]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
* guality/nrv-1.c: Add `used' attribute to a1.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
90922d36 80#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 81#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 82#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 83#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 84#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 85#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 86#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 87#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 88#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 89#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
90#define TARGET_ROUND TARGET_ISA_ROUND
91#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 92#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 93#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 94#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 95#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 96#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 97#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 98#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 99#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 100#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 101#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 102#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 103#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 104#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 105#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 106#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 107#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 108#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 109#define TARGET_AES TARGET_ISA_AES
bf7b5747 110#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
111#define TARGET_SHA TARGET_ISA_SHA
112#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
113#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
114#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
115#define TARGET_XSAVEC TARGET_ISA_XSAVEC
116#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
117#define TARGET_XSAVES TARGET_ISA_XSAVES
118#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 119#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 120#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
121#define TARGET_CMPXCHG16B TARGET_ISA_CX16
122#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 123#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 124#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 125#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 126#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 127#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 128#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
129#define TARGET_RTM TARGET_ISA_RTM
130#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 131#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 132#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 133#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 134#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 135#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 136#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 137#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 138#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 139#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 140#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 141#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 142#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 143#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 144#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
145#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
146#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
ab442df7 147
90922d36 148#define TARGET_LP64 TARGET_ABI_64
bf7b5747 149#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 150#define TARGET_X32 TARGET_ABI_X32
bf7b5747 151#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
152#define TARGET_16BIT TARGET_CODE16
153#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 154
cbf2e4d4
HJ
155/* SSE4.1 defines round instructions */
156#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 157#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 158
26b5109f
RS
159#include "config/vxworks-dummy.h"
160
7eb68c06 161#include "config/i386/i386-opts.h"
ccf8e764 162
c69fa2d4 163#define MAX_STRINGOP_ALGS 4
ccf8e764 164
8c996513
JH
165/* Specify what algorithm to use for stringops on known size.
166 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
167 known at compile time or estimated via feedback, the SIZE array
168 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 169 means infinity). Corresponding ALG is used then.
340ef734
JH
170 When NOALIGN is true the code guaranting the alignment of the memory
171 block is skipped.
172
8c996513 173 For example initializer:
4f3f76e6 174 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 175 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 176 be used otherwise. */
8c996513
JH
177struct stringop_algs
178{
179 const enum stringop_alg unknown_size;
180 const struct stringop_strategy {
181 const int max;
182 const enum stringop_alg alg;
340ef734 183 int noalign;
c69fa2d4 184 } size [MAX_STRINGOP_ALGS];
8c996513
JH
185};
186
d4ba09c0
SC
187/* Define the specific costs for a given cpu */
188
189struct processor_costs {
8b60264b
KG
190 const int add; /* cost of an add instruction */
191 const int lea; /* cost of a lea instruction */
192 const int shift_var; /* variable shift costs */
193 const int shift_const; /* constant shift costs */
f676971a 194 const int mult_init[5]; /* cost of starting a multiply
4977bab6 195 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 196 const int mult_bit; /* cost of multiply per each bit set */
f676971a 197 const int divide[5]; /* cost of a divide/mod
4977bab6 198 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
199 int movsx; /* The cost of movsx operation. */
200 int movzx; /* The cost of movzx operation. */
8b60264b
KG
201 const int large_insn; /* insns larger than this cost more */
202 const int move_ratio; /* The threshold of number of scalar
ac775968 203 memory-to-memory move insns. */
8b60264b
KG
204 const int movzbl_load; /* cost of loading using movzbl */
205 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
206 in QImode, HImode and SImode relative
207 to reg-reg move (2). */
8b60264b 208 const int int_store[3]; /* cost of storing integer register
96e7ae40 209 in QImode, HImode and SImode */
8b60264b
KG
210 const int fp_move; /* cost of reg,reg fld/fst */
211 const int fp_load[3]; /* cost of loading FP register
96e7ae40 212 in SFmode, DFmode and XFmode */
8b60264b 213 const int fp_store[3]; /* cost of storing FP register
96e7ae40 214 in SFmode, DFmode and XFmode */
8b60264b
KG
215 const int mmx_move; /* cost of moving MMX register. */
216 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 217 in SImode and DImode */
8b60264b 218 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 219 in SImode and DImode */
8b60264b
KG
220 const int sse_move; /* cost of moving SSE register. */
221 const int sse_load[3]; /* cost of loading SSE register
fa79946e 222 in SImode, DImode and TImode*/
8b60264b 223 const int sse_store[3]; /* cost of storing SSE register
fa79946e 224 in SImode, DImode and TImode*/
8b60264b 225 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 226 integer and vice versa. */
46cb0441
ZD
227 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
228 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
229 const int prefetch_block; /* bytes moved to cache for prefetch. */
230 const int simultaneous_prefetches; /* number of parallel prefetch
231 operations. */
4977bab6 232 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
233 const int fadd; /* cost of FADD and FSUB instructions. */
234 const int fmul; /* cost of FMUL instruction. */
235 const int fdiv; /* cost of FDIV instruction. */
236 const int fabs; /* cost of FABS instruction. */
237 const int fchs; /* cost of FCHS instruction. */
238 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 239 /* Specify what algorithm
bee51209 240 to use for stringops on unknown size. */
ad83025e 241 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
242 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
243 load and store. */
244 const int scalar_load_cost; /* Cost of scalar load. */
245 const int scalar_store_cost; /* Cost of scalar store. */
246 const int vec_stmt_cost; /* Cost of any vector operation, excluding
247 load, store, vector-to-scalar and
248 scalar-to-vector operation. */
249 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
250 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 251 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
252 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
253 const int vec_store_cost; /* Cost of vector store. */
254 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
255 cost model. */
256 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
257 vectorizer cost model. */
d4ba09c0
SC
258};
259
8b60264b 260extern const struct processor_costs *ix86_cost;
b2077fd2
JH
261extern const struct processor_costs ix86_size_cost;
262
263#define ix86_cur_cost() \
264 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 265
c98f8742
JVA
266/* Macros used in the machine description to test the flags. */
267
b97de419 268/* configure can arrange to change it. */
e075ae69 269
35b528be 270#ifndef TARGET_CPU_DEFAULT
b97de419 271#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 272#endif
35b528be 273
004d3859
GK
274#ifndef TARGET_FPMATH_DEFAULT
275#define TARGET_FPMATH_DEFAULT \
276 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
277#endif
278
bf7b5747
ST
279#ifndef TARGET_FPMATH_DEFAULT_P
280#define TARGET_FPMATH_DEFAULT_P(x) \
281 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
282#endif
283
6ac49599 284#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 285#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 286
5791cc29
JT
287/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
288 compile-time constant. */
289#ifdef IN_LIBGCC2
6ac49599 290#undef TARGET_64BIT
5791cc29
JT
291#ifdef __x86_64__
292#define TARGET_64BIT 1
293#else
294#define TARGET_64BIT 0
295#endif
296#else
6ac49599
RS
297#ifndef TARGET_BI_ARCH
298#undef TARGET_64BIT
e49080ec 299#undef TARGET_64BIT_P
67adf6a9 300#if TARGET_64BIT_DEFAULT
0c2dc519 301#define TARGET_64BIT 1
e49080ec 302#define TARGET_64BIT_P(x) 1
0c2dc519
JH
303#else
304#define TARGET_64BIT 0
e49080ec 305#define TARGET_64BIT_P(x) 0
0c2dc519
JH
306#endif
307#endif
5791cc29 308#endif
25f94bb5 309
750054a2
CT
310#define HAS_LONG_COND_BRANCH 1
311#define HAS_LONG_UNCOND_BRANCH 1
312
9e555526
RH
313#define TARGET_386 (ix86_tune == PROCESSOR_I386)
314#define TARGET_486 (ix86_tune == PROCESSOR_I486)
315#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
316#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 317#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
318#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
319#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
320#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
321#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 322#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 323#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 324#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
325#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
326#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 327#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
328#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
329#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 330#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 331#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 332#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 333#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 334#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 335#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 336#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 337#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 338#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 339
80fd744f
RH
340/* Feature tests against the various tunings. */
341enum ix86_tune_indices {
4b8bc035 342#undef DEF_TUNE
3ad20bd4 343#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
344#include "x86-tune.def"
345#undef DEF_TUNE
346X86_TUNE_LAST
80fd744f
RH
347};
348
ab442df7 349extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
350
351#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
352#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
353#define TARGET_ZERO_EXTEND_WITH_AND \
354 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 355#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
356#define TARGET_BRANCH_PREDICTION_HINTS \
357 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
358#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
359#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
360#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
361#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
362#define TARGET_PARTIAL_FLAG_REG_STALL \
363 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
364#define TARGET_LCP_STALL \
365 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
366#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
367#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
368#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
369#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
370#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
371#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
372#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
373#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
374#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
375#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
376#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
377#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
378 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
379#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
380#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
381#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
382#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
383#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
384#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
385#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
386#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
387#define TARGET_INTEGER_DFMODE_MOVES \
388 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
389#define TARGET_PARTIAL_REG_DEPENDENCY \
390 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
391#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
392 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
393#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
394 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
395#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
396 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
397#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
398 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
399#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
400#define TARGET_SSE_TYPELESS_STORES \
401 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
402#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
403#define TARGET_MEMORY_MISMATCH_STALL \
404 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
405#define TARGET_PROLOGUE_USING_MOVE \
406 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
407#define TARGET_EPILOGUE_USING_MOVE \
408 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
409#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
410#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
411#define TARGET_INTER_UNIT_MOVES_TO_VEC \
412 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
413#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
414 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
415#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 416 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
417#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
418#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
419#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
420#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
421#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
422#define TARGET_PAD_SHORT_FUNCTION \
423 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
424#define TARGET_EXT_80387_CONSTANTS \
425 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
426#define TARGET_AVOID_VECTOR_DECODE \
427 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
428#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
429 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
430#define TARGET_SLOW_IMUL_IMM32_MEM \
431 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
432#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
433#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
434#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
435#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
436#define TARGET_USE_VECTOR_FP_CONVERTS \
437 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
438#define TARGET_USE_VECTOR_CONVERTS \
439 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
440#define TARGET_SLOW_PSHUFB \
441 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
442#define TARGET_VECTOR_PARALLEL_EXECUTION \
443 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
444#define TARGET_FUSE_CMP_AND_BRANCH_32 \
445 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
446#define TARGET_FUSE_CMP_AND_BRANCH_64 \
447 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 448#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
449 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
450 : TARGET_FUSE_CMP_AND_BRANCH_32)
451#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
452 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
453#define TARGET_FUSE_ALU_AND_BRANCH \
454 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 455#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
456#define TARGET_AVOID_LEA_FOR_ADDR \
457 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
458#define TARGET_VECTORIZE_DOUBLE \
459 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
460#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
461 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
462#define TARGET_AVX128_OPTIMAL \
463 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
464#define TARGET_REASSOC_INT_TO_PARALLEL \
465 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
466#define TARGET_REASSOC_FP_TO_PARALLEL \
467 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
468#define TARGET_GENERAL_REGS_SSE_SPILL \
469 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
470#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
471 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 472#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 473 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
474#define TARGET_ADJUST_UNROLL \
475 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
df7b0cc4 476
80fd744f
RH
477/* Feature tests against the various architecture variations. */
478enum ix86_arch_indices {
cef31f9c 479 X86_ARCH_CMOV,
80fd744f
RH
480 X86_ARCH_CMPXCHG,
481 X86_ARCH_CMPXCHG8B,
482 X86_ARCH_XADD,
483 X86_ARCH_BSWAP,
484
485 X86_ARCH_LAST
486};
4f3f76e6 487
ab442df7 488extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 489
cef31f9c 490#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
491#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
492#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
493#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
494#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
495
cef31f9c
UB
496/* For sane SSE instruction set generation we need fcomi instruction.
497 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
498 expands to a sequence that includes conditional move. */
499#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
500
80fd744f
RH
501#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
502
cb261eb7 503extern unsigned char x86_prefetch_sse;
80fd744f
RH
504#define TARGET_PREFETCH_SSE x86_prefetch_sse
505
80fd744f
RH
506#define ASSEMBLER_DIALECT (ix86_asm_dialect)
507
508#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
509#define TARGET_MIX_SSE_I387 \
510 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
511
512#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
513#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
514#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 515#define TARGET_SUN_TLS 0
1ef45b77 516
67adf6a9
RH
517#ifndef TARGET_64BIT_DEFAULT
518#define TARGET_64BIT_DEFAULT 0
25f94bb5 519#endif
74dc3e94
RH
520#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
521#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
522#endif
25f94bb5 523
e0ea8797
AH
524#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
525#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
526
79f5e442
ZD
527/* Fence to use after loop using storent. */
528
529extern tree x86_mfence;
530#define FENCE_FOLLOWING_MOVNT x86_mfence
531
0ed4a390
JL
532/* Once GDB has been enhanced to deal with functions without frame
533 pointers, we can change this to allow for elimination of
534 the frame pointer in leaf functions. */
535#define TARGET_DEFAULT 0
67adf6a9 536
0a1c5e55
UB
537/* Extra bits to force. */
538#define TARGET_SUBTARGET_DEFAULT 0
539#define TARGET_SUBTARGET_ISA_DEFAULT 0
540
541/* Extra bits to force on w/ 32-bit mode. */
542#define TARGET_SUBTARGET32_DEFAULT 0
543#define TARGET_SUBTARGET32_ISA_DEFAULT 0
544
ccf8e764
RH
545/* Extra bits to force on w/ 64-bit mode. */
546#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 547#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 548
fee3eacd
IS
549/* Replace MACH-O, ifdefs by in-line tests, where possible.
550 (a) Macros defined in config/i386/darwin.h */
b069de3b 551#define TARGET_MACHO 0
9005471b 552#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
553#define MACHOPIC_ATT_STUB 0
554/* (b) Macros defined in config/darwin.h */
555#define MACHO_DYNAMIC_NO_PIC_P 0
556#define MACHOPIC_INDIRECT 0
557#define MACHOPIC_PURE 0
9005471b 558
5a579c3b
LE
559/* For the RDOS */
560#define TARGET_RDOS 0
561
9005471b 562/* For the Windows 64-bit ABI. */
7c800926
KT
563#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
564
6510e8bb
KT
565/* For the Windows 32-bit ABI. */
566#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
567
f81c9774
RH
568/* This is re-defined by cygming.h. */
569#define TARGET_SEH 0
570
a3d7ab92
KT
571/* This is re-defined by cygming.h. */
572#define TARGET_PECOFF 0
573
51212b32 574/* The default abi used by target. */
7c800926 575#define DEFAULT_ABI SYSV_ABI
ccf8e764 576
b8b3f0ca
LE
577/* The default TLS segment register used by target. */
578#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
579
cc69336f
RH
580/* Subtargets may reset this to 1 in order to enable 96-bit long double
581 with the rounding mode forced to 53 bits. */
582#define TARGET_96_ROUND_53_LONG_DOUBLE 0
583
682cd442
GK
584/* -march=native handling only makes sense with compiler running on
585 an x86 or x86_64 chip. If changing this condition, also change
586 the condition in driver-i386.c. */
587#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
588/* In driver-i386.c. */
589extern const char *host_detect_local_cpu (int argc, const char **argv);
590#define EXTRA_SPEC_FUNCTIONS \
591 { "local_cpu_detect", host_detect_local_cpu },
682cd442 592#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
593#endif
594
8981c15b
JM
595#if TARGET_64BIT_DEFAULT
596#define OPT_ARCH64 "!m32"
597#define OPT_ARCH32 "m32"
598#else
f0ea7581
L
599#define OPT_ARCH64 "m64|mx32"
600#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
601#endif
602
1cba2b96
EC
603/* Support for configure-time defaults of some command line options.
604 The order here is important so that -march doesn't squash the
605 tune or cpu values. */
ce998900 606#define OPTION_DEFAULT_SPECS \
da2d4c01 607 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
608 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
609 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 610 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
611 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
612 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
613 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
614 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
615 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 616
241e1a89
SC
617/* Specs for the compiler proper */
618
628714d8 619#ifndef CC1_CPU_SPEC
eb5bb0fd 620#define CC1_CPU_SPEC_1 ""
fa959ce4 621
682cd442 622#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
623#define CC1_CPU_SPEC CC1_CPU_SPEC_1
624#else
625#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
626"%{march=native:%>march=native %:local_cpu_detect(arch) \
627 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
628%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 629#endif
241e1a89 630#endif
c98f8742 631\f
30efe578 632/* Target CPU builtins. */
ab442df7
MM
633#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
634
635/* Target Pragmas. */
636#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 637
628714d8 638#ifndef CC1_SPEC
8015b78d 639#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
640#endif
641
642/* This macro defines names of additional specifications to put in the
643 specs that can be used in various specifications like CC1_SPEC. Its
644 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
645
646 Each subgrouping contains a string constant, that defines the
188fc5b5 647 specification name, and a string constant that used by the GCC driver
bcd86433
SC
648 program.
649
650 Do not define this macro if it does not need to do anything. */
651
652#ifndef SUBTARGET_EXTRA_SPECS
653#define SUBTARGET_EXTRA_SPECS
654#endif
655
656#define EXTRA_SPECS \
628714d8 657 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
658 SUBTARGET_EXTRA_SPECS
659\f
ce998900 660
d57a4b98
RH
661/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
662 FPU, assume that the fpcw is set to extended precision; when using
663 only SSE, rounding is correct; when using both SSE and the FPU,
664 the rounding precision is indeterminate, since either may be chosen
665 apparently at random. */
666#define TARGET_FLT_EVAL_METHOD \
5ccd517a 667 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 668
8ce94e44
JM
669/* Whether to allow x87 floating-point arithmetic on MODE (one of
670 SFmode, DFmode and XFmode) in the current excess precision
671 configuration. */
672#define X87_ENABLE_ARITH(MODE) \
673 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
674
675/* Likewise, whether to allow direct conversions from integer mode
676 IMODE (HImode, SImode or DImode) to MODE. */
677#define X87_ENABLE_FLOAT(MODE, IMODE) \
678 (flag_excess_precision == EXCESS_PRECISION_FAST \
679 || (MODE) == XFmode \
680 || ((MODE) == DFmode && (IMODE) == SImode) \
681 || (IMODE) == HImode)
682
979c67a5
UB
683/* target machine storage layout */
684
65d9c0ab
JH
685#define SHORT_TYPE_SIZE 16
686#define INT_TYPE_SIZE 32
f0ea7581
L
687#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
688#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 689#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 690#define FLOAT_TYPE_SIZE 32
65d9c0ab 691#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
692#define LONG_DOUBLE_TYPE_SIZE \
693 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 694
c637141a
L
695/* Define this to set long double type size to use in libgcc2.c, which can
696 not depend on target_flags. */
697#ifdef __LONG_DOUBLE_64__
698#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
699#elif defined (__LONG_DOUBLE_128__)
700#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
c637141a
L
701#else
702#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
703#endif
704
705#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 706
67adf6a9 707#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 708#define MAX_BITS_PER_WORD 64
0c2dc519
JH
709#else
710#define MAX_BITS_PER_WORD 32
0c2dc519
JH
711#endif
712
c98f8742
JVA
713/* Define this if most significant byte of a word is the lowest numbered. */
714/* That is true on the 80386. */
715
716#define BITS_BIG_ENDIAN 0
717
718/* Define this if most significant byte of a word is the lowest numbered. */
719/* That is not true on the 80386. */
720#define BYTES_BIG_ENDIAN 0
721
722/* Define this if most significant word of a multiword number is the lowest
723 numbered. */
724/* Not true for 80386 */
725#define WORDS_BIG_ENDIAN 0
726
c98f8742 727/* Width of a word, in units (bytes). */
4ae8027b 728#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
729
730#ifndef IN_LIBGCC2
2e64c636
JH
731#define MIN_UNITS_PER_WORD 4
732#endif
c98f8742 733
c98f8742 734/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 735#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 736
e075ae69 737/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 738#define STACK_BOUNDARY \
51212b32 739 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 740
2e3f842f
L
741/* Stack boundary of the main function guaranteed by OS. */
742#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
743
de1132d1 744/* Minimum stack boundary. */
5bfb2af2 745#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 746
d1f87653 747/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 748 aligned; the compiler cannot rely on having this alignment. */
e075ae69 749#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 750
de1132d1 751/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
752 both 32bit and 64bit, to support codes that need 128 bit stack
753 alignment for SSE instructions, but can't realign the stack. */
754#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
755
756/* 1 if -mstackrealign should be turned on by default. It will
757 generate an alternate prologue and epilogue that realigns the
758 runtime stack if nessary. This supports mixing codes that keep a
759 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 760 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
761#define STACK_REALIGN_DEFAULT 0
762
763/* Boundary (in *bits*) on which the incoming stack is aligned. */
764#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 765
a2851b75
TG
766/* According to Windows x64 software convention, the maximum stack allocatable
767 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
768 instructions allowed to adjust the stack pointer in the epilog, forcing the
769 use of frame pointer for frames larger than 2 GB. This theorical limit
770 is reduced by 256, an over-estimated upper bound for the stack use by the
771 prologue.
772 We define only one threshold for both the prolog and the epilog. When the
4e523f33 773 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
774 regs, then save them, and then allocate the remaining. There is no SEH
775 unwind info for this later allocation. */
776#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
777
ebff937c
SH
778/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
779 mandatory for the 64-bit ABI, and may or may not be true for other
780 operating systems. */
781#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
782
f963b5d9
RS
783/* Minimum allocation boundary for the code of a function. */
784#define FUNCTION_BOUNDARY 8
785
786/* C++ stores the virtual bit in the lowest bit of function pointers. */
787#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 788
c98f8742
JVA
789/* Minimum size in bits of the largest boundary to which any
790 and all fundamental data types supported by the hardware
791 might need to be aligned. No data type wants to be aligned
17f24ff0 792 rounder than this.
fce5a9f2 793
d1f87653 794 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
795 and Pentium Pro XFmode values at 128 bit boundaries. */
796
3f97cb0b
AI
797#define BIGGEST_ALIGNMENT \
798 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 799
2e3f842f
L
800/* Maximum stack alignment. */
801#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
802
6e4f1168
L
803/* Alignment value for attribute ((aligned)). It is a constant since
804 it is the part of the ABI. We shouldn't change it with -mavx. */
805#define ATTRIBUTE_ALIGNED_VALUE 128
806
822eda12 807/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 808#define ALIGN_MODE_128(MODE) \
4501d314 809 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 810
17f24ff0 811/* The published ABIs say that doubles should be aligned on word
d1f87653 812 boundaries, so lower the alignment for structure fields unless
6fc605d8 813 -malign-double is set. */
e932b21b 814
e83f3cff
RH
815/* ??? Blah -- this macro is used directly by libobjc. Since it
816 supports no vector modes, cut out the complexity and fall back
817 on BIGGEST_FIELD_ALIGNMENT. */
818#ifdef IN_TARGET_LIBS
ef49d42e
JH
819#ifdef __x86_64__
820#define BIGGEST_FIELD_ALIGNMENT 128
821#else
e83f3cff 822#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 823#endif
e83f3cff 824#else
e932b21b
JH
825#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
826 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 827#endif
c98f8742 828
e5e8a8bf 829/* If defined, a C expression to compute the alignment given to a
a7180f70 830 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
831 and ALIGN is the alignment that the object would ordinarily have.
832 The value of this macro is used instead of that alignment to align
833 the object.
834
835 If this macro is not defined, then ALIGN is used.
836
837 The typical use of this macro is to increase alignment for string
838 constants to be word aligned so that `strcpy' calls that copy
839 constants can be done inline. */
840
d9a5f180 841#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 842
8a022443
JW
843/* If defined, a C expression to compute the alignment for a static
844 variable. TYPE is the data type, and ALIGN is the alignment that
845 the object would ordinarily have. The value of this macro is used
846 instead of that alignment to align the object.
847
848 If this macro is not defined, then ALIGN is used.
849
850 One use of this macro is to increase alignment of medium-size
851 data to make it all fit in fewer cache lines. Another is to
852 cause character arrays to be word-aligned so that `strcpy' calls
853 that copy constants to character arrays can be done inline. */
854
df8a1d28
JJ
855#define DATA_ALIGNMENT(TYPE, ALIGN) \
856 ix86_data_alignment ((TYPE), (ALIGN), true)
857
858/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
859 some alignment increase, instead of optimization only purposes. E.g.
860 AMD x86-64 psABI says that variables with array type larger than 15 bytes
861 must be aligned to 16 byte boundaries.
862
863 If this macro is not defined, then ALIGN is used. */
864
865#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
866 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
867
868/* If defined, a C expression to compute the alignment for a local
869 variable. TYPE is the data type, and ALIGN is the alignment that
870 the object would ordinarily have. The value of this macro is used
871 instead of that alignment to align the object.
872
873 If this macro is not defined, then ALIGN is used.
874
875 One use of this macro is to increase alignment of medium-size
876 data to make it all fit in fewer cache lines. */
877
76fe54f0
L
878#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
879 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
880
881/* If defined, a C expression to compute the alignment for stack slot.
882 TYPE is the data type, MODE is the widest mode available, and ALIGN
883 is the alignment that the slot would ordinarily have. The value of
884 this macro is used instead of that alignment to align the slot.
885
886 If this macro is not defined, then ALIGN is used when TYPE is NULL,
887 Otherwise, LOCAL_ALIGNMENT will be used.
888
889 One use of this macro is to set alignment of stack slot to the
890 maximum alignment of all possible modes which the slot may have. */
891
892#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
893 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 894
9bfaf89d
JJ
895/* If defined, a C expression to compute the alignment for a local
896 variable DECL.
897
898 If this macro is not defined, then
899 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
900
901 One use of this macro is to increase alignment of medium-size
902 data to make it all fit in fewer cache lines. */
903
904#define LOCAL_DECL_ALIGNMENT(DECL) \
905 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
906
ae58e548
JJ
907/* If defined, a C expression to compute the minimum required alignment
908 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
909 MODE, assuming normal alignment ALIGN.
910
911 If this macro is not defined, then (ALIGN) will be used. */
912
913#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
914 ix86_minimum_alignment (EXP, MODE, ALIGN)
915
9bfaf89d 916
9cd10576 917/* Set this nonzero if move instructions will actually fail to work
c98f8742 918 when given unaligned data. */
b4ac57ab 919#define STRICT_ALIGNMENT 0
c98f8742
JVA
920
921/* If bit field type is int, don't let it cross an int,
922 and give entire struct the alignment of an int. */
43a88a8c 923/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 924#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
925\f
926/* Standard register usage. */
927
928/* This processor has special stack-like registers. See reg-stack.c
892a2d68 929 for details. */
c98f8742
JVA
930
931#define STACK_REGS
ce998900 932
d9a5f180 933#define IS_STACK_MODE(MODE) \
63001560
UB
934 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
935 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 936 || (MODE) == XFmode)
c98f8742
JVA
937
938/* Number of actual hardware registers.
939 The hardware registers are assigned numbers for the compiler
940 from 0 to just below FIRST_PSEUDO_REGISTER.
941 All registers that the compiler knows about must be given numbers,
942 even those that are not normally considered general registers.
943
944 In the 80386 we give the 8 general purpose registers the numbers 0-7.
945 We number the floating point registers 8-15.
946 Note that registers 0-7 can be accessed as a short or int,
947 while only 0-3 may be used with byte `mov' instructions.
948
949 Reg 16 does not correspond to any hardware register, but instead
950 appears in the RTL as an argument pointer prior to reload, and is
951 eliminated during reloading in favor of either the stack or frame
892a2d68 952 pointer. */
c98f8742 953
089d1227 954#define FIRST_PSEUDO_REGISTER 77
c98f8742 955
3073d01c
ML
956/* Number of hardware registers that go into the DWARF-2 unwind info.
957 If not defined, equals FIRST_PSEUDO_REGISTER. */
958
959#define DWARF_FRAME_REGISTERS 17
960
c98f8742
JVA
961/* 1 for registers that have pervasive standard uses
962 and are not available for the register allocator.
3f3f2124 963 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 964
621bc046
UB
965 REX registers are disabled for 32bit targets in
966 TARGET_CONDITIONAL_REGISTER_USAGE. */
967
a7180f70
BS
968#define FIXED_REGISTERS \
969/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 970{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
971/*arg,flags,fpsr,fpcr,frame*/ \
972 1, 1, 1, 1, 1, \
a7180f70
BS
973/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
974 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 975/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
976 0, 0, 0, 0, 0, 0, 0, 0, \
977/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 978 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 979/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
980 0, 0, 0, 0, 0, 0, 0, 0, \
981/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
982 0, 0, 0, 0, 0, 0, 0, 0, \
983/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
984 0, 0, 0, 0, 0, 0, 0, 0, \
985/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 986 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
987
988/* 1 for registers not available across function calls.
989 These must include the FIXED_REGISTERS and also any
990 registers that can be used without being saved.
991 The latter must include the registers where values are returned
992 and the register where structure-value addresses are passed.
fce5a9f2
EC
993 Aside from that, you can include as many other registers as you like.
994
621bc046
UB
995 Value is set to 1 if the register is call used unconditionally.
996 Bit one is set if the register is call used on TARGET_32BIT ABI.
997 Bit two is set if the register is call used on TARGET_64BIT ABI.
998 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
999
1000 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1001
a7180f70
BS
1002#define CALL_USED_REGISTERS \
1003/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1004{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1005/*arg,flags,fpsr,fpcr,frame*/ \
1006 1, 1, 1, 1, 1, \
a7180f70 1007/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1008 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1009/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1010 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1011/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1012 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1013/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1014 6, 6, 6, 6, 6, 6, 6, 6, \
1015/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1016 6, 6, 6, 6, 6, 6, 6, 6, \
1017/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1018 6, 6, 6, 6, 6, 6, 6, 6, \
1019 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 1020 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1021
3b3c6a3f
MM
1022/* Order in which to allocate registers. Each register must be
1023 listed once, even those in FIXED_REGISTERS. List frame pointer
1024 late and fixed registers last. Note that, in general, we prefer
1025 registers listed in CALL_USED_REGISTERS, keeping the others
1026 available for storage of persistent values.
1027
5a733826 1028 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1029 so this is just empty initializer for array. */
3b3c6a3f 1030
162f023b
JH
1031#define REG_ALLOC_ORDER \
1032{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1033 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1034 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1035 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
089d1227 1036 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1037
5a733826 1038/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1039 to be rearranged based on a particular function. When using sse math,
03c259ad 1040 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1041
5a733826 1042#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1043
f5316dfe 1044
7c800926
KT
1045#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1046
c98f8742
JVA
1047/* Return number of consecutive hard regs needed starting at reg REGNO
1048 to hold something of mode MODE.
1049 This is ordinarily the length in words of a value of mode MODE
1050 but can be less for certain modes in special long registers.
1051
fce5a9f2 1052 Actually there are no two word move instructions for consecutive
c98f8742 1053 registers. And only registers 0-3 may have mov byte instructions
63001560 1054 applied to them. */
c98f8742 1055
ce998900 1056#define HARD_REGNO_NREGS(REGNO, MODE) \
9e4a4dd6
AI
1057 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) \
1058 || MMX_REGNO_P (REGNO) || MASK_REGNO_P (REGNO) \
92d0fb09 1059 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1060 : ((MODE) == XFmode \
92d0fb09 1061 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1062 : (MODE) == XCmode \
92d0fb09 1063 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1064 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1065
8521c414
JM
1066#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1067 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1068 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1069 ? 0 \
1070 : ((MODE) == XFmode || (MODE) == XCmode)) \
1071 : 0)
1072
1073#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1074
95879c72
L
1075#define VALID_AVX256_REG_MODE(MODE) \
1076 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1077 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1078 || (MODE) == V4DFmode)
95879c72 1079
4ac005ba 1080#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1081 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1082
3f97cb0b
AI
1083#define VALID_AVX512F_SCALAR_MODE(MODE) \
1084 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1085 || (MODE) == SFmode)
1086
1087#define VALID_AVX512F_REG_MODE(MODE) \
1088 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1089 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1090 || (MODE) == V4TImode)
1091
1092#define VALID_AVX512VL_128_REG_MODE(MODE) \
1093 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1094 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1095
ce998900
UB
1096#define VALID_SSE2_REG_MODE(MODE) \
1097 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1098 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1099
d9a5f180 1100#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1101 ((MODE) == V1TImode || (MODE) == TImode \
1102 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1103 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1104
47f339cf 1105#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1106 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1107
d9a5f180 1108#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1109 ((MODE == V1DImode) || (MODE) == DImode \
1110 || (MODE) == V2SImode || (MODE) == SImode \
1111 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1112
ce998900
UB
1113#define VALID_DFP_MODE_P(MODE) \
1114 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1115
d9a5f180 1116#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1117 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1118 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1119
d9a5f180 1120#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1121 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1122 || (MODE) == DImode \
1123 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1124 || (MODE) == CDImode \
1125 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1126 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1127
822eda12 1128/* Return true for modes passed in SSE registers. */
ce998900 1129#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1130 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1131 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1132 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1133 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1134 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1135 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1136 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1137 || (MODE) == V16SFmode)
822eda12 1138
85a77221
AI
1139#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1140
9e4a4dd6
AI
1141#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1142
e075ae69 1143/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1144
a946dd00 1145#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1146 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1147
1148/* Value is 1 if it is a good idea to tie two pseudo registers
1149 when one has mode MODE1 and one has mode MODE2.
1150 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1151 for any hard reg, then this must be 0 for correct output. */
1152
c1c5b5e3 1153#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1154
ff25ef99
ZD
1155/* It is possible to write patterns to move flags; but until someone
1156 does it, */
1157#define AVOID_CCMODE_COPIES
c98f8742 1158
e075ae69 1159/* Specify the modes required to caller save a given hard regno.
787dc842 1160 We do this on i386 to prevent flags from being saved at all.
e075ae69 1161
787dc842
JH
1162 Kill any attempts to combine saving of modes. */
1163
d9a5f180
GS
1164#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1165 (CC_REGNO_P (REGNO) ? VOIDmode \
1166 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1167 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1168 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1169 || MASK_REGNO_P (REGNO)) ? SImode \
1170 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1171 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1172 : (MODE))
ce998900 1173
51ba747a
RH
1174/* The only ABI that saves SSE registers across calls is Win64 (thus no
1175 need to check the current ABI here), and with AVX enabled Win64 only
1176 guarantees that the low 16 bytes are saved. */
1177#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1178 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1179
c98f8742
JVA
1180/* Specify the registers used for certain standard purposes.
1181 The values of these macros are register numbers. */
1182
1183/* on the 386 the pc register is %eip, and is not usable as a general
1184 register. The ordinary mov instructions won't work */
1185/* #define PC_REGNUM */
1186
1187/* Register to use for pushing function arguments. */
1188#define STACK_POINTER_REGNUM 7
1189
1190/* Base register for access to local variables of the function. */
564d80f4
JH
1191#define HARD_FRAME_POINTER_REGNUM 6
1192
1193/* Base register for access to local variables of the function. */
b0d95de8 1194#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1195
1196/* First floating point reg */
1197#define FIRST_FLOAT_REG 8
1198
1199/* First & last stack-like regs */
1200#define FIRST_STACK_REG FIRST_FLOAT_REG
1201#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1202
a7180f70
BS
1203#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1204#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1205
3f97cb0b 1206#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1207#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1208
3f97cb0b 1209#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1210#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1211
3f97cb0b 1212#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1213#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1214
3f97cb0b
AI
1215#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1216#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1217
85a77221
AI
1218#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1219#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1220
aabcd309 1221/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1222 requiring a frame pointer. */
1223#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1224#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1225#endif
1226
1227/* Make sure we can access arbitrary call frames. */
1228#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1229
1230/* Base register for access to arguments of the function. */
1231#define ARG_POINTER_REGNUM 16
1232
c98f8742 1233/* Register to hold the addressing base for position independent
5b43fed1
RH
1234 code access to data items. We don't use PIC pointer for 64bit
1235 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1236 pessimizing code dealing with EBX.
bd09bdeb
RH
1237
1238 To avoid clobbering a call-saved register unnecessarily, we renumber
1239 the pic register when possible. The change is visible after the
1240 prologue has been emitted. */
1241
2e3f842f 1242#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1243
1244#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1245 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1246 || TARGET_PECOFF)) \
7dcbf659 1247 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1248 : reload_completed ? REGNO (pic_offset_table_rtx) \
1249 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1250
5fc0e5df
KW
1251#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1252
c51e6d85 1253/* This is overridden by <cygwin.h>. */
5e062767
DS
1254#define MS_AGGREGATE_RETURN 0
1255
61fec9ff 1256#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1257\f
1258/* Define the classes of registers for register constraints in the
1259 machine description. Also define ranges of constants.
1260
1261 One of the classes must always be named ALL_REGS and include all hard regs.
1262 If there is more than one class, another class must be named NO_REGS
1263 and contain no registers.
1264
1265 The name GENERAL_REGS must be the name of a class (or an alias for
1266 another name such as ALL_REGS). This is the class of registers
1267 that is allowed by "g" or "r" in a register constraint.
1268 Also, registers outside this class are allocated only when
1269 instructions express preferences for them.
1270
1271 The classes must be numbered in nondecreasing order; that is,
1272 a larger-numbered class must never be contained completely
1273 in a smaller-numbered class.
1274
1275 For any two classes, it is very desirable that there be another
ab408a86
JVA
1276 class that represents their union.
1277
1278 It might seem that class BREG is unnecessary, since no useful 386
1279 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1280 and the "b" register constraint is useful in asms for syscalls.
1281
03c259ad 1282 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1283
1284enum reg_class
1285{
1286 NO_REGS,
e075ae69 1287 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1288 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1289 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1290 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1291 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1292 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1293 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1294 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1295 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1296 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1297 FLOAT_REGS,
06f4e35d 1298 SSE_FIRST_REG,
a7180f70 1299 SSE_REGS,
3f97cb0b
AI
1300 EVEX_SSE_REGS,
1301 ALL_SSE_REGS,
a7180f70 1302 MMX_REGS,
446988df
JH
1303 FP_TOP_SSE_REGS,
1304 FP_SECOND_SSE_REGS,
1305 FLOAT_SSE_REGS,
1306 FLOAT_INT_REGS,
1307 INT_SSE_REGS,
1308 FLOAT_INT_SSE_REGS,
85a77221
AI
1309 MASK_EVEX_REGS,
1310 MASK_REGS,
c98f8742
JVA
1311 ALL_REGS, LIM_REG_CLASSES
1312};
1313
d9a5f180
GS
1314#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1315
1316#define INTEGER_CLASS_P(CLASS) \
1317 reg_class_subset_p ((CLASS), GENERAL_REGS)
1318#define FLOAT_CLASS_P(CLASS) \
1319 reg_class_subset_p ((CLASS), FLOAT_REGS)
1320#define SSE_CLASS_P(CLASS) \
3f97cb0b 1321 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1322#define MMX_CLASS_P(CLASS) \
f75959a6 1323 ((CLASS) == MMX_REGS)
d9a5f180
GS
1324#define MAYBE_INTEGER_CLASS_P(CLASS) \
1325 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1326#define MAYBE_FLOAT_CLASS_P(CLASS) \
1327 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1328#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1329 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1330#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1331 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1332#define MAYBE_MASK_CLASS_P(CLASS) \
1333 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1334
1335#define Q_CLASS_P(CLASS) \
1336 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1337
0bd72901
UB
1338#define MAYBE_NON_Q_CLASS_P(CLASS) \
1339 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1340
43f3a59d 1341/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1342
1343#define REG_CLASS_NAMES \
1344{ "NO_REGS", \
ab408a86 1345 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1346 "SIREG", "DIREG", \
e075ae69
RH
1347 "AD_REGS", \
1348 "Q_REGS", "NON_Q_REGS", \
c98f8742 1349 "INDEX_REGS", \
3f3f2124 1350 "LEGACY_REGS", \
621bc046 1351 "CLOBBERED_REGS", \
c98f8742
JVA
1352 "GENERAL_REGS", \
1353 "FP_TOP_REG", "FP_SECOND_REG", \
1354 "FLOAT_REGS", \
cb482895 1355 "SSE_FIRST_REG", \
a7180f70 1356 "SSE_REGS", \
3f97cb0b
AI
1357 "EVEX_SSE_REGS", \
1358 "ALL_SSE_REGS", \
a7180f70 1359 "MMX_REGS", \
446988df
JH
1360 "FP_TOP_SSE_REGS", \
1361 "FP_SECOND_SSE_REGS", \
1362 "FLOAT_SSE_REGS", \
8fcaaa80 1363 "FLOAT_INT_REGS", \
446988df
JH
1364 "INT_SSE_REGS", \
1365 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1366 "MASK_EVEX_REGS", \
1367 "MASK_REGS", \
c98f8742
JVA
1368 "ALL_REGS" }
1369
ac2e563f
RH
1370/* Define which registers fit in which classes. This is an initializer
1371 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1372
621bc046
UB
1373 Note that CLOBBERED_REGS are calculated by
1374 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1375
3f97cb0b 1376#define REG_CLASS_CONTENTS \
089d1227
IE
1377{ { 0x00, 0x0, 0x0 }, \
1378 { 0x01, 0x0, 0x0 }, /* AREG */ \
1379 { 0x02, 0x0, 0x0 }, /* DREG */ \
1380 { 0x04, 0x0, 0x0 }, /* CREG */ \
1381 { 0x08, 0x0, 0x0 }, /* BREG */ \
1382 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1383 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1384 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1385 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1386 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1387 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1388 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1389 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1390 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1391 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1392 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1393 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1394 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1395{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1396 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1397{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1398{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1399{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1400{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1401{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1402{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1403{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1404{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1405 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1406 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1407{ 0xffffffff,0xffffffff,0x1fff } \
e075ae69 1408}
c98f8742
JVA
1409
1410/* The same information, inverted:
1411 Return the class number of the smallest class containing
1412 reg number REGNO. This could be a conditional expression
1413 or could index an array. */
1414
c98f8742
JVA
1415#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1416
42db504c
SB
1417/* When this hook returns true for MODE, the compiler allows
1418 registers explicitly used in the rtl to be used as spill registers
1419 but prevents the compiler from extending the lifetime of these
1420 registers. */
1421#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1422
fc27f749
UB
1423#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1424#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1425
1426#define GENERAL_REG_P(X) \
6189a572 1427 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1428#define GENERAL_REGNO_P(N) \
1429 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1430
fc27f749
UB
1431#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1432#define ANY_QI_REGNO_P(N) \
1433 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1434
fc27f749 1435#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1436#define REX_INT_REGNO_P(N) \
1437 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1438
66aaf16f
UB
1439#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1440#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1441
446988df 1442#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1443#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1444
54a88090 1445#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1446 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1447
fc27f749 1448#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1449#define SSE_REGNO_P(N) \
1450 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1451 || REX_SSE_REGNO_P (N) \
1452 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1453
4977bab6 1454#define REX_SSE_REGNO_P(N) \
fb84c7a0 1455 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1456
3f97cb0b
AI
1457#define EXT_REX_SSE_REGNO_P(N) \
1458 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1459
d9a5f180 1460#define SSE_REGNO(N) \
3f97cb0b
AI
1461 ((N) < 8 ? FIRST_SSE_REG + (N) \
1462 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1463 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1464
9e4a4dd6 1465#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221
AI
1466#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1467#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1468
d9a5f180 1469#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1470 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1471
cbf2e4d4
HJ
1472#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1473 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1474 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1475
fc27f749 1476#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1477#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1478
fc27f749 1479#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1480
e075ae69
RH
1481#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1482#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1483
c98f8742
JVA
1484/* The class value for index registers, and the one for base regs. */
1485
1486#define INDEX_REG_CLASS INDEX_REGS
1487#define BASE_REG_CLASS GENERAL_REGS
1488
c98f8742 1489/* Place additional restrictions on the register class to use when it
4cbb525c 1490 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1491 register for which class CLASS would ordinarily be used.
1492
1493 We avoid classes containing registers from multiple units due to
1494 the limitation in ix86_secondary_memory_needed. We limit these
1495 classes to their "natural mode" single unit register class, depending
1496 on the unit availability.
1497
1498 Please note that reg_class_subset_p is not commutative, so these
1499 conditions mean "... if (CLASS) includes ALL registers from the
1500 register set." */
1501
1502#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1503 (((MODE) == QImode && !TARGET_64BIT \
1504 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1505 : (((MODE) == SImode || (MODE) == DImode) \
1506 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1507 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1508 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1509 : (X87_FLOAT_MODE_P (MODE) \
1510 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1511 : (CLASS))
c98f8742 1512
85ff473e 1513/* If we are copying between general and FP registers, we need a memory
f84aa48a 1514 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1515#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1516 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1517
c62b3659
UB
1518/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1519 There is no need to emit full 64 bit move on 64 bit targets
1520 for integral modes that can be moved using 32 bit move. */
1521#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1522 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1523 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1524 : MODE)
1525
1272914c
RH
1526/* Return a class of registers that cannot change FROM mode to TO mode. */
1527
1528#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1529 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1530\f
1531/* Stack layout; function entry, exit and calling. */
1532
1533/* Define this if pushing a word on the stack
1534 makes the stack pointer a smaller address. */
1535#define STACK_GROWS_DOWNWARD
1536
a4d05547 1537/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1538 is at the high-address end of the local variables;
1539 that is, each additional local variable allocated
1540 goes at a more negative offset in the frame. */
f62c8a5c 1541#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1542
1543/* Offset within stack frame to start allocating local variables at.
1544 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1545 first local allocated. Otherwise, it is the offset to the BEGINNING
1546 of the first local allocated. */
1547#define STARTING_FRAME_OFFSET 0
1548
8c2b2fae
UB
1549/* If we generate an insn to push BYTES bytes, this says how many the stack
1550 pointer really advances by. On 386, we have pushw instruction that
1551 decrements by exactly 2 no matter what the position was, there is no pushb.
1552
1553 But as CIE data alignment factor on this arch is -4 for 32bit targets
1554 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1555 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1556
d2836273 1557#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1558 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1559
1560/* If defined, the maximum amount of space required for outgoing arguments
1561 will be computed and placed into the variable `crtl->outgoing_args_size'.
1562 No space will be pushed onto the stack for each call; instead, the
1563 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1564
1565 In 32bit mode enabling argument accumulation results in about 5% code size
1566 growth becuase move instructions are less compact than push. In 64bit
1567 mode the difference is less drastic but visible.
1568
1569 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1570 actually grow with accumulation. Is that because accumulated args
41ee845b 1571 unwind info became unnecesarily bloated?
f830ddc2
RH
1572
1573 With the 64-bit MS ABI, we can generate correct code with or without
1574 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1575 generated without accumulated args is terrible.
41ee845b
JH
1576
1577 If stack probes are required, the space used for large function
1578 arguments on the stack must also be probed, so enable
1579 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1580
6c6094f1 1581#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1582 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1583 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1584
1585/* If defined, a C expression whose value is nonzero when we want to use PUSH
1586 instructions to pass outgoing arguments. */
1587
1588#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1589
2da4124d
L
1590/* We want the stack and args grow in opposite directions, even if
1591 PUSH_ARGS is 0. */
1592#define PUSH_ARGS_REVERSED 1
1593
c98f8742
JVA
1594/* Offset of first parameter from the argument pointer register value. */
1595#define FIRST_PARM_OFFSET(FNDECL) 0
1596
a7180f70
BS
1597/* Define this macro if functions should assume that stack space has been
1598 allocated for arguments even when their values are passed in registers.
1599
1600 The value of this macro is the size, in bytes, of the area reserved for
1601 arguments passed in registers for the function represented by FNDECL.
1602
1603 This space can be allocated by the caller, or be a part of the
1604 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1605 which. */
7c800926
KT
1606#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1607
4ae8027b 1608#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1609 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1610
c98f8742
JVA
1611/* Define how to find the value returned by a library function
1612 assuming the value has mode MODE. */
1613
4ae8027b 1614#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1615
e9125c09
TW
1616/* Define the size of the result block used for communication between
1617 untyped_call and untyped_return. The block contains a DImode value
1618 followed by the block used by fnsave and frstor. */
1619
1620#define APPLY_RESULT_SIZE (8+108)
1621
b08de47e 1622/* 1 if N is a possible register number for function argument passing. */
53c17031 1623#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1624
1625/* Define a data type for recording info about an argument list
1626 during the scan of that argument list. This data type should
1627 hold all necessary information about the function itself
1628 and about the args processed so far, enough to enable macros
b08de47e 1629 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1630
e075ae69 1631typedef struct ix86_args {
fa283935 1632 int words; /* # words passed so far */
b08de47e
MM
1633 int nregs; /* # registers available for passing */
1634 int regno; /* next available register number */
3e65f251
KT
1635 int fastcall; /* fastcall or thiscall calling convention
1636 is used */
fa283935 1637 int sse_words; /* # sse words passed so far */
a7180f70 1638 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1639 int warn_avx512f; /* True when we want to warn
1640 about AVX512F ABI. */
95879c72 1641 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1642 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1643 int warn_mmx; /* True when we want to warn about MMX ABI. */
1644 int sse_regno; /* next available sse register number */
1645 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1646 int mmx_nregs; /* # mmx registers available for passing */
1647 int mmx_regno; /* next available mmx register number */
892a2d68 1648 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1649 int caller; /* true if it is caller. */
2824d6e5
UB
1650 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1651 SFmode/DFmode arguments should be passed
1652 in SSE registers. Otherwise 0. */
51212b32 1653 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1654 MS_ABI for ms abi. */
b08de47e 1655} CUMULATIVE_ARGS;
c98f8742
JVA
1656
1657/* Initialize a variable CUM of type CUMULATIVE_ARGS
1658 for a call to a function whose data type is FNTYPE.
b08de47e 1659 For a library call, FNTYPE is 0. */
c98f8742 1660
0f6937fe 1661#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1662 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1663 (N_NAMED_ARGS) != -1)
c98f8742 1664
c98f8742
JVA
1665/* Output assembler code to FILE to increment profiler label # LABELNO
1666 for profiling a function entry. */
1667
a5fa1ecd
JH
1668#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1669
1670#define MCOUNT_NAME "_mcount"
1671
3c5273a9
KT
1672#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1673
a5fa1ecd 1674#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1675
1676/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1677 the stack pointer does not matter. The value is tested only in
1678 functions that have frame pointers.
1679 No definition is equivalent to always zero. */
fce5a9f2 1680/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1681 we have to restore it ourselves from the frame pointer, in order to
1682 use pop */
1683
1684#define EXIT_IGNORE_STACK 1
1685
c98f8742
JVA
1686/* Output assembler code for a block containing the constant parts
1687 of a trampoline, leaving space for the variable parts. */
1688
a269a03c 1689/* On the 386, the trampoline contains two instructions:
c98f8742 1690 mov #STATIC,ecx
a269a03c
JC
1691 jmp FUNCTION
1692 The trampoline is generated entirely at runtime. The operand of JMP
1693 is the address of FUNCTION relative to the instruction following the
1694 JMP (which is 5 bytes long). */
c98f8742
JVA
1695
1696/* Length in units of the trampoline for entering a nested function. */
1697
3452586b 1698#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1699\f
1700/* Definitions for register eliminations.
1701
1702 This is an array of structures. Each structure initializes one pair
1703 of eliminable registers. The "from" register number is given first,
1704 followed by "to". Eliminations of the same "from" register are listed
1705 in order of preference.
1706
afc2cd05
NC
1707 There are two registers that can always be eliminated on the i386.
1708 The frame pointer and the arg pointer can be replaced by either the
1709 hard frame pointer or to the stack pointer, depending upon the
1710 circumstances. The hard frame pointer is not used before reload and
1711 so it is not eligible for elimination. */
c98f8742 1712
564d80f4
JH
1713#define ELIMINABLE_REGS \
1714{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1715 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1716 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1717 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1718
c98f8742
JVA
1719/* Define the offset between two registers, one to be eliminated, and the other
1720 its replacement, at the start of a routine. */
1721
d9a5f180
GS
1722#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1723 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1724\f
1725/* Addressing modes, and classification of registers for them. */
1726
c98f8742
JVA
1727/* Macros to check register numbers against specific register classes. */
1728
1729/* These assume that REGNO is a hard or pseudo reg number.
1730 They give nonzero only if REGNO is a hard reg of the suitable class
1731 or a pseudo reg currently allocated to a suitable hard reg.
1732 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1733 has been allocated, which happens in reginfo.c during register
1734 allocation. */
c98f8742 1735
3f3f2124
JH
1736#define REGNO_OK_FOR_INDEX_P(REGNO) \
1737 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1738 || REX_INT_REGNO_P (REGNO) \
1739 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1740 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1741
3f3f2124 1742#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1743 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1744 || (REGNO) == ARG_POINTER_REGNUM \
1745 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1746 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1747
c98f8742
JVA
1748/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1749 and check its validity for a certain class.
1750 We have two alternate definitions for each of them.
1751 The usual definition accepts all pseudo regs; the other rejects
1752 them unless they have been allocated suitable hard regs.
1753 The symbol REG_OK_STRICT causes the latter definition to be used.
1754
1755 Most source files want to accept pseudo regs in the hope that
1756 they will get allocated to the class that the insn wants them to be in.
1757 Source files for reload pass need to be strict.
1758 After reload, it makes no difference, since pseudo regs have
1759 been eliminated by then. */
1760
c98f8742 1761
ff482c8d 1762/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1763#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1764 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1765 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1766 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1767
3b3c6a3f 1768#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1769 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1770 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1771 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1772 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1773
3b3c6a3f
MM
1774/* Strict versions, hard registers only */
1775#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1776#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1777
3b3c6a3f 1778#ifndef REG_OK_STRICT
d9a5f180
GS
1779#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1780#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1781
1782#else
d9a5f180
GS
1783#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1784#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1785#endif
1786
331d9186 1787/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1788 that is a valid memory address for an instruction.
1789 The MODE argument is the machine mode for the MEM expression
1790 that wants to use this address.
1791
331d9186 1792 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1793 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1794
1795 See legitimize_pic_address in i386.c for details as to what
1796 constitutes a legitimate address when -fpic is used. */
1797
1798#define MAX_REGS_PER_ADDRESS 2
1799
f996902d 1800#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1801
ae1547cc
UB
1802/* Try a machine-dependent way of reloading an illegitimate address
1803 operand. If we find one, push the reload and jump to WIN. This
1804 macro is used in only one place: `find_reloads_address' in reload.c. */
1805
1806#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1807do { \
1808 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1809 (int)(TYPE), (INDL))) \
1810 goto WIN; \
1811} while (0)
1812
b949ea8b
JW
1813/* If defined, a C expression to determine the base term of address X.
1814 This macro is used in only one place: `find_base_term' in alias.c.
1815
1816 It is always safe for this macro to not be defined. It exists so
1817 that alias analysis can understand machine-dependent addresses.
1818
1819 The typical use of this macro is to handle addresses containing
1820 a label_ref or symbol_ref within an UNSPEC. */
1821
d9a5f180 1822#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1823
c98f8742 1824/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1825 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1826 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1827
f996902d 1828#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1829
1830#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1831 (GET_CODE (X) == SYMBOL_REF \
1832 || GET_CODE (X) == LABEL_REF \
1833 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1834\f
b08de47e
MM
1835/* Max number of args passed in registers. If this is more than 3, we will
1836 have problems with ebx (register #4), since it is a caller save register and
1837 is also used as the pic register in ELF. So for now, don't allow more than
1838 3 registers to be passed in registers. */
1839
7c800926
KT
1840/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1841#define X86_64_REGPARM_MAX 6
72fa3605 1842#define X86_64_MS_REGPARM_MAX 4
7c800926 1843
72fa3605 1844#define X86_32_REGPARM_MAX 3
7c800926 1845
4ae8027b 1846#define REGPARM_MAX \
2824d6e5
UB
1847 (TARGET_64BIT \
1848 ? (TARGET_64BIT_MS_ABI \
1849 ? X86_64_MS_REGPARM_MAX \
1850 : X86_64_REGPARM_MAX) \
4ae8027b 1851 : X86_32_REGPARM_MAX)
d2836273 1852
72fa3605
UB
1853#define X86_64_SSE_REGPARM_MAX 8
1854#define X86_64_MS_SSE_REGPARM_MAX 4
1855
b6010cab 1856#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1857
4ae8027b 1858#define SSE_REGPARM_MAX \
2824d6e5
UB
1859 (TARGET_64BIT \
1860 ? (TARGET_64BIT_MS_ABI \
1861 ? X86_64_MS_SSE_REGPARM_MAX \
1862 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1863 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1864
1865#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1866\f
1867/* Specify the machine mode that this machine uses
1868 for the index in the tablejump instruction. */
dc4d7240 1869#define CASE_VECTOR_MODE \
6025b127 1870 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1871
c98f8742
JVA
1872/* Define this as 1 if `char' should by default be signed; else as 0. */
1873#define DEFAULT_SIGNED_CHAR 1
1874
1875/* Max number of bytes we can move from memory to memory
1876 in one reasonably fast instruction. */
65d9c0ab
JH
1877#define MOVE_MAX 16
1878
1879/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1880 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1881 number of bytes we can move with a single instruction. */
63001560 1882#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1883
7e24ffc9 1884/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1885 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1886 Increasing the value will always make code faster, but eventually
1887 incurs high cost in increased code size.
c98f8742 1888
e2e52e1b 1889 If you don't define this, a reasonable default is used. */
c98f8742 1890
e04ad03d 1891#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1892
45d78e7f
JJ
1893/* If a clear memory operation would take CLEAR_RATIO or more simple
1894 move-instruction sequences, we will do a clrmem or libcall instead. */
1895
e04ad03d 1896#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1897
53f00dde
UB
1898/* Define if shifts truncate the shift count which implies one can
1899 omit a sign-extension or zero-extension of a shift count.
1900
1901 On i386, shifts do truncate the count. But bit test instructions
1902 take the modulo of the bit offset operand. */
c98f8742
JVA
1903
1904/* #define SHIFT_COUNT_TRUNCATED */
1905
1906/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1907 is done just by pretending it is already truncated. */
1908#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1909
d9f32422
JH
1910/* A macro to update M and UNSIGNEDP when an object whose type is
1911 TYPE and which has the specified mode and signedness is to be
1912 stored in a register. This macro is only called when TYPE is a
1913 scalar type.
1914
f710504c 1915 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1916 quantities to SImode. The choice depends on target type. */
1917
1918#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1919do { \
d9f32422
JH
1920 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1921 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1922 (MODE) = SImode; \
1923} while (0)
d9f32422 1924
c98f8742
JVA
1925/* Specify the machine mode that pointers have.
1926 After generation of rtl, the compiler makes no further distinction
1927 between pointers and any other objects of this machine mode. */
28968d91 1928#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1929
f0ea7581
L
1930/* A C expression whose value is zero if pointers that need to be extended
1931 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1932 greater then zero if they are zero-extended and less then zero if the
1933 ptr_extend instruction should be used. */
1934
1935#define POINTERS_EXTEND_UNSIGNED 1
1936
c98f8742
JVA
1937/* A function address in a call instruction
1938 is a byte address (for indexing purposes)
1939 so give the MEM rtx a byte's mode. */
1940#define FUNCTION_MODE QImode
d4ba09c0 1941\f
d4ba09c0 1942
d4ba09c0
SC
1943/* A C expression for the cost of a branch instruction. A value of 1
1944 is the default; other values are interpreted relative to that. */
1945
3a4fd356
JH
1946#define BRANCH_COST(speed_p, predictable_p) \
1947 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1948
e327d1a3
L
1949/* An integer expression for the size in bits of the largest integer machine
1950 mode that should actually be used. We allow pairs of registers. */
1951#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1952
d4ba09c0
SC
1953/* Define this macro as a C expression which is nonzero if accessing
1954 less than a word of memory (i.e. a `char' or a `short') is no
1955 faster than accessing a word of memory, i.e., if such access
1956 require more than one instruction or if there is no difference in
1957 cost between byte and (aligned) word loads.
1958
1959 When this macro is not defined, the compiler will access a field by
1960 finding the smallest containing object; when it is defined, a
1961 fullword load will be used if alignment permits. Unless bytes
1962 accesses are faster than word accesses, using word accesses is
1963 preferable since it may eliminate subsequent memory access if
1964 subsequent accesses occur to other fields in the same word of the
1965 structure, but to different bytes. */
1966
1967#define SLOW_BYTE_ACCESS 0
1968
1969/* Nonzero if access to memory by shorts is slow and undesirable. */
1970#define SLOW_SHORT_ACCESS 0
1971
d4ba09c0
SC
1972/* Define this macro to be the value 1 if unaligned accesses have a
1973 cost many times greater than aligned accesses, for example if they
1974 are emulated in a trap handler.
1975
9cd10576
KH
1976 When this macro is nonzero, the compiler will act as if
1977 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1978 moves. This can cause significantly more instructions to be
9cd10576 1979 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1980 accesses only add a cycle or two to the time for a memory access.
1981
1982 If the value of this macro is always zero, it need not be defined. */
1983
e1565e65 1984/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1985
d4ba09c0
SC
1986/* Define this macro if it is as good or better to call a constant
1987 function address than to call an address kept in a register.
1988
1989 Desirable on the 386 because a CALL with a constant address is
1990 faster than one with a register address. */
1991
1992#define NO_FUNCTION_CSE
c98f8742 1993\f
c572e5ba
JVA
1994/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1995 return the mode to be used for the comparison.
1996
1997 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1998 VOIDmode should be used in all other cases.
c572e5ba 1999
16189740 2000 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2001 possible, to allow for more combinations. */
c98f8742 2002
d9a5f180 2003#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2004
9cd10576 2005/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2006 reversed. */
2007
2008#define REVERSIBLE_CC_MODE(MODE) 1
2009
2010/* A C expression whose value is reversed condition code of the CODE for
2011 comparison done in CC_MODE mode. */
3c5cb3e4 2012#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2013
c98f8742
JVA
2014\f
2015/* Control the assembler format that we output, to the extent
2016 this does not vary between assemblers. */
2017
2018/* How to refer to registers in assembler output.
892a2d68 2019 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2020
a7b376ee 2021/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2022 For non floating point regs, the following are the HImode names.
2023
2024 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2025 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2026 "y" code. */
c98f8742 2027
a7180f70
BS
2028#define HI_REGISTER_NAMES \
2029{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2030 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2031 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2032 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2033 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2034 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2035 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2036 "xmm16", "xmm17", "xmm18", "xmm19", \
2037 "xmm20", "xmm21", "xmm22", "xmm23", \
2038 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2039 "xmm28", "xmm29", "xmm30", "xmm31", \
089d1227 2040 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2041
c98f8742
JVA
2042#define REGISTER_NAMES HI_REGISTER_NAMES
2043
2044/* Table of additional register names to use in user input. */
2045
2046#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2047{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2048 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2049 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2050 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2051 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2052 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2053 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2054 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2055 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2056 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2057 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2058 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2059 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2060 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2061 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2062 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2063 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2064 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2065 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2066 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2067 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2068 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2069
2070/* Note we are omitting these since currently I don't know how
2071to get gcc to use these, since they want the same but different
2072number as al, and ax.
2073*/
2074
c98f8742 2075#define QI_REGISTER_NAMES \
3f3f2124 2076{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2077
2078/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2079 of regs 0 through 3. */
c98f8742
JVA
2080
2081#define QI_HIGH_REGISTER_NAMES \
2082{"ah", "dh", "ch", "bh", }
2083
2084/* How to renumber registers for dbx and gdb. */
2085
d9a5f180
GS
2086#define DBX_REGISTER_NUMBER(N) \
2087 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2088
9a82e702
MS
2089extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2090extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2091extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2092
780a5b71
UB
2093extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2094
469ac993
JM
2095/* Before the prologue, RA is at 0(%esp). */
2096#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2097 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2098
e414ab29 2099/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2100#define RETURN_ADDR_RTX(COUNT, FRAME) \
2101 ((COUNT) == 0 \
0a81f074
RS
2102 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2103 -UNITS_PER_WORD)) \
2104 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2105
892a2d68 2106/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2107#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2108
a6ab3aad 2109/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2110#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2111
1020a5ab 2112/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2113#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2114#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2115
ad919812 2116
e4c4ebeb
RH
2117/* Select a format to encode pointers in exception handling data. CODE
2118 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2119 true if the symbol may be affected by dynamic relocations.
2120
2121 ??? All x86 object file formats are capable of representing this.
2122 After all, the relocation needed is the same as for the call insn.
2123 Whether or not a particular assembler allows us to enter such, I
2124 guess we'll have to see. */
d9a5f180 2125#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2126 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2127
c98f8742
JVA
2128/* This is how to output an insn to push a register on the stack.
2129 It need not be very fast code. */
2130
d9a5f180 2131#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2132do { \
2133 if (TARGET_64BIT) \
2134 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2135 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2136 else \
2137 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2138} while (0)
c98f8742
JVA
2139
2140/* This is how to output an insn to pop a register from the stack.
2141 It need not be very fast code. */
2142
d9a5f180 2143#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2144do { \
2145 if (TARGET_64BIT) \
2146 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2147 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2148 else \
2149 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2150} while (0)
c98f8742 2151
f88c65f7 2152/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2153
2154#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2155 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2156
f88c65f7 2157/* This is how to output an element of a case-vector that is relative. */
c98f8742 2158
33f7f353 2159#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2160 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2161
63001560 2162/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2163
2164#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2165{ \
2166 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2167 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2168}
2169
2170/* A C statement or statements which output an assembler instruction
2171 opcode to the stdio stream STREAM. The macro-operand PTR is a
2172 variable of type `char *' which points to the opcode name in
2173 its "internal" form--the form that is written in the machine
2174 description. */
2175
2176#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2177 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2178
6a90d232
L
2179/* A C statement to output to the stdio stream FILE an assembler
2180 command to pad the location counter to a multiple of 1<<LOG
2181 bytes if it is within MAX_SKIP bytes. */
2182
2183#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2184#undef ASM_OUTPUT_MAX_SKIP_PAD
2185#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2186 if ((LOG) != 0) \
2187 { \
2188 if ((MAX_SKIP) == 0) \
2189 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2190 else \
2191 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2192 }
2193#endif
2194
135a687e
KT
2195/* Write the extra assembler code needed to declare a function
2196 properly. */
2197
2198#undef ASM_OUTPUT_FUNCTION_LABEL
2199#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2200 ix86_asm_output_function_label (FILE, NAME, DECL)
2201
f7288899
EC
2202/* Under some conditions we need jump tables in the text section,
2203 because the assembler cannot handle label differences between
2204 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2205
2206#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2207 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2208 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2209
cea3bd3e
RH
2210/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2211 and switch back. For x86 we do this only to save a few bytes that
2212 would otherwise be unused in the text section. */
ad211091
KT
2213#define CRT_MKSTR2(VAL) #VAL
2214#define CRT_MKSTR(x) CRT_MKSTR2(x)
2215
2216#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2217 asm (SECTION_OP "\n\t" \
2218 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2219 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2220
2221/* Default threshold for putting data in large sections
2222 with x86-64 medium memory model */
2223#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2224\f
b97de419
L
2225/* Which processor to tune code generation for. These must be in sync
2226 with processor_target_table in i386.c. */
5bf0ebab
RH
2227
2228enum processor_type
2229{
b97de419
L
2230 PROCESSOR_GENERIC = 0,
2231 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2232 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2233 PROCESSOR_PENTIUM,
2234 PROCESSOR_PENTIUMPRO,
5bf0ebab 2235 PROCESSOR_PENTIUM4,
89c43c0a 2236 PROCESSOR_NOCONA,
340ef734 2237 PROCESSOR_CORE2,
d3c11974
L
2238 PROCESSOR_NEHALEM,
2239 PROCESSOR_SANDYBRIDGE,
3a579e09 2240 PROCESSOR_HASWELL,
d3c11974
L
2241 PROCESSOR_BONNELL,
2242 PROCESSOR_SILVERMONT,
9a7f94d7 2243 PROCESSOR_INTEL,
b97de419
L
2244 PROCESSOR_GEODE,
2245 PROCESSOR_K6,
2246 PROCESSOR_ATHLON,
2247 PROCESSOR_K8,
21efb4d4 2248 PROCESSOR_AMDFAM10,
1133125e 2249 PROCESSOR_BDVER1,
4d652a18 2250 PROCESSOR_BDVER2,
eb2f2b44 2251 PROCESSOR_BDVER3,
ed97ad47 2252 PROCESSOR_BDVER4,
14b52538 2253 PROCESSOR_BTVER1,
e32bfc16 2254 PROCESSOR_BTVER2,
5bf0ebab
RH
2255 PROCESSOR_max
2256};
2257
9e555526 2258extern enum processor_type ix86_tune;
5bf0ebab 2259extern enum processor_type ix86_arch;
5bf0ebab 2260
8362f420
JH
2261/* Size of the RED_ZONE area. */
2262#define RED_ZONE_SIZE 128
2263/* Reserved area of the red zone for temporaries. */
2264#define RED_ZONE_RESERVE 8
c93e80a5 2265
95899b34 2266extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2267extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2268
2269/* Smallest class containing REGNO. */
2270extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2271
0948ccb2
PB
2272enum ix86_fpcmp_strategy {
2273 IX86_FPCMP_SAHF,
2274 IX86_FPCMP_COMI,
2275 IX86_FPCMP_ARITH
2276};
22fb740d
JH
2277\f
2278/* To properly truncate FP values into integers, we need to set i387 control
2279 word. We can't emit proper mode switching code before reload, as spills
2280 generated by reload may truncate values incorrectly, but we still can avoid
2281 redundant computation of new control word by the mode switching pass.
2282 The fldcw instructions are still emitted redundantly, but this is probably
2283 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2284 the sequence.
22fb740d
JH
2285
2286 The machinery is to emit simple truncation instructions and split them
2287 before reload to instructions having USEs of two memory locations that
2288 are filled by this code to old and new control word.
fce5a9f2 2289
22fb740d
JH
2290 Post-reload pass may be later used to eliminate the redundant fildcw if
2291 needed. */
2292
ff680eb1
UB
2293enum ix86_entity
2294{
ff97910d
VY
2295 AVX_U128 = 0,
2296 I387_TRUNC,
ff680eb1
UB
2297 I387_FLOOR,
2298 I387_CEIL,
2299 I387_MASK_PM,
2300 MAX_386_ENTITIES
2301};
2302
1cba2b96 2303enum ix86_stack_slot
ff680eb1 2304{
443ca5fc 2305 SLOT_TEMP = 0,
ff680eb1
UB
2306 SLOT_CW_STORED,
2307 SLOT_CW_TRUNC,
2308 SLOT_CW_FLOOR,
2309 SLOT_CW_CEIL,
2310 SLOT_CW_MASK_PM,
2311 MAX_386_STACK_LOCALS
2312};
22fb740d 2313
ff97910d
VY
2314enum avx_u128_state
2315{
2316 AVX_U128_CLEAN,
2317 AVX_U128_DIRTY,
2318 AVX_U128_ANY
2319};
2320
22fb740d
JH
2321/* Define this macro if the port needs extra instructions inserted
2322 for mode switching in an optimizing compilation. */
2323
ff680eb1
UB
2324#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2325 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2326
2327/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2328 initializer for an array of integers. Each initializer element N
2329 refers to an entity that needs mode switching, and specifies the
2330 number of different modes that might need to be set for this
2331 entity. The position of the initializer in the initializer -
2332 starting counting at zero - determines the integer that is used to
2333 refer to the mode-switched entity in question. */
2334
ff680eb1 2335#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2336 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2337
0f0138b6
JH
2338\f
2339/* Avoid renaming of stack registers, as doing so in combination with
2340 scheduling just increases amount of live registers at time and in
2341 the turn amount of fxch instructions needed.
2342
3f97cb0b
AI
2343 ??? Maybe Pentium chips benefits from renaming, someone can try....
2344
2345 Don't rename evex to non-evex sse registers. */
0f0138b6 2346
3f97cb0b
AI
2347#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2348 (EXT_REX_SSE_REGNO_P (SRC) == \
2349 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2350
3b3c6a3f 2351\f
e91f04de 2352#define FASTCALL_PREFIX '@'
fa1a0d02 2353\f
ec7ded37 2354/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2355
604a6be9 2356#ifndef USED_FOR_TARGET
ec7ded37 2357struct GTY(()) machine_frame_state
cd9c1ca8 2358{
ec7ded37
RH
2359 /* This pair tracks the currently active CFA as reg+offset. When reg
2360 is drap_reg, we don't bother trying to record here the real CFA when
2361 it might really be a DW_CFA_def_cfa_expression. */
2362 rtx cfa_reg;
2363 HOST_WIDE_INT cfa_offset;
2364
2365 /* The current offset (canonically from the CFA) of ESP and EBP.
2366 When stack frame re-alignment is active, these may not be relative
2367 to the CFA. However, in all cases they are relative to the offsets
2368 of the saved registers stored in ix86_frame. */
2369 HOST_WIDE_INT sp_offset;
2370 HOST_WIDE_INT fp_offset;
2371
2372 /* The size of the red-zone that may be assumed for the purposes of
2373 eliding register restore notes in the epilogue. This may be zero
2374 if no red-zone is in effect, or may be reduced from the real
2375 red-zone value by a maximum runtime stack re-alignment value. */
2376 int red_zone_offset;
2377
2378 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2379 value within the frame. If false then the offset above should be
2380 ignored. Note that DRAP, if valid, *always* points to the CFA and
2381 thus has an offset of zero. */
2382 BOOL_BITFIELD sp_valid : 1;
2383 BOOL_BITFIELD fp_valid : 1;
2384 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2385
2386 /* Indicate whether the local stack frame has been re-aligned. When
2387 set, the SP/FP offsets above are relative to the aligned frame
2388 and not the CFA. */
2389 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2390};
2391
f81c9774
RH
2392/* Private to winnt.c. */
2393struct seh_frame_state;
2394
d1b38208 2395struct GTY(()) machine_function {
fa1a0d02
JH
2396 struct stack_local_entry *stack_locals;
2397 const char *some_ld_name;
4aab97f9
L
2398 int varargs_gpr_size;
2399 int varargs_fpr_size;
ff680eb1 2400 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2401
2402 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2403 has been computed for. */
2404 int use_fast_prologue_epilogue_nregs;
2405
7458026b
ILT
2406 /* For -fsplit-stack support: A stack local which holds a pointer to
2407 the stack arguments for a function with a variable number of
2408 arguments. This is set at the start of the function and is used
2409 to initialize the overflow_arg_area field of the va_list
2410 structure. */
2411 rtx split_stack_varargs_pointer;
2412
3452586b
RH
2413 /* This value is used for amd64 targets and specifies the current abi
2414 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2415 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2416
2417 /* Nonzero if the function accesses a previous frame. */
2418 BOOL_BITFIELD accesses_prev_frame : 1;
2419
2420 /* Nonzero if the function requires a CLD in the prologue. */
2421 BOOL_BITFIELD needs_cld : 1;
2422
922e3e33
UB
2423 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2424 expander to determine the style used. */
3452586b
RH
2425 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2426
5bf5a10b
AO
2427 /* If true, the current function needs the default PIC register, not
2428 an alternate register (on x86) and must not use the red zone (on
2429 x86_64), even if it's a leaf function. We don't want the
2430 function to be regarded as non-leaf because TLS calls need not
2431 affect register allocation. This flag is set when a TLS call
2432 instruction is expanded within a function, and never reset, even
2433 if all such instructions are optimized away. Use the
2434 ix86_current_function_calls_tls_descriptor macro for a better
2435 approximation. */
3452586b
RH
2436 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2437
2438 /* If true, the current function has a STATIC_CHAIN is placed on the
2439 stack below the return address. */
2440 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2441
529a6471
JJ
2442 /* If true, it is safe to not save/restore DRAP register. */
2443 BOOL_BITFIELD no_drap_save_restore : 1;
2444
ec7ded37
RH
2445 /* During prologue/epilogue generation, the current frame state.
2446 Otherwise, the frame state at the end of the prologue. */
2447 struct machine_frame_state fs;
f81c9774
RH
2448
2449 /* During SEH output, this is non-null. */
2450 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2451};
cd9c1ca8 2452#endif
fa1a0d02
JH
2453
2454#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2455#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2456#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2457#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2458#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2459#define ix86_tls_descriptor_calls_expanded_in_cfun \
2460 (cfun->machine->tls_descriptor_call_expanded_p)
2461/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2462 calls are optimized away, we try to detect cases in which it was
2463 optimized away. Since such instructions (use (reg REG_SP)), we can
2464 verify whether there's any such instruction live by testing that
2465 REG_SP is live. */
2466#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2467 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2468#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2469
1bc7c5b6
ZW
2470/* Control behavior of x86_file_start. */
2471#define X86_FILE_START_VERSION_DIRECTIVE false
2472#define X86_FILE_START_FLTUSED false
2473
7dcbf659
JH
2474/* Flag to mark data that is in the large address area. */
2475#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2476#define SYMBOL_REF_FAR_ADDR_P(X) \
2477 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2478
2479/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2480 have defined always, to avoid ifdefing. */
2481#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2482#define SYMBOL_REF_DLLIMPORT_P(X) \
2483 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2484
2485#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2486#define SYMBOL_REF_DLLEXPORT_P(X) \
2487 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2488
82c0e1a0
KT
2489#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2490#define SYMBOL_REF_STUBVAR_P(X) \
2491 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2492
7942e47e
RY
2493extern void debug_ready_dispatch (void);
2494extern void debug_dispatch_window (int);
2495
91afcfa3
QN
2496/* The value at zero is only defined for the BMI instructions
2497 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2498#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2499 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2500#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2501 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2502
2503
b8ce4e94
KT
2504/* Flags returned by ix86_get_callcvt (). */
2505#define IX86_CALLCVT_CDECL 0x1
2506#define IX86_CALLCVT_STDCALL 0x2
2507#define IX86_CALLCVT_FASTCALL 0x4
2508#define IX86_CALLCVT_THISCALL 0x8
2509#define IX86_CALLCVT_REGPARM 0x10
2510#define IX86_CALLCVT_SSEREGPARM 0x20
2511
2512#define IX86_BASE_CALLCVT(FLAGS) \
2513 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2514 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2515
b86b9f44
MM
2516#define RECIP_MASK_NONE 0x00
2517#define RECIP_MASK_DIV 0x01
2518#define RECIP_MASK_SQRT 0x02
2519#define RECIP_MASK_VEC_DIV 0x04
2520#define RECIP_MASK_VEC_SQRT 0x08
2521#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2522 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2523#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2524
2525#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2526#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2527#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2528#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2529
5dcfdccd
KY
2530#define IX86_HLE_ACQUIRE (1 << 16)
2531#define IX86_HLE_RELEASE (1 << 17)
2532
e83b8e2e
JJ
2533/* For switching between functions with different target attributes. */
2534#define SWITCHABLE_TARGET 1
2535
c98f8742
JVA
2536/*
2537Local variables:
2538version-control: t
2539End:
2540*/