SUB_ESP_8,
255 X86_TUNE_INTEGER_DFMODE_MOVES,
256 X86_TUNE_PARTIAL_REG_DEPENDENCY,
257 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
258 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
259 X86_TUNE_SSE_SPLIT_REGS,
260 X86_TUNE_SSE_TYPELESS_STORES,
261 X86_TUNE_SSE_LOAD0_BY_PXOR,
262 X86_TUNE_MEMORY_MISMATCH_STALL,
263 X86_TUNE_PROLOGUE_USING_MOVE,
264 X86_TUNE_EPILOGUE_USING_MOVE,
265 X86_TUNE_SHIFT1,
266 X86_TUNE_USE_FFREEP,
267 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 268 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
269 X86_TUNE_FOUR_JUMP_LIMIT,
270 X86_TUNE_SCHEDULE,
271 X86_TUNE_USE_BT,
272 X86_TUNE_USE_INCDEC,
273 X86_TUNE_PAD_RETURNS,
274 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
275 X86_TUNE_SHORTEN_X87_SSE,
276 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 277 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
278 X86_TUNE_SLOW_IMUL_IMM32_MEM,
279 X86_TUNE_SLOW_IMUL_IMM8,
280 X86_TUNE_MOVE_M1_VIA_OR,
281 X86_TUNE_NOT_UNPAIRABLE,
282 X86_TUNE_NOT_VECTORMODE,
4e9d897d 283 X86_TUNE_USE_VECTOR_CONVERTS,
80fd744f
RH
284
285 X86_TUNE_LAST
286};
287
288extern unsigned int ix86_tune_features[X86_TUNE_LAST];
289
290#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
291#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
292#define TARGET_ZERO_EXTEND_WITH_AND \
293 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
294#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
295#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
296#define TARGET_DEEP_BRANCH_PREDICTION \
297 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
298#define TARGET_BRANCH_PREDICTION_HINTS \
299 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
300#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
301#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
302#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
303#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
304#define TARGET_PARTIAL_FLAG_REG_STALL \
305 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
306#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
307#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
308#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
309#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
310#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
311#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
312#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
313#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
314#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
315#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
316#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
317#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
318#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
319#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
320#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
321#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
322#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
323#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
324#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
325#define TARGET_INTEGER_DFMODE_MOVES \
326 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
327#define TARGET_PARTIAL_REG_DEPENDENCY \
328 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
329#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
330 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
331#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
332 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
333#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
334#define TARGET_SSE_TYPELESS_STORES \
335 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
336#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
337#define TARGET_MEMORY_MISMATCH_STALL \
338 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
339#define TARGET_PROLOGUE_USING_MOVE \
340 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
341#define TARGET_EPILOGUE_USING_MOVE \
342 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
343#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
344#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
345#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
346#define TARGET_INTER_UNIT_CONVERSIONS\
347 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
348#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
349#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
350#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
351#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
352#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
353#define TARGET_EXT_80387_CONSTANTS \
354 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
355#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
356#define TARGET_AVOID_VECTOR_DECODE \
357 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
358#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
359 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
360#define TARGET_SLOW_IMUL_IMM32_MEM \
361 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
362#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
363#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
364#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
365#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
4e9d897d 366#define TARGET_USE_VECTOR_CONVERTS ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
80fd744f
RH
367
368/* Feature tests against the various architecture variations. */
369enum ix86_arch_indices {
370 X86_ARCH_CMOVE, /* || TARGET_SSE */
371 X86_ARCH_CMPXCHG,
372 X86_ARCH_CMPXCHG8B,
373 X86_ARCH_XADD,
374 X86_ARCH_BSWAP,
375
376 X86_ARCH_LAST
377};
4f3f76e6 378
80fd744f
RH
379extern unsigned int ix86_arch_features[X86_ARCH_LAST];
380
381#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
382#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
383#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
384#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
385#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
386
387#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
388
389extern int x86_prefetch_sse;
0a1c5e55
UB
390
391#define TARGET_ABM x86_abm
392#define TARGET_CMPXCHG16B x86_cmpxchg16b
393#define TARGET_POPCNT x86_popcnt
80fd744f 394#define TARGET_PREFETCH_SSE x86_prefetch_sse
0a1c5e55 395#define TARGET_SAHF x86_sahf
6b889d89 396#define TARGET_RECIP x86_recip
04e1d06b 397#define TARGET_FUSED_MADD x86_fused_muladd
80fd744f 398
80fd744f
RH
399#define ASSEMBLER_DIALECT (ix86_asm_dialect)
400
401#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
402#define TARGET_MIX_SSE_I387 \
403 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
404
405#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
406#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
407#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
408#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 409
0a1c5e55
UB
410extern int ix86_isa_flags;
411
67adf6a9
RH
412#ifndef TARGET_64BIT_DEFAULT
413#define TARGET_64BIT_DEFAULT 0
25f94bb5 414#endif
74dc3e94
RH
415#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
416#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
417#endif
25f94bb5 418
79f5e442
ZD
419/* Fence to use after loop using storent. */
420
421extern tree x86_mfence;
422#define FENCE_FOLLOWING_MOVNT x86_mfence
423
0ed4a390
JL
424/* Once GDB has been enhanced to deal with functions without frame
425 pointers, we can change this to allow for elimination of
426 the frame pointer in leaf functions. */
427#define TARGET_DEFAULT 0
67adf6a9 428
0a1c5e55
UB
429/* Extra bits to force. */
430#define TARGET_SUBTARGET_DEFAULT 0
431#define TARGET_SUBTARGET_ISA_DEFAULT 0
432
433/* Extra bits to force on w/ 32-bit mode. */
434#define TARGET_SUBTARGET32_DEFAULT 0
435#define TARGET_SUBTARGET32_ISA_DEFAULT 0
436
ccf8e764
RH
437/* Extra bits to force on w/ 64-bit mode. */
438#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 439#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 440
b069de3b
SS
441/* This is not really a target flag, but is done this way so that
442 it's analogous to similar code for Mach-O on PowerPC. darwin.h
443 redefines this to 1. */
444#define TARGET_MACHO 0
445
ccf8e764
RH
446/* Likewise, for the Windows 64-bit ABI. */
447#define TARGET_64BIT_MS_ABI 0
448
cc69336f
RH
449/* Subtargets may reset this to 1 in order to enable 96-bit long double
450 with the rounding mode forced to 53 bits. */
451#define TARGET_96_ROUND_53_LONG_DOUBLE 0
452
f5316dfe
MM
453/* Sometimes certain combinations of command options do not make
454 sense on a particular target machine. You can define a macro
455 `OVERRIDE_OPTIONS' to take account of this. This macro, if
456 defined, is executed once just after all the command options have
457 been parsed.
458
459 Don't use this macro to turn on various extra optimizations for
460 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
461
462#define OVERRIDE_OPTIONS override_options ()
463
d4ba09c0 464/* Define this to change the optimizations performed by default. */
d9a5f180
GS
465#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
466 optimization_options ((LEVEL), (SIZE))
d4ba09c0 467
682cd442
GK
468/* -march=native handling only makes sense with compiler running on
469 an x86 or x86_64 chip. If changing this condition, also change
470 the condition in driver-i386.c. */
471#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
472/* In driver-i386.c. */
473extern const char *host_detect_local_cpu (int argc, const char **argv);
474#define EXTRA_SPEC_FUNCTIONS \
475 { "local_cpu_detect", host_detect_local_cpu },
682cd442 476#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
477#endif
478
1cba2b96
EC
479/* Support for configure-time defaults of some command line options.
480 The order here is important so that -march doesn't squash the
481 tune or cpu values. */
7816bea0 482#define OPTION_DEFAULT_SPECS \
da2d4c01 483 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
484 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
485 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 486
241e1a89
SC
487/* Specs for the compiler proper */
488
628714d8 489#ifndef CC1_CPU_SPEC
fa959ce4 490#define CC1_CPU_SPEC_1 "\
9d913bbf 491%{mcpu=*:-mtune=%* \
d347d4c7 492%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 493%<mcpu=* \
c93e80a5
JH
494%{mintel-syntax:-masm=intel \
495%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
496%{mno-intel-syntax:-masm=att \
497%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 498
682cd442 499#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
500#define CC1_CPU_SPEC CC1_CPU_SPEC_1
501#else
502#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
503"%{march=native:%<march=native %:local_cpu_detect(arch) \
504 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
505%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
506#endif
241e1a89 507#endif
c98f8742 508\f
30efe578 509/* Target CPU builtins. */
1ba7b414
NB
510#define TARGET_CPU_CPP_BUILTINS() \
511 do \
512 { \
513 size_t arch_len = strlen (ix86_arch_string); \
9e555526 514 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 515 int last_arch_char = ix86_arch_string[arch_len - 1]; \
7706ca5d 516 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
517 \
518 if (TARGET_64BIT) \
519 { \
520 builtin_assert ("cpu=x86_64"); \
26b0ad13 521 builtin_assert ("machine=x86_64"); \
97242ddc
JH
522 builtin_define ("__amd64"); \
523 builtin_define ("__amd64__"); \
1ba7b414
NB
524 builtin_define ("__x86_64"); \
525 builtin_define ("__x86_64__"); \
526 } \
527 else \
528 { \
529 builtin_assert ("cpu=i386"); \
530 builtin_assert ("machine=i386"); \
531 builtin_define_std ("i386"); \
532 } \
533 \
8383d43c
UB
534 /* Built-ins based on -march=. */ \
535 switch (ix86_arch) \
536 { \
537 case PROCESSOR_I386: \
538 break; \
539 case PROCESSOR_I486: \
540 builtin_define ("__i486"); \
541 builtin_define ("__i486__"); \
542 break; \
543 case PROCESSOR_PENTIUM: \
544 builtin_define ("__i586"); \
545 builtin_define ("__i586__"); \
546 builtin_define ("__pentium"); \
547 builtin_define ("__pentium__"); \
548 if (last_arch_char == 'x') \
549 builtin_define ("__pentium_mmx__"); \
550 break; \
551 case PROCESSOR_PENTIUMPRO: \
552 builtin_define ("__i686"); \
553 builtin_define ("__i686__"); \
554 builtin_define ("__pentiumpro"); \
555 builtin_define ("__pentiumpro__"); \
556 break; \
557 case PROCESSOR_GEODE: \
558 builtin_define ("__geode"); \
559 builtin_define ("__geode__"); \
560 break; \
561 case PROCESSOR_K6: \
562 builtin_define ("__k6"); \
563 builtin_define ("__k6__"); \
564 if (last_arch_char == '2') \
565 builtin_define ("__k6_2__"); \
566 else if (last_arch_char == '3') \
567 builtin_define ("__k6_3__"); \
568 break; \
569 case PROCESSOR_ATHLON: \
570 builtin_define ("__athlon"); \
571 builtin_define ("__athlon__"); \
572 /* Only plain "athlon" lacks SSE. */ \
573 if (last_arch_char != 'n') \
574 builtin_define ("__athlon_sse__"); \
575 break; \
576 case PROCESSOR_K8: \
577 builtin_define ("__k8"); \
578 builtin_define ("__k8__"); \
579 break; \
580 case PROCESSOR_AMDFAM10: \
581 builtin_define ("__amdfam10"); \
582 builtin_define ("__amdfam10__"); \
583 break; \
584 case PROCESSOR_PENTIUM4: \
585 builtin_define ("__pentium4"); \
586 builtin_define ("__pentium4__"); \
587 break; \
588 case PROCESSOR_NOCONA: \
589 builtin_define ("__nocona"); \
590 builtin_define ("__nocona__"); \
591 break; \
592 case PROCESSOR_CORE2: \
593 builtin_define ("__core2"); \
594 builtin_define ("__core2__"); \
595 break; \
596 case PROCESSOR_GENERIC32: \
597 case PROCESSOR_GENERIC64: \
598 case PROCESSOR_max: \
599 gcc_unreachable (); \
600 } \
601 \
602 /* Built-ins based on -mtune=. */ \
603 switch (ix86_tune) \
1ba7b414 604 { \
8383d43c
UB
605 case PROCESSOR_I386: \
606 builtin_define ("__tune_i386__"); \
607 break; \
608 case PROCESSOR_I486: \
609 builtin_define ("__tune_i486__"); \
610 break; \
611 case PROCESSOR_PENTIUM: \
1ba7b414
NB
612 builtin_define ("__tune_i586__"); \
613 builtin_define ("__tune_pentium__"); \
9e555526 614 if (last_tune_char == 'x') \
1ba7b414 615 builtin_define ("__tune_pentium_mmx__"); \
8383d43c
UB
616 break; \
617 case PROCESSOR_PENTIUMPRO: \
1ba7b414
NB
618 builtin_define ("__tune_i686__"); \
619 builtin_define ("__tune_pentiumpro__"); \
9e555526 620 switch (last_tune_char) \
2e37b0ce
RH
621 { \
622 case '3': \
623 builtin_define ("__tune_pentium3__"); \
5efb1046 624 /* FALLTHRU */ \
2e37b0ce
RH
625 case '2': \
626 builtin_define ("__tune_pentium2__"); \
627 break; \
628 } \
8383d43c
UB
629 break; \
630 case PROCESSOR_GEODE: \
cfe1b18f 631 builtin_define ("__tune_geode__"); \
8383d43c
UB
632 break; \
633 case PROCESSOR_K6: \
1ba7b414 634 builtin_define ("__tune_k6__"); \
9e555526 635 if (last_tune_char == '2') \
1ba7b414 636 builtin_define ("__tune_k6_2__"); \
9e555526 637 else if (last_tune_char == '3') \
1ba7b414 638 builtin_define ("__tune_k6_3__"); \
8383d43c
UB
639 break; \
640 case PROCESSOR_ATHLON: \
1ba7b414
NB
641 builtin_define ("__tune_athlon__"); \
642 /* Only plain "athlon" lacks SSE. */ \
9e555526 643 if (last_tune_char != 'n') \
1ba7b414 644 builtin_define ("__tune_athlon_sse__"); \
8383d43c
UB
645 break; \
646 case PROCESSOR_K8: \
647 builtin_define ("__tune_k8__"); \
648 break; \
649 case PROCESSOR_AMDFAM10: \
650 builtin_define ("__tune_amdfam10__"); \
651 break; \
652 case PROCESSOR_PENTIUM4: \
653 builtin_define ("__tune_pentium4__"); \
654 break; \
655 case PROCESSOR_NOCONA: \
656 builtin_define ("__tune_nocona__"); \
657 break; \
658 case PROCESSOR_CORE2: \
659 builtin_define ("__tune_core2__"); \
660 break; \
661 case PROCESSOR_GENERIC32: \
662 case PROCESSOR_GENERIC64: \
663 break; \
664 case PROCESSOR_max: \
665 gcc_unreachable (); \
1ba7b414 666 } \
1ba7b414
NB
667 \
668 if (TARGET_MMX) \
669 builtin_define ("__MMX__"); \
670 if (TARGET_3DNOW) \
671 builtin_define ("__3dNOW__"); \
672 if (TARGET_3DNOW_A) \
673 builtin_define ("__3dNOW_A__"); \
674 if (TARGET_SSE) \
675 builtin_define ("__SSE__"); \
676 if (TARGET_SSE2) \
677 builtin_define ("__SSE2__"); \
9e200aaf
KC
678 if (TARGET_SSE3) \
679 builtin_define ("__SSE3__"); \
b1875f52
L
680 if (TARGET_SSSE3) \
681 builtin_define ("__SSSE3__"); \
9a5cee02
L
682 if (TARGET_SSE4_1) \
683 builtin_define ("__SSE4_1__"); \
3b8dd071
L
684 if (TARGET_SSE4_2) \
685 builtin_define ("__SSE4_2__"); \
7706ca5d 686 if (TARGET_SSE4A) \
21efb4d4 687 builtin_define ("__SSE4A__"); \
04e1d06b
MM
688 if (TARGET_SSE5) \
689 builtin_define ("__SSE5__"); \
48ddd46c
JH
690 if (TARGET_SSE_MATH && TARGET_SSE) \
691 builtin_define ("__SSE_MATH__"); \
692 if (TARGET_SSE_MATH && TARGET_SSE2) \
693 builtin_define ("__SSE2_MATH__"); \
1ba7b414 694 } \
30efe578
NB
695 while (0)
696
c2f17e19
UB
697enum target_cpu_default
698{
699 TARGET_CPU_DEFAULT_generic = 0,
700
701 TARGET_CPU_DEFAULT_i386,
702 TARGET_CPU_DEFAULT_i486,
703 TARGET_CPU_DEFAULT_pentium,
704 TARGET_CPU_DEFAULT_pentium_mmx,
705 TARGET_CPU_DEFAULT_pentiumpro,
706 TARGET_CPU_DEFAULT_pentium2,
707 TARGET_CPU_DEFAULT_pentium3,
708 TARGET_CPU_DEFAULT_pentium4,
709 TARGET_CPU_DEFAULT_pentium_m,
710 TARGET_CPU_DEFAULT_prescott,
711 TARGET_CPU_DEFAULT_nocona,
712 TARGET_CPU_DEFAULT_core2,
713
714 TARGET_CPU_DEFAULT_geode,
715 TARGET_CPU_DEFAULT_k6,
716 TARGET_CPU_DEFAULT_k6_2,
717 TARGET_CPU_DEFAULT_k6_3,
718 TARGET_CPU_DEFAULT_athlon,
719 TARGET_CPU_DEFAULT_athlon_sse,
720 TARGET_CPU_DEFAULT_k8,
721 TARGET_CPU_DEFAULT_amdfam10,
722
723 TARGET_CPU_DEFAULT_max
724};
0c2dc519 725
628714d8 726#ifndef CC1_SPEC
8015b78d 727#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
728#endif
729
730/* This macro defines names of additional specifications to put in the
731 specs that can be used in various specifications like CC1_SPEC. Its
732 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
733
734 Each subgrouping contains a string constant, that defines the
188fc5b5 735 specification name, and a string constant that used by the GCC driver
bcd86433
SC
736 program.
737
738 Do not define this macro if it does not need to do anything. */
739
740#ifndef SUBTARGET_EXTRA_SPECS
741#define SUBTARGET_EXTRA_SPECS
742#endif
743
744#define EXTRA_SPECS \
628714d8 745 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
746 SUBTARGET_EXTRA_SPECS
747\f
c98f8742
JVA
748/* target machine storage layout */
749
968a7562 750#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 751
d57a4b98
RH
752/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
753 FPU, assume that the fpcw is set to extended precision; when using
754 only SSE, rounding is correct; when using both SSE and the FPU,
755 the rounding precision is indeterminate, since either may be chosen
756 apparently at random. */
757#define TARGET_FLT_EVAL_METHOD \
5ccd517a 758 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 759
65d9c0ab
JH
760#define SHORT_TYPE_SIZE 16
761#define INT_TYPE_SIZE 32
762#define FLOAT_TYPE_SIZE 32
763#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
764#define DOUBLE_TYPE_SIZE 64
765#define LONG_LONG_TYPE_SIZE 64
766
67adf6a9 767#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 768#define MAX_BITS_PER_WORD 64
0c2dc519
JH
769#else
770#define MAX_BITS_PER_WORD 32
0c2dc519
JH
771#endif
772
c98f8742
JVA
773/* Define this if most significant byte of a word is the lowest numbered. */
774/* That is true on the 80386. */
775
776#define BITS_BIG_ENDIAN 0
777
778/* Define this if most significant byte of a word is the lowest numbered. */
779/* That is not true on the 80386. */
780#define BYTES_BIG_ENDIAN 0
781
782/* Define this if most significant word of a multiword number is the lowest
783 numbered. */
784/* Not true for 80386 */
785#define WORDS_BIG_ENDIAN 0
786
c98f8742 787/* Width of a word, in units (bytes). */
65d9c0ab 788#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
789#ifdef IN_LIBGCC2
790#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
791#else
792#define MIN_UNITS_PER_WORD 4
793#endif
c98f8742 794
c98f8742 795/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 796#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 797
e075ae69 798/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 799#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 800
d1f87653 801/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 802 aligned; the compiler cannot rely on having this alignment. */
e075ae69 803#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 804
ead903e9 805/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 806 entering main. This causes expand_main_function to forcibly align
1d482056
RH
807 the stack, which results in aligned frames for functions called from
808 main, though it does nothing for the alignment of main itself. */
809#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 810 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 811
ebff937c
SH
812/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
813 mandatory for the 64-bit ABI, and may or may not be true for other
814 operating systems. */
815#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
816
f963b5d9
RS
817/* Minimum allocation boundary for the code of a function. */
818#define FUNCTION_BOUNDARY 8
819
820/* C++ stores the virtual bit in the lowest bit of function pointers. */
821#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 822
892a2d68 823/* Alignment of field after `int : 0' in a structure. */
c98f8742 824
65d9c0ab 825#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
826
827/* Minimum size in bits of the largest boundary to which any
828 and all fundamental data types supported by the hardware
829 might need to be aligned. No data type wants to be aligned
17f24ff0 830 rounder than this.
fce5a9f2 831
d1f87653 832 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
833 and Pentium Pro XFmode values at 128 bit boundaries. */
834
835#define BIGGEST_ALIGNMENT 128
836
822eda12 837/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 838#define ALIGN_MODE_128(MODE) \
4501d314 839 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 840
17f24ff0 841/* The published ABIs say that doubles should be aligned on word
d1f87653 842 boundaries, so lower the alignment for structure fields unless
6fc605d8 843 -malign-double is set. */
e932b21b 844
e83f3cff
RH
845/* ??? Blah -- this macro is used directly by libobjc. Since it
846 supports no vector modes, cut out the complexity and fall back
847 on BIGGEST_FIELD_ALIGNMENT. */
848#ifdef IN_TARGET_LIBS
ef49d42e
JH
849#ifdef __x86_64__
850#define BIGGEST_FIELD_ALIGNMENT 128
851#else
e83f3cff 852#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 853#endif
e83f3cff 854#else
e932b21b
JH
855#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
856 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 857#endif
c98f8742 858
e5e8a8bf 859/* If defined, a C expression to compute the alignment given to a
a7180f70 860 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
861 and ALIGN is the alignment that the object would ordinarily have.
862 The value of this macro is used instead of that alignment to align
863 the object.
864
865 If this macro is not defined, then ALIGN is used.
866
867 The typical use of this macro is to increase alignment for string
868 constants to be word aligned so that `strcpy' calls that copy
869 constants can be done inline. */
870
d9a5f180 871#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 872
8a022443
JW
873/* If defined, a C expression to compute the alignment for a static
874 variable. TYPE is the data type, and ALIGN is the alignment that
875 the object would ordinarily have. The value of this macro is used
876 instead of that alignment to align the object.
877
878 If this macro is not defined, then ALIGN is used.
879
880 One use of this macro is to increase alignment of medium-size
881 data to make it all fit in fewer cache lines. Another is to
882 cause character arrays to be word-aligned so that `strcpy' calls
883 that copy constants to character arrays can be done inline. */
884
d9a5f180 885#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
886
887/* If defined, a C expression to compute the alignment for a local
888 variable. TYPE is the data type, and ALIGN is the alignment that
889 the object would ordinarily have. The value of this macro is used
890 instead of that alignment to align the object.
891
892 If this macro is not defined, then ALIGN is used.
893
894 One use of this macro is to increase alignment of medium-size
895 data to make it all fit in fewer cache lines. */
896
d9a5f180 897#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 898
53c17031
JH
899/* If defined, a C expression that gives the alignment boundary, in
900 bits, of an argument with the specified mode and type. If it is
901 not defined, `PARM_BOUNDARY' is used for all arguments. */
902
d9a5f180
GS
903#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
904 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 905
9cd10576 906/* Set this nonzero if move instructions will actually fail to work
c98f8742 907 when given unaligned data. */
b4ac57ab 908#define STRICT_ALIGNMENT 0
c98f8742
JVA
909
910/* If bit field type is int, don't let it cross an int,
911 and give entire struct the alignment of an int. */
43a88a8c 912/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 913#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
914\f
915/* Standard register usage. */
916
917/* This processor has special stack-like registers. See reg-stack.c
892a2d68 918 for details. */
c98f8742
JVA
919
920#define STACK_REGS
d9a5f180 921#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
922 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
923 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
924 || (MODE) == XFmode)
c98f8742
JVA
925
926/* Number of actual hardware registers.
927 The hardware registers are assigned numbers for the compiler
928 from 0 to just below FIRST_PSEUDO_REGISTER.
929 All registers that the compiler knows about must be given numbers,
930 even those that are not normally considered general registers.
931
932 In the 80386 we give the 8 general purpose registers the numbers 0-7.
933 We number the floating point registers 8-15.
934 Note that registers 0-7 can be accessed as a short or int,
935 while only 0-3 may be used with byte `mov' instructions.
936
937 Reg 16 does not correspond to any hardware register, but instead
938 appears in the RTL as an argument pointer prior to reload, and is
939 eliminated during reloading in favor of either the stack or frame
892a2d68 940 pointer. */
c98f8742 941
b0d95de8 942#define FIRST_PSEUDO_REGISTER 53
c98f8742 943
3073d01c
ML
944/* Number of hardware registers that go into the DWARF-2 unwind info.
945 If not defined, equals FIRST_PSEUDO_REGISTER. */
946
947#define DWARF_FRAME_REGISTERS 17
948
c98f8742
JVA
949/* 1 for registers that have pervasive standard uses
950 and are not available for the register allocator.
3f3f2124 951 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 952
3a4416fb
RS
953 The value is zero if the register is not fixed on either 32 or
954 64 bit targets, one if the register if fixed on both 32 and 64
955 bit targets, two if it is only fixed on 32bit targets and three
956 if its only fixed on 64bit targets.
957 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 958 */
a7180f70
BS
959#define FIXED_REGISTERS \
960/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 961{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
962/*arg,flags,fpsr,fpcr,frame*/ \
963 1, 1, 1, 1, 1, \
a7180f70
BS
964/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
965 0, 0, 0, 0, 0, 0, 0, 0, \
966/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
967 0, 0, 0, 0, 0, 0, 0, 0, \
968/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 969 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 970/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 971 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 972
c98f8742
JVA
973
974/* 1 for registers not available across function calls.
975 These must include the FIXED_REGISTERS and also any
976 registers that can be used without being saved.
977 The latter must include the registers where values are returned
978 and the register where structure-value addresses are passed.
fce5a9f2
EC
979 Aside from that, you can include as many other registers as you like.
980
9d72d996
JJ
981 The value is zero if the register is not call used on either 32 or
982 64 bit targets, one if the register if call used on both 32 and 64
983 bit targets, two if it is only call used on 32bit targets and three
984 if its only call used on 64bit targets.
3a4416fb 985 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 986*/
a7180f70
BS
987#define CALL_USED_REGISTERS \
988/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 989{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
990/*arg,flags,fpsr,fpcr,frame*/ \
991 1, 1, 1, 1, 1, \
a7180f70 992/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 993 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 994/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 995 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 996/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 997 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 998/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 999 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 1000
3b3c6a3f
MM
1001/* Order in which to allocate registers. Each register must be
1002 listed once, even those in FIXED_REGISTERS. List frame pointer
1003 late and fixed registers last. Note that, in general, we prefer
1004 registers listed in CALL_USED_REGISTERS, keeping the others
1005 available for storage of persistent values.
1006
162f023b
JH
1007 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
1008 so this is just empty initializer for array. */
3b3c6a3f 1009
162f023b
JH
1010#define REG_ALLOC_ORDER \
1011{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1012 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1013 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 1014 48, 49, 50, 51, 52 }
3b3c6a3f 1015
162f023b
JH
1016/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1017 to be rearranged based on a particular function. When using sse math,
03c259ad 1018 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1019
162f023b 1020#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 1021
f5316dfe 1022
c98f8742 1023/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 1024#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 1025do { \
3f3f2124 1026 int i; \
b0fede98 1027 unsigned int j; \
3f3f2124
JH
1028 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1029 { \
3a4416fb
RS
1030 if (fixed_regs[i] > 1) \
1031 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1032 if (call_used_regs[i] > 1) \
1033 call_used_regs[i] = (call_used_regs[i] \
1034 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 1035 } \
b0fede98 1036 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 1037 if (j != INVALID_REGNUM) \
a7180f70 1038 { \
7706ca5d
L
1039 fixed_regs[j] = 1; \
1040 call_used_regs[j] = 1; \
a7180f70
BS
1041 } \
1042 if (! TARGET_MMX) \
1043 { \
1044 int i; \
1045 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1046 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 1047 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1048 } \
1049 if (! TARGET_SSE) \
1050 { \
1051 int i; \
1052 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1053 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 1054 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1055 } \
1056 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1057 { \
1058 int i; \
1059 HARD_REG_SET x; \
1060 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1061 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1062 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
1063 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1064 } \
1065 if (! TARGET_64BIT) \
1066 { \
1067 int i; \
1068 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1069 reg_names[i] = ""; \
1070 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1071 reg_names[i] = ""; \
a7180f70 1072 } \
ccf8e764
RH
1073 if (TARGET_64BIT_MS_ABI) \
1074 { \
1075 call_used_regs[4 /*RSI*/] = 0; \
1076 call_used_regs[5 /*RDI*/] = 0; \
1077 } \
d9a5f180 1078 } while (0)
c98f8742
JVA
1079
1080/* Return number of consecutive hard regs needed starting at reg REGNO
1081 to hold something of mode MODE.
1082 This is ordinarily the length in words of a value of mode MODE
1083 but can be less for certain modes in special long registers.
1084
fce5a9f2 1085 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1086 registers. And only registers 0-3 may have mov byte instructions
1087 applied to them.
1088 */
1089
1090#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1091 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1092 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1093 : ((MODE) == XFmode \
92d0fb09 1094 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1095 : (MODE) == XCmode \
92d0fb09 1096 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1097 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1098
8521c414
JM
1099#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1100 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1101 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1102 ? 0 \
1103 : ((MODE) == XFmode || (MODE) == XCmode)) \
1104 : 0)
1105
1106#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1107
fbe5eb6d
BS
1108#define VALID_SSE2_REG_MODE(MODE) \
1109 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 1110 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1111
d9a5f180
GS
1112#define VALID_SSE_REG_MODE(MODE) \
1113 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 1114 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1115
47f339cf
BS
1116#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1117 ((MODE) == V2SFmode || (MODE) == SFmode)
1118
d9a5f180
GS
1119#define VALID_MMX_REG_MODE(MODE) \
1120 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
1121 || (MODE) == V2SImode || (MODE) == SImode)
1122
accde4cf
RH
1123/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1124 place emms and femms instructions. */
c4336539 1125#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1126
62d75179
L
1127#define VALID_DFP_MODE_P(MODE) \
1128 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1129
d9a5f180 1130#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
1131 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1132 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1133
d9a5f180
GS
1134#define VALID_INT_MODE_P(MODE) \
1135 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1136 || (MODE) == DImode \
1137 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1138 || (MODE) == CDImode \
f8a1ebc6
JH
1139 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1140 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1141
822eda12
JH
1142/* Return true for modes passed in SSE registers. */
1143#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 1144 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1145 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1146 || (MODE) == V4SFmode || (MODE) == V4SImode)
1147
e075ae69 1148/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1149
a946dd00 1150#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1151 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1152
1153/* Value is 1 if it is a good idea to tie two pseudo registers
1154 when one has mode MODE1 and one has mode MODE2.
1155 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1156 for any hard reg, then this must be 0 for correct output. */
1157
c1c5b5e3 1158#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1159
ff25ef99
ZD
1160/* It is possible to write patterns to move flags; but until someone
1161 does it, */
1162#define AVOID_CCMODE_COPIES
c98f8742 1163
e075ae69 1164/* Specify the modes required to caller save a given hard regno.
787dc842 1165 We do this on i386 to prevent flags from being saved at all.
e075ae69 1166
787dc842
JH
1167 Kill any attempts to combine saving of modes. */
1168
d9a5f180
GS
1169#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1170 (CC_REGNO_P (REGNO) ? VOIDmode \
1171 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 1172 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
1173 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1174 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1175 : (MODE))
c98f8742
JVA
1176/* Specify the registers used for certain standard purposes.
1177 The values of these macros are register numbers. */
1178
1179/* on the 386 the pc register is %eip, and is not usable as a general
1180 register. The ordinary mov instructions won't work */
1181/* #define PC_REGNUM */
1182
1183/* Register to use for pushing function arguments. */
1184#define STACK_POINTER_REGNUM 7
1185
1186/* Base register for access to local variables of the function. */
564d80f4
JH
1187#define HARD_FRAME_POINTER_REGNUM 6
1188
1189/* Base register for access to local variables of the function. */
b0d95de8 1190#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1191
1192/* First floating point reg */
1193#define FIRST_FLOAT_REG 8
1194
1195/* First & last stack-like regs */
1196#define FIRST_STACK_REG FIRST_FLOAT_REG
1197#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1198
a7180f70
BS
1199#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1200#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1201
a7180f70
BS
1202#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1203#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1204
3f3f2124
JH
1205#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1206#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1207
1208#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1209#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1210
c98f8742
JVA
1211/* Value should be nonzero if functions must have frame pointers.
1212 Zero means the frame pointer need not be set up (and parms
1213 may be accessed via the stack pointer) in functions that seem suitable.
1214 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1215#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1216
aabcd309 1217/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1218 requiring a frame pointer. */
1219#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1220#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1221#endif
1222
1223/* Make sure we can access arbitrary call frames. */
1224#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1225
1226/* Base register for access to arguments of the function. */
1227#define ARG_POINTER_REGNUM 16
1228
d2836273
JH
1229/* Register in which static-chain is passed to a function.
1230 We do use ECX as static chain register for 32 bit ABI. On the
1231 64bit ABI, ECX is an argument register, so we use R10 instead. */
1232#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1233
1234/* Register to hold the addressing base for position independent
5b43fed1
RH
1235 code access to data items. We don't use PIC pointer for 64bit
1236 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1237 pessimizing code dealing with EBX.
bd09bdeb
RH
1238
1239 To avoid clobbering a call-saved register unnecessarily, we renumber
1240 the pic register when possible. The change is visible after the
1241 prologue has been emitted. */
1242
1243#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1244
1245#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1246 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1247 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1248 : reload_completed ? REGNO (pic_offset_table_rtx) \
1249 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1250
5fc0e5df
KW
1251#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1252
713225d4
MM
1253/* A C expression which can inhibit the returning of certain function
1254 values in registers, based on the type of value. A nonzero value
1255 says to return the function value in memory, just as large
1256 structures are always returned. Here TYPE will be a C expression
1257 of type `tree', representing the data type of the value.
1258
1259 Note that values of mode `BLKmode' must be explicitly handled by
1260 this macro. Also, the option `-fpcc-struct-return' takes effect
1261 regardless of this macro. On most systems, it is possible to
1262 leave the macro undefined; this causes a default definition to be
1263 used, whose value is the constant 1 for `BLKmode' values, and 0
1264 otherwise.
1265
1266 Do not use this macro to indicate that structures and unions
1267 should always be returned in memory. You should instead use
1268 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1269
d9a5f180 1270#define RETURN_IN_MEMORY(TYPE) \
53c17031 1271 ix86_return_in_memory (TYPE)
713225d4 1272
c51e6d85 1273/* This is overridden by <cygwin.h>. */
5e062767
DS
1274#define MS_AGGREGATE_RETURN 0
1275
61fec9ff
JB
1276/* This is overridden by <netware.h>. */
1277#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1278\f
1279/* Define the classes of registers for register constraints in the
1280 machine description. Also define ranges of constants.
1281
1282 One of the classes must always be named ALL_REGS and include all hard regs.
1283 If there is more than one class, another class must be named NO_REGS
1284 and contain no registers.
1285
1286 The name GENERAL_REGS must be the name of a class (or an alias for
1287 another name such as ALL_REGS). This is the class of registers
1288 that is allowed by "g" or "r" in a register constraint.
1289 Also, registers outside this class are allocated only when
1290 instructions express preferences for them.
1291
1292 The classes must be numbered in nondecreasing order; that is,
1293 a larger-numbered class must never be contained completely
1294 in a smaller-numbered class.
1295
1296 For any two classes, it is very desirable that there be another
ab408a86
JVA
1297 class that represents their union.
1298
1299 It might seem that class BREG is unnecessary, since no useful 386
1300 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1301 and the "b" register constraint is useful in asms for syscalls.
1302
03c259ad 1303 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1304
1305enum reg_class
1306{
1307 NO_REGS,
e075ae69 1308 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1309 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1310 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1311 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1312 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1313 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1314 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1315 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1316 FLOAT_REGS,
06f4e35d 1317 SSE_FIRST_REG,
a7180f70
BS
1318 SSE_REGS,
1319 MMX_REGS,
446988df
JH
1320 FP_TOP_SSE_REGS,
1321 FP_SECOND_SSE_REGS,
1322 FLOAT_SSE_REGS,
1323 FLOAT_INT_REGS,
1324 INT_SSE_REGS,
1325 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1326 ALL_REGS, LIM_REG_CLASSES
1327};
1328
d9a5f180
GS
1329#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1330
1331#define INTEGER_CLASS_P(CLASS) \
1332 reg_class_subset_p ((CLASS), GENERAL_REGS)
1333#define FLOAT_CLASS_P(CLASS) \
1334 reg_class_subset_p ((CLASS), FLOAT_REGS)
1335#define SSE_CLASS_P(CLASS) \
06f4e35d 1336 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1337#define MMX_CLASS_P(CLASS) \
f75959a6 1338 ((CLASS) == MMX_REGS)
d9a5f180
GS
1339#define MAYBE_INTEGER_CLASS_P(CLASS) \
1340 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1341#define MAYBE_FLOAT_CLASS_P(CLASS) \
1342 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1343#define MAYBE_SSE_CLASS_P(CLASS) \
1344 reg_classes_intersect_p (SSE_REGS, (CLASS))
1345#define MAYBE_MMX_CLASS_P(CLASS) \
1346 reg_classes_intersect_p (MMX_REGS, (CLASS))
1347
1348#define Q_CLASS_P(CLASS) \
1349 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1350
43f3a59d 1351/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1352
1353#define REG_CLASS_NAMES \
1354{ "NO_REGS", \
ab408a86 1355 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1356 "SIREG", "DIREG", \
e075ae69
RH
1357 "AD_REGS", \
1358 "Q_REGS", "NON_Q_REGS", \
c98f8742 1359 "INDEX_REGS", \
3f3f2124 1360 "LEGACY_REGS", \
c98f8742
JVA
1361 "GENERAL_REGS", \
1362 "FP_TOP_REG", "FP_SECOND_REG", \
1363 "FLOAT_REGS", \
cb482895 1364 "SSE_FIRST_REG", \
a7180f70
BS
1365 "SSE_REGS", \
1366 "MMX_REGS", \
446988df
JH
1367 "FP_TOP_SSE_REGS", \
1368 "FP_SECOND_SSE_REGS", \
1369 "FLOAT_SSE_REGS", \
8fcaaa80 1370 "FLOAT_INT_REGS", \
446988df
JH
1371 "INT_SSE_REGS", \
1372 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1373 "ALL_REGS" }
1374
1375/* Define which registers fit in which classes.
1376 This is an initializer for a vector of HARD_REG_SET
1377 of length N_REG_CLASSES. */
1378
a7180f70 1379#define REG_CLASS_CONTENTS \
3f3f2124
JH
1380{ { 0x00, 0x0 }, \
1381 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1382 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1383 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1384 { 0x03, 0x0 }, /* AD_REGS */ \
1385 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1386 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1387 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1388 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1389 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1390 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1391 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1392 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1393{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1394{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1395{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1396{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1397{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1398 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1399{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1400{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1401{ 0xffffffff,0x1fffff } \
e075ae69 1402}
c98f8742
JVA
1403
1404/* The same information, inverted:
1405 Return the class number of the smallest class containing
1406 reg number REGNO. This could be a conditional expression
1407 or could index an array. */
1408
c98f8742
JVA
1409#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1410
1411/* When defined, the compiler allows registers explicitly used in the
1412 rtl to be used as spill registers but prevents the compiler from
892a2d68 1413 extending the lifetime of these registers. */
c98f8742 1414
2922fe9e 1415#define SMALL_REGISTER_CLASSES 1
c98f8742 1416
fb84c7a0 1417#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1418
d9a5f180 1419#define GENERAL_REGNO_P(N) \
fb84c7a0 1420 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1421
1422#define GENERAL_REG_P(X) \
6189a572 1423 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1424
1425#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1426
fb84c7a0
UB
1427#define REX_INT_REGNO_P(N) \
1428 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1429#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1430
c98f8742 1431#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1432#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1433#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1434#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1435
54a88090 1436#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1437 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1438
fb84c7a0
UB
1439#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1440#define SSE_REGNO_P(N) \
1441 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1442 || REX_SSE_REGNO_P (N))
3f3f2124 1443
4977bab6 1444#define REX_SSE_REGNO_P(N) \
fb84c7a0 1445 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1446
d9a5f180
GS
1447#define SSE_REGNO(N) \
1448 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1449
d9a5f180 1450#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1451 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1452
d9a5f180 1453#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1454#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1455
fb84c7a0 1456#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1457#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1458
d9a5f180 1459#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1460
e075ae69
RH
1461#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1462#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1463
c98f8742
JVA
1464/* The class value for index registers, and the one for base regs. */
1465
1466#define INDEX_REG_CLASS INDEX_REGS
1467#define BASE_REG_CLASS GENERAL_REGS
1468
c98f8742 1469/* Place additional restrictions on the register class to use when it
4cbb525c 1470 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1471 register for which class CLASS would ordinarily be used. */
c98f8742 1472
d2836273
JH
1473#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1474 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1475 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1476 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1477 ? Q_REGS : (CLASS))
1478
1479/* Given an rtx X being reloaded into a reg required to be
1480 in class CLASS, return the class of reg to actually use.
1481 In general this is just CLASS; but on some machines
1482 in some cases it is preferable to use a more restrictive class.
1483 On the 80386 series, we prevent floating constants from being
1484 reloaded into floating registers (since no move-insn can do that)
1485 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1486
d398b3b1 1487/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1488 QImode must go into class Q_REGS.
d398b3b1 1489 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1490 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1491
d9a5f180
GS
1492#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1493 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1494
b5c82fa1
PB
1495/* Discourage putting floating-point values in SSE registers unless
1496 SSE math is being used, and likewise for the 387 registers. */
1497
1498#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1499 ix86_preferred_output_reload_class ((X), (CLASS))
1500
85ff473e 1501/* If we are copying between general and FP registers, we need a memory
f84aa48a 1502 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1503#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1504 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1505
1506/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1507 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1508 pseudo. */
1509
d9a5f180 1510#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1511 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1512 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1513 ? Q_REGS : NO_REGS)
c98f8742
JVA
1514
1515/* Return the maximum number of consecutive registers
1516 needed to represent mode MODE in a register of class CLASS. */
1517/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1518 except in the FP regs, where a single reg is always enough. */
a7180f70 1519#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1520 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1521 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1522 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1523 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1524
1525/* A C expression whose value is nonzero if pseudos that have been
1526 assigned to registers of class CLASS would likely be spilled
1527 because registers of CLASS are needed for spill registers.
1528
1529 The default value of this macro returns 1 if CLASS has exactly one
1530 register and zero otherwise. On most machines, this default
1531 should be used. Only define this macro to some other expression
1532 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1533 their hard registers were needed for spill registers. If this
f5316dfe
MM
1534 macro returns nonzero for those classes, those pseudos will only
1535 be allocated by `global.c', which knows how to reallocate the
1536 pseudo to another register. If there would not be another
1537 register available for reallocation, you should not change the
1538 definition of this macro since the only effect of such a
1539 definition would be to slow down register allocation. */
1540
1541#define CLASS_LIKELY_SPILLED_P(CLASS) \
1542 (((CLASS) == AREG) \
1543 || ((CLASS) == DREG) \
1544 || ((CLASS) == CREG) \
1545 || ((CLASS) == BREG) \
1546 || ((CLASS) == AD_REGS) \
1547 || ((CLASS) == SIREG) \
b0af5c03
JH
1548 || ((CLASS) == DIREG) \
1549 || ((CLASS) == FP_TOP_REG) \
1550 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1551
1272914c
RH
1552/* Return a class of registers that cannot change FROM mode to TO mode. */
1553
1554#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1555 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1556\f
1557/* Stack layout; function entry, exit and calling. */
1558
1559/* Define this if pushing a word on the stack
1560 makes the stack pointer a smaller address. */
1561#define STACK_GROWS_DOWNWARD
1562
a4d05547 1563/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1564 is at the high-address end of the local variables;
1565 that is, each additional local variable allocated
1566 goes at a more negative offset in the frame. */
f62c8a5c 1567#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1568
1569/* Offset within stack frame to start allocating local variables at.
1570 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1571 first local allocated. Otherwise, it is the offset to the BEGINNING
1572 of the first local allocated. */
1573#define STARTING_FRAME_OFFSET 0
1574
1575/* If we generate an insn to push BYTES bytes,
1576 this says how many the stack pointer really advances by.
6541fe75
JJ
1577 On 386, we have pushw instruction that decrements by exactly 2 no
1578 matter what the position was, there is no pushb.
1579 But as CIE data alignment factor on this arch is -4, we need to make
1580 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1581
d2836273
JH
1582 For 64bit ABI we round up to 8 bytes.
1583 */
c98f8742 1584
d2836273
JH
1585#define PUSH_ROUNDING(BYTES) \
1586 (TARGET_64BIT \
1587 ? (((BYTES) + 7) & (-8)) \
6541fe75 1588 : (((BYTES) + 3) & (-4)))
c98f8742 1589
f73ad30e
JH
1590/* If defined, the maximum amount of space required for outgoing arguments will
1591 be computed and placed into the variable
1592 `current_function_outgoing_args_size'. No space will be pushed onto the
1593 stack for each call; instead, the function prologue should increase the stack
1594 frame size by this amount. */
1595
1596#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1597
1598/* If defined, a C expression whose value is nonzero when we want to use PUSH
1599 instructions to pass outgoing arguments. */
1600
1601#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1602
2da4124d
L
1603/* We want the stack and args grow in opposite directions, even if
1604 PUSH_ARGS is 0. */
1605#define PUSH_ARGS_REVERSED 1
1606
c98f8742
JVA
1607/* Offset of first parameter from the argument pointer register value. */
1608#define FIRST_PARM_OFFSET(FNDECL) 0
1609
a7180f70
BS
1610/* Define this macro if functions should assume that stack space has been
1611 allocated for arguments even when their values are passed in registers.
1612
1613 The value of this macro is the size, in bytes, of the area reserved for
1614 arguments passed in registers for the function represented by FNDECL.
1615
1616 This space can be allocated by the caller, or be a part of the
1617 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1618 which. */
1619#define REG_PARM_STACK_SPACE(FNDECL) 0
1620
c98f8742
JVA
1621/* Value is the number of bytes of arguments automatically
1622 popped when returning from a subroutine call.
8b109b37 1623 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1624 FUNTYPE is the data type of the function (as a tree),
1625 or for a library call it is an identifier node for the subroutine name.
1626 SIZE is the number of bytes of arguments passed on the stack.
1627
1628 On the 80386, the RTD insn may be used to pop them if the number
1629 of args is fixed, but if the number is variable then the caller
1630 must pop them all. RTD can't be used for library calls now
1631 because the library is compiled with the Unix compiler.
1632 Use of RTD is a selectable option, since it is incompatible with
1633 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1634 the caller must always pop the args.
1635
1636 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1637
d9a5f180
GS
1638#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1639 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1640
53c17031
JH
1641#define FUNCTION_VALUE_REGNO_P(N) \
1642 ix86_function_value_regno_p (N)
c98f8742
JVA
1643
1644/* Define how to find the value returned by a library function
1645 assuming the value has mode MODE. */
1646
1647#define LIBCALL_VALUE(MODE) \
53c17031 1648 ix86_libcall_value (MODE)
c98f8742 1649
e9125c09
TW
1650/* Define the size of the result block used for communication between
1651 untyped_call and untyped_return. The block contains a DImode value
1652 followed by the block used by fnsave and frstor. */
1653
1654#define APPLY_RESULT_SIZE (8+108)
1655
b08de47e 1656/* 1 if N is a possible register number for function argument passing. */
53c17031 1657#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1658
1659/* Define a data type for recording info about an argument list
1660 during the scan of that argument list. This data type should
1661 hold all necessary information about the function itself
1662 and about the args processed so far, enough to enable macros
b08de47e 1663 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1664
e075ae69 1665typedef struct ix86_args {
fa283935 1666 int words; /* # words passed so far */
b08de47e
MM
1667 int nregs; /* # registers available for passing */
1668 int regno; /* next available register number */
9d72d996 1669 int fastcall; /* fastcall calling convention is used */
fa283935 1670 int sse_words; /* # sse words passed so far */
a7180f70 1671 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1672 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1673 int warn_mmx; /* True when we want to warn about MMX ABI. */
1674 int sse_regno; /* next available sse register number */
1675 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1676 int mmx_nregs; /* # mmx registers available for passing */
1677 int mmx_regno; /* next available mmx register number */
892a2d68 1678 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1679 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1680 be passed in SSE registers. Otherwise 0. */
b08de47e 1681} CUMULATIVE_ARGS;
c98f8742
JVA
1682
1683/* Initialize a variable CUM of type CUMULATIVE_ARGS
1684 for a call to a function whose data type is FNTYPE.
b08de47e 1685 For a library call, FNTYPE is 0. */
c98f8742 1686
0f6937fe 1687#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1688 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1689
1690/* Update the data in CUM to advance over an argument
1691 of mode MODE and data type TYPE.
1692 (TYPE is null for libcalls where that information may not be available.) */
1693
d9a5f180
GS
1694#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1695 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1696
1697/* Define where to put the arguments to a function.
1698 Value is zero to push the argument on the stack,
1699 or a hard register in which to store the argument.
1700
1701 MODE is the argument's machine mode.
1702 TYPE is the data type of the argument (as a tree).
1703 This is null for libcalls where that information may
1704 not be available.
1705 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1706 the preceding args and about the function being called.
1707 NAMED is nonzero if this argument is a named parameter
1708 (otherwise it is an extra parameter matching an ellipsis). */
1709
c98f8742 1710#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1711 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1712
a5fe455b
ZW
1713#define TARGET_ASM_FILE_END ix86_file_end
1714#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1715
c98f8742
JVA
1716/* Output assembler code to FILE to increment profiler label # LABELNO
1717 for profiling a function entry. */
1718
a5fa1ecd
JH
1719#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1720
1721#define MCOUNT_NAME "_mcount"
1722
1723#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1724
1725/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1726 the stack pointer does not matter. The value is tested only in
1727 functions that have frame pointers.
1728 No definition is equivalent to always zero. */
fce5a9f2 1729/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1730 we have to restore it ourselves from the frame pointer, in order to
1731 use pop */
1732
1733#define EXIT_IGNORE_STACK 1
1734
c98f8742
JVA
1735/* Output assembler code for a block containing the constant parts
1736 of a trampoline, leaving space for the variable parts. */
1737
a269a03c 1738/* On the 386, the trampoline contains two instructions:
c98f8742 1739 mov #STATIC,ecx
a269a03c
JC
1740 jmp FUNCTION
1741 The trampoline is generated entirely at runtime. The operand of JMP
1742 is the address of FUNCTION relative to the instruction following the
1743 JMP (which is 5 bytes long). */
c98f8742
JVA
1744
1745/* Length in units of the trampoline for entering a nested function. */
1746
39d04363 1747#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1748
1749/* Emit RTL insns to initialize the variable parts of a trampoline.
1750 FNADDR is an RTX for the address of the function's pure code.
1751 CXT is an RTX for the static chain value for the function. */
1752
d9a5f180
GS
1753#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1754 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1755\f
1756/* Definitions for register eliminations.
1757
1758 This is an array of structures. Each structure initializes one pair
1759 of eliminable registers. The "from" register number is given first,
1760 followed by "to". Eliminations of the same "from" register are listed
1761 in order of preference.
1762
afc2cd05
NC
1763 There are two registers that can always be eliminated on the i386.
1764 The frame pointer and the arg pointer can be replaced by either the
1765 hard frame pointer or to the stack pointer, depending upon the
1766 circumstances. The hard frame pointer is not used before reload and
1767 so it is not eligible for elimination. */
c98f8742 1768
564d80f4
JH
1769#define ELIMINABLE_REGS \
1770{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1771 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1772 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1773 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1774
2c5a510c
RH
1775/* Given FROM and TO register numbers, say whether this elimination is
1776 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1777
1778 All other eliminations are valid. */
1779
2c5a510c
RH
1780#define CAN_ELIMINATE(FROM, TO) \
1781 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1782
1783/* Define the offset between two registers, one to be eliminated, and the other
1784 its replacement, at the start of a routine. */
1785
d9a5f180
GS
1786#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1787 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1788\f
1789/* Addressing modes, and classification of registers for them. */
1790
c98f8742
JVA
1791/* Macros to check register numbers against specific register classes. */
1792
1793/* These assume that REGNO is a hard or pseudo reg number.
1794 They give nonzero only if REGNO is a hard reg of the suitable class
1795 or a pseudo reg currently allocated to a suitable hard reg.
1796 Since they use reg_renumber, they are safe only once reg_renumber
1797 has been allocated, which happens in local-alloc.c. */
1798
3f3f2124
JH
1799#define REGNO_OK_FOR_INDEX_P(REGNO) \
1800 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1801 || REX_INT_REGNO_P (REGNO) \
1802 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1803 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1804
3f3f2124 1805#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1806 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1807 || (REGNO) == ARG_POINTER_REGNUM \
1808 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1809 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1810
c98f8742
JVA
1811/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1812 and check its validity for a certain class.
1813 We have two alternate definitions for each of them.
1814 The usual definition accepts all pseudo regs; the other rejects
1815 them unless they have been allocated suitable hard regs.
1816 The symbol REG_OK_STRICT causes the latter definition to be used.
1817
1818 Most source files want to accept pseudo regs in the hope that
1819 they will get allocated to the class that the insn wants them to be in.
1820 Source files for reload pass need to be strict.
1821 After reload, it makes no difference, since pseudo regs have
1822 been eliminated by then. */
1823
c98f8742 1824
ff482c8d 1825/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1826#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1827 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1828 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1829 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1830
3b3c6a3f 1831#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1832 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1833 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1834 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1835 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1836
3b3c6a3f
MM
1837/* Strict versions, hard registers only */
1838#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1839#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1840
3b3c6a3f 1841#ifndef REG_OK_STRICT
d9a5f180
GS
1842#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1843#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1844
1845#else
d9a5f180
GS
1846#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1847#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1848#endif
1849
1850/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1851 that is a valid memory address for an instruction.
1852 The MODE argument is the machine mode for the MEM expression
1853 that wants to use this address.
1854
1855 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1856 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1857
1858 See legitimize_pic_address in i386.c for details as to what
1859 constitutes a legitimate address when -fpic is used. */
1860
1861#define MAX_REGS_PER_ADDRESS 2
1862
f996902d 1863#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1864
1865/* Nonzero if the constant value X is a legitimate general operand.
1866 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1867
f996902d 1868#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1869
3b3c6a3f
MM
1870#ifdef REG_OK_STRICT
1871#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1872do { \
1873 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1874 goto ADDR; \
d9a5f180 1875} while (0)
c98f8742 1876
3b3c6a3f
MM
1877#else
1878#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1879do { \
1880 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1881 goto ADDR; \
d9a5f180 1882} while (0)
c98f8742 1883
3b3c6a3f
MM
1884#endif
1885
b949ea8b
JW
1886/* If defined, a C expression to determine the base term of address X.
1887 This macro is used in only one place: `find_base_term' in alias.c.
1888
1889 It is always safe for this macro to not be defined. It exists so
1890 that alias analysis can understand machine-dependent addresses.
1891
1892 The typical use of this macro is to handle addresses containing
1893 a label_ref or symbol_ref within an UNSPEC. */
1894
d9a5f180 1895#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1896
c98f8742
JVA
1897/* Try machine-dependent ways of modifying an illegitimate address
1898 to be legitimate. If we find one, return the new, valid address.
1899 This macro is used in only one place: `memory_address' in explow.c.
1900
1901 OLDX is the address as it was before break_out_memory_refs was called.
1902 In some cases it is useful to look at this to decide what needs to be done.
1903
1904 MODE and WIN are passed so that this macro can use
1905 GO_IF_LEGITIMATE_ADDRESS.
1906
1907 It is always safe for this macro to do nothing. It exists to recognize
1908 opportunities to optimize the output.
1909
1910 For the 80386, we handle X+REG by loading X into a register R and
1911 using R+REG. R will go in a general reg and indexing will be used.
1912 However, if REG is a broken-out memory address or multiplication,
1913 nothing needs to be done because REG can certainly go in a general reg.
1914
1915 When -fpic is used, special handling is needed for symbolic references.
1916 See comments by legitimize_pic_address in i386.c for details. */
1917
3b3c6a3f 1918#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1919do { \
1920 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1921 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1922 goto WIN; \
d9a5f180 1923} while (0)
c98f8742
JVA
1924
1925/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1926 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1927 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1928
f996902d 1929#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1930
1931#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1932 (GET_CODE (X) == SYMBOL_REF \
1933 || GET_CODE (X) == LABEL_REF \
1934 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1935
1936/* Go to LABEL if ADDR (a legitimate address expression)
1937 has an effect that depends on the machine mode it is used for.
1938 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1939 (the amount of decrement or increment being the length of the operand).
1940 These are now caught in recog.c. */
1941#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1942\f
b08de47e
MM
1943/* Max number of args passed in registers. If this is more than 3, we will
1944 have problems with ebx (register #4), since it is a caller save register and
1945 is also used as the pic register in ELF. So for now, don't allow more than
1946 3 registers to be passed in registers. */
1947
d2836273
JH
1948#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1949
bcf17554
JH
1950#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1951
1952#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1953
c98f8742
JVA
1954\f
1955/* Specify the machine mode that this machine uses
1956 for the index in the tablejump instruction. */
dc4d7240
JH
1957#define CASE_VECTOR_MODE \
1958 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1959
c98f8742
JVA
1960/* Define this as 1 if `char' should by default be signed; else as 0. */
1961#define DEFAULT_SIGNED_CHAR 1
1962
1963/* Max number of bytes we can move from memory to memory
1964 in one reasonably fast instruction. */
65d9c0ab
JH
1965#define MOVE_MAX 16
1966
1967/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1968 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1969 number of bytes we can move with a single instruction. */
65d9c0ab 1970#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1971
7e24ffc9 1972/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1973 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1974 Increasing the value will always make code faster, but eventually
1975 incurs high cost in increased code size.
c98f8742 1976
e2e52e1b 1977 If you don't define this, a reasonable default is used. */
c98f8742 1978
e2e52e1b 1979#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1980
45d78e7f
JJ
1981/* If a clear memory operation would take CLEAR_RATIO or more simple
1982 move-instruction sequences, we will do a clrmem or libcall instead. */
1983
1984#define CLEAR_RATIO (optimize_size ? 2 \
1985 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1986
c98f8742
JVA
1987/* Define if shifts truncate the shift count
1988 which implies one can omit a sign-extension or zero-extension
1989 of a shift count. */
892a2d68 1990/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1991
1992/* #define SHIFT_COUNT_TRUNCATED */
1993
1994/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1995 is done just by pretending it is already truncated. */
1996#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1997
d9f32422
JH
1998/* A macro to update M and UNSIGNEDP when an object whose type is
1999 TYPE and which has the specified mode and signedness is to be
2000 stored in a register. This macro is only called when TYPE is a
2001 scalar type.
2002
f710504c 2003 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2004 quantities to SImode. The choice depends on target type. */
2005
2006#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2007do { \
d9f32422
JH
2008 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2009 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2010 (MODE) = SImode; \
2011} while (0)
d9f32422 2012
c98f8742
JVA
2013/* Specify the machine mode that pointers have.
2014 After generation of rtl, the compiler makes no further distinction
2015 between pointers and any other objects of this machine mode. */
65d9c0ab 2016#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2017
2018/* A function address in a call instruction
2019 is a byte address (for indexing purposes)
2020 so give the MEM rtx a byte's mode. */
2021#define FUNCTION_MODE QImode
d4ba09c0 2022\f
96e7ae40
JH
2023/* A C expression for the cost of moving data from a register in class FROM to
2024 one in class TO. The classes are expressed using the enumeration values
2025 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2026 interpreted relative to that.
d4ba09c0 2027
96e7ae40
JH
2028 It is not required that the cost always equal 2 when FROM is the same as TO;
2029 on some machines it is expensive to move between registers if they are not
f84aa48a 2030 general registers. */
d4ba09c0 2031
f84aa48a 2032#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2033 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2034
2035/* A C expression for the cost of moving data of mode M between a
2036 register and memory. A value of 2 is the default; this cost is
2037 relative to those in `REGISTER_MOVE_COST'.
2038
2039 If moving between registers and memory is more expensive than
2040 between two registers, you should define this macro to express the
fa79946e 2041 relative cost. */
d4ba09c0 2042
d9a5f180
GS
2043#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2044 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2045
2046/* A C expression for the cost of a branch instruction. A value of 1
2047 is the default; other values are interpreted relative to that. */
2048
e075ae69 2049#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2050
2051/* Define this macro as a C expression which is nonzero if accessing
2052 less than a word of memory (i.e. a `char' or a `short') is no
2053 faster than accessing a word of memory, i.e., if such access
2054 require more than one instruction or if there is no difference in
2055 cost between byte and (aligned) word loads.
2056
2057 When this macro is not defined, the compiler will access a field by
2058 finding the smallest containing object; when it is defined, a
2059 fullword load will be used if alignment permits. Unless bytes
2060 accesses are faster than word accesses, using word accesses is
2061 preferable since it may eliminate subsequent memory access if
2062 subsequent accesses occur to other fields in the same word of the
2063 structure, but to different bytes. */
2064
2065#define SLOW_BYTE_ACCESS 0
2066
2067/* Nonzero if access to memory by shorts is slow and undesirable. */
2068#define SLOW_SHORT_ACCESS 0
2069
d4ba09c0
SC
2070/* Define this macro to be the value 1 if unaligned accesses have a
2071 cost many times greater than aligned accesses, for example if they
2072 are emulated in a trap handler.
2073
9cd10576
KH
2074 When this macro is nonzero, the compiler will act as if
2075 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2076 moves. This can cause significantly more instructions to be
9cd10576 2077 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2078 accesses only add a cycle or two to the time for a memory access.
2079
2080 If the value of this macro is always zero, it need not be defined. */
2081
e1565e65 2082/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2083
d4ba09c0
SC
2084/* Define this macro if it is as good or better to call a constant
2085 function address than to call an address kept in a register.
2086
2087 Desirable on the 386 because a CALL with a constant address is
2088 faster than one with a register address. */
2089
2090#define NO_FUNCTION_CSE
c98f8742 2091\f
c572e5ba
JVA
2092/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2093 return the mode to be used for the comparison.
2094
2095 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2096 VOIDmode should be used in all other cases.
c572e5ba 2097
16189740 2098 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2099 possible, to allow for more combinations. */
c98f8742 2100
d9a5f180 2101#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2102
9cd10576 2103/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2104 reversed. */
2105
2106#define REVERSIBLE_CC_MODE(MODE) 1
2107
2108/* A C expression whose value is reversed condition code of the CODE for
2109 comparison done in CC_MODE mode. */
3c5cb3e4 2110#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2111
c98f8742
JVA
2112\f
2113/* Control the assembler format that we output, to the extent
2114 this does not vary between assemblers. */
2115
2116/* How to refer to registers in assembler output.
892a2d68 2117 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2118
a7b376ee 2119/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2120 For non floating point regs, the following are the HImode names.
2121
2122 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2123 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2124
a7180f70
BS
2125#define HI_REGISTER_NAMES \
2126{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2127 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2128 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2129 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2130 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2131 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2132 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2133
c98f8742
JVA
2134#define REGISTER_NAMES HI_REGISTER_NAMES
2135
2136/* Table of additional register names to use in user input. */
2137
2138#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2139{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2140 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2141 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2142 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2143 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2144 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2145
2146/* Note we are omitting these since currently I don't know how
2147to get gcc to use these, since they want the same but different
2148number as al, and ax.
2149*/
2150
c98f8742 2151#define QI_REGISTER_NAMES \
3f3f2124 2152{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2153
2154/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2155 of regs 0 through 3. */
c98f8742
JVA
2156
2157#define QI_HIGH_REGISTER_NAMES \
2158{"ah", "dh", "ch", "bh", }
2159
2160/* How to renumber registers for dbx and gdb. */
2161
d9a5f180
GS
2162#define DBX_REGISTER_NUMBER(N) \
2163 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2164
9a82e702
MS
2165extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2166extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2167extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2168
469ac993
JM
2169/* Before the prologue, RA is at 0(%esp). */
2170#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2171 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2172
e414ab29 2173/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2174#define RETURN_ADDR_RTX(COUNT, FRAME) \
2175 ((COUNT) == 0 \
2176 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2177 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2178
892a2d68 2179/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2180#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2181
a6ab3aad 2182/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2183#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2184
1020a5ab
RH
2185/* Describe how we implement __builtin_eh_return. */
2186#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2187#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2188
ad919812 2189
e4c4ebeb
RH
2190/* Select a format to encode pointers in exception handling data. CODE
2191 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2192 true if the symbol may be affected by dynamic relocations.
2193
2194 ??? All x86 object file formats are capable of representing this.
2195 After all, the relocation needed is the same as for the call insn.
2196 Whether or not a particular assembler allows us to enter such, I
2197 guess we'll have to see. */
d9a5f180 2198#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2199 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2200
c98f8742
JVA
2201/* This is how to output an insn to push a register on the stack.
2202 It need not be very fast code. */
2203
d9a5f180 2204#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2205do { \
2206 if (TARGET_64BIT) \
2207 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2208 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2209 else \
2210 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2211} while (0)
c98f8742
JVA
2212
2213/* This is how to output an insn to pop a register from the stack.
2214 It need not be very fast code. */
2215
d9a5f180 2216#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2217do { \
2218 if (TARGET_64BIT) \
2219 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2220 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2221 else \
2222 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2223} while (0)
c98f8742 2224
f88c65f7 2225/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2226
2227#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2228 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2229
f88c65f7 2230/* This is how to output an element of a case-vector that is relative. */
c98f8742 2231
33f7f353 2232#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2233 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2234
f7288899
EC
2235/* Under some conditions we need jump tables in the text section,
2236 because the assembler cannot handle label differences between
2237 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2238
2239#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2240 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2241 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2242
cea3bd3e
RH
2243/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2244 and switch back. For x86 we do this only to save a few bytes that
2245 would otherwise be unused in the text section. */
2246#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2247 asm (SECTION_OP "\n\t" \
2248 "call " USER_LABEL_PREFIX #FUNC "\n" \
2249 TEXT_SECTION_ASM_OP);
74b42c8b 2250\f
c98f8742
JVA
2251/* Print operand X (an rtx) in assembler syntax to file FILE.
2252 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2253 Effect of various CODE letters is described in i386.c near
2254 print_operand function. */
c98f8742 2255
d9a5f180 2256#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2257 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2258
2259#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2260 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2261
2262#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2263 print_operand_address ((FILE), (ADDR))
c98f8742 2264
f996902d
RH
2265#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2266do { \
2267 if (! output_addr_const_extra (FILE, (X))) \
2268 goto FAIL; \
2269} while (0);
d4ba09c0 2270\f
5bf0ebab
RH
2271/* Which processor to schedule for. The cpu attribute defines a list that
2272 mirrors this list, so changes to i386.md must be made at the same time. */
2273
2274enum processor_type
2275{
8383d43c 2276 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2277 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2278 PROCESSOR_PENTIUM,
2279 PROCESSOR_PENTIUMPRO,
cfe1b18f 2280 PROCESSOR_GEODE,
5bf0ebab
RH
2281 PROCESSOR_K6,
2282 PROCESSOR_ATHLON,
2283 PROCESSOR_PENTIUM4,
4977bab6 2284 PROCESSOR_K8,
89c43c0a 2285 PROCESSOR_NOCONA,
05f85dbb 2286 PROCESSOR_CORE2,
d326eaf0
JH
2287 PROCESSOR_GENERIC32,
2288 PROCESSOR_GENERIC64,
21efb4d4 2289 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2290 PROCESSOR_max
2291};
2292
9e555526 2293extern enum processor_type ix86_tune;
5bf0ebab 2294extern enum processor_type ix86_arch;
5bf0ebab
RH
2295
2296enum fpmath_unit
2297{
2298 FPMATH_387 = 1,
2299 FPMATH_SSE = 2
2300};
2301
2302extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2303
f996902d
RH
2304enum tls_dialect
2305{
2306 TLS_DIALECT_GNU,
5bf5a10b 2307 TLS_DIALECT_GNU2,
f996902d
RH
2308 TLS_DIALECT_SUN
2309};
2310
2311extern enum tls_dialect ix86_tls_dialect;
f996902d 2312
6189a572 2313enum cmodel {
5bf0ebab
RH
2314 CM_32, /* The traditional 32-bit ABI. */
2315 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2316 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2317 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2318 CM_LARGE, /* No assumptions. */
7dcbf659 2319 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2320 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2321 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2322};
2323
5bf0ebab 2324extern enum cmodel ix86_cmodel;
5bf0ebab 2325
8362f420
JH
2326/* Size of the RED_ZONE area. */
2327#define RED_ZONE_SIZE 128
2328/* Reserved area of the red zone for temporaries. */
2329#define RED_ZONE_RESERVE 8
c93e80a5
JH
2330
2331enum asm_dialect {
2332 ASM_ATT,
2333 ASM_INTEL
2334};
5bf0ebab 2335
80f33d06 2336extern enum asm_dialect ix86_asm_dialect;
95899b34 2337extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2338extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2339
2340/* Smallest class containing REGNO. */
2341extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2342
d9a5f180
GS
2343extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2344extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2345extern rtx ix86_compare_emitted;
22fb740d
JH
2346\f
2347/* To properly truncate FP values into integers, we need to set i387 control
2348 word. We can't emit proper mode switching code before reload, as spills
2349 generated by reload may truncate values incorrectly, but we still can avoid
2350 redundant computation of new control word by the mode switching pass.
2351 The fldcw instructions are still emitted redundantly, but this is probably
2352 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2353 the sequence.
22fb740d
JH
2354
2355 The machinery is to emit simple truncation instructions and split them
2356 before reload to instructions having USEs of two memory locations that
2357 are filled by this code to old and new control word.
fce5a9f2 2358
22fb740d
JH
2359 Post-reload pass may be later used to eliminate the redundant fildcw if
2360 needed. */
2361
ff680eb1
UB
2362enum ix86_entity
2363{
2364 I387_TRUNC = 0,
2365 I387_FLOOR,
2366 I387_CEIL,
2367 I387_MASK_PM,
2368 MAX_386_ENTITIES
2369};
2370
1cba2b96 2371enum ix86_stack_slot
ff680eb1 2372{
80dcd3aa
UB
2373 SLOT_VIRTUAL = 0,
2374 SLOT_TEMP,
ff680eb1
UB
2375 SLOT_CW_STORED,
2376 SLOT_CW_TRUNC,
2377 SLOT_CW_FLOOR,
2378 SLOT_CW_CEIL,
2379 SLOT_CW_MASK_PM,
2380 MAX_386_STACK_LOCALS
2381};
22fb740d
JH
2382
2383/* Define this macro if the port needs extra instructions inserted
2384 for mode switching in an optimizing compilation. */
2385
ff680eb1
UB
2386#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2387 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2388
2389/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2390 initializer for an array of integers. Each initializer element N
2391 refers to an entity that needs mode switching, and specifies the
2392 number of different modes that might need to be set for this
2393 entity. The position of the initializer in the initializer -
2394 starting counting at zero - determines the integer that is used to
2395 refer to the mode-switched entity in question. */
2396
ff680eb1
UB
2397#define NUM_MODES_FOR_MODE_SWITCHING \
2398 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2399
2400/* ENTITY is an integer specifying a mode-switched entity. If
2401 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2402 return an integer value not larger than the corresponding element
2403 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2404 must be switched into prior to the execution of INSN. */
2405
2406#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2407
2408/* This macro specifies the order in which modes for ENTITY are
2409 processed. 0 is the highest priority. */
2410
d9a5f180 2411#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2412
2413/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2414 is the set of hard registers live at the point where the insn(s)
2415 are to be inserted. */
2416
2417#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2418 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2419 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2420 : 0)
ff680eb1 2421
0f0138b6
JH
2422\f
2423/* Avoid renaming of stack registers, as doing so in combination with
2424 scheduling just increases amount of live registers at time and in
2425 the turn amount of fxch instructions needed.
2426
43f3a59d 2427 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2428
d9a5f180 2429#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2430 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2431
3b3c6a3f 2432\f
e91f04de 2433#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2434\f
2435struct machine_function GTY(())
2436{
2437 struct stack_local_entry *stack_locals;
2438 const char *some_ld_name;
150cdc9e 2439 rtx force_align_arg_pointer;
fa1a0d02
JH
2440 int save_varrargs_registers;
2441 int accesses_prev_frame;
ff680eb1 2442 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2443 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2444 determine the style used. */
2445 int use_fast_prologue_epilogue;
d7394366
JH
2446 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2447 for. */
2448 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2449 /* If true, the current function needs the default PIC register, not
2450 an alternate register (on x86) and must not use the red zone (on
2451 x86_64), even if it's a leaf function. We don't want the
2452 function to be regarded as non-leaf because TLS calls need not
2453 affect register allocation. This flag is set when a TLS call
2454 instruction is expanded within a function, and never reset, even
2455 if all such instructions are optimized away. Use the
2456 ix86_current_function_calls_tls_descriptor macro for a better
2457 approximation. */
2458 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2459};
2460
2461#define ix86_stack_locals (cfun->machine->stack_locals)
2462#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2463#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2464#define ix86_tls_descriptor_calls_expanded_in_cfun \
2465 (cfun->machine->tls_descriptor_call_expanded_p)
2466/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2467 calls are optimized away, we try to detect cases in which it was
2468 optimized away. Since such instructions (use (reg REG_SP)), we can
2469 verify whether there's any such instruction live by testing that
2470 REG_SP is live. */
2471#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2472 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2473
1bc7c5b6
ZW
2474/* Control behavior of x86_file_start. */
2475#define X86_FILE_START_VERSION_DIRECTIVE false
2476#define X86_FILE_START_FLTUSED false
2477
7dcbf659
JH
2478/* Flag to mark data that is in the large address area. */
2479#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2480#define SYMBOL_REF_FAR_ADDR_P(X) \
2481 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2482
2483/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2484 have defined always, to avoid ifdefing. */
2485#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2486#define SYMBOL_REF_DLLIMPORT_P(X) \
2487 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2488
2489#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2490#define SYMBOL_REF_DLLEXPORT_P(X) \
2491 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2492
e70444a8
HJ
2493/* Model costs for vectorizer. */
2494
2495/* Cost of conditional branch. */
2496#undef TARG_COND_BRANCH_COST
2497#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2498
2499/* Cost of any scalar operation, excluding load and store. */
2500#undef TARG_SCALAR_STMT_COST
2501#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2502
2503/* Cost of scalar load. */
2504#undef TARG_SCALAR_LOAD_COST
2505#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2506
2507/* Cost of scalar store. */
2508#undef TARG_SCALAR_STORE_COST
2509#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2510
2511/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2512 operation. */
e70444a8
HJ
2513#undef TARG_VEC_STMT_COST
2514#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2515
2516/* Cost of vector to scalar operation. */
2517#undef TARG_VEC_TO_SCALAR_COST
2518#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2519
2520/* Cost of scalar to vector operation. */
2521#undef TARG_SCALAR_TO_VEC_COST
2522#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2523
2524/* Cost of aligned vector load. */
2525#undef TARG_VEC_LOAD_COST
2526#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2527
2528/* Cost of misaligned vector load. */
2529#undef TARG_VEC_UNALIGNED_LOAD_COST
2530#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2531
2532/* Cost of vector store. */
2533#undef TARG_VEC_STORE_COST
2534#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2535
2536/* Cost of conditional taken branch for vectorizer cost model. */
2537#undef TARG_COND_TAKEN_BRANCH_COST
2538#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2539
2540/* Cost of conditional not taken branch for vectorizer cost model. */
2541#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2542#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2543
c98f8742
JVA
2544/*
2545Local variables:
2546version-control: t
2547End:
2548*/