]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
IA MCU psABI support: GCC changes
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
5624e564 2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
90922d36 84#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 85#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 86#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 87#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 88#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 89#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 90#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 91#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 92#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 93#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
94#define TARGET_ROUND TARGET_ISA_ROUND
95#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 96#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 97#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 98#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 99#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 100#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 101#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 102#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 103#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 104#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 105#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 106#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 107#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 108#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 109#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 110#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 111#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 112#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 113#define TARGET_AES TARGET_ISA_AES
bf7b5747 114#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
115#define TARGET_SHA TARGET_ISA_SHA
116#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
117#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
119#define TARGET_XSAVEC TARGET_ISA_XSAVEC
120#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
121#define TARGET_XSAVES TARGET_ISA_XSAVES
122#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 123#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 124#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
125#define TARGET_CMPXCHG16B TARGET_ISA_CX16
126#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 127#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 128#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 129#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 130#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 131#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 132#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
133#define TARGET_RTM TARGET_ISA_RTM
134#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 135#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 136#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 137#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 138#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 139#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 140#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 141#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 142#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 143#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 144#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 145#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 146#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 147#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 148#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
149#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
150#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
151#define TARGET_MPX TARGET_ISA_MPX
152#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
36e9b73e
IT
153#define TARGET_PCOMMIT TARGET_ISA_PCOMMIT
154#define TARGET_PCOMMIT_P(x) TARGET_ISA_PCOMMIT_P(x)
9c3bca11
IT
155#define TARGET_CLWB TARGET_ISA_CLWB
156#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
157#define TARGET_MWAITX TARGET_ISA_MWAITX
158#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
ab442df7 159
90922d36 160#define TARGET_LP64 TARGET_ABI_64
bf7b5747 161#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 162#define TARGET_X32 TARGET_ABI_X32
bf7b5747 163#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
164#define TARGET_16BIT TARGET_CODE16
165#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 166
cbf2e4d4
HJ
167/* SSE4.1 defines round instructions */
168#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 169#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 170
26b5109f
RS
171#include "config/vxworks-dummy.h"
172
7eb68c06 173#include "config/i386/i386-opts.h"
ccf8e764 174
c69fa2d4 175#define MAX_STRINGOP_ALGS 4
ccf8e764 176
8c996513
JH
177/* Specify what algorithm to use for stringops on known size.
178 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
179 known at compile time or estimated via feedback, the SIZE array
180 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 181 means infinity). Corresponding ALG is used then.
340ef734
JH
182 When NOALIGN is true the code guaranting the alignment of the memory
183 block is skipped.
184
8c996513 185 For example initializer:
4f3f76e6 186 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 187 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 188 be used otherwise. */
8c996513
JH
189struct stringop_algs
190{
191 const enum stringop_alg unknown_size;
192 const struct stringop_strategy {
193 const int max;
194 const enum stringop_alg alg;
340ef734 195 int noalign;
c69fa2d4 196 } size [MAX_STRINGOP_ALGS];
8c996513
JH
197};
198
d4ba09c0
SC
199/* Define the specific costs for a given cpu */
200
201struct processor_costs {
8b60264b
KG
202 const int add; /* cost of an add instruction */
203 const int lea; /* cost of a lea instruction */
204 const int shift_var; /* variable shift costs */
205 const int shift_const; /* constant shift costs */
f676971a 206 const int mult_init[5]; /* cost of starting a multiply
4977bab6 207 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 208 const int mult_bit; /* cost of multiply per each bit set */
f676971a 209 const int divide[5]; /* cost of a divide/mod
4977bab6 210 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
211 int movsx; /* The cost of movsx operation. */
212 int movzx; /* The cost of movzx operation. */
8b60264b
KG
213 const int large_insn; /* insns larger than this cost more */
214 const int move_ratio; /* The threshold of number of scalar
ac775968 215 memory-to-memory move insns. */
8b60264b
KG
216 const int movzbl_load; /* cost of loading using movzbl */
217 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
218 in QImode, HImode and SImode relative
219 to reg-reg move (2). */
8b60264b 220 const int int_store[3]; /* cost of storing integer register
96e7ae40 221 in QImode, HImode and SImode */
8b60264b
KG
222 const int fp_move; /* cost of reg,reg fld/fst */
223 const int fp_load[3]; /* cost of loading FP register
96e7ae40 224 in SFmode, DFmode and XFmode */
8b60264b 225 const int fp_store[3]; /* cost of storing FP register
96e7ae40 226 in SFmode, DFmode and XFmode */
8b60264b
KG
227 const int mmx_move; /* cost of moving MMX register. */
228 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 229 in SImode and DImode */
8b60264b 230 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 231 in SImode and DImode */
8b60264b
KG
232 const int sse_move; /* cost of moving SSE register. */
233 const int sse_load[3]; /* cost of loading SSE register
fa79946e 234 in SImode, DImode and TImode*/
8b60264b 235 const int sse_store[3]; /* cost of storing SSE register
fa79946e 236 in SImode, DImode and TImode*/
8b60264b 237 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 238 integer and vice versa. */
46cb0441
ZD
239 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
240 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
241 const int prefetch_block; /* bytes moved to cache for prefetch. */
242 const int simultaneous_prefetches; /* number of parallel prefetch
243 operations. */
4977bab6 244 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
245 const int fadd; /* cost of FADD and FSUB instructions. */
246 const int fmul; /* cost of FMUL instruction. */
247 const int fdiv; /* cost of FDIV instruction. */
248 const int fabs; /* cost of FABS instruction. */
249 const int fchs; /* cost of FCHS instruction. */
250 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 251 /* Specify what algorithm
bee51209 252 to use for stringops on unknown size. */
ad83025e 253 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
254 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
255 load and store. */
256 const int scalar_load_cost; /* Cost of scalar load. */
257 const int scalar_store_cost; /* Cost of scalar store. */
258 const int vec_stmt_cost; /* Cost of any vector operation, excluding
259 load, store, vector-to-scalar and
260 scalar-to-vector operation. */
261 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
262 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 263 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
264 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
265 const int vec_store_cost; /* Cost of vector store. */
266 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
267 cost model. */
268 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
269 vectorizer cost model. */
d4ba09c0
SC
270};
271
8b60264b 272extern const struct processor_costs *ix86_cost;
b2077fd2
JH
273extern const struct processor_costs ix86_size_cost;
274
275#define ix86_cur_cost() \
276 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 277
c98f8742
JVA
278/* Macros used in the machine description to test the flags. */
279
b97de419 280/* configure can arrange to change it. */
e075ae69 281
35b528be 282#ifndef TARGET_CPU_DEFAULT
b97de419 283#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 284#endif
35b528be 285
004d3859
GK
286#ifndef TARGET_FPMATH_DEFAULT
287#define TARGET_FPMATH_DEFAULT \
288 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
289#endif
290
bf7b5747
ST
291#ifndef TARGET_FPMATH_DEFAULT_P
292#define TARGET_FPMATH_DEFAULT_P(x) \
293 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
294#endif
295
6ac49599 296#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 297#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 298
5791cc29
JT
299/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
300 compile-time constant. */
301#ifdef IN_LIBGCC2
6ac49599 302#undef TARGET_64BIT
5791cc29
JT
303#ifdef __x86_64__
304#define TARGET_64BIT 1
305#else
306#define TARGET_64BIT 0
307#endif
308#else
6ac49599
RS
309#ifndef TARGET_BI_ARCH
310#undef TARGET_64BIT
e49080ec 311#undef TARGET_64BIT_P
67adf6a9 312#if TARGET_64BIT_DEFAULT
0c2dc519 313#define TARGET_64BIT 1
e49080ec 314#define TARGET_64BIT_P(x) 1
0c2dc519
JH
315#else
316#define TARGET_64BIT 0
e49080ec 317#define TARGET_64BIT_P(x) 0
0c2dc519
JH
318#endif
319#endif
5791cc29 320#endif
25f94bb5 321
750054a2
CT
322#define HAS_LONG_COND_BRANCH 1
323#define HAS_LONG_UNCOND_BRANCH 1
324
9e555526
RH
325#define TARGET_386 (ix86_tune == PROCESSOR_I386)
326#define TARGET_486 (ix86_tune == PROCESSOR_I486)
327#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
328#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 329#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
330#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
331#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
332#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
333#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 334#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 335#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 336#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
337#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
338#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 339#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
340#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
341#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
52747219 342#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
9a7f94d7 343#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 344#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 345#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 346#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 347#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 348#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 349#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 350#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 351#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 352
80fd744f
RH
353/* Feature tests against the various tunings. */
354enum ix86_tune_indices {
4b8bc035 355#undef DEF_TUNE
3ad20bd4 356#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
357#include "x86-tune.def"
358#undef DEF_TUNE
359X86_TUNE_LAST
80fd744f
RH
360};
361
ab442df7 362extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
363
364#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
365#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
366#define TARGET_ZERO_EXTEND_WITH_AND \
367 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 368#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
369#define TARGET_BRANCH_PREDICTION_HINTS \
370 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
371#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
372#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
373#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
374#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
375#define TARGET_PARTIAL_FLAG_REG_STALL \
376 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
377#define TARGET_LCP_STALL \
378 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
379#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
380#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
381#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
382#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
383#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
384#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
385#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
386#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
387#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
388#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
389#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
390#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
391 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
392#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
393#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
394#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
395#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
396#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
397#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
398#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
399#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
400#define TARGET_INTEGER_DFMODE_MOVES \
401 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
402#define TARGET_PARTIAL_REG_DEPENDENCY \
403 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
404#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
405 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
406#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
407 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
408#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
409 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
410#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
411 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
412#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
413#define TARGET_SSE_TYPELESS_STORES \
414 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
415#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
416#define TARGET_MEMORY_MISMATCH_STALL \
417 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
418#define TARGET_PROLOGUE_USING_MOVE \
419 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
420#define TARGET_EPILOGUE_USING_MOVE \
421 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
422#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
423#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
424#define TARGET_INTER_UNIT_MOVES_TO_VEC \
425 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
426#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
427 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
428#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 429 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
430#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
431#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
432#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
433#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
434#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
435#define TARGET_PAD_SHORT_FUNCTION \
436 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
437#define TARGET_EXT_80387_CONSTANTS \
438 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
439#define TARGET_AVOID_VECTOR_DECODE \
440 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
441#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
442 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
443#define TARGET_SLOW_IMUL_IMM32_MEM \
444 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
445#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
446#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
447#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
448#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
449#define TARGET_USE_VECTOR_FP_CONVERTS \
450 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
451#define TARGET_USE_VECTOR_CONVERTS \
452 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
453#define TARGET_SLOW_PSHUFB \
454 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
455#define TARGET_VECTOR_PARALLEL_EXECUTION \
456 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
457#define TARGET_FUSE_CMP_AND_BRANCH_32 \
458 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
459#define TARGET_FUSE_CMP_AND_BRANCH_64 \
460 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 461#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
462 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
463 : TARGET_FUSE_CMP_AND_BRANCH_32)
464#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
465 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
466#define TARGET_FUSE_ALU_AND_BRANCH \
467 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 468#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
469#define TARGET_AVOID_LEA_FOR_ADDR \
470 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
471#define TARGET_VECTORIZE_DOUBLE \
472 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
473#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
474 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
475#define TARGET_AVX128_OPTIMAL \
476 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
477#define TARGET_REASSOC_INT_TO_PARALLEL \
478 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
479#define TARGET_REASSOC_FP_TO_PARALLEL \
480 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
481#define TARGET_GENERAL_REGS_SSE_SPILL \
482 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
483#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
484 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 485#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 486 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
487#define TARGET_ADJUST_UNROLL \
488 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
489#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
490 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 491
80fd744f
RH
492/* Feature tests against the various architecture variations. */
493enum ix86_arch_indices {
cef31f9c 494 X86_ARCH_CMOV,
80fd744f
RH
495 X86_ARCH_CMPXCHG,
496 X86_ARCH_CMPXCHG8B,
497 X86_ARCH_XADD,
498 X86_ARCH_BSWAP,
499
500 X86_ARCH_LAST
501};
4f3f76e6 502
ab442df7 503extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 504
cef31f9c 505#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
506#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
507#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
508#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
509#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
510
cef31f9c
UB
511/* For sane SSE instruction set generation we need fcomi instruction.
512 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
513 expands to a sequence that includes conditional move. */
514#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
515
80fd744f
RH
516#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
517
cb261eb7 518extern unsigned char x86_prefetch_sse;
80fd744f
RH
519#define TARGET_PREFETCH_SSE x86_prefetch_sse
520
80fd744f
RH
521#define ASSEMBLER_DIALECT (ix86_asm_dialect)
522
523#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
524#define TARGET_MIX_SSE_I387 \
525 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
526
527#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
528#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
529#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 530#define TARGET_SUN_TLS 0
1ef45b77 531
67adf6a9
RH
532#ifndef TARGET_64BIT_DEFAULT
533#define TARGET_64BIT_DEFAULT 0
25f94bb5 534#endif
74dc3e94
RH
535#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
536#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
537#endif
25f94bb5 538
e0ea8797
AH
539#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
540#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
541
79f5e442
ZD
542/* Fence to use after loop using storent. */
543
544extern tree x86_mfence;
545#define FENCE_FOLLOWING_MOVNT x86_mfence
546
0ed4a390
JL
547/* Once GDB has been enhanced to deal with functions without frame
548 pointers, we can change this to allow for elimination of
549 the frame pointer in leaf functions. */
550#define TARGET_DEFAULT 0
67adf6a9 551
0a1c5e55
UB
552/* Extra bits to force. */
553#define TARGET_SUBTARGET_DEFAULT 0
554#define TARGET_SUBTARGET_ISA_DEFAULT 0
555
556/* Extra bits to force on w/ 32-bit mode. */
557#define TARGET_SUBTARGET32_DEFAULT 0
558#define TARGET_SUBTARGET32_ISA_DEFAULT 0
559
ccf8e764
RH
560/* Extra bits to force on w/ 64-bit mode. */
561#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 562#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 563
fee3eacd
IS
564/* Replace MACH-O, ifdefs by in-line tests, where possible.
565 (a) Macros defined in config/i386/darwin.h */
b069de3b 566#define TARGET_MACHO 0
9005471b 567#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
568#define MACHOPIC_ATT_STUB 0
569/* (b) Macros defined in config/darwin.h */
570#define MACHO_DYNAMIC_NO_PIC_P 0
571#define MACHOPIC_INDIRECT 0
572#define MACHOPIC_PURE 0
9005471b 573
5a579c3b
LE
574/* For the RDOS */
575#define TARGET_RDOS 0
576
9005471b 577/* For the Windows 64-bit ABI. */
7c800926
KT
578#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
579
6510e8bb
KT
580/* For the Windows 32-bit ABI. */
581#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
582
f81c9774
RH
583/* This is re-defined by cygming.h. */
584#define TARGET_SEH 0
585
a3d7ab92
KT
586/* This is re-defined by cygming.h. */
587#define TARGET_PECOFF 0
588
51212b32 589/* The default abi used by target. */
7c800926 590#define DEFAULT_ABI SYSV_ABI
ccf8e764 591
b8b3f0ca
LE
592/* The default TLS segment register used by target. */
593#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
594
cc69336f
RH
595/* Subtargets may reset this to 1 in order to enable 96-bit long double
596 with the rounding mode forced to 53 bits. */
597#define TARGET_96_ROUND_53_LONG_DOUBLE 0
598
682cd442
GK
599/* -march=native handling only makes sense with compiler running on
600 an x86 or x86_64 chip. If changing this condition, also change
601 the condition in driver-i386.c. */
602#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
603/* In driver-i386.c. */
604extern const char *host_detect_local_cpu (int argc, const char **argv);
605#define EXTRA_SPEC_FUNCTIONS \
606 { "local_cpu_detect", host_detect_local_cpu },
682cd442 607#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
608#endif
609
8981c15b
JM
610#if TARGET_64BIT_DEFAULT
611#define OPT_ARCH64 "!m32"
612#define OPT_ARCH32 "m32"
613#else
f0ea7581
L
614#define OPT_ARCH64 "m64|mx32"
615#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
616#endif
617
1cba2b96
EC
618/* Support for configure-time defaults of some command line options.
619 The order here is important so that -march doesn't squash the
620 tune or cpu values. */
ce998900 621#define OPTION_DEFAULT_SPECS \
da2d4c01 622 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
623 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
624 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 625 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
626 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
627 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
628 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
629 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
630 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 631
241e1a89
SC
632/* Specs for the compiler proper */
633
628714d8 634#ifndef CC1_CPU_SPEC
eb5bb0fd 635#define CC1_CPU_SPEC_1 ""
fa959ce4 636
682cd442 637#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
638#define CC1_CPU_SPEC CC1_CPU_SPEC_1
639#else
640#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
641"%{march=native:%>march=native %:local_cpu_detect(arch) \
642 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
643%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 644#endif
241e1a89 645#endif
c98f8742 646\f
30efe578 647/* Target CPU builtins. */
ab442df7
MM
648#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
649
650/* Target Pragmas. */
651#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 652
628714d8 653#ifndef CC1_SPEC
8015b78d 654#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
655#endif
656
657/* This macro defines names of additional specifications to put in the
658 specs that can be used in various specifications like CC1_SPEC. Its
659 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
660
661 Each subgrouping contains a string constant, that defines the
188fc5b5 662 specification name, and a string constant that used by the GCC driver
bcd86433
SC
663 program.
664
665 Do not define this macro if it does not need to do anything. */
666
667#ifndef SUBTARGET_EXTRA_SPECS
668#define SUBTARGET_EXTRA_SPECS
669#endif
670
671#define EXTRA_SPECS \
628714d8 672 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
673 SUBTARGET_EXTRA_SPECS
674\f
ce998900 675
d57a4b98
RH
676/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
677 FPU, assume that the fpcw is set to extended precision; when using
678 only SSE, rounding is correct; when using both SSE and the FPU,
679 the rounding precision is indeterminate, since either may be chosen
680 apparently at random. */
681#define TARGET_FLT_EVAL_METHOD \
5ccd517a 682 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 683
8ce94e44
JM
684/* Whether to allow x87 floating-point arithmetic on MODE (one of
685 SFmode, DFmode and XFmode) in the current excess precision
686 configuration. */
687#define X87_ENABLE_ARITH(MODE) \
688 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
689
690/* Likewise, whether to allow direct conversions from integer mode
691 IMODE (HImode, SImode or DImode) to MODE. */
692#define X87_ENABLE_FLOAT(MODE, IMODE) \
693 (flag_excess_precision == EXCESS_PRECISION_FAST \
694 || (MODE) == XFmode \
695 || ((MODE) == DFmode && (IMODE) == SImode) \
696 || (IMODE) == HImode)
697
979c67a5
UB
698/* target machine storage layout */
699
65d9c0ab
JH
700#define SHORT_TYPE_SIZE 16
701#define INT_TYPE_SIZE 32
f0ea7581
L
702#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
703#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 704#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 705#define FLOAT_TYPE_SIZE 32
65d9c0ab 706#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
707#define LONG_DOUBLE_TYPE_SIZE \
708 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 709
c637141a 710#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 711
67adf6a9 712#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 713#define MAX_BITS_PER_WORD 64
0c2dc519
JH
714#else
715#define MAX_BITS_PER_WORD 32
0c2dc519
JH
716#endif
717
c98f8742
JVA
718/* Define this if most significant byte of a word is the lowest numbered. */
719/* That is true on the 80386. */
720
721#define BITS_BIG_ENDIAN 0
722
723/* Define this if most significant byte of a word is the lowest numbered. */
724/* That is not true on the 80386. */
725#define BYTES_BIG_ENDIAN 0
726
727/* Define this if most significant word of a multiword number is the lowest
728 numbered. */
729/* Not true for 80386 */
730#define WORDS_BIG_ENDIAN 0
731
c98f8742 732/* Width of a word, in units (bytes). */
4ae8027b 733#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
734
735#ifndef IN_LIBGCC2
2e64c636
JH
736#define MIN_UNITS_PER_WORD 4
737#endif
c98f8742 738
c98f8742 739/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 740#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 741
e075ae69 742/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 743#define STACK_BOUNDARY \
51212b32 744 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 745
2e3f842f
L
746/* Stack boundary of the main function guaranteed by OS. */
747#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
748
de1132d1 749/* Minimum stack boundary. */
5bfb2af2 750#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 751
d1f87653 752/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 753 aligned; the compiler cannot rely on having this alignment. */
e075ae69 754#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 755
de1132d1 756/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
757 both 32bit and 64bit, to support codes that need 128 bit stack
758 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
759#define PREFERRED_STACK_BOUNDARY_DEFAULT \
760 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
761
762/* 1 if -mstackrealign should be turned on by default. It will
763 generate an alternate prologue and epilogue that realigns the
764 runtime stack if nessary. This supports mixing codes that keep a
765 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 766 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
767#define STACK_REALIGN_DEFAULT 0
768
769/* Boundary (in *bits*) on which the incoming stack is aligned. */
770#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 771
a2851b75
TG
772/* According to Windows x64 software convention, the maximum stack allocatable
773 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
774 instructions allowed to adjust the stack pointer in the epilog, forcing the
775 use of frame pointer for frames larger than 2 GB. This theorical limit
776 is reduced by 256, an over-estimated upper bound for the stack use by the
777 prologue.
778 We define only one threshold for both the prolog and the epilog. When the
4e523f33 779 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
780 regs, then save them, and then allocate the remaining. There is no SEH
781 unwind info for this later allocation. */
782#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
783
ebff937c
SH
784/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
785 mandatory for the 64-bit ABI, and may or may not be true for other
786 operating systems. */
787#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
788
f963b5d9
RS
789/* Minimum allocation boundary for the code of a function. */
790#define FUNCTION_BOUNDARY 8
791
792/* C++ stores the virtual bit in the lowest bit of function pointers. */
793#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 794
c98f8742
JVA
795/* Minimum size in bits of the largest boundary to which any
796 and all fundamental data types supported by the hardware
797 might need to be aligned. No data type wants to be aligned
17f24ff0 798 rounder than this.
fce5a9f2 799
d1f87653 800 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
801 and Pentium Pro XFmode values at 128 bit boundaries.
802
803 When increasing the maximum, also update
804 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 805
3f97cb0b 806#define BIGGEST_ALIGNMENT \
d9063947 807 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : (TARGET_IAMCU ? 32 : 128)))
17f24ff0 808
2e3f842f
L
809/* Maximum stack alignment. */
810#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
811
6e4f1168
L
812/* Alignment value for attribute ((aligned)). It is a constant since
813 it is the part of the ABI. We shouldn't change it with -mavx. */
814#define ATTRIBUTE_ALIGNED_VALUE 128
815
822eda12 816/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 817#define ALIGN_MODE_128(MODE) \
4501d314 818 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 819
17f24ff0 820/* The published ABIs say that doubles should be aligned on word
d1f87653 821 boundaries, so lower the alignment for structure fields unless
6fc605d8 822 -malign-double is set. */
e932b21b 823
e83f3cff
RH
824/* ??? Blah -- this macro is used directly by libobjc. Since it
825 supports no vector modes, cut out the complexity and fall back
826 on BIGGEST_FIELD_ALIGNMENT. */
827#ifdef IN_TARGET_LIBS
ef49d42e
JH
828#ifdef __x86_64__
829#define BIGGEST_FIELD_ALIGNMENT 128
830#else
e83f3cff 831#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 832#endif
e83f3cff 833#else
e932b21b
JH
834#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
835 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 836#endif
c98f8742 837
e5e8a8bf 838/* If defined, a C expression to compute the alignment given to a
a7180f70 839 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
840 and ALIGN is the alignment that the object would ordinarily have.
841 The value of this macro is used instead of that alignment to align
842 the object.
843
844 If this macro is not defined, then ALIGN is used.
845
846 The typical use of this macro is to increase alignment for string
847 constants to be word aligned so that `strcpy' calls that copy
848 constants can be done inline. */
849
d9a5f180 850#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 851
8a022443
JW
852/* If defined, a C expression to compute the alignment for a static
853 variable. TYPE is the data type, and ALIGN is the alignment that
854 the object would ordinarily have. The value of this macro is used
855 instead of that alignment to align the object.
856
857 If this macro is not defined, then ALIGN is used.
858
859 One use of this macro is to increase alignment of medium-size
860 data to make it all fit in fewer cache lines. Another is to
861 cause character arrays to be word-aligned so that `strcpy' calls
862 that copy constants to character arrays can be done inline. */
863
df8a1d28
JJ
864#define DATA_ALIGNMENT(TYPE, ALIGN) \
865 ix86_data_alignment ((TYPE), (ALIGN), true)
866
867/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
868 some alignment increase, instead of optimization only purposes. E.g.
869 AMD x86-64 psABI says that variables with array type larger than 15 bytes
870 must be aligned to 16 byte boundaries.
871
872 If this macro is not defined, then ALIGN is used. */
873
874#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
875 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
876
877/* If defined, a C expression to compute the alignment for a local
878 variable. TYPE is the data type, and ALIGN is the alignment that
879 the object would ordinarily have. The value of this macro is used
880 instead of that alignment to align the object.
881
882 If this macro is not defined, then ALIGN is used.
883
884 One use of this macro is to increase alignment of medium-size
885 data to make it all fit in fewer cache lines. */
886
76fe54f0
L
887#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
888 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
889
890/* If defined, a C expression to compute the alignment for stack slot.
891 TYPE is the data type, MODE is the widest mode available, and ALIGN
892 is the alignment that the slot would ordinarily have. The value of
893 this macro is used instead of that alignment to align the slot.
894
895 If this macro is not defined, then ALIGN is used when TYPE is NULL,
896 Otherwise, LOCAL_ALIGNMENT will be used.
897
898 One use of this macro is to set alignment of stack slot to the
899 maximum alignment of all possible modes which the slot may have. */
900
901#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
902 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 903
9bfaf89d
JJ
904/* If defined, a C expression to compute the alignment for a local
905 variable DECL.
906
907 If this macro is not defined, then
908 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
909
910 One use of this macro is to increase alignment of medium-size
911 data to make it all fit in fewer cache lines. */
912
913#define LOCAL_DECL_ALIGNMENT(DECL) \
914 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
915
ae58e548
JJ
916/* If defined, a C expression to compute the minimum required alignment
917 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
918 MODE, assuming normal alignment ALIGN.
919
920 If this macro is not defined, then (ALIGN) will be used. */
921
922#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
923 ix86_minimum_alignment (EXP, MODE, ALIGN)
924
9bfaf89d 925
9cd10576 926/* Set this nonzero if move instructions will actually fail to work
c98f8742 927 when given unaligned data. */
b4ac57ab 928#define STRICT_ALIGNMENT 0
c98f8742
JVA
929
930/* If bit field type is int, don't let it cross an int,
931 and give entire struct the alignment of an int. */
43a88a8c 932/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 933#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
934\f
935/* Standard register usage. */
936
937/* This processor has special stack-like registers. See reg-stack.c
892a2d68 938 for details. */
c98f8742
JVA
939
940#define STACK_REGS
ce998900 941
d9a5f180 942#define IS_STACK_MODE(MODE) \
63001560
UB
943 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
944 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 945 || (MODE) == XFmode)
c98f8742
JVA
946
947/* Number of actual hardware registers.
948 The hardware registers are assigned numbers for the compiler
949 from 0 to just below FIRST_PSEUDO_REGISTER.
950 All registers that the compiler knows about must be given numbers,
951 even those that are not normally considered general registers.
952
953 In the 80386 we give the 8 general purpose registers the numbers 0-7.
954 We number the floating point registers 8-15.
955 Note that registers 0-7 can be accessed as a short or int,
956 while only 0-3 may be used with byte `mov' instructions.
957
958 Reg 16 does not correspond to any hardware register, but instead
959 appears in the RTL as an argument pointer prior to reload, and is
960 eliminated during reloading in favor of either the stack or frame
892a2d68 961 pointer. */
c98f8742 962
05416670 963#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 964
3073d01c
ML
965/* Number of hardware registers that go into the DWARF-2 unwind info.
966 If not defined, equals FIRST_PSEUDO_REGISTER. */
967
968#define DWARF_FRAME_REGISTERS 17
969
c98f8742
JVA
970/* 1 for registers that have pervasive standard uses
971 and are not available for the register allocator.
3f3f2124 972 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 973
621bc046
UB
974 REX registers are disabled for 32bit targets in
975 TARGET_CONDITIONAL_REGISTER_USAGE. */
976
a7180f70
BS
977#define FIXED_REGISTERS \
978/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 979{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
980/*arg,flags,fpsr,fpcr,frame*/ \
981 1, 1, 1, 1, 1, \
a7180f70
BS
982/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
983 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 984/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
985 0, 0, 0, 0, 0, 0, 0, 0, \
986/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 987 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 988/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
989 0, 0, 0, 0, 0, 0, 0, 0, \
990/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
991 0, 0, 0, 0, 0, 0, 0, 0, \
992/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
993 0, 0, 0, 0, 0, 0, 0, 0, \
994/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
995 0, 0, 0, 0, 0, 0, 0, 0, \
996/* b0, b1, b2, b3*/ \
997 0, 0, 0, 0 }
c98f8742
JVA
998
999/* 1 for registers not available across function calls.
1000 These must include the FIXED_REGISTERS and also any
1001 registers that can be used without being saved.
1002 The latter must include the registers where values are returned
1003 and the register where structure-value addresses are passed.
fce5a9f2
EC
1004 Aside from that, you can include as many other registers as you like.
1005
621bc046
UB
1006 Value is set to 1 if the register is call used unconditionally.
1007 Bit one is set if the register is call used on TARGET_32BIT ABI.
1008 Bit two is set if the register is call used on TARGET_64BIT ABI.
1009 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1010
1011 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1012
a7180f70
BS
1013#define CALL_USED_REGISTERS \
1014/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1015{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1016/*arg,flags,fpsr,fpcr,frame*/ \
1017 1, 1, 1, 1, 1, \
a7180f70 1018/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1019 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1020/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1021 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1022/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1023 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1024/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1025 6, 6, 6, 6, 6, 6, 6, 6, \
1026/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1027 6, 6, 6, 6, 6, 6, 6, 6, \
1028/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1029 6, 6, 6, 6, 6, 6, 6, 6, \
1030 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1031 1, 1, 1, 1, 1, 1, 1, 1, \
1032/* b0, b1, b2, b3*/ \
1033 1, 1, 1, 1 }
c98f8742 1034
3b3c6a3f
MM
1035/* Order in which to allocate registers. Each register must be
1036 listed once, even those in FIXED_REGISTERS. List frame pointer
1037 late and fixed registers last. Note that, in general, we prefer
1038 registers listed in CALL_USED_REGISTERS, keeping the others
1039 available for storage of persistent values.
1040
5a733826 1041 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1042 so this is just empty initializer for array. */
3b3c6a3f 1043
162f023b
JH
1044#define REG_ALLOC_ORDER \
1045{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1046 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1047 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1048 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1049 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1050 78, 79, 80 }
3b3c6a3f 1051
5a733826 1052/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1053 to be rearranged based on a particular function. When using sse math,
03c259ad 1054 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1055
5a733826 1056#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1057
f5316dfe 1058
7c800926
KT
1059#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1060
c98f8742
JVA
1061/* Return number of consecutive hard regs needed starting at reg REGNO
1062 to hold something of mode MODE.
1063 This is ordinarily the length in words of a value of mode MODE
1064 but can be less for certain modes in special long registers.
1065
fce5a9f2 1066 Actually there are no two word move instructions for consecutive
c98f8742 1067 registers. And only registers 0-3 may have mov byte instructions
63001560 1068 applied to them. */
c98f8742 1069
ce998900 1070#define HARD_REGNO_NREGS(REGNO, MODE) \
d5e254e1
IE
1071 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1072 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
92d0fb09 1073 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1074 : ((MODE) == XFmode \
92d0fb09 1075 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1076 : (MODE) == XCmode \
92d0fb09 1077 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1078 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1079
8521c414
JM
1080#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1081 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1082 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1083 ? 0 \
1084 : ((MODE) == XFmode || (MODE) == XCmode)) \
1085 : 0)
1086
1087#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1088
95879c72
L
1089#define VALID_AVX256_REG_MODE(MODE) \
1090 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1091 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1092 || (MODE) == V4DFmode)
95879c72 1093
4ac005ba 1094#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1095 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1096
3f97cb0b
AI
1097#define VALID_AVX512F_SCALAR_MODE(MODE) \
1098 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1099 || (MODE) == SFmode)
1100
1101#define VALID_AVX512F_REG_MODE(MODE) \
1102 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1103 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1104 || (MODE) == V4TImode)
1105
05416670 1106#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6
AI
1107 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1108 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1109
ce998900
UB
1110#define VALID_SSE2_REG_MODE(MODE) \
1111 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1112 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1113
d9a5f180 1114#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1115 ((MODE) == V1TImode || (MODE) == TImode \
1116 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1117 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1118
47f339cf 1119#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1120 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1121
d9a5f180 1122#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1123 ((MODE == V1DImode) || (MODE) == DImode \
1124 || (MODE) == V2SImode || (MODE) == SImode \
1125 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1126
05416670
UB
1127#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1128
1129#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1130
d5e254e1
IE
1131#define VALID_BND_REG_MODE(MODE) \
1132 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1133
ce998900
UB
1134#define VALID_DFP_MODE_P(MODE) \
1135 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1136
d9a5f180 1137#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1138 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1139 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1140
d9a5f180 1141#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1142 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1143 || (MODE) == DImode \
1144 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1145 || (MODE) == CDImode \
1146 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1147 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1148
822eda12 1149/* Return true for modes passed in SSE registers. */
ce998900 1150#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1151 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1152 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1153 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1154 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1155 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1156 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1157 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1158 || (MODE) == V16SFmode)
822eda12 1159
05416670
UB
1160#define X87_FLOAT_MODE_P(MODE) \
1161 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1162
05416670
UB
1163#define SSE_FLOAT_MODE_P(MODE) \
1164 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1165
1166#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1167 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1168 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1169
e075ae69 1170/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1171
a946dd00 1172#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1173 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1174
1175/* Value is 1 if it is a good idea to tie two pseudo registers
1176 when one has mode MODE1 and one has mode MODE2.
1177 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1178 for any hard reg, then this must be 0 for correct output. */
1179
c1c5b5e3 1180#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1181
ff25ef99
ZD
1182/* It is possible to write patterns to move flags; but until someone
1183 does it, */
1184#define AVOID_CCMODE_COPIES
c98f8742 1185
e075ae69 1186/* Specify the modes required to caller save a given hard regno.
787dc842 1187 We do this on i386 to prevent flags from being saved at all.
e075ae69 1188
787dc842
JH
1189 Kill any attempts to combine saving of modes. */
1190
d9a5f180
GS
1191#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1192 (CC_REGNO_P (REGNO) ? VOIDmode \
1193 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1194 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1195 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1196 || MASK_REGNO_P (REGNO)) ? SImode \
1197 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1198 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1199 : (MODE))
ce998900 1200
51ba747a
RH
1201/* The only ABI that saves SSE registers across calls is Win64 (thus no
1202 need to check the current ABI here), and with AVX enabled Win64 only
1203 guarantees that the low 16 bytes are saved. */
1204#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1205 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1206
c98f8742
JVA
1207/* Specify the registers used for certain standard purposes.
1208 The values of these macros are register numbers. */
1209
1210/* on the 386 the pc register is %eip, and is not usable as a general
1211 register. The ordinary mov instructions won't work */
1212/* #define PC_REGNUM */
1213
05416670
UB
1214/* Base register for access to arguments of the function. */
1215#define ARG_POINTER_REGNUM ARGP_REG
1216
c98f8742 1217/* Register to use for pushing function arguments. */
05416670 1218#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1219
1220/* Base register for access to local variables of the function. */
05416670
UB
1221#define FRAME_POINTER_REGNUM FRAME_REG
1222#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1223
05416670
UB
1224#define FIRST_INT_REG AX_REG
1225#define LAST_INT_REG SP_REG
c98f8742 1226
05416670
UB
1227#define FIRST_QI_REG AX_REG
1228#define LAST_QI_REG BX_REG
c98f8742
JVA
1229
1230/* First & last stack-like regs */
05416670
UB
1231#define FIRST_STACK_REG ST0_REG
1232#define LAST_STACK_REG ST7_REG
c98f8742 1233
05416670
UB
1234#define FIRST_SSE_REG XMM0_REG
1235#define LAST_SSE_REG XMM7_REG
fce5a9f2 1236
05416670
UB
1237#define FIRST_MMX_REG MM0_REG
1238#define LAST_MMX_REG MM7_REG
a7180f70 1239
05416670
UB
1240#define FIRST_REX_INT_REG R8_REG
1241#define LAST_REX_INT_REG R15_REG
3f3f2124 1242
05416670
UB
1243#define FIRST_REX_SSE_REG XMM8_REG
1244#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1245
05416670
UB
1246#define FIRST_EXT_REX_SSE_REG XMM16_REG
1247#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1248
05416670
UB
1249#define FIRST_MASK_REG MASK0_REG
1250#define LAST_MASK_REG MASK7_REG
85a77221 1251
05416670
UB
1252#define FIRST_BND_REG BND0_REG
1253#define LAST_BND_REG BND3_REG
d5e254e1 1254
aabcd309 1255/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1256 requiring a frame pointer. */
1257#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1258#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1259#endif
1260
1261/* Make sure we can access arbitrary call frames. */
1262#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1263
c98f8742 1264/* Register to hold the addressing base for position independent
5b43fed1
RH
1265 code access to data items. We don't use PIC pointer for 64bit
1266 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1267 pessimizing code dealing with EBX.
bd09bdeb
RH
1268
1269 To avoid clobbering a call-saved register unnecessarily, we renumber
1270 the pic register when possible. The change is visible after the
1271 prologue has been emitted. */
1272
e8b5eb25 1273#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1274
bcb21886 1275#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1276 (ix86_use_pseudo_pic_reg () \
1277 ? (pic_offset_table_rtx \
1278 ? INVALID_REGNUM \
1279 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1280 : INVALID_REGNUM)
c98f8742 1281
5fc0e5df
KW
1282#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1283
c51e6d85 1284/* This is overridden by <cygwin.h>. */
5e062767
DS
1285#define MS_AGGREGATE_RETURN 0
1286
61fec9ff 1287#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1288\f
1289/* Define the classes of registers for register constraints in the
1290 machine description. Also define ranges of constants.
1291
1292 One of the classes must always be named ALL_REGS and include all hard regs.
1293 If there is more than one class, another class must be named NO_REGS
1294 and contain no registers.
1295
1296 The name GENERAL_REGS must be the name of a class (or an alias for
1297 another name such as ALL_REGS). This is the class of registers
1298 that is allowed by "g" or "r" in a register constraint.
1299 Also, registers outside this class are allocated only when
1300 instructions express preferences for them.
1301
1302 The classes must be numbered in nondecreasing order; that is,
1303 a larger-numbered class must never be contained completely
2e24efd3
AM
1304 in a smaller-numbered class. This is why CLOBBERED_REGS class
1305 is listed early, even though in 64-bit mode it contains more
1306 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1307
1308 For any two classes, it is very desirable that there be another
ab408a86
JVA
1309 class that represents their union.
1310
1311 It might seem that class BREG is unnecessary, since no useful 386
1312 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1313 and the "b" register constraint is useful in asms for syscalls.
1314
03c259ad 1315 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1316
1317enum reg_class
1318{
1319 NO_REGS,
e075ae69 1320 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1321 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1322 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1323 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1324 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1325 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1326 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1327 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1328 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1329 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1330 FLOAT_REGS,
06f4e35d 1331 SSE_FIRST_REG,
45392c76 1332 NO_REX_SSE_REGS,
a7180f70 1333 SSE_REGS,
3f97cb0b 1334 EVEX_SSE_REGS,
d5e254e1 1335 BND_REGS,
3f97cb0b 1336 ALL_SSE_REGS,
a7180f70 1337 MMX_REGS,
446988df
JH
1338 FP_TOP_SSE_REGS,
1339 FP_SECOND_SSE_REGS,
1340 FLOAT_SSE_REGS,
1341 FLOAT_INT_REGS,
1342 INT_SSE_REGS,
1343 FLOAT_INT_SSE_REGS,
85a77221
AI
1344 MASK_EVEX_REGS,
1345 MASK_REGS,
c98f8742
JVA
1346 ALL_REGS, LIM_REG_CLASSES
1347};
1348
d9a5f180
GS
1349#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1350
1351#define INTEGER_CLASS_P(CLASS) \
1352 reg_class_subset_p ((CLASS), GENERAL_REGS)
1353#define FLOAT_CLASS_P(CLASS) \
1354 reg_class_subset_p ((CLASS), FLOAT_REGS)
1355#define SSE_CLASS_P(CLASS) \
3f97cb0b 1356 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1357#define MMX_CLASS_P(CLASS) \
f75959a6 1358 ((CLASS) == MMX_REGS)
d9a5f180
GS
1359#define MAYBE_INTEGER_CLASS_P(CLASS) \
1360 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1361#define MAYBE_FLOAT_CLASS_P(CLASS) \
1362 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1363#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1364 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1365#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1366 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1367#define MAYBE_MASK_CLASS_P(CLASS) \
1368 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1369
1370#define Q_CLASS_P(CLASS) \
1371 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1372
0bd72901
UB
1373#define MAYBE_NON_Q_CLASS_P(CLASS) \
1374 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1375
43f3a59d 1376/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1377
1378#define REG_CLASS_NAMES \
1379{ "NO_REGS", \
ab408a86 1380 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1381 "SIREG", "DIREG", \
e075ae69 1382 "AD_REGS", \
2e24efd3 1383 "CLOBBERED_REGS", \
e075ae69 1384 "Q_REGS", "NON_Q_REGS", \
c98f8742 1385 "INDEX_REGS", \
3f3f2124 1386 "LEGACY_REGS", \
c98f8742
JVA
1387 "GENERAL_REGS", \
1388 "FP_TOP_REG", "FP_SECOND_REG", \
1389 "FLOAT_REGS", \
cb482895 1390 "SSE_FIRST_REG", \
45392c76 1391 "NO_REX_SSE_REGS", \
a7180f70 1392 "SSE_REGS", \
3f97cb0b 1393 "EVEX_SSE_REGS", \
d5e254e1 1394 "BND_REGS", \
3f97cb0b 1395 "ALL_SSE_REGS", \
a7180f70 1396 "MMX_REGS", \
446988df
JH
1397 "FP_TOP_SSE_REGS", \
1398 "FP_SECOND_SSE_REGS", \
1399 "FLOAT_SSE_REGS", \
8fcaaa80 1400 "FLOAT_INT_REGS", \
446988df
JH
1401 "INT_SSE_REGS", \
1402 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1403 "MASK_EVEX_REGS", \
1404 "MASK_REGS", \
c98f8742
JVA
1405 "ALL_REGS" }
1406
ac2e563f
RH
1407/* Define which registers fit in which classes. This is an initializer
1408 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1409
621bc046
UB
1410 Note that CLOBBERED_REGS are calculated by
1411 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1412
3f97cb0b 1413#define REG_CLASS_CONTENTS \
d5e254e1
IE
1414{ { 0x00, 0x0, 0x0 }, \
1415 { 0x01, 0x0, 0x0 }, /* AREG */ \
1416 { 0x02, 0x0, 0x0 }, /* DREG */ \
1417 { 0x04, 0x0, 0x0 }, /* CREG */ \
1418 { 0x08, 0x0, 0x0 }, /* BREG */ \
1419 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1420 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1421 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
2e24efd3 1422 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
d5e254e1
IE
1423 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1424 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1425 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1426 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
d5e254e1
IE
1427 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1428 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1429 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1430 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1431 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1432{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1433{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1434 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1435 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1436{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1437{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1438{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1439{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1440{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1441{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1442{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1443{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1444 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1445 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1446{ 0xffffffff,0xffffffff, 0x1fff } \
e075ae69 1447}
c98f8742
JVA
1448
1449/* The same information, inverted:
1450 Return the class number of the smallest class containing
1451 reg number REGNO. This could be a conditional expression
1452 or could index an array. */
1453
c98f8742
JVA
1454#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1455
42db504c
SB
1456/* When this hook returns true for MODE, the compiler allows
1457 registers explicitly used in the rtl to be used as spill registers
1458 but prevents the compiler from extending the lifetime of these
1459 registers. */
1460#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1461
fc27f749 1462#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1463#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1464
1465#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1466#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1467
1468#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1469#define REX_INT_REGNO_P(N) \
1470 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1471
58b0b34c 1472#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1473#define GENERAL_REGNO_P(N) \
58b0b34c 1474 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1475
fc27f749
UB
1476#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1477#define ANY_QI_REGNO_P(N) \
1478 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1479
66aaf16f
UB
1480#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1481#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1482
fc27f749 1483#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1484#define SSE_REGNO_P(N) \
1485 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1486 || REX_SSE_REGNO_P (N) \
1487 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1488
4977bab6 1489#define REX_SSE_REGNO_P(N) \
fb84c7a0 1490 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1491
0a48088a
IT
1492#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1493
3f97cb0b
AI
1494#define EXT_REX_SSE_REGNO_P(N) \
1495 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1496
05416670
UB
1497#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1498#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1499
9e4a4dd6 1500#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1501#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1502
fc27f749 1503#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1504#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1505
e075ae69
RH
1506#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1507#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1508
58b0b34c 1509#define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
d5e254e1 1510#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
d5e254e1 1511
05416670
UB
1512/* First floating point reg */
1513#define FIRST_FLOAT_REG FIRST_STACK_REG
1514#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1515
1516#define SSE_REGNO(N) \
1517 ((N) < 8 ? FIRST_SSE_REG + (N) \
1518 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1519 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1520
c98f8742
JVA
1521/* The class value for index registers, and the one for base regs. */
1522
1523#define INDEX_REG_CLASS INDEX_REGS
1524#define BASE_REG_CLASS GENERAL_REGS
1525
c98f8742 1526/* Place additional restrictions on the register class to use when it
4cbb525c 1527 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1528 register for which class CLASS would ordinarily be used.
1529
1530 We avoid classes containing registers from multiple units due to
1531 the limitation in ix86_secondary_memory_needed. We limit these
1532 classes to their "natural mode" single unit register class, depending
1533 on the unit availability.
1534
1535 Please note that reg_class_subset_p is not commutative, so these
1536 conditions mean "... if (CLASS) includes ALL registers from the
1537 register set." */
1538
1539#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1540 (((MODE) == QImode && !TARGET_64BIT \
1541 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1542 : (((MODE) == SImode || (MODE) == DImode) \
1543 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1544 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1545 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1546 : (X87_FLOAT_MODE_P (MODE) \
1547 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1548 : (CLASS))
c98f8742 1549
85ff473e 1550/* If we are copying between general and FP registers, we need a memory
f84aa48a 1551 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1552#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1553 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1554
c62b3659
UB
1555/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1556 There is no need to emit full 64 bit move on 64 bit targets
1557 for integral modes that can be moved using 32 bit move. */
1558#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1559 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1560 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1561 : MODE)
1562
1272914c
RH
1563/* Return a class of registers that cannot change FROM mode to TO mode. */
1564
1565#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1566 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1567\f
1568/* Stack layout; function entry, exit and calling. */
1569
1570/* Define this if pushing a word on the stack
1571 makes the stack pointer a smaller address. */
62f9f30b 1572#define STACK_GROWS_DOWNWARD 1
c98f8742 1573
a4d05547 1574/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1575 is at the high-address end of the local variables;
1576 that is, each additional local variable allocated
1577 goes at a more negative offset in the frame. */
f62c8a5c 1578#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1579
1580/* Offset within stack frame to start allocating local variables at.
1581 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1582 first local allocated. Otherwise, it is the offset to the BEGINNING
1583 of the first local allocated. */
1584#define STARTING_FRAME_OFFSET 0
1585
8c2b2fae
UB
1586/* If we generate an insn to push BYTES bytes, this says how many the stack
1587 pointer really advances by. On 386, we have pushw instruction that
1588 decrements by exactly 2 no matter what the position was, there is no pushb.
1589
1590 But as CIE data alignment factor on this arch is -4 for 32bit targets
1591 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1592 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1593
d2836273 1594#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1595 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1596
1597/* If defined, the maximum amount of space required for outgoing arguments
1598 will be computed and placed into the variable `crtl->outgoing_args_size'.
1599 No space will be pushed onto the stack for each call; instead, the
1600 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1601
1602 In 32bit mode enabling argument accumulation results in about 5% code size
1603 growth becuase move instructions are less compact than push. In 64bit
1604 mode the difference is less drastic but visible.
1605
1606 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1607 actually grow with accumulation. Is that because accumulated args
41ee845b 1608 unwind info became unnecesarily bloated?
f830ddc2
RH
1609
1610 With the 64-bit MS ABI, we can generate correct code with or without
1611 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1612 generated without accumulated args is terrible.
41ee845b
JH
1613
1614 If stack probes are required, the space used for large function
1615 arguments on the stack must also be probed, so enable
1616 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1617
6c6094f1 1618#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1619 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1620 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1621
1622/* If defined, a C expression whose value is nonzero when we want to use PUSH
1623 instructions to pass outgoing arguments. */
1624
1625#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1626
2da4124d
L
1627/* We want the stack and args grow in opposite directions, even if
1628 PUSH_ARGS is 0. */
1629#define PUSH_ARGS_REVERSED 1
1630
c98f8742
JVA
1631/* Offset of first parameter from the argument pointer register value. */
1632#define FIRST_PARM_OFFSET(FNDECL) 0
1633
a7180f70
BS
1634/* Define this macro if functions should assume that stack space has been
1635 allocated for arguments even when their values are passed in registers.
1636
1637 The value of this macro is the size, in bytes, of the area reserved for
1638 arguments passed in registers for the function represented by FNDECL.
1639
1640 This space can be allocated by the caller, or be a part of the
1641 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1642 which. */
7c800926
KT
1643#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1644
4ae8027b 1645#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1646 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1647
c98f8742
JVA
1648/* Define how to find the value returned by a library function
1649 assuming the value has mode MODE. */
1650
4ae8027b 1651#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1652
e9125c09
TW
1653/* Define the size of the result block used for communication between
1654 untyped_call and untyped_return. The block contains a DImode value
1655 followed by the block used by fnsave and frstor. */
1656
1657#define APPLY_RESULT_SIZE (8+108)
1658
b08de47e 1659/* 1 if N is a possible register number for function argument passing. */
53c17031 1660#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1661
1662/* Define a data type for recording info about an argument list
1663 during the scan of that argument list. This data type should
1664 hold all necessary information about the function itself
1665 and about the args processed so far, enough to enable macros
b08de47e 1666 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1667
e075ae69 1668typedef struct ix86_args {
fa283935 1669 int words; /* # words passed so far */
b08de47e
MM
1670 int nregs; /* # registers available for passing */
1671 int regno; /* next available register number */
3e65f251
KT
1672 int fastcall; /* fastcall or thiscall calling convention
1673 is used */
fa283935 1674 int sse_words; /* # sse words passed so far */
a7180f70 1675 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1676 int warn_avx512f; /* True when we want to warn
1677 about AVX512F ABI. */
95879c72 1678 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1679 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1680 int warn_mmx; /* True when we want to warn about MMX ABI. */
1681 int sse_regno; /* next available sse register number */
1682 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1683 int mmx_nregs; /* # mmx registers available for passing */
1684 int mmx_regno; /* next available mmx register number */
892a2d68 1685 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1686 int caller; /* true if it is caller. */
2824d6e5
UB
1687 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1688 SFmode/DFmode arguments should be passed
1689 in SSE registers. Otherwise 0. */
d5e254e1
IE
1690 int bnd_regno; /* next available bnd register number */
1691 int bnds_in_bt; /* number of bounds expected in BT. */
1692 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1693 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1694 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1695 MS_ABI for ms abi. */
e66fc623 1696 tree decl; /* Callee decl. */
b08de47e 1697} CUMULATIVE_ARGS;
c98f8742
JVA
1698
1699/* Initialize a variable CUM of type CUMULATIVE_ARGS
1700 for a call to a function whose data type is FNTYPE.
b08de47e 1701 For a library call, FNTYPE is 0. */
c98f8742 1702
0f6937fe 1703#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1704 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1705 (N_NAMED_ARGS) != -1)
c98f8742 1706
c98f8742
JVA
1707/* Output assembler code to FILE to increment profiler label # LABELNO
1708 for profiling a function entry. */
1709
a5fa1ecd
JH
1710#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1711
1712#define MCOUNT_NAME "_mcount"
1713
3c5273a9
KT
1714#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1715
a5fa1ecd 1716#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1717
1718/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1719 the stack pointer does not matter. The value is tested only in
1720 functions that have frame pointers.
1721 No definition is equivalent to always zero. */
fce5a9f2 1722/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1723 we have to restore it ourselves from the frame pointer, in order to
1724 use pop */
1725
1726#define EXIT_IGNORE_STACK 1
1727
c98f8742
JVA
1728/* Output assembler code for a block containing the constant parts
1729 of a trampoline, leaving space for the variable parts. */
1730
a269a03c 1731/* On the 386, the trampoline contains two instructions:
c98f8742 1732 mov #STATIC,ecx
a269a03c
JC
1733 jmp FUNCTION
1734 The trampoline is generated entirely at runtime. The operand of JMP
1735 is the address of FUNCTION relative to the instruction following the
1736 JMP (which is 5 bytes long). */
c98f8742
JVA
1737
1738/* Length in units of the trampoline for entering a nested function. */
1739
3452586b 1740#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1741\f
1742/* Definitions for register eliminations.
1743
1744 This is an array of structures. Each structure initializes one pair
1745 of eliminable registers. The "from" register number is given first,
1746 followed by "to". Eliminations of the same "from" register are listed
1747 in order of preference.
1748
afc2cd05
NC
1749 There are two registers that can always be eliminated on the i386.
1750 The frame pointer and the arg pointer can be replaced by either the
1751 hard frame pointer or to the stack pointer, depending upon the
1752 circumstances. The hard frame pointer is not used before reload and
1753 so it is not eligible for elimination. */
c98f8742 1754
564d80f4
JH
1755#define ELIMINABLE_REGS \
1756{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1757 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1758 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1759 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1760
c98f8742
JVA
1761/* Define the offset between two registers, one to be eliminated, and the other
1762 its replacement, at the start of a routine. */
1763
d9a5f180
GS
1764#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1765 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1766\f
1767/* Addressing modes, and classification of registers for them. */
1768
c98f8742
JVA
1769/* Macros to check register numbers against specific register classes. */
1770
1771/* These assume that REGNO is a hard or pseudo reg number.
1772 They give nonzero only if REGNO is a hard reg of the suitable class
1773 or a pseudo reg currently allocated to a suitable hard reg.
1774 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1775 has been allocated, which happens in reginfo.c during register
1776 allocation. */
c98f8742 1777
3f3f2124
JH
1778#define REGNO_OK_FOR_INDEX_P(REGNO) \
1779 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1780 || REX_INT_REGNO_P (REGNO) \
1781 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1782 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1783
3f3f2124 1784#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1785 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1786 || (REGNO) == ARG_POINTER_REGNUM \
1787 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1788 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1789
c98f8742
JVA
1790/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1791 and check its validity for a certain class.
1792 We have two alternate definitions for each of them.
1793 The usual definition accepts all pseudo regs; the other rejects
1794 them unless they have been allocated suitable hard regs.
1795 The symbol REG_OK_STRICT causes the latter definition to be used.
1796
1797 Most source files want to accept pseudo regs in the hope that
1798 they will get allocated to the class that the insn wants them to be in.
1799 Source files for reload pass need to be strict.
1800 After reload, it makes no difference, since pseudo regs have
1801 been eliminated by then. */
1802
c98f8742 1803
ff482c8d 1804/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1805#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1806 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1807 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1808 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1809
3b3c6a3f 1810#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1811 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1812 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1813 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1814 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1815
3b3c6a3f
MM
1816/* Strict versions, hard registers only */
1817#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1818#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1819
3b3c6a3f 1820#ifndef REG_OK_STRICT
d9a5f180
GS
1821#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1822#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1823
1824#else
d9a5f180
GS
1825#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1826#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1827#endif
1828
331d9186 1829/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1830 that is a valid memory address for an instruction.
1831 The MODE argument is the machine mode for the MEM expression
1832 that wants to use this address.
1833
331d9186 1834 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1835 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1836
1837 See legitimize_pic_address in i386.c for details as to what
1838 constitutes a legitimate address when -fpic is used. */
1839
1840#define MAX_REGS_PER_ADDRESS 2
1841
f996902d 1842#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1843
b949ea8b
JW
1844/* If defined, a C expression to determine the base term of address X.
1845 This macro is used in only one place: `find_base_term' in alias.c.
1846
1847 It is always safe for this macro to not be defined. It exists so
1848 that alias analysis can understand machine-dependent addresses.
1849
1850 The typical use of this macro is to handle addresses containing
1851 a label_ref or symbol_ref within an UNSPEC. */
1852
d9a5f180 1853#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1854
c98f8742 1855/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1856 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1857 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1858
f996902d 1859#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1860
1861#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1862 (GET_CODE (X) == SYMBOL_REF \
1863 || GET_CODE (X) == LABEL_REF \
1864 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1865\f
b08de47e
MM
1866/* Max number of args passed in registers. If this is more than 3, we will
1867 have problems with ebx (register #4), since it is a caller save register and
1868 is also used as the pic register in ELF. So for now, don't allow more than
1869 3 registers to be passed in registers. */
1870
7c800926
KT
1871/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1872#define X86_64_REGPARM_MAX 6
72fa3605 1873#define X86_64_MS_REGPARM_MAX 4
7c800926 1874
72fa3605 1875#define X86_32_REGPARM_MAX 3
7c800926 1876
4ae8027b 1877#define REGPARM_MAX \
2824d6e5
UB
1878 (TARGET_64BIT \
1879 ? (TARGET_64BIT_MS_ABI \
1880 ? X86_64_MS_REGPARM_MAX \
1881 : X86_64_REGPARM_MAX) \
4ae8027b 1882 : X86_32_REGPARM_MAX)
d2836273 1883
72fa3605
UB
1884#define X86_64_SSE_REGPARM_MAX 8
1885#define X86_64_MS_SSE_REGPARM_MAX 4
1886
b6010cab 1887#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1888
4ae8027b 1889#define SSE_REGPARM_MAX \
2824d6e5
UB
1890 (TARGET_64BIT \
1891 ? (TARGET_64BIT_MS_ABI \
1892 ? X86_64_MS_SSE_REGPARM_MAX \
1893 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1894 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1895
1896#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1897\f
1898/* Specify the machine mode that this machine uses
1899 for the index in the tablejump instruction. */
dc4d7240 1900#define CASE_VECTOR_MODE \
6025b127 1901 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1902
c98f8742
JVA
1903/* Define this as 1 if `char' should by default be signed; else as 0. */
1904#define DEFAULT_SIGNED_CHAR 1
1905
1906/* Max number of bytes we can move from memory to memory
1907 in one reasonably fast instruction. */
65d9c0ab
JH
1908#define MOVE_MAX 16
1909
1910/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1911 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1912 number of bytes we can move with a single instruction. */
63001560 1913#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1914
7e24ffc9 1915/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1916 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1917 Increasing the value will always make code faster, but eventually
1918 incurs high cost in increased code size.
c98f8742 1919
e2e52e1b 1920 If you don't define this, a reasonable default is used. */
c98f8742 1921
e04ad03d 1922#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1923
45d78e7f
JJ
1924/* If a clear memory operation would take CLEAR_RATIO or more simple
1925 move-instruction sequences, we will do a clrmem or libcall instead. */
1926
e04ad03d 1927#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1928
53f00dde
UB
1929/* Define if shifts truncate the shift count which implies one can
1930 omit a sign-extension or zero-extension of a shift count.
1931
1932 On i386, shifts do truncate the count. But bit test instructions
1933 take the modulo of the bit offset operand. */
c98f8742
JVA
1934
1935/* #define SHIFT_COUNT_TRUNCATED */
1936
1937/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1938 is done just by pretending it is already truncated. */
1939#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1940
d9f32422
JH
1941/* A macro to update M and UNSIGNEDP when an object whose type is
1942 TYPE and which has the specified mode and signedness is to be
1943 stored in a register. This macro is only called when TYPE is a
1944 scalar type.
1945
f710504c 1946 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1947 quantities to SImode. The choice depends on target type. */
1948
1949#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1950do { \
d9f32422
JH
1951 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1952 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1953 (MODE) = SImode; \
1954} while (0)
d9f32422 1955
c98f8742
JVA
1956/* Specify the machine mode that pointers have.
1957 After generation of rtl, the compiler makes no further distinction
1958 between pointers and any other objects of this machine mode. */
28968d91 1959#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1960
d5e254e1
IE
1961/* Specify the machine mode that bounds have. */
1962#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1963
f0ea7581
L
1964/* A C expression whose value is zero if pointers that need to be extended
1965 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1966 greater then zero if they are zero-extended and less then zero if the
1967 ptr_extend instruction should be used. */
1968
1969#define POINTERS_EXTEND_UNSIGNED 1
1970
c98f8742
JVA
1971/* A function address in a call instruction
1972 is a byte address (for indexing purposes)
1973 so give the MEM rtx a byte's mode. */
1974#define FUNCTION_MODE QImode
d4ba09c0 1975\f
d4ba09c0 1976
d4ba09c0
SC
1977/* A C expression for the cost of a branch instruction. A value of 1
1978 is the default; other values are interpreted relative to that. */
1979
3a4fd356
JH
1980#define BRANCH_COST(speed_p, predictable_p) \
1981 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1982
e327d1a3
L
1983/* An integer expression for the size in bits of the largest integer machine
1984 mode that should actually be used. We allow pairs of registers. */
1985#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1986
d4ba09c0
SC
1987/* Define this macro as a C expression which is nonzero if accessing
1988 less than a word of memory (i.e. a `char' or a `short') is no
1989 faster than accessing a word of memory, i.e., if such access
1990 require more than one instruction or if there is no difference in
1991 cost between byte and (aligned) word loads.
1992
1993 When this macro is not defined, the compiler will access a field by
1994 finding the smallest containing object; when it is defined, a
1995 fullword load will be used if alignment permits. Unless bytes
1996 accesses are faster than word accesses, using word accesses is
1997 preferable since it may eliminate subsequent memory access if
1998 subsequent accesses occur to other fields in the same word of the
1999 structure, but to different bytes. */
2000
2001#define SLOW_BYTE_ACCESS 0
2002
2003/* Nonzero if access to memory by shorts is slow and undesirable. */
2004#define SLOW_SHORT_ACCESS 0
2005
d4ba09c0
SC
2006/* Define this macro to be the value 1 if unaligned accesses have a
2007 cost many times greater than aligned accesses, for example if they
2008 are emulated in a trap handler.
2009
9cd10576
KH
2010 When this macro is nonzero, the compiler will act as if
2011 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2012 moves. This can cause significantly more instructions to be
9cd10576 2013 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2014 accesses only add a cycle or two to the time for a memory access.
2015
2016 If the value of this macro is always zero, it need not be defined. */
2017
e1565e65 2018/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2019
d4ba09c0
SC
2020/* Define this macro if it is as good or better to call a constant
2021 function address than to call an address kept in a register.
2022
2023 Desirable on the 386 because a CALL with a constant address is
2024 faster than one with a register address. */
2025
1e8552c2 2026#define NO_FUNCTION_CSE 1
c98f8742 2027\f
c572e5ba
JVA
2028/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2029 return the mode to be used for the comparison.
2030
2031 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2032 VOIDmode should be used in all other cases.
c572e5ba 2033
16189740 2034 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2035 possible, to allow for more combinations. */
c98f8742 2036
d9a5f180 2037#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2038
9cd10576 2039/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2040 reversed. */
2041
2042#define REVERSIBLE_CC_MODE(MODE) 1
2043
2044/* A C expression whose value is reversed condition code of the CODE for
2045 comparison done in CC_MODE mode. */
3c5cb3e4 2046#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2047
c98f8742
JVA
2048\f
2049/* Control the assembler format that we output, to the extent
2050 this does not vary between assemblers. */
2051
2052/* How to refer to registers in assembler output.
892a2d68 2053 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2054
a7b376ee 2055/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2056 For non floating point regs, the following are the HImode names.
2057
2058 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2059 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2060 "y" code. */
c98f8742 2061
a7180f70
BS
2062#define HI_REGISTER_NAMES \
2063{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2064 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2065 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2066 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2067 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2068 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2069 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2070 "xmm16", "xmm17", "xmm18", "xmm19", \
2071 "xmm20", "xmm21", "xmm22", "xmm23", \
2072 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2073 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2074 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2075 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2076
c98f8742
JVA
2077#define REGISTER_NAMES HI_REGISTER_NAMES
2078
2079/* Table of additional register names to use in user input. */
2080
2081#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2082{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2083 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2084 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2085 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2086 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2087 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2088 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2089 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2090 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2091 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2092 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2093 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2094 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2095 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2096 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2097 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2098 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2099 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2100 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2101 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2102 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2103 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2104
2105/* Note we are omitting these since currently I don't know how
2106to get gcc to use these, since they want the same but different
2107number as al, and ax.
2108*/
2109
c98f8742 2110#define QI_REGISTER_NAMES \
3f3f2124 2111{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2112
2113/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2114 of regs 0 through 3. */
c98f8742
JVA
2115
2116#define QI_HIGH_REGISTER_NAMES \
2117{"ah", "dh", "ch", "bh", }
2118
2119/* How to renumber registers for dbx and gdb. */
2120
d9a5f180
GS
2121#define DBX_REGISTER_NUMBER(N) \
2122 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2123
9a82e702
MS
2124extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2125extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2126extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2127
780a5b71
UB
2128extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2129
469ac993
JM
2130/* Before the prologue, RA is at 0(%esp). */
2131#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2132 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2133
e414ab29 2134/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2135#define RETURN_ADDR_RTX(COUNT, FRAME) \
2136 ((COUNT) == 0 \
0a81f074
RS
2137 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2138 -UNITS_PER_WORD)) \
2139 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2140
892a2d68 2141/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2142#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2143
a6ab3aad 2144/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2145#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2146
1020a5ab 2147/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2148#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2149#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2150
ad919812 2151
e4c4ebeb
RH
2152/* Select a format to encode pointers in exception handling data. CODE
2153 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2154 true if the symbol may be affected by dynamic relocations.
2155
2156 ??? All x86 object file formats are capable of representing this.
2157 After all, the relocation needed is the same as for the call insn.
2158 Whether or not a particular assembler allows us to enter such, I
2159 guess we'll have to see. */
d9a5f180 2160#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2161 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2162
c98f8742
JVA
2163/* This is how to output an insn to push a register on the stack.
2164 It need not be very fast code. */
2165
d9a5f180 2166#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2167do { \
2168 if (TARGET_64BIT) \
2169 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2170 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2171 else \
2172 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2173} while (0)
c98f8742
JVA
2174
2175/* This is how to output an insn to pop a register from the stack.
2176 It need not be very fast code. */
2177
d9a5f180 2178#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2179do { \
2180 if (TARGET_64BIT) \
2181 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2182 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2183 else \
2184 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2185} while (0)
c98f8742 2186
f88c65f7 2187/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2188
2189#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2190 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2191
f88c65f7 2192/* This is how to output an element of a case-vector that is relative. */
c98f8742 2193
33f7f353 2194#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2195 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2196
63001560 2197/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2198
2199#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2200{ \
2201 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2202 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2203}
2204
2205/* A C statement or statements which output an assembler instruction
2206 opcode to the stdio stream STREAM. The macro-operand PTR is a
2207 variable of type `char *' which points to the opcode name in
2208 its "internal" form--the form that is written in the machine
2209 description. */
2210
2211#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2212 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2213
6a90d232
L
2214/* A C statement to output to the stdio stream FILE an assembler
2215 command to pad the location counter to a multiple of 1<<LOG
2216 bytes if it is within MAX_SKIP bytes. */
2217
2218#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2219#undef ASM_OUTPUT_MAX_SKIP_PAD
2220#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2221 if ((LOG) != 0) \
2222 { \
2223 if ((MAX_SKIP) == 0) \
2224 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2225 else \
2226 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2227 }
2228#endif
2229
135a687e
KT
2230/* Write the extra assembler code needed to declare a function
2231 properly. */
2232
2233#undef ASM_OUTPUT_FUNCTION_LABEL
2234#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2235 ix86_asm_output_function_label (FILE, NAME, DECL)
2236
f7288899
EC
2237/* Under some conditions we need jump tables in the text section,
2238 because the assembler cannot handle label differences between
2239 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2240
2241#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2242 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2243 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2244
cea3bd3e
RH
2245/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2246 and switch back. For x86 we do this only to save a few bytes that
2247 would otherwise be unused in the text section. */
ad211091
KT
2248#define CRT_MKSTR2(VAL) #VAL
2249#define CRT_MKSTR(x) CRT_MKSTR2(x)
2250
2251#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2252 asm (SECTION_OP "\n\t" \
2253 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2254 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2255
2256/* Default threshold for putting data in large sections
2257 with x86-64 medium memory model */
2258#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2259\f
b97de419
L
2260/* Which processor to tune code generation for. These must be in sync
2261 with processor_target_table in i386.c. */
5bf0ebab
RH
2262
2263enum processor_type
2264{
b97de419
L
2265 PROCESSOR_GENERIC = 0,
2266 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2267 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2268 PROCESSOR_PENTIUM,
2269 PROCESSOR_PENTIUMPRO,
5bf0ebab 2270 PROCESSOR_PENTIUM4,
89c43c0a 2271 PROCESSOR_NOCONA,
340ef734 2272 PROCESSOR_CORE2,
d3c11974
L
2273 PROCESSOR_NEHALEM,
2274 PROCESSOR_SANDYBRIDGE,
3a579e09 2275 PROCESSOR_HASWELL,
d3c11974
L
2276 PROCESSOR_BONNELL,
2277 PROCESSOR_SILVERMONT,
52747219 2278 PROCESSOR_KNL,
9a7f94d7 2279 PROCESSOR_INTEL,
b97de419
L
2280 PROCESSOR_GEODE,
2281 PROCESSOR_K6,
2282 PROCESSOR_ATHLON,
2283 PROCESSOR_K8,
21efb4d4 2284 PROCESSOR_AMDFAM10,
1133125e 2285 PROCESSOR_BDVER1,
4d652a18 2286 PROCESSOR_BDVER2,
eb2f2b44 2287 PROCESSOR_BDVER3,
ed97ad47 2288 PROCESSOR_BDVER4,
14b52538 2289 PROCESSOR_BTVER1,
e32bfc16 2290 PROCESSOR_BTVER2,
5bf0ebab
RH
2291 PROCESSOR_max
2292};
2293
9e555526 2294extern enum processor_type ix86_tune;
5bf0ebab 2295extern enum processor_type ix86_arch;
5bf0ebab 2296
8362f420
JH
2297/* Size of the RED_ZONE area. */
2298#define RED_ZONE_SIZE 128
2299/* Reserved area of the red zone for temporaries. */
2300#define RED_ZONE_RESERVE 8
c93e80a5 2301
95899b34 2302extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2303extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2304
2305/* Smallest class containing REGNO. */
2306extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2307
0948ccb2
PB
2308enum ix86_fpcmp_strategy {
2309 IX86_FPCMP_SAHF,
2310 IX86_FPCMP_COMI,
2311 IX86_FPCMP_ARITH
2312};
22fb740d
JH
2313\f
2314/* To properly truncate FP values into integers, we need to set i387 control
2315 word. We can't emit proper mode switching code before reload, as spills
2316 generated by reload may truncate values incorrectly, but we still can avoid
2317 redundant computation of new control word by the mode switching pass.
2318 The fldcw instructions are still emitted redundantly, but this is probably
2319 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2320 the sequence.
22fb740d
JH
2321
2322 The machinery is to emit simple truncation instructions and split them
2323 before reload to instructions having USEs of two memory locations that
2324 are filled by this code to old and new control word.
fce5a9f2 2325
22fb740d
JH
2326 Post-reload pass may be later used to eliminate the redundant fildcw if
2327 needed. */
2328
ff680eb1
UB
2329enum ix86_entity
2330{
ff97910d
VY
2331 AVX_U128 = 0,
2332 I387_TRUNC,
ff680eb1
UB
2333 I387_FLOOR,
2334 I387_CEIL,
2335 I387_MASK_PM,
2336 MAX_386_ENTITIES
2337};
2338
1cba2b96 2339enum ix86_stack_slot
ff680eb1 2340{
443ca5fc 2341 SLOT_TEMP = 0,
ff680eb1
UB
2342 SLOT_CW_STORED,
2343 SLOT_CW_TRUNC,
2344 SLOT_CW_FLOOR,
2345 SLOT_CW_CEIL,
2346 SLOT_CW_MASK_PM,
2347 MAX_386_STACK_LOCALS
2348};
22fb740d 2349
ff97910d
VY
2350enum avx_u128_state
2351{
2352 AVX_U128_CLEAN,
2353 AVX_U128_DIRTY,
2354 AVX_U128_ANY
2355};
2356
22fb740d
JH
2357/* Define this macro if the port needs extra instructions inserted
2358 for mode switching in an optimizing compilation. */
2359
ff680eb1
UB
2360#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2361 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2362
2363/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2364 initializer for an array of integers. Each initializer element N
2365 refers to an entity that needs mode switching, and specifies the
2366 number of different modes that might need to be set for this
2367 entity. The position of the initializer in the initializer -
2368 starting counting at zero - determines the integer that is used to
2369 refer to the mode-switched entity in question. */
2370
ff680eb1 2371#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2372 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2373
0f0138b6
JH
2374\f
2375/* Avoid renaming of stack registers, as doing so in combination with
2376 scheduling just increases amount of live registers at time and in
2377 the turn amount of fxch instructions needed.
2378
3f97cb0b
AI
2379 ??? Maybe Pentium chips benefits from renaming, someone can try....
2380
2381 Don't rename evex to non-evex sse registers. */
0f0138b6 2382
3f97cb0b
AI
2383#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2384 (EXT_REX_SSE_REGNO_P (SRC) == \
2385 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2386
3b3c6a3f 2387\f
e91f04de 2388#define FASTCALL_PREFIX '@'
fa1a0d02 2389\f
ec7ded37 2390/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2391
604a6be9 2392#ifndef USED_FOR_TARGET
ec7ded37 2393struct GTY(()) machine_frame_state
cd9c1ca8 2394{
ec7ded37
RH
2395 /* This pair tracks the currently active CFA as reg+offset. When reg
2396 is drap_reg, we don't bother trying to record here the real CFA when
2397 it might really be a DW_CFA_def_cfa_expression. */
2398 rtx cfa_reg;
2399 HOST_WIDE_INT cfa_offset;
2400
2401 /* The current offset (canonically from the CFA) of ESP and EBP.
2402 When stack frame re-alignment is active, these may not be relative
2403 to the CFA. However, in all cases they are relative to the offsets
2404 of the saved registers stored in ix86_frame. */
2405 HOST_WIDE_INT sp_offset;
2406 HOST_WIDE_INT fp_offset;
2407
2408 /* The size of the red-zone that may be assumed for the purposes of
2409 eliding register restore notes in the epilogue. This may be zero
2410 if no red-zone is in effect, or may be reduced from the real
2411 red-zone value by a maximum runtime stack re-alignment value. */
2412 int red_zone_offset;
2413
2414 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2415 value within the frame. If false then the offset above should be
2416 ignored. Note that DRAP, if valid, *always* points to the CFA and
2417 thus has an offset of zero. */
2418 BOOL_BITFIELD sp_valid : 1;
2419 BOOL_BITFIELD fp_valid : 1;
2420 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2421
2422 /* Indicate whether the local stack frame has been re-aligned. When
2423 set, the SP/FP offsets above are relative to the aligned frame
2424 and not the CFA. */
2425 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2426};
2427
f81c9774
RH
2428/* Private to winnt.c. */
2429struct seh_frame_state;
2430
d1b38208 2431struct GTY(()) machine_function {
fa1a0d02
JH
2432 struct stack_local_entry *stack_locals;
2433 const char *some_ld_name;
4aab97f9
L
2434 int varargs_gpr_size;
2435 int varargs_fpr_size;
ff680eb1 2436 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2437
2438 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2439 has been computed for. */
2440 int use_fast_prologue_epilogue_nregs;
2441
7458026b
ILT
2442 /* For -fsplit-stack support: A stack local which holds a pointer to
2443 the stack arguments for a function with a variable number of
2444 arguments. This is set at the start of the function and is used
2445 to initialize the overflow_arg_area field of the va_list
2446 structure. */
2447 rtx split_stack_varargs_pointer;
2448
3452586b
RH
2449 /* This value is used for amd64 targets and specifies the current abi
2450 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2451 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2452
2453 /* Nonzero if the function accesses a previous frame. */
2454 BOOL_BITFIELD accesses_prev_frame : 1;
2455
2456 /* Nonzero if the function requires a CLD in the prologue. */
2457 BOOL_BITFIELD needs_cld : 1;
2458
922e3e33
UB
2459 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2460 expander to determine the style used. */
3452586b
RH
2461 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2462
5bf5a10b
AO
2463 /* If true, the current function needs the default PIC register, not
2464 an alternate register (on x86) and must not use the red zone (on
2465 x86_64), even if it's a leaf function. We don't want the
2466 function to be regarded as non-leaf because TLS calls need not
2467 affect register allocation. This flag is set when a TLS call
2468 instruction is expanded within a function, and never reset, even
2469 if all such instructions are optimized away. Use the
2470 ix86_current_function_calls_tls_descriptor macro for a better
2471 approximation. */
3452586b
RH
2472 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2473
2474 /* If true, the current function has a STATIC_CHAIN is placed on the
2475 stack below the return address. */
2476 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2477
529a6471
JJ
2478 /* If true, it is safe to not save/restore DRAP register. */
2479 BOOL_BITFIELD no_drap_save_restore : 1;
2480
ec7ded37
RH
2481 /* During prologue/epilogue generation, the current frame state.
2482 Otherwise, the frame state at the end of the prologue. */
2483 struct machine_frame_state fs;
f81c9774
RH
2484
2485 /* During SEH output, this is non-null. */
2486 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2487};
cd9c1ca8 2488#endif
fa1a0d02
JH
2489
2490#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2491#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2492#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2493#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2494#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2495#define ix86_tls_descriptor_calls_expanded_in_cfun \
2496 (cfun->machine->tls_descriptor_call_expanded_p)
2497/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2498 calls are optimized away, we try to detect cases in which it was
2499 optimized away. Since such instructions (use (reg REG_SP)), we can
2500 verify whether there's any such instruction live by testing that
2501 REG_SP is live. */
2502#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2503 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2504#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2505
1bc7c5b6
ZW
2506/* Control behavior of x86_file_start. */
2507#define X86_FILE_START_VERSION_DIRECTIVE false
2508#define X86_FILE_START_FLTUSED false
2509
7dcbf659
JH
2510/* Flag to mark data that is in the large address area. */
2511#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2512#define SYMBOL_REF_FAR_ADDR_P(X) \
2513 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2514
2515/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2516 have defined always, to avoid ifdefing. */
2517#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2518#define SYMBOL_REF_DLLIMPORT_P(X) \
2519 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2520
2521#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2522#define SYMBOL_REF_DLLEXPORT_P(X) \
2523 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2524
82c0e1a0
KT
2525#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2526#define SYMBOL_REF_STUBVAR_P(X) \
2527 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2528
7942e47e
RY
2529extern void debug_ready_dispatch (void);
2530extern void debug_dispatch_window (int);
2531
91afcfa3
QN
2532/* The value at zero is only defined for the BMI instructions
2533 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2534#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2535 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2536#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2537 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2538
2539
b8ce4e94
KT
2540/* Flags returned by ix86_get_callcvt (). */
2541#define IX86_CALLCVT_CDECL 0x1
2542#define IX86_CALLCVT_STDCALL 0x2
2543#define IX86_CALLCVT_FASTCALL 0x4
2544#define IX86_CALLCVT_THISCALL 0x8
2545#define IX86_CALLCVT_REGPARM 0x10
2546#define IX86_CALLCVT_SSEREGPARM 0x20
2547
2548#define IX86_BASE_CALLCVT(FLAGS) \
2549 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2550 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2551
b86b9f44
MM
2552#define RECIP_MASK_NONE 0x00
2553#define RECIP_MASK_DIV 0x01
2554#define RECIP_MASK_SQRT 0x02
2555#define RECIP_MASK_VEC_DIV 0x04
2556#define RECIP_MASK_VEC_SQRT 0x08
2557#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2558 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2559#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2560
2561#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2562#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2563#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2564#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2565
5dcfdccd
KY
2566#define IX86_HLE_ACQUIRE (1 << 16)
2567#define IX86_HLE_RELEASE (1 << 17)
2568
e83b8e2e
JJ
2569/* For switching between functions with different target attributes. */
2570#define SWITCHABLE_TARGET 1
2571
44d0de8d
UB
2572#define TARGET_SUPPORTS_WIDE_INT 1
2573
c98f8742
JVA
2574/*
2575Local variables:
2576version-control: t
2577End:
2578*/