]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR c++/13549 (Problem compiling Boost.Python test)
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
66647d44 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
49#define TARGET_AVX OPTION_ISA_AVX
50#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 51#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
52#define TARGET_SSE5 OPTION_ISA_SSE5
53#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
54#define TARGET_ABM OPTION_ISA_ABM
55#define TARGET_POPCNT OPTION_ISA_POPCNT
56#define TARGET_SAHF OPTION_ISA_SAHF
57#define TARGET_AES OPTION_ISA_AES
58#define TARGET_PCLMUL OPTION_ISA_PCLMUL
59#define TARGET_CMPXCHG16B OPTION_ISA_CX16
60
04e1d06b
MM
61
62/* SSE5 and SSE4.1 define the same round instructions */
63#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
64#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 65
26b5109f
RS
66#include "config/vxworks-dummy.h"
67
8c996513
JH
68/* Algorithm to expand string function with. */
69enum stringop_alg
70{
71 no_stringop,
72 libcall,
73 rep_prefix_1_byte,
74 rep_prefix_4_byte,
75 rep_prefix_8_byte,
76 loop_1_byte,
77 loop,
78 unrolled_loop
79};
ccf8e764 80
8c996513 81#define NAX_STRINGOP_ALGS 4
ccf8e764 82
8c996513
JH
83/* Specify what algorithm to use for stringops on known size.
84 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
85 known at compile time or estimated via feedback, the SIZE array
86 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 87 means infinity). Corresponding ALG is used then.
8c996513 88 For example initializer:
4f3f76e6 89 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 90 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 91 be used otherwise. */
8c996513
JH
92struct stringop_algs
93{
94 const enum stringop_alg unknown_size;
95 const struct stringop_strategy {
96 const int max;
97 const enum stringop_alg alg;
98 } size [NAX_STRINGOP_ALGS];
99};
100
d4ba09c0
SC
101/* Define the specific costs for a given cpu */
102
103struct processor_costs {
8b60264b
KG
104 const int add; /* cost of an add instruction */
105 const int lea; /* cost of a lea instruction */
106 const int shift_var; /* variable shift costs */
107 const int shift_const; /* constant shift costs */
f676971a 108 const int mult_init[5]; /* cost of starting a multiply
4977bab6 109 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 110 const int mult_bit; /* cost of multiply per each bit set */
f676971a 111 const int divide[5]; /* cost of a divide/mod
4977bab6 112 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
113 int movsx; /* The cost of movsx operation. */
114 int movzx; /* The cost of movzx operation. */
8b60264b
KG
115 const int large_insn; /* insns larger than this cost more */
116 const int move_ratio; /* The threshold of number of scalar
ac775968 117 memory-to-memory move insns. */
8b60264b
KG
118 const int movzbl_load; /* cost of loading using movzbl */
119 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
120 in QImode, HImode and SImode relative
121 to reg-reg move (2). */
8b60264b 122 const int int_store[3]; /* cost of storing integer register
96e7ae40 123 in QImode, HImode and SImode */
8b60264b
KG
124 const int fp_move; /* cost of reg,reg fld/fst */
125 const int fp_load[3]; /* cost of loading FP register
96e7ae40 126 in SFmode, DFmode and XFmode */
8b60264b 127 const int fp_store[3]; /* cost of storing FP register
96e7ae40 128 in SFmode, DFmode and XFmode */
8b60264b
KG
129 const int mmx_move; /* cost of moving MMX register. */
130 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 131 in SImode and DImode */
8b60264b 132 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 133 in SImode and DImode */
8b60264b
KG
134 const int sse_move; /* cost of moving SSE register. */
135 const int sse_load[3]; /* cost of loading SSE register
fa79946e 136 in SImode, DImode and TImode*/
8b60264b 137 const int sse_store[3]; /* cost of storing SSE register
fa79946e 138 in SImode, DImode and TImode*/
8b60264b 139 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 140 integer and vice versa. */
46cb0441
ZD
141 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
142 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
143 const int prefetch_block; /* bytes moved to cache for prefetch. */
144 const int simultaneous_prefetches; /* number of parallel prefetch
145 operations. */
4977bab6 146 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
147 const int fadd; /* cost of FADD and FSUB instructions. */
148 const int fmul; /* cost of FMUL instruction. */
149 const int fdiv; /* cost of FDIV instruction. */
150 const int fabs; /* cost of FABS instruction. */
151 const int fchs; /* cost of FCHS instruction. */
152 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
153 /* Specify what algorithm
154 to use for stringops on unknown size. */
155 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
156 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
157 load and store. */
158 const int scalar_load_cost; /* Cost of scalar load. */
159 const int scalar_store_cost; /* Cost of scalar store. */
160 const int vec_stmt_cost; /* Cost of any vector operation, excluding
161 load, store, vector-to-scalar and
162 scalar-to-vector operation. */
163 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
164 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 165 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
166 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
167 const int vec_store_cost; /* Cost of vector store. */
168 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
169 cost model. */
170 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
171 vectorizer cost model. */
d4ba09c0
SC
172};
173
8b60264b 174extern const struct processor_costs *ix86_cost;
b2077fd2
JH
175extern const struct processor_costs ix86_size_cost;
176
177#define ix86_cur_cost() \
178 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 179
c98f8742
JVA
180/* Macros used in the machine description to test the flags. */
181
ddd5a7c1 182/* configure can arrange to make this 2, to force a 486. */
e075ae69 183
35b528be 184#ifndef TARGET_CPU_DEFAULT
d326eaf0 185#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 186#endif
35b528be 187
004d3859
GK
188#ifndef TARGET_FPMATH_DEFAULT
189#define TARGET_FPMATH_DEFAULT \
190 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
191#endif
192
6ac49599 193#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 194
5791cc29
JT
195/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
196 compile-time constant. */
197#ifdef IN_LIBGCC2
6ac49599 198#undef TARGET_64BIT
5791cc29
JT
199#ifdef __x86_64__
200#define TARGET_64BIT 1
201#else
202#define TARGET_64BIT 0
203#endif
204#else
6ac49599
RS
205#ifndef TARGET_BI_ARCH
206#undef TARGET_64BIT
67adf6a9 207#if TARGET_64BIT_DEFAULT
0c2dc519
JH
208#define TARGET_64BIT 1
209#else
210#define TARGET_64BIT 0
211#endif
212#endif
5791cc29 213#endif
25f94bb5 214
750054a2
CT
215#define HAS_LONG_COND_BRANCH 1
216#define HAS_LONG_UNCOND_BRANCH 1
217
9e555526
RH
218#define TARGET_386 (ix86_tune == PROCESSOR_I386)
219#define TARGET_486 (ix86_tune == PROCESSOR_I486)
220#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
221#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 222#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
223#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
224#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
225#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
226#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 227#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 228#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 229#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
230#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
231#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
232#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 233#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 234
80fd744f
RH
235/* Feature tests against the various tunings. */
236enum ix86_tune_indices {
237 X86_TUNE_USE_LEAVE,
238 X86_TUNE_PUSH_MEMORY,
239 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
240 X86_TUNE_UNROLL_STRLEN,
241 X86_TUNE_DEEP_BRANCH_PREDICTION,
242 X86_TUNE_BRANCH_PREDICTION_HINTS,
243 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 244 X86_TUNE_USE_SAHF,
80fd744f
RH
245 X86_TUNE_MOVX,
246 X86_TUNE_PARTIAL_REG_STALL,
247 X86_TUNE_PARTIAL_FLAG_REG_STALL,
248 X86_TUNE_USE_HIMODE_FIOP,
249 X86_TUNE_USE_SIMODE_FIOP,
250 X86_TUNE_USE_MOV0,
251 X86_TUNE_USE_CLTD,
252 X86_TUNE_USE_XCHGB,
253 X86_TUNE_SPLIT_LONG_MOVES,
254 X86_TUNE_READ_MODIFY_WRITE,
255 X86_TUNE_READ_MODIFY,
256 X86_TUNE_PROMOTE_QIMODE,
257 X86_TUNE_FAST_PREFIX,
258 X86_TUNE_SINGLE_STRINGOP,
259 X86_TUNE_QIMODE_MATH,
260 X86_TUNE_HIMODE_MATH,
261 X86_TUNE_PROMOTE_QI_REGS,
262 X86_TUNE_PROMOTE_HI_REGS,
263 X86_TUNE_ADD_ESP_4,
264 X86_TUNE_ADD_ESP_8,
265 X86_TUNE_SUB_ESP_4,
266 X86_TUNE_SUB_ESP_8,
267 X86_TUNE_INTEGER_DFMODE_MOVES,
268 X86_TUNE_PARTIAL_REG_DEPENDENCY,
269 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
270 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
271 X86_TUNE_SSE_SPLIT_REGS,
272 X86_TUNE_SSE_TYPELESS_STORES,
273 X86_TUNE_SSE_LOAD0_BY_PXOR,
274 X86_TUNE_MEMORY_MISMATCH_STALL,
275 X86_TUNE_PROLOGUE_USING_MOVE,
276 X86_TUNE_EPILOGUE_USING_MOVE,
277 X86_TUNE_SHIFT1,
278 X86_TUNE_USE_FFREEP,
279 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 280 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
281 X86_TUNE_FOUR_JUMP_LIMIT,
282 X86_TUNE_SCHEDULE,
283 X86_TUNE_USE_BT,
284 X86_TUNE_USE_INCDEC,
285 X86_TUNE_PAD_RETURNS,
286 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
287 X86_TUNE_SHORTEN_X87_SSE,
288 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 289 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
290 X86_TUNE_SLOW_IMUL_IMM32_MEM,
291 X86_TUNE_SLOW_IMUL_IMM8,
292 X86_TUNE_MOVE_M1_VIA_OR,
293 X86_TUNE_NOT_UNPAIRABLE,
294 X86_TUNE_NOT_VECTORMODE,
54723b46 295 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 296 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 297 X86_TUNE_FUSE_CMP_AND_BRANCH,
80fd744f
RH
298
299 X86_TUNE_LAST
300};
301
ab442df7 302extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
303
304#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
305#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
306#define TARGET_ZERO_EXTEND_WITH_AND \
307 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
308#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
309#define TARGET_DEEP_BRANCH_PREDICTION \
310 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
311#define TARGET_BRANCH_PREDICTION_HINTS \
312 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
313#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
314#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
315#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
316#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
317#define TARGET_PARTIAL_FLAG_REG_STALL \
318 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
319#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
320#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
321#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
322#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
323#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
324#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
325#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
326#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
327#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
328#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
329#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
330#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
331#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
332#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
333#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
334#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
335#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
336#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
337#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
338#define TARGET_INTEGER_DFMODE_MOVES \
339 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
340#define TARGET_PARTIAL_REG_DEPENDENCY \
341 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
342#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
343 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
344#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
345 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
346#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
347#define TARGET_SSE_TYPELESS_STORES \
348 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
349#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
350#define TARGET_MEMORY_MISMATCH_STALL \
351 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
352#define TARGET_PROLOGUE_USING_MOVE \
353 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
354#define TARGET_EPILOGUE_USING_MOVE \
355 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
356#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
357#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
358#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
359#define TARGET_INTER_UNIT_CONVERSIONS\
360 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
361#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
362#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
363#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
364#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
365#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
366#define TARGET_EXT_80387_CONSTANTS \
367 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
368#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
369#define TARGET_AVOID_VECTOR_DECODE \
370 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
371#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
372 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
373#define TARGET_SLOW_IMUL_IMM32_MEM \
374 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
375#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
376#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
377#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
378#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
379#define TARGET_USE_VECTOR_FP_CONVERTS \
380 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
381#define TARGET_USE_VECTOR_CONVERTS \
382 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
383#define TARGET_FUSE_CMP_AND_BRANCH \
384 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
80fd744f
RH
385
386/* Feature tests against the various architecture variations. */
387enum ix86_arch_indices {
388 X86_ARCH_CMOVE, /* || TARGET_SSE */
389 X86_ARCH_CMPXCHG,
390 X86_ARCH_CMPXCHG8B,
391 X86_ARCH_XADD,
392 X86_ARCH_BSWAP,
393
394 X86_ARCH_LAST
395};
4f3f76e6 396
ab442df7 397extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
398
399#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
400#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
401#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
402#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
403#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
404
405#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
406
407extern int x86_prefetch_sse;
0a1c5e55 408
80fd744f
RH
409#define TARGET_PREFETCH_SSE x86_prefetch_sse
410
80fd744f
RH
411#define ASSEMBLER_DIALECT (ix86_asm_dialect)
412
413#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
414#define TARGET_MIX_SSE_I387 \
415 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
416
417#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
418#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
419#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
420#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 421
0a1c5e55
UB
422extern int ix86_isa_flags;
423
67adf6a9
RH
424#ifndef TARGET_64BIT_DEFAULT
425#define TARGET_64BIT_DEFAULT 0
25f94bb5 426#endif
74dc3e94
RH
427#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
428#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
429#endif
25f94bb5 430
79f5e442
ZD
431/* Fence to use after loop using storent. */
432
433extern tree x86_mfence;
434#define FENCE_FOLLOWING_MOVNT x86_mfence
435
0ed4a390
JL
436/* Once GDB has been enhanced to deal with functions without frame
437 pointers, we can change this to allow for elimination of
438 the frame pointer in leaf functions. */
439#define TARGET_DEFAULT 0
67adf6a9 440
0a1c5e55
UB
441/* Extra bits to force. */
442#define TARGET_SUBTARGET_DEFAULT 0
443#define TARGET_SUBTARGET_ISA_DEFAULT 0
444
445/* Extra bits to force on w/ 32-bit mode. */
446#define TARGET_SUBTARGET32_DEFAULT 0
447#define TARGET_SUBTARGET32_ISA_DEFAULT 0
448
ccf8e764
RH
449/* Extra bits to force on w/ 64-bit mode. */
450#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 451#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 452
b069de3b
SS
453/* This is not really a target flag, but is done this way so that
454 it's analogous to similar code for Mach-O on PowerPC. darwin.h
455 redefines this to 1. */
456#define TARGET_MACHO 0
457
ccf8e764 458/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
459#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
460
461/* Available call abi. */
35cbb299 462enum calling_abi
7c800926
KT
463{
464 SYSV_ABI = 0,
465 MS_ABI = 1
466};
467
468/* The default abi form used by target. */
469#define DEFAULT_ABI SYSV_ABI
ccf8e764 470
cc69336f
RH
471/* Subtargets may reset this to 1 in order to enable 96-bit long double
472 with the rounding mode forced to 53 bits. */
473#define TARGET_96_ROUND_53_LONG_DOUBLE 0
474
f5316dfe
MM
475/* Sometimes certain combinations of command options do not make
476 sense on a particular target machine. You can define a macro
477 `OVERRIDE_OPTIONS' to take account of this. This macro, if
478 defined, is executed once just after all the command options have
479 been parsed.
480
481 Don't use this macro to turn on various extra optimizations for
482 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
483
ab442df7 484#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 485
d4ba09c0 486/* Define this to change the optimizations performed by default. */
d9a5f180
GS
487#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
488 optimization_options ((LEVEL), (SIZE))
d4ba09c0 489
682cd442
GK
490/* -march=native handling only makes sense with compiler running on
491 an x86 or x86_64 chip. If changing this condition, also change
492 the condition in driver-i386.c. */
493#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
494/* In driver-i386.c. */
495extern const char *host_detect_local_cpu (int argc, const char **argv);
496#define EXTRA_SPEC_FUNCTIONS \
497 { "local_cpu_detect", host_detect_local_cpu },
682cd442 498#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
499#endif
500
8981c15b
JM
501#if TARGET_64BIT_DEFAULT
502#define OPT_ARCH64 "!m32"
503#define OPT_ARCH32 "m32"
504#else
505#define OPT_ARCH64 "m64"
506#define OPT_ARCH32 "!m64"
507#endif
508
1cba2b96
EC
509/* Support for configure-time defaults of some command line options.
510 The order here is important so that -march doesn't squash the
511 tune or cpu values. */
ce998900 512#define OPTION_DEFAULT_SPECS \
da2d4c01 513 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
514 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
515 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 516 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
517 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
518 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
519 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
520 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
521 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 522
241e1a89
SC
523/* Specs for the compiler proper */
524
628714d8 525#ifndef CC1_CPU_SPEC
fa959ce4 526#define CC1_CPU_SPEC_1 "\
9d913bbf 527%{mcpu=*:-mtune=%* \
d347d4c7 528%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 529%<mcpu=* \
c93e80a5
JH
530%{mintel-syntax:-masm=intel \
531%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
532%{mno-intel-syntax:-masm=att \
533%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 534
682cd442 535#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
536#define CC1_CPU_SPEC CC1_CPU_SPEC_1
537#else
538#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
539"%{march=native:%<march=native %:local_cpu_detect(arch) \
540 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
541%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
542#endif
241e1a89 543#endif
c98f8742 544\f
30efe578 545/* Target CPU builtins. */
ab442df7
MM
546#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
547
548/* Target Pragmas. */
549#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 550
c2f17e19
UB
551enum target_cpu_default
552{
553 TARGET_CPU_DEFAULT_generic = 0,
554
555 TARGET_CPU_DEFAULT_i386,
556 TARGET_CPU_DEFAULT_i486,
557 TARGET_CPU_DEFAULT_pentium,
558 TARGET_CPU_DEFAULT_pentium_mmx,
559 TARGET_CPU_DEFAULT_pentiumpro,
560 TARGET_CPU_DEFAULT_pentium2,
561 TARGET_CPU_DEFAULT_pentium3,
562 TARGET_CPU_DEFAULT_pentium4,
563 TARGET_CPU_DEFAULT_pentium_m,
564 TARGET_CPU_DEFAULT_prescott,
565 TARGET_CPU_DEFAULT_nocona,
566 TARGET_CPU_DEFAULT_core2,
567
568 TARGET_CPU_DEFAULT_geode,
569 TARGET_CPU_DEFAULT_k6,
570 TARGET_CPU_DEFAULT_k6_2,
571 TARGET_CPU_DEFAULT_k6_3,
572 TARGET_CPU_DEFAULT_athlon,
573 TARGET_CPU_DEFAULT_athlon_sse,
574 TARGET_CPU_DEFAULT_k8,
575 TARGET_CPU_DEFAULT_amdfam10,
576
577 TARGET_CPU_DEFAULT_max
578};
0c2dc519 579
628714d8 580#ifndef CC1_SPEC
8015b78d 581#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
582#endif
583
584/* This macro defines names of additional specifications to put in the
585 specs that can be used in various specifications like CC1_SPEC. Its
586 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
587
588 Each subgrouping contains a string constant, that defines the
188fc5b5 589 specification name, and a string constant that used by the GCC driver
bcd86433
SC
590 program.
591
592 Do not define this macro if it does not need to do anything. */
593
594#ifndef SUBTARGET_EXTRA_SPECS
595#define SUBTARGET_EXTRA_SPECS
596#endif
597
598#define EXTRA_SPECS \
628714d8 599 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
600 SUBTARGET_EXTRA_SPECS
601\f
ce998900 602
d57a4b98
RH
603/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
604 FPU, assume that the fpcw is set to extended precision; when using
605 only SSE, rounding is correct; when using both SSE and the FPU,
606 the rounding precision is indeterminate, since either may be chosen
607 apparently at random. */
608#define TARGET_FLT_EVAL_METHOD \
5ccd517a 609 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 610
979c67a5
UB
611/* target machine storage layout */
612
65d9c0ab
JH
613#define SHORT_TYPE_SIZE 16
614#define INT_TYPE_SIZE 32
615#define FLOAT_TYPE_SIZE 32
616#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
617#define DOUBLE_TYPE_SIZE 64
618#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
619#define LONG_DOUBLE_TYPE_SIZE 80
620
621#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 622
67adf6a9 623#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 624#define MAX_BITS_PER_WORD 64
0c2dc519
JH
625#else
626#define MAX_BITS_PER_WORD 32
0c2dc519
JH
627#endif
628
c98f8742
JVA
629/* Define this if most significant byte of a word is the lowest numbered. */
630/* That is true on the 80386. */
631
632#define BITS_BIG_ENDIAN 0
633
634/* Define this if most significant byte of a word is the lowest numbered. */
635/* That is not true on the 80386. */
636#define BYTES_BIG_ENDIAN 0
637
638/* Define this if most significant word of a multiword number is the lowest
639 numbered. */
640/* Not true for 80386 */
641#define WORDS_BIG_ENDIAN 0
642
c98f8742 643/* Width of a word, in units (bytes). */
4ae8027b 644#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
645#ifdef IN_LIBGCC2
646#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
647#else
648#define MIN_UNITS_PER_WORD 4
649#endif
c98f8742 650
c98f8742 651/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 652#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 653
e075ae69 654/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b
UB
655#define STACK_BOUNDARY \
656 (TARGET_64BIT && DEFAULT_ABI == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 657
2e3f842f
L
658/* Stack boundary of the main function guaranteed by OS. */
659#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
660
de1132d1
L
661/* Minimum stack boundary. */
662#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 663
d1f87653 664/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 665 aligned; the compiler cannot rely on having this alignment. */
e075ae69 666#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 667
de1132d1 668/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
669 both 32bit and 64bit, to support codes that need 128 bit stack
670 alignment for SSE instructions, but can't realign the stack. */
671#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
672
673/* 1 if -mstackrealign should be turned on by default. It will
674 generate an alternate prologue and epilogue that realigns the
675 runtime stack if nessary. This supports mixing codes that keep a
676 4-byte aligned stack, as specified by i386 psABI, with codes that
677 need a 16-byte aligned stack, as required by SSE instructions. If
678 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
679 128, stacks for all functions may be realigned. */
680#define STACK_REALIGN_DEFAULT 0
681
682/* Boundary (in *bits*) on which the incoming stack is aligned. */
683#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 684
ebff937c
SH
685/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
686 mandatory for the 64-bit ABI, and may or may not be true for other
687 operating systems. */
688#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
689
f963b5d9
RS
690/* Minimum allocation boundary for the code of a function. */
691#define FUNCTION_BOUNDARY 8
692
693/* C++ stores the virtual bit in the lowest bit of function pointers. */
694#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 695
892a2d68 696/* Alignment of field after `int : 0' in a structure. */
c98f8742 697
65d9c0ab 698#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
699
700/* Minimum size in bits of the largest boundary to which any
701 and all fundamental data types supported by the hardware
702 might need to be aligned. No data type wants to be aligned
17f24ff0 703 rounder than this.
fce5a9f2 704
d1f87653 705 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
706 and Pentium Pro XFmode values at 128 bit boundaries. */
707
95879c72 708#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
17f24ff0 709
2e3f842f
L
710/* Maximum stack alignment. */
711#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
712
6e4f1168
L
713/* Alignment value for attribute ((aligned)). It is a constant since
714 it is the part of the ABI. We shouldn't change it with -mavx. */
715#define ATTRIBUTE_ALIGNED_VALUE 128
716
822eda12 717/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 718#define ALIGN_MODE_128(MODE) \
4501d314 719 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 720
17f24ff0 721/* The published ABIs say that doubles should be aligned on word
d1f87653 722 boundaries, so lower the alignment for structure fields unless
6fc605d8 723 -malign-double is set. */
e932b21b 724
e83f3cff
RH
725/* ??? Blah -- this macro is used directly by libobjc. Since it
726 supports no vector modes, cut out the complexity and fall back
727 on BIGGEST_FIELD_ALIGNMENT. */
728#ifdef IN_TARGET_LIBS
ef49d42e
JH
729#ifdef __x86_64__
730#define BIGGEST_FIELD_ALIGNMENT 128
731#else
e83f3cff 732#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 733#endif
e83f3cff 734#else
e932b21b
JH
735#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
736 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 737#endif
c98f8742 738
e5e8a8bf 739/* If defined, a C expression to compute the alignment given to a
a7180f70 740 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
741 and ALIGN is the alignment that the object would ordinarily have.
742 The value of this macro is used instead of that alignment to align
743 the object.
744
745 If this macro is not defined, then ALIGN is used.
746
747 The typical use of this macro is to increase alignment for string
748 constants to be word aligned so that `strcpy' calls that copy
749 constants can be done inline. */
750
d9a5f180 751#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 752
8a022443
JW
753/* If defined, a C expression to compute the alignment for a static
754 variable. TYPE is the data type, and ALIGN is the alignment that
755 the object would ordinarily have. The value of this macro is used
756 instead of that alignment to align the object.
757
758 If this macro is not defined, then ALIGN is used.
759
760 One use of this macro is to increase alignment of medium-size
761 data to make it all fit in fewer cache lines. Another is to
762 cause character arrays to be word-aligned so that `strcpy' calls
763 that copy constants to character arrays can be done inline. */
764
d9a5f180 765#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
766
767/* If defined, a C expression to compute the alignment for a local
768 variable. TYPE is the data type, and ALIGN is the alignment that
769 the object would ordinarily have. The value of this macro is used
770 instead of that alignment to align the object.
771
772 If this macro is not defined, then ALIGN is used.
773
774 One use of this macro is to increase alignment of medium-size
775 data to make it all fit in fewer cache lines. */
776
76fe54f0
L
777#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
778 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
779
780/* If defined, a C expression to compute the alignment for stack slot.
781 TYPE is the data type, MODE is the widest mode available, and ALIGN
782 is the alignment that the slot would ordinarily have. The value of
783 this macro is used instead of that alignment to align the slot.
784
785 If this macro is not defined, then ALIGN is used when TYPE is NULL,
786 Otherwise, LOCAL_ALIGNMENT will be used.
787
788 One use of this macro is to set alignment of stack slot to the
789 maximum alignment of all possible modes which the slot may have. */
790
791#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
792 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 793
53c17031
JH
794/* If defined, a C expression that gives the alignment boundary, in
795 bits, of an argument with the specified mode and type. If it is
796 not defined, `PARM_BOUNDARY' is used for all arguments. */
797
d9a5f180
GS
798#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
799 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 800
9cd10576 801/* Set this nonzero if move instructions will actually fail to work
c98f8742 802 when given unaligned data. */
b4ac57ab 803#define STRICT_ALIGNMENT 0
c98f8742
JVA
804
805/* If bit field type is int, don't let it cross an int,
806 and give entire struct the alignment of an int. */
43a88a8c 807/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 808#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
809\f
810/* Standard register usage. */
811
812/* This processor has special stack-like registers. See reg-stack.c
892a2d68 813 for details. */
c98f8742
JVA
814
815#define STACK_REGS
ce998900 816
d9a5f180 817#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
818 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
819 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
820 || (MODE) == XFmode)
c98f8742
JVA
821
822/* Number of actual hardware registers.
823 The hardware registers are assigned numbers for the compiler
824 from 0 to just below FIRST_PSEUDO_REGISTER.
825 All registers that the compiler knows about must be given numbers,
826 even those that are not normally considered general registers.
827
828 In the 80386 we give the 8 general purpose registers the numbers 0-7.
829 We number the floating point registers 8-15.
830 Note that registers 0-7 can be accessed as a short or int,
831 while only 0-3 may be used with byte `mov' instructions.
832
833 Reg 16 does not correspond to any hardware register, but instead
834 appears in the RTL as an argument pointer prior to reload, and is
835 eliminated during reloading in favor of either the stack or frame
892a2d68 836 pointer. */
c98f8742 837
b0d95de8 838#define FIRST_PSEUDO_REGISTER 53
c98f8742 839
3073d01c
ML
840/* Number of hardware registers that go into the DWARF-2 unwind info.
841 If not defined, equals FIRST_PSEUDO_REGISTER. */
842
843#define DWARF_FRAME_REGISTERS 17
844
c98f8742
JVA
845/* 1 for registers that have pervasive standard uses
846 and are not available for the register allocator.
3f3f2124 847 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 848
3a4416fb
RS
849 The value is zero if the register is not fixed on either 32 or
850 64 bit targets, one if the register if fixed on both 32 and 64
851 bit targets, two if it is only fixed on 32bit targets and three
852 if its only fixed on 64bit targets.
853 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 854 */
a7180f70
BS
855#define FIXED_REGISTERS \
856/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 857{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
858/*arg,flags,fpsr,fpcr,frame*/ \
859 1, 1, 1, 1, 1, \
a7180f70
BS
860/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
861 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 862/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
863 0, 0, 0, 0, 0, 0, 0, 0, \
864/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 865 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 866/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 867 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 868
c98f8742
JVA
869
870/* 1 for registers not available across function calls.
871 These must include the FIXED_REGISTERS and also any
872 registers that can be used without being saved.
873 The latter must include the registers where values are returned
874 and the register where structure-value addresses are passed.
fce5a9f2
EC
875 Aside from that, you can include as many other registers as you like.
876
9d72d996
JJ
877 The value is zero if the register is not call used on either 32 or
878 64 bit targets, one if the register if call used on both 32 and 64
879 bit targets, two if it is only call used on 32bit targets and three
880 if its only call used on 64bit targets.
3a4416fb 881 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 882*/
a7180f70
BS
883#define CALL_USED_REGISTERS \
884/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 885{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
886/*arg,flags,fpsr,fpcr,frame*/ \
887 1, 1, 1, 1, 1, \
a7180f70 888/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 889 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 890/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 891 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 892/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 893 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 894/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 895 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 896
3b3c6a3f
MM
897/* Order in which to allocate registers. Each register must be
898 listed once, even those in FIXED_REGISTERS. List frame pointer
899 late and fixed registers last. Note that, in general, we prefer
900 registers listed in CALL_USED_REGISTERS, keeping the others
901 available for storage of persistent values.
902
162f023b
JH
903 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
904 so this is just empty initializer for array. */
3b3c6a3f 905
162f023b
JH
906#define REG_ALLOC_ORDER \
907{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
908 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
909 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 910 48, 49, 50, 51, 52 }
3b3c6a3f 911
162f023b
JH
912/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
913 to be rearranged based on a particular function. When using sse math,
03c259ad 914 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 915
162f023b 916#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 917
f5316dfe 918
7c800926
KT
919#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
920
c98f8742 921/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 922#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 923do { \
3f3f2124 924 int i; \
b0fede98 925 unsigned int j; \
3f3f2124
JH
926 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
927 { \
3a4416fb
RS
928 if (fixed_regs[i] > 1) \
929 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
930 if (call_used_regs[i] > 1) \
931 call_used_regs[i] = (call_used_regs[i] \
932 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 933 } \
b0fede98 934 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 935 if (j != INVALID_REGNUM) \
962aae34 936 fixed_regs[j] = call_used_regs[j] = 1; \
0705d3f4 937 if (TARGET_64BIT \
6b5629db
UB
938 && ((cfun && cfun->machine->call_abi == MS_ABI) \
939 || (!cfun && DEFAULT_ABI == MS_ABI))) \
0705d3f4 940 { \
6b5629db
UB
941 call_used_regs[4 /*RSI*/] = 0; \
942 call_used_regs[5 /*RDI*/] = 0; \
6b5629db
UB
943 call_used_regs[27 /*XMM6*/] = 0; \
944 call_used_regs[28 /*XMM7*/] = 0; \
434426d2
UB
945 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
946 call_used_regs[i] = 0; \
0705d3f4 947 } \
a7180f70 948 if (! TARGET_MMX) \
6b5629db
UB
949 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
950 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
951 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70 952 if (! TARGET_SSE) \
6b5629db
UB
953 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
954 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
955 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
956 if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) \
962aae34
UB
957 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
958 if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) \
959 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
33270999
AO
960 if (! TARGET_64BIT) \
961 { \
33270999
AO
962 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
963 reg_names[i] = ""; \
964 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
965 reg_names[i] = ""; \
a7180f70 966 } \
d9a5f180 967 } while (0)
c98f8742
JVA
968
969/* Return number of consecutive hard regs needed starting at reg REGNO
970 to hold something of mode MODE.
971 This is ordinarily the length in words of a value of mode MODE
972 but can be less for certain modes in special long registers.
973
fce5a9f2 974 Actually there are no two word move instructions for consecutive
c98f8742
JVA
975 registers. And only registers 0-3 may have mov byte instructions
976 applied to them.
977 */
978
ce998900 979#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
980 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
981 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 982 : ((MODE) == XFmode \
92d0fb09 983 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 984 : (MODE) == XCmode \
92d0fb09 985 ? (TARGET_64BIT ? 4 : 6) \
2b589241 986 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 987
8521c414
JM
988#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
989 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
990 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
991 ? 0 \
992 : ((MODE) == XFmode || (MODE) == XCmode)) \
993 : 0)
994
995#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
996
95879c72
L
997#define VALID_AVX256_REG_MODE(MODE) \
998 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
999 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1000
ce998900
UB
1001#define VALID_SSE2_REG_MODE(MODE) \
1002 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1003 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1004
d9a5f180 1005#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1006 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1007 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1008
47f339cf 1009#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1010 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1011
d9a5f180 1012#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1013 ((MODE == V1DImode) || (MODE) == DImode \
1014 || (MODE) == V2SImode || (MODE) == SImode \
1015 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1016
accde4cf 1017/* ??? No autovectorization into MMX or 3DNOW until we can reliably
95879c72
L
1018 place emms and femms instructions.
1019 FIXME: AVX has 32byte floating point vector operations and 16byte
1020 integer vector operations. But vectorizer doesn't support
1021 different sizes for integer and floating point vectors. We limit
1022 vector size to 16byte. */
1023#define UNITS_PER_SIMD_WORD(MODE) \
1024 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1025 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
0bf43309 1026
ce998900
UB
1027#define VALID_DFP_MODE_P(MODE) \
1028 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1029
d9a5f180 1030#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1031 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1032 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1033
d9a5f180 1034#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1035 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1036 || (MODE) == DImode \
1037 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1038 || (MODE) == CDImode \
1039 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1040 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1041
822eda12 1042/* Return true for modes passed in SSE registers. */
ce998900
UB
1043#define SSE_REG_MODE_P(MODE) \
1044 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12 1045 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
95879c72
L
1046 || (MODE) == V4SFmode || (MODE) == V4SImode || (MODE) == V32QImode \
1047 || (MODE) == V16HImode || (MODE) == V8SImode || (MODE) == V4DImode \
1048 || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1049
e075ae69 1050/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1051
a946dd00 1052#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1053 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1054
1055/* Value is 1 if it is a good idea to tie two pseudo registers
1056 when one has mode MODE1 and one has mode MODE2.
1057 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1058 for any hard reg, then this must be 0 for correct output. */
1059
c1c5b5e3 1060#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1061
ff25ef99
ZD
1062/* It is possible to write patterns to move flags; but until someone
1063 does it, */
1064#define AVOID_CCMODE_COPIES
c98f8742 1065
e075ae69 1066/* Specify the modes required to caller save a given hard regno.
787dc842 1067 We do this on i386 to prevent flags from being saved at all.
e075ae69 1068
787dc842
JH
1069 Kill any attempts to combine saving of modes. */
1070
d9a5f180
GS
1071#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1072 (CC_REGNO_P (REGNO) ? VOIDmode \
1073 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1074 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180
GS
1075 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1076 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1077 : (MODE))
ce998900 1078
c98f8742
JVA
1079/* Specify the registers used for certain standard purposes.
1080 The values of these macros are register numbers. */
1081
1082/* on the 386 the pc register is %eip, and is not usable as a general
1083 register. The ordinary mov instructions won't work */
1084/* #define PC_REGNUM */
1085
1086/* Register to use for pushing function arguments. */
1087#define STACK_POINTER_REGNUM 7
1088
1089/* Base register for access to local variables of the function. */
564d80f4
JH
1090#define HARD_FRAME_POINTER_REGNUM 6
1091
1092/* Base register for access to local variables of the function. */
b0d95de8 1093#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1094
1095/* First floating point reg */
1096#define FIRST_FLOAT_REG 8
1097
1098/* First & last stack-like regs */
1099#define FIRST_STACK_REG FIRST_FLOAT_REG
1100#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1101
a7180f70
BS
1102#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1103#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1104
a7180f70
BS
1105#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1106#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1107
3f3f2124
JH
1108#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1109#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1110
1111#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1112#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1113
c98f8742
JVA
1114/* Value should be nonzero if functions must have frame pointers.
1115 Zero means the frame pointer need not be set up (and parms
1116 may be accessed via the stack pointer) in functions that seem suitable.
1117 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1118#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1119
aabcd309 1120/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1121 requiring a frame pointer. */
1122#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1123#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1124#endif
1125
1126/* Make sure we can access arbitrary call frames. */
1127#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1128
1129/* Base register for access to arguments of the function. */
1130#define ARG_POINTER_REGNUM 16
1131
d2836273
JH
1132/* Register in which static-chain is passed to a function.
1133 We do use ECX as static chain register for 32 bit ABI. On the
1134 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1135#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1136
1137/* Register to hold the addressing base for position independent
5b43fed1
RH
1138 code access to data items. We don't use PIC pointer for 64bit
1139 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1140 pessimizing code dealing with EBX.
bd09bdeb
RH
1141
1142 To avoid clobbering a call-saved register unnecessarily, we renumber
1143 the pic register when possible. The change is visible after the
1144 prologue has been emitted. */
1145
2e3f842f 1146#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1147
1148#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1149 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1150 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1151 : reload_completed ? REGNO (pic_offset_table_rtx) \
1152 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1153
5fc0e5df
KW
1154#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1155
c51e6d85 1156/* This is overridden by <cygwin.h>. */
5e062767
DS
1157#define MS_AGGREGATE_RETURN 0
1158
61fec9ff
JB
1159/* This is overridden by <netware.h>. */
1160#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1161\f
1162/* Define the classes of registers for register constraints in the
1163 machine description. Also define ranges of constants.
1164
1165 One of the classes must always be named ALL_REGS and include all hard regs.
1166 If there is more than one class, another class must be named NO_REGS
1167 and contain no registers.
1168
1169 The name GENERAL_REGS must be the name of a class (or an alias for
1170 another name such as ALL_REGS). This is the class of registers
1171 that is allowed by "g" or "r" in a register constraint.
1172 Also, registers outside this class are allocated only when
1173 instructions express preferences for them.
1174
1175 The classes must be numbered in nondecreasing order; that is,
1176 a larger-numbered class must never be contained completely
1177 in a smaller-numbered class.
1178
1179 For any two classes, it is very desirable that there be another
ab408a86
JVA
1180 class that represents their union.
1181
1182 It might seem that class BREG is unnecessary, since no useful 386
1183 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1184 and the "b" register constraint is useful in asms for syscalls.
1185
03c259ad 1186 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1187
1188enum reg_class
1189{
1190 NO_REGS,
e075ae69 1191 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1192 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1193 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1194 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1195 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1196 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1197 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1198 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1199 FLOAT_REGS,
06f4e35d 1200 SSE_FIRST_REG,
a7180f70
BS
1201 SSE_REGS,
1202 MMX_REGS,
446988df
JH
1203 FP_TOP_SSE_REGS,
1204 FP_SECOND_SSE_REGS,
1205 FLOAT_SSE_REGS,
1206 FLOAT_INT_REGS,
1207 INT_SSE_REGS,
1208 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1209 ALL_REGS, LIM_REG_CLASSES
1210};
1211
d9a5f180
GS
1212#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1213
1214#define INTEGER_CLASS_P(CLASS) \
1215 reg_class_subset_p ((CLASS), GENERAL_REGS)
1216#define FLOAT_CLASS_P(CLASS) \
1217 reg_class_subset_p ((CLASS), FLOAT_REGS)
1218#define SSE_CLASS_P(CLASS) \
06f4e35d 1219 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1220#define MMX_CLASS_P(CLASS) \
f75959a6 1221 ((CLASS) == MMX_REGS)
d9a5f180
GS
1222#define MAYBE_INTEGER_CLASS_P(CLASS) \
1223 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1224#define MAYBE_FLOAT_CLASS_P(CLASS) \
1225 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1226#define MAYBE_SSE_CLASS_P(CLASS) \
1227 reg_classes_intersect_p (SSE_REGS, (CLASS))
1228#define MAYBE_MMX_CLASS_P(CLASS) \
1229 reg_classes_intersect_p (MMX_REGS, (CLASS))
1230
1231#define Q_CLASS_P(CLASS) \
1232 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1233
43f3a59d 1234/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1235
1236#define REG_CLASS_NAMES \
1237{ "NO_REGS", \
ab408a86 1238 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1239 "SIREG", "DIREG", \
e075ae69
RH
1240 "AD_REGS", \
1241 "Q_REGS", "NON_Q_REGS", \
c98f8742 1242 "INDEX_REGS", \
3f3f2124 1243 "LEGACY_REGS", \
c98f8742
JVA
1244 "GENERAL_REGS", \
1245 "FP_TOP_REG", "FP_SECOND_REG", \
1246 "FLOAT_REGS", \
cb482895 1247 "SSE_FIRST_REG", \
a7180f70
BS
1248 "SSE_REGS", \
1249 "MMX_REGS", \
446988df
JH
1250 "FP_TOP_SSE_REGS", \
1251 "FP_SECOND_SSE_REGS", \
1252 "FLOAT_SSE_REGS", \
8fcaaa80 1253 "FLOAT_INT_REGS", \
446988df
JH
1254 "INT_SSE_REGS", \
1255 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1256 "ALL_REGS" }
1257
1258/* Define which registers fit in which classes.
1259 This is an initializer for a vector of HARD_REG_SET
1260 of length N_REG_CLASSES. */
1261
a7180f70 1262#define REG_CLASS_CONTENTS \
3f3f2124
JH
1263{ { 0x00, 0x0 }, \
1264 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1265 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1266 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1267 { 0x03, 0x0 }, /* AD_REGS */ \
1268 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1269 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1270 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1271 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1272 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1273 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1274 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1275 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1276{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1277{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1278{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1279{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1280{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1281 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1282{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1283{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1284{ 0xffffffff,0x1fffff } \
e075ae69 1285}
c98f8742 1286
058e97ec
VM
1287/* The following macro defines cover classes for Integrated Register
1288 Allocator. Cover classes is a set of non-intersected register
1289 classes covering all hard registers used for register allocation
1290 purpose. Any move between two registers of a cover class should be
1291 cheaper than load or store of the registers. The macro value is
1292 array of register classes with LIM_REG_CLASSES used as the end
1293 marker. */
1294
1295#define IRA_COVER_CLASSES \
1296{ \
1297 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1298}
1299
c98f8742
JVA
1300/* The same information, inverted:
1301 Return the class number of the smallest class containing
1302 reg number REGNO. This could be a conditional expression
1303 or could index an array. */
1304
c98f8742
JVA
1305#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1306
1307/* When defined, the compiler allows registers explicitly used in the
1308 rtl to be used as spill registers but prevents the compiler from
892a2d68 1309 extending the lifetime of these registers. */
c98f8742 1310
2922fe9e 1311#define SMALL_REGISTER_CLASSES 1
c98f8742 1312
fb84c7a0 1313#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1314
d9a5f180 1315#define GENERAL_REGNO_P(N) \
fb84c7a0 1316 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1317
1318#define GENERAL_REG_P(X) \
6189a572 1319 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1320
1321#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1322
fb84c7a0
UB
1323#define REX_INT_REGNO_P(N) \
1324 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1325#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1326
c98f8742 1327#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1328#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1329#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1330#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1331
54a88090 1332#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1333 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1334
fb84c7a0
UB
1335#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1336#define SSE_REGNO_P(N) \
1337 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1338 || REX_SSE_REGNO_P (N))
3f3f2124 1339
4977bab6 1340#define REX_SSE_REGNO_P(N) \
fb84c7a0 1341 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1342
d9a5f180
GS
1343#define SSE_REGNO(N) \
1344 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1345
d9a5f180 1346#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1347 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1348
d6023b50
UB
1349#define SSE_VEC_FLOAT_MODE_P(MODE) \
1350 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1351
95879c72
L
1352#define AVX_FLOAT_MODE_P(MODE) \
1353 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1354
1355#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1356 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1357
1358#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1359 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1360
1361#define AVX_VEC_FLOAT_MODE_P(MODE) \
1362 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1363 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1364
d9a5f180 1365#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1366#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1367
fb84c7a0 1368#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1369#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1370
d9a5f180 1371#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1372
e075ae69
RH
1373#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1374#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1375
c98f8742
JVA
1376/* The class value for index registers, and the one for base regs. */
1377
1378#define INDEX_REG_CLASS INDEX_REGS
1379#define BASE_REG_CLASS GENERAL_REGS
1380
c98f8742 1381/* Place additional restrictions on the register class to use when it
4cbb525c 1382 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1383 register for which class CLASS would ordinarily be used. */
c98f8742 1384
d2836273
JH
1385#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1386 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1387 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1388 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1389 ? Q_REGS : (CLASS))
1390
1391/* Given an rtx X being reloaded into a reg required to be
1392 in class CLASS, return the class of reg to actually use.
1393 In general this is just CLASS; but on some machines
1394 in some cases it is preferable to use a more restrictive class.
1395 On the 80386 series, we prevent floating constants from being
1396 reloaded into floating registers (since no move-insn can do that)
1397 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1398
d398b3b1 1399/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1400 QImode must go into class Q_REGS.
d398b3b1 1401 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1402 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1403
d9a5f180
GS
1404#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1405 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1406
b5c82fa1
PB
1407/* Discourage putting floating-point values in SSE registers unless
1408 SSE math is being used, and likewise for the 387 registers. */
1409
1410#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1411 ix86_preferred_output_reload_class ((X), (CLASS))
1412
85ff473e 1413/* If we are copying between general and FP registers, we need a memory
f84aa48a 1414 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1415#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1416 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1417
c62b3659
UB
1418/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1419 There is no need to emit full 64 bit move on 64 bit targets
1420 for integral modes that can be moved using 32 bit move. */
1421#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1422 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1423 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1424 : MODE)
1425
c98f8742
JVA
1426/* Return the maximum number of consecutive registers
1427 needed to represent mode MODE in a register of class CLASS. */
1428/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1429 except in the FP regs, where a single reg is always enough. */
a7180f70 1430#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1431 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1432 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1433 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1434 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1435
1436/* A C expression whose value is nonzero if pseudos that have been
1437 assigned to registers of class CLASS would likely be spilled
1438 because registers of CLASS are needed for spill registers.
1439
1440 The default value of this macro returns 1 if CLASS has exactly one
1441 register and zero otherwise. On most machines, this default
1442 should be used. Only define this macro to some other expression
1443 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1444 their hard registers were needed for spill registers. If this
f5316dfe
MM
1445 macro returns nonzero for those classes, those pseudos will only
1446 be allocated by `global.c', which knows how to reallocate the
1447 pseudo to another register. If there would not be another
1448 register available for reallocation, you should not change the
1449 definition of this macro since the only effect of such a
1450 definition would be to slow down register allocation. */
1451
1452#define CLASS_LIKELY_SPILLED_P(CLASS) \
1453 (((CLASS) == AREG) \
1454 || ((CLASS) == DREG) \
1455 || ((CLASS) == CREG) \
1456 || ((CLASS) == BREG) \
1457 || ((CLASS) == AD_REGS) \
1458 || ((CLASS) == SIREG) \
b0af5c03
JH
1459 || ((CLASS) == DIREG) \
1460 || ((CLASS) == FP_TOP_REG) \
1461 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1462
1272914c
RH
1463/* Return a class of registers that cannot change FROM mode to TO mode. */
1464
1465#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1466 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1467\f
1468/* Stack layout; function entry, exit and calling. */
1469
1470/* Define this if pushing a word on the stack
1471 makes the stack pointer a smaller address. */
1472#define STACK_GROWS_DOWNWARD
1473
a4d05547 1474/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1475 is at the high-address end of the local variables;
1476 that is, each additional local variable allocated
1477 goes at a more negative offset in the frame. */
f62c8a5c 1478#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1479
1480/* Offset within stack frame to start allocating local variables at.
1481 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1482 first local allocated. Otherwise, it is the offset to the BEGINNING
1483 of the first local allocated. */
1484#define STARTING_FRAME_OFFSET 0
1485
1486/* If we generate an insn to push BYTES bytes,
1487 this says how many the stack pointer really advances by.
6541fe75
JJ
1488 On 386, we have pushw instruction that decrements by exactly 2 no
1489 matter what the position was, there is no pushb.
1490 But as CIE data alignment factor on this arch is -4, we need to make
1491 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1492
d2836273
JH
1493 For 64bit ABI we round up to 8 bytes.
1494 */
c98f8742 1495
d2836273
JH
1496#define PUSH_ROUNDING(BYTES) \
1497 (TARGET_64BIT \
1498 ? (((BYTES) + 7) & (-8)) \
6541fe75 1499 : (((BYTES) + 3) & (-4)))
c98f8742 1500
f73ad30e
JH
1501/* If defined, the maximum amount of space required for outgoing arguments will
1502 be computed and placed into the variable
38173d38 1503 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e 1504 stack for each call; instead, the function prologue should increase the stack
9aa5c1b2
JH
1505 frame size by this amount.
1506
1507 MS ABI seem to require 16 byte alignment everywhere except for function
1508 prologue and apilogue. This is not possible without
1509 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1510
9aa5c1b2 1511#define ACCUMULATE_OUTGOING_ARGS (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
f73ad30e
JH
1512
1513/* If defined, a C expression whose value is nonzero when we want to use PUSH
1514 instructions to pass outgoing arguments. */
1515
1516#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1517
2da4124d
L
1518/* We want the stack and args grow in opposite directions, even if
1519 PUSH_ARGS is 0. */
1520#define PUSH_ARGS_REVERSED 1
1521
c98f8742
JVA
1522/* Offset of first parameter from the argument pointer register value. */
1523#define FIRST_PARM_OFFSET(FNDECL) 0
1524
a7180f70
BS
1525/* Define this macro if functions should assume that stack space has been
1526 allocated for arguments even when their values are passed in registers.
1527
1528 The value of this macro is the size, in bytes, of the area reserved for
1529 arguments passed in registers for the function represented by FNDECL.
1530
1531 This space can be allocated by the caller, or be a part of the
1532 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1533 which. */
7c800926
KT
1534#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1535
4ae8027b
UB
1536#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1537 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1538
c98f8742
JVA
1539/* Value is the number of bytes of arguments automatically
1540 popped when returning from a subroutine call.
8b109b37 1541 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1542 FUNTYPE is the data type of the function (as a tree),
1543 or for a library call it is an identifier node for the subroutine name.
1544 SIZE is the number of bytes of arguments passed on the stack.
1545
1546 On the 80386, the RTD insn may be used to pop them if the number
1547 of args is fixed, but if the number is variable then the caller
1548 must pop them all. RTD can't be used for library calls now
1549 because the library is compiled with the Unix compiler.
1550 Use of RTD is a selectable option, since it is incompatible with
1551 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1552 the caller must always pop the args.
1553
1554 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1555
d9a5f180
GS
1556#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1557 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1558
4ae8027b 1559#define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
c98f8742
JVA
1560
1561/* Define how to find the value returned by a library function
1562 assuming the value has mode MODE. */
1563
4ae8027b 1564#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1565
e9125c09
TW
1566/* Define the size of the result block used for communication between
1567 untyped_call and untyped_return. The block contains a DImode value
1568 followed by the block used by fnsave and frstor. */
1569
1570#define APPLY_RESULT_SIZE (8+108)
1571
b08de47e 1572/* 1 if N is a possible register number for function argument passing. */
53c17031 1573#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1574
1575/* Define a data type for recording info about an argument list
1576 during the scan of that argument list. This data type should
1577 hold all necessary information about the function itself
1578 and about the args processed so far, enough to enable macros
b08de47e 1579 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1580
e075ae69 1581typedef struct ix86_args {
fa283935 1582 int words; /* # words passed so far */
b08de47e
MM
1583 int nregs; /* # registers available for passing */
1584 int regno; /* next available register number */
9d72d996 1585 int fastcall; /* fastcall calling convention is used */
fa283935 1586 int sse_words; /* # sse words passed so far */
a7180f70 1587 int sse_nregs; /* # sse registers available for passing */
95879c72 1588 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1589 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1590 int warn_mmx; /* True when we want to warn about MMX ABI. */
1591 int sse_regno; /* next available sse register number */
1592 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1593 int mmx_nregs; /* # mmx registers available for passing */
1594 int mmx_regno; /* next available mmx register number */
892a2d68 1595 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1596 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1597 be passed in SSE registers. Otherwise 0. */
7c800926
KT
1598 int call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1599 MS_ABI for ms abi. */
b08de47e 1600} CUMULATIVE_ARGS;
c98f8742
JVA
1601
1602/* Initialize a variable CUM of type CUMULATIVE_ARGS
1603 for a call to a function whose data type is FNTYPE.
b08de47e 1604 For a library call, FNTYPE is 0. */
c98f8742 1605
0f6937fe 1606#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1607 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1608
1609/* Update the data in CUM to advance over an argument
1610 of mode MODE and data type TYPE.
1611 (TYPE is null for libcalls where that information may not be available.) */
1612
d9a5f180
GS
1613#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1614 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1615
1616/* Define where to put the arguments to a function.
1617 Value is zero to push the argument on the stack,
1618 or a hard register in which to store the argument.
1619
1620 MODE is the argument's machine mode.
1621 TYPE is the data type of the argument (as a tree).
1622 This is null for libcalls where that information may
1623 not be available.
1624 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1625 the preceding args and about the function being called.
1626 NAMED is nonzero if this argument is a named parameter
1627 (otherwise it is an extra parameter matching an ellipsis). */
1628
c98f8742 1629#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1630 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1631
a5fe455b
ZW
1632#define TARGET_ASM_FILE_END ix86_file_end
1633#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1634
c98f8742
JVA
1635/* Output assembler code to FILE to increment profiler label # LABELNO
1636 for profiling a function entry. */
1637
a5fa1ecd
JH
1638#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1639
1640#define MCOUNT_NAME "_mcount"
1641
1642#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1643
1644/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1645 the stack pointer does not matter. The value is tested only in
1646 functions that have frame pointers.
1647 No definition is equivalent to always zero. */
fce5a9f2 1648/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1649 we have to restore it ourselves from the frame pointer, in order to
1650 use pop */
1651
1652#define EXIT_IGNORE_STACK 1
1653
c98f8742
JVA
1654/* Output assembler code for a block containing the constant parts
1655 of a trampoline, leaving space for the variable parts. */
1656
a269a03c 1657/* On the 386, the trampoline contains two instructions:
c98f8742 1658 mov #STATIC,ecx
a269a03c
JC
1659 jmp FUNCTION
1660 The trampoline is generated entirely at runtime. The operand of JMP
1661 is the address of FUNCTION relative to the instruction following the
1662 JMP (which is 5 bytes long). */
c98f8742
JVA
1663
1664/* Length in units of the trampoline for entering a nested function. */
1665
39d04363 1666#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1667
1668/* Emit RTL insns to initialize the variable parts of a trampoline.
1669 FNADDR is an RTX for the address of the function's pure code.
1670 CXT is an RTX for the static chain value for the function. */
1671
d9a5f180
GS
1672#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1673 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1674\f
1675/* Definitions for register eliminations.
1676
1677 This is an array of structures. Each structure initializes one pair
1678 of eliminable registers. The "from" register number is given first,
1679 followed by "to". Eliminations of the same "from" register are listed
1680 in order of preference.
1681
afc2cd05
NC
1682 There are two registers that can always be eliminated on the i386.
1683 The frame pointer and the arg pointer can be replaced by either the
1684 hard frame pointer or to the stack pointer, depending upon the
1685 circumstances. The hard frame pointer is not used before reload and
1686 so it is not eligible for elimination. */
c98f8742 1687
564d80f4
JH
1688#define ELIMINABLE_REGS \
1689{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1690 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1691 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1692 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1693
2c5a510c 1694/* Given FROM and TO register numbers, say whether this elimination is
2e3f842f 1695 allowed. */
c98f8742 1696
2e3f842f 1697#define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
c98f8742
JVA
1698
1699/* Define the offset between two registers, one to be eliminated, and the other
1700 its replacement, at the start of a routine. */
1701
d9a5f180
GS
1702#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1703 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1704\f
1705/* Addressing modes, and classification of registers for them. */
1706
c98f8742
JVA
1707/* Macros to check register numbers against specific register classes. */
1708
1709/* These assume that REGNO is a hard or pseudo reg number.
1710 They give nonzero only if REGNO is a hard reg of the suitable class
1711 or a pseudo reg currently allocated to a suitable hard reg.
1712 Since they use reg_renumber, they are safe only once reg_renumber
1713 has been allocated, which happens in local-alloc.c. */
1714
3f3f2124
JH
1715#define REGNO_OK_FOR_INDEX_P(REGNO) \
1716 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1717 || REX_INT_REGNO_P (REGNO) \
1718 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1719 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1720
3f3f2124 1721#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1722 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1723 || (REGNO) == ARG_POINTER_REGNUM \
1724 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1725 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1726
c98f8742
JVA
1727/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1728 and check its validity for a certain class.
1729 We have two alternate definitions for each of them.
1730 The usual definition accepts all pseudo regs; the other rejects
1731 them unless they have been allocated suitable hard regs.
1732 The symbol REG_OK_STRICT causes the latter definition to be used.
1733
1734 Most source files want to accept pseudo regs in the hope that
1735 they will get allocated to the class that the insn wants them to be in.
1736 Source files for reload pass need to be strict.
1737 After reload, it makes no difference, since pseudo regs have
1738 been eliminated by then. */
1739
c98f8742 1740
ff482c8d 1741/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1742#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1743 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1744 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1745 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1746
3b3c6a3f 1747#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1748 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1749 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1750 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1751 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1752
3b3c6a3f
MM
1753/* Strict versions, hard registers only */
1754#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1755#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1756
3b3c6a3f 1757#ifndef REG_OK_STRICT
d9a5f180
GS
1758#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1759#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1760
1761#else
d9a5f180
GS
1762#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1763#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1764#endif
1765
1766/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1767 that is a valid memory address for an instruction.
1768 The MODE argument is the machine mode for the MEM expression
1769 that wants to use this address.
1770
1771 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1772 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1773
1774 See legitimize_pic_address in i386.c for details as to what
1775 constitutes a legitimate address when -fpic is used. */
1776
1777#define MAX_REGS_PER_ADDRESS 2
1778
f996902d 1779#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1780
1781/* Nonzero if the constant value X is a legitimate general operand.
1782 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1783
f996902d 1784#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1785
3b3c6a3f
MM
1786#ifdef REG_OK_STRICT
1787#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1788do { \
1789 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1790 goto ADDR; \
d9a5f180 1791} while (0)
c98f8742 1792
3b3c6a3f
MM
1793#else
1794#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1795do { \
1796 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1797 goto ADDR; \
d9a5f180 1798} while (0)
c98f8742 1799
3b3c6a3f
MM
1800#endif
1801
b949ea8b
JW
1802/* If defined, a C expression to determine the base term of address X.
1803 This macro is used in only one place: `find_base_term' in alias.c.
1804
1805 It is always safe for this macro to not be defined. It exists so
1806 that alias analysis can understand machine-dependent addresses.
1807
1808 The typical use of this macro is to handle addresses containing
1809 a label_ref or symbol_ref within an UNSPEC. */
1810
d9a5f180 1811#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1812
c98f8742
JVA
1813/* Try machine-dependent ways of modifying an illegitimate address
1814 to be legitimate. If we find one, return the new, valid address.
1815 This macro is used in only one place: `memory_address' in explow.c.
1816
1817 OLDX is the address as it was before break_out_memory_refs was called.
1818 In some cases it is useful to look at this to decide what needs to be done.
1819
1820 MODE and WIN are passed so that this macro can use
1821 GO_IF_LEGITIMATE_ADDRESS.
1822
1823 It is always safe for this macro to do nothing. It exists to recognize
1824 opportunities to optimize the output.
1825
1826 For the 80386, we handle X+REG by loading X into a register R and
1827 using R+REG. R will go in a general reg and indexing will be used.
1828 However, if REG is a broken-out memory address or multiplication,
1829 nothing needs to be done because REG can certainly go in a general reg.
1830
1831 When -fpic is used, special handling is needed for symbolic references.
1832 See comments by legitimize_pic_address in i386.c for details. */
1833
3b3c6a3f 1834#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1835do { \
1836 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1837 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1838 goto WIN; \
d9a5f180 1839} while (0)
c98f8742
JVA
1840
1841/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1842 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1843 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1844
f996902d 1845#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1846
1847#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1848 (GET_CODE (X) == SYMBOL_REF \
1849 || GET_CODE (X) == LABEL_REF \
1850 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1851
1852/* Go to LABEL if ADDR (a legitimate address expression)
1853 has an effect that depends on the machine mode it is used for.
1854 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1855 (the amount of decrement or increment being the length of the operand).
1856 These are now caught in recog.c. */
1857#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1858\f
b08de47e
MM
1859/* Max number of args passed in registers. If this is more than 3, we will
1860 have problems with ebx (register #4), since it is a caller save register and
1861 is also used as the pic register in ELF. So for now, don't allow more than
1862 3 registers to be passed in registers. */
1863
7c800926
KT
1864/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1865#define X86_64_REGPARM_MAX 6
1866#define X64_REGPARM_MAX 4
1867#define X86_32_REGPARM_MAX 3
1868
1869#define X86_64_SSE_REGPARM_MAX 8
1870#define X64_SSE_REGPARM_MAX 4
1871#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1872
4ae8027b
UB
1873#define REGPARM_MAX \
1874 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1875 : X86_64_REGPARM_MAX) \
1876 : X86_32_REGPARM_MAX)
d2836273 1877
4ae8027b
UB
1878#define SSE_REGPARM_MAX \
1879 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1880 : X86_64_SSE_REGPARM_MAX) \
1881 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1882
1883#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1884
c98f8742
JVA
1885\f
1886/* Specify the machine mode that this machine uses
1887 for the index in the tablejump instruction. */
dc4d7240
JH
1888#define CASE_VECTOR_MODE \
1889 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1890
c98f8742
JVA
1891/* Define this as 1 if `char' should by default be signed; else as 0. */
1892#define DEFAULT_SIGNED_CHAR 1
1893
1894/* Max number of bytes we can move from memory to memory
1895 in one reasonably fast instruction. */
65d9c0ab
JH
1896#define MOVE_MAX 16
1897
1898/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1899 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1900 number of bytes we can move with a single instruction. */
65d9c0ab 1901#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1902
7e24ffc9 1903/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1904 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1905 Increasing the value will always make code faster, but eventually
1906 incurs high cost in increased code size.
c98f8742 1907
e2e52e1b 1908 If you don't define this, a reasonable default is used. */
c98f8742 1909
e04ad03d 1910#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1911
45d78e7f
JJ
1912/* If a clear memory operation would take CLEAR_RATIO or more simple
1913 move-instruction sequences, we will do a clrmem or libcall instead. */
1914
e04ad03d 1915#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1916
c98f8742
JVA
1917/* Define if shifts truncate the shift count
1918 which implies one can omit a sign-extension or zero-extension
1919 of a shift count. */
892a2d68 1920/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1921
1922/* #define SHIFT_COUNT_TRUNCATED */
1923
1924/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1925 is done just by pretending it is already truncated. */
1926#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1927
d9f32422
JH
1928/* A macro to update M and UNSIGNEDP when an object whose type is
1929 TYPE and which has the specified mode and signedness is to be
1930 stored in a register. This macro is only called when TYPE is a
1931 scalar type.
1932
f710504c 1933 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1934 quantities to SImode. The choice depends on target type. */
1935
1936#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1937do { \
d9f32422
JH
1938 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1939 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1940 (MODE) = SImode; \
1941} while (0)
d9f32422 1942
c98f8742
JVA
1943/* Specify the machine mode that pointers have.
1944 After generation of rtl, the compiler makes no further distinction
1945 between pointers and any other objects of this machine mode. */
65d9c0ab 1946#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1947
1948/* A function address in a call instruction
1949 is a byte address (for indexing purposes)
1950 so give the MEM rtx a byte's mode. */
1951#define FUNCTION_MODE QImode
d4ba09c0 1952\f
96e7ae40
JH
1953/* A C expression for the cost of moving data from a register in class FROM to
1954 one in class TO. The classes are expressed using the enumeration values
1955 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1956 interpreted relative to that.
d4ba09c0 1957
96e7ae40
JH
1958 It is not required that the cost always equal 2 when FROM is the same as TO;
1959 on some machines it is expensive to move between registers if they are not
f84aa48a 1960 general registers. */
d4ba09c0 1961
f84aa48a 1962#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1963 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1964
1965/* A C expression for the cost of moving data of mode M between a
1966 register and memory. A value of 2 is the default; this cost is
1967 relative to those in `REGISTER_MOVE_COST'.
1968
1969 If moving between registers and memory is more expensive than
1970 between two registers, you should define this macro to express the
fa79946e 1971 relative cost. */
d4ba09c0 1972
d9a5f180
GS
1973#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1974 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1975
1976/* A C expression for the cost of a branch instruction. A value of 1
1977 is the default; other values are interpreted relative to that. */
1978
3a4fd356
JH
1979#define BRANCH_COST(speed_p, predictable_p) \
1980 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1981
1982/* Define this macro as a C expression which is nonzero if accessing
1983 less than a word of memory (i.e. a `char' or a `short') is no
1984 faster than accessing a word of memory, i.e., if such access
1985 require more than one instruction or if there is no difference in
1986 cost between byte and (aligned) word loads.
1987
1988 When this macro is not defined, the compiler will access a field by
1989 finding the smallest containing object; when it is defined, a
1990 fullword load will be used if alignment permits. Unless bytes
1991 accesses are faster than word accesses, using word accesses is
1992 preferable since it may eliminate subsequent memory access if
1993 subsequent accesses occur to other fields in the same word of the
1994 structure, but to different bytes. */
1995
1996#define SLOW_BYTE_ACCESS 0
1997
1998/* Nonzero if access to memory by shorts is slow and undesirable. */
1999#define SLOW_SHORT_ACCESS 0
2000
d4ba09c0
SC
2001/* Define this macro to be the value 1 if unaligned accesses have a
2002 cost many times greater than aligned accesses, for example if they
2003 are emulated in a trap handler.
2004
9cd10576
KH
2005 When this macro is nonzero, the compiler will act as if
2006 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2007 moves. This can cause significantly more instructions to be
9cd10576 2008 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2009 accesses only add a cycle or two to the time for a memory access.
2010
2011 If the value of this macro is always zero, it need not be defined. */
2012
e1565e65 2013/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2014
d4ba09c0
SC
2015/* Define this macro if it is as good or better to call a constant
2016 function address than to call an address kept in a register.
2017
2018 Desirable on the 386 because a CALL with a constant address is
2019 faster than one with a register address. */
2020
2021#define NO_FUNCTION_CSE
c98f8742 2022\f
c572e5ba
JVA
2023/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2024 return the mode to be used for the comparison.
2025
2026 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2027 VOIDmode should be used in all other cases.
c572e5ba 2028
16189740 2029 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2030 possible, to allow for more combinations. */
c98f8742 2031
d9a5f180 2032#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2033
9cd10576 2034/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2035 reversed. */
2036
2037#define REVERSIBLE_CC_MODE(MODE) 1
2038
2039/* A C expression whose value is reversed condition code of the CODE for
2040 comparison done in CC_MODE mode. */
3c5cb3e4 2041#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2042
c98f8742
JVA
2043\f
2044/* Control the assembler format that we output, to the extent
2045 this does not vary between assemblers. */
2046
2047/* How to refer to registers in assembler output.
892a2d68 2048 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2049
a7b376ee 2050/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2051 For non floating point regs, the following are the HImode names.
2052
2053 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2054 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2055
a7180f70
BS
2056#define HI_REGISTER_NAMES \
2057{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2058 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2059 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2060 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2061 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2062 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2063 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2064
c98f8742
JVA
2065#define REGISTER_NAMES HI_REGISTER_NAMES
2066
2067/* Table of additional register names to use in user input. */
2068
2069#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2070{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2071 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2072 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2073 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2074 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2075 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2076
2077/* Note we are omitting these since currently I don't know how
2078to get gcc to use these, since they want the same but different
2079number as al, and ax.
2080*/
2081
c98f8742 2082#define QI_REGISTER_NAMES \
3f3f2124 2083{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2084
2085/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2086 of regs 0 through 3. */
c98f8742
JVA
2087
2088#define QI_HIGH_REGISTER_NAMES \
2089{"ah", "dh", "ch", "bh", }
2090
2091/* How to renumber registers for dbx and gdb. */
2092
d9a5f180
GS
2093#define DBX_REGISTER_NUMBER(N) \
2094 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2095
9a82e702
MS
2096extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2097extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2098extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2099
469ac993
JM
2100/* Before the prologue, RA is at 0(%esp). */
2101#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2102 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2103
e414ab29 2104/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2105#define RETURN_ADDR_RTX(COUNT, FRAME) \
2106 ((COUNT) == 0 \
2107 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2108 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2109
892a2d68 2110/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2111#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2112
a6ab3aad 2113/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2114#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2115
1020a5ab
RH
2116/* Describe how we implement __builtin_eh_return. */
2117#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2118#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2119
ad919812 2120
e4c4ebeb
RH
2121/* Select a format to encode pointers in exception handling data. CODE
2122 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2123 true if the symbol may be affected by dynamic relocations.
2124
2125 ??? All x86 object file formats are capable of representing this.
2126 After all, the relocation needed is the same as for the call insn.
2127 Whether or not a particular assembler allows us to enter such, I
2128 guess we'll have to see. */
d9a5f180 2129#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2130 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2131
c98f8742
JVA
2132/* This is how to output an insn to push a register on the stack.
2133 It need not be very fast code. */
2134
d9a5f180 2135#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2136do { \
2137 if (TARGET_64BIT) \
2138 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2139 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2140 else \
2141 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2142} while (0)
c98f8742
JVA
2143
2144/* This is how to output an insn to pop a register from the stack.
2145 It need not be very fast code. */
2146
d9a5f180 2147#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2148do { \
2149 if (TARGET_64BIT) \
2150 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2151 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2152 else \
2153 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2154} while (0)
c98f8742 2155
f88c65f7 2156/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2157
2158#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2159 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2160
f88c65f7 2161/* This is how to output an element of a case-vector that is relative. */
c98f8742 2162
33f7f353 2163#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2164 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2165
95879c72
L
2166/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2167 true. */
2168
2169#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2170{ \
2171 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2172 { \
2173 if (TARGET_AVX) \
2174 (PTR) += 1; \
2175 else \
2176 (PTR) += 2; \
2177 } \
2178}
2179
2180/* A C statement or statements which output an assembler instruction
2181 opcode to the stdio stream STREAM. The macro-operand PTR is a
2182 variable of type `char *' which points to the opcode name in
2183 its "internal" form--the form that is written in the machine
2184 description. */
2185
2186#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2187 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2188
f7288899
EC
2189/* Under some conditions we need jump tables in the text section,
2190 because the assembler cannot handle label differences between
2191 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2192
2193#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2194 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2195 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2196
cea3bd3e
RH
2197/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2198 and switch back. For x86 we do this only to save a few bytes that
2199 would otherwise be unused in the text section. */
2200#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2201 asm (SECTION_OP "\n\t" \
2202 "call " USER_LABEL_PREFIX #FUNC "\n" \
2203 TEXT_SECTION_ASM_OP);
74b42c8b 2204\f
c98f8742
JVA
2205/* Print operand X (an rtx) in assembler syntax to file FILE.
2206 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2207 Effect of various CODE letters is described in i386.c near
2208 print_operand function. */
c98f8742 2209
d9a5f180 2210#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2211 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2212
2213#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2214 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2215
2216#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2217 print_operand_address ((FILE), (ADDR))
c98f8742 2218
f996902d
RH
2219#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2220do { \
2221 if (! output_addr_const_extra (FILE, (X))) \
2222 goto FAIL; \
2223} while (0);
d4ba09c0 2224\f
5bf0ebab
RH
2225/* Which processor to schedule for. The cpu attribute defines a list that
2226 mirrors this list, so changes to i386.md must be made at the same time. */
2227
2228enum processor_type
2229{
8383d43c 2230 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2231 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2232 PROCESSOR_PENTIUM,
2233 PROCESSOR_PENTIUMPRO,
cfe1b18f 2234 PROCESSOR_GEODE,
5bf0ebab
RH
2235 PROCESSOR_K6,
2236 PROCESSOR_ATHLON,
2237 PROCESSOR_PENTIUM4,
4977bab6 2238 PROCESSOR_K8,
89c43c0a 2239 PROCESSOR_NOCONA,
05f85dbb 2240 PROCESSOR_CORE2,
d326eaf0
JH
2241 PROCESSOR_GENERIC32,
2242 PROCESSOR_GENERIC64,
21efb4d4 2243 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2244 PROCESSOR_max
2245};
2246
9e555526 2247extern enum processor_type ix86_tune;
5bf0ebab 2248extern enum processor_type ix86_arch;
5bf0ebab
RH
2249
2250enum fpmath_unit
2251{
2252 FPMATH_387 = 1,
2253 FPMATH_SSE = 2
2254};
2255
2256extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2257
f996902d
RH
2258enum tls_dialect
2259{
2260 TLS_DIALECT_GNU,
5bf5a10b 2261 TLS_DIALECT_GNU2,
f996902d
RH
2262 TLS_DIALECT_SUN
2263};
2264
2265extern enum tls_dialect ix86_tls_dialect;
f996902d 2266
6189a572 2267enum cmodel {
5bf0ebab
RH
2268 CM_32, /* The traditional 32-bit ABI. */
2269 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2270 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2271 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2272 CM_LARGE, /* No assumptions. */
7dcbf659 2273 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2274 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2275 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2276};
2277
5bf0ebab 2278extern enum cmodel ix86_cmodel;
5bf0ebab 2279
8362f420
JH
2280/* Size of the RED_ZONE area. */
2281#define RED_ZONE_SIZE 128
2282/* Reserved area of the red zone for temporaries. */
2283#define RED_ZONE_RESERVE 8
c93e80a5
JH
2284
2285enum asm_dialect {
2286 ASM_ATT,
2287 ASM_INTEL
2288};
5bf0ebab 2289
80f33d06 2290extern enum asm_dialect ix86_asm_dialect;
95899b34 2291extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2292extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2293extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2294
2295/* Smallest class containing REGNO. */
2296extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2297
d9a5f180
GS
2298extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2299extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2300extern rtx ix86_compare_emitted;
22fb740d
JH
2301\f
2302/* To properly truncate FP values into integers, we need to set i387 control
2303 word. We can't emit proper mode switching code before reload, as spills
2304 generated by reload may truncate values incorrectly, but we still can avoid
2305 redundant computation of new control word by the mode switching pass.
2306 The fldcw instructions are still emitted redundantly, but this is probably
2307 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2308 the sequence.
22fb740d
JH
2309
2310 The machinery is to emit simple truncation instructions and split them
2311 before reload to instructions having USEs of two memory locations that
2312 are filled by this code to old and new control word.
fce5a9f2 2313
22fb740d
JH
2314 Post-reload pass may be later used to eliminate the redundant fildcw if
2315 needed. */
2316
ff680eb1
UB
2317enum ix86_entity
2318{
2319 I387_TRUNC = 0,
2320 I387_FLOOR,
2321 I387_CEIL,
2322 I387_MASK_PM,
2323 MAX_386_ENTITIES
2324};
2325
1cba2b96 2326enum ix86_stack_slot
ff680eb1 2327{
80dcd3aa
UB
2328 SLOT_VIRTUAL = 0,
2329 SLOT_TEMP,
ff680eb1
UB
2330 SLOT_CW_STORED,
2331 SLOT_CW_TRUNC,
2332 SLOT_CW_FLOOR,
2333 SLOT_CW_CEIL,
2334 SLOT_CW_MASK_PM,
2335 MAX_386_STACK_LOCALS
2336};
22fb740d
JH
2337
2338/* Define this macro if the port needs extra instructions inserted
2339 for mode switching in an optimizing compilation. */
2340
ff680eb1
UB
2341#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2342 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2343
2344/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2345 initializer for an array of integers. Each initializer element N
2346 refers to an entity that needs mode switching, and specifies the
2347 number of different modes that might need to be set for this
2348 entity. The position of the initializer in the initializer -
2349 starting counting at zero - determines the integer that is used to
2350 refer to the mode-switched entity in question. */
2351
ff680eb1
UB
2352#define NUM_MODES_FOR_MODE_SWITCHING \
2353 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2354
2355/* ENTITY is an integer specifying a mode-switched entity. If
2356 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2357 return an integer value not larger than the corresponding element
2358 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2359 must be switched into prior to the execution of INSN. */
2360
2361#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2362
2363/* This macro specifies the order in which modes for ENTITY are
2364 processed. 0 is the highest priority. */
2365
d9a5f180 2366#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2367
2368/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2369 is the set of hard registers live at the point where the insn(s)
2370 are to be inserted. */
2371
2372#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2373 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2374 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2375 : 0)
ff680eb1 2376
0f0138b6
JH
2377\f
2378/* Avoid renaming of stack registers, as doing so in combination with
2379 scheduling just increases amount of live registers at time and in
2380 the turn amount of fxch instructions needed.
2381
43f3a59d 2382 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2383
d9a5f180 2384#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2385 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2386
3b3c6a3f 2387\f
e91f04de 2388#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2389\f
2390struct machine_function GTY(())
2391{
2392 struct stack_local_entry *stack_locals;
2393 const char *some_ld_name;
4aab97f9
L
2394 int varargs_gpr_size;
2395 int varargs_fpr_size;
fa1a0d02 2396 int accesses_prev_frame;
ff680eb1 2397 int optimize_mode_switching[MAX_386_ENTITIES];
922e3e33
UB
2398 int needs_cld;
2399 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2400 expander to determine the style used. */
d9b40e8d 2401 int use_fast_prologue_epilogue;
d7394366
JH
2402 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2403 for. */
2404 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2405 /* If true, the current function needs the default PIC register, not
2406 an alternate register (on x86) and must not use the red zone (on
2407 x86_64), even if it's a leaf function. We don't want the
2408 function to be regarded as non-leaf because TLS calls need not
2409 affect register allocation. This flag is set when a TLS call
2410 instruction is expanded within a function, and never reset, even
2411 if all such instructions are optimized away. Use the
2412 ix86_current_function_calls_tls_descriptor macro for a better
2413 approximation. */
2414 int tls_descriptor_call_expanded_p;
7c800926
KT
2415 /* This value is used for amd64 targets and specifies the current abi
2416 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2417 int call_abi;
fa1a0d02
JH
2418};
2419
2420#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2421#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2422#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2423#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2424#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2425#define ix86_tls_descriptor_calls_expanded_in_cfun \
2426 (cfun->machine->tls_descriptor_call_expanded_p)
2427/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2428 calls are optimized away, we try to detect cases in which it was
2429 optimized away. Since such instructions (use (reg REG_SP)), we can
2430 verify whether there's any such instruction live by testing that
2431 REG_SP is live. */
2432#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2433 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2434
1bc7c5b6
ZW
2435/* Control behavior of x86_file_start. */
2436#define X86_FILE_START_VERSION_DIRECTIVE false
2437#define X86_FILE_START_FLTUSED false
2438
7dcbf659
JH
2439/* Flag to mark data that is in the large address area. */
2440#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2441#define SYMBOL_REF_FAR_ADDR_P(X) \
2442 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2443
2444/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2445 have defined always, to avoid ifdefing. */
2446#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2447#define SYMBOL_REF_DLLIMPORT_P(X) \
2448 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2449
2450#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2451#define SYMBOL_REF_DLLEXPORT_P(X) \
2452 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2453
e70444a8
HJ
2454/* Model costs for vectorizer. */
2455
2456/* Cost of conditional branch. */
2457#undef TARG_COND_BRANCH_COST
2458#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2459
4ae8027b
UB
2460/* Enum through the target specific extra va_list types.
2461 Please, do not iterate the base va_list type name. */
35cbb299 2462#define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
4ae8027b 2463 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
35cbb299 2464
e70444a8
HJ
2465/* Cost of any scalar operation, excluding load and store. */
2466#undef TARG_SCALAR_STMT_COST
2467#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2468
2469/* Cost of scalar load. */
2470#undef TARG_SCALAR_LOAD_COST
2471#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2472
2473/* Cost of scalar store. */
2474#undef TARG_SCALAR_STORE_COST
2475#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2476
2477/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2478 operation. */
e70444a8
HJ
2479#undef TARG_VEC_STMT_COST
2480#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2481
2482/* Cost of vector to scalar operation. */
2483#undef TARG_VEC_TO_SCALAR_COST
2484#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2485
2486/* Cost of scalar to vector operation. */
2487#undef TARG_SCALAR_TO_VEC_COST
2488#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2489
2490/* Cost of aligned vector load. */
2491#undef TARG_VEC_LOAD_COST
2492#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2493
2494/* Cost of misaligned vector load. */
2495#undef TARG_VEC_UNALIGNED_LOAD_COST
2496#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2497
2498/* Cost of vector store. */
2499#undef TARG_VEC_STORE_COST
2500#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2501
2502/* Cost of conditional taken branch for vectorizer cost model. */
2503#undef TARG_COND_TAKEN_BRANCH_COST
2504#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2505
2506/* Cost of conditional not taken branch for vectorizer cost model. */
2507#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2508#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2509
c98f8742
JVA
2510/*
2511Local variables:
2512version-control: t
2513End:
2514*/