]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
cfgexpand.c (construct_exit_block): Don't disturb end of last BB.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5bf5a10b 3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
c98f8742 4
188fc5b5 5This file is part of GCC.
c98f8742 6
188fc5b5 7GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
188fc5b5 12GCC is distributed in the hope that it will be useful,
c98f8742
JVA
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
188fc5b5 18along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
f676971a 44 const int mult_init[5]; /* cost of starting a multiply
4977bab6 45 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 46 const int mult_bit; /* cost of multiply per each bit set */
f676971a 47 const int divide[5]; /* cost of a divide/mod
4977bab6 48 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
8b60264b
KG
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
ac775968 53 memory-to-memory move insns. */
8b60264b
KG
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
8b60264b 58 const int int_store[3]; /* cost of storing integer register
96e7ae40 59 in QImode, HImode and SImode */
8b60264b
KG
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b 63 const int fp_store[3]; /* cost of storing FP register
96e7ae40 64 in SFmode, DFmode and XFmode */
8b60264b
KG
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 67 in SImode and DImode */
8b60264b 68 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 69 in SImode and DImode */
8b60264b
KG
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int sse_store[3]; /* cost of storing SSE register
fa79946e 74 in SImode, DImode and TImode*/
8b60264b 75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 76 integer and vice versa. */
f4365627
JH
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
4977bab6 80 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
d4ba09c0
SC
87};
88
8b60264b 89extern const struct processor_costs *ix86_cost;
d4ba09c0 90
c98f8742
JVA
91/* Macros used in the machine description to test the flags. */
92
ddd5a7c1 93/* configure can arrange to make this 2, to force a 486. */
e075ae69 94
35b528be 95#ifndef TARGET_CPU_DEFAULT
d326eaf0 96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 97#endif
35b528be 98
004d3859
GK
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
6ac49599 104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 105
5791cc29
JT
106/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
107 compile-time constant. */
108#ifdef IN_LIBGCC2
6ac49599 109#undef TARGET_64BIT
5791cc29
JT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
6ac49599
RS
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
67adf6a9 118#if TARGET_64BIT_DEFAULT
0c2dc519
JH
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
5791cc29 124#endif
25f94bb5 125
750054a2
CT
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
9e555526
RH
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 133#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
134#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
135#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
136#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
137#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 138#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 139#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 140#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
141#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
142#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
143#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
a269a03c 144
9e555526 145#define TUNEMASK (1 << ix86_tune)
a269a03c 146extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
1e993cb8 147extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 148extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69 149extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
862e2886 150extern const int x86_use_himode_fiop, x86_use_simode_fiop;
0e8c2b0d 151extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
e075ae69 152extern const int x86_read_modify, x86_split_long_moves;
285464d0 153extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 154extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 155extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 156extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 157extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 158extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 159extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 160extern const int x86_arch_always_fancy_math_387, x86_shift1;
41afe4ef 161extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
4977bab6 162extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
41afe4ef 163extern const int x86_use_ffreep;
ad7b96a9 164extern const int x86_inter_unit_moves, x86_schedule;
7cacf53e 165extern const int x86_use_bt;
a0274e3e 166extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
d326eaf0
JH
167extern const int x86_use_incdec;
168extern const int x86_pad_returns;
167fa32c 169extern const int x86_bswap;
995cc369 170extern const int x86_partial_flag_reg_stall;
f4365627 171extern int x86_prefetch_sse;
a269a03c 172
9e555526
RH
173#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
174#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
175#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
176#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
177#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
0644b628
JH
178/* For sane SSE instruction set generation we need fcomi instruction. It is
179 safe to enable all CMOVE instructions. */
180#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
1e993cb8 181#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
9e555526
RH
182#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
183#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
184#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
185#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
186#define TARGET_MOVX (x86_movx & TUNEMASK)
187#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
995cc369 188#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
0e8c2b0d
UB
189#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
190#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
9e555526
RH
191#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
192#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
193#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
194#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
195#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
196#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
197#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
198#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
199#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
200#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
201#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
202#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
203#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
204#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
205#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
206#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
207#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
208#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
4977bab6 209#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
9e555526 210 (x86_sse_partial_reg_dependency & TUNEMASK)
41afe4ef 211#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
9e555526 212#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
9e555526
RH
213#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
214#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
215#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
216#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
f4365627 217#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
9e555526
RH
218#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
219#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
220#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
221#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
be04394b 222#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
ad7b96a9 223#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
7cacf53e 224#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
d326eaf0
JH
225#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
226#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
a269a03c 227
c93e80a5 228#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 229
965f5423
JH
230#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
231#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
232 && (ix86_fpmath & FPMATH_387))
4977bab6 233
f996902d 234#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
5bf5a10b
AO
235#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
236#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
f996902d
RH
237#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
238
1ef45b77 239#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
a0274e3e
JJ
240#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
241#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
1ef45b77 242#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
167fa32c 243#define TARGET_BSWAP (x86_bswap & (1 << ix86_arch))
1ef45b77 244
67adf6a9
RH
245#ifndef TARGET_64BIT_DEFAULT
246#define TARGET_64BIT_DEFAULT 0
25f94bb5 247#endif
74dc3e94
RH
248#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
249#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
250#endif
25f94bb5 251
0ed4a390
JL
252/* Once GDB has been enhanced to deal with functions without frame
253 pointers, we can change this to allow for elimination of
254 the frame pointer in leaf functions. */
255#define TARGET_DEFAULT 0
67adf6a9 256
b069de3b
SS
257/* This is not really a target flag, but is done this way so that
258 it's analogous to similar code for Mach-O on PowerPC. darwin.h
259 redefines this to 1. */
260#define TARGET_MACHO 0
261
cc69336f
RH
262/* Subtargets may reset this to 1 in order to enable 96-bit long double
263 with the rounding mode forced to 53 bits. */
264#define TARGET_96_ROUND_53_LONG_DOUBLE 0
265
f5316dfe
MM
266/* Sometimes certain combinations of command options do not make
267 sense on a particular target machine. You can define a macro
268 `OVERRIDE_OPTIONS' to take account of this. This macro, if
269 defined, is executed once just after all the command options have
270 been parsed.
271
272 Don't use this macro to turn on various extra optimizations for
273 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
274
275#define OVERRIDE_OPTIONS override_options ()
276
d4ba09c0 277/* Define this to change the optimizations performed by default. */
d9a5f180
GS
278#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
279 optimization_options ((LEVEL), (SIZE))
d4ba09c0 280
682cd442
GK
281/* -march=native handling only makes sense with compiler running on
282 an x86 or x86_64 chip. If changing this condition, also change
283 the condition in driver-i386.c. */
284#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
285/* In driver-i386.c. */
286extern const char *host_detect_local_cpu (int argc, const char **argv);
287#define EXTRA_SPEC_FUNCTIONS \
288 { "local_cpu_detect", host_detect_local_cpu },
682cd442 289#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
290#endif
291
1cba2b96
EC
292/* Support for configure-time defaults of some command line options.
293 The order here is important so that -march doesn't squash the
294 tune or cpu values. */
7816bea0 295#define OPTION_DEFAULT_SPECS \
da2d4c01 296 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
297 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
298 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 299
241e1a89
SC
300/* Specs for the compiler proper */
301
628714d8 302#ifndef CC1_CPU_SPEC
fa959ce4 303#define CC1_CPU_SPEC_1 "\
9d913bbf
KC
304%{!mtune*: \
305%{m386:mtune=i386 \
306%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
307%{m486:-mtune=i486 \
308%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
309%{mpentium:-mtune=pentium \
310%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
311%{mpentiumpro:-mtune=pentiumpro \
312%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
313%{mcpu=*:-mtune=%* \
314%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
315%<mcpu=* \
c93e80a5
JH
316%{mintel-syntax:-masm=intel \
317%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
318%{mno-intel-syntax:-masm=att \
319%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 320
682cd442 321#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
322#define CC1_CPU_SPEC CC1_CPU_SPEC_1
323#else
324#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
325"%{march=native:%<march=native %:local_cpu_detect(arch)} \
326%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
327#endif
241e1a89 328#endif
c98f8742 329\f
30efe578 330/* Target CPU builtins. */
1ba7b414
NB
331#define TARGET_CPU_CPP_BUILTINS() \
332 do \
333 { \
334 size_t arch_len = strlen (ix86_arch_string); \
9e555526 335 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 336 int last_arch_char = ix86_arch_string[arch_len - 1]; \
9e555526 337 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
338 \
339 if (TARGET_64BIT) \
340 { \
341 builtin_assert ("cpu=x86_64"); \
26b0ad13 342 builtin_assert ("machine=x86_64"); \
97242ddc
JH
343 builtin_define ("__amd64"); \
344 builtin_define ("__amd64__"); \
1ba7b414
NB
345 builtin_define ("__x86_64"); \
346 builtin_define ("__x86_64__"); \
347 } \
348 else \
349 { \
350 builtin_assert ("cpu=i386"); \
351 builtin_assert ("machine=i386"); \
352 builtin_define_std ("i386"); \
353 } \
354 \
9d913bbf 355 /* Built-ins based on -mtune= (or -march= if no \
9e555526 356 -mtune= given). */ \
1ba7b414
NB
357 if (TARGET_386) \
358 builtin_define ("__tune_i386__"); \
359 else if (TARGET_486) \
360 builtin_define ("__tune_i486__"); \
361 else if (TARGET_PENTIUM) \
362 { \
363 builtin_define ("__tune_i586__"); \
364 builtin_define ("__tune_pentium__"); \
9e555526 365 if (last_tune_char == 'x') \
1ba7b414
NB
366 builtin_define ("__tune_pentium_mmx__"); \
367 } \
368 else if (TARGET_PENTIUMPRO) \
369 { \
370 builtin_define ("__tune_i686__"); \
371 builtin_define ("__tune_pentiumpro__"); \
9e555526 372 switch (last_tune_char) \
2e37b0ce
RH
373 { \
374 case '3': \
375 builtin_define ("__tune_pentium3__"); \
5efb1046 376 /* FALLTHRU */ \
2e37b0ce
RH
377 case '2': \
378 builtin_define ("__tune_pentium2__"); \
379 break; \
380 } \
1ba7b414 381 } \
cfe1b18f
VM
382 else if (TARGET_GEODE) \
383 { \
384 builtin_define ("__tune_geode__"); \
385 } \
1ba7b414
NB
386 else if (TARGET_K6) \
387 { \
388 builtin_define ("__tune_k6__"); \
9e555526 389 if (last_tune_char == '2') \
1ba7b414 390 builtin_define ("__tune_k6_2__"); \
9e555526 391 else if (last_tune_char == '3') \
1ba7b414
NB
392 builtin_define ("__tune_k6_3__"); \
393 } \
394 else if (TARGET_ATHLON) \
395 { \
396 builtin_define ("__tune_athlon__"); \
397 /* Only plain "athlon" lacks SSE. */ \
9e555526 398 if (last_tune_char != 'n') \
1ba7b414
NB
399 builtin_define ("__tune_athlon_sse__"); \
400 } \
4977bab6
ZW
401 else if (TARGET_K8) \
402 builtin_define ("__tune_k8__"); \
1ba7b414
NB
403 else if (TARGET_PENTIUM4) \
404 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
405 else if (TARGET_NOCONA) \
406 builtin_define ("__tune_nocona__"); \
05f85dbb
VM
407 else if (TARGET_CORE2) \
408 builtin_define ("__tune_core2__"); \
1ba7b414
NB
409 \
410 if (TARGET_MMX) \
411 builtin_define ("__MMX__"); \
412 if (TARGET_3DNOW) \
413 builtin_define ("__3dNOW__"); \
414 if (TARGET_3DNOW_A) \
415 builtin_define ("__3dNOW_A__"); \
416 if (TARGET_SSE) \
417 builtin_define ("__SSE__"); \
418 if (TARGET_SSE2) \
419 builtin_define ("__SSE2__"); \
9e200aaf
KC
420 if (TARGET_SSE3) \
421 builtin_define ("__SSE3__"); \
b1875f52
L
422 if (TARGET_SSSE3) \
423 builtin_define ("__SSSE3__"); \
48ddd46c
JH
424 if (TARGET_SSE_MATH && TARGET_SSE) \
425 builtin_define ("__SSE_MATH__"); \
426 if (TARGET_SSE_MATH && TARGET_SSE2) \
427 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
428 \
429 /* Built-ins based on -march=. */ \
430 if (ix86_arch == PROCESSOR_I486) \
431 { \
432 builtin_define ("__i486"); \
433 builtin_define ("__i486__"); \
434 } \
435 else if (ix86_arch == PROCESSOR_PENTIUM) \
436 { \
437 builtin_define ("__i586"); \
438 builtin_define ("__i586__"); \
439 builtin_define ("__pentium"); \
440 builtin_define ("__pentium__"); \
441 if (last_arch_char == 'x') \
442 builtin_define ("__pentium_mmx__"); \
443 } \
444 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
445 { \
446 builtin_define ("__i686"); \
447 builtin_define ("__i686__"); \
448 builtin_define ("__pentiumpro"); \
449 builtin_define ("__pentiumpro__"); \
450 } \
cfe1b18f
VM
451 else if (ix86_arch == PROCESSOR_GEODE) \
452 { \
453 builtin_define ("__geode"); \
454 builtin_define ("__geode__"); \
455 } \
1ba7b414
NB
456 else if (ix86_arch == PROCESSOR_K6) \
457 { \
458 \
459 builtin_define ("__k6"); \
460 builtin_define ("__k6__"); \
461 if (last_arch_char == '2') \
462 builtin_define ("__k6_2__"); \
463 else if (last_arch_char == '3') \
464 builtin_define ("__k6_3__"); \
465 } \
466 else if (ix86_arch == PROCESSOR_ATHLON) \
467 { \
468 builtin_define ("__athlon"); \
469 builtin_define ("__athlon__"); \
470 /* Only plain "athlon" lacks SSE. */ \
471 if (last_arch_char != 'n') \
472 builtin_define ("__athlon_sse__"); \
473 } \
4977bab6
ZW
474 else if (ix86_arch == PROCESSOR_K8) \
475 { \
476 builtin_define ("__k8"); \
477 builtin_define ("__k8__"); \
478 } \
1ba7b414
NB
479 else if (ix86_arch == PROCESSOR_PENTIUM4) \
480 { \
481 builtin_define ("__pentium4"); \
482 builtin_define ("__pentium4__"); \
483 } \
89c43c0a
VM
484 else if (ix86_arch == PROCESSOR_NOCONA) \
485 { \
486 builtin_define ("__nocona"); \
487 builtin_define ("__nocona__"); \
488 } \
05f85dbb
VM
489 else if (ix86_arch == PROCESSOR_CORE2) \
490 { \
491 builtin_define ("__core2"); \
492 builtin_define ("__core2__"); \
493 } \
1ba7b414 494 } \
30efe578
NB
495 while (0)
496
f4365627
JH
497#define TARGET_CPU_DEFAULT_i386 0
498#define TARGET_CPU_DEFAULT_i486 1
499#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
500#define TARGET_CPU_DEFAULT_pentium_mmx 3
501#define TARGET_CPU_DEFAULT_pentiumpro 4
502#define TARGET_CPU_DEFAULT_pentium2 5
503#define TARGET_CPU_DEFAULT_pentium3 6
504#define TARGET_CPU_DEFAULT_pentium4 7
cfe1b18f
VM
505#define TARGET_CPU_DEFAULT_geode 8
506#define TARGET_CPU_DEFAULT_k6 9
507#define TARGET_CPU_DEFAULT_k6_2 10
508#define TARGET_CPU_DEFAULT_k6_3 11
509#define TARGET_CPU_DEFAULT_athlon 12
510#define TARGET_CPU_DEFAULT_athlon_sse 13
511#define TARGET_CPU_DEFAULT_k8 14
512#define TARGET_CPU_DEFAULT_pentium_m 15
513#define TARGET_CPU_DEFAULT_prescott 16
514#define TARGET_CPU_DEFAULT_nocona 17
05f85dbb
VM
515#define TARGET_CPU_DEFAULT_core2 18
516#define TARGET_CPU_DEFAULT_generic 19
f4365627
JH
517
518#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
519 "pentiumpro", "pentium2", "pentium3", \
cfe1b18f 520 "pentium4", "geode", "k6", "k6-2", "k6-3", \
5bbeea44 521 "athlon", "athlon-4", "k8", \
d326eaf0 522 "pentium-m", "prescott", "nocona", \
05f85dbb 523 "core2", "generic"}
0c2dc519 524
628714d8 525#ifndef CC1_SPEC
8015b78d 526#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
527#endif
528
529/* This macro defines names of additional specifications to put in the
530 specs that can be used in various specifications like CC1_SPEC. Its
531 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
532
533 Each subgrouping contains a string constant, that defines the
188fc5b5 534 specification name, and a string constant that used by the GCC driver
bcd86433
SC
535 program.
536
537 Do not define this macro if it does not need to do anything. */
538
539#ifndef SUBTARGET_EXTRA_SPECS
540#define SUBTARGET_EXTRA_SPECS
541#endif
542
543#define EXTRA_SPECS \
628714d8 544 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
545 SUBTARGET_EXTRA_SPECS
546\f
c98f8742
JVA
547/* target machine storage layout */
548
968a7562 549#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 550
d57a4b98
RH
551/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
552 FPU, assume that the fpcw is set to extended precision; when using
553 only SSE, rounding is correct; when using both SSE and the FPU,
554 the rounding precision is indeterminate, since either may be chosen
555 apparently at random. */
556#define TARGET_FLT_EVAL_METHOD \
5ccd517a 557 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 558
65d9c0ab
JH
559#define SHORT_TYPE_SIZE 16
560#define INT_TYPE_SIZE 32
561#define FLOAT_TYPE_SIZE 32
562#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
563#define DOUBLE_TYPE_SIZE 64
564#define LONG_LONG_TYPE_SIZE 64
565
67adf6a9 566#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 567#define MAX_BITS_PER_WORD 64
0c2dc519
JH
568#else
569#define MAX_BITS_PER_WORD 32
0c2dc519
JH
570#endif
571
c98f8742
JVA
572/* Define this if most significant byte of a word is the lowest numbered. */
573/* That is true on the 80386. */
574
575#define BITS_BIG_ENDIAN 0
576
577/* Define this if most significant byte of a word is the lowest numbered. */
578/* That is not true on the 80386. */
579#define BYTES_BIG_ENDIAN 0
580
581/* Define this if most significant word of a multiword number is the lowest
582 numbered. */
583/* Not true for 80386 */
584#define WORDS_BIG_ENDIAN 0
585
c98f8742 586/* Width of a word, in units (bytes). */
65d9c0ab 587#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
588#ifdef IN_LIBGCC2
589#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
590#else
591#define MIN_UNITS_PER_WORD 4
592#endif
c98f8742 593
c98f8742 594/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 595#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 596
e075ae69 597/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 598#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 599
d1f87653 600/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 601 aligned; the compiler cannot rely on having this alignment. */
e075ae69 602#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 603
ead903e9 604/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 605 entering main. This causes expand_main_function to forcibly align
1d482056
RH
606 the stack, which results in aligned frames for functions called from
607 main, though it does nothing for the alignment of main itself. */
608#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 609 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 610
f963b5d9
RS
611/* Minimum allocation boundary for the code of a function. */
612#define FUNCTION_BOUNDARY 8
613
614/* C++ stores the virtual bit in the lowest bit of function pointers. */
615#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 616
892a2d68 617/* Alignment of field after `int : 0' in a structure. */
c98f8742 618
65d9c0ab 619#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
620
621/* Minimum size in bits of the largest boundary to which any
622 and all fundamental data types supported by the hardware
623 might need to be aligned. No data type wants to be aligned
17f24ff0 624 rounder than this.
fce5a9f2 625
d1f87653 626 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
627 and Pentium Pro XFmode values at 128 bit boundaries. */
628
629#define BIGGEST_ALIGNMENT 128
630
822eda12 631/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 632#define ALIGN_MODE_128(MODE) \
4501d314 633 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 634
17f24ff0 635/* The published ABIs say that doubles should be aligned on word
d1f87653 636 boundaries, so lower the alignment for structure fields unless
6fc605d8 637 -malign-double is set. */
e932b21b 638
e83f3cff
RH
639/* ??? Blah -- this macro is used directly by libobjc. Since it
640 supports no vector modes, cut out the complexity and fall back
641 on BIGGEST_FIELD_ALIGNMENT. */
642#ifdef IN_TARGET_LIBS
ef49d42e
JH
643#ifdef __x86_64__
644#define BIGGEST_FIELD_ALIGNMENT 128
645#else
e83f3cff 646#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 647#endif
e83f3cff 648#else
e932b21b
JH
649#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
650 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 651#endif
c98f8742 652
e5e8a8bf 653/* If defined, a C expression to compute the alignment given to a
a7180f70 654 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
655 and ALIGN is the alignment that the object would ordinarily have.
656 The value of this macro is used instead of that alignment to align
657 the object.
658
659 If this macro is not defined, then ALIGN is used.
660
661 The typical use of this macro is to increase alignment for string
662 constants to be word aligned so that `strcpy' calls that copy
663 constants can be done inline. */
664
d9a5f180 665#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 666
8a022443
JW
667/* If defined, a C expression to compute the alignment for a static
668 variable. TYPE is the data type, and ALIGN is the alignment that
669 the object would ordinarily have. The value of this macro is used
670 instead of that alignment to align the object.
671
672 If this macro is not defined, then ALIGN is used.
673
674 One use of this macro is to increase alignment of medium-size
675 data to make it all fit in fewer cache lines. Another is to
676 cause character arrays to be word-aligned so that `strcpy' calls
677 that copy constants to character arrays can be done inline. */
678
d9a5f180 679#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
680
681/* If defined, a C expression to compute the alignment for a local
682 variable. TYPE is the data type, and ALIGN is the alignment that
683 the object would ordinarily have. The value of this macro is used
684 instead of that alignment to align the object.
685
686 If this macro is not defined, then ALIGN is used.
687
688 One use of this macro is to increase alignment of medium-size
689 data to make it all fit in fewer cache lines. */
690
d9a5f180 691#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 692
53c17031
JH
693/* If defined, a C expression that gives the alignment boundary, in
694 bits, of an argument with the specified mode and type. If it is
695 not defined, `PARM_BOUNDARY' is used for all arguments. */
696
d9a5f180
GS
697#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
698 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 699
9cd10576 700/* Set this nonzero if move instructions will actually fail to work
c98f8742 701 when given unaligned data. */
b4ac57ab 702#define STRICT_ALIGNMENT 0
c98f8742
JVA
703
704/* If bit field type is int, don't let it cross an int,
705 and give entire struct the alignment of an int. */
43a88a8c 706/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 707#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
708\f
709/* Standard register usage. */
710
711/* This processor has special stack-like registers. See reg-stack.c
892a2d68 712 for details. */
c98f8742
JVA
713
714#define STACK_REGS
d9a5f180 715#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
716 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
717 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
718 || (MODE) == XFmode)
c98f8742
JVA
719
720/* Number of actual hardware registers.
721 The hardware registers are assigned numbers for the compiler
722 from 0 to just below FIRST_PSEUDO_REGISTER.
723 All registers that the compiler knows about must be given numbers,
724 even those that are not normally considered general registers.
725
726 In the 80386 we give the 8 general purpose registers the numbers 0-7.
727 We number the floating point registers 8-15.
728 Note that registers 0-7 can be accessed as a short or int,
729 while only 0-3 may be used with byte `mov' instructions.
730
731 Reg 16 does not correspond to any hardware register, but instead
732 appears in the RTL as an argument pointer prior to reload, and is
733 eliminated during reloading in favor of either the stack or frame
892a2d68 734 pointer. */
c98f8742 735
03c259ad 736#define FIRST_PSEUDO_REGISTER 54
c98f8742 737
3073d01c
ML
738/* Number of hardware registers that go into the DWARF-2 unwind info.
739 If not defined, equals FIRST_PSEUDO_REGISTER. */
740
741#define DWARF_FRAME_REGISTERS 17
742
c98f8742
JVA
743/* 1 for registers that have pervasive standard uses
744 and are not available for the register allocator.
3f3f2124 745 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 746
3a4416fb
RS
747 The value is zero if the register is not fixed on either 32 or
748 64 bit targets, one if the register if fixed on both 32 and 64
749 bit targets, two if it is only fixed on 32bit targets and three
750 if its only fixed on 64bit targets.
751 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 752 */
a7180f70
BS
753#define FIXED_REGISTERS \
754/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 755{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
03c259ad
UB
756/*arg,flags,fpsr,fpcr,dir,frame*/ \
757 1, 1, 1, 1, 1, 1, \
a7180f70
BS
758/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
759 0, 0, 0, 0, 0, 0, 0, 0, \
760/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
761 0, 0, 0, 0, 0, 0, 0, 0, \
762/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 763 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 764/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 765 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 766
c98f8742
JVA
767
768/* 1 for registers not available across function calls.
769 These must include the FIXED_REGISTERS and also any
770 registers that can be used without being saved.
771 The latter must include the registers where values are returned
772 and the register where structure-value addresses are passed.
fce5a9f2
EC
773 Aside from that, you can include as many other registers as you like.
774
9d72d996
JJ
775 The value is zero if the register is not call used on either 32 or
776 64 bit targets, one if the register if call used on both 32 and 64
777 bit targets, two if it is only call used on 32bit targets and three
778 if its only call used on 64bit targets.
3a4416fb 779 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 780*/
a7180f70
BS
781#define CALL_USED_REGISTERS \
782/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 783{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
03c259ad
UB
784/*arg,flags,fpsr,fpcr,dir,frame*/ \
785 1, 1, 1, 1, 1, 1, \
a7180f70 786/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 787 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 788/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 789 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 790/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 791 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 792/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 793 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 794
3b3c6a3f
MM
795/* Order in which to allocate registers. Each register must be
796 listed once, even those in FIXED_REGISTERS. List frame pointer
797 late and fixed registers last. Note that, in general, we prefer
798 registers listed in CALL_USED_REGISTERS, keeping the others
799 available for storage of persistent values.
800
162f023b
JH
801 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
802 so this is just empty initializer for array. */
3b3c6a3f 803
162f023b
JH
804#define REG_ALLOC_ORDER \
805{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
806 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
807 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
03c259ad 808 48, 49, 50, 51, 52, 53 }
3b3c6a3f 809
162f023b
JH
810/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
811 to be rearranged based on a particular function. When using sse math,
03c259ad 812 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 813
162f023b 814#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 815
f5316dfe 816
c98f8742 817/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 818#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 819do { \
3f3f2124
JH
820 int i; \
821 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
822 { \
3a4416fb
RS
823 if (fixed_regs[i] > 1) \
824 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
825 if (call_used_regs[i] > 1) \
826 call_used_regs[i] = (call_used_regs[i] \
827 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 828 } \
5b43fed1 829 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
830 { \
831 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
832 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
833 } \
834 if (! TARGET_MMX) \
835 { \
836 int i; \
837 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
838 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 839 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
840 } \
841 if (! TARGET_SSE) \
842 { \
843 int i; \
844 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
845 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 846 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
847 } \
848 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
849 { \
850 int i; \
851 HARD_REG_SET x; \
852 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
853 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
854 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
855 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
856 } \
857 if (! TARGET_64BIT) \
858 { \
859 int i; \
860 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
861 reg_names[i] = ""; \
862 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
863 reg_names[i] = ""; \
a7180f70 864 } \
d9a5f180 865 } while (0)
c98f8742
JVA
866
867/* Return number of consecutive hard regs needed starting at reg REGNO
868 to hold something of mode MODE.
869 This is ordinarily the length in words of a value of mode MODE
870 but can be less for certain modes in special long registers.
871
fce5a9f2 872 Actually there are no two word move instructions for consecutive
c98f8742
JVA
873 registers. And only registers 0-3 may have mov byte instructions
874 applied to them.
875 */
876
877#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
878 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
879 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 880 : ((MODE) == XFmode \
92d0fb09 881 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 882 : (MODE) == XCmode \
92d0fb09 883 ? (TARGET_64BIT ? 4 : 6) \
2b589241 884 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 885
fbe5eb6d
BS
886#define VALID_SSE2_REG_MODE(MODE) \
887 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 888 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 889
d9a5f180
GS
890#define VALID_SSE_REG_MODE(MODE) \
891 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 892 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 893
47f339cf
BS
894#define VALID_MMX_REG_MODE_3DNOW(MODE) \
895 ((MODE) == V2SFmode || (MODE) == SFmode)
896
d9a5f180
GS
897#define VALID_MMX_REG_MODE(MODE) \
898 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
899 || (MODE) == V2SImode || (MODE) == SImode)
900
accde4cf
RH
901/* ??? No autovectorization into MMX or 3DNOW until we can reliably
902 place emms and femms instructions. */
c4336539 903#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 904
d9a5f180 905#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
906 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
907 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 908
d9a5f180
GS
909#define VALID_INT_MODE_P(MODE) \
910 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
911 || (MODE) == DImode \
912 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
913 || (MODE) == CDImode \
f8a1ebc6
JH
914 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
915 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 916
822eda12
JH
917/* Return true for modes passed in SSE registers. */
918#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 919 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
920 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
921 || (MODE) == V4SFmode || (MODE) == V4SImode)
922
e075ae69 923/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 924
a946dd00 925#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 926 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
927
928/* Value is 1 if it is a good idea to tie two pseudo registers
929 when one has mode MODE1 and one has mode MODE2.
930 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
931 for any hard reg, then this must be 0 for correct output. */
932
c1c5b5e3 933#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 934
ff25ef99
ZD
935/* It is possible to write patterns to move flags; but until someone
936 does it, */
937#define AVOID_CCMODE_COPIES
c98f8742 938
e075ae69 939/* Specify the modes required to caller save a given hard regno.
787dc842 940 We do this on i386 to prevent flags from being saved at all.
e075ae69 941
787dc842
JH
942 Kill any attempts to combine saving of modes. */
943
d9a5f180
GS
944#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
945 (CC_REGNO_P (REGNO) ? VOIDmode \
946 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 947 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
948 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
949 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 950 : (MODE))
c98f8742
JVA
951/* Specify the registers used for certain standard purposes.
952 The values of these macros are register numbers. */
953
954/* on the 386 the pc register is %eip, and is not usable as a general
955 register. The ordinary mov instructions won't work */
956/* #define PC_REGNUM */
957
958/* Register to use for pushing function arguments. */
959#define STACK_POINTER_REGNUM 7
960
961/* Base register for access to local variables of the function. */
564d80f4
JH
962#define HARD_FRAME_POINTER_REGNUM 6
963
964/* Base register for access to local variables of the function. */
03c259ad 965#define FRAME_POINTER_REGNUM 21
c98f8742
JVA
966
967/* First floating point reg */
968#define FIRST_FLOAT_REG 8
969
970/* First & last stack-like regs */
971#define FIRST_STACK_REG FIRST_FLOAT_REG
972#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
973
a7180f70
BS
974#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
975#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 976
a7180f70
BS
977#define FIRST_MMX_REG (LAST_SSE_REG + 1)
978#define LAST_MMX_REG (FIRST_MMX_REG + 7)
979
3f3f2124
JH
980#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
981#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
982
983#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
984#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
985
c98f8742
JVA
986/* Value should be nonzero if functions must have frame pointers.
987 Zero means the frame pointer need not be set up (and parms
988 may be accessed via the stack pointer) in functions that seem suitable.
989 This is computed in `reload', in reload1.c. */
6fca22eb
RH
990#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
991
aabcd309 992/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
993 requiring a frame pointer. */
994#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
995#define SUBTARGET_FRAME_POINTER_REQUIRED 0
996#endif
997
998/* Make sure we can access arbitrary call frames. */
999#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1000
1001/* Base register for access to arguments of the function. */
1002#define ARG_POINTER_REGNUM 16
1003
d2836273
JH
1004/* Register in which static-chain is passed to a function.
1005 We do use ECX as static chain register for 32 bit ABI. On the
1006 64bit ABI, ECX is an argument register, so we use R10 instead. */
1007#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1008
1009/* Register to hold the addressing base for position independent
5b43fed1
RH
1010 code access to data items. We don't use PIC pointer for 64bit
1011 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1012 pessimizing code dealing with EBX.
bd09bdeb
RH
1013
1014 To avoid clobbering a call-saved register unnecessarily, we renumber
1015 the pic register when possible. The change is visible after the
1016 prologue has been emitted. */
1017
1018#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1019
1020#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1021 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1022 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1023 : reload_completed ? REGNO (pic_offset_table_rtx) \
1024 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1025
5fc0e5df
KW
1026#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1027
713225d4
MM
1028/* A C expression which can inhibit the returning of certain function
1029 values in registers, based on the type of value. A nonzero value
1030 says to return the function value in memory, just as large
1031 structures are always returned. Here TYPE will be a C expression
1032 of type `tree', representing the data type of the value.
1033
1034 Note that values of mode `BLKmode' must be explicitly handled by
1035 this macro. Also, the option `-fpcc-struct-return' takes effect
1036 regardless of this macro. On most systems, it is possible to
1037 leave the macro undefined; this causes a default definition to be
1038 used, whose value is the constant 1 for `BLKmode' values, and 0
1039 otherwise.
1040
1041 Do not use this macro to indicate that structures and unions
1042 should always be returned in memory. You should instead use
1043 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1044
d9a5f180 1045#define RETURN_IN_MEMORY(TYPE) \
53c17031 1046 ix86_return_in_memory (TYPE)
713225d4 1047
c51e6d85 1048/* This is overridden by <cygwin.h>. */
5e062767
DS
1049#define MS_AGGREGATE_RETURN 0
1050
61fec9ff
JB
1051/* This is overridden by <netware.h>. */
1052#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1053\f
1054/* Define the classes of registers for register constraints in the
1055 machine description. Also define ranges of constants.
1056
1057 One of the classes must always be named ALL_REGS and include all hard regs.
1058 If there is more than one class, another class must be named NO_REGS
1059 and contain no registers.
1060
1061 The name GENERAL_REGS must be the name of a class (or an alias for
1062 another name such as ALL_REGS). This is the class of registers
1063 that is allowed by "g" or "r" in a register constraint.
1064 Also, registers outside this class are allocated only when
1065 instructions express preferences for them.
1066
1067 The classes must be numbered in nondecreasing order; that is,
1068 a larger-numbered class must never be contained completely
1069 in a smaller-numbered class.
1070
1071 For any two classes, it is very desirable that there be another
ab408a86
JVA
1072 class that represents their union.
1073
1074 It might seem that class BREG is unnecessary, since no useful 386
1075 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1076 and the "b" register constraint is useful in asms for syscalls.
1077
03c259ad 1078 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1079
1080enum reg_class
1081{
1082 NO_REGS,
e075ae69 1083 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1084 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1085 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1086 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1087 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1088 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1089 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1090 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1091 FLOAT_REGS,
a7180f70
BS
1092 SSE_REGS,
1093 MMX_REGS,
446988df
JH
1094 FP_TOP_SSE_REGS,
1095 FP_SECOND_SSE_REGS,
1096 FLOAT_SSE_REGS,
1097 FLOAT_INT_REGS,
1098 INT_SSE_REGS,
1099 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1100 ALL_REGS, LIM_REG_CLASSES
1101};
1102
d9a5f180
GS
1103#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1104
1105#define INTEGER_CLASS_P(CLASS) \
1106 reg_class_subset_p ((CLASS), GENERAL_REGS)
1107#define FLOAT_CLASS_P(CLASS) \
1108 reg_class_subset_p ((CLASS), FLOAT_REGS)
1109#define SSE_CLASS_P(CLASS) \
f75959a6 1110 ((CLASS) == SSE_REGS)
d9a5f180 1111#define MMX_CLASS_P(CLASS) \
f75959a6 1112 ((CLASS) == MMX_REGS)
d9a5f180
GS
1113#define MAYBE_INTEGER_CLASS_P(CLASS) \
1114 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1115#define MAYBE_FLOAT_CLASS_P(CLASS) \
1116 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1117#define MAYBE_SSE_CLASS_P(CLASS) \
1118 reg_classes_intersect_p (SSE_REGS, (CLASS))
1119#define MAYBE_MMX_CLASS_P(CLASS) \
1120 reg_classes_intersect_p (MMX_REGS, (CLASS))
1121
1122#define Q_CLASS_P(CLASS) \
1123 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1124
43f3a59d 1125/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1126
1127#define REG_CLASS_NAMES \
1128{ "NO_REGS", \
ab408a86 1129 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1130 "SIREG", "DIREG", \
e075ae69
RH
1131 "AD_REGS", \
1132 "Q_REGS", "NON_Q_REGS", \
c98f8742 1133 "INDEX_REGS", \
3f3f2124 1134 "LEGACY_REGS", \
c98f8742
JVA
1135 "GENERAL_REGS", \
1136 "FP_TOP_REG", "FP_SECOND_REG", \
1137 "FLOAT_REGS", \
a7180f70
BS
1138 "SSE_REGS", \
1139 "MMX_REGS", \
446988df
JH
1140 "FP_TOP_SSE_REGS", \
1141 "FP_SECOND_SSE_REGS", \
1142 "FLOAT_SSE_REGS", \
8fcaaa80 1143 "FLOAT_INT_REGS", \
446988df
JH
1144 "INT_SSE_REGS", \
1145 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1146 "ALL_REGS" }
1147
1148/* Define which registers fit in which classes.
1149 This is an initializer for a vector of HARD_REG_SET
1150 of length N_REG_CLASSES. */
1151
a7180f70 1152#define REG_CLASS_CONTENTS \
3f3f2124
JH
1153{ { 0x00, 0x0 }, \
1154 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1155 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1156 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1157 { 0x03, 0x0 }, /* AD_REGS */ \
1158 { 0x0f, 0x0 }, /* Q_REGS */ \
03c259ad
UB
1159 { 0x2100f0, 0x3fc0 }, /* NON_Q_REGS */ \
1160 { 0x7f, 0x3fc0 }, /* INDEX_REGS */ \
1161 { 0x2100ff, 0x0 }, /* LEGACY_REGS */ \
1162 { 0x2100ff, 0x3fc0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1163 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1164 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
03c259ad
UB
1165{ 0x3fc00000,0x3fc000 }, /* SSE_REGS */ \
1166{ 0xc0000000, 0x3f }, /* MMX_REGS */ \
1167{ 0x3fc00100,0x3fc000 }, /* FP_TOP_SSE_REG */ \
1168{ 0x3fc00200,0x3fc000 }, /* FP_SECOND_SSE_REG */ \
1169{ 0x3fc0ff00,0x3fc000 }, /* FLOAT_SSE_REGS */ \
1170 { 0x1ffff, 0x3fc0 }, /* FLOAT_INT_REGS */ \
1171{ 0x3fc100ff,0x3fffc0 }, /* INT_SSE_REGS */ \
1172{ 0x3fc1ffff,0x3fffc0 }, /* FLOAT_INT_SSE_REGS */ \
1173{ 0xffffffff,0x3fffff } \
e075ae69 1174}
c98f8742
JVA
1175
1176/* The same information, inverted:
1177 Return the class number of the smallest class containing
1178 reg number REGNO. This could be a conditional expression
1179 or could index an array. */
1180
c98f8742
JVA
1181#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1182
1183/* When defined, the compiler allows registers explicitly used in the
1184 rtl to be used as spill registers but prevents the compiler from
892a2d68 1185 extending the lifetime of these registers. */
c98f8742 1186
2922fe9e 1187#define SMALL_REGISTER_CLASSES 1
c98f8742 1188
fb84c7a0 1189#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1190
d9a5f180 1191#define GENERAL_REGNO_P(N) \
fb84c7a0 1192 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1193
1194#define GENERAL_REG_P(X) \
6189a572 1195 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1196
1197#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1198
c98f8742 1199#define NON_QI_REG_P(X) \
fb84c7a0 1200 (REG_P (X) && IN_RANGE (REGNO (X), 4, FIRST_PSEUDO_REGISTER - 1))
c98f8742 1201
fb84c7a0
UB
1202#define REX_INT_REGNO_P(N) \
1203 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1204#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1205
c98f8742 1206#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1207#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1208#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1209#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1210
fb84c7a0
UB
1211#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1212#define SSE_REGNO_P(N) \
1213 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1214 || REX_SSE_REGNO_P (N))
3f3f2124 1215
4977bab6 1216#define REX_SSE_REGNO_P(N) \
fb84c7a0 1217 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1218
d9a5f180
GS
1219#define SSE_REGNO(N) \
1220 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1221
d9a5f180 1222#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1223 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1224
d9a5f180 1225#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1226#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1227
fb84c7a0
UB
1228#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1229#define NON_STACK_REG_P(XOP) \
1230 (REG_P (XOP) && ! STACK_REGNO_P (REGNO (XOP)))
1231#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1232
d9a5f180 1233#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1234
e075ae69
RH
1235#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1236#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1237
c98f8742
JVA
1238/* The class value for index registers, and the one for base regs. */
1239
1240#define INDEX_REG_CLASS INDEX_REGS
1241#define BASE_REG_CLASS GENERAL_REGS
1242
c98f8742 1243/* Place additional restrictions on the register class to use when it
4cbb525c 1244 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1245 register for which class CLASS would ordinarily be used. */
c98f8742 1246
d2836273
JH
1247#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1248 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1249 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1250 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1251 ? Q_REGS : (CLASS))
1252
1253/* Given an rtx X being reloaded into a reg required to be
1254 in class CLASS, return the class of reg to actually use.
1255 In general this is just CLASS; but on some machines
1256 in some cases it is preferable to use a more restrictive class.
1257 On the 80386 series, we prevent floating constants from being
1258 reloaded into floating registers (since no move-insn can do that)
1259 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1260
d398b3b1 1261/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1262 QImode must go into class Q_REGS.
d398b3b1 1263 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1264 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1265
d9a5f180
GS
1266#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1267 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1268
b5c82fa1
PB
1269/* Discourage putting floating-point values in SSE registers unless
1270 SSE math is being used, and likewise for the 387 registers. */
1271
1272#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1273 ix86_preferred_output_reload_class ((X), (CLASS))
1274
85ff473e 1275/* If we are copying between general and FP registers, we need a memory
f84aa48a 1276 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1277#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1278 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1279
1280/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1281 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1282 pseudo. */
1283
d9a5f180 1284#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1285 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1286 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1287 ? Q_REGS : NO_REGS)
c98f8742
JVA
1288
1289/* Return the maximum number of consecutive registers
1290 needed to represent mode MODE in a register of class CLASS. */
1291/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1292 except in the FP regs, where a single reg is always enough. */
a7180f70 1293#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1294 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1295 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1296 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1297 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1298
1299/* A C expression whose value is nonzero if pseudos that have been
1300 assigned to registers of class CLASS would likely be spilled
1301 because registers of CLASS are needed for spill registers.
1302
1303 The default value of this macro returns 1 if CLASS has exactly one
1304 register and zero otherwise. On most machines, this default
1305 should be used. Only define this macro to some other expression
1306 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1307 their hard registers were needed for spill registers. If this
f5316dfe
MM
1308 macro returns nonzero for those classes, those pseudos will only
1309 be allocated by `global.c', which knows how to reallocate the
1310 pseudo to another register. If there would not be another
1311 register available for reallocation, you should not change the
1312 definition of this macro since the only effect of such a
1313 definition would be to slow down register allocation. */
1314
1315#define CLASS_LIKELY_SPILLED_P(CLASS) \
1316 (((CLASS) == AREG) \
1317 || ((CLASS) == DREG) \
1318 || ((CLASS) == CREG) \
1319 || ((CLASS) == BREG) \
1320 || ((CLASS) == AD_REGS) \
1321 || ((CLASS) == SIREG) \
b0af5c03
JH
1322 || ((CLASS) == DIREG) \
1323 || ((CLASS) == FP_TOP_REG) \
1324 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1325
1272914c
RH
1326/* Return a class of registers that cannot change FROM mode to TO mode. */
1327
1328#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1329 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1330\f
1331/* Stack layout; function entry, exit and calling. */
1332
1333/* Define this if pushing a word on the stack
1334 makes the stack pointer a smaller address. */
1335#define STACK_GROWS_DOWNWARD
1336
a4d05547 1337/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1338 is at the high-address end of the local variables;
1339 that is, each additional local variable allocated
1340 goes at a more negative offset in the frame. */
f62c8a5c 1341#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1342
1343/* Offset within stack frame to start allocating local variables at.
1344 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1345 first local allocated. Otherwise, it is the offset to the BEGINNING
1346 of the first local allocated. */
1347#define STARTING_FRAME_OFFSET 0
1348
1349/* If we generate an insn to push BYTES bytes,
1350 this says how many the stack pointer really advances by.
6541fe75
JJ
1351 On 386, we have pushw instruction that decrements by exactly 2 no
1352 matter what the position was, there is no pushb.
1353 But as CIE data alignment factor on this arch is -4, we need to make
1354 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1355
d2836273
JH
1356 For 64bit ABI we round up to 8 bytes.
1357 */
c98f8742 1358
d2836273
JH
1359#define PUSH_ROUNDING(BYTES) \
1360 (TARGET_64BIT \
1361 ? (((BYTES) + 7) & (-8)) \
6541fe75 1362 : (((BYTES) + 3) & (-4)))
c98f8742 1363
f73ad30e
JH
1364/* If defined, the maximum amount of space required for outgoing arguments will
1365 be computed and placed into the variable
1366 `current_function_outgoing_args_size'. No space will be pushed onto the
1367 stack for each call; instead, the function prologue should increase the stack
1368 frame size by this amount. */
1369
1370#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1371
1372/* If defined, a C expression whose value is nonzero when we want to use PUSH
1373 instructions to pass outgoing arguments. */
1374
1375#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1376
2da4124d
L
1377/* We want the stack and args grow in opposite directions, even if
1378 PUSH_ARGS is 0. */
1379#define PUSH_ARGS_REVERSED 1
1380
c98f8742
JVA
1381/* Offset of first parameter from the argument pointer register value. */
1382#define FIRST_PARM_OFFSET(FNDECL) 0
1383
a7180f70
BS
1384/* Define this macro if functions should assume that stack space has been
1385 allocated for arguments even when their values are passed in registers.
1386
1387 The value of this macro is the size, in bytes, of the area reserved for
1388 arguments passed in registers for the function represented by FNDECL.
1389
1390 This space can be allocated by the caller, or be a part of the
1391 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1392 which. */
1393#define REG_PARM_STACK_SPACE(FNDECL) 0
1394
c98f8742
JVA
1395/* Value is the number of bytes of arguments automatically
1396 popped when returning from a subroutine call.
8b109b37 1397 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1398 FUNTYPE is the data type of the function (as a tree),
1399 or for a library call it is an identifier node for the subroutine name.
1400 SIZE is the number of bytes of arguments passed on the stack.
1401
1402 On the 80386, the RTD insn may be used to pop them if the number
1403 of args is fixed, but if the number is variable then the caller
1404 must pop them all. RTD can't be used for library calls now
1405 because the library is compiled with the Unix compiler.
1406 Use of RTD is a selectable option, since it is incompatible with
1407 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1408 the caller must always pop the args.
1409
1410 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1411
d9a5f180
GS
1412#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1413 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1414
53c17031
JH
1415#define FUNCTION_VALUE_REGNO_P(N) \
1416 ix86_function_value_regno_p (N)
c98f8742
JVA
1417
1418/* Define how to find the value returned by a library function
1419 assuming the value has mode MODE. */
1420
1421#define LIBCALL_VALUE(MODE) \
53c17031 1422 ix86_libcall_value (MODE)
c98f8742 1423
e9125c09
TW
1424/* Define the size of the result block used for communication between
1425 untyped_call and untyped_return. The block contains a DImode value
1426 followed by the block used by fnsave and frstor. */
1427
1428#define APPLY_RESULT_SIZE (8+108)
1429
b08de47e 1430/* 1 if N is a possible register number for function argument passing. */
53c17031 1431#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1432
1433/* Define a data type for recording info about an argument list
1434 during the scan of that argument list. This data type should
1435 hold all necessary information about the function itself
1436 and about the args processed so far, enough to enable macros
b08de47e 1437 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1438
e075ae69 1439typedef struct ix86_args {
b08de47e
MM
1440 int nregs; /* # registers available for passing */
1441 int regno; /* next available register number */
47a37ce4 1442 int words; /* # words passed so far */
9d72d996 1443 int fastcall; /* fastcall calling convention is used */
47a37ce4
UB
1444 int x87_nregs; /* # x87 registers available for passing */
1445 int x87_regno; /* # next available x87 register number */
a7180f70
BS
1446 int sse_nregs; /* # sse registers available for passing */
1447 int sse_regno; /* next available sse register number */
47a37ce4 1448 int warn_sse; /* True when we want to warn about SSE ABI. */
bcf17554
JH
1449 int mmx_nregs; /* # mmx registers available for passing */
1450 int mmx_regno; /* next available mmx register number */
47a37ce4 1451 int warn_mmx; /* True when we want to warn about MMX ABI. */
892a2d68 1452 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
47a37ce4
UB
1453 int float_in_x87; /* 1 if floating point arguments should
1454 be passed in 80387 registere. */
2f84b963
RG
1455 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1456 be passed in SSE registers. Otherwise 0. */
b08de47e 1457} CUMULATIVE_ARGS;
c98f8742
JVA
1458
1459/* Initialize a variable CUM of type CUMULATIVE_ARGS
1460 for a call to a function whose data type is FNTYPE.
b08de47e 1461 For a library call, FNTYPE is 0. */
c98f8742 1462
0f6937fe 1463#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1464 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1465
1466/* Update the data in CUM to advance over an argument
1467 of mode MODE and data type TYPE.
1468 (TYPE is null for libcalls where that information may not be available.) */
1469
d9a5f180
GS
1470#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1471 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1472
1473/* Define where to put the arguments to a function.
1474 Value is zero to push the argument on the stack,
1475 or a hard register in which to store the argument.
1476
1477 MODE is the argument's machine mode.
1478 TYPE is the data type of the argument (as a tree).
1479 This is null for libcalls where that information may
1480 not be available.
1481 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1482 the preceding args and about the function being called.
1483 NAMED is nonzero if this argument is a named parameter
1484 (otherwise it is an extra parameter matching an ellipsis). */
1485
c98f8742 1486#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1487 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1488
ad919812 1489/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1490#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1491 ix86_va_start (VALIST, NEXTARG)
ad919812 1492
a5fe455b
ZW
1493#define TARGET_ASM_FILE_END ix86_file_end
1494#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1495
c98f8742
JVA
1496/* Output assembler code to FILE to increment profiler label # LABELNO
1497 for profiling a function entry. */
1498
a5fa1ecd
JH
1499#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1500
1501#define MCOUNT_NAME "_mcount"
1502
1503#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1504
1505/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1506 the stack pointer does not matter. The value is tested only in
1507 functions that have frame pointers.
1508 No definition is equivalent to always zero. */
fce5a9f2 1509/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1510 we have to restore it ourselves from the frame pointer, in order to
1511 use pop */
1512
1513#define EXIT_IGNORE_STACK 1
1514
c98f8742
JVA
1515/* Output assembler code for a block containing the constant parts
1516 of a trampoline, leaving space for the variable parts. */
1517
a269a03c 1518/* On the 386, the trampoline contains two instructions:
c98f8742 1519 mov #STATIC,ecx
a269a03c
JC
1520 jmp FUNCTION
1521 The trampoline is generated entirely at runtime. The operand of JMP
1522 is the address of FUNCTION relative to the instruction following the
1523 JMP (which is 5 bytes long). */
c98f8742
JVA
1524
1525/* Length in units of the trampoline for entering a nested function. */
1526
39d04363 1527#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1528
1529/* Emit RTL insns to initialize the variable parts of a trampoline.
1530 FNADDR is an RTX for the address of the function's pure code.
1531 CXT is an RTX for the static chain value for the function. */
1532
d9a5f180
GS
1533#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1534 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1535\f
1536/* Definitions for register eliminations.
1537
1538 This is an array of structures. Each structure initializes one pair
1539 of eliminable registers. The "from" register number is given first,
1540 followed by "to". Eliminations of the same "from" register are listed
1541 in order of preference.
1542
afc2cd05
NC
1543 There are two registers that can always be eliminated on the i386.
1544 The frame pointer and the arg pointer can be replaced by either the
1545 hard frame pointer or to the stack pointer, depending upon the
1546 circumstances. The hard frame pointer is not used before reload and
1547 so it is not eligible for elimination. */
c98f8742 1548
564d80f4
JH
1549#define ELIMINABLE_REGS \
1550{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1551 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1552 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1553 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1554
2c5a510c
RH
1555/* Given FROM and TO register numbers, say whether this elimination is
1556 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1557
1558 All other eliminations are valid. */
1559
2c5a510c
RH
1560#define CAN_ELIMINATE(FROM, TO) \
1561 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1562
1563/* Define the offset between two registers, one to be eliminated, and the other
1564 its replacement, at the start of a routine. */
1565
d9a5f180
GS
1566#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1567 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1568\f
1569/* Addressing modes, and classification of registers for them. */
1570
c98f8742
JVA
1571/* Macros to check register numbers against specific register classes. */
1572
1573/* These assume that REGNO is a hard or pseudo reg number.
1574 They give nonzero only if REGNO is a hard reg of the suitable class
1575 or a pseudo reg currently allocated to a suitable hard reg.
1576 Since they use reg_renumber, they are safe only once reg_renumber
1577 has been allocated, which happens in local-alloc.c. */
1578
3f3f2124
JH
1579#define REGNO_OK_FOR_INDEX_P(REGNO) \
1580 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1581 || REX_INT_REGNO_P (REGNO) \
1582 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1583 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1584
3f3f2124 1585#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1586 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1587 || (REGNO) == ARG_POINTER_REGNUM \
1588 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1589 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1590
d9a5f180
GS
1591#define REGNO_OK_FOR_SIREG_P(REGNO) \
1592 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1593#define REGNO_OK_FOR_DIREG_P(REGNO) \
1594 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1595
1596/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1597 and check its validity for a certain class.
1598 We have two alternate definitions for each of them.
1599 The usual definition accepts all pseudo regs; the other rejects
1600 them unless they have been allocated suitable hard regs.
1601 The symbol REG_OK_STRICT causes the latter definition to be used.
1602
1603 Most source files want to accept pseudo regs in the hope that
1604 they will get allocated to the class that the insn wants them to be in.
1605 Source files for reload pass need to be strict.
1606 After reload, it makes no difference, since pseudo regs have
1607 been eliminated by then. */
1608
c98f8742 1609
ff482c8d 1610/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1611#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1612 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1613 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1614 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1615
3b3c6a3f 1616#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1617 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1618 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1619 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1620 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1621
3b3c6a3f
MM
1622/* Strict versions, hard registers only */
1623#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1624#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1625
3b3c6a3f 1626#ifndef REG_OK_STRICT
d9a5f180
GS
1627#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1628#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1629
1630#else
d9a5f180
GS
1631#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1632#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1633#endif
1634
1635/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1636 that is a valid memory address for an instruction.
1637 The MODE argument is the machine mode for the MEM expression
1638 that wants to use this address.
1639
1640 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1641 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1642
1643 See legitimize_pic_address in i386.c for details as to what
1644 constitutes a legitimate address when -fpic is used. */
1645
1646#define MAX_REGS_PER_ADDRESS 2
1647
f996902d 1648#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1649
1650/* Nonzero if the constant value X is a legitimate general operand.
1651 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1652
f996902d 1653#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1654
3b3c6a3f
MM
1655#ifdef REG_OK_STRICT
1656#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1657do { \
1658 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1659 goto ADDR; \
d9a5f180 1660} while (0)
c98f8742 1661
3b3c6a3f
MM
1662#else
1663#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1664do { \
1665 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1666 goto ADDR; \
d9a5f180 1667} while (0)
c98f8742 1668
3b3c6a3f
MM
1669#endif
1670
b949ea8b
JW
1671/* If defined, a C expression to determine the base term of address X.
1672 This macro is used in only one place: `find_base_term' in alias.c.
1673
1674 It is always safe for this macro to not be defined. It exists so
1675 that alias analysis can understand machine-dependent addresses.
1676
1677 The typical use of this macro is to handle addresses containing
1678 a label_ref or symbol_ref within an UNSPEC. */
1679
d9a5f180 1680#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1681
c98f8742
JVA
1682/* Try machine-dependent ways of modifying an illegitimate address
1683 to be legitimate. If we find one, return the new, valid address.
1684 This macro is used in only one place: `memory_address' in explow.c.
1685
1686 OLDX is the address as it was before break_out_memory_refs was called.
1687 In some cases it is useful to look at this to decide what needs to be done.
1688
1689 MODE and WIN are passed so that this macro can use
1690 GO_IF_LEGITIMATE_ADDRESS.
1691
1692 It is always safe for this macro to do nothing. It exists to recognize
1693 opportunities to optimize the output.
1694
1695 For the 80386, we handle X+REG by loading X into a register R and
1696 using R+REG. R will go in a general reg and indexing will be used.
1697 However, if REG is a broken-out memory address or multiplication,
1698 nothing needs to be done because REG can certainly go in a general reg.
1699
1700 When -fpic is used, special handling is needed for symbolic references.
1701 See comments by legitimize_pic_address in i386.c for details. */
1702
3b3c6a3f 1703#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1704do { \
1705 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1706 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1707 goto WIN; \
d9a5f180 1708} while (0)
c98f8742 1709
d9a5f180 1710#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1711
c98f8742 1712/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1713 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1714 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1715
f996902d 1716#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1717
1718#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1719 (GET_CODE (X) == SYMBOL_REF \
1720 || GET_CODE (X) == LABEL_REF \
1721 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1722
1723/* Go to LABEL if ADDR (a legitimate address expression)
1724 has an effect that depends on the machine mode it is used for.
1725 On the 80386, only postdecrement and postincrement address depend thus
1726 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
1727#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1728do { \
1729 if (GET_CODE (ADDR) == POST_INC \
1730 || GET_CODE (ADDR) == POST_DEC) \
1731 goto LABEL; \
1732} while (0)
c98f8742 1733\f
b08de47e
MM
1734/* Max number of args passed in registers. If this is more than 3, we will
1735 have problems with ebx (register #4), since it is a caller save register and
1736 is also used as the pic register in ELF. So for now, don't allow more than
1737 3 registers to be passed in registers. */
1738
d2836273
JH
1739#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1740
47a37ce4
UB
1741#define X87_REGPARM_MAX 3
1742
bcf17554
JH
1743#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1744
1745#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1746
c98f8742
JVA
1747\f
1748/* Specify the machine mode that this machine uses
1749 for the index in the tablejump instruction. */
6eb791fc 1750#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 1751
c98f8742
JVA
1752/* Define this as 1 if `char' should by default be signed; else as 0. */
1753#define DEFAULT_SIGNED_CHAR 1
1754
1755/* Max number of bytes we can move from memory to memory
1756 in one reasonably fast instruction. */
65d9c0ab
JH
1757#define MOVE_MAX 16
1758
1759/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1760 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1761 number of bytes we can move with a single instruction. */
65d9c0ab 1762#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1763
7e24ffc9 1764/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1765 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1766 Increasing the value will always make code faster, but eventually
1767 incurs high cost in increased code size.
c98f8742 1768
e2e52e1b 1769 If you don't define this, a reasonable default is used. */
c98f8742 1770
e2e52e1b 1771#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1772
45d78e7f
JJ
1773/* If a clear memory operation would take CLEAR_RATIO or more simple
1774 move-instruction sequences, we will do a clrmem or libcall instead. */
1775
1776#define CLEAR_RATIO (optimize_size ? 2 \
1777 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1778
c98f8742
JVA
1779/* Define if shifts truncate the shift count
1780 which implies one can omit a sign-extension or zero-extension
1781 of a shift count. */
892a2d68 1782/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1783
1784/* #define SHIFT_COUNT_TRUNCATED */
1785
1786/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1787 is done just by pretending it is already truncated. */
1788#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1789
d9f32422
JH
1790/* A macro to update M and UNSIGNEDP when an object whose type is
1791 TYPE and which has the specified mode and signedness is to be
1792 stored in a register. This macro is only called when TYPE is a
1793 scalar type.
1794
f710504c 1795 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1796 quantities to SImode. The choice depends on target type. */
1797
1798#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1799do { \
d9f32422
JH
1800 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1801 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1802 (MODE) = SImode; \
1803} while (0)
d9f32422 1804
c98f8742
JVA
1805/* Specify the machine mode that pointers have.
1806 After generation of rtl, the compiler makes no further distinction
1807 between pointers and any other objects of this machine mode. */
65d9c0ab 1808#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1809
1810/* A function address in a call instruction
1811 is a byte address (for indexing purposes)
1812 so give the MEM rtx a byte's mode. */
1813#define FUNCTION_MODE QImode
d4ba09c0 1814\f
96e7ae40
JH
1815/* A C expression for the cost of moving data from a register in class FROM to
1816 one in class TO. The classes are expressed using the enumeration values
1817 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1818 interpreted relative to that.
d4ba09c0 1819
96e7ae40
JH
1820 It is not required that the cost always equal 2 when FROM is the same as TO;
1821 on some machines it is expensive to move between registers if they are not
f84aa48a 1822 general registers. */
d4ba09c0 1823
f84aa48a 1824#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1825 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1826
1827/* A C expression for the cost of moving data of mode M between a
1828 register and memory. A value of 2 is the default; this cost is
1829 relative to those in `REGISTER_MOVE_COST'.
1830
1831 If moving between registers and memory is more expensive than
1832 between two registers, you should define this macro to express the
fa79946e 1833 relative cost. */
d4ba09c0 1834
d9a5f180
GS
1835#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1836 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1837
1838/* A C expression for the cost of a branch instruction. A value of 1
1839 is the default; other values are interpreted relative to that. */
1840
e075ae69 1841#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
1842
1843/* Define this macro as a C expression which is nonzero if accessing
1844 less than a word of memory (i.e. a `char' or a `short') is no
1845 faster than accessing a word of memory, i.e., if such access
1846 require more than one instruction or if there is no difference in
1847 cost between byte and (aligned) word loads.
1848
1849 When this macro is not defined, the compiler will access a field by
1850 finding the smallest containing object; when it is defined, a
1851 fullword load will be used if alignment permits. Unless bytes
1852 accesses are faster than word accesses, using word accesses is
1853 preferable since it may eliminate subsequent memory access if
1854 subsequent accesses occur to other fields in the same word of the
1855 structure, but to different bytes. */
1856
1857#define SLOW_BYTE_ACCESS 0
1858
1859/* Nonzero if access to memory by shorts is slow and undesirable. */
1860#define SLOW_SHORT_ACCESS 0
1861
d4ba09c0
SC
1862/* Define this macro to be the value 1 if unaligned accesses have a
1863 cost many times greater than aligned accesses, for example if they
1864 are emulated in a trap handler.
1865
9cd10576
KH
1866 When this macro is nonzero, the compiler will act as if
1867 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1868 moves. This can cause significantly more instructions to be
9cd10576 1869 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1870 accesses only add a cycle or two to the time for a memory access.
1871
1872 If the value of this macro is always zero, it need not be defined. */
1873
e1565e65 1874/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1875
d4ba09c0
SC
1876/* Define this macro if it is as good or better to call a constant
1877 function address than to call an address kept in a register.
1878
1879 Desirable on the 386 because a CALL with a constant address is
1880 faster than one with a register address. */
1881
1882#define NO_FUNCTION_CSE
c98f8742 1883\f
c572e5ba
JVA
1884/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1885 return the mode to be used for the comparison.
1886
1887 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1888 VOIDmode should be used in all other cases.
c572e5ba 1889
16189740 1890 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1891 possible, to allow for more combinations. */
c98f8742 1892
d9a5f180 1893#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1894
9cd10576 1895/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1896 reversed. */
1897
1898#define REVERSIBLE_CC_MODE(MODE) 1
1899
1900/* A C expression whose value is reversed condition code of the CODE for
1901 comparison done in CC_MODE mode. */
3c5cb3e4 1902#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1903
c98f8742
JVA
1904\f
1905/* Control the assembler format that we output, to the extent
1906 this does not vary between assemblers. */
1907
1908/* How to refer to registers in assembler output.
892a2d68 1909 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1910
21bf822e 1911/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
c98f8742
JVA
1912 For non floating point regs, the following are the HImode names.
1913
1914 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 1915 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 1916
a7180f70
BS
1917#define HI_REGISTER_NAMES \
1918{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1919 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
03c259ad 1920 "argp", "flags", "fpsr", "fpcr", "dirflag", "frame", \
a7180f70 1921 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1922 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1923 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1924 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1925
c98f8742
JVA
1926#define REGISTER_NAMES HI_REGISTER_NAMES
1927
1928/* Table of additional register names to use in user input. */
1929
1930#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1931{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1932 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1933 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1934 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1935 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1936 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1937
1938/* Note we are omitting these since currently I don't know how
1939to get gcc to use these, since they want the same but different
1940number as al, and ax.
1941*/
1942
c98f8742 1943#define QI_REGISTER_NAMES \
3f3f2124 1944{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1945
1946/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1947 of regs 0 through 3. */
c98f8742
JVA
1948
1949#define QI_HIGH_REGISTER_NAMES \
1950{"ah", "dh", "ch", "bh", }
1951
1952/* How to renumber registers for dbx and gdb. */
1953
d9a5f180
GS
1954#define DBX_REGISTER_NUMBER(N) \
1955 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1956
9a82e702
MS
1957extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1958extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1959extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1960
469ac993
JM
1961/* Before the prologue, RA is at 0(%esp). */
1962#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1963 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1964
e414ab29 1965/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1966#define RETURN_ADDR_RTX(COUNT, FRAME) \
1967 ((COUNT) == 0 \
1968 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1969 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1970
892a2d68 1971/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1972#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1973
a6ab3aad 1974/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1975#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1976
1020a5ab
RH
1977/* Describe how we implement __builtin_eh_return. */
1978#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1979#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1980
ad919812 1981
e4c4ebeb
RH
1982/* Select a format to encode pointers in exception handling data. CODE
1983 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1984 true if the symbol may be affected by dynamic relocations.
1985
1986 ??? All x86 object file formats are capable of representing this.
1987 After all, the relocation needed is the same as for the call insn.
1988 Whether or not a particular assembler allows us to enter such, I
1989 guess we'll have to see. */
d9a5f180 1990#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1991 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1992
c98f8742
JVA
1993/* This is how to output an insn to push a register on the stack.
1994 It need not be very fast code. */
1995
d9a5f180 1996#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1997do { \
1998 if (TARGET_64BIT) \
1999 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2000 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2001 else \
2002 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2003} while (0)
c98f8742
JVA
2004
2005/* This is how to output an insn to pop a register from the stack.
2006 It need not be very fast code. */
2007
d9a5f180 2008#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2009do { \
2010 if (TARGET_64BIT) \
2011 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2012 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2013 else \
2014 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2015} while (0)
c98f8742 2016
f88c65f7 2017/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2018
2019#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2020 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2021
f88c65f7 2022/* This is how to output an element of a case-vector that is relative. */
c98f8742 2023
33f7f353 2024#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2025 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2026
f7288899
EC
2027/* Under some conditions we need jump tables in the text section,
2028 because the assembler cannot handle label differences between
2029 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2030
2031#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2032 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2033 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2034
cea3bd3e
RH
2035/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2036 and switch back. For x86 we do this only to save a few bytes that
2037 would otherwise be unused in the text section. */
2038#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2039 asm (SECTION_OP "\n\t" \
2040 "call " USER_LABEL_PREFIX #FUNC "\n" \
2041 TEXT_SECTION_ASM_OP);
74b42c8b 2042\f
c98f8742
JVA
2043/* Print operand X (an rtx) in assembler syntax to file FILE.
2044 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2045 Effect of various CODE letters is described in i386.c near
2046 print_operand function. */
c98f8742 2047
d9a5f180 2048#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2049 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2050
2051#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2052 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2053
2054#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2055 print_operand_address ((FILE), (ADDR))
c98f8742 2056
f996902d
RH
2057#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2058do { \
2059 if (! output_addr_const_extra (FILE, (X))) \
2060 goto FAIL; \
2061} while (0);
2062
c98f8742
JVA
2063/* a letter which is not needed by the normal asm syntax, which
2064 we can use for operand syntax in the extended asm */
2065
2066#define ASM_OPERAND_LETTER '#'
c98f8742 2067#define RET return ""
d9a5f180 2068#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 2069\f
5bf0ebab
RH
2070/* Which processor to schedule for. The cpu attribute defines a list that
2071 mirrors this list, so changes to i386.md must be made at the same time. */
2072
2073enum processor_type
2074{
2075 PROCESSOR_I386, /* 80386 */
2076 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2077 PROCESSOR_PENTIUM,
2078 PROCESSOR_PENTIUMPRO,
cfe1b18f 2079 PROCESSOR_GEODE,
5bf0ebab
RH
2080 PROCESSOR_K6,
2081 PROCESSOR_ATHLON,
2082 PROCESSOR_PENTIUM4,
4977bab6 2083 PROCESSOR_K8,
89c43c0a 2084 PROCESSOR_NOCONA,
05f85dbb 2085 PROCESSOR_CORE2,
d326eaf0
JH
2086 PROCESSOR_GENERIC32,
2087 PROCESSOR_GENERIC64,
5bf0ebab
RH
2088 PROCESSOR_max
2089};
2090
9e555526 2091extern enum processor_type ix86_tune;
5bf0ebab 2092extern enum processor_type ix86_arch;
5bf0ebab
RH
2093
2094enum fpmath_unit
2095{
2096 FPMATH_387 = 1,
2097 FPMATH_SSE = 2
2098};
2099
2100extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2101
f996902d
RH
2102enum tls_dialect
2103{
2104 TLS_DIALECT_GNU,
5bf5a10b 2105 TLS_DIALECT_GNU2,
f996902d
RH
2106 TLS_DIALECT_SUN
2107};
2108
2109extern enum tls_dialect ix86_tls_dialect;
f996902d 2110
6189a572 2111enum cmodel {
5bf0ebab
RH
2112 CM_32, /* The traditional 32-bit ABI. */
2113 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2114 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2115 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2116 CM_LARGE, /* No assumptions. */
7dcbf659
JH
2117 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2118 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
6189a572
JH
2119};
2120
5bf0ebab 2121extern enum cmodel ix86_cmodel;
5bf0ebab 2122
8362f420
JH
2123/* Size of the RED_ZONE area. */
2124#define RED_ZONE_SIZE 128
2125/* Reserved area of the red zone for temporaries. */
2126#define RED_ZONE_RESERVE 8
c93e80a5
JH
2127
2128enum asm_dialect {
2129 ASM_ATT,
2130 ASM_INTEL
2131};
5bf0ebab 2132
80f33d06 2133extern enum asm_dialect ix86_asm_dialect;
95899b34 2134extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2135extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2136
2137/* Smallest class containing REGNO. */
2138extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2139
d9a5f180
GS
2140extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2141extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2142extern rtx ix86_compare_emitted;
22fb740d
JH
2143\f
2144/* To properly truncate FP values into integers, we need to set i387 control
2145 word. We can't emit proper mode switching code before reload, as spills
2146 generated by reload may truncate values incorrectly, but we still can avoid
2147 redundant computation of new control word by the mode switching pass.
2148 The fldcw instructions are still emitted redundantly, but this is probably
2149 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2150 the sequence.
22fb740d
JH
2151
2152 The machinery is to emit simple truncation instructions and split them
2153 before reload to instructions having USEs of two memory locations that
2154 are filled by this code to old and new control word.
fce5a9f2 2155
22fb740d
JH
2156 Post-reload pass may be later used to eliminate the redundant fildcw if
2157 needed. */
2158
ff680eb1
UB
2159enum ix86_entity
2160{
2161 I387_TRUNC = 0,
2162 I387_FLOOR,
2163 I387_CEIL,
2164 I387_MASK_PM,
2165 MAX_386_ENTITIES
2166};
2167
1cba2b96 2168enum ix86_stack_slot
ff680eb1
UB
2169{
2170 SLOT_TEMP = 0,
2171 SLOT_CW_STORED,
2172 SLOT_CW_TRUNC,
2173 SLOT_CW_FLOOR,
2174 SLOT_CW_CEIL,
2175 SLOT_CW_MASK_PM,
2176 MAX_386_STACK_LOCALS
2177};
22fb740d
JH
2178
2179/* Define this macro if the port needs extra instructions inserted
2180 for mode switching in an optimizing compilation. */
2181
ff680eb1
UB
2182#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2183 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2184
2185/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2186 initializer for an array of integers. Each initializer element N
2187 refers to an entity that needs mode switching, and specifies the
2188 number of different modes that might need to be set for this
2189 entity. The position of the initializer in the initializer -
2190 starting counting at zero - determines the integer that is used to
2191 refer to the mode-switched entity in question. */
2192
ff680eb1
UB
2193#define NUM_MODES_FOR_MODE_SWITCHING \
2194 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2195
2196/* ENTITY is an integer specifying a mode-switched entity. If
2197 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2198 return an integer value not larger than the corresponding element
2199 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2200 must be switched into prior to the execution of INSN. */
2201
2202#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2203
2204/* This macro specifies the order in which modes for ENTITY are
2205 processed. 0 is the highest priority. */
2206
d9a5f180 2207#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2208
2209/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2210 is the set of hard registers live at the point where the insn(s)
2211 are to be inserted. */
2212
2213#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2214 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2215 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2216 : 0)
ff680eb1 2217
0f0138b6
JH
2218\f
2219/* Avoid renaming of stack registers, as doing so in combination with
2220 scheduling just increases amount of live registers at time and in
2221 the turn amount of fxch instructions needed.
2222
43f3a59d 2223 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2224
d9a5f180 2225#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2226 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2227
3b3c6a3f 2228\f
e91f04de
CH
2229#define DLL_IMPORT_EXPORT_PREFIX '#'
2230
2231#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2232\f
2233struct machine_function GTY(())
2234{
2235 struct stack_local_entry *stack_locals;
2236 const char *some_ld_name;
150cdc9e 2237 rtx force_align_arg_pointer;
fa1a0d02
JH
2238 int save_varrargs_registers;
2239 int accesses_prev_frame;
ff680eb1 2240 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2241 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2242 determine the style used. */
2243 int use_fast_prologue_epilogue;
d7394366
JH
2244 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2245 for. */
2246 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2247 /* If true, the current function needs the default PIC register, not
2248 an alternate register (on x86) and must not use the red zone (on
2249 x86_64), even if it's a leaf function. We don't want the
2250 function to be regarded as non-leaf because TLS calls need not
2251 affect register allocation. This flag is set when a TLS call
2252 instruction is expanded within a function, and never reset, even
2253 if all such instructions are optimized away. Use the
2254 ix86_current_function_calls_tls_descriptor macro for a better
2255 approximation. */
2256 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2257};
2258
2259#define ix86_stack_locals (cfun->machine->stack_locals)
2260#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2261#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2262#define ix86_tls_descriptor_calls_expanded_in_cfun \
2263 (cfun->machine->tls_descriptor_call_expanded_p)
2264/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2265 calls are optimized away, we try to detect cases in which it was
2266 optimized away. Since such instructions (use (reg REG_SP)), we can
2267 verify whether there's any such instruction live by testing that
2268 REG_SP is live. */
2269#define ix86_current_function_calls_tls_descriptor \
2270 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
249e6b63 2271
1bc7c5b6
ZW
2272/* Control behavior of x86_file_start. */
2273#define X86_FILE_START_VERSION_DIRECTIVE false
2274#define X86_FILE_START_FLTUSED false
2275
7dcbf659
JH
2276/* Flag to mark data that is in the large address area. */
2277#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2278#define SYMBOL_REF_FAR_ADDR_P(X) \
2279 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
c98f8742
JVA
2280/*
2281Local variables:
2282version-control: t
2283End:
2284*/