]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
darwin.h (TARGET_FPMATH_DEFAULT_P): New define.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
a5544970 2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
90922d36 96#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 97#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 98#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 99#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 100#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 101#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 102#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 103#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 104#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 105#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 106#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 107#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
108#define TARGET_PCONFIG TARGET_ISA_PCONFIG
109#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
112#define TARGET_SGX TARGET_ISA_SGX
113#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
114#define TARGET_RDPID TARGET_ISA_RDPID
115#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
116#define TARGET_GFNI TARGET_ISA_GFNI
117#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
118#define TARGET_VAES TARGET_ISA_VAES
119#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
120#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 122#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 123#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 124#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 125#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 126#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 127#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 128#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 129#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 130#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 131#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 132#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 133#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 134#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 135#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 136#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 137#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 138#define TARGET_AES TARGET_ISA_AES
bf7b5747 139#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
140#define TARGET_SHA TARGET_ISA_SHA
141#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
142#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
144#define TARGET_CLZERO TARGET_ISA_CLZERO
145#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
146#define TARGET_XSAVEC TARGET_ISA_XSAVEC
147#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148#define TARGET_XSAVES TARGET_ISA_XSAVES
149#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 150#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 151#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
152#define TARGET_CMPXCHG16B TARGET_ISA_CX16
153#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 154#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 155#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 156#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 157#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 158#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 159#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
160#define TARGET_RTM TARGET_ISA_RTM
161#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 162#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 163#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 164#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 165#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 166#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 167#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 168#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 169#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 170#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 171#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 172#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 173#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 174#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 175#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
176#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
178#define TARGET_CLWB TARGET_ISA_CLWB
179#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
180#define TARGET_MWAITX TARGET_ISA_MWAITX
181#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
182#define TARGET_PKU TARGET_ISA_PKU
183#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
184#define TARGET_SHSTK TARGET_ISA_SHSTK
185#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
186#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
187#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
188#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
189#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
190#define TARGET_WAITPKG TARGET_ISA_WAITPKG
191#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
192#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
193#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41f8d1fc
AK
194#define TARGET_PTWRITE TARGET_ISA_PTWRITE
195#define TARGET_PTWRITE_P(x) TARGET_ISA_PTWRITE_P(x)
41a4ef22 196
90922d36 197#define TARGET_LP64 TARGET_ABI_64
bf7b5747 198#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 199#define TARGET_X32 TARGET_ABI_X32
bf7b5747 200#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
201#define TARGET_16BIT TARGET_CODE16
202#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 203
26b5109f
RS
204#include "config/vxworks-dummy.h"
205
7eb68c06 206#include "config/i386/i386-opts.h"
ccf8e764 207
c69fa2d4 208#define MAX_STRINGOP_ALGS 4
ccf8e764 209
8c996513
JH
210/* Specify what algorithm to use for stringops on known size.
211 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
212 known at compile time or estimated via feedback, the SIZE array
213 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 214 means infinity). Corresponding ALG is used then.
340ef734
JH
215 When NOALIGN is true the code guaranting the alignment of the memory
216 block is skipped.
217
8c996513 218 For example initializer:
4f3f76e6 219 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 220 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 221 be used otherwise. */
8c996513
JH
222struct stringop_algs
223{
224 const enum stringop_alg unknown_size;
225 const struct stringop_strategy {
226 const int max;
227 const enum stringop_alg alg;
340ef734 228 int noalign;
c69fa2d4 229 } size [MAX_STRINGOP_ALGS];
8c996513
JH
230};
231
d4ba09c0
SC
232/* Define the specific costs for a given cpu */
233
234struct processor_costs {
8b60264b
KG
235 const int add; /* cost of an add instruction */
236 const int lea; /* cost of a lea instruction */
237 const int shift_var; /* variable shift costs */
238 const int shift_const; /* constant shift costs */
f676971a 239 const int mult_init[5]; /* cost of starting a multiply
4977bab6 240 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 241 const int mult_bit; /* cost of multiply per each bit set */
f676971a 242 const int divide[5]; /* cost of a divide/mod
4977bab6 243 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
244 int movsx; /* The cost of movsx operation. */
245 int movzx; /* The cost of movzx operation. */
8b60264b
KG
246 const int large_insn; /* insns larger than this cost more */
247 const int move_ratio; /* The threshold of number of scalar
ac775968 248 memory-to-memory move insns. */
8b60264b
KG
249 const int movzbl_load; /* cost of loading using movzbl */
250 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
251 in QImode, HImode and SImode relative
252 to reg-reg move (2). */
8b60264b 253 const int int_store[3]; /* cost of storing integer register
96e7ae40 254 in QImode, HImode and SImode */
8b60264b
KG
255 const int fp_move; /* cost of reg,reg fld/fst */
256 const int fp_load[3]; /* cost of loading FP register
96e7ae40 257 in SFmode, DFmode and XFmode */
8b60264b 258 const int fp_store[3]; /* cost of storing FP register
96e7ae40 259 in SFmode, DFmode and XFmode */
8b60264b
KG
260 const int mmx_move; /* cost of moving MMX register. */
261 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 262 in SImode and DImode */
8b60264b 263 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 264 in SImode and DImode */
df41dbaf
JH
265 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
266 zmm_move;
267 const int sse_load[5]; /* cost of loading SSE register
268 in 32bit, 64bit, 128bit, 256bit and 512bit */
269 const int sse_unaligned_load[5];/* cost of unaligned load. */
270 const int sse_store[5]; /* cost of storing SSE register
271 in SImode, DImode and TImode. */
272 const int sse_unaligned_store[5];/* cost of unaligned store. */
8b60264b 273 const int mmxsse_to_integer; /* cost of moving mmxsse register to
df41dbaf
JH
274 integer. */
275 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
a4fe6139
JH
276 const int gather_static, gather_per_elt; /* Cost of gather load is computed
277 as static + per_item * nelts. */
278 const int scatter_static, scatter_per_elt; /* Cost of gather store is
279 computed as static + per_item * nelts. */
46cb0441
ZD
280 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
281 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
282 const int prefetch_block; /* bytes moved to cache for prefetch. */
283 const int simultaneous_prefetches; /* number of parallel prefetch
284 operations. */
4977bab6 285 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
286 const int fadd; /* cost of FADD and FSUB instructions. */
287 const int fmul; /* cost of FMUL instruction. */
288 const int fdiv; /* cost of FDIV instruction. */
289 const int fabs; /* cost of FABS instruction. */
290 const int fchs; /* cost of FCHS instruction. */
291 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 292 /* Specify what algorithm
bee51209 293 to use for stringops on unknown size. */
c53c148c 294 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
295 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
296 const int mulss; /* cost of MULSS instructions. */
297 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
298 const int fmass; /* cost of FMASS instructions. */
299 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
300 const int divss; /* cost of DIVSS instructions. */
301 const int divsd; /* cost of DIVSD instructions. */
302 const int sqrtss; /* cost of SQRTSS instructions. */
303 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
304 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
305 /* Specify reassociation width for integer,
306 fp, vector integer and vector fp
307 operations. Generally should correspond
308 to number of instructions executed in
309 parallel. See also
310 ix86_reassociation_width. */
ad83025e 311 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
312 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
313 cost model. */
314 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
315 vectorizer cost model. */
7dc58b50
ML
316
317 /* The "0:0:8" label alignment specified for some processors generates
318 secondary 8-byte alignment only for those label/jump/loop targets
319 which have primary alignment. */
320 const char *const align_loop; /* Loop alignment. */
321 const char *const align_jump; /* Jump alignment. */
322 const char *const align_label; /* Label alignment. */
323 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
324};
325
8b60264b 326extern const struct processor_costs *ix86_cost;
b2077fd2
JH
327extern const struct processor_costs ix86_size_cost;
328
329#define ix86_cur_cost() \
330 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 331
c98f8742
JVA
332/* Macros used in the machine description to test the flags. */
333
b97de419 334/* configure can arrange to change it. */
e075ae69 335
35b528be 336#ifndef TARGET_CPU_DEFAULT
b97de419 337#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 338#endif
35b528be 339
004d3859
GK
340#ifndef TARGET_FPMATH_DEFAULT
341#define TARGET_FPMATH_DEFAULT \
342 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
343#endif
344
bf7b5747
ST
345#ifndef TARGET_FPMATH_DEFAULT_P
346#define TARGET_FPMATH_DEFAULT_P(x) \
347 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
348#endif
349
c207fd99
L
350/* If the i387 is disabled or -miamcu is used , then do not return
351 values in it. */
352#define TARGET_FLOAT_RETURNS_IN_80387 \
353 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
354#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
355 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 356
5791cc29
JT
357/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
358 compile-time constant. */
359#ifdef IN_LIBGCC2
6ac49599 360#undef TARGET_64BIT
5791cc29
JT
361#ifdef __x86_64__
362#define TARGET_64BIT 1
363#else
364#define TARGET_64BIT 0
365#endif
366#else
6ac49599
RS
367#ifndef TARGET_BI_ARCH
368#undef TARGET_64BIT
e49080ec 369#undef TARGET_64BIT_P
67adf6a9 370#if TARGET_64BIT_DEFAULT
0c2dc519 371#define TARGET_64BIT 1
e49080ec 372#define TARGET_64BIT_P(x) 1
0c2dc519
JH
373#else
374#define TARGET_64BIT 0
e49080ec 375#define TARGET_64BIT_P(x) 0
0c2dc519
JH
376#endif
377#endif
5791cc29 378#endif
25f94bb5 379
750054a2
CT
380#define HAS_LONG_COND_BRANCH 1
381#define HAS_LONG_UNCOND_BRANCH 1
382
9e555526
RH
383#define TARGET_386 (ix86_tune == PROCESSOR_I386)
384#define TARGET_486 (ix86_tune == PROCESSOR_I486)
385#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
386#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 387#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
388#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
389#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
390#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
391#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 392#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 393#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 394#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
395#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
396#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 397#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
398#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
399#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 400#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 401#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 402#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 403#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 404#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 405#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 406#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 407#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
408#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
409#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
7cab07f0 410#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
9a7f94d7 411#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 412#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 413#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 414#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 415#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 416#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 417#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 418#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 419#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 420#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
2901f42f 421#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
a269a03c 422
80fd744f
RH
423/* Feature tests against the various tunings. */
424enum ix86_tune_indices {
4b8bc035 425#undef DEF_TUNE
3ad20bd4 426#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
427#include "x86-tune.def"
428#undef DEF_TUNE
429X86_TUNE_LAST
80fd744f
RH
430};
431
ab442df7 432extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
433
434#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
435#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
436#define TARGET_ZERO_EXTEND_WITH_AND \
437 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 438#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
439#define TARGET_BRANCH_PREDICTION_HINTS \
440 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
441#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
442#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
443#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
444#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
445#define TARGET_PARTIAL_FLAG_REG_STALL \
446 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
447#define TARGET_LCP_STALL \
448 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
449#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
450#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
451#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
452#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
453#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
454#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
455#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
456#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
457#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
458#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
459#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
460#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
461 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
462#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
463#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
464#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
465#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
466#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
467#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
468#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
469#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
470#define TARGET_INTEGER_DFMODE_MOVES \
471 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
472#define TARGET_PARTIAL_REG_DEPENDENCY \
473 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
474#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
475 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
476#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
477 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
478#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
479 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
480#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
481 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
482#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
483#define TARGET_SSE_TYPELESS_STORES \
484 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
485#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
486#define TARGET_MEMORY_MISMATCH_STALL \
487 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
488#define TARGET_PROLOGUE_USING_MOVE \
489 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
490#define TARGET_EPILOGUE_USING_MOVE \
491 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
492#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
493#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
494#define TARGET_INTER_UNIT_MOVES_TO_VEC \
495 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
496#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
497 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
498#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 499 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
500#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
501#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
502#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
503#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
504#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
505#define TARGET_PAD_SHORT_FUNCTION \
506 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
507#define TARGET_EXT_80387_CONSTANTS \
508 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
509#define TARGET_AVOID_VECTOR_DECODE \
510 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
511#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
512 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
513#define TARGET_SLOW_IMUL_IMM32_MEM \
514 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
515#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
516#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
517#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
518#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
519#define TARGET_USE_VECTOR_FP_CONVERTS \
520 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
521#define TARGET_USE_VECTOR_CONVERTS \
522 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
523#define TARGET_SLOW_PSHUFB \
524 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
525#define TARGET_AVOID_4BYTE_PREFIXES \
526 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
527#define TARGET_USE_GATHER \
528 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
529#define TARGET_FUSE_CMP_AND_BRANCH_32 \
530 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
531#define TARGET_FUSE_CMP_AND_BRANCH_64 \
532 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 533#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
534 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
535 : TARGET_FUSE_CMP_AND_BRANCH_32)
536#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
537 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
538#define TARGET_FUSE_ALU_AND_BRANCH \
539 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 540#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
541#define TARGET_AVOID_LEA_FOR_ADDR \
542 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
543#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
544 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
545#define TARGET_AVX128_OPTIMAL \
546 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
547#define TARGET_GENERAL_REGS_SSE_SPILL \
548 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
549#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
550 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 551#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 552 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
553#define TARGET_ADJUST_UNROLL \
554 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
555#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
556 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
557#define TARGET_ONE_IF_CONV_INSN \
558 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
559#define TARGET_EMIT_VZEROUPPER \
560 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 561
80fd744f
RH
562/* Feature tests against the various architecture variations. */
563enum ix86_arch_indices {
cef31f9c 564 X86_ARCH_CMOV,
80fd744f
RH
565 X86_ARCH_CMPXCHG,
566 X86_ARCH_CMPXCHG8B,
567 X86_ARCH_XADD,
568 X86_ARCH_BSWAP,
569
570 X86_ARCH_LAST
571};
4f3f76e6 572
ab442df7 573extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 574
cef31f9c 575#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
576#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
577#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
578#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
579#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
580
cef31f9c
UB
581/* For sane SSE instruction set generation we need fcomi instruction.
582 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
583 expands to a sequence that includes conditional move. */
584#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
585
80fd744f
RH
586#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
587
cb261eb7 588extern unsigned char x86_prefetch_sse;
80fd744f
RH
589#define TARGET_PREFETCH_SSE x86_prefetch_sse
590
80fd744f
RH
591#define ASSEMBLER_DIALECT (ix86_asm_dialect)
592
593#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
594#define TARGET_MIX_SSE_I387 \
595 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
596
5fa578f0
UB
597#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
598#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
599#define TARGET_HARD_XF_REGS (TARGET_80387)
600
80fd744f
RH
601#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
602#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
603#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 604#define TARGET_SUN_TLS 0
1ef45b77 605
67adf6a9
RH
606#ifndef TARGET_64BIT_DEFAULT
607#define TARGET_64BIT_DEFAULT 0
25f94bb5 608#endif
74dc3e94
RH
609#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
610#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
611#endif
25f94bb5 612
e0ea8797
AH
613#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
614#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
615
79f5e442
ZD
616/* Fence to use after loop using storent. */
617
618extern tree x86_mfence;
619#define FENCE_FOLLOWING_MOVNT x86_mfence
620
0ed4a390
JL
621/* Once GDB has been enhanced to deal with functions without frame
622 pointers, we can change this to allow for elimination of
623 the frame pointer in leaf functions. */
624#define TARGET_DEFAULT 0
67adf6a9 625
0a1c5e55
UB
626/* Extra bits to force. */
627#define TARGET_SUBTARGET_DEFAULT 0
628#define TARGET_SUBTARGET_ISA_DEFAULT 0
629
630/* Extra bits to force on w/ 32-bit mode. */
631#define TARGET_SUBTARGET32_DEFAULT 0
632#define TARGET_SUBTARGET32_ISA_DEFAULT 0
633
ccf8e764
RH
634/* Extra bits to force on w/ 64-bit mode. */
635#define TARGET_SUBTARGET64_DEFAULT 0
8b131a8a
UB
636/* Enable MMX, SSE and SSE2 by default. */
637#define TARGET_SUBTARGET64_ISA_DEFAULT \
638 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
ccf8e764 639
fee3eacd
IS
640/* Replace MACH-O, ifdefs by in-line tests, where possible.
641 (a) Macros defined in config/i386/darwin.h */
b069de3b 642#define TARGET_MACHO 0
9005471b 643#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
644#define MACHOPIC_ATT_STUB 0
645/* (b) Macros defined in config/darwin.h */
646#define MACHO_DYNAMIC_NO_PIC_P 0
647#define MACHOPIC_INDIRECT 0
648#define MACHOPIC_PURE 0
9005471b 649
5a579c3b
LE
650/* For the RDOS */
651#define TARGET_RDOS 0
652
9005471b 653/* For the Windows 64-bit ABI. */
7c800926
KT
654#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
655
6510e8bb
KT
656/* For the Windows 32-bit ABI. */
657#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
658
f81c9774
RH
659/* This is re-defined by cygming.h. */
660#define TARGET_SEH 0
661
51212b32 662/* The default abi used by target. */
7c800926 663#define DEFAULT_ABI SYSV_ABI
ccf8e764 664
b8b3f0ca 665/* The default TLS segment register used by target. */
00402c94
RH
666#define DEFAULT_TLS_SEG_REG \
667 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 668
cc69336f
RH
669/* Subtargets may reset this to 1 in order to enable 96-bit long double
670 with the rounding mode forced to 53 bits. */
671#define TARGET_96_ROUND_53_LONG_DOUBLE 0
672
682cd442
GK
673/* -march=native handling only makes sense with compiler running on
674 an x86 or x86_64 chip. If changing this condition, also change
675 the condition in driver-i386.c. */
676#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
677/* In driver-i386.c. */
678extern const char *host_detect_local_cpu (int argc, const char **argv);
679#define EXTRA_SPEC_FUNCTIONS \
680 { "local_cpu_detect", host_detect_local_cpu },
682cd442 681#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
682#endif
683
8981c15b
JM
684#if TARGET_64BIT_DEFAULT
685#define OPT_ARCH64 "!m32"
686#define OPT_ARCH32 "m32"
687#else
f0ea7581
L
688#define OPT_ARCH64 "m64|mx32"
689#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
690#endif
691
1cba2b96
EC
692/* Support for configure-time defaults of some command line options.
693 The order here is important so that -march doesn't squash the
694 tune or cpu values. */
ce998900 695#define OPTION_DEFAULT_SPECS \
da2d4c01 696 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
697 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
698 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 699 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
700 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
701 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
702 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
703 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
704 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 705
241e1a89
SC
706/* Specs for the compiler proper */
707
628714d8 708#ifndef CC1_CPU_SPEC
eb5bb0fd 709#define CC1_CPU_SPEC_1 ""
fa959ce4 710
682cd442 711#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
712#define CC1_CPU_SPEC CC1_CPU_SPEC_1
713#else
714#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
715"%{march=native:%>march=native %:local_cpu_detect(arch) \
716 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
717%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 718#endif
241e1a89 719#endif
c98f8742 720\f
30efe578 721/* Target CPU builtins. */
ab442df7
MM
722#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
723
724/* Target Pragmas. */
725#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 726
b4c522fa
IB
727/* Target CPU versions for D. */
728#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
729
628714d8 730#ifndef CC1_SPEC
8015b78d 731#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
732#endif
733
734/* This macro defines names of additional specifications to put in the
735 specs that can be used in various specifications like CC1_SPEC. Its
736 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
737
738 Each subgrouping contains a string constant, that defines the
188fc5b5 739 specification name, and a string constant that used by the GCC driver
bcd86433
SC
740 program.
741
742 Do not define this macro if it does not need to do anything. */
743
744#ifndef SUBTARGET_EXTRA_SPECS
745#define SUBTARGET_EXTRA_SPECS
746#endif
747
748#define EXTRA_SPECS \
628714d8 749 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
750 SUBTARGET_EXTRA_SPECS
751\f
ce998900 752
8ce94e44
JM
753/* Whether to allow x87 floating-point arithmetic on MODE (one of
754 SFmode, DFmode and XFmode) in the current excess precision
755 configuration. */
b8cab8a5
UB
756#define X87_ENABLE_ARITH(MODE) \
757 (flag_unsafe_math_optimizations \
758 || flag_excess_precision == EXCESS_PRECISION_FAST \
759 || (MODE) == XFmode)
8ce94e44
JM
760
761/* Likewise, whether to allow direct conversions from integer mode
762 IMODE (HImode, SImode or DImode) to MODE. */
763#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
764 (flag_unsafe_math_optimizations \
765 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
766 || (MODE) == XFmode \
767 || ((MODE) == DFmode && (IMODE) == SImode) \
768 || (IMODE) == HImode)
769
979c67a5
UB
770/* target machine storage layout */
771
65d9c0ab
JH
772#define SHORT_TYPE_SIZE 16
773#define INT_TYPE_SIZE 32
f0ea7581
L
774#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
775#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 776#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 777#define FLOAT_TYPE_SIZE 32
65d9c0ab 778#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
779#define LONG_DOUBLE_TYPE_SIZE \
780 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 781
c637141a 782#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 783
67adf6a9 784#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 785#define MAX_BITS_PER_WORD 64
0c2dc519
JH
786#else
787#define MAX_BITS_PER_WORD 32
0c2dc519
JH
788#endif
789
c98f8742
JVA
790/* Define this if most significant byte of a word is the lowest numbered. */
791/* That is true on the 80386. */
792
793#define BITS_BIG_ENDIAN 0
794
795/* Define this if most significant byte of a word is the lowest numbered. */
796/* That is not true on the 80386. */
797#define BYTES_BIG_ENDIAN 0
798
799/* Define this if most significant word of a multiword number is the lowest
800 numbered. */
801/* Not true for 80386 */
802#define WORDS_BIG_ENDIAN 0
803
c98f8742 804/* Width of a word, in units (bytes). */
4ae8027b 805#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
806
807#ifndef IN_LIBGCC2
2e64c636
JH
808#define MIN_UNITS_PER_WORD 4
809#endif
c98f8742 810
c98f8742 811/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 812#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 813
e075ae69 814/* Boundary (in *bits*) on which stack pointer should be aligned. */
bd5d3961 815#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 816
2e3f842f
L
817/* Stack boundary of the main function guaranteed by OS. */
818#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
819
de1132d1 820/* Minimum stack boundary. */
cba9c789 821#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 822
d1f87653 823/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 824 aligned; the compiler cannot rely on having this alignment. */
e075ae69 825#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 826
de1132d1 827/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
828 both 32bit and 64bit, to support codes that need 128 bit stack
829 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
830#define PREFERRED_STACK_BOUNDARY_DEFAULT \
831 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
832
833/* 1 if -mstackrealign should be turned on by default. It will
834 generate an alternate prologue and epilogue that realigns the
835 runtime stack if nessary. This supports mixing codes that keep a
836 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 837 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
838#define STACK_REALIGN_DEFAULT 0
839
840/* Boundary (in *bits*) on which the incoming stack is aligned. */
841#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 842
a2851b75
TG
843/* According to Windows x64 software convention, the maximum stack allocatable
844 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
845 instructions allowed to adjust the stack pointer in the epilog, forcing the
846 use of frame pointer for frames larger than 2 GB. This theorical limit
847 is reduced by 256, an over-estimated upper bound for the stack use by the
848 prologue.
849 We define only one threshold for both the prolog and the epilog. When the
4e523f33 850 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
851 regs, then save them, and then allocate the remaining. There is no SEH
852 unwind info for this later allocation. */
853#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
854
ebff937c
SH
855/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
856 mandatory for the 64-bit ABI, and may or may not be true for other
857 operating systems. */
858#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
859
f963b5d9
RS
860/* Minimum allocation boundary for the code of a function. */
861#define FUNCTION_BOUNDARY 8
862
863/* C++ stores the virtual bit in the lowest bit of function pointers. */
864#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 865
c98f8742
JVA
866/* Minimum size in bits of the largest boundary to which any
867 and all fundamental data types supported by the hardware
868 might need to be aligned. No data type wants to be aligned
17f24ff0 869 rounder than this.
fce5a9f2 870
d1f87653 871 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
872 and Pentium Pro XFmode values at 128 bit boundaries.
873
874 When increasing the maximum, also update
875 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 876
3f97cb0b 877#define BIGGEST_ALIGNMENT \
0076c82f 878 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 879
2e3f842f
L
880/* Maximum stack alignment. */
881#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
882
6e4f1168
L
883/* Alignment value for attribute ((aligned)). It is a constant since
884 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 885#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 886
822eda12 887/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 888#define ALIGN_MODE_128(MODE) \
4501d314 889 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 890
17f24ff0 891/* The published ABIs say that doubles should be aligned on word
d1f87653 892 boundaries, so lower the alignment for structure fields unless
6fc605d8 893 -malign-double is set. */
e932b21b 894
e83f3cff
RH
895/* ??? Blah -- this macro is used directly by libobjc. Since it
896 supports no vector modes, cut out the complexity and fall back
897 on BIGGEST_FIELD_ALIGNMENT. */
898#ifdef IN_TARGET_LIBS
ef49d42e
JH
899#ifdef __x86_64__
900#define BIGGEST_FIELD_ALIGNMENT 128
901#else
e83f3cff 902#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 903#endif
e83f3cff 904#else
a4cf4b64
RB
905#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
906 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 907#endif
c98f8742 908
8a022443
JW
909/* If defined, a C expression to compute the alignment for a static
910 variable. TYPE is the data type, and ALIGN is the alignment that
911 the object would ordinarily have. The value of this macro is used
912 instead of that alignment to align the object.
913
914 If this macro is not defined, then ALIGN is used.
915
916 One use of this macro is to increase alignment of medium-size
917 data to make it all fit in fewer cache lines. Another is to
918 cause character arrays to be word-aligned so that `strcpy' calls
919 that copy constants to character arrays can be done inline. */
920
df8a1d28
JJ
921#define DATA_ALIGNMENT(TYPE, ALIGN) \
922 ix86_data_alignment ((TYPE), (ALIGN), true)
923
924/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
925 some alignment increase, instead of optimization only purposes. E.g.
926 AMD x86-64 psABI says that variables with array type larger than 15 bytes
927 must be aligned to 16 byte boundaries.
928
929 If this macro is not defined, then ALIGN is used. */
930
931#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
932 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
933
934/* If defined, a C expression to compute the alignment for a local
935 variable. TYPE is the data type, and ALIGN is the alignment that
936 the object would ordinarily have. The value of this macro is used
937 instead of that alignment to align the object.
938
939 If this macro is not defined, then ALIGN is used.
940
941 One use of this macro is to increase alignment of medium-size
942 data to make it all fit in fewer cache lines. */
943
76fe54f0
L
944#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
945 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
946
947/* If defined, a C expression to compute the alignment for stack slot.
948 TYPE is the data type, MODE is the widest mode available, and ALIGN
949 is the alignment that the slot would ordinarily have. The value of
950 this macro is used instead of that alignment to align the slot.
951
952 If this macro is not defined, then ALIGN is used when TYPE is NULL,
953 Otherwise, LOCAL_ALIGNMENT will be used.
954
955 One use of this macro is to set alignment of stack slot to the
956 maximum alignment of all possible modes which the slot may have. */
957
958#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
959 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 960
9bfaf89d
JJ
961/* If defined, a C expression to compute the alignment for a local
962 variable DECL.
963
964 If this macro is not defined, then
965 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
966
967 One use of this macro is to increase alignment of medium-size
968 data to make it all fit in fewer cache lines. */
969
970#define LOCAL_DECL_ALIGNMENT(DECL) \
971 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
972
ae58e548
JJ
973/* If defined, a C expression to compute the minimum required alignment
974 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
975 MODE, assuming normal alignment ALIGN.
976
977 If this macro is not defined, then (ALIGN) will be used. */
978
979#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 980 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 981
9bfaf89d 982
9cd10576 983/* Set this nonzero if move instructions will actually fail to work
c98f8742 984 when given unaligned data. */
b4ac57ab 985#define STRICT_ALIGNMENT 0
c98f8742
JVA
986
987/* If bit field type is int, don't let it cross an int,
988 and give entire struct the alignment of an int. */
43a88a8c 989/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 990#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
991\f
992/* Standard register usage. */
993
994/* This processor has special stack-like registers. See reg-stack.c
892a2d68 995 for details. */
c98f8742
JVA
996
997#define STACK_REGS
ce998900 998
f48b4284
UB
999#define IS_STACK_MODE(MODE) \
1000 (X87_FLOAT_MODE_P (MODE) \
1001 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1002 || TARGET_MIX_SSE_I387))
c98f8742
JVA
1003
1004/* Number of actual hardware registers.
1005 The hardware registers are assigned numbers for the compiler
1006 from 0 to just below FIRST_PSEUDO_REGISTER.
1007 All registers that the compiler knows about must be given numbers,
1008 even those that are not normally considered general registers.
1009
1010 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1011 We number the floating point registers 8-15.
1012 Note that registers 0-7 can be accessed as a short or int,
1013 while only 0-3 may be used with byte `mov' instructions.
1014
1015 Reg 16 does not correspond to any hardware register, but instead
1016 appears in the RTL as an argument pointer prior to reload, and is
1017 eliminated during reloading in favor of either the stack or frame
892a2d68 1018 pointer. */
c98f8742 1019
05416670 1020#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1021
3073d01c
ML
1022/* Number of hardware registers that go into the DWARF-2 unwind info.
1023 If not defined, equals FIRST_PSEUDO_REGISTER. */
1024
1025#define DWARF_FRAME_REGISTERS 17
1026
c98f8742
JVA
1027/* 1 for registers that have pervasive standard uses
1028 and are not available for the register allocator.
3f3f2124 1029 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1030
621bc046
UB
1031 REX registers are disabled for 32bit targets in
1032 TARGET_CONDITIONAL_REGISTER_USAGE. */
1033
a7180f70
BS
1034#define FIXED_REGISTERS \
1035/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1036{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1037/*arg,flags,fpsr,frame*/ \
1038 1, 1, 1, 1, \
a7180f70
BS
1039/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1040 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1041/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1042 0, 0, 0, 0, 0, 0, 0, 0, \
1043/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1044 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1045/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1046 0, 0, 0, 0, 0, 0, 0, 0, \
1047/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1048 0, 0, 0, 0, 0, 0, 0, 0, \
1049/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1050 0, 0, 0, 0, 0, 0, 0, 0, \
1051/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1052 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1053
1054/* 1 for registers not available across function calls.
1055 These must include the FIXED_REGISTERS and also any
1056 registers that can be used without being saved.
1057 The latter must include the registers where values are returned
1058 and the register where structure-value addresses are passed.
fce5a9f2
EC
1059 Aside from that, you can include as many other registers as you like.
1060
621bc046
UB
1061 Value is set to 1 if the register is call used unconditionally.
1062 Bit one is set if the register is call used on TARGET_32BIT ABI.
1063 Bit two is set if the register is call used on TARGET_64BIT ABI.
1064 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1065
1066 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1067
1f3ccbc8
L
1068#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1069 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1070
a7180f70
BS
1071#define CALL_USED_REGISTERS \
1072/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1073{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1074/*arg,flags,fpsr,frame*/ \
1075 1, 1, 1, 1, \
a7180f70 1076/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1077 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1078/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1079 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1080/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1081 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1082/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1083 6, 6, 6, 6, 6, 6, 6, 6, \
1084/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1085 6, 6, 6, 6, 6, 6, 6, 6, \
1086/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1087 6, 6, 6, 6, 6, 6, 6, 6, \
1088 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1089 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1090
3b3c6a3f
MM
1091/* Order in which to allocate registers. Each register must be
1092 listed once, even those in FIXED_REGISTERS. List frame pointer
1093 late and fixed registers last. Note that, in general, we prefer
1094 registers listed in CALL_USED_REGISTERS, keeping the others
1095 available for storage of persistent values.
1096
5a733826 1097 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1098 so this is just empty initializer for array. */
3b3c6a3f 1099
eaa17c21
UB
1100#define REG_ALLOC_ORDER \
1101{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1102 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1103 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1104 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1105 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1106
5a733826 1107/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1108 to be rearranged based on a particular function. When using sse math,
03c259ad 1109 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1110
5a733826 1111#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1112
f5316dfe 1113
7c800926
KT
1114#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1115
8521c414 1116#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1117 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1118 && GENERAL_REGNO_P (REGNO) \
1119 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1120
1121#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1122
95879c72
L
1123#define VALID_AVX256_REG_MODE(MODE) \
1124 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1125 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1126 || (MODE) == V4DFmode)
95879c72 1127
4ac005ba 1128#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1129 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1130
3f97cb0b
AI
1131#define VALID_AVX512F_SCALAR_MODE(MODE) \
1132 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1133 || (MODE) == SFmode)
1134
1135#define VALID_AVX512F_REG_MODE(MODE) \
1136 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1137 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1138 || (MODE) == V4TImode)
1139
e6f146d2
SP
1140#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1141 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1142
05416670 1143#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1144 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1145 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1146 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1147
ce998900
UB
1148#define VALID_SSE2_REG_MODE(MODE) \
1149 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1150 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1151
d9a5f180 1152#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1153 ((MODE) == V1TImode || (MODE) == TImode \
1154 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1155 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1156
47f339cf 1157#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1158 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1159
d9a5f180 1160#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1161 ((MODE == V1DImode) || (MODE) == DImode \
1162 || (MODE) == V2SImode || (MODE) == SImode \
1163 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1164
05416670
UB
1165#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1166
1167#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1168
ce998900
UB
1169#define VALID_DFP_MODE_P(MODE) \
1170 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1171
d9a5f180 1172#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1173 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1174 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1175
d9a5f180 1176#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1177 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1178 || (MODE) == DImode \
1179 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1180 || (MODE) == CDImode \
1181 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1182 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1183
822eda12 1184/* Return true for modes passed in SSE registers. */
ce998900 1185#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1186 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1187 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1188 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1189 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1190 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1191 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1192 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1193 || (MODE) == V16SFmode)
822eda12 1194
05416670
UB
1195#define X87_FLOAT_MODE_P(MODE) \
1196 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1197
05416670
UB
1198#define SSE_FLOAT_MODE_P(MODE) \
1199 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1200
1201#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1202 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1203 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1204
ff25ef99
ZD
1205/* It is possible to write patterns to move flags; but until someone
1206 does it, */
1207#define AVOID_CCMODE_COPIES
c98f8742 1208
e075ae69 1209/* Specify the modes required to caller save a given hard regno.
787dc842 1210 We do this on i386 to prevent flags from being saved at all.
e075ae69 1211
787dc842
JH
1212 Kill any attempts to combine saving of modes. */
1213
d9a5f180
GS
1214#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1215 (CC_REGNO_P (REGNO) ? VOIDmode \
1216 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1217 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1218 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1219 && TARGET_PARTIAL_REG_STALL) \
85a77221 1220 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1221 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1222 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1223 : (MODE))
ce998900 1224
c98f8742
JVA
1225/* Specify the registers used for certain standard purposes.
1226 The values of these macros are register numbers. */
1227
1228/* on the 386 the pc register is %eip, and is not usable as a general
1229 register. The ordinary mov instructions won't work */
1230/* #define PC_REGNUM */
1231
05416670
UB
1232/* Base register for access to arguments of the function. */
1233#define ARG_POINTER_REGNUM ARGP_REG
1234
c98f8742 1235/* Register to use for pushing function arguments. */
05416670 1236#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1237
1238/* Base register for access to local variables of the function. */
05416670
UB
1239#define FRAME_POINTER_REGNUM FRAME_REG
1240#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1241
05416670
UB
1242#define FIRST_INT_REG AX_REG
1243#define LAST_INT_REG SP_REG
c98f8742 1244
05416670
UB
1245#define FIRST_QI_REG AX_REG
1246#define LAST_QI_REG BX_REG
c98f8742
JVA
1247
1248/* First & last stack-like regs */
05416670
UB
1249#define FIRST_STACK_REG ST0_REG
1250#define LAST_STACK_REG ST7_REG
c98f8742 1251
05416670
UB
1252#define FIRST_SSE_REG XMM0_REG
1253#define LAST_SSE_REG XMM7_REG
fce5a9f2 1254
05416670
UB
1255#define FIRST_MMX_REG MM0_REG
1256#define LAST_MMX_REG MM7_REG
a7180f70 1257
05416670
UB
1258#define FIRST_REX_INT_REG R8_REG
1259#define LAST_REX_INT_REG R15_REG
3f3f2124 1260
05416670
UB
1261#define FIRST_REX_SSE_REG XMM8_REG
1262#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1263
05416670
UB
1264#define FIRST_EXT_REX_SSE_REG XMM16_REG
1265#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1266
05416670
UB
1267#define FIRST_MASK_REG MASK0_REG
1268#define LAST_MASK_REG MASK7_REG
85a77221 1269
aabcd309 1270/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1271 requiring a frame pointer. */
1272#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1273#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1274#endif
1275
1276/* Make sure we can access arbitrary call frames. */
1277#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1278
c98f8742 1279/* Register to hold the addressing base for position independent
5b43fed1
RH
1280 code access to data items. We don't use PIC pointer for 64bit
1281 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1282 pessimizing code dealing with EBX.
bd09bdeb
RH
1283
1284 To avoid clobbering a call-saved register unnecessarily, we renumber
1285 the pic register when possible. The change is visible after the
1286 prologue has been emitted. */
1287
e8b5eb25 1288#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1289
bcb21886 1290#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1291 (ix86_use_pseudo_pic_reg () \
1292 ? (pic_offset_table_rtx \
1293 ? INVALID_REGNUM \
1294 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1295 : INVALID_REGNUM)
c98f8742 1296
5fc0e5df
KW
1297#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1298
c51e6d85 1299/* This is overridden by <cygwin.h>. */
5e062767
DS
1300#define MS_AGGREGATE_RETURN 0
1301
61fec9ff 1302#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1303\f
1304/* Define the classes of registers for register constraints in the
1305 machine description. Also define ranges of constants.
1306
1307 One of the classes must always be named ALL_REGS and include all hard regs.
1308 If there is more than one class, another class must be named NO_REGS
1309 and contain no registers.
1310
1311 The name GENERAL_REGS must be the name of a class (or an alias for
1312 another name such as ALL_REGS). This is the class of registers
1313 that is allowed by "g" or "r" in a register constraint.
1314 Also, registers outside this class are allocated only when
1315 instructions express preferences for them.
1316
1317 The classes must be numbered in nondecreasing order; that is,
1318 a larger-numbered class must never be contained completely
2e24efd3
AM
1319 in a smaller-numbered class. This is why CLOBBERED_REGS class
1320 is listed early, even though in 64-bit mode it contains more
1321 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1322
1323 For any two classes, it is very desirable that there be another
ab408a86
JVA
1324 class that represents their union.
1325
eaa17c21 1326 The flags and fpsr registers are in no class. */
c98f8742
JVA
1327
1328enum reg_class
1329{
1330 NO_REGS,
e075ae69 1331 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1332 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1333 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1334 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1335 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1336 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1337 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1338 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1339 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1340 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1341 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1342 FLOAT_REGS,
06f4e35d 1343 SSE_FIRST_REG,
45392c76 1344 NO_REX_SSE_REGS,
a7180f70 1345 SSE_REGS,
3f97cb0b 1346 ALL_SSE_REGS,
a7180f70 1347 MMX_REGS,
446988df
JH
1348 FLOAT_SSE_REGS,
1349 FLOAT_INT_REGS,
1350 INT_SSE_REGS,
1351 FLOAT_INT_SSE_REGS,
85a77221 1352 MASK_REGS,
d18cbbf6
UB
1353 ALL_MASK_REGS,
1354 ALL_REGS,
1355 LIM_REG_CLASSES
c98f8742
JVA
1356};
1357
d9a5f180
GS
1358#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1359
1360#define INTEGER_CLASS_P(CLASS) \
1361 reg_class_subset_p ((CLASS), GENERAL_REGS)
1362#define FLOAT_CLASS_P(CLASS) \
1363 reg_class_subset_p ((CLASS), FLOAT_REGS)
1364#define SSE_CLASS_P(CLASS) \
3f97cb0b 1365 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1366#define MMX_CLASS_P(CLASS) \
f75959a6 1367 ((CLASS) == MMX_REGS)
4ed04e93 1368#define MASK_CLASS_P(CLASS) \
d18cbbf6 1369 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1370#define MAYBE_INTEGER_CLASS_P(CLASS) \
1371 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1372#define MAYBE_FLOAT_CLASS_P(CLASS) \
1373 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1374#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1375 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1376#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1377 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1378#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1379 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1380
1381#define Q_CLASS_P(CLASS) \
1382 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1383
0bd72901
UB
1384#define MAYBE_NON_Q_CLASS_P(CLASS) \
1385 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1386
43f3a59d 1387/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1388
1389#define REG_CLASS_NAMES \
1390{ "NO_REGS", \
ab408a86 1391 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1392 "SIREG", "DIREG", \
e075ae69 1393 "AD_REGS", \
2e24efd3 1394 "CLOBBERED_REGS", \
e075ae69 1395 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1396 "TLS_GOTBASE_REGS", \
c98f8742 1397 "INDEX_REGS", \
3f3f2124 1398 "LEGACY_REGS", \
c98f8742
JVA
1399 "GENERAL_REGS", \
1400 "FP_TOP_REG", "FP_SECOND_REG", \
1401 "FLOAT_REGS", \
cb482895 1402 "SSE_FIRST_REG", \
45392c76 1403 "NO_REX_SSE_REGS", \
a7180f70 1404 "SSE_REGS", \
3f97cb0b 1405 "ALL_SSE_REGS", \
a7180f70 1406 "MMX_REGS", \
446988df 1407 "FLOAT_SSE_REGS", \
8fcaaa80 1408 "FLOAT_INT_REGS", \
446988df
JH
1409 "INT_SSE_REGS", \
1410 "FLOAT_INT_SSE_REGS", \
85a77221 1411 "MASK_REGS", \
d18cbbf6 1412 "ALL_MASK_REGS", \
c98f8742
JVA
1413 "ALL_REGS" }
1414
ac2e563f
RH
1415/* Define which registers fit in which classes. This is an initializer
1416 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1417
621bc046
UB
1418 Note that CLOBBERED_REGS are calculated by
1419 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1420
d18cbbf6 1421#define REG_CLASS_CONTENTS \
eaa17c21
UB
1422{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1423 { 0x01, 0x0, 0x0 }, /* AREG */ \
1424 { 0x02, 0x0, 0x0 }, /* DREG */ \
1425 { 0x04, 0x0, 0x0 }, /* CREG */ \
1426 { 0x08, 0x0, 0x0 }, /* BREG */ \
1427 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1428 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1429 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1430 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1431 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1432 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1433 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1434 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1435 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1436 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1437 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1438 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1439 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1440 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1441 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1442 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1443 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1444{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1445 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1446 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1447 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1448 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1449 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1450 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1451{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1452}
c98f8742
JVA
1453
1454/* The same information, inverted:
1455 Return the class number of the smallest class containing
1456 reg number REGNO. This could be a conditional expression
1457 or could index an array. */
1458
1a6e82b8 1459#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1460
42db504c
SB
1461/* When this hook returns true for MODE, the compiler allows
1462 registers explicitly used in the rtl to be used as spill registers
1463 but prevents the compiler from extending the lifetime of these
1464 registers. */
1465#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1466
fc27f749 1467#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1468#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1469
1470#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1471#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1472
1473#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1474#define REX_INT_REGNO_P(N) \
1475 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1476
58b0b34c 1477#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1478#define GENERAL_REGNO_P(N) \
58b0b34c 1479 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1480
fc27f749
UB
1481#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1482#define ANY_QI_REGNO_P(N) \
1483 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1484
66aaf16f
UB
1485#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1486#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1487
fc27f749 1488#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1489#define SSE_REGNO_P(N) \
1490 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1491 || REX_SSE_REGNO_P (N) \
1492 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1493
4977bab6 1494#define REX_SSE_REGNO_P(N) \
fb84c7a0 1495 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1496
0a48088a
IT
1497#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1498
3f97cb0b
AI
1499#define EXT_REX_SSE_REGNO_P(N) \
1500 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1501
05416670
UB
1502#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1503#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1504
9e4a4dd6 1505#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1506#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1507
fc27f749 1508#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1509#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1510
e075ae69 1511#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1512#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1513
5fbb13a7
KY
1514#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1515#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1516 || (N) == XMM4_REG \
1517 || (N) == XMM8_REG \
1518 || (N) == XMM12_REG \
1519 || (N) == XMM16_REG \
1520 || (N) == XMM20_REG \
1521 || (N) == XMM24_REG \
1522 || (N) == XMM28_REG)
1523
05416670
UB
1524/* First floating point reg */
1525#define FIRST_FLOAT_REG FIRST_STACK_REG
1526#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1527
02469d3a
UB
1528#define GET_SSE_REGNO(N) \
1529 ((N) < 8 ? FIRST_SSE_REG + (N) \
1530 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1531 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1532
c98f8742
JVA
1533/* The class value for index registers, and the one for base regs. */
1534
1535#define INDEX_REG_CLASS INDEX_REGS
1536#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1537\f
1538/* Stack layout; function entry, exit and calling. */
1539
1540/* Define this if pushing a word on the stack
1541 makes the stack pointer a smaller address. */
62f9f30b 1542#define STACK_GROWS_DOWNWARD 1
c98f8742 1543
a4d05547 1544/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1545 is at the high-address end of the local variables;
1546 that is, each additional local variable allocated
1547 goes at a more negative offset in the frame. */
f62c8a5c 1548#define FRAME_GROWS_DOWNWARD 1
c98f8742 1549
7b4df2bf 1550#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1551
1552/* If defined, the maximum amount of space required for outgoing arguments
1553 will be computed and placed into the variable `crtl->outgoing_args_size'.
1554 No space will be pushed onto the stack for each call; instead, the
1555 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1556
1557 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1558 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1559 mode the difference is less drastic but visible.
1560
1561 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1562 actually grow with accumulation. Is that because accumulated args
41ee845b 1563 unwind info became unnecesarily bloated?
f830ddc2
RH
1564
1565 With the 64-bit MS ABI, we can generate correct code with or without
1566 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1567 generated without accumulated args is terrible.
41ee845b
JH
1568
1569 If stack probes are required, the space used for large function
1570 arguments on the stack must also be probed, so enable
f8071c05
L
1571 -maccumulate-outgoing-args so this happens in the prologue.
1572
1573 We must use argument accumulation in interrupt function if stack
1574 may be realigned to avoid DRAP. */
f73ad30e 1575
6c6094f1 1576#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1577 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1578 && optimize_function_for_speed_p (cfun)) \
1579 || (cfun->machine->func_type != TYPE_NORMAL \
1580 && crtl->stack_realign_needed) \
1581 || TARGET_STACK_PROBE \
1582 || TARGET_64BIT_MS_ABI \
ff734e26 1583 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1584
1585/* If defined, a C expression whose value is nonzero when we want to use PUSH
1586 instructions to pass outgoing arguments. */
1587
1588#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1589
2da4124d
L
1590/* We want the stack and args grow in opposite directions, even if
1591 PUSH_ARGS is 0. */
1592#define PUSH_ARGS_REVERSED 1
1593
c98f8742
JVA
1594/* Offset of first parameter from the argument pointer register value. */
1595#define FIRST_PARM_OFFSET(FNDECL) 0
1596
a7180f70
BS
1597/* Define this macro if functions should assume that stack space has been
1598 allocated for arguments even when their values are passed in registers.
1599
1600 The value of this macro is the size, in bytes, of the area reserved for
1601 arguments passed in registers for the function represented by FNDECL.
1602
1603 This space can be allocated by the caller, or be a part of the
1604 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1605 which. */
7c800926
KT
1606#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1607
4ae8027b 1608#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1609 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1610
c98f8742
JVA
1611/* Define how to find the value returned by a library function
1612 assuming the value has mode MODE. */
1613
4ae8027b 1614#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1615
e9125c09
TW
1616/* Define the size of the result block used for communication between
1617 untyped_call and untyped_return. The block contains a DImode value
1618 followed by the block used by fnsave and frstor. */
1619
1620#define APPLY_RESULT_SIZE (8+108)
1621
b08de47e 1622/* 1 if N is a possible register number for function argument passing. */
53c17031 1623#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1624
1625/* Define a data type for recording info about an argument list
1626 during the scan of that argument list. This data type should
1627 hold all necessary information about the function itself
1628 and about the args processed so far, enough to enable macros
b08de47e 1629 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1630
e075ae69 1631typedef struct ix86_args {
fa283935 1632 int words; /* # words passed so far */
b08de47e
MM
1633 int nregs; /* # registers available for passing */
1634 int regno; /* next available register number */
3e65f251
KT
1635 int fastcall; /* fastcall or thiscall calling convention
1636 is used */
fa283935 1637 int sse_words; /* # sse words passed so far */
a7180f70 1638 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1639 int warn_avx512f; /* True when we want to warn
1640 about AVX512F ABI. */
95879c72 1641 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1642 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1643 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1644 int warn_empty; /* True when we want to warn about empty classes
1645 passing ABI change. */
fa283935
UB
1646 int sse_regno; /* next available sse register number */
1647 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1648 int mmx_nregs; /* # mmx registers available for passing */
1649 int mmx_regno; /* next available mmx register number */
892a2d68 1650 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1651 int caller; /* true if it is caller. */
2824d6e5
UB
1652 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1653 SFmode/DFmode arguments should be passed
1654 in SSE registers. Otherwise 0. */
d5e254e1 1655 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1656 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1657 MS_ABI for ms abi. */
e66fc623 1658 tree decl; /* Callee decl. */
b08de47e 1659} CUMULATIVE_ARGS;
c98f8742
JVA
1660
1661/* Initialize a variable CUM of type CUMULATIVE_ARGS
1662 for a call to a function whose data type is FNTYPE.
b08de47e 1663 For a library call, FNTYPE is 0. */
c98f8742 1664
0f6937fe 1665#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1666 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1667 (N_NAMED_ARGS) != -1)
c98f8742 1668
c98f8742
JVA
1669/* Output assembler code to FILE to increment profiler label # LABELNO
1670 for profiling a function entry. */
1671
1a6e82b8
UB
1672#define FUNCTION_PROFILER(FILE, LABELNO) \
1673 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1674
1675#define MCOUNT_NAME "_mcount"
1676
3c5273a9
KT
1677#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1678
a5fa1ecd 1679#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1680
1681/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1682 the stack pointer does not matter. The value is tested only in
1683 functions that have frame pointers.
1684 No definition is equivalent to always zero. */
fce5a9f2 1685/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1686 we have to restore it ourselves from the frame pointer, in order to
1687 use pop */
1688
1689#define EXIT_IGNORE_STACK 1
1690
f8071c05
L
1691/* Define this macro as a C expression that is nonzero for registers
1692 used by the epilogue or the `return' pattern. */
1693
1694#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1695
c98f8742
JVA
1696/* Output assembler code for a block containing the constant parts
1697 of a trampoline, leaving space for the variable parts. */
1698
a269a03c 1699/* On the 386, the trampoline contains two instructions:
c98f8742 1700 mov #STATIC,ecx
a269a03c
JC
1701 jmp FUNCTION
1702 The trampoline is generated entirely at runtime. The operand of JMP
1703 is the address of FUNCTION relative to the instruction following the
1704 JMP (which is 5 bytes long). */
c98f8742
JVA
1705
1706/* Length in units of the trampoline for entering a nested function. */
1707
6514899f 1708#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1709\f
1710/* Definitions for register eliminations.
1711
1712 This is an array of structures. Each structure initializes one pair
1713 of eliminable registers. The "from" register number is given first,
1714 followed by "to". Eliminations of the same "from" register are listed
1715 in order of preference.
1716
afc2cd05
NC
1717 There are two registers that can always be eliminated on the i386.
1718 The frame pointer and the arg pointer can be replaced by either the
1719 hard frame pointer or to the stack pointer, depending upon the
1720 circumstances. The hard frame pointer is not used before reload and
1721 so it is not eligible for elimination. */
c98f8742 1722
564d80f4
JH
1723#define ELIMINABLE_REGS \
1724{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1725 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1726 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1727 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1728
c98f8742
JVA
1729/* Define the offset between two registers, one to be eliminated, and the other
1730 its replacement, at the start of a routine. */
1731
d9a5f180
GS
1732#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1733 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1734\f
1735/* Addressing modes, and classification of registers for them. */
1736
c98f8742
JVA
1737/* Macros to check register numbers against specific register classes. */
1738
1739/* These assume that REGNO is a hard or pseudo reg number.
1740 They give nonzero only if REGNO is a hard reg of the suitable class
1741 or a pseudo reg currently allocated to a suitable hard reg.
1742 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1743 has been allocated, which happens in reginfo.c during register
1744 allocation. */
c98f8742 1745
3f3f2124
JH
1746#define REGNO_OK_FOR_INDEX_P(REGNO) \
1747 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1748 || REX_INT_REGNO_P (REGNO) \
1749 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1750 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1751
3f3f2124 1752#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1753 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1754 || (REGNO) == ARG_POINTER_REGNUM \
1755 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1756 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1757
c98f8742
JVA
1758/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1759 and check its validity for a certain class.
1760 We have two alternate definitions for each of them.
1761 The usual definition accepts all pseudo regs; the other rejects
1762 them unless they have been allocated suitable hard regs.
1763 The symbol REG_OK_STRICT causes the latter definition to be used.
1764
1765 Most source files want to accept pseudo regs in the hope that
1766 they will get allocated to the class that the insn wants them to be in.
1767 Source files for reload pass need to be strict.
1768 After reload, it makes no difference, since pseudo regs have
1769 been eliminated by then. */
1770
c98f8742 1771
ff482c8d 1772/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1773#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1774 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1775 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1776 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1777
3b3c6a3f 1778#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1779 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1780 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1781 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1782 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1783
3b3c6a3f
MM
1784/* Strict versions, hard registers only */
1785#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1786#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1787
3b3c6a3f 1788#ifndef REG_OK_STRICT
d9a5f180
GS
1789#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1790#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1791
1792#else
d9a5f180
GS
1793#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1794#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1795#endif
1796
331d9186 1797/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1798 that is a valid memory address for an instruction.
1799 The MODE argument is the machine mode for the MEM expression
1800 that wants to use this address.
1801
331d9186 1802 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1803 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1804
1805 See legitimize_pic_address in i386.c for details as to what
1806 constitutes a legitimate address when -fpic is used. */
1807
1808#define MAX_REGS_PER_ADDRESS 2
1809
f996902d 1810#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1811
b949ea8b
JW
1812/* If defined, a C expression to determine the base term of address X.
1813 This macro is used in only one place: `find_base_term' in alias.c.
1814
1815 It is always safe for this macro to not be defined. It exists so
1816 that alias analysis can understand machine-dependent addresses.
1817
1818 The typical use of this macro is to handle addresses containing
1819 a label_ref or symbol_ref within an UNSPEC. */
1820
d9a5f180 1821#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1822
c98f8742 1823/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1824 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1825 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1826
f996902d 1827#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1828
1829#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1830 (GET_CODE (X) == SYMBOL_REF \
1831 || GET_CODE (X) == LABEL_REF \
1832 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1833\f
b08de47e
MM
1834/* Max number of args passed in registers. If this is more than 3, we will
1835 have problems with ebx (register #4), since it is a caller save register and
1836 is also used as the pic register in ELF. So for now, don't allow more than
1837 3 registers to be passed in registers. */
1838
7c800926
KT
1839/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1840#define X86_64_REGPARM_MAX 6
72fa3605 1841#define X86_64_MS_REGPARM_MAX 4
7c800926 1842
72fa3605 1843#define X86_32_REGPARM_MAX 3
7c800926 1844
4ae8027b 1845#define REGPARM_MAX \
2824d6e5
UB
1846 (TARGET_64BIT \
1847 ? (TARGET_64BIT_MS_ABI \
1848 ? X86_64_MS_REGPARM_MAX \
1849 : X86_64_REGPARM_MAX) \
4ae8027b 1850 : X86_32_REGPARM_MAX)
d2836273 1851
72fa3605
UB
1852#define X86_64_SSE_REGPARM_MAX 8
1853#define X86_64_MS_SSE_REGPARM_MAX 4
1854
b6010cab 1855#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1856
4ae8027b 1857#define SSE_REGPARM_MAX \
2824d6e5
UB
1858 (TARGET_64BIT \
1859 ? (TARGET_64BIT_MS_ABI \
1860 ? X86_64_MS_SSE_REGPARM_MAX \
1861 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1862 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1863
1864#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1865\f
1866/* Specify the machine mode that this machine uses
1867 for the index in the tablejump instruction. */
dc4d7240 1868#define CASE_VECTOR_MODE \
6025b127 1869 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1870
c98f8742
JVA
1871/* Define this as 1 if `char' should by default be signed; else as 0. */
1872#define DEFAULT_SIGNED_CHAR 1
1873
1874/* Max number of bytes we can move from memory to memory
1875 in one reasonably fast instruction. */
65d9c0ab
JH
1876#define MOVE_MAX 16
1877
1878/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1879 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1880 number of bytes we can move with a single instruction.
1881
1882 ??? We should use TImode in 32-bit mode and use OImode or XImode
1883 if they are available. But since by_pieces_ninsns determines the
1884 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1885 64-bit mode. */
1886#define MOVE_MAX_PIECES \
1887 ((TARGET_64BIT \
1888 && TARGET_SSE2 \
1889 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1890 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1891 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1892
7e24ffc9 1893/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1894 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1895 Increasing the value will always make code faster, but eventually
1896 incurs high cost in increased code size.
c98f8742 1897
e2e52e1b 1898 If you don't define this, a reasonable default is used. */
c98f8742 1899
e04ad03d 1900#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1901
45d78e7f
JJ
1902/* If a clear memory operation would take CLEAR_RATIO or more simple
1903 move-instruction sequences, we will do a clrmem or libcall instead. */
1904
e04ad03d 1905#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1906
53f00dde
UB
1907/* Define if shifts truncate the shift count which implies one can
1908 omit a sign-extension or zero-extension of a shift count.
1909
1910 On i386, shifts do truncate the count. But bit test instructions
1911 take the modulo of the bit offset operand. */
c98f8742
JVA
1912
1913/* #define SHIFT_COUNT_TRUNCATED */
1914
d9f32422
JH
1915/* A macro to update M and UNSIGNEDP when an object whose type is
1916 TYPE and which has the specified mode and signedness is to be
1917 stored in a register. This macro is only called when TYPE is a
1918 scalar type.
1919
f710504c 1920 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1921 quantities to SImode. The choice depends on target type. */
1922
1923#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1924do { \
d9f32422
JH
1925 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1926 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1927 (MODE) = SImode; \
1928} while (0)
d9f32422 1929
c98f8742
JVA
1930/* Specify the machine mode that pointers have.
1931 After generation of rtl, the compiler makes no further distinction
1932 between pointers and any other objects of this machine mode. */
28968d91 1933#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1934
5e1e91c4
L
1935/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1936 NONLOCAL needs space to save both shadow stack and stack pointers.
1937
1938 FIXME: We only need to save and restore stack pointer in ptr_mode.
1939 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1940 to save and restore stack pointer. See
1941 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1942 */
1943#define STACK_SAVEAREA_MODE(LEVEL) \
1944 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1945
f0ea7581
L
1946/* A C expression whose value is zero if pointers that need to be extended
1947 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1948 greater then zero if they are zero-extended and less then zero if the
1949 ptr_extend instruction should be used. */
1950
1951#define POINTERS_EXTEND_UNSIGNED 1
1952
c98f8742
JVA
1953/* A function address in a call instruction
1954 is a byte address (for indexing purposes)
1955 so give the MEM rtx a byte's mode. */
1956#define FUNCTION_MODE QImode
d4ba09c0 1957\f
d4ba09c0 1958
d4ba09c0
SC
1959/* A C expression for the cost of a branch instruction. A value of 1
1960 is the default; other values are interpreted relative to that. */
1961
3a4fd356
JH
1962#define BRANCH_COST(speed_p, predictable_p) \
1963 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1964
e327d1a3
L
1965/* An integer expression for the size in bits of the largest integer machine
1966 mode that should actually be used. We allow pairs of registers. */
1967#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1968
d4ba09c0
SC
1969/* Define this macro as a C expression which is nonzero if accessing
1970 less than a word of memory (i.e. a `char' or a `short') is no
1971 faster than accessing a word of memory, i.e., if such access
1972 require more than one instruction or if there is no difference in
1973 cost between byte and (aligned) word loads.
1974
1975 When this macro is not defined, the compiler will access a field by
1976 finding the smallest containing object; when it is defined, a
1977 fullword load will be used if alignment permits. Unless bytes
1978 accesses are faster than word accesses, using word accesses is
1979 preferable since it may eliminate subsequent memory access if
1980 subsequent accesses occur to other fields in the same word of the
1981 structure, but to different bytes. */
1982
1983#define SLOW_BYTE_ACCESS 0
1984
1985/* Nonzero if access to memory by shorts is slow and undesirable. */
1986#define SLOW_SHORT_ACCESS 0
1987
d4ba09c0
SC
1988/* Define this macro if it is as good or better to call a constant
1989 function address than to call an address kept in a register.
1990
1991 Desirable on the 386 because a CALL with a constant address is
1992 faster than one with a register address. */
1993
1e8552c2 1994#define NO_FUNCTION_CSE 1
c98f8742 1995\f
c572e5ba
JVA
1996/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1997 return the mode to be used for the comparison.
1998
1999 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2000 VOIDmode should be used in all other cases.
c572e5ba 2001
16189740 2002 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2003 possible, to allow for more combinations. */
c98f8742 2004
d9a5f180 2005#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2006
9cd10576 2007/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2008 reversed. */
2009
2010#define REVERSIBLE_CC_MODE(MODE) 1
2011
2012/* A C expression whose value is reversed condition code of the CODE for
2013 comparison done in CC_MODE mode. */
3c5cb3e4 2014#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2015
c98f8742
JVA
2016\f
2017/* Control the assembler format that we output, to the extent
2018 this does not vary between assemblers. */
2019
2020/* How to refer to registers in assembler output.
892a2d68 2021 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2022
a7b376ee 2023/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2024 For non floating point regs, the following are the HImode names.
2025
2026 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2027 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2028 "y" code. */
c98f8742 2029
a7180f70
BS
2030#define HI_REGISTER_NAMES \
2031{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2032 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2033 "argp", "flags", "fpsr", "frame", \
a7180f70 2034 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2035 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2036 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2037 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2038 "xmm16", "xmm17", "xmm18", "xmm19", \
2039 "xmm20", "xmm21", "xmm22", "xmm23", \
2040 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2041 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2042 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2043
c98f8742
JVA
2044#define REGISTER_NAMES HI_REGISTER_NAMES
2045
50bec228
UB
2046#define QI_REGISTER_NAMES \
2047{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2048
2049#define QI_HIGH_REGISTER_NAMES \
2050{"ah", "dh", "ch", "bh"}
2051
c98f8742
JVA
2052/* Table of additional register names to use in user input. */
2053
eaa17c21
UB
2054#define ADDITIONAL_REGISTER_NAMES \
2055{ \
2056 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2057 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2058 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2059 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2060 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
50bec228 2061 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
eaa17c21
UB
2062 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2063 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2064 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2065 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2066 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2067 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2068 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2069 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2070 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2071 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2072 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2073 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2074 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2075 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2076 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2077 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2078 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2079}
c98f8742 2080
c98f8742
JVA
2081/* How to renumber registers for dbx and gdb. */
2082
d9a5f180
GS
2083#define DBX_REGISTER_NUMBER(N) \
2084 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2085
9a82e702
MS
2086extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2087extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2088extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2089
469ac993
JM
2090/* Before the prologue, RA is at 0(%esp). */
2091#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2092 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2093
e414ab29 2094/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2095#define RETURN_ADDR_RTX(COUNT, FRAME) \
2096 ((COUNT) == 0 \
2097 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2098 -UNITS_PER_WORD)) \
2099 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2100
892a2d68 2101/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2102#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2103
a10b3cf1
L
2104/* Before the prologue, there are return address and error code for
2105 exception handler on the top of the frame. */
2106#define INCOMING_FRAME_SP_OFFSET \
2107 (cfun->machine->func_type == TYPE_EXCEPTION \
2108 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2109
26fc730d
JJ
2110/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2111 .cfi_startproc. */
2112#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2113
1020a5ab 2114/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2115#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2116#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2117
ad919812 2118
e4c4ebeb
RH
2119/* Select a format to encode pointers in exception handling data. CODE
2120 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2121 true if the symbol may be affected by dynamic relocations.
2122
2123 ??? All x86 object file formats are capable of representing this.
2124 After all, the relocation needed is the same as for the call insn.
2125 Whether or not a particular assembler allows us to enter such, I
2126 guess we'll have to see. */
d9a5f180 2127#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2128 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2129
ec1895c1
UB
2130/* These are a couple of extensions to the formats accepted
2131 by asm_fprintf:
2132 %z prints out opcode suffix for word-mode instruction
2133 %r prints out word-mode name for reg_names[arg] */
2134#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2135 case 'z': \
2136 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2137 break; \
2138 \
2139 case 'r': \
2140 { \
2141 unsigned int regno = va_arg ((ARGS), int); \
2142 if (LEGACY_INT_REGNO_P (regno)) \
2143 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2144 fputs (reg_names[regno], (FILE)); \
2145 break; \
2146 }
2147
2148/* This is how to output an insn to push a register on the stack. */
2149
2150#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2151 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2152
2153/* This is how to output an insn to pop a register from the stack. */
c98f8742 2154
d9a5f180 2155#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2156 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2157
f88c65f7 2158/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2159
2160#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2161 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2162
f88c65f7 2163/* This is how to output an element of a case-vector that is relative. */
c98f8742 2164
33f7f353 2165#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2166 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2167
63001560 2168/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2169
2170#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2171{ \
2172 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2173 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2174}
2175
2176/* A C statement or statements which output an assembler instruction
2177 opcode to the stdio stream STREAM. The macro-operand PTR is a
2178 variable of type `char *' which points to the opcode name in
2179 its "internal" form--the form that is written in the machine
2180 description. */
2181
2182#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2183 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2184
6a90d232
L
2185/* A C statement to output to the stdio stream FILE an assembler
2186 command to pad the location counter to a multiple of 1<<LOG
2187 bytes if it is within MAX_SKIP bytes. */
2188
2189#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2190#undef ASM_OUTPUT_MAX_SKIP_PAD
2191#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2192 if ((LOG) != 0) \
2193 { \
dd047c67 2194 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2195 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2196 else \
2197 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2198 }
2199#endif
2200
135a687e
KT
2201/* Write the extra assembler code needed to declare a function
2202 properly. */
2203
2204#undef ASM_OUTPUT_FUNCTION_LABEL
2205#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2206 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2207
f7288899
EC
2208/* Under some conditions we need jump tables in the text section,
2209 because the assembler cannot handle label differences between
2210 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2211
2212#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2213 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2214 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2215
cea3bd3e
RH
2216/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2217 and switch back. For x86 we do this only to save a few bytes that
2218 would otherwise be unused in the text section. */
ad211091
KT
2219#define CRT_MKSTR2(VAL) #VAL
2220#define CRT_MKSTR(x) CRT_MKSTR2(x)
2221
2222#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2223 asm (SECTION_OP "\n\t" \
2224 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2225 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2226
2227/* Default threshold for putting data in large sections
2228 with x86-64 medium memory model */
2229#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2230\f
b97de419
L
2231/* Which processor to tune code generation for. These must be in sync
2232 with processor_target_table in i386.c. */
5bf0ebab
RH
2233
2234enum processor_type
2235{
b97de419
L
2236 PROCESSOR_GENERIC = 0,
2237 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2238 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2239 PROCESSOR_PENTIUM,
2d6b2e28 2240 PROCESSOR_LAKEMONT,
5bf0ebab 2241 PROCESSOR_PENTIUMPRO,
5bf0ebab 2242 PROCESSOR_PENTIUM4,
89c43c0a 2243 PROCESSOR_NOCONA,
340ef734 2244 PROCESSOR_CORE2,
d3c11974
L
2245 PROCESSOR_NEHALEM,
2246 PROCESSOR_SANDYBRIDGE,
3a579e09 2247 PROCESSOR_HASWELL,
d3c11974
L
2248 PROCESSOR_BONNELL,
2249 PROCESSOR_SILVERMONT,
50e461df 2250 PROCESSOR_GOLDMONT,
74b2bb19 2251 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2252 PROCESSOR_TREMONT,
52747219 2253 PROCESSOR_KNL,
cace2309 2254 PROCESSOR_KNM,
176a3386 2255 PROCESSOR_SKYLAKE,
06caf59d 2256 PROCESSOR_SKYLAKE_AVX512,
c234d831 2257 PROCESSOR_CANNONLAKE,
79ab5364
JK
2258 PROCESSOR_ICELAKE_CLIENT,
2259 PROCESSOR_ICELAKE_SERVER,
7cab07f0 2260 PROCESSOR_CASCADELAKE,
9a7f94d7 2261 PROCESSOR_INTEL,
b97de419
L
2262 PROCESSOR_GEODE,
2263 PROCESSOR_K6,
2264 PROCESSOR_ATHLON,
2265 PROCESSOR_K8,
21efb4d4 2266 PROCESSOR_AMDFAM10,
1133125e 2267 PROCESSOR_BDVER1,
4d652a18 2268 PROCESSOR_BDVER2,
eb2f2b44 2269 PROCESSOR_BDVER3,
ed97ad47 2270 PROCESSOR_BDVER4,
14b52538 2271 PROCESSOR_BTVER1,
e32bfc16 2272 PROCESSOR_BTVER2,
9ce29eb0 2273 PROCESSOR_ZNVER1,
2901f42f 2274 PROCESSOR_ZNVER2,
5bf0ebab
RH
2275 PROCESSOR_max
2276};
2277
c98c2430 2278#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2559ef9f 2279extern const char *const processor_names[];
c98c2430
ML
2280
2281#include "wide-int-bitmask.h"
2282
2283const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2284const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2285const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2286const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2287const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2288const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2289const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2290const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2291const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2292const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2293const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2294const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2295const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2296const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2297const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2298const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2299const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2300const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2301const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2302const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2303const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2304const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2305const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2306const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2307const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2308const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2309const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2310const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2311const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2312const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2313const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2314const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2315const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2316const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2317const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2318const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2319const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2320const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2321const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2322const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2323const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2324const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2325const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2326const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2327/* Hole after PTA_MPX was removed. */
2328const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2329const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2330const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2331const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2332const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2333const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2334const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2335const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2336const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2337const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2338const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2339const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2340const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2341const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2342const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2343const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2344const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2345const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2346const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2347const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2348const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2349const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2350const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2351const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2352const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2353const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2354const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2355const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2356const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
41f8d1fc 2357const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
c98c2430
ML
2358
2359const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2360 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2361const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2362 | PTA_POPCNT;
2363const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_AES | PTA_PCLMUL;
2364const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2365 | PTA_XSAVEOPT;
2366const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2367 | PTA_RDRND | PTA_F16C;
2368const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2369 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2370const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2371 | PTA_RDSEED;
2372const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_CLFLUSHOPT
2373 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2374const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2375 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2376 | PTA_CLWB;
7cab07f0 2377const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
c98c2430
ML
2378const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2379 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2380 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2381const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2382 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2383 | PTA_RDPID | PTA_CLWB;
2384const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2385 | PTA_WBNOINVD;
2386const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2387 | PTA_AVX512F | PTA_AVX512CD;
2388const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2389const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
2390const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_SHA | PTA_XSAVE
2391 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2392 | PTA_FSGSBASE;
2393const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
41f8d1fc 2394 | PTA_SGX | PTA_PTWRITE;
c98c2430
ML
2395const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2396 | PTA_GFNI;
2397const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2398 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2399
2400#ifndef GENERATOR_FILE
2401
2402#include "insn-attr-common.h"
2403
2404struct pta
2405{
2406 const char *const name; /* processor name or nickname. */
2407 const enum processor_type processor;
2408 const enum attr_cpu schedule;
2409 const wide_int_bitmask flags;
2410};
2411
2412extern const pta processor_alias_table[];
2413extern int const pta_size;
2414#endif
2415
2416#endif
2417
9e555526 2418extern enum processor_type ix86_tune;
5bf0ebab 2419extern enum processor_type ix86_arch;
5bf0ebab 2420
8362f420
JH
2421/* Size of the RED_ZONE area. */
2422#define RED_ZONE_SIZE 128
2423/* Reserved area of the red zone for temporaries. */
2424#define RED_ZONE_RESERVE 8
c93e80a5 2425
95899b34 2426extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2427extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2428
2429/* Smallest class containing REGNO. */
2430extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2431
0948ccb2
PB
2432enum ix86_fpcmp_strategy {
2433 IX86_FPCMP_SAHF,
2434 IX86_FPCMP_COMI,
2435 IX86_FPCMP_ARITH
2436};
22fb740d
JH
2437\f
2438/* To properly truncate FP values into integers, we need to set i387 control
2439 word. We can't emit proper mode switching code before reload, as spills
2440 generated by reload may truncate values incorrectly, but we still can avoid
2441 redundant computation of new control word by the mode switching pass.
2442 The fldcw instructions are still emitted redundantly, but this is probably
2443 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2444 the sequence.
22fb740d
JH
2445
2446 The machinery is to emit simple truncation instructions and split them
2447 before reload to instructions having USEs of two memory locations that
2448 are filled by this code to old and new control word.
fce5a9f2 2449
22fb740d
JH
2450 Post-reload pass may be later used to eliminate the redundant fildcw if
2451 needed. */
2452
c7ca8ef8
UB
2453enum ix86_stack_slot
2454{
2455 SLOT_TEMP = 0,
2456 SLOT_CW_STORED,
2457 SLOT_CW_TRUNC,
2458 SLOT_CW_FLOOR,
2459 SLOT_CW_CEIL,
80008279 2460 SLOT_STV_TEMP,
c7ca8ef8
UB
2461 MAX_386_STACK_LOCALS
2462};
2463
ff680eb1
UB
2464enum ix86_entity
2465{
c7ca8ef8
UB
2466 X86_DIRFLAG = 0,
2467 AVX_U128,
ff97910d 2468 I387_TRUNC,
ff680eb1
UB
2469 I387_FLOOR,
2470 I387_CEIL,
ff680eb1
UB
2471 MAX_386_ENTITIES
2472};
2473
c7ca8ef8 2474enum x86_dirflag_state
ff680eb1 2475{
c7ca8ef8
UB
2476 X86_DIRFLAG_RESET,
2477 X86_DIRFLAG_ANY
ff680eb1 2478};
22fb740d 2479
ff97910d
VY
2480enum avx_u128_state
2481{
2482 AVX_U128_CLEAN,
2483 AVX_U128_DIRTY,
2484 AVX_U128_ANY
2485};
2486
22fb740d
JH
2487/* Define this macro if the port needs extra instructions inserted
2488 for mode switching in an optimizing compilation. */
2489
ff680eb1
UB
2490#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2491 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2492
2493/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2494 initializer for an array of integers. Each initializer element N
2495 refers to an entity that needs mode switching, and specifies the
2496 number of different modes that might need to be set for this
2497 entity. The position of the initializer in the initializer -
2498 starting counting at zero - determines the integer that is used to
2499 refer to the mode-switched entity in question. */
2500
c7ca8ef8
UB
2501#define NUM_MODES_FOR_MODE_SWITCHING \
2502 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2503 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2504
0f0138b6
JH
2505\f
2506/* Avoid renaming of stack registers, as doing so in combination with
2507 scheduling just increases amount of live registers at time and in
2508 the turn amount of fxch instructions needed.
2509
3f97cb0b
AI
2510 ??? Maybe Pentium chips benefits from renaming, someone can try....
2511
2512 Don't rename evex to non-evex sse registers. */
0f0138b6 2513
1a6e82b8
UB
2514#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2515 (!STACK_REGNO_P (SRC) \
2516 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2517
3b3c6a3f 2518\f
e91f04de 2519#define FASTCALL_PREFIX '@'
fa1a0d02 2520\f
77560086
BE
2521#ifndef USED_FOR_TARGET
2522/* Structure describing stack frame layout.
2523 Stack grows downward:
2524
2525 [arguments]
2526 <- ARG_POINTER
2527 saved pc
2528
2529 saved static chain if ix86_static_chain_on_stack
2530
2531 saved frame pointer if frame_pointer_needed
2532 <- HARD_FRAME_POINTER
2533 [saved regs]
2534 <- reg_save_offset
2535 [padding0]
2536 <- stack_realign_offset
2537 [saved SSE regs]
2538 OR
2539 [stub-saved registers for ms x64 --> sysv clobbers
2540 <- Start of out-of-line, stub-saved/restored regs
2541 (see libgcc/config/i386/(sav|res)ms64*.S)
2542 [XMM6-15]
2543 [RSI]
2544 [RDI]
2545 [?RBX] only if RBX is clobbered
2546 [?RBP] only if RBP and RBX are clobbered
2547 [?R12] only if R12 and all previous regs are clobbered
2548 [?R13] only if R13 and all previous regs are clobbered
2549 [?R14] only if R14 and all previous regs are clobbered
2550 [?R15] only if R15 and all previous regs are clobbered
2551 <- end of stub-saved/restored regs
2552 [padding1]
2553 ]
5d9d834d 2554 <- sse_reg_save_offset
77560086
BE
2555 [padding2]
2556 | <- FRAME_POINTER
2557 [va_arg registers] |
2558 |
2559 [frame] |
2560 |
2561 [padding2] | = to_allocate
2562 <- STACK_POINTER
2563 */
2564struct GTY(()) ix86_frame
2565{
2566 int nsseregs;
2567 int nregs;
2568 int va_arg_size;
2569 int red_zone_size;
2570 int outgoing_arguments_size;
2571
2572 /* The offsets relative to ARG_POINTER. */
2573 HOST_WIDE_INT frame_pointer_offset;
2574 HOST_WIDE_INT hard_frame_pointer_offset;
2575 HOST_WIDE_INT stack_pointer_offset;
2576 HOST_WIDE_INT hfp_save_offset;
2577 HOST_WIDE_INT reg_save_offset;
122f9da1 2578 HOST_WIDE_INT stack_realign_allocate;
77560086 2579 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2580 HOST_WIDE_INT sse_reg_save_offset;
2581
2582 /* When save_regs_using_mov is set, emit prologue using
2583 move instead of push instructions. */
2584 bool save_regs_using_mov;
2585};
2586
122f9da1
DS
2587/* Machine specific frame tracking during prologue/epilogue generation. All
2588 values are positive, but since the x86 stack grows downward, are subtratced
2589 from the CFA to produce a valid address. */
cd9c1ca8 2590
ec7ded37 2591struct GTY(()) machine_frame_state
cd9c1ca8 2592{
ec7ded37
RH
2593 /* This pair tracks the currently active CFA as reg+offset. When reg
2594 is drap_reg, we don't bother trying to record here the real CFA when
2595 it might really be a DW_CFA_def_cfa_expression. */
2596 rtx cfa_reg;
2597 HOST_WIDE_INT cfa_offset;
2598
2599 /* The current offset (canonically from the CFA) of ESP and EBP.
2600 When stack frame re-alignment is active, these may not be relative
2601 to the CFA. However, in all cases they are relative to the offsets
2602 of the saved registers stored in ix86_frame. */
2603 HOST_WIDE_INT sp_offset;
2604 HOST_WIDE_INT fp_offset;
2605
2606 /* The size of the red-zone that may be assumed for the purposes of
2607 eliding register restore notes in the epilogue. This may be zero
2608 if no red-zone is in effect, or may be reduced from the real
2609 red-zone value by a maximum runtime stack re-alignment value. */
2610 int red_zone_offset;
2611
2612 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2613 value within the frame. If false then the offset above should be
2614 ignored. Note that DRAP, if valid, *always* points to the CFA and
2615 thus has an offset of zero. */
2616 BOOL_BITFIELD sp_valid : 1;
2617 BOOL_BITFIELD fp_valid : 1;
2618 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2619
2620 /* Indicate whether the local stack frame has been re-aligned. When
2621 set, the SP/FP offsets above are relative to the aligned frame
2622 and not the CFA. */
2623 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2624
2625 /* Indicates whether the stack pointer has been re-aligned. When set,
2626 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2627 should only be used for offsets > sp_realigned_offset, while
2628 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2629 The flags realigned and sp_realigned are mutually exclusive. */
2630 BOOL_BITFIELD sp_realigned : 1;
2631
122f9da1
DS
2632 /* If sp_realigned is set, this is the last valid offset from the CFA
2633 that can be used for access with the frame pointer. */
2634 HOST_WIDE_INT sp_realigned_fp_last;
2635
2636 /* If sp_realigned is set, this is the offset from the CFA that the stack
2637 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2638 Access via the stack pointer is only valid for offsets that are greater than
2639 this value. */
d6d4d770 2640 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2641};
2642
f81c9774
RH
2643/* Private to winnt.c. */
2644struct seh_frame_state;
2645
f8071c05
L
2646enum function_type
2647{
2648 TYPE_UNKNOWN = 0,
2649 TYPE_NORMAL,
2650 /* The current function is an interrupt service routine with a
2651 pointer argument as specified by the "interrupt" attribute. */
2652 TYPE_INTERRUPT,
2653 /* The current function is an interrupt service routine with a
2654 pointer argument and an integer argument as specified by the
2655 "interrupt" attribute. */
2656 TYPE_EXCEPTION
2657};
2658
d1b38208 2659struct GTY(()) machine_function {
fa1a0d02 2660 struct stack_local_entry *stack_locals;
4aab97f9
L
2661 int varargs_gpr_size;
2662 int varargs_fpr_size;
ff680eb1 2663 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2664
77560086
BE
2665 /* Cached initial frame layout for the current function. */
2666 struct ix86_frame frame;
3452586b 2667
7458026b
ILT
2668 /* For -fsplit-stack support: A stack local which holds a pointer to
2669 the stack arguments for a function with a variable number of
2670 arguments. This is set at the start of the function and is used
2671 to initialize the overflow_arg_area field of the va_list
2672 structure. */
2673 rtx split_stack_varargs_pointer;
2674
3452586b
RH
2675 /* This value is used for amd64 targets and specifies the current abi
2676 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2677 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2678
2679 /* Nonzero if the function accesses a previous frame. */
2680 BOOL_BITFIELD accesses_prev_frame : 1;
2681
922e3e33
UB
2682 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2683 expander to determine the style used. */
3452586b
RH
2684 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2685
1e4490dc
UB
2686 /* Nonzero if the current function calls pc thunk and
2687 must not use the red zone. */
2688 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2689
5bf5a10b
AO
2690 /* If true, the current function needs the default PIC register, not
2691 an alternate register (on x86) and must not use the red zone (on
2692 x86_64), even if it's a leaf function. We don't want the
2693 function to be regarded as non-leaf because TLS calls need not
2694 affect register allocation. This flag is set when a TLS call
2695 instruction is expanded within a function, and never reset, even
2696 if all such instructions are optimized away. Use the
2697 ix86_current_function_calls_tls_descriptor macro for a better
2698 approximation. */
3452586b
RH
2699 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2700
2701 /* If true, the current function has a STATIC_CHAIN is placed on the
2702 stack below the return address. */
2703 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2704
529a6471
JJ
2705 /* If true, it is safe to not save/restore DRAP register. */
2706 BOOL_BITFIELD no_drap_save_restore : 1;
2707
f8071c05
L
2708 /* Function type. */
2709 ENUM_BITFIELD(function_type) func_type : 2;
2710
da99fd4a
L
2711 /* How to generate indirec branch. */
2712 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2713
2714 /* If true, the current function has local indirect jumps, like
2715 "indirect_jump" or "tablejump". */
2716 BOOL_BITFIELD has_local_indirect_jump : 1;
2717
45e14019
L
2718 /* How to generate function return. */
2719 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2720
f8071c05
L
2721 /* If true, the current function is a function specified with
2722 the "interrupt" or "no_caller_saved_registers" attribute. */
2723 BOOL_BITFIELD no_caller_saved_registers : 1;
2724
a0ff7835
L
2725 /* If true, there is register available for argument passing. This
2726 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2727 if there is scratch register available for indirect sibcall. In
2728 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2729 pass arguments and can be used for indirect sibcall. */
2730 BOOL_BITFIELD arg_reg_available : 1;
2731
d6d4d770 2732 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2733 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2734 BOOL_BITFIELD call_ms2sysv : 1;
2735
2736 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2737 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2738 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2739
d6d4d770
DS
2740 /* This is the number of extra registers saved by stub (valid range is
2741 0-6). Each additional register is only saved/restored by the stubs
2742 if all successive ones are. (Will always be zero when using a hard
2743 frame pointer.) */
2744 unsigned int call_ms2sysv_extra_regs:3;
2745
35c95658
L
2746 /* Nonzero if the function places outgoing arguments on stack. */
2747 BOOL_BITFIELD outgoing_args_on_stack : 1;
2748
708c728d
L
2749 /* If true, ENDBR is queued at function entrance. */
2750 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2751
cd3410cc
L
2752 /* The largest alignment, in bytes, of stack slot actually used. */
2753 unsigned int max_used_stack_alignment;
2754
ec7ded37
RH
2755 /* During prologue/epilogue generation, the current frame state.
2756 Otherwise, the frame state at the end of the prologue. */
2757 struct machine_frame_state fs;
f81c9774
RH
2758
2759 /* During SEH output, this is non-null. */
2760 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2761};
cd9c1ca8 2762#endif
fa1a0d02
JH
2763
2764#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2765#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2766#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2767#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2768#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2769#define ix86_tls_descriptor_calls_expanded_in_cfun \
2770 (cfun->machine->tls_descriptor_call_expanded_p)
2771/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2772 calls are optimized away, we try to detect cases in which it was
2773 optimized away. Since such instructions (use (reg REG_SP)), we can
2774 verify whether there's any such instruction live by testing that
2775 REG_SP is live. */
2776#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2777 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2778#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2779#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2780
1bc7c5b6
ZW
2781/* Control behavior of x86_file_start. */
2782#define X86_FILE_START_VERSION_DIRECTIVE false
2783#define X86_FILE_START_FLTUSED false
2784
7dcbf659
JH
2785/* Flag to mark data that is in the large address area. */
2786#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2787#define SYMBOL_REF_FAR_ADDR_P(X) \
2788 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2789
2790/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2791 have defined always, to avoid ifdefing. */
2792#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2793#define SYMBOL_REF_DLLIMPORT_P(X) \
2794 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2795
2796#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2797#define SYMBOL_REF_DLLEXPORT_P(X) \
2798 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2799
82c0e1a0
KT
2800#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2801#define SYMBOL_REF_STUBVAR_P(X) \
2802 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2803
7942e47e
RY
2804extern void debug_ready_dispatch (void);
2805extern void debug_dispatch_window (int);
2806
91afcfa3
QN
2807/* The value at zero is only defined for the BMI instructions
2808 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2809#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2810 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2811#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2812 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2813
2814
b8ce4e94
KT
2815/* Flags returned by ix86_get_callcvt (). */
2816#define IX86_CALLCVT_CDECL 0x1
2817#define IX86_CALLCVT_STDCALL 0x2
2818#define IX86_CALLCVT_FASTCALL 0x4
2819#define IX86_CALLCVT_THISCALL 0x8
2820#define IX86_CALLCVT_REGPARM 0x10
2821#define IX86_CALLCVT_SSEREGPARM 0x20
2822
2823#define IX86_BASE_CALLCVT(FLAGS) \
2824 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2825 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2826
b86b9f44
MM
2827#define RECIP_MASK_NONE 0x00
2828#define RECIP_MASK_DIV 0x01
2829#define RECIP_MASK_SQRT 0x02
2830#define RECIP_MASK_VEC_DIV 0x04
2831#define RECIP_MASK_VEC_SQRT 0x08
2832#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2833 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2834#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2835
2836#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2837#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2838#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2839#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2840
ab2c4ec8
SS
2841/* Use 128-bit AVX instructions in the auto-vectorizer. */
2842#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2843/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2844#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2845 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2846
c2c601b2
L
2847#define TARGET_INDIRECT_BRANCH_REGISTER \
2848 (ix86_indirect_branch_register \
2849 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2850
5dcfdccd
KY
2851#define IX86_HLE_ACQUIRE (1 << 16)
2852#define IX86_HLE_RELEASE (1 << 17)
2853
e83b8e2e
JJ
2854/* For switching between functions with different target attributes. */
2855#define SWITCHABLE_TARGET 1
2856
44d0de8d
UB
2857#define TARGET_SUPPORTS_WIDE_INT 1
2858
c98f8742
JVA
2859/*
2860Local variables:
2861version-control: t
2862End:
2863*/