]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Turn HARD_REGNO_NREGS into a target hook
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cbe34bb5 2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
79fc8ffe
AS
88#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90922d36 90#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 91#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 92#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 93#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 94#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 95#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 96#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 97#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 98#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 99#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 100#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 101#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
73e32c47
JK
102#define TARGET_SGX TARGET_ISA_SGX
103#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
104#define TARGET_RDPID TARGET_ISA_RDPID
105#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
90922d36 106#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 107#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 108#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 109#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 110#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 111#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 112#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 113#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 114#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 115#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 116#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 117#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 118#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 119#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 120#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 121#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 122#define TARGET_AES TARGET_ISA_AES
bf7b5747 123#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
124#define TARGET_SHA TARGET_ISA_SHA
125#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
126#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
127#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
128#define TARGET_CLZERO TARGET_ISA_CLZERO
129#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
130#define TARGET_XSAVEC TARGET_ISA_XSAVEC
131#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
132#define TARGET_XSAVES TARGET_ISA_XSAVES
133#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 134#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 135#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
136#define TARGET_CMPXCHG16B TARGET_ISA_CX16
137#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 138#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 139#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 140#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 141#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 142#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 143#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
144#define TARGET_RTM TARGET_ISA_RTM
145#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 146#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 147#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 148#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 149#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 150#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 151#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 152#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 153#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 154#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 155#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 156#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 157#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 158#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 159#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
160#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
161#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
162#define TARGET_MPX TARGET_ISA_MPX
163#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
9c3bca11
IT
164#define TARGET_CLWB TARGET_ISA_CLWB
165#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
166#define TARGET_MWAITX TARGET_ISA_MWAITX
167#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
168#define TARGET_PKU TARGET_ISA_PKU
169#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
170
90922d36 171#define TARGET_LP64 TARGET_ABI_64
bf7b5747 172#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 173#define TARGET_X32 TARGET_ABI_X32
bf7b5747 174#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
175#define TARGET_16BIT TARGET_CODE16
176#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 177
26b5109f
RS
178#include "config/vxworks-dummy.h"
179
7eb68c06 180#include "config/i386/i386-opts.h"
ccf8e764 181
c69fa2d4 182#define MAX_STRINGOP_ALGS 4
ccf8e764 183
8c996513
JH
184/* Specify what algorithm to use for stringops on known size.
185 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
186 known at compile time or estimated via feedback, the SIZE array
187 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 188 means infinity). Corresponding ALG is used then.
340ef734
JH
189 When NOALIGN is true the code guaranting the alignment of the memory
190 block is skipped.
191
8c996513 192 For example initializer:
4f3f76e6 193 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 194 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 195 be used otherwise. */
8c996513
JH
196struct stringop_algs
197{
198 const enum stringop_alg unknown_size;
199 const struct stringop_strategy {
200 const int max;
201 const enum stringop_alg alg;
340ef734 202 int noalign;
c69fa2d4 203 } size [MAX_STRINGOP_ALGS];
8c996513
JH
204};
205
d4ba09c0
SC
206/* Define the specific costs for a given cpu */
207
208struct processor_costs {
8b60264b
KG
209 const int add; /* cost of an add instruction */
210 const int lea; /* cost of a lea instruction */
211 const int shift_var; /* variable shift costs */
212 const int shift_const; /* constant shift costs */
f676971a 213 const int mult_init[5]; /* cost of starting a multiply
4977bab6 214 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 215 const int mult_bit; /* cost of multiply per each bit set */
f676971a 216 const int divide[5]; /* cost of a divide/mod
4977bab6 217 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
218 int movsx; /* The cost of movsx operation. */
219 int movzx; /* The cost of movzx operation. */
8b60264b
KG
220 const int large_insn; /* insns larger than this cost more */
221 const int move_ratio; /* The threshold of number of scalar
ac775968 222 memory-to-memory move insns. */
8b60264b
KG
223 const int movzbl_load; /* cost of loading using movzbl */
224 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
225 in QImode, HImode and SImode relative
226 to reg-reg move (2). */
8b60264b 227 const int int_store[3]; /* cost of storing integer register
96e7ae40 228 in QImode, HImode and SImode */
8b60264b
KG
229 const int fp_move; /* cost of reg,reg fld/fst */
230 const int fp_load[3]; /* cost of loading FP register
96e7ae40 231 in SFmode, DFmode and XFmode */
8b60264b 232 const int fp_store[3]; /* cost of storing FP register
96e7ae40 233 in SFmode, DFmode and XFmode */
8b60264b
KG
234 const int mmx_move; /* cost of moving MMX register. */
235 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 236 in SImode and DImode */
8b60264b 237 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 238 in SImode and DImode */
8b60264b
KG
239 const int sse_move; /* cost of moving SSE register. */
240 const int sse_load[3]; /* cost of loading SSE register
fa79946e 241 in SImode, DImode and TImode*/
8b60264b 242 const int sse_store[3]; /* cost of storing SSE register
fa79946e 243 in SImode, DImode and TImode*/
8b60264b 244 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 245 integer and vice versa. */
46cb0441
ZD
246 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
247 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
248 const int prefetch_block; /* bytes moved to cache for prefetch. */
249 const int simultaneous_prefetches; /* number of parallel prefetch
250 operations. */
4977bab6 251 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
252 const int fadd; /* cost of FADD and FSUB instructions. */
253 const int fmul; /* cost of FMUL instruction. */
254 const int fdiv; /* cost of FDIV instruction. */
255 const int fabs; /* cost of FABS instruction. */
256 const int fchs; /* cost of FCHS instruction. */
257 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 258 /* Specify what algorithm
bee51209 259 to use for stringops on unknown size. */
ad83025e 260 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
261 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
262 load and store. */
263 const int scalar_load_cost; /* Cost of scalar load. */
264 const int scalar_store_cost; /* Cost of scalar store. */
265 const int vec_stmt_cost; /* Cost of any vector operation, excluding
266 load, store, vector-to-scalar and
267 scalar-to-vector operation. */
268 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
269 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 270 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
271 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
272 const int vec_store_cost; /* Cost of vector store. */
273 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
274 cost model. */
275 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
276 vectorizer cost model. */
d4ba09c0
SC
277};
278
8b60264b 279extern const struct processor_costs *ix86_cost;
b2077fd2
JH
280extern const struct processor_costs ix86_size_cost;
281
282#define ix86_cur_cost() \
283 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 284
c98f8742
JVA
285/* Macros used in the machine description to test the flags. */
286
b97de419 287/* configure can arrange to change it. */
e075ae69 288
35b528be 289#ifndef TARGET_CPU_DEFAULT
b97de419 290#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 291#endif
35b528be 292
004d3859
GK
293#ifndef TARGET_FPMATH_DEFAULT
294#define TARGET_FPMATH_DEFAULT \
295 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
296#endif
297
bf7b5747
ST
298#ifndef TARGET_FPMATH_DEFAULT_P
299#define TARGET_FPMATH_DEFAULT_P(x) \
300 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
301#endif
302
c207fd99
L
303/* If the i387 is disabled or -miamcu is used , then do not return
304 values in it. */
305#define TARGET_FLOAT_RETURNS_IN_80387 \
306 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
307#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
308 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 309
5791cc29
JT
310/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
311 compile-time constant. */
312#ifdef IN_LIBGCC2
6ac49599 313#undef TARGET_64BIT
5791cc29
JT
314#ifdef __x86_64__
315#define TARGET_64BIT 1
316#else
317#define TARGET_64BIT 0
318#endif
319#else
6ac49599
RS
320#ifndef TARGET_BI_ARCH
321#undef TARGET_64BIT
e49080ec 322#undef TARGET_64BIT_P
67adf6a9 323#if TARGET_64BIT_DEFAULT
0c2dc519 324#define TARGET_64BIT 1
e49080ec 325#define TARGET_64BIT_P(x) 1
0c2dc519
JH
326#else
327#define TARGET_64BIT 0
e49080ec 328#define TARGET_64BIT_P(x) 0
0c2dc519
JH
329#endif
330#endif
5791cc29 331#endif
25f94bb5 332
750054a2
CT
333#define HAS_LONG_COND_BRANCH 1
334#define HAS_LONG_UNCOND_BRANCH 1
335
9e555526
RH
336#define TARGET_386 (ix86_tune == PROCESSOR_I386)
337#define TARGET_486 (ix86_tune == PROCESSOR_I486)
338#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
339#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 340#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
341#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
342#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
343#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
344#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 345#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 346#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 347#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
348#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
349#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 350#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
351#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
352#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 353#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
06caf59d 354#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
9a7f94d7 355#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 356#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 357#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 358#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 359#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 360#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 361#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 362#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 363#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 364#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 365
80fd744f
RH
366/* Feature tests against the various tunings. */
367enum ix86_tune_indices {
4b8bc035 368#undef DEF_TUNE
3ad20bd4 369#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
370#include "x86-tune.def"
371#undef DEF_TUNE
372X86_TUNE_LAST
80fd744f
RH
373};
374
ab442df7 375extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
376
377#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
378#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
379#define TARGET_ZERO_EXTEND_WITH_AND \
380 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 381#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
382#define TARGET_BRANCH_PREDICTION_HINTS \
383 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
384#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
385#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
386#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
387#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
388#define TARGET_PARTIAL_FLAG_REG_STALL \
389 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
390#define TARGET_LCP_STALL \
391 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
392#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
393#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
394#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
395#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
396#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
397#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
398#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
399#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
400#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
401#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
402#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
403#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
404 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
405#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
406#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
407#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
408#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
409#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
410#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
411#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
412#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
413#define TARGET_INTEGER_DFMODE_MOVES \
414 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
415#define TARGET_PARTIAL_REG_DEPENDENCY \
416 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
417#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
418 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
419#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
420 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
421#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
422 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
423#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
424 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
425#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
426#define TARGET_SSE_TYPELESS_STORES \
427 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
428#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
429#define TARGET_MEMORY_MISMATCH_STALL \
430 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
431#define TARGET_PROLOGUE_USING_MOVE \
432 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
433#define TARGET_EPILOGUE_USING_MOVE \
434 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
435#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
436#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
437#define TARGET_INTER_UNIT_MOVES_TO_VEC \
438 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
439#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
440 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
441#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 442 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
443#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
444#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
445#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
446#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
447#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
448#define TARGET_PAD_SHORT_FUNCTION \
449 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
450#define TARGET_EXT_80387_CONSTANTS \
451 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
452#define TARGET_AVOID_VECTOR_DECODE \
453 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
454#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
455 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
456#define TARGET_SLOW_IMUL_IMM32_MEM \
457 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
458#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
459#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
460#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
461#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
462#define TARGET_USE_VECTOR_FP_CONVERTS \
463 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
464#define TARGET_USE_VECTOR_CONVERTS \
465 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
466#define TARGET_SLOW_PSHUFB \
467 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
468#define TARGET_VECTOR_PARALLEL_EXECUTION \
469 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
8e0dc054
JJ
470#define TARGET_AVOID_4BYTE_PREFIXES \
471 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
0dc41f28
WM
472#define TARGET_FUSE_CMP_AND_BRANCH_32 \
473 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
474#define TARGET_FUSE_CMP_AND_BRANCH_64 \
475 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 476#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
477 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
478 : TARGET_FUSE_CMP_AND_BRANCH_32)
479#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
480 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
481#define TARGET_FUSE_ALU_AND_BRANCH \
482 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 483#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
484#define TARGET_AVOID_LEA_FOR_ADDR \
485 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
486#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
487 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
488#define TARGET_AVX128_OPTIMAL \
489 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
490#define TARGET_REASSOC_INT_TO_PARALLEL \
491 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
492#define TARGET_REASSOC_FP_TO_PARALLEL \
493 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
494#define TARGET_GENERAL_REGS_SSE_SPILL \
495 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
496#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
497 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 498#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 499 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
500#define TARGET_ADJUST_UNROLL \
501 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
502#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
503 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
504#define TARGET_ONE_IF_CONV_INSN \
505 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
df7b0cc4 506
80fd744f
RH
507/* Feature tests against the various architecture variations. */
508enum ix86_arch_indices {
cef31f9c 509 X86_ARCH_CMOV,
80fd744f
RH
510 X86_ARCH_CMPXCHG,
511 X86_ARCH_CMPXCHG8B,
512 X86_ARCH_XADD,
513 X86_ARCH_BSWAP,
514
515 X86_ARCH_LAST
516};
4f3f76e6 517
ab442df7 518extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 519
cef31f9c 520#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
521#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
522#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
523#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
524#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
525
cef31f9c
UB
526/* For sane SSE instruction set generation we need fcomi instruction.
527 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
528 expands to a sequence that includes conditional move. */
529#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
530
80fd744f
RH
531#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
532
cb261eb7 533extern unsigned char x86_prefetch_sse;
80fd744f
RH
534#define TARGET_PREFETCH_SSE x86_prefetch_sse
535
80fd744f
RH
536#define ASSEMBLER_DIALECT (ix86_asm_dialect)
537
538#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
539#define TARGET_MIX_SSE_I387 \
540 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
541
5fa578f0
UB
542#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
543#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
544#define TARGET_HARD_XF_REGS (TARGET_80387)
545
80fd744f
RH
546#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
547#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
548#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 549#define TARGET_SUN_TLS 0
1ef45b77 550
67adf6a9
RH
551#ifndef TARGET_64BIT_DEFAULT
552#define TARGET_64BIT_DEFAULT 0
25f94bb5 553#endif
74dc3e94
RH
554#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
555#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
556#endif
25f94bb5 557
e0ea8797
AH
558#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
559#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
560
79f5e442
ZD
561/* Fence to use after loop using storent. */
562
563extern tree x86_mfence;
564#define FENCE_FOLLOWING_MOVNT x86_mfence
565
0ed4a390
JL
566/* Once GDB has been enhanced to deal with functions without frame
567 pointers, we can change this to allow for elimination of
568 the frame pointer in leaf functions. */
569#define TARGET_DEFAULT 0
67adf6a9 570
0a1c5e55
UB
571/* Extra bits to force. */
572#define TARGET_SUBTARGET_DEFAULT 0
573#define TARGET_SUBTARGET_ISA_DEFAULT 0
574
575/* Extra bits to force on w/ 32-bit mode. */
576#define TARGET_SUBTARGET32_DEFAULT 0
577#define TARGET_SUBTARGET32_ISA_DEFAULT 0
578
ccf8e764
RH
579/* Extra bits to force on w/ 64-bit mode. */
580#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 581#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 582
fee3eacd
IS
583/* Replace MACH-O, ifdefs by in-line tests, where possible.
584 (a) Macros defined in config/i386/darwin.h */
b069de3b 585#define TARGET_MACHO 0
9005471b 586#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
587#define MACHOPIC_ATT_STUB 0
588/* (b) Macros defined in config/darwin.h */
589#define MACHO_DYNAMIC_NO_PIC_P 0
590#define MACHOPIC_INDIRECT 0
591#define MACHOPIC_PURE 0
9005471b 592
5a579c3b
LE
593/* For the RDOS */
594#define TARGET_RDOS 0
595
9005471b 596/* For the Windows 64-bit ABI. */
7c800926
KT
597#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
598
6510e8bb
KT
599/* For the Windows 32-bit ABI. */
600#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
601
f81c9774
RH
602/* This is re-defined by cygming.h. */
603#define TARGET_SEH 0
604
51212b32 605/* The default abi used by target. */
7c800926 606#define DEFAULT_ABI SYSV_ABI
ccf8e764 607
b8b3f0ca 608/* The default TLS segment register used by target. */
00402c94
RH
609#define DEFAULT_TLS_SEG_REG \
610 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 611
cc69336f
RH
612/* Subtargets may reset this to 1 in order to enable 96-bit long double
613 with the rounding mode forced to 53 bits. */
614#define TARGET_96_ROUND_53_LONG_DOUBLE 0
615
682cd442
GK
616/* -march=native handling only makes sense with compiler running on
617 an x86 or x86_64 chip. If changing this condition, also change
618 the condition in driver-i386.c. */
619#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
620/* In driver-i386.c. */
621extern const char *host_detect_local_cpu (int argc, const char **argv);
622#define EXTRA_SPEC_FUNCTIONS \
623 { "local_cpu_detect", host_detect_local_cpu },
682cd442 624#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
625#endif
626
8981c15b
JM
627#if TARGET_64BIT_DEFAULT
628#define OPT_ARCH64 "!m32"
629#define OPT_ARCH32 "m32"
630#else
f0ea7581
L
631#define OPT_ARCH64 "m64|mx32"
632#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
633#endif
634
1cba2b96
EC
635/* Support for configure-time defaults of some command line options.
636 The order here is important so that -march doesn't squash the
637 tune or cpu values. */
ce998900 638#define OPTION_DEFAULT_SPECS \
da2d4c01 639 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
640 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
641 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 642 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
643 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
644 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
645 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
646 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
647 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 648
241e1a89
SC
649/* Specs for the compiler proper */
650
628714d8 651#ifndef CC1_CPU_SPEC
eb5bb0fd 652#define CC1_CPU_SPEC_1 ""
fa959ce4 653
682cd442 654#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
655#define CC1_CPU_SPEC CC1_CPU_SPEC_1
656#else
657#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
658"%{march=native:%>march=native %:local_cpu_detect(arch) \
659 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
660%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 661#endif
241e1a89 662#endif
c98f8742 663\f
30efe578 664/* Target CPU builtins. */
ab442df7
MM
665#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
666
667/* Target Pragmas. */
668#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 669
628714d8 670#ifndef CC1_SPEC
8015b78d 671#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
672#endif
673
674/* This macro defines names of additional specifications to put in the
675 specs that can be used in various specifications like CC1_SPEC. Its
676 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
677
678 Each subgrouping contains a string constant, that defines the
188fc5b5 679 specification name, and a string constant that used by the GCC driver
bcd86433
SC
680 program.
681
682 Do not define this macro if it does not need to do anything. */
683
684#ifndef SUBTARGET_EXTRA_SPECS
685#define SUBTARGET_EXTRA_SPECS
686#endif
687
688#define EXTRA_SPECS \
628714d8 689 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
690 SUBTARGET_EXTRA_SPECS
691\f
ce998900 692
8ce94e44
JM
693/* Whether to allow x87 floating-point arithmetic on MODE (one of
694 SFmode, DFmode and XFmode) in the current excess precision
695 configuration. */
b8cab8a5
UB
696#define X87_ENABLE_ARITH(MODE) \
697 (flag_unsafe_math_optimizations \
698 || flag_excess_precision == EXCESS_PRECISION_FAST \
699 || (MODE) == XFmode)
8ce94e44
JM
700
701/* Likewise, whether to allow direct conversions from integer mode
702 IMODE (HImode, SImode or DImode) to MODE. */
703#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
704 (flag_unsafe_math_optimizations \
705 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
706 || (MODE) == XFmode \
707 || ((MODE) == DFmode && (IMODE) == SImode) \
708 || (IMODE) == HImode)
709
979c67a5
UB
710/* target machine storage layout */
711
65d9c0ab
JH
712#define SHORT_TYPE_SIZE 16
713#define INT_TYPE_SIZE 32
f0ea7581
L
714#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
715#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 716#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 717#define FLOAT_TYPE_SIZE 32
65d9c0ab 718#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
719#define LONG_DOUBLE_TYPE_SIZE \
720 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 721
c637141a 722#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 723
67adf6a9 724#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 725#define MAX_BITS_PER_WORD 64
0c2dc519
JH
726#else
727#define MAX_BITS_PER_WORD 32
0c2dc519
JH
728#endif
729
c98f8742
JVA
730/* Define this if most significant byte of a word is the lowest numbered. */
731/* That is true on the 80386. */
732
733#define BITS_BIG_ENDIAN 0
734
735/* Define this if most significant byte of a word is the lowest numbered. */
736/* That is not true on the 80386. */
737#define BYTES_BIG_ENDIAN 0
738
739/* Define this if most significant word of a multiword number is the lowest
740 numbered. */
741/* Not true for 80386 */
742#define WORDS_BIG_ENDIAN 0
743
c98f8742 744/* Width of a word, in units (bytes). */
4ae8027b 745#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
746
747#ifndef IN_LIBGCC2
2e64c636
JH
748#define MIN_UNITS_PER_WORD 4
749#endif
c98f8742 750
c98f8742 751/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 752#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 753
e075ae69 754/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 755#define STACK_BOUNDARY \
51212b32 756 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 757
2e3f842f
L
758/* Stack boundary of the main function guaranteed by OS. */
759#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
760
de1132d1 761/* Minimum stack boundary. */
cba9c789 762#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 763
d1f87653 764/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 765 aligned; the compiler cannot rely on having this alignment. */
e075ae69 766#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 767
de1132d1 768/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
769 both 32bit and 64bit, to support codes that need 128 bit stack
770 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
771#define PREFERRED_STACK_BOUNDARY_DEFAULT \
772 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
773
774/* 1 if -mstackrealign should be turned on by default. It will
775 generate an alternate prologue and epilogue that realigns the
776 runtime stack if nessary. This supports mixing codes that keep a
777 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 778 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
779#define STACK_REALIGN_DEFAULT 0
780
781/* Boundary (in *bits*) on which the incoming stack is aligned. */
782#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 783
a2851b75
TG
784/* According to Windows x64 software convention, the maximum stack allocatable
785 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
786 instructions allowed to adjust the stack pointer in the epilog, forcing the
787 use of frame pointer for frames larger than 2 GB. This theorical limit
788 is reduced by 256, an over-estimated upper bound for the stack use by the
789 prologue.
790 We define only one threshold for both the prolog and the epilog. When the
4e523f33 791 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
792 regs, then save them, and then allocate the remaining. There is no SEH
793 unwind info for this later allocation. */
794#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
795
ebff937c
SH
796/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
797 mandatory for the 64-bit ABI, and may or may not be true for other
798 operating systems. */
799#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
800
f963b5d9
RS
801/* Minimum allocation boundary for the code of a function. */
802#define FUNCTION_BOUNDARY 8
803
804/* C++ stores the virtual bit in the lowest bit of function pointers. */
805#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 806
c98f8742
JVA
807/* Minimum size in bits of the largest boundary to which any
808 and all fundamental data types supported by the hardware
809 might need to be aligned. No data type wants to be aligned
17f24ff0 810 rounder than this.
fce5a9f2 811
d1f87653 812 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
813 and Pentium Pro XFmode values at 128 bit boundaries.
814
815 When increasing the maximum, also update
816 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 817
3f97cb0b 818#define BIGGEST_ALIGNMENT \
0076c82f 819 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 820
2e3f842f
L
821/* Maximum stack alignment. */
822#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
823
6e4f1168
L
824/* Alignment value for attribute ((aligned)). It is a constant since
825 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 826#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 827
822eda12 828/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 829#define ALIGN_MODE_128(MODE) \
4501d314 830 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 831
17f24ff0 832/* The published ABIs say that doubles should be aligned on word
d1f87653 833 boundaries, so lower the alignment for structure fields unless
6fc605d8 834 -malign-double is set. */
e932b21b 835
e83f3cff
RH
836/* ??? Blah -- this macro is used directly by libobjc. Since it
837 supports no vector modes, cut out the complexity and fall back
838 on BIGGEST_FIELD_ALIGNMENT. */
839#ifdef IN_TARGET_LIBS
ef49d42e
JH
840#ifdef __x86_64__
841#define BIGGEST_FIELD_ALIGNMENT 128
842#else
e83f3cff 843#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 844#endif
e83f3cff 845#else
a4cf4b64
RB
846#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
847 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 848#endif
c98f8742 849
e5e8a8bf 850/* If defined, a C expression to compute the alignment given to a
a7180f70 851 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
852 and ALIGN is the alignment that the object would ordinarily have.
853 The value of this macro is used instead of that alignment to align
854 the object.
855
856 If this macro is not defined, then ALIGN is used.
857
858 The typical use of this macro is to increase alignment for string
859 constants to be word aligned so that `strcpy' calls that copy
860 constants can be done inline. */
861
d9a5f180 862#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 863
8a022443
JW
864/* If defined, a C expression to compute the alignment for a static
865 variable. TYPE is the data type, and ALIGN is the alignment that
866 the object would ordinarily have. The value of this macro is used
867 instead of that alignment to align the object.
868
869 If this macro is not defined, then ALIGN is used.
870
871 One use of this macro is to increase alignment of medium-size
872 data to make it all fit in fewer cache lines. Another is to
873 cause character arrays to be word-aligned so that `strcpy' calls
874 that copy constants to character arrays can be done inline. */
875
df8a1d28
JJ
876#define DATA_ALIGNMENT(TYPE, ALIGN) \
877 ix86_data_alignment ((TYPE), (ALIGN), true)
878
879/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
880 some alignment increase, instead of optimization only purposes. E.g.
881 AMD x86-64 psABI says that variables with array type larger than 15 bytes
882 must be aligned to 16 byte boundaries.
883
884 If this macro is not defined, then ALIGN is used. */
885
886#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
887 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
888
889/* If defined, a C expression to compute the alignment for a local
890 variable. TYPE is the data type, and ALIGN is the alignment that
891 the object would ordinarily have. The value of this macro is used
892 instead of that alignment to align the object.
893
894 If this macro is not defined, then ALIGN is used.
895
896 One use of this macro is to increase alignment of medium-size
897 data to make it all fit in fewer cache lines. */
898
76fe54f0
L
899#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
900 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
901
902/* If defined, a C expression to compute the alignment for stack slot.
903 TYPE is the data type, MODE is the widest mode available, and ALIGN
904 is the alignment that the slot would ordinarily have. The value of
905 this macro is used instead of that alignment to align the slot.
906
907 If this macro is not defined, then ALIGN is used when TYPE is NULL,
908 Otherwise, LOCAL_ALIGNMENT will be used.
909
910 One use of this macro is to set alignment of stack slot to the
911 maximum alignment of all possible modes which the slot may have. */
912
913#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
914 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 915
9bfaf89d
JJ
916/* If defined, a C expression to compute the alignment for a local
917 variable DECL.
918
919 If this macro is not defined, then
920 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
921
922 One use of this macro is to increase alignment of medium-size
923 data to make it all fit in fewer cache lines. */
924
925#define LOCAL_DECL_ALIGNMENT(DECL) \
926 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
927
ae58e548
JJ
928/* If defined, a C expression to compute the minimum required alignment
929 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
930 MODE, assuming normal alignment ALIGN.
931
932 If this macro is not defined, then (ALIGN) will be used. */
933
934#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 935 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 936
9bfaf89d 937
9cd10576 938/* Set this nonzero if move instructions will actually fail to work
c98f8742 939 when given unaligned data. */
b4ac57ab 940#define STRICT_ALIGNMENT 0
c98f8742
JVA
941
942/* If bit field type is int, don't let it cross an int,
943 and give entire struct the alignment of an int. */
43a88a8c 944/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 945#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
946\f
947/* Standard register usage. */
948
949/* This processor has special stack-like registers. See reg-stack.c
892a2d68 950 for details. */
c98f8742
JVA
951
952#define STACK_REGS
ce998900 953
f48b4284
UB
954#define IS_STACK_MODE(MODE) \
955 (X87_FLOAT_MODE_P (MODE) \
956 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
957 || TARGET_MIX_SSE_I387))
c98f8742
JVA
958
959/* Number of actual hardware registers.
960 The hardware registers are assigned numbers for the compiler
961 from 0 to just below FIRST_PSEUDO_REGISTER.
962 All registers that the compiler knows about must be given numbers,
963 even those that are not normally considered general registers.
964
965 In the 80386 we give the 8 general purpose registers the numbers 0-7.
966 We number the floating point registers 8-15.
967 Note that registers 0-7 can be accessed as a short or int,
968 while only 0-3 may be used with byte `mov' instructions.
969
970 Reg 16 does not correspond to any hardware register, but instead
971 appears in the RTL as an argument pointer prior to reload, and is
972 eliminated during reloading in favor of either the stack or frame
892a2d68 973 pointer. */
c98f8742 974
05416670 975#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 976
3073d01c
ML
977/* Number of hardware registers that go into the DWARF-2 unwind info.
978 If not defined, equals FIRST_PSEUDO_REGISTER. */
979
980#define DWARF_FRAME_REGISTERS 17
981
c98f8742
JVA
982/* 1 for registers that have pervasive standard uses
983 and are not available for the register allocator.
3f3f2124 984 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 985
621bc046
UB
986 REX registers are disabled for 32bit targets in
987 TARGET_CONDITIONAL_REGISTER_USAGE. */
988
a7180f70
BS
989#define FIXED_REGISTERS \
990/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 991{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
992/*arg,flags,fpsr,fpcr,frame*/ \
993 1, 1, 1, 1, 1, \
a7180f70
BS
994/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
995 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 996/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
997 0, 0, 0, 0, 0, 0, 0, 0, \
998/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 999 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1000/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1001 0, 0, 0, 0, 0, 0, 0, 0, \
1002/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1003 0, 0, 0, 0, 0, 0, 0, 0, \
1004/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1005 0, 0, 0, 0, 0, 0, 0, 0, \
1006/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1007 0, 0, 0, 0, 0, 0, 0, 0, \
1008/* b0, b1, b2, b3*/ \
1009 0, 0, 0, 0 }
c98f8742
JVA
1010
1011/* 1 for registers not available across function calls.
1012 These must include the FIXED_REGISTERS and also any
1013 registers that can be used without being saved.
1014 The latter must include the registers where values are returned
1015 and the register where structure-value addresses are passed.
fce5a9f2
EC
1016 Aside from that, you can include as many other registers as you like.
1017
621bc046
UB
1018 Value is set to 1 if the register is call used unconditionally.
1019 Bit one is set if the register is call used on TARGET_32BIT ABI.
1020 Bit two is set if the register is call used on TARGET_64BIT ABI.
1021 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1022
1023 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1024
1f3ccbc8
L
1025#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1026 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1027
a7180f70
BS
1028#define CALL_USED_REGISTERS \
1029/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1030{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1031/*arg,flags,fpsr,fpcr,frame*/ \
1032 1, 1, 1, 1, 1, \
a7180f70 1033/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1034 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1035/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1036 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1037/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1038 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1039/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1040 6, 6, 6, 6, 6, 6, 6, 6, \
1041/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1042 6, 6, 6, 6, 6, 6, 6, 6, \
1043/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1044 6, 6, 6, 6, 6, 6, 6, 6, \
1045 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1046 1, 1, 1, 1, 1, 1, 1, 1, \
1047/* b0, b1, b2, b3*/ \
1048 1, 1, 1, 1 }
c98f8742 1049
3b3c6a3f
MM
1050/* Order in which to allocate registers. Each register must be
1051 listed once, even those in FIXED_REGISTERS. List frame pointer
1052 late and fixed registers last. Note that, in general, we prefer
1053 registers listed in CALL_USED_REGISTERS, keeping the others
1054 available for storage of persistent values.
1055
5a733826 1056 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1057 so this is just empty initializer for array. */
3b3c6a3f 1058
162f023b
JH
1059#define REG_ALLOC_ORDER \
1060{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1061 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1062 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1063 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1064 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1065 78, 79, 80 }
3b3c6a3f 1066
5a733826 1067/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1068 to be rearranged based on a particular function. When using sse math,
03c259ad 1069 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1070
5a733826 1071#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1072
f5316dfe 1073
7c800926
KT
1074#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1075
8521c414 1076#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1077 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1078 && GENERAL_REGNO_P (REGNO) \
1079 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1080
1081#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1082
95879c72
L
1083#define VALID_AVX256_REG_MODE(MODE) \
1084 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1085 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1086 || (MODE) == V4DFmode)
95879c72 1087
4ac005ba 1088#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1089 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1090
3f97cb0b
AI
1091#define VALID_AVX512F_SCALAR_MODE(MODE) \
1092 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1093 || (MODE) == SFmode)
1094
1095#define VALID_AVX512F_REG_MODE(MODE) \
1096 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1097 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1098 || (MODE) == V4TImode)
1099
05416670 1100#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1101 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1102 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1103 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1104
ce998900
UB
1105#define VALID_SSE2_REG_MODE(MODE) \
1106 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1107 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1108
d9a5f180 1109#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1110 ((MODE) == V1TImode || (MODE) == TImode \
1111 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1112 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1113
47f339cf 1114#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1115 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1116
d9a5f180 1117#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1118 ((MODE == V1DImode) || (MODE) == DImode \
1119 || (MODE) == V2SImode || (MODE) == SImode \
1120 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1121
05416670
UB
1122#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1123
1124#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1125
d5e254e1
IE
1126#define VALID_BND_REG_MODE(MODE) \
1127 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1128
ce998900
UB
1129#define VALID_DFP_MODE_P(MODE) \
1130 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1131
d9a5f180 1132#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1133 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1134 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1135
d9a5f180 1136#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1137 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1138 || (MODE) == DImode \
1139 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1140 || (MODE) == CDImode \
1141 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1142 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1143
822eda12 1144/* Return true for modes passed in SSE registers. */
ce998900 1145#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1146 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1147 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1148 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1149 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1150 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1151 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1152 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1153 || (MODE) == V16SFmode)
822eda12 1154
05416670
UB
1155#define X87_FLOAT_MODE_P(MODE) \
1156 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1157
05416670
UB
1158#define SSE_FLOAT_MODE_P(MODE) \
1159 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1160
1161#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1162 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1163 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1164
ff25ef99
ZD
1165/* It is possible to write patterns to move flags; but until someone
1166 does it, */
1167#define AVOID_CCMODE_COPIES
c98f8742 1168
e075ae69 1169/* Specify the modes required to caller save a given hard regno.
787dc842 1170 We do this on i386 to prevent flags from being saved at all.
e075ae69 1171
787dc842
JH
1172 Kill any attempts to combine saving of modes. */
1173
d9a5f180
GS
1174#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1175 (CC_REGNO_P (REGNO) ? VOIDmode \
1176 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1177 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1178 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1179 && TARGET_PARTIAL_REG_STALL) \
85a77221 1180 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1181 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1182 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1183 : (MODE))
ce998900 1184
c98f8742
JVA
1185/* Specify the registers used for certain standard purposes.
1186 The values of these macros are register numbers. */
1187
1188/* on the 386 the pc register is %eip, and is not usable as a general
1189 register. The ordinary mov instructions won't work */
1190/* #define PC_REGNUM */
1191
05416670
UB
1192/* Base register for access to arguments of the function. */
1193#define ARG_POINTER_REGNUM ARGP_REG
1194
c98f8742 1195/* Register to use for pushing function arguments. */
05416670 1196#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1197
1198/* Base register for access to local variables of the function. */
05416670
UB
1199#define FRAME_POINTER_REGNUM FRAME_REG
1200#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1201
05416670
UB
1202#define FIRST_INT_REG AX_REG
1203#define LAST_INT_REG SP_REG
c98f8742 1204
05416670
UB
1205#define FIRST_QI_REG AX_REG
1206#define LAST_QI_REG BX_REG
c98f8742
JVA
1207
1208/* First & last stack-like regs */
05416670
UB
1209#define FIRST_STACK_REG ST0_REG
1210#define LAST_STACK_REG ST7_REG
c98f8742 1211
05416670
UB
1212#define FIRST_SSE_REG XMM0_REG
1213#define LAST_SSE_REG XMM7_REG
fce5a9f2 1214
05416670
UB
1215#define FIRST_MMX_REG MM0_REG
1216#define LAST_MMX_REG MM7_REG
a7180f70 1217
05416670
UB
1218#define FIRST_REX_INT_REG R8_REG
1219#define LAST_REX_INT_REG R15_REG
3f3f2124 1220
05416670
UB
1221#define FIRST_REX_SSE_REG XMM8_REG
1222#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1223
05416670
UB
1224#define FIRST_EXT_REX_SSE_REG XMM16_REG
1225#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1226
05416670
UB
1227#define FIRST_MASK_REG MASK0_REG
1228#define LAST_MASK_REG MASK7_REG
85a77221 1229
05416670
UB
1230#define FIRST_BND_REG BND0_REG
1231#define LAST_BND_REG BND3_REG
d5e254e1 1232
aabcd309 1233/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1234 requiring a frame pointer. */
1235#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1236#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1237#endif
1238
1239/* Make sure we can access arbitrary call frames. */
1240#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1241
c98f8742 1242/* Register to hold the addressing base for position independent
5b43fed1
RH
1243 code access to data items. We don't use PIC pointer for 64bit
1244 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1245 pessimizing code dealing with EBX.
bd09bdeb
RH
1246
1247 To avoid clobbering a call-saved register unnecessarily, we renumber
1248 the pic register when possible. The change is visible after the
1249 prologue has been emitted. */
1250
e8b5eb25 1251#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1252
bcb21886 1253#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1254 (ix86_use_pseudo_pic_reg () \
1255 ? (pic_offset_table_rtx \
1256 ? INVALID_REGNUM \
1257 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1258 : INVALID_REGNUM)
c98f8742 1259
5fc0e5df
KW
1260#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1261
c51e6d85 1262/* This is overridden by <cygwin.h>. */
5e062767
DS
1263#define MS_AGGREGATE_RETURN 0
1264
61fec9ff 1265#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1266\f
1267/* Define the classes of registers for register constraints in the
1268 machine description. Also define ranges of constants.
1269
1270 One of the classes must always be named ALL_REGS and include all hard regs.
1271 If there is more than one class, another class must be named NO_REGS
1272 and contain no registers.
1273
1274 The name GENERAL_REGS must be the name of a class (or an alias for
1275 another name such as ALL_REGS). This is the class of registers
1276 that is allowed by "g" or "r" in a register constraint.
1277 Also, registers outside this class are allocated only when
1278 instructions express preferences for them.
1279
1280 The classes must be numbered in nondecreasing order; that is,
1281 a larger-numbered class must never be contained completely
2e24efd3
AM
1282 in a smaller-numbered class. This is why CLOBBERED_REGS class
1283 is listed early, even though in 64-bit mode it contains more
1284 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1285
1286 For any two classes, it is very desirable that there be another
ab408a86
JVA
1287 class that represents their union.
1288
1289 It might seem that class BREG is unnecessary, since no useful 386
1290 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1291 and the "b" register constraint is useful in asms for syscalls.
1292
03c259ad 1293 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1294
1295enum reg_class
1296{
1297 NO_REGS,
e075ae69 1298 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1299 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1300 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1301 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1302 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1303 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1304 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1305 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1306 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1307 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1308 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1309 FLOAT_REGS,
06f4e35d 1310 SSE_FIRST_REG,
45392c76 1311 NO_REX_SSE_REGS,
a7180f70 1312 SSE_REGS,
3f97cb0b 1313 EVEX_SSE_REGS,
d5e254e1 1314 BND_REGS,
3f97cb0b 1315 ALL_SSE_REGS,
a7180f70 1316 MMX_REGS,
446988df
JH
1317 FP_TOP_SSE_REGS,
1318 FP_SECOND_SSE_REGS,
1319 FLOAT_SSE_REGS,
1320 FLOAT_INT_REGS,
1321 INT_SSE_REGS,
1322 FLOAT_INT_SSE_REGS,
85a77221
AI
1323 MASK_EVEX_REGS,
1324 MASK_REGS,
5fbb13a7 1325 MOD4_SSE_REGS,
c98f8742
JVA
1326 ALL_REGS, LIM_REG_CLASSES
1327};
1328
d9a5f180
GS
1329#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1330
1331#define INTEGER_CLASS_P(CLASS) \
1332 reg_class_subset_p ((CLASS), GENERAL_REGS)
1333#define FLOAT_CLASS_P(CLASS) \
1334 reg_class_subset_p ((CLASS), FLOAT_REGS)
1335#define SSE_CLASS_P(CLASS) \
3f97cb0b 1336 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1337#define MMX_CLASS_P(CLASS) \
f75959a6 1338 ((CLASS) == MMX_REGS)
4ed04e93
UB
1339#define MASK_CLASS_P(CLASS) \
1340 reg_class_subset_p ((CLASS), MASK_REGS)
d9a5f180
GS
1341#define MAYBE_INTEGER_CLASS_P(CLASS) \
1342 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1343#define MAYBE_FLOAT_CLASS_P(CLASS) \
1344 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1345#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1346 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1347#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1348 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1349#define MAYBE_MASK_CLASS_P(CLASS) \
1350 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1351
1352#define Q_CLASS_P(CLASS) \
1353 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1354
0bd72901
UB
1355#define MAYBE_NON_Q_CLASS_P(CLASS) \
1356 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1357
43f3a59d 1358/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1359
1360#define REG_CLASS_NAMES \
1361{ "NO_REGS", \
ab408a86 1362 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1363 "SIREG", "DIREG", \
e075ae69 1364 "AD_REGS", \
2e24efd3 1365 "CLOBBERED_REGS", \
e075ae69 1366 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1367 "TLS_GOTBASE_REGS", \
c98f8742 1368 "INDEX_REGS", \
3f3f2124 1369 "LEGACY_REGS", \
c98f8742
JVA
1370 "GENERAL_REGS", \
1371 "FP_TOP_REG", "FP_SECOND_REG", \
1372 "FLOAT_REGS", \
cb482895 1373 "SSE_FIRST_REG", \
45392c76 1374 "NO_REX_SSE_REGS", \
a7180f70 1375 "SSE_REGS", \
3f97cb0b 1376 "EVEX_SSE_REGS", \
d5e254e1 1377 "BND_REGS", \
3f97cb0b 1378 "ALL_SSE_REGS", \
a7180f70 1379 "MMX_REGS", \
446988df
JH
1380 "FP_TOP_SSE_REGS", \
1381 "FP_SECOND_SSE_REGS", \
1382 "FLOAT_SSE_REGS", \
8fcaaa80 1383 "FLOAT_INT_REGS", \
446988df
JH
1384 "INT_SSE_REGS", \
1385 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1386 "MASK_EVEX_REGS", \
1387 "MASK_REGS", \
cae67b80 1388 "MOD4_SSE_REGS", \
c98f8742
JVA
1389 "ALL_REGS" }
1390
ac2e563f
RH
1391/* Define which registers fit in which classes. This is an initializer
1392 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1393
621bc046
UB
1394 Note that CLOBBERED_REGS are calculated by
1395 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1396
3f97cb0b 1397#define REG_CLASS_CONTENTS \
d5e254e1
IE
1398{ { 0x00, 0x0, 0x0 }, \
1399 { 0x01, 0x0, 0x0 }, /* AREG */ \
1400 { 0x02, 0x0, 0x0 }, /* DREG */ \
1401 { 0x04, 0x0, 0x0 }, /* CREG */ \
1402 { 0x08, 0x0, 0x0 }, /* BREG */ \
1403 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1404 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1405 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1406 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1407 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1408 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
de86ff8f 1409 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
d5e254e1
IE
1410 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1411 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1412 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1413 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1414 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1415 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1416 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1417{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1418{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1419 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1420 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1421{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1422{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1423{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1424{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1425{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1426{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1427{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1428{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
5fbb13a7 1429 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
d5e254e1 1430 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
5fbb13a7
KY
1431{ 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1432{ 0xffffffff,0xffffffff,0x1ffff } \
e075ae69 1433}
c98f8742
JVA
1434
1435/* The same information, inverted:
1436 Return the class number of the smallest class containing
1437 reg number REGNO. This could be a conditional expression
1438 or could index an array. */
1439
1a6e82b8 1440#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1441
42db504c
SB
1442/* When this hook returns true for MODE, the compiler allows
1443 registers explicitly used in the rtl to be used as spill registers
1444 but prevents the compiler from extending the lifetime of these
1445 registers. */
1446#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1447
fc27f749 1448#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1449#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1450
1451#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1452#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1453
1454#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1455#define REX_INT_REGNO_P(N) \
1456 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1457
58b0b34c 1458#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1459#define GENERAL_REGNO_P(N) \
58b0b34c 1460 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1461
fc27f749
UB
1462#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1463#define ANY_QI_REGNO_P(N) \
1464 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1465
66aaf16f
UB
1466#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1467#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1468
fc27f749 1469#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1470#define SSE_REGNO_P(N) \
1471 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1472 || REX_SSE_REGNO_P (N) \
1473 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1474
4977bab6 1475#define REX_SSE_REGNO_P(N) \
fb84c7a0 1476 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1477
0a48088a
IT
1478#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1479
3f97cb0b
AI
1480#define EXT_REX_SSE_REGNO_P(N) \
1481 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1482
05416670
UB
1483#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1484#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1485
9e4a4dd6 1486#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1487#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1488
fc27f749 1489#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1490#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1491
e075ae69
RH
1492#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1493#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1494
58b0b34c 1495#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1496#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1497
5fbb13a7
KY
1498#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1499#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1500 || (N) == XMM4_REG \
1501 || (N) == XMM8_REG \
1502 || (N) == XMM12_REG \
1503 || (N) == XMM16_REG \
1504 || (N) == XMM20_REG \
1505 || (N) == XMM24_REG \
1506 || (N) == XMM28_REG)
1507
05416670
UB
1508/* First floating point reg */
1509#define FIRST_FLOAT_REG FIRST_STACK_REG
1510#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1511
1512#define SSE_REGNO(N) \
1513 ((N) < 8 ? FIRST_SSE_REG + (N) \
1514 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1515 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1516
c98f8742
JVA
1517/* The class value for index registers, and the one for base regs. */
1518
1519#define INDEX_REG_CLASS INDEX_REGS
1520#define BASE_REG_CLASS GENERAL_REGS
1521
85ff473e 1522/* If we are copying between general and FP registers, we need a memory
f84aa48a 1523 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1524#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1525 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1526
c62b3659
UB
1527/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1528 There is no need to emit full 64 bit move on 64 bit targets
1529 for integral modes that can be moved using 32 bit move. */
1530#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1531 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
61b2290a 1532 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0).require () \
c62b3659
UB
1533 : MODE)
1534
1272914c
RH
1535/* Return a class of registers that cannot change FROM mode to TO mode. */
1536
1537#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1538 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1539\f
1540/* Stack layout; function entry, exit and calling. */
1541
1542/* Define this if pushing a word on the stack
1543 makes the stack pointer a smaller address. */
62f9f30b 1544#define STACK_GROWS_DOWNWARD 1
c98f8742 1545
a4d05547 1546/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1547 is at the high-address end of the local variables;
1548 that is, each additional local variable allocated
1549 goes at a more negative offset in the frame. */
f62c8a5c 1550#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1551
1552/* Offset within stack frame to start allocating local variables at.
1553 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1554 first local allocated. Otherwise, it is the offset to the BEGINNING
1555 of the first local allocated. */
1556#define STARTING_FRAME_OFFSET 0
1557
8c2b2fae
UB
1558/* If we generate an insn to push BYTES bytes, this says how many the stack
1559 pointer really advances by. On 386, we have pushw instruction that
1560 decrements by exactly 2 no matter what the position was, there is no pushb.
1561
1562 But as CIE data alignment factor on this arch is -4 for 32bit targets
1563 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1564 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1565
1a6e82b8 1566#define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
8c2b2fae
UB
1567
1568/* If defined, the maximum amount of space required for outgoing arguments
1569 will be computed and placed into the variable `crtl->outgoing_args_size'.
1570 No space will be pushed onto the stack for each call; instead, the
1571 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1572
1573 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1574 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1575 mode the difference is less drastic but visible.
1576
1577 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1578 actually grow with accumulation. Is that because accumulated args
41ee845b 1579 unwind info became unnecesarily bloated?
f830ddc2
RH
1580
1581 With the 64-bit MS ABI, we can generate correct code with or without
1582 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1583 generated without accumulated args is terrible.
41ee845b
JH
1584
1585 If stack probes are required, the space used for large function
1586 arguments on the stack must also be probed, so enable
f8071c05
L
1587 -maccumulate-outgoing-args so this happens in the prologue.
1588
1589 We must use argument accumulation in interrupt function if stack
1590 may be realigned to avoid DRAP. */
f73ad30e 1591
6c6094f1 1592#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1593 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1594 && optimize_function_for_speed_p (cfun)) \
1595 || (cfun->machine->func_type != TYPE_NORMAL \
1596 && crtl->stack_realign_needed) \
1597 || TARGET_STACK_PROBE \
1598 || TARGET_64BIT_MS_ABI \
ff734e26 1599 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1600
1601/* If defined, a C expression whose value is nonzero when we want to use PUSH
1602 instructions to pass outgoing arguments. */
1603
1604#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1605
2da4124d
L
1606/* We want the stack and args grow in opposite directions, even if
1607 PUSH_ARGS is 0. */
1608#define PUSH_ARGS_REVERSED 1
1609
c98f8742
JVA
1610/* Offset of first parameter from the argument pointer register value. */
1611#define FIRST_PARM_OFFSET(FNDECL) 0
1612
a7180f70
BS
1613/* Define this macro if functions should assume that stack space has been
1614 allocated for arguments even when their values are passed in registers.
1615
1616 The value of this macro is the size, in bytes, of the area reserved for
1617 arguments passed in registers for the function represented by FNDECL.
1618
1619 This space can be allocated by the caller, or be a part of the
1620 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1621 which. */
7c800926
KT
1622#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1623
4ae8027b 1624#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1625 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1626
c98f8742
JVA
1627/* Define how to find the value returned by a library function
1628 assuming the value has mode MODE. */
1629
4ae8027b 1630#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1631
e9125c09
TW
1632/* Define the size of the result block used for communication between
1633 untyped_call and untyped_return. The block contains a DImode value
1634 followed by the block used by fnsave and frstor. */
1635
1636#define APPLY_RESULT_SIZE (8+108)
1637
b08de47e 1638/* 1 if N is a possible register number for function argument passing. */
53c17031 1639#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1640
1641/* Define a data type for recording info about an argument list
1642 during the scan of that argument list. This data type should
1643 hold all necessary information about the function itself
1644 and about the args processed so far, enough to enable macros
b08de47e 1645 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1646
e075ae69 1647typedef struct ix86_args {
fa283935 1648 int words; /* # words passed so far */
b08de47e
MM
1649 int nregs; /* # registers available for passing */
1650 int regno; /* next available register number */
3e65f251
KT
1651 int fastcall; /* fastcall or thiscall calling convention
1652 is used */
fa283935 1653 int sse_words; /* # sse words passed so far */
a7180f70 1654 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1655 int warn_avx512f; /* True when we want to warn
1656 about AVX512F ABI. */
95879c72 1657 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1658 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1659 int warn_mmx; /* True when we want to warn about MMX ABI. */
1660 int sse_regno; /* next available sse register number */
1661 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1662 int mmx_nregs; /* # mmx registers available for passing */
1663 int mmx_regno; /* next available mmx register number */
892a2d68 1664 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1665 int caller; /* true if it is caller. */
2824d6e5
UB
1666 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1667 SFmode/DFmode arguments should be passed
1668 in SSE registers. Otherwise 0. */
d5e254e1
IE
1669 int bnd_regno; /* next available bnd register number */
1670 int bnds_in_bt; /* number of bounds expected in BT. */
1671 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1672 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1673 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1674 MS_ABI for ms abi. */
e66fc623 1675 tree decl; /* Callee decl. */
b08de47e 1676} CUMULATIVE_ARGS;
c98f8742
JVA
1677
1678/* Initialize a variable CUM of type CUMULATIVE_ARGS
1679 for a call to a function whose data type is FNTYPE.
b08de47e 1680 For a library call, FNTYPE is 0. */
c98f8742 1681
0f6937fe 1682#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1683 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1684 (N_NAMED_ARGS) != -1)
c98f8742 1685
c98f8742
JVA
1686/* Output assembler code to FILE to increment profiler label # LABELNO
1687 for profiling a function entry. */
1688
1a6e82b8
UB
1689#define FUNCTION_PROFILER(FILE, LABELNO) \
1690 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1691
1692#define MCOUNT_NAME "_mcount"
1693
3c5273a9
KT
1694#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1695
a5fa1ecd 1696#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1697
1698/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1699 the stack pointer does not matter. The value is tested only in
1700 functions that have frame pointers.
1701 No definition is equivalent to always zero. */
fce5a9f2 1702/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1703 we have to restore it ourselves from the frame pointer, in order to
1704 use pop */
1705
1706#define EXIT_IGNORE_STACK 1
1707
f8071c05
L
1708/* Define this macro as a C expression that is nonzero for registers
1709 used by the epilogue or the `return' pattern. */
1710
1711#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1712
c98f8742
JVA
1713/* Output assembler code for a block containing the constant parts
1714 of a trampoline, leaving space for the variable parts. */
1715
a269a03c 1716/* On the 386, the trampoline contains two instructions:
c98f8742 1717 mov #STATIC,ecx
a269a03c
JC
1718 jmp FUNCTION
1719 The trampoline is generated entirely at runtime. The operand of JMP
1720 is the address of FUNCTION relative to the instruction following the
1721 JMP (which is 5 bytes long). */
c98f8742
JVA
1722
1723/* Length in units of the trampoline for entering a nested function. */
1724
3452586b 1725#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1726\f
1727/* Definitions for register eliminations.
1728
1729 This is an array of structures. Each structure initializes one pair
1730 of eliminable registers. The "from" register number is given first,
1731 followed by "to". Eliminations of the same "from" register are listed
1732 in order of preference.
1733
afc2cd05
NC
1734 There are two registers that can always be eliminated on the i386.
1735 The frame pointer and the arg pointer can be replaced by either the
1736 hard frame pointer or to the stack pointer, depending upon the
1737 circumstances. The hard frame pointer is not used before reload and
1738 so it is not eligible for elimination. */
c98f8742 1739
564d80f4
JH
1740#define ELIMINABLE_REGS \
1741{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1742 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1743 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1744 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1745
c98f8742
JVA
1746/* Define the offset between two registers, one to be eliminated, and the other
1747 its replacement, at the start of a routine. */
1748
d9a5f180
GS
1749#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1750 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1751\f
1752/* Addressing modes, and classification of registers for them. */
1753
c98f8742
JVA
1754/* Macros to check register numbers against specific register classes. */
1755
1756/* These assume that REGNO is a hard or pseudo reg number.
1757 They give nonzero only if REGNO is a hard reg of the suitable class
1758 or a pseudo reg currently allocated to a suitable hard reg.
1759 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1760 has been allocated, which happens in reginfo.c during register
1761 allocation. */
c98f8742 1762
3f3f2124
JH
1763#define REGNO_OK_FOR_INDEX_P(REGNO) \
1764 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1765 || REX_INT_REGNO_P (REGNO) \
1766 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1767 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1768
3f3f2124 1769#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1770 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1771 || (REGNO) == ARG_POINTER_REGNUM \
1772 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1773 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1774
c98f8742
JVA
1775/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1776 and check its validity for a certain class.
1777 We have two alternate definitions for each of them.
1778 The usual definition accepts all pseudo regs; the other rejects
1779 them unless they have been allocated suitable hard regs.
1780 The symbol REG_OK_STRICT causes the latter definition to be used.
1781
1782 Most source files want to accept pseudo regs in the hope that
1783 they will get allocated to the class that the insn wants them to be in.
1784 Source files for reload pass need to be strict.
1785 After reload, it makes no difference, since pseudo regs have
1786 been eliminated by then. */
1787
c98f8742 1788
ff482c8d 1789/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1790#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1791 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1792 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1793 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1794
3b3c6a3f 1795#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1796 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1797 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1798 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1799 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1800
3b3c6a3f
MM
1801/* Strict versions, hard registers only */
1802#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1803#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1804
3b3c6a3f 1805#ifndef REG_OK_STRICT
d9a5f180
GS
1806#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1807#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1808
1809#else
d9a5f180
GS
1810#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1811#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1812#endif
1813
331d9186 1814/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1815 that is a valid memory address for an instruction.
1816 The MODE argument is the machine mode for the MEM expression
1817 that wants to use this address.
1818
331d9186 1819 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1820 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1821
1822 See legitimize_pic_address in i386.c for details as to what
1823 constitutes a legitimate address when -fpic is used. */
1824
1825#define MAX_REGS_PER_ADDRESS 2
1826
f996902d 1827#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1828
b949ea8b
JW
1829/* If defined, a C expression to determine the base term of address X.
1830 This macro is used in only one place: `find_base_term' in alias.c.
1831
1832 It is always safe for this macro to not be defined. It exists so
1833 that alias analysis can understand machine-dependent addresses.
1834
1835 The typical use of this macro is to handle addresses containing
1836 a label_ref or symbol_ref within an UNSPEC. */
1837
d9a5f180 1838#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1839
c98f8742 1840/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1841 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1842 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1843
f996902d 1844#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1845
1846#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1847 (GET_CODE (X) == SYMBOL_REF \
1848 || GET_CODE (X) == LABEL_REF \
1849 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1850\f
b08de47e
MM
1851/* Max number of args passed in registers. If this is more than 3, we will
1852 have problems with ebx (register #4), since it is a caller save register and
1853 is also used as the pic register in ELF. So for now, don't allow more than
1854 3 registers to be passed in registers. */
1855
7c800926
KT
1856/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1857#define X86_64_REGPARM_MAX 6
72fa3605 1858#define X86_64_MS_REGPARM_MAX 4
7c800926 1859
72fa3605 1860#define X86_32_REGPARM_MAX 3
7c800926 1861
4ae8027b 1862#define REGPARM_MAX \
2824d6e5
UB
1863 (TARGET_64BIT \
1864 ? (TARGET_64BIT_MS_ABI \
1865 ? X86_64_MS_REGPARM_MAX \
1866 : X86_64_REGPARM_MAX) \
4ae8027b 1867 : X86_32_REGPARM_MAX)
d2836273 1868
72fa3605
UB
1869#define X86_64_SSE_REGPARM_MAX 8
1870#define X86_64_MS_SSE_REGPARM_MAX 4
1871
b6010cab 1872#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1873
4ae8027b 1874#define SSE_REGPARM_MAX \
2824d6e5
UB
1875 (TARGET_64BIT \
1876 ? (TARGET_64BIT_MS_ABI \
1877 ? X86_64_MS_SSE_REGPARM_MAX \
1878 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1879 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1880
1881#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1882\f
1883/* Specify the machine mode that this machine uses
1884 for the index in the tablejump instruction. */
dc4d7240 1885#define CASE_VECTOR_MODE \
6025b127 1886 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1887
c98f8742
JVA
1888/* Define this as 1 if `char' should by default be signed; else as 0. */
1889#define DEFAULT_SIGNED_CHAR 1
1890
1891/* Max number of bytes we can move from memory to memory
1892 in one reasonably fast instruction. */
65d9c0ab
JH
1893#define MOVE_MAX 16
1894
1895/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1896 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1897 number of bytes we can move with a single instruction.
1898
1899 ??? We should use TImode in 32-bit mode and use OImode or XImode
1900 if they are available. But since by_pieces_ninsns determines the
1901 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1902 64-bit mode. */
1903#define MOVE_MAX_PIECES \
1904 ((TARGET_64BIT \
1905 && TARGET_SSE2 \
1906 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1907 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1908 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1909
7e24ffc9 1910/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1911 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1912 Increasing the value will always make code faster, but eventually
1913 incurs high cost in increased code size.
c98f8742 1914
e2e52e1b 1915 If you don't define this, a reasonable default is used. */
c98f8742 1916
e04ad03d 1917#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1918
45d78e7f
JJ
1919/* If a clear memory operation would take CLEAR_RATIO or more simple
1920 move-instruction sequences, we will do a clrmem or libcall instead. */
1921
e04ad03d 1922#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1923
53f00dde
UB
1924/* Define if shifts truncate the shift count which implies one can
1925 omit a sign-extension or zero-extension of a shift count.
1926
1927 On i386, shifts do truncate the count. But bit test instructions
1928 take the modulo of the bit offset operand. */
c98f8742
JVA
1929
1930/* #define SHIFT_COUNT_TRUNCATED */
1931
1932/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1933 is done just by pretending it is already truncated. */
1934#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1935
d9f32422
JH
1936/* A macro to update M and UNSIGNEDP when an object whose type is
1937 TYPE and which has the specified mode and signedness is to be
1938 stored in a register. This macro is only called when TYPE is a
1939 scalar type.
1940
f710504c 1941 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1942 quantities to SImode. The choice depends on target type. */
1943
1944#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1945do { \
d9f32422
JH
1946 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1947 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1948 (MODE) = SImode; \
1949} while (0)
d9f32422 1950
c98f8742
JVA
1951/* Specify the machine mode that pointers have.
1952 After generation of rtl, the compiler makes no further distinction
1953 between pointers and any other objects of this machine mode. */
28968d91 1954#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1955
d5e254e1
IE
1956/* Specify the machine mode that bounds have. */
1957#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1958
f0ea7581
L
1959/* A C expression whose value is zero if pointers that need to be extended
1960 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1961 greater then zero if they are zero-extended and less then zero if the
1962 ptr_extend instruction should be used. */
1963
1964#define POINTERS_EXTEND_UNSIGNED 1
1965
c98f8742
JVA
1966/* A function address in a call instruction
1967 is a byte address (for indexing purposes)
1968 so give the MEM rtx a byte's mode. */
1969#define FUNCTION_MODE QImode
d4ba09c0 1970\f
d4ba09c0 1971
d4ba09c0
SC
1972/* A C expression for the cost of a branch instruction. A value of 1
1973 is the default; other values are interpreted relative to that. */
1974
3a4fd356
JH
1975#define BRANCH_COST(speed_p, predictable_p) \
1976 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1977
e327d1a3
L
1978/* An integer expression for the size in bits of the largest integer machine
1979 mode that should actually be used. We allow pairs of registers. */
1980#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1981
d4ba09c0
SC
1982/* Define this macro as a C expression which is nonzero if accessing
1983 less than a word of memory (i.e. a `char' or a `short') is no
1984 faster than accessing a word of memory, i.e., if such access
1985 require more than one instruction or if there is no difference in
1986 cost between byte and (aligned) word loads.
1987
1988 When this macro is not defined, the compiler will access a field by
1989 finding the smallest containing object; when it is defined, a
1990 fullword load will be used if alignment permits. Unless bytes
1991 accesses are faster than word accesses, using word accesses is
1992 preferable since it may eliminate subsequent memory access if
1993 subsequent accesses occur to other fields in the same word of the
1994 structure, but to different bytes. */
1995
1996#define SLOW_BYTE_ACCESS 0
1997
1998/* Nonzero if access to memory by shorts is slow and undesirable. */
1999#define SLOW_SHORT_ACCESS 0
2000
d4ba09c0
SC
2001/* Define this macro if it is as good or better to call a constant
2002 function address than to call an address kept in a register.
2003
2004 Desirable on the 386 because a CALL with a constant address is
2005 faster than one with a register address. */
2006
1e8552c2 2007#define NO_FUNCTION_CSE 1
c98f8742 2008\f
c572e5ba
JVA
2009/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2010 return the mode to be used for the comparison.
2011
2012 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2013 VOIDmode should be used in all other cases.
c572e5ba 2014
16189740 2015 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2016 possible, to allow for more combinations. */
c98f8742 2017
d9a5f180 2018#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2019
9cd10576 2020/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2021 reversed. */
2022
2023#define REVERSIBLE_CC_MODE(MODE) 1
2024
2025/* A C expression whose value is reversed condition code of the CODE for
2026 comparison done in CC_MODE mode. */
3c5cb3e4 2027#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2028
c98f8742
JVA
2029\f
2030/* Control the assembler format that we output, to the extent
2031 this does not vary between assemblers. */
2032
2033/* How to refer to registers in assembler output.
892a2d68 2034 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2035
a7b376ee 2036/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2037 For non floating point regs, the following are the HImode names.
2038
2039 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2040 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2041 "y" code. */
c98f8742 2042
a7180f70
BS
2043#define HI_REGISTER_NAMES \
2044{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2045 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2046 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2047 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2048 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2049 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2050 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2051 "xmm16", "xmm17", "xmm18", "xmm19", \
2052 "xmm20", "xmm21", "xmm22", "xmm23", \
2053 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2054 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2055 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2056 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2057
c98f8742
JVA
2058#define REGISTER_NAMES HI_REGISTER_NAMES
2059
2060/* Table of additional register names to use in user input. */
2061
2062#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2063{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2064 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2065 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2066 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2067 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2068 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2069 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2070 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2071 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2072 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2073 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2074 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2075 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2076 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2077 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2078 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2079 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2080 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2081 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2082 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2083 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2084 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2085
2086/* Note we are omitting these since currently I don't know how
2087to get gcc to use these, since they want the same but different
2088number as al, and ax.
2089*/
2090
c98f8742 2091#define QI_REGISTER_NAMES \
3f3f2124 2092{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2093
2094/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2095 of regs 0 through 3. */
c98f8742
JVA
2096
2097#define QI_HIGH_REGISTER_NAMES \
2098{"ah", "dh", "ch", "bh", }
2099
2100/* How to renumber registers for dbx and gdb. */
2101
d9a5f180
GS
2102#define DBX_REGISTER_NUMBER(N) \
2103 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2104
9a82e702
MS
2105extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2106extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2107extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2108
469ac993
JM
2109/* Before the prologue, RA is at 0(%esp). */
2110#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2111 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2112
e414ab29 2113/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2114#define RETURN_ADDR_RTX(COUNT, FRAME) \
2115 ((COUNT) == 0 \
2116 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2117 -UNITS_PER_WORD)) \
2118 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2119
892a2d68 2120/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2121#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2122
a10b3cf1
L
2123/* Before the prologue, there are return address and error code for
2124 exception handler on the top of the frame. */
2125#define INCOMING_FRAME_SP_OFFSET \
2126 (cfun->machine->func_type == TYPE_EXCEPTION \
2127 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2128
1020a5ab 2129/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2130#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2131#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2132
ad919812 2133
e4c4ebeb
RH
2134/* Select a format to encode pointers in exception handling data. CODE
2135 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2136 true if the symbol may be affected by dynamic relocations.
2137
2138 ??? All x86 object file formats are capable of representing this.
2139 After all, the relocation needed is the same as for the call insn.
2140 Whether or not a particular assembler allows us to enter such, I
2141 guess we'll have to see. */
d9a5f180 2142#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2143 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2144
ec1895c1
UB
2145/* These are a couple of extensions to the formats accepted
2146 by asm_fprintf:
2147 %z prints out opcode suffix for word-mode instruction
2148 %r prints out word-mode name for reg_names[arg] */
2149#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2150 case 'z': \
2151 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2152 break; \
2153 \
2154 case 'r': \
2155 { \
2156 unsigned int regno = va_arg ((ARGS), int); \
2157 if (LEGACY_INT_REGNO_P (regno)) \
2158 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2159 fputs (reg_names[regno], (FILE)); \
2160 break; \
2161 }
2162
2163/* This is how to output an insn to push a register on the stack. */
2164
2165#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2166 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2167
2168/* This is how to output an insn to pop a register from the stack. */
c98f8742 2169
d9a5f180 2170#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2171 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2172
f88c65f7 2173/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2174
2175#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2176 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2177
f88c65f7 2178/* This is how to output an element of a case-vector that is relative. */
c98f8742 2179
33f7f353 2180#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2181 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2182
63001560 2183/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2184
2185#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2186{ \
2187 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2188 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2189}
2190
2191/* A C statement or statements which output an assembler instruction
2192 opcode to the stdio stream STREAM. The macro-operand PTR is a
2193 variable of type `char *' which points to the opcode name in
2194 its "internal" form--the form that is written in the machine
2195 description. */
2196
2197#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2198 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2199
6a90d232
L
2200/* A C statement to output to the stdio stream FILE an assembler
2201 command to pad the location counter to a multiple of 1<<LOG
2202 bytes if it is within MAX_SKIP bytes. */
2203
2204#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2205#undef ASM_OUTPUT_MAX_SKIP_PAD
2206#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2207 if ((LOG) != 0) \
2208 { \
2209 if ((MAX_SKIP) == 0) \
2210 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2211 else \
2212 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2213 }
2214#endif
2215
135a687e
KT
2216/* Write the extra assembler code needed to declare a function
2217 properly. */
2218
2219#undef ASM_OUTPUT_FUNCTION_LABEL
2220#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2221 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2222
f7288899
EC
2223/* Under some conditions we need jump tables in the text section,
2224 because the assembler cannot handle label differences between
2225 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2226
2227#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2228 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2229 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2230
cea3bd3e
RH
2231/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2232 and switch back. For x86 we do this only to save a few bytes that
2233 would otherwise be unused in the text section. */
ad211091
KT
2234#define CRT_MKSTR2(VAL) #VAL
2235#define CRT_MKSTR(x) CRT_MKSTR2(x)
2236
2237#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2238 asm (SECTION_OP "\n\t" \
2239 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2240 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2241
2242/* Default threshold for putting data in large sections
2243 with x86-64 medium memory model */
2244#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
776280c4
UB
2245
2246/* Adjust the length of the insn with the length of BND prefix. */
0453025d
UB
2247
2248#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2249do { \
2250 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2251 && get_attr_maybe_prefix_bnd (INSN)) \
2252 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
776280c4 2253} while (0)
74b42c8b 2254\f
b97de419
L
2255/* Which processor to tune code generation for. These must be in sync
2256 with processor_target_table in i386.c. */
5bf0ebab
RH
2257
2258enum processor_type
2259{
b97de419
L
2260 PROCESSOR_GENERIC = 0,
2261 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2262 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2263 PROCESSOR_PENTIUM,
2d6b2e28 2264 PROCESSOR_LAKEMONT,
5bf0ebab 2265 PROCESSOR_PENTIUMPRO,
5bf0ebab 2266 PROCESSOR_PENTIUM4,
89c43c0a 2267 PROCESSOR_NOCONA,
340ef734 2268 PROCESSOR_CORE2,
d3c11974
L
2269 PROCESSOR_NEHALEM,
2270 PROCESSOR_SANDYBRIDGE,
3a579e09 2271 PROCESSOR_HASWELL,
d3c11974
L
2272 PROCESSOR_BONNELL,
2273 PROCESSOR_SILVERMONT,
52747219 2274 PROCESSOR_KNL,
06caf59d 2275 PROCESSOR_SKYLAKE_AVX512,
9a7f94d7 2276 PROCESSOR_INTEL,
b97de419
L
2277 PROCESSOR_GEODE,
2278 PROCESSOR_K6,
2279 PROCESSOR_ATHLON,
2280 PROCESSOR_K8,
21efb4d4 2281 PROCESSOR_AMDFAM10,
1133125e 2282 PROCESSOR_BDVER1,
4d652a18 2283 PROCESSOR_BDVER2,
eb2f2b44 2284 PROCESSOR_BDVER3,
ed97ad47 2285 PROCESSOR_BDVER4,
14b52538 2286 PROCESSOR_BTVER1,
e32bfc16 2287 PROCESSOR_BTVER2,
9ce29eb0 2288 PROCESSOR_ZNVER1,
5bf0ebab
RH
2289 PROCESSOR_max
2290};
2291
9e555526 2292extern enum processor_type ix86_tune;
5bf0ebab 2293extern enum processor_type ix86_arch;
5bf0ebab 2294
8362f420
JH
2295/* Size of the RED_ZONE area. */
2296#define RED_ZONE_SIZE 128
2297/* Reserved area of the red zone for temporaries. */
2298#define RED_ZONE_RESERVE 8
c93e80a5 2299
95899b34 2300extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2301extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2302
2303/* Smallest class containing REGNO. */
2304extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2305
0948ccb2
PB
2306enum ix86_fpcmp_strategy {
2307 IX86_FPCMP_SAHF,
2308 IX86_FPCMP_COMI,
2309 IX86_FPCMP_ARITH
2310};
22fb740d
JH
2311\f
2312/* To properly truncate FP values into integers, we need to set i387 control
2313 word. We can't emit proper mode switching code before reload, as spills
2314 generated by reload may truncate values incorrectly, but we still can avoid
2315 redundant computation of new control word by the mode switching pass.
2316 The fldcw instructions are still emitted redundantly, but this is probably
2317 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2318 the sequence.
22fb740d
JH
2319
2320 The machinery is to emit simple truncation instructions and split them
2321 before reload to instructions having USEs of two memory locations that
2322 are filled by this code to old and new control word.
fce5a9f2 2323
22fb740d
JH
2324 Post-reload pass may be later used to eliminate the redundant fildcw if
2325 needed. */
2326
c7ca8ef8
UB
2327enum ix86_stack_slot
2328{
2329 SLOT_TEMP = 0,
2330 SLOT_CW_STORED,
2331 SLOT_CW_TRUNC,
2332 SLOT_CW_FLOOR,
2333 SLOT_CW_CEIL,
2334 SLOT_CW_MASK_PM,
80008279 2335 SLOT_STV_TEMP,
c7ca8ef8
UB
2336 MAX_386_STACK_LOCALS
2337};
2338
ff680eb1
UB
2339enum ix86_entity
2340{
c7ca8ef8
UB
2341 X86_DIRFLAG = 0,
2342 AVX_U128,
ff97910d 2343 I387_TRUNC,
ff680eb1
UB
2344 I387_FLOOR,
2345 I387_CEIL,
2346 I387_MASK_PM,
2347 MAX_386_ENTITIES
2348};
2349
c7ca8ef8 2350enum x86_dirflag_state
ff680eb1 2351{
c7ca8ef8
UB
2352 X86_DIRFLAG_RESET,
2353 X86_DIRFLAG_ANY
ff680eb1 2354};
22fb740d 2355
ff97910d
VY
2356enum avx_u128_state
2357{
2358 AVX_U128_CLEAN,
2359 AVX_U128_DIRTY,
2360 AVX_U128_ANY
2361};
2362
22fb740d
JH
2363/* Define this macro if the port needs extra instructions inserted
2364 for mode switching in an optimizing compilation. */
2365
ff680eb1
UB
2366#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2367 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2368
2369/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2370 initializer for an array of integers. Each initializer element N
2371 refers to an entity that needs mode switching, and specifies the
2372 number of different modes that might need to be set for this
2373 entity. The position of the initializer in the initializer -
2374 starting counting at zero - determines the integer that is used to
2375 refer to the mode-switched entity in question. */
2376
c7ca8ef8
UB
2377#define NUM_MODES_FOR_MODE_SWITCHING \
2378 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2379 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2380
0f0138b6
JH
2381\f
2382/* Avoid renaming of stack registers, as doing so in combination with
2383 scheduling just increases amount of live registers at time and in
2384 the turn amount of fxch instructions needed.
2385
3f97cb0b
AI
2386 ??? Maybe Pentium chips benefits from renaming, someone can try....
2387
2388 Don't rename evex to non-evex sse registers. */
0f0138b6 2389
1a6e82b8
UB
2390#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2391 (!STACK_REGNO_P (SRC) \
2392 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2393
3b3c6a3f 2394\f
e91f04de 2395#define FASTCALL_PREFIX '@'
fa1a0d02 2396\f
77560086
BE
2397#ifndef USED_FOR_TARGET
2398/* Structure describing stack frame layout.
2399 Stack grows downward:
2400
2401 [arguments]
2402 <- ARG_POINTER
2403 saved pc
2404
2405 saved static chain if ix86_static_chain_on_stack
2406
2407 saved frame pointer if frame_pointer_needed
2408 <- HARD_FRAME_POINTER
2409 [saved regs]
2410 <- reg_save_offset
2411 [padding0]
2412 <- stack_realign_offset
2413 [saved SSE regs]
2414 OR
2415 [stub-saved registers for ms x64 --> sysv clobbers
2416 <- Start of out-of-line, stub-saved/restored regs
2417 (see libgcc/config/i386/(sav|res)ms64*.S)
2418 [XMM6-15]
2419 [RSI]
2420 [RDI]
2421 [?RBX] only if RBX is clobbered
2422 [?RBP] only if RBP and RBX are clobbered
2423 [?R12] only if R12 and all previous regs are clobbered
2424 [?R13] only if R13 and all previous regs are clobbered
2425 [?R14] only if R14 and all previous regs are clobbered
2426 [?R15] only if R15 and all previous regs are clobbered
2427 <- end of stub-saved/restored regs
2428 [padding1]
2429 ]
5d9d834d 2430 <- sse_reg_save_offset
77560086
BE
2431 [padding2]
2432 | <- FRAME_POINTER
2433 [va_arg registers] |
2434 |
2435 [frame] |
2436 |
2437 [padding2] | = to_allocate
2438 <- STACK_POINTER
2439 */
2440struct GTY(()) ix86_frame
2441{
2442 int nsseregs;
2443 int nregs;
2444 int va_arg_size;
2445 int red_zone_size;
2446 int outgoing_arguments_size;
2447
2448 /* The offsets relative to ARG_POINTER. */
2449 HOST_WIDE_INT frame_pointer_offset;
2450 HOST_WIDE_INT hard_frame_pointer_offset;
2451 HOST_WIDE_INT stack_pointer_offset;
2452 HOST_WIDE_INT hfp_save_offset;
2453 HOST_WIDE_INT reg_save_offset;
122f9da1 2454 HOST_WIDE_INT stack_realign_allocate;
77560086 2455 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2456 HOST_WIDE_INT sse_reg_save_offset;
2457
2458 /* When save_regs_using_mov is set, emit prologue using
2459 move instead of push instructions. */
2460 bool save_regs_using_mov;
2461};
2462
122f9da1
DS
2463/* Machine specific frame tracking during prologue/epilogue generation. All
2464 values are positive, but since the x86 stack grows downward, are subtratced
2465 from the CFA to produce a valid address. */
cd9c1ca8 2466
ec7ded37 2467struct GTY(()) machine_frame_state
cd9c1ca8 2468{
ec7ded37
RH
2469 /* This pair tracks the currently active CFA as reg+offset. When reg
2470 is drap_reg, we don't bother trying to record here the real CFA when
2471 it might really be a DW_CFA_def_cfa_expression. */
2472 rtx cfa_reg;
2473 HOST_WIDE_INT cfa_offset;
2474
2475 /* The current offset (canonically from the CFA) of ESP and EBP.
2476 When stack frame re-alignment is active, these may not be relative
2477 to the CFA. However, in all cases they are relative to the offsets
2478 of the saved registers stored in ix86_frame. */
2479 HOST_WIDE_INT sp_offset;
2480 HOST_WIDE_INT fp_offset;
2481
2482 /* The size of the red-zone that may be assumed for the purposes of
2483 eliding register restore notes in the epilogue. This may be zero
2484 if no red-zone is in effect, or may be reduced from the real
2485 red-zone value by a maximum runtime stack re-alignment value. */
2486 int red_zone_offset;
2487
2488 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2489 value within the frame. If false then the offset above should be
2490 ignored. Note that DRAP, if valid, *always* points to the CFA and
2491 thus has an offset of zero. */
2492 BOOL_BITFIELD sp_valid : 1;
2493 BOOL_BITFIELD fp_valid : 1;
2494 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2495
2496 /* Indicate whether the local stack frame has been re-aligned. When
2497 set, the SP/FP offsets above are relative to the aligned frame
2498 and not the CFA. */
2499 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2500
2501 /* Indicates whether the stack pointer has been re-aligned. When set,
2502 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2503 should only be used for offsets > sp_realigned_offset, while
2504 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2505 The flags realigned and sp_realigned are mutually exclusive. */
2506 BOOL_BITFIELD sp_realigned : 1;
2507
122f9da1
DS
2508 /* If sp_realigned is set, this is the last valid offset from the CFA
2509 that can be used for access with the frame pointer. */
2510 HOST_WIDE_INT sp_realigned_fp_last;
2511
2512 /* If sp_realigned is set, this is the offset from the CFA that the stack
2513 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2514 Access via the stack pointer is only valid for offsets that are greater than
2515 this value. */
d6d4d770 2516 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2517};
2518
f81c9774
RH
2519/* Private to winnt.c. */
2520struct seh_frame_state;
2521
f8071c05
L
2522enum function_type
2523{
2524 TYPE_UNKNOWN = 0,
2525 TYPE_NORMAL,
2526 /* The current function is an interrupt service routine with a
2527 pointer argument as specified by the "interrupt" attribute. */
2528 TYPE_INTERRUPT,
2529 /* The current function is an interrupt service routine with a
2530 pointer argument and an integer argument as specified by the
2531 "interrupt" attribute. */
2532 TYPE_EXCEPTION
2533};
2534
d1b38208 2535struct GTY(()) machine_function {
fa1a0d02 2536 struct stack_local_entry *stack_locals;
4aab97f9
L
2537 int varargs_gpr_size;
2538 int varargs_fpr_size;
ff680eb1 2539 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2540
77560086
BE
2541 /* Cached initial frame layout for the current function. */
2542 struct ix86_frame frame;
3452586b 2543
7458026b
ILT
2544 /* For -fsplit-stack support: A stack local which holds a pointer to
2545 the stack arguments for a function with a variable number of
2546 arguments. This is set at the start of the function and is used
2547 to initialize the overflow_arg_area field of the va_list
2548 structure. */
2549 rtx split_stack_varargs_pointer;
2550
3452586b
RH
2551 /* This value is used for amd64 targets and specifies the current abi
2552 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2553 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2554
2555 /* Nonzero if the function accesses a previous frame. */
2556 BOOL_BITFIELD accesses_prev_frame : 1;
2557
922e3e33
UB
2558 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2559 expander to determine the style used. */
3452586b
RH
2560 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2561
1e4490dc
UB
2562 /* Nonzero if the current function calls pc thunk and
2563 must not use the red zone. */
2564 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2565
5bf5a10b
AO
2566 /* If true, the current function needs the default PIC register, not
2567 an alternate register (on x86) and must not use the red zone (on
2568 x86_64), even if it's a leaf function. We don't want the
2569 function to be regarded as non-leaf because TLS calls need not
2570 affect register allocation. This flag is set when a TLS call
2571 instruction is expanded within a function, and never reset, even
2572 if all such instructions are optimized away. Use the
2573 ix86_current_function_calls_tls_descriptor macro for a better
2574 approximation. */
3452586b
RH
2575 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2576
2577 /* If true, the current function has a STATIC_CHAIN is placed on the
2578 stack below the return address. */
2579 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2580
529a6471
JJ
2581 /* If true, it is safe to not save/restore DRAP register. */
2582 BOOL_BITFIELD no_drap_save_restore : 1;
2583
f8071c05
L
2584 /* Function type. */
2585 ENUM_BITFIELD(function_type) func_type : 2;
2586
2587 /* If true, the current function is a function specified with
2588 the "interrupt" or "no_caller_saved_registers" attribute. */
2589 BOOL_BITFIELD no_caller_saved_registers : 1;
2590
a0ff7835
L
2591 /* If true, there is register available for argument passing. This
2592 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2593 if there is scratch register available for indirect sibcall. In
2594 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2595 pass arguments and can be used for indirect sibcall. */
2596 BOOL_BITFIELD arg_reg_available : 1;
2597
d6d4d770 2598 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2599 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2600 BOOL_BITFIELD call_ms2sysv : 1;
2601
2602 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2603 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2604 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2605
d6d4d770
DS
2606 /* This is the number of extra registers saved by stub (valid range is
2607 0-6). Each additional register is only saved/restored by the stubs
2608 if all successive ones are. (Will always be zero when using a hard
2609 frame pointer.) */
2610 unsigned int call_ms2sysv_extra_regs:3;
2611
35c95658
L
2612 /* Nonzero if the function places outgoing arguments on stack. */
2613 BOOL_BITFIELD outgoing_args_on_stack : 1;
2614
ec7ded37
RH
2615 /* During prologue/epilogue generation, the current frame state.
2616 Otherwise, the frame state at the end of the prologue. */
2617 struct machine_frame_state fs;
f81c9774
RH
2618
2619 /* During SEH output, this is non-null. */
2620 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2621};
cd9c1ca8 2622#endif
fa1a0d02
JH
2623
2624#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2625#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2626#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2627#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2628#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2629#define ix86_tls_descriptor_calls_expanded_in_cfun \
2630 (cfun->machine->tls_descriptor_call_expanded_p)
2631/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2632 calls are optimized away, we try to detect cases in which it was
2633 optimized away. Since such instructions (use (reg REG_SP)), we can
2634 verify whether there's any such instruction live by testing that
2635 REG_SP is live. */
2636#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2637 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2638#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2639
1bc7c5b6
ZW
2640/* Control behavior of x86_file_start. */
2641#define X86_FILE_START_VERSION_DIRECTIVE false
2642#define X86_FILE_START_FLTUSED false
2643
7dcbf659
JH
2644/* Flag to mark data that is in the large address area. */
2645#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2646#define SYMBOL_REF_FAR_ADDR_P(X) \
2647 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2648
2649/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2650 have defined always, to avoid ifdefing. */
2651#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2652#define SYMBOL_REF_DLLIMPORT_P(X) \
2653 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2654
2655#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2656#define SYMBOL_REF_DLLEXPORT_P(X) \
2657 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2658
82c0e1a0
KT
2659#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2660#define SYMBOL_REF_STUBVAR_P(X) \
2661 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2662
7942e47e
RY
2663extern void debug_ready_dispatch (void);
2664extern void debug_dispatch_window (int);
2665
91afcfa3
QN
2666/* The value at zero is only defined for the BMI instructions
2667 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2668#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2669 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2670#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2671 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2672
2673
b8ce4e94
KT
2674/* Flags returned by ix86_get_callcvt (). */
2675#define IX86_CALLCVT_CDECL 0x1
2676#define IX86_CALLCVT_STDCALL 0x2
2677#define IX86_CALLCVT_FASTCALL 0x4
2678#define IX86_CALLCVT_THISCALL 0x8
2679#define IX86_CALLCVT_REGPARM 0x10
2680#define IX86_CALLCVT_SSEREGPARM 0x20
2681
2682#define IX86_BASE_CALLCVT(FLAGS) \
2683 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2684 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2685
b86b9f44
MM
2686#define RECIP_MASK_NONE 0x00
2687#define RECIP_MASK_DIV 0x01
2688#define RECIP_MASK_SQRT 0x02
2689#define RECIP_MASK_VEC_DIV 0x04
2690#define RECIP_MASK_VEC_SQRT 0x08
2691#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2692 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2693#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2694
2695#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2696#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2697#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2698#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2699
5dcfdccd
KY
2700#define IX86_HLE_ACQUIRE (1 << 16)
2701#define IX86_HLE_RELEASE (1 << 17)
2702
e83b8e2e
JJ
2703/* For switching between functions with different target attributes. */
2704#define SWITCHABLE_TARGET 1
2705
44d0de8d
UB
2706#define TARGET_SUPPORTS_WIDE_INT 1
2707
c98f8742
JVA
2708/*
2709Local variables:
2710version-control: t
2711End:
2712*/