]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
PR libstdc++/91456 make INVOKE<R> work with uncopyable prvalues
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
a5544970 2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
e21b52af
HL
96#define TARGET_AVX512VP2INTERSECT TARGET_ISA_AVX512VP2INTERSECT
97#define TARGET_AVX512VP2INTERSECT_P(x) TARGET_ISA_AVX512VP2INTERSECT_P(x)
90922d36 98#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 99#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 100#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 101#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 102#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 103#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 104#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 105#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 106#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 107#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 108#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 109#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
110#define TARGET_PCONFIG TARGET_ISA_PCONFIG
111#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
112#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
113#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
114#define TARGET_SGX TARGET_ISA_SGX
115#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
116#define TARGET_RDPID TARGET_ISA_RDPID
117#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
118#define TARGET_GFNI TARGET_ISA_GFNI
119#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
120#define TARGET_VAES TARGET_ISA_VAES
121#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
122#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
123#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 124#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 125#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 126#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 127#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 128#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 129#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 130#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 131#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 132#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 133#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 134#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 135#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 136#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 137#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 138#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 139#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 140#define TARGET_AES TARGET_ISA_AES
bf7b5747 141#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
142#define TARGET_SHA TARGET_ISA_SHA
143#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
144#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
145#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
146#define TARGET_CLZERO TARGET_ISA_CLZERO
147#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
148#define TARGET_XSAVEC TARGET_ISA_XSAVEC
149#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
150#define TARGET_XSAVES TARGET_ISA_XSAVES
151#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 152#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 153#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
154#define TARGET_CMPXCHG16B TARGET_ISA_CX16
155#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 156#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 157#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 158#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 159#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 160#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 161#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
162#define TARGET_RTM TARGET_ISA_RTM
163#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 164#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 165#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 166#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 167#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 168#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 169#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 170#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 171#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 172#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 173#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 174#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 175#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 176#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 177#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
178#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
179#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
180#define TARGET_CLWB TARGET_ISA_CLWB
181#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
182#define TARGET_MWAITX TARGET_ISA_MWAITX
183#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
184#define TARGET_PKU TARGET_ISA_PKU
185#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
186#define TARGET_SHSTK TARGET_ISA_SHSTK
187#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
188#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
189#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
190#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
191#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
192#define TARGET_WAITPKG TARGET_ISA_WAITPKG
193#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
194#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
195#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41f8d1fc
AK
196#define TARGET_PTWRITE TARGET_ISA_PTWRITE
197#define TARGET_PTWRITE_P(x) TARGET_ISA_PTWRITE_P(x)
4f0e90fa
HL
198#define TARGET_AVX512BF16 TARGET_ISA_AVX512BF16
199#define TARGET_AVX512BF16_P(x) TARGET_ISA_AVX512BF16_P(x)
6a10feda
XG
200#define TARGET_ENQCMD TARGET_ISA_ENQCMD
201#define TARGET_ENQCMD_P(x) TARGET_ISA_ENQCMD_P(x)
41a4ef22 202
90922d36 203#define TARGET_LP64 TARGET_ABI_64
bf7b5747 204#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 205#define TARGET_X32 TARGET_ABI_X32
bf7b5747 206#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
207#define TARGET_16BIT TARGET_CODE16
208#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 209
dfa61b9e
L
210#define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
211
26b5109f
RS
212#include "config/vxworks-dummy.h"
213
7eb68c06 214#include "config/i386/i386-opts.h"
ccf8e764 215
c69fa2d4 216#define MAX_STRINGOP_ALGS 4
ccf8e764 217
8c996513
JH
218/* Specify what algorithm to use for stringops on known size.
219 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
220 known at compile time or estimated via feedback, the SIZE array
221 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 222 means infinity). Corresponding ALG is used then.
340ef734
JH
223 When NOALIGN is true the code guaranting the alignment of the memory
224 block is skipped.
225
8c996513 226 For example initializer:
4f3f76e6 227 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 228 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 229 be used otherwise. */
8c996513
JH
230struct stringop_algs
231{
232 const enum stringop_alg unknown_size;
233 const struct stringop_strategy {
234 const int max;
235 const enum stringop_alg alg;
340ef734 236 int noalign;
c69fa2d4 237 } size [MAX_STRINGOP_ALGS];
8c996513
JH
238};
239
d4ba09c0
SC
240/* Define the specific costs for a given cpu */
241
242struct processor_costs {
8b60264b
KG
243 const int add; /* cost of an add instruction */
244 const int lea; /* cost of a lea instruction */
245 const int shift_var; /* variable shift costs */
246 const int shift_const; /* constant shift costs */
f676971a 247 const int mult_init[5]; /* cost of starting a multiply
4977bab6 248 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 249 const int mult_bit; /* cost of multiply per each bit set */
f676971a 250 const int divide[5]; /* cost of a divide/mod
4977bab6 251 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
252 int movsx; /* The cost of movsx operation. */
253 int movzx; /* The cost of movzx operation. */
8b60264b
KG
254 const int large_insn; /* insns larger than this cost more */
255 const int move_ratio; /* The threshold of number of scalar
ac775968 256 memory-to-memory move insns. */
8b60264b
KG
257 const int movzbl_load; /* cost of loading using movzbl */
258 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
259 in QImode, HImode and SImode relative
260 to reg-reg move (2). */
8b60264b 261 const int int_store[3]; /* cost of storing integer register
96e7ae40 262 in QImode, HImode and SImode */
8b60264b
KG
263 const int fp_move; /* cost of reg,reg fld/fst */
264 const int fp_load[3]; /* cost of loading FP register
96e7ae40 265 in SFmode, DFmode and XFmode */
8b60264b 266 const int fp_store[3]; /* cost of storing FP register
96e7ae40 267 in SFmode, DFmode and XFmode */
8b60264b
KG
268 const int mmx_move; /* cost of moving MMX register. */
269 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 270 in SImode and DImode */
8b60264b 271 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 272 in SImode and DImode */
df41dbaf
JH
273 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
274 zmm_move;
275 const int sse_load[5]; /* cost of loading SSE register
276 in 32bit, 64bit, 128bit, 256bit and 512bit */
277 const int sse_unaligned_load[5];/* cost of unaligned load. */
278 const int sse_store[5]; /* cost of storing SSE register
279 in SImode, DImode and TImode. */
280 const int sse_unaligned_store[5];/* cost of unaligned store. */
66574c53
HL
281 const int sse_to_integer; /* cost of moving SSE register to integer. */
282 const int integer_to_sse; /* cost of moving integer register to SSE. */
a4fe6139
JH
283 const int gather_static, gather_per_elt; /* Cost of gather load is computed
284 as static + per_item * nelts. */
285 const int scatter_static, scatter_per_elt; /* Cost of gather store is
286 computed as static + per_item * nelts. */
46cb0441
ZD
287 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
288 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
289 const int prefetch_block; /* bytes moved to cache for prefetch. */
290 const int simultaneous_prefetches; /* number of parallel prefetch
291 operations. */
4977bab6 292 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
293 const int fadd; /* cost of FADD and FSUB instructions. */
294 const int fmul; /* cost of FMUL instruction. */
295 const int fdiv; /* cost of FDIV instruction. */
296 const int fabs; /* cost of FABS instruction. */
297 const int fchs; /* cost of FCHS instruction. */
298 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 299 /* Specify what algorithm
bee51209 300 to use for stringops on unknown size. */
c53c148c 301 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
302 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
303 const int mulss; /* cost of MULSS instructions. */
304 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
305 const int fmass; /* cost of FMASS instructions. */
306 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
307 const int divss; /* cost of DIVSS instructions. */
308 const int divsd; /* cost of DIVSD instructions. */
309 const int sqrtss; /* cost of SQRTSS instructions. */
310 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
311 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
312 /* Specify reassociation width for integer,
313 fp, vector integer and vector fp
314 operations. Generally should correspond
315 to number of instructions executed in
316 parallel. See also
317 ix86_reassociation_width. */
ad83025e 318 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
319 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
320 cost model. */
321 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
322 vectorizer cost model. */
7dc58b50
ML
323
324 /* The "0:0:8" label alignment specified for some processors generates
325 secondary 8-byte alignment only for those label/jump/loop targets
326 which have primary alignment. */
327 const char *const align_loop; /* Loop alignment. */
328 const char *const align_jump; /* Jump alignment. */
329 const char *const align_label; /* Label alignment. */
330 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
331};
332
8b60264b 333extern const struct processor_costs *ix86_cost;
b2077fd2
JH
334extern const struct processor_costs ix86_size_cost;
335
336#define ix86_cur_cost() \
337 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 338
c98f8742
JVA
339/* Macros used in the machine description to test the flags. */
340
b97de419 341/* configure can arrange to change it. */
e075ae69 342
35b528be 343#ifndef TARGET_CPU_DEFAULT
b97de419 344#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 345#endif
35b528be 346
004d3859
GK
347#ifndef TARGET_FPMATH_DEFAULT
348#define TARGET_FPMATH_DEFAULT \
349 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
350#endif
351
bf7b5747
ST
352#ifndef TARGET_FPMATH_DEFAULT_P
353#define TARGET_FPMATH_DEFAULT_P(x) \
354 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
355#endif
356
c207fd99
L
357/* If the i387 is disabled or -miamcu is used , then do not return
358 values in it. */
359#define TARGET_FLOAT_RETURNS_IN_80387 \
360 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
361#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
362 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 363
5791cc29
JT
364/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
365 compile-time constant. */
366#ifdef IN_LIBGCC2
6ac49599 367#undef TARGET_64BIT
5791cc29
JT
368#ifdef __x86_64__
369#define TARGET_64BIT 1
370#else
371#define TARGET_64BIT 0
372#endif
373#else
6ac49599
RS
374#ifndef TARGET_BI_ARCH
375#undef TARGET_64BIT
e49080ec 376#undef TARGET_64BIT_P
67adf6a9 377#if TARGET_64BIT_DEFAULT
0c2dc519 378#define TARGET_64BIT 1
e49080ec 379#define TARGET_64BIT_P(x) 1
0c2dc519
JH
380#else
381#define TARGET_64BIT 0
e49080ec 382#define TARGET_64BIT_P(x) 0
0c2dc519
JH
383#endif
384#endif
5791cc29 385#endif
25f94bb5 386
750054a2
CT
387#define HAS_LONG_COND_BRANCH 1
388#define HAS_LONG_UNCOND_BRANCH 1
389
9e555526
RH
390#define TARGET_386 (ix86_tune == PROCESSOR_I386)
391#define TARGET_486 (ix86_tune == PROCESSOR_I486)
392#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
393#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 394#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
395#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
396#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
397#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
398#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 399#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 400#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 401#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
402#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
403#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 404#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
405#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
406#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 407#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 408#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 409#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 410#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 411#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 412#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 413#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 414#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
415#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
416#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
7cab07f0 417#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
9a7f94d7 418#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 419#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 420#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 421#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 422#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 423#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 424#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 425#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 426#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 427#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
2901f42f 428#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
a269a03c 429
80fd744f
RH
430/* Feature tests against the various tunings. */
431enum ix86_tune_indices {
4b8bc035 432#undef DEF_TUNE
3ad20bd4 433#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
434#include "x86-tune.def"
435#undef DEF_TUNE
436X86_TUNE_LAST
80fd744f
RH
437};
438
ab442df7 439extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
440
441#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
442#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
443#define TARGET_ZERO_EXTEND_WITH_AND \
444 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 445#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
446#define TARGET_BRANCH_PREDICTION_HINTS \
447 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
448#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
449#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
450#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
451#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
452#define TARGET_PARTIAL_FLAG_REG_STALL \
453 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
454#define TARGET_LCP_STALL \
455 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
456#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
457#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
458#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
459#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
460#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
461#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
462#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
463#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
464#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
465#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
466#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
467#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
468 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
469#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
470#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
471#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
472#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
473#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
474#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
475#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
476#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
477#define TARGET_INTEGER_DFMODE_MOVES \
478 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
479#define TARGET_PARTIAL_REG_DEPENDENCY \
480 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
481#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
482 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
483#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
484 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
485#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
486 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
487#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
488 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
489#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
490#define TARGET_SSE_TYPELESS_STORES \
491 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
492#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
493#define TARGET_MEMORY_MISMATCH_STALL \
494 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
495#define TARGET_PROLOGUE_USING_MOVE \
496 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
497#define TARGET_EPILOGUE_USING_MOVE \
498 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
499#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
500#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
501#define TARGET_INTER_UNIT_MOVES_TO_VEC \
502 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
503#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
504 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
505#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 506 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
507#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
508#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
509#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
510#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
511#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
512#define TARGET_PAD_SHORT_FUNCTION \
513 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
514#define TARGET_EXT_80387_CONSTANTS \
515 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
516#define TARGET_AVOID_VECTOR_DECODE \
517 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
518#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
519 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
520#define TARGET_SLOW_IMUL_IMM32_MEM \
521 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
522#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
523#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
524#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
525#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
526#define TARGET_USE_VECTOR_FP_CONVERTS \
527 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
528#define TARGET_USE_VECTOR_CONVERTS \
529 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
530#define TARGET_SLOW_PSHUFB \
531 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
532#define TARGET_AVOID_4BYTE_PREFIXES \
533 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
534#define TARGET_USE_GATHER \
535 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
536#define TARGET_FUSE_CMP_AND_BRANCH_32 \
537 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
538#define TARGET_FUSE_CMP_AND_BRANCH_64 \
539 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 540#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
541 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
542 : TARGET_FUSE_CMP_AND_BRANCH_32)
543#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
544 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
545#define TARGET_FUSE_ALU_AND_BRANCH \
546 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 547#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
548#define TARGET_AVOID_LEA_FOR_ADDR \
549 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
550#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
551 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
552#define TARGET_AVX128_OPTIMAL \
553 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
554#define TARGET_GENERAL_REGS_SSE_SPILL \
555 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
556#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
557 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 558#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 559 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
560#define TARGET_ADJUST_UNROLL \
561 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
562#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
563 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
564#define TARGET_ONE_IF_CONV_INSN \
565 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
566#define TARGET_EMIT_VZEROUPPER \
567 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 568
80fd744f
RH
569/* Feature tests against the various architecture variations. */
570enum ix86_arch_indices {
cef31f9c 571 X86_ARCH_CMOV,
80fd744f
RH
572 X86_ARCH_CMPXCHG,
573 X86_ARCH_CMPXCHG8B,
574 X86_ARCH_XADD,
575 X86_ARCH_BSWAP,
576
577 X86_ARCH_LAST
578};
4f3f76e6 579
ab442df7 580extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 581
cef31f9c 582#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
583#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
584#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
585#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
586#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
587
cef31f9c
UB
588/* For sane SSE instruction set generation we need fcomi instruction.
589 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
590 expands to a sequence that includes conditional move. */
591#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
592
80fd744f
RH
593#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
594
cb261eb7 595extern unsigned char x86_prefetch_sse;
80fd744f
RH
596#define TARGET_PREFETCH_SSE x86_prefetch_sse
597
80fd744f
RH
598#define ASSEMBLER_DIALECT (ix86_asm_dialect)
599
600#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
601#define TARGET_MIX_SSE_I387 \
602 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
603
5fa578f0
UB
604#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
605#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
606#define TARGET_HARD_XF_REGS (TARGET_80387)
607
80fd744f
RH
608#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
609#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
610#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 611#define TARGET_SUN_TLS 0
1ef45b77 612
67adf6a9
RH
613#ifndef TARGET_64BIT_DEFAULT
614#define TARGET_64BIT_DEFAULT 0
25f94bb5 615#endif
74dc3e94
RH
616#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
617#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
618#endif
25f94bb5 619
e0ea8797
AH
620#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
621#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
622
79f5e442
ZD
623/* Fence to use after loop using storent. */
624
625extern tree x86_mfence;
626#define FENCE_FOLLOWING_MOVNT x86_mfence
627
0ed4a390
JL
628/* Once GDB has been enhanced to deal with functions without frame
629 pointers, we can change this to allow for elimination of
630 the frame pointer in leaf functions. */
631#define TARGET_DEFAULT 0
67adf6a9 632
0a1c5e55
UB
633/* Extra bits to force. */
634#define TARGET_SUBTARGET_DEFAULT 0
635#define TARGET_SUBTARGET_ISA_DEFAULT 0
636
637/* Extra bits to force on w/ 32-bit mode. */
638#define TARGET_SUBTARGET32_DEFAULT 0
639#define TARGET_SUBTARGET32_ISA_DEFAULT 0
640
ccf8e764
RH
641/* Extra bits to force on w/ 64-bit mode. */
642#define TARGET_SUBTARGET64_DEFAULT 0
8b131a8a
UB
643/* Enable MMX, SSE and SSE2 by default. */
644#define TARGET_SUBTARGET64_ISA_DEFAULT \
645 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
ccf8e764 646
fee3eacd
IS
647/* Replace MACH-O, ifdefs by in-line tests, where possible.
648 (a) Macros defined in config/i386/darwin.h */
b069de3b 649#define TARGET_MACHO 0
d308419c 650#define TARGET_MACHO_SYMBOL_STUBS 0
fee3eacd
IS
651#define MACHOPIC_ATT_STUB 0
652/* (b) Macros defined in config/darwin.h */
653#define MACHO_DYNAMIC_NO_PIC_P 0
654#define MACHOPIC_INDIRECT 0
655#define MACHOPIC_PURE 0
9005471b 656
5a579c3b
LE
657/* For the RDOS */
658#define TARGET_RDOS 0
659
9005471b 660/* For the Windows 64-bit ABI. */
7c800926
KT
661#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
662
6510e8bb
KT
663/* For the Windows 32-bit ABI. */
664#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
665
f81c9774
RH
666/* This is re-defined by cygming.h. */
667#define TARGET_SEH 0
668
51212b32 669/* The default abi used by target. */
7c800926 670#define DEFAULT_ABI SYSV_ABI
ccf8e764 671
b8b3f0ca 672/* The default TLS segment register used by target. */
00402c94
RH
673#define DEFAULT_TLS_SEG_REG \
674 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 675
cc69336f
RH
676/* Subtargets may reset this to 1 in order to enable 96-bit long double
677 with the rounding mode forced to 53 bits. */
678#define TARGET_96_ROUND_53_LONG_DOUBLE 0
679
98ae96d2
PB
680#ifndef SUBTARGET_DRIVER_SELF_SPECS
681# define SUBTARGET_DRIVER_SELF_SPECS ""
682#endif
683
684#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
685
682cd442
GK
686/* -march=native handling only makes sense with compiler running on
687 an x86 or x86_64 chip. If changing this condition, also change
688 the condition in driver-i386.c. */
689#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
690/* In driver-i386.c. */
691extern const char *host_detect_local_cpu (int argc, const char **argv);
692#define EXTRA_SPEC_FUNCTIONS \
693 { "local_cpu_detect", host_detect_local_cpu },
682cd442 694#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
695#endif
696
8981c15b
JM
697#if TARGET_64BIT_DEFAULT
698#define OPT_ARCH64 "!m32"
699#define OPT_ARCH32 "m32"
700#else
f0ea7581
L
701#define OPT_ARCH64 "m64|mx32"
702#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
703#endif
704
1cba2b96
EC
705/* Support for configure-time defaults of some command line options.
706 The order here is important so that -march doesn't squash the
707 tune or cpu values. */
ce998900 708#define OPTION_DEFAULT_SPECS \
da2d4c01 709 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
710 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
711 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 712 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
713 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
714 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
715 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
716 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
717 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 718
241e1a89
SC
719/* Specs for the compiler proper */
720
628714d8 721#ifndef CC1_CPU_SPEC
eb5bb0fd 722#define CC1_CPU_SPEC_1 ""
fa959ce4 723
682cd442 724#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
725#define CC1_CPU_SPEC CC1_CPU_SPEC_1
726#else
727#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
728"%{march=native:%>march=native %:local_cpu_detect(arch) \
729 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
730%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 731#endif
241e1a89 732#endif
c98f8742 733\f
30efe578 734/* Target CPU builtins. */
ab442df7
MM
735#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
736
737/* Target Pragmas. */
738#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 739
b4c522fa
IB
740/* Target CPU versions for D. */
741#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
742
628714d8 743#ifndef CC1_SPEC
8015b78d 744#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
745#endif
746
747/* This macro defines names of additional specifications to put in the
748 specs that can be used in various specifications like CC1_SPEC. Its
749 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
750
751 Each subgrouping contains a string constant, that defines the
188fc5b5 752 specification name, and a string constant that used by the GCC driver
bcd86433
SC
753 program.
754
755 Do not define this macro if it does not need to do anything. */
756
757#ifndef SUBTARGET_EXTRA_SPECS
758#define SUBTARGET_EXTRA_SPECS
759#endif
760
761#define EXTRA_SPECS \
628714d8 762 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
763 SUBTARGET_EXTRA_SPECS
764\f
ce998900 765
8ce94e44
JM
766/* Whether to allow x87 floating-point arithmetic on MODE (one of
767 SFmode, DFmode and XFmode) in the current excess precision
768 configuration. */
b8cab8a5
UB
769#define X87_ENABLE_ARITH(MODE) \
770 (flag_unsafe_math_optimizations \
771 || flag_excess_precision == EXCESS_PRECISION_FAST \
772 || (MODE) == XFmode)
8ce94e44
JM
773
774/* Likewise, whether to allow direct conversions from integer mode
775 IMODE (HImode, SImode or DImode) to MODE. */
776#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
777 (flag_unsafe_math_optimizations \
778 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
779 || (MODE) == XFmode \
780 || ((MODE) == DFmode && (IMODE) == SImode) \
781 || (IMODE) == HImode)
782
979c67a5
UB
783/* target machine storage layout */
784
65d9c0ab
JH
785#define SHORT_TYPE_SIZE 16
786#define INT_TYPE_SIZE 32
f0ea7581
L
787#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
788#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 789#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 790#define FLOAT_TYPE_SIZE 32
65d9c0ab 791#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
792#define LONG_DOUBLE_TYPE_SIZE \
793 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 794
c637141a 795#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 796
67adf6a9 797#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 798#define MAX_BITS_PER_WORD 64
0c2dc519
JH
799#else
800#define MAX_BITS_PER_WORD 32
0c2dc519
JH
801#endif
802
c98f8742
JVA
803/* Define this if most significant byte of a word is the lowest numbered. */
804/* That is true on the 80386. */
805
806#define BITS_BIG_ENDIAN 0
807
808/* Define this if most significant byte of a word is the lowest numbered. */
809/* That is not true on the 80386. */
810#define BYTES_BIG_ENDIAN 0
811
812/* Define this if most significant word of a multiword number is the lowest
813 numbered. */
814/* Not true for 80386 */
815#define WORDS_BIG_ENDIAN 0
816
c98f8742 817/* Width of a word, in units (bytes). */
4ae8027b 818#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
819
820#ifndef IN_LIBGCC2
2e64c636
JH
821#define MIN_UNITS_PER_WORD 4
822#endif
c98f8742 823
c98f8742 824/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 825#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 826
e075ae69 827/* Boundary (in *bits*) on which stack pointer should be aligned. */
bd5d3961 828#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 829
2e3f842f
L
830/* Stack boundary of the main function guaranteed by OS. */
831#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
832
de1132d1 833/* Minimum stack boundary. */
cba9c789 834#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 835
d1f87653 836/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 837 aligned; the compiler cannot rely on having this alignment. */
e075ae69 838#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 839
de1132d1 840/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
841 both 32bit and 64bit, to support codes that need 128 bit stack
842 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
843#define PREFERRED_STACK_BOUNDARY_DEFAULT \
844 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
845
846/* 1 if -mstackrealign should be turned on by default. It will
847 generate an alternate prologue and epilogue that realigns the
848 runtime stack if nessary. This supports mixing codes that keep a
849 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 850 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
851#define STACK_REALIGN_DEFAULT 0
852
853/* Boundary (in *bits*) on which the incoming stack is aligned. */
854#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 855
a2851b75
TG
856/* According to Windows x64 software convention, the maximum stack allocatable
857 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
858 instructions allowed to adjust the stack pointer in the epilog, forcing the
859 use of frame pointer for frames larger than 2 GB. This theorical limit
860 is reduced by 256, an over-estimated upper bound for the stack use by the
861 prologue.
862 We define only one threshold for both the prolog and the epilog. When the
4e523f33 863 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
864 regs, then save them, and then allocate the remaining. There is no SEH
865 unwind info for this later allocation. */
866#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
867
ebff937c
SH
868/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
869 mandatory for the 64-bit ABI, and may or may not be true for other
870 operating systems. */
871#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
872
f963b5d9
RS
873/* Minimum allocation boundary for the code of a function. */
874#define FUNCTION_BOUNDARY 8
875
876/* C++ stores the virtual bit in the lowest bit of function pointers. */
877#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 878
c98f8742
JVA
879/* Minimum size in bits of the largest boundary to which any
880 and all fundamental data types supported by the hardware
881 might need to be aligned. No data type wants to be aligned
17f24ff0 882 rounder than this.
fce5a9f2 883
d1f87653 884 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
885 and Pentium Pro XFmode values at 128 bit boundaries.
886
887 When increasing the maximum, also update
888 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 889
3f97cb0b 890#define BIGGEST_ALIGNMENT \
0076c82f 891 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 892
2e3f842f
L
893/* Maximum stack alignment. */
894#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
895
6e4f1168
L
896/* Alignment value for attribute ((aligned)). It is a constant since
897 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 898#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 899
822eda12 900/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 901#define ALIGN_MODE_128(MODE) \
4501d314 902 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 903
17f24ff0 904/* The published ABIs say that doubles should be aligned on word
d1f87653 905 boundaries, so lower the alignment for structure fields unless
6fc605d8 906 -malign-double is set. */
e932b21b 907
e83f3cff
RH
908/* ??? Blah -- this macro is used directly by libobjc. Since it
909 supports no vector modes, cut out the complexity and fall back
910 on BIGGEST_FIELD_ALIGNMENT. */
911#ifdef IN_TARGET_LIBS
ef49d42e
JH
912#ifdef __x86_64__
913#define BIGGEST_FIELD_ALIGNMENT 128
914#else
e83f3cff 915#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 916#endif
e83f3cff 917#else
a4cf4b64
RB
918#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
919 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 920#endif
c98f8742 921
8a022443
JW
922/* If defined, a C expression to compute the alignment for a static
923 variable. TYPE is the data type, and ALIGN is the alignment that
924 the object would ordinarily have. The value of this macro is used
925 instead of that alignment to align the object.
926
927 If this macro is not defined, then ALIGN is used.
928
929 One use of this macro is to increase alignment of medium-size
930 data to make it all fit in fewer cache lines. Another is to
931 cause character arrays to be word-aligned so that `strcpy' calls
932 that copy constants to character arrays can be done inline. */
933
df8a1d28
JJ
934#define DATA_ALIGNMENT(TYPE, ALIGN) \
935 ix86_data_alignment ((TYPE), (ALIGN), true)
936
937/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
938 some alignment increase, instead of optimization only purposes. E.g.
939 AMD x86-64 psABI says that variables with array type larger than 15 bytes
940 must be aligned to 16 byte boundaries.
941
942 If this macro is not defined, then ALIGN is used. */
943
944#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
945 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
946
947/* If defined, a C expression to compute the alignment for a local
948 variable. TYPE is the data type, and ALIGN is the alignment that
949 the object would ordinarily have. The value of this macro is used
950 instead of that alignment to align the object.
951
952 If this macro is not defined, then ALIGN is used.
953
954 One use of this macro is to increase alignment of medium-size
955 data to make it all fit in fewer cache lines. */
956
76fe54f0
L
957#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
958 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
959
960/* If defined, a C expression to compute the alignment for stack slot.
961 TYPE is the data type, MODE is the widest mode available, and ALIGN
962 is the alignment that the slot would ordinarily have. The value of
963 this macro is used instead of that alignment to align the slot.
964
965 If this macro is not defined, then ALIGN is used when TYPE is NULL,
966 Otherwise, LOCAL_ALIGNMENT will be used.
967
968 One use of this macro is to set alignment of stack slot to the
969 maximum alignment of all possible modes which the slot may have. */
970
971#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
972 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 973
9bfaf89d
JJ
974/* If defined, a C expression to compute the alignment for a local
975 variable DECL.
976
977 If this macro is not defined, then
978 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
979
980 One use of this macro is to increase alignment of medium-size
981 data to make it all fit in fewer cache lines. */
982
983#define LOCAL_DECL_ALIGNMENT(DECL) \
984 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
985
ae58e548
JJ
986/* If defined, a C expression to compute the minimum required alignment
987 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
988 MODE, assuming normal alignment ALIGN.
989
990 If this macro is not defined, then (ALIGN) will be used. */
991
992#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 993 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 994
9bfaf89d 995
9cd10576 996/* Set this nonzero if move instructions will actually fail to work
c98f8742 997 when given unaligned data. */
b4ac57ab 998#define STRICT_ALIGNMENT 0
c98f8742
JVA
999
1000/* If bit field type is int, don't let it cross an int,
1001 and give entire struct the alignment of an int. */
43a88a8c 1002/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 1003#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
1004\f
1005/* Standard register usage. */
1006
1007/* This processor has special stack-like registers. See reg-stack.c
892a2d68 1008 for details. */
c98f8742
JVA
1009
1010#define STACK_REGS
ce998900 1011
f48b4284
UB
1012#define IS_STACK_MODE(MODE) \
1013 (X87_FLOAT_MODE_P (MODE) \
1014 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1015 || TARGET_MIX_SSE_I387))
c98f8742
JVA
1016
1017/* Number of actual hardware registers.
1018 The hardware registers are assigned numbers for the compiler
1019 from 0 to just below FIRST_PSEUDO_REGISTER.
1020 All registers that the compiler knows about must be given numbers,
1021 even those that are not normally considered general registers.
1022
1023 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1024 We number the floating point registers 8-15.
1025 Note that registers 0-7 can be accessed as a short or int,
1026 while only 0-3 may be used with byte `mov' instructions.
1027
1028 Reg 16 does not correspond to any hardware register, but instead
1029 appears in the RTL as an argument pointer prior to reload, and is
1030 eliminated during reloading in favor of either the stack or frame
892a2d68 1031 pointer. */
c98f8742 1032
05416670 1033#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1034
3073d01c
ML
1035/* Number of hardware registers that go into the DWARF-2 unwind info.
1036 If not defined, equals FIRST_PSEUDO_REGISTER. */
1037
1038#define DWARF_FRAME_REGISTERS 17
1039
c98f8742
JVA
1040/* 1 for registers that have pervasive standard uses
1041 and are not available for the register allocator.
3f3f2124 1042 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1043
621bc046
UB
1044 REX registers are disabled for 32bit targets in
1045 TARGET_CONDITIONAL_REGISTER_USAGE. */
1046
a7180f70
BS
1047#define FIXED_REGISTERS \
1048/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1049{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1050/*arg,flags,fpsr,frame*/ \
1051 1, 1, 1, 1, \
a7180f70
BS
1052/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1053 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1054/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1055 0, 0, 0, 0, 0, 0, 0, 0, \
1056/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1057 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1058/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1059 0, 0, 0, 0, 0, 0, 0, 0, \
1060/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1061 0, 0, 0, 0, 0, 0, 0, 0, \
1062/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1063 0, 0, 0, 0, 0, 0, 0, 0, \
1064/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1065 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1066
1067/* 1 for registers not available across function calls.
1068 These must include the FIXED_REGISTERS and also any
1069 registers that can be used without being saved.
1070 The latter must include the registers where values are returned
1071 and the register where structure-value addresses are passed.
fce5a9f2
EC
1072 Aside from that, you can include as many other registers as you like.
1073
621bc046
UB
1074 Value is set to 1 if the register is call used unconditionally.
1075 Bit one is set if the register is call used on TARGET_32BIT ABI.
1076 Bit two is set if the register is call used on TARGET_64BIT ABI.
1077 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1078
1079 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1080
1f3ccbc8
L
1081#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1082 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1083
a7180f70
BS
1084#define CALL_USED_REGISTERS \
1085/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1086{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1087/*arg,flags,fpsr,frame*/ \
1088 1, 1, 1, 1, \
a7180f70 1089/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1090 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1091/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1092 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1093/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1094 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1095/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1096 6, 6, 6, 6, 6, 6, 6, 6, \
1097/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1098 6, 6, 6, 6, 6, 6, 6, 6, \
1099/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1100 6, 6, 6, 6, 6, 6, 6, 6, \
1101 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1102 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1103
3b3c6a3f
MM
1104/* Order in which to allocate registers. Each register must be
1105 listed once, even those in FIXED_REGISTERS. List frame pointer
1106 late and fixed registers last. Note that, in general, we prefer
1107 registers listed in CALL_USED_REGISTERS, keeping the others
1108 available for storage of persistent values.
1109
5a733826 1110 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1111 so this is just empty initializer for array. */
3b3c6a3f 1112
eaa17c21
UB
1113#define REG_ALLOC_ORDER \
1114{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1115 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1116 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1117 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1118 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1119
5a733826 1120/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1121 to be rearranged based on a particular function. When using sse math,
03c259ad 1122 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1123
5a733826 1124#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1125
f5316dfe 1126
7c800926
KT
1127#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1128
8521c414 1129#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1130 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1131 && GENERAL_REGNO_P (REGNO) \
1132 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1133
1134#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1135
e21b52af
HL
1136#define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1137
95879c72
L
1138#define VALID_AVX256_REG_MODE(MODE) \
1139 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1140 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1141 || (MODE) == V4DFmode)
95879c72 1142
4ac005ba 1143#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1144 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1145
3f97cb0b
AI
1146#define VALID_AVX512F_SCALAR_MODE(MODE) \
1147 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1148 || (MODE) == SFmode)
1149
1150#define VALID_AVX512F_REG_MODE(MODE) \
1151 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1152 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1153 || (MODE) == V4TImode)
1154
e6f146d2
SP
1155#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1156 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1157
05416670 1158#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1159 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1160 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1161 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1162
ce998900
UB
1163#define VALID_SSE2_REG_MODE(MODE) \
1164 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1165 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1166
d9a5f180 1167#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1168 ((MODE) == V1TImode || (MODE) == TImode \
1169 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1170 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1171
47f339cf 1172#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1173 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1174
d9a5f180 1175#define VALID_MMX_REG_MODE(MODE) \
879f9d0b 1176 ((MODE) == V1DImode || (MODE) == DImode \
10a97ae6
UB
1177 || (MODE) == V2SImode || (MODE) == SImode \
1178 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1179
05416670
UB
1180#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1181
1182#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1183
ce998900
UB
1184#define VALID_DFP_MODE_P(MODE) \
1185 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1186
d9a5f180 1187#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1188 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1189 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1190
d9a5f180 1191#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1192 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1193 || (MODE) == DImode \
1194 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1195 || (MODE) == CDImode \
1196 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1197 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1198
822eda12 1199/* Return true for modes passed in SSE registers. */
ce998900 1200#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1201 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1202 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1203 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1204 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1205 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1206 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1207 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1208 || (MODE) == V16SFmode)
822eda12 1209
05416670
UB
1210#define X87_FLOAT_MODE_P(MODE) \
1211 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1212
05416670
UB
1213#define SSE_FLOAT_MODE_P(MODE) \
1214 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1215
1216#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1217 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1218 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1219
ff25ef99
ZD
1220/* It is possible to write patterns to move flags; but until someone
1221 does it, */
1222#define AVOID_CCMODE_COPIES
c98f8742 1223
e075ae69 1224/* Specify the modes required to caller save a given hard regno.
787dc842 1225 We do this on i386 to prevent flags from being saved at all.
e075ae69 1226
787dc842
JH
1227 Kill any attempts to combine saving of modes. */
1228
d9a5f180
GS
1229#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1230 (CC_REGNO_P (REGNO) ? VOIDmode \
1231 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1232 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1233 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1234 && TARGET_PARTIAL_REG_STALL) \
85a77221 1235 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1236 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1237 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1238 : (MODE))
ce998900 1239
c98f8742
JVA
1240/* Specify the registers used for certain standard purposes.
1241 The values of these macros are register numbers. */
1242
1243/* on the 386 the pc register is %eip, and is not usable as a general
1244 register. The ordinary mov instructions won't work */
1245/* #define PC_REGNUM */
1246
05416670
UB
1247/* Base register for access to arguments of the function. */
1248#define ARG_POINTER_REGNUM ARGP_REG
1249
c98f8742 1250/* Register to use for pushing function arguments. */
05416670 1251#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1252
1253/* Base register for access to local variables of the function. */
05416670
UB
1254#define FRAME_POINTER_REGNUM FRAME_REG
1255#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1256
05416670
UB
1257#define FIRST_INT_REG AX_REG
1258#define LAST_INT_REG SP_REG
c98f8742 1259
05416670
UB
1260#define FIRST_QI_REG AX_REG
1261#define LAST_QI_REG BX_REG
c98f8742
JVA
1262
1263/* First & last stack-like regs */
05416670
UB
1264#define FIRST_STACK_REG ST0_REG
1265#define LAST_STACK_REG ST7_REG
c98f8742 1266
05416670
UB
1267#define FIRST_SSE_REG XMM0_REG
1268#define LAST_SSE_REG XMM7_REG
fce5a9f2 1269
05416670
UB
1270#define FIRST_MMX_REG MM0_REG
1271#define LAST_MMX_REG MM7_REG
a7180f70 1272
05416670
UB
1273#define FIRST_REX_INT_REG R8_REG
1274#define LAST_REX_INT_REG R15_REG
3f3f2124 1275
05416670
UB
1276#define FIRST_REX_SSE_REG XMM8_REG
1277#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1278
05416670
UB
1279#define FIRST_EXT_REX_SSE_REG XMM16_REG
1280#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1281
05416670
UB
1282#define FIRST_MASK_REG MASK0_REG
1283#define LAST_MASK_REG MASK7_REG
85a77221 1284
aabcd309 1285/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1286 requiring a frame pointer. */
1287#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1288#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1289#endif
1290
1291/* Make sure we can access arbitrary call frames. */
1292#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1293
c98f8742 1294/* Register to hold the addressing base for position independent
5b43fed1
RH
1295 code access to data items. We don't use PIC pointer for 64bit
1296 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1297 pessimizing code dealing with EBX.
bd09bdeb
RH
1298
1299 To avoid clobbering a call-saved register unnecessarily, we renumber
1300 the pic register when possible. The change is visible after the
1301 prologue has been emitted. */
1302
e8b5eb25 1303#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1304
bcb21886 1305#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1306 (ix86_use_pseudo_pic_reg () \
1307 ? (pic_offset_table_rtx \
1308 ? INVALID_REGNUM \
1309 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1310 : INVALID_REGNUM)
c98f8742 1311
5fc0e5df
KW
1312#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1313
c51e6d85 1314/* This is overridden by <cygwin.h>. */
5e062767
DS
1315#define MS_AGGREGATE_RETURN 0
1316
61fec9ff 1317#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1318\f
1319/* Define the classes of registers for register constraints in the
1320 machine description. Also define ranges of constants.
1321
1322 One of the classes must always be named ALL_REGS and include all hard regs.
1323 If there is more than one class, another class must be named NO_REGS
1324 and contain no registers.
1325
1326 The name GENERAL_REGS must be the name of a class (or an alias for
1327 another name such as ALL_REGS). This is the class of registers
1328 that is allowed by "g" or "r" in a register constraint.
1329 Also, registers outside this class are allocated only when
1330 instructions express preferences for them.
1331
1332 The classes must be numbered in nondecreasing order; that is,
1333 a larger-numbered class must never be contained completely
2e24efd3
AM
1334 in a smaller-numbered class. This is why CLOBBERED_REGS class
1335 is listed early, even though in 64-bit mode it contains more
1336 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1337
1338 For any two classes, it is very desirable that there be another
ab408a86
JVA
1339 class that represents their union.
1340
eaa17c21 1341 The flags and fpsr registers are in no class. */
c98f8742
JVA
1342
1343enum reg_class
1344{
1345 NO_REGS,
e075ae69 1346 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1347 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1348 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1349 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1350 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1351 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1352 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1353 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1354 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1355 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1356 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1357 FLOAT_REGS,
06f4e35d 1358 SSE_FIRST_REG,
45392c76 1359 NO_REX_SSE_REGS,
a7180f70 1360 SSE_REGS,
3f97cb0b 1361 ALL_SSE_REGS,
a7180f70 1362 MMX_REGS,
446988df
JH
1363 FLOAT_SSE_REGS,
1364 FLOAT_INT_REGS,
1365 INT_SSE_REGS,
1366 FLOAT_INT_SSE_REGS,
85a77221 1367 MASK_REGS,
d18cbbf6
UB
1368 ALL_MASK_REGS,
1369 ALL_REGS,
1370 LIM_REG_CLASSES
c98f8742
JVA
1371};
1372
d9a5f180
GS
1373#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1374
1375#define INTEGER_CLASS_P(CLASS) \
1376 reg_class_subset_p ((CLASS), GENERAL_REGS)
1377#define FLOAT_CLASS_P(CLASS) \
1378 reg_class_subset_p ((CLASS), FLOAT_REGS)
1379#define SSE_CLASS_P(CLASS) \
3f97cb0b 1380 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1381#define MMX_CLASS_P(CLASS) \
f75959a6 1382 ((CLASS) == MMX_REGS)
4ed04e93 1383#define MASK_CLASS_P(CLASS) \
d18cbbf6 1384 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1385#define MAYBE_INTEGER_CLASS_P(CLASS) \
1386 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1387#define MAYBE_FLOAT_CLASS_P(CLASS) \
1388 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1389#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1390 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1391#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1392 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1393#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1394 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1395
1396#define Q_CLASS_P(CLASS) \
1397 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1398
0bd72901
UB
1399#define MAYBE_NON_Q_CLASS_P(CLASS) \
1400 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1401
43f3a59d 1402/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1403
1404#define REG_CLASS_NAMES \
1405{ "NO_REGS", \
ab408a86 1406 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1407 "SIREG", "DIREG", \
e075ae69 1408 "AD_REGS", \
2e24efd3 1409 "CLOBBERED_REGS", \
e075ae69 1410 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1411 "TLS_GOTBASE_REGS", \
c98f8742 1412 "INDEX_REGS", \
3f3f2124 1413 "LEGACY_REGS", \
c98f8742
JVA
1414 "GENERAL_REGS", \
1415 "FP_TOP_REG", "FP_SECOND_REG", \
1416 "FLOAT_REGS", \
cb482895 1417 "SSE_FIRST_REG", \
45392c76 1418 "NO_REX_SSE_REGS", \
a7180f70 1419 "SSE_REGS", \
3f97cb0b 1420 "ALL_SSE_REGS", \
a7180f70 1421 "MMX_REGS", \
446988df 1422 "FLOAT_SSE_REGS", \
8fcaaa80 1423 "FLOAT_INT_REGS", \
446988df
JH
1424 "INT_SSE_REGS", \
1425 "FLOAT_INT_SSE_REGS", \
85a77221 1426 "MASK_REGS", \
d18cbbf6 1427 "ALL_MASK_REGS", \
c98f8742
JVA
1428 "ALL_REGS" }
1429
ac2e563f
RH
1430/* Define which registers fit in which classes. This is an initializer
1431 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1432
621bc046
UB
1433 Note that CLOBBERED_REGS are calculated by
1434 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1435
d18cbbf6 1436#define REG_CLASS_CONTENTS \
eaa17c21
UB
1437{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1438 { 0x01, 0x0, 0x0 }, /* AREG */ \
1439 { 0x02, 0x0, 0x0 }, /* DREG */ \
1440 { 0x04, 0x0, 0x0 }, /* CREG */ \
1441 { 0x08, 0x0, 0x0 }, /* BREG */ \
1442 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1443 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1444 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1445 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1446 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1447 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1448 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1449 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1450 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1451 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1452 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1453 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1454 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1455 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1456 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1457 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1458 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1459{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1460 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1461 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1462 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1463 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1464 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1465 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1466{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1467}
c98f8742
JVA
1468
1469/* The same information, inverted:
1470 Return the class number of the smallest class containing
1471 reg number REGNO. This could be a conditional expression
1472 or could index an array. */
1473
1a6e82b8 1474#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1475
42db504c
SB
1476/* When this hook returns true for MODE, the compiler allows
1477 registers explicitly used in the rtl to be used as spill registers
1478 but prevents the compiler from extending the lifetime of these
1479 registers. */
1480#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1481
fc27f749 1482#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1483#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1484
1485#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1486#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1487
1488#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1489#define REX_INT_REGNO_P(N) \
1490 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1491
58b0b34c 1492#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1493#define GENERAL_REGNO_P(N) \
58b0b34c 1494 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1495
fc27f749
UB
1496#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1497#define ANY_QI_REGNO_P(N) \
1498 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1499
66aaf16f
UB
1500#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1501#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1502
fc27f749 1503#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1504#define SSE_REGNO_P(N) \
1505 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1506 || REX_SSE_REGNO_P (N) \
1507 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1508
4977bab6 1509#define REX_SSE_REGNO_P(N) \
fb84c7a0 1510 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1511
0a48088a
IT
1512#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1513
3f97cb0b
AI
1514#define EXT_REX_SSE_REGNO_P(N) \
1515 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1516
05416670
UB
1517#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1518#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1519
9e4a4dd6 1520#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1521#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
e21b52af 1522#define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
446988df 1523
fc27f749 1524#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1525#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1526
e075ae69 1527#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1528#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1529
5fbb13a7
KY
1530#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1531#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1532 || (N) == XMM4_REG \
1533 || (N) == XMM8_REG \
1534 || (N) == XMM12_REG \
1535 || (N) == XMM16_REG \
1536 || (N) == XMM20_REG \
1537 || (N) == XMM24_REG \
1538 || (N) == XMM28_REG)
1539
05416670
UB
1540/* First floating point reg */
1541#define FIRST_FLOAT_REG FIRST_STACK_REG
1542#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1543
02469d3a
UB
1544#define GET_SSE_REGNO(N) \
1545 ((N) < 8 ? FIRST_SSE_REG + (N) \
1546 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1547 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1548
c98f8742
JVA
1549/* The class value for index registers, and the one for base regs. */
1550
1551#define INDEX_REG_CLASS INDEX_REGS
1552#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1553\f
1554/* Stack layout; function entry, exit and calling. */
1555
1556/* Define this if pushing a word on the stack
1557 makes the stack pointer a smaller address. */
62f9f30b 1558#define STACK_GROWS_DOWNWARD 1
c98f8742 1559
a4d05547 1560/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1561 is at the high-address end of the local variables;
1562 that is, each additional local variable allocated
1563 goes at a more negative offset in the frame. */
f62c8a5c 1564#define FRAME_GROWS_DOWNWARD 1
c98f8742 1565
7b4df2bf 1566#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1567
1568/* If defined, the maximum amount of space required for outgoing arguments
1569 will be computed and placed into the variable `crtl->outgoing_args_size'.
1570 No space will be pushed onto the stack for each call; instead, the
1571 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1572
1573 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1574 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1575 mode the difference is less drastic but visible.
1576
1577 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1578 actually grow with accumulation. Is that because accumulated args
41ee845b 1579 unwind info became unnecesarily bloated?
f830ddc2
RH
1580
1581 With the 64-bit MS ABI, we can generate correct code with or without
1582 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1583 generated without accumulated args is terrible.
41ee845b
JH
1584
1585 If stack probes are required, the space used for large function
1586 arguments on the stack must also be probed, so enable
f8071c05
L
1587 -maccumulate-outgoing-args so this happens in the prologue.
1588
1589 We must use argument accumulation in interrupt function if stack
1590 may be realigned to avoid DRAP. */
f73ad30e 1591
6c6094f1 1592#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1593 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1594 && optimize_function_for_speed_p (cfun)) \
1595 || (cfun->machine->func_type != TYPE_NORMAL \
1596 && crtl->stack_realign_needed) \
1597 || TARGET_STACK_PROBE \
1598 || TARGET_64BIT_MS_ABI \
ff734e26 1599 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1600
1601/* If defined, a C expression whose value is nonzero when we want to use PUSH
1602 instructions to pass outgoing arguments. */
1603
1604#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1605
2da4124d
L
1606/* We want the stack and args grow in opposite directions, even if
1607 PUSH_ARGS is 0. */
1608#define PUSH_ARGS_REVERSED 1
1609
c98f8742
JVA
1610/* Offset of first parameter from the argument pointer register value. */
1611#define FIRST_PARM_OFFSET(FNDECL) 0
1612
a7180f70
BS
1613/* Define this macro if functions should assume that stack space has been
1614 allocated for arguments even when their values are passed in registers.
1615
1616 The value of this macro is the size, in bytes, of the area reserved for
1617 arguments passed in registers for the function represented by FNDECL.
1618
1619 This space can be allocated by the caller, or be a part of the
1620 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1621 which. */
7c800926
KT
1622#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1623
4ae8027b 1624#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1625 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1626
c98f8742
JVA
1627/* Define how to find the value returned by a library function
1628 assuming the value has mode MODE. */
1629
4ae8027b 1630#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1631
e9125c09
TW
1632/* Define the size of the result block used for communication between
1633 untyped_call and untyped_return. The block contains a DImode value
1634 followed by the block used by fnsave and frstor. */
1635
1636#define APPLY_RESULT_SIZE (8+108)
1637
b08de47e 1638/* 1 if N is a possible register number for function argument passing. */
53c17031 1639#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1640
1641/* Define a data type for recording info about an argument list
1642 during the scan of that argument list. This data type should
1643 hold all necessary information about the function itself
1644 and about the args processed so far, enough to enable macros
b08de47e 1645 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1646
e075ae69 1647typedef struct ix86_args {
fa283935 1648 int words; /* # words passed so far */
b08de47e
MM
1649 int nregs; /* # registers available for passing */
1650 int regno; /* next available register number */
3e65f251
KT
1651 int fastcall; /* fastcall or thiscall calling convention
1652 is used */
fa283935 1653 int sse_words; /* # sse words passed so far */
a7180f70 1654 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1655 int warn_avx512f; /* True when we want to warn
1656 about AVX512F ABI. */
95879c72 1657 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1658 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1659 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1660 int warn_empty; /* True when we want to warn about empty classes
1661 passing ABI change. */
fa283935
UB
1662 int sse_regno; /* next available sse register number */
1663 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1664 int mmx_nregs; /* # mmx registers available for passing */
1665 int mmx_regno; /* next available mmx register number */
892a2d68 1666 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1667 int caller; /* true if it is caller. */
2824d6e5
UB
1668 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1669 SFmode/DFmode arguments should be passed
1670 in SSE registers. Otherwise 0. */
d5e254e1 1671 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1672 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1673 MS_ABI for ms abi. */
e66fc623 1674 tree decl; /* Callee decl. */
b08de47e 1675} CUMULATIVE_ARGS;
c98f8742
JVA
1676
1677/* Initialize a variable CUM of type CUMULATIVE_ARGS
1678 for a call to a function whose data type is FNTYPE.
b08de47e 1679 For a library call, FNTYPE is 0. */
c98f8742 1680
0f6937fe 1681#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1682 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1683 (N_NAMED_ARGS) != -1)
c98f8742 1684
c98f8742
JVA
1685/* Output assembler code to FILE to increment profiler label # LABELNO
1686 for profiling a function entry. */
1687
1a6e82b8
UB
1688#define FUNCTION_PROFILER(FILE, LABELNO) \
1689 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1690
1691#define MCOUNT_NAME "_mcount"
1692
3c5273a9
KT
1693#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1694
a5fa1ecd 1695#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1696
1697/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1698 the stack pointer does not matter. The value is tested only in
1699 functions that have frame pointers.
1700 No definition is equivalent to always zero. */
fce5a9f2 1701/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1702 we have to restore it ourselves from the frame pointer, in order to
1703 use pop */
1704
1705#define EXIT_IGNORE_STACK 1
1706
f8071c05
L
1707/* Define this macro as a C expression that is nonzero for registers
1708 used by the epilogue or the `return' pattern. */
1709
1710#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1711
c98f8742
JVA
1712/* Output assembler code for a block containing the constant parts
1713 of a trampoline, leaving space for the variable parts. */
1714
a269a03c 1715/* On the 386, the trampoline contains two instructions:
c98f8742 1716 mov #STATIC,ecx
a269a03c
JC
1717 jmp FUNCTION
1718 The trampoline is generated entirely at runtime. The operand of JMP
1719 is the address of FUNCTION relative to the instruction following the
1720 JMP (which is 5 bytes long). */
c98f8742
JVA
1721
1722/* Length in units of the trampoline for entering a nested function. */
1723
6514899f 1724#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1725\f
1726/* Definitions for register eliminations.
1727
1728 This is an array of structures. Each structure initializes one pair
1729 of eliminable registers. The "from" register number is given first,
1730 followed by "to". Eliminations of the same "from" register are listed
1731 in order of preference.
1732
afc2cd05
NC
1733 There are two registers that can always be eliminated on the i386.
1734 The frame pointer and the arg pointer can be replaced by either the
1735 hard frame pointer or to the stack pointer, depending upon the
1736 circumstances. The hard frame pointer is not used before reload and
1737 so it is not eligible for elimination. */
c98f8742 1738
564d80f4
JH
1739#define ELIMINABLE_REGS \
1740{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1741 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1742 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1743 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1744
c98f8742
JVA
1745/* Define the offset between two registers, one to be eliminated, and the other
1746 its replacement, at the start of a routine. */
1747
d9a5f180
GS
1748#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1749 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1750\f
1751/* Addressing modes, and classification of registers for them. */
1752
c98f8742
JVA
1753/* Macros to check register numbers against specific register classes. */
1754
1755/* These assume that REGNO is a hard or pseudo reg number.
1756 They give nonzero only if REGNO is a hard reg of the suitable class
1757 or a pseudo reg currently allocated to a suitable hard reg.
1758 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1759 has been allocated, which happens in reginfo.c during register
1760 allocation. */
c98f8742 1761
3f3f2124
JH
1762#define REGNO_OK_FOR_INDEX_P(REGNO) \
1763 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1764 || REX_INT_REGNO_P (REGNO) \
1765 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1766 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1767
3f3f2124 1768#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1769 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1770 || (REGNO) == ARG_POINTER_REGNUM \
1771 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1772 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1773
c98f8742
JVA
1774/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1775 and check its validity for a certain class.
1776 We have two alternate definitions for each of them.
1777 The usual definition accepts all pseudo regs; the other rejects
1778 them unless they have been allocated suitable hard regs.
1779 The symbol REG_OK_STRICT causes the latter definition to be used.
1780
1781 Most source files want to accept pseudo regs in the hope that
1782 they will get allocated to the class that the insn wants them to be in.
1783 Source files for reload pass need to be strict.
1784 After reload, it makes no difference, since pseudo regs have
1785 been eliminated by then. */
1786
c98f8742 1787
ff482c8d 1788/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1789#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1790 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1791 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1792 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1793
3b3c6a3f 1794#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1795 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1796 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1797 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1798 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1799
3b3c6a3f
MM
1800/* Strict versions, hard registers only */
1801#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1802#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1803
3b3c6a3f 1804#ifndef REG_OK_STRICT
d9a5f180
GS
1805#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1806#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1807
1808#else
d9a5f180
GS
1809#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1810#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1811#endif
1812
331d9186 1813/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1814 that is a valid memory address for an instruction.
1815 The MODE argument is the machine mode for the MEM expression
1816 that wants to use this address.
1817
331d9186 1818 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1819 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1820
1821 See legitimize_pic_address in i386.c for details as to what
1822 constitutes a legitimate address when -fpic is used. */
1823
1824#define MAX_REGS_PER_ADDRESS 2
1825
f996902d 1826#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1827
b949ea8b
JW
1828/* If defined, a C expression to determine the base term of address X.
1829 This macro is used in only one place: `find_base_term' in alias.c.
1830
1831 It is always safe for this macro to not be defined. It exists so
1832 that alias analysis can understand machine-dependent addresses.
1833
1834 The typical use of this macro is to handle addresses containing
1835 a label_ref or symbol_ref within an UNSPEC. */
1836
d9a5f180 1837#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1838
c98f8742 1839/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1840 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1841 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1842
f996902d 1843#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1844
1845#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1846 (GET_CODE (X) == SYMBOL_REF \
1847 || GET_CODE (X) == LABEL_REF \
1848 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1849\f
b08de47e
MM
1850/* Max number of args passed in registers. If this is more than 3, we will
1851 have problems with ebx (register #4), since it is a caller save register and
1852 is also used as the pic register in ELF. So for now, don't allow more than
1853 3 registers to be passed in registers. */
1854
7c800926
KT
1855/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1856#define X86_64_REGPARM_MAX 6
72fa3605 1857#define X86_64_MS_REGPARM_MAX 4
7c800926 1858
72fa3605 1859#define X86_32_REGPARM_MAX 3
7c800926 1860
4ae8027b 1861#define REGPARM_MAX \
2824d6e5
UB
1862 (TARGET_64BIT \
1863 ? (TARGET_64BIT_MS_ABI \
1864 ? X86_64_MS_REGPARM_MAX \
1865 : X86_64_REGPARM_MAX) \
4ae8027b 1866 : X86_32_REGPARM_MAX)
d2836273 1867
72fa3605
UB
1868#define X86_64_SSE_REGPARM_MAX 8
1869#define X86_64_MS_SSE_REGPARM_MAX 4
1870
b6010cab 1871#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1872
4ae8027b 1873#define SSE_REGPARM_MAX \
2824d6e5
UB
1874 (TARGET_64BIT \
1875 ? (TARGET_64BIT_MS_ABI \
1876 ? X86_64_MS_SSE_REGPARM_MAX \
1877 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1878 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1879
1880#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1881\f
1882/* Specify the machine mode that this machine uses
1883 for the index in the tablejump instruction. */
dc4d7240 1884#define CASE_VECTOR_MODE \
6025b127 1885 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1886
c98f8742
JVA
1887/* Define this as 1 if `char' should by default be signed; else as 0. */
1888#define DEFAULT_SIGNED_CHAR 1
1889
1890/* Max number of bytes we can move from memory to memory
1891 in one reasonably fast instruction. */
65d9c0ab
JH
1892#define MOVE_MAX 16
1893
1894/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1895 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1896 number of bytes we can move with a single instruction.
1897
1898 ??? We should use TImode in 32-bit mode and use OImode or XImode
1899 if they are available. But since by_pieces_ninsns determines the
1900 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1901 64-bit mode. */
1902#define MOVE_MAX_PIECES \
1903 ((TARGET_64BIT \
1904 && TARGET_SSE2 \
1905 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1906 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1907 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1908
7e24ffc9 1909/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 1910 move-instruction pairs, we will do a cpymem or libcall instead.
7e24ffc9
HPN
1911 Increasing the value will always make code faster, but eventually
1912 incurs high cost in increased code size.
c98f8742 1913
e2e52e1b 1914 If you don't define this, a reasonable default is used. */
c98f8742 1915
e04ad03d 1916#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1917
45d78e7f
JJ
1918/* If a clear memory operation would take CLEAR_RATIO or more simple
1919 move-instruction sequences, we will do a clrmem or libcall instead. */
1920
e04ad03d 1921#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1922
53f00dde
UB
1923/* Define if shifts truncate the shift count which implies one can
1924 omit a sign-extension or zero-extension of a shift count.
1925
1926 On i386, shifts do truncate the count. But bit test instructions
1927 take the modulo of the bit offset operand. */
c98f8742
JVA
1928
1929/* #define SHIFT_COUNT_TRUNCATED */
1930
d9f32422
JH
1931/* A macro to update M and UNSIGNEDP when an object whose type is
1932 TYPE and which has the specified mode and signedness is to be
1933 stored in a register. This macro is only called when TYPE is a
1934 scalar type.
1935
f710504c 1936 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1937 quantities to SImode. The choice depends on target type. */
1938
1939#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1940do { \
d9f32422
JH
1941 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1942 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1943 (MODE) = SImode; \
1944} while (0)
d9f32422 1945
c98f8742
JVA
1946/* Specify the machine mode that pointers have.
1947 After generation of rtl, the compiler makes no further distinction
1948 between pointers and any other objects of this machine mode. */
28968d91 1949#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1950
5e1e91c4
L
1951/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1952 NONLOCAL needs space to save both shadow stack and stack pointers.
1953
1954 FIXME: We only need to save and restore stack pointer in ptr_mode.
1955 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1956 to save and restore stack pointer. See
1957 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1958 */
1959#define STACK_SAVEAREA_MODE(LEVEL) \
1960 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1961
d16b9d1c
UB
1962/* Specify the machine_mode of the size increment
1963 operand of an 'allocate_stack' named pattern. */
1964#define STACK_SIZE_MODE Pmode
1965
f0ea7581
L
1966/* A C expression whose value is zero if pointers that need to be extended
1967 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1968 greater then zero if they are zero-extended and less then zero if the
1969 ptr_extend instruction should be used. */
1970
1971#define POINTERS_EXTEND_UNSIGNED 1
1972
c98f8742
JVA
1973/* A function address in a call instruction
1974 is a byte address (for indexing purposes)
1975 so give the MEM rtx a byte's mode. */
1976#define FUNCTION_MODE QImode
d4ba09c0 1977\f
d4ba09c0 1978
d4ba09c0
SC
1979/* A C expression for the cost of a branch instruction. A value of 1
1980 is the default; other values are interpreted relative to that. */
1981
3a4fd356
JH
1982#define BRANCH_COST(speed_p, predictable_p) \
1983 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1984
e327d1a3
L
1985/* An integer expression for the size in bits of the largest integer machine
1986 mode that should actually be used. We allow pairs of registers. */
1987#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1988
d4ba09c0
SC
1989/* Define this macro as a C expression which is nonzero if accessing
1990 less than a word of memory (i.e. a `char' or a `short') is no
1991 faster than accessing a word of memory, i.e., if such access
1992 require more than one instruction or if there is no difference in
1993 cost between byte and (aligned) word loads.
1994
1995 When this macro is not defined, the compiler will access a field by
1996 finding the smallest containing object; when it is defined, a
1997 fullword load will be used if alignment permits. Unless bytes
1998 accesses are faster than word accesses, using word accesses is
1999 preferable since it may eliminate subsequent memory access if
2000 subsequent accesses occur to other fields in the same word of the
2001 structure, but to different bytes. */
2002
2003#define SLOW_BYTE_ACCESS 0
2004
2005/* Nonzero if access to memory by shorts is slow and undesirable. */
2006#define SLOW_SHORT_ACCESS 0
2007
d4ba09c0
SC
2008/* Define this macro if it is as good or better to call a constant
2009 function address than to call an address kept in a register.
2010
2011 Desirable on the 386 because a CALL with a constant address is
2012 faster than one with a register address. */
2013
1e8552c2 2014#define NO_FUNCTION_CSE 1
c98f8742 2015\f
c572e5ba
JVA
2016/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2017 return the mode to be used for the comparison.
2018
2019 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2020 VOIDmode should be used in all other cases.
c572e5ba 2021
16189740 2022 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2023 possible, to allow for more combinations. */
c98f8742 2024
d9a5f180 2025#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2026
9cd10576 2027/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2028 reversed. */
2029
2030#define REVERSIBLE_CC_MODE(MODE) 1
2031
2032/* A C expression whose value is reversed condition code of the CODE for
2033 comparison done in CC_MODE mode. */
3c5cb3e4 2034#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2035
c98f8742
JVA
2036\f
2037/* Control the assembler format that we output, to the extent
2038 this does not vary between assemblers. */
2039
2040/* How to refer to registers in assembler output.
892a2d68 2041 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2042
a7b376ee 2043/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2044 For non floating point regs, the following are the HImode names.
2045
2046 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2047 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2048 "y" code. */
c98f8742 2049
a7180f70
BS
2050#define HI_REGISTER_NAMES \
2051{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2052 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2053 "argp", "flags", "fpsr", "frame", \
a7180f70 2054 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2055 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2056 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2057 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2058 "xmm16", "xmm17", "xmm18", "xmm19", \
2059 "xmm20", "xmm21", "xmm22", "xmm23", \
2060 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2061 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2062 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2063
c98f8742
JVA
2064#define REGISTER_NAMES HI_REGISTER_NAMES
2065
50bec228
UB
2066#define QI_REGISTER_NAMES \
2067{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2068
2069#define QI_HIGH_REGISTER_NAMES \
2070{"ah", "dh", "ch", "bh"}
2071
c98f8742
JVA
2072/* Table of additional register names to use in user input. */
2073
eaa17c21
UB
2074#define ADDITIONAL_REGISTER_NAMES \
2075{ \
2076 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2077 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2078 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2079 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2080 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
50bec228 2081 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
eaa17c21
UB
2082 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2083 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2084 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2085 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2086 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2087 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2088 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2089 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2090 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2091 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2092 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2093 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2094 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2095 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2096 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2097 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2098 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2099}
c98f8742 2100
c98f8742
JVA
2101/* How to renumber registers for dbx and gdb. */
2102
d9a5f180
GS
2103#define DBX_REGISTER_NUMBER(N) \
2104 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2105
9a82e702
MS
2106extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2107extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2108extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2109
469ac993
JM
2110/* Before the prologue, RA is at 0(%esp). */
2111#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2112 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2113
e414ab29 2114/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2115#define RETURN_ADDR_RTX(COUNT, FRAME) \
2116 ((COUNT) == 0 \
2117 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2118 -UNITS_PER_WORD)) \
2119 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2120
892a2d68 2121/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2122#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2123
a10b3cf1
L
2124/* Before the prologue, there are return address and error code for
2125 exception handler on the top of the frame. */
2126#define INCOMING_FRAME_SP_OFFSET \
2127 (cfun->machine->func_type == TYPE_EXCEPTION \
2128 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2129
26fc730d
JJ
2130/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2131 .cfi_startproc. */
2132#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2133
1020a5ab 2134/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2135#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2136#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2137
ad919812 2138
e4c4ebeb
RH
2139/* Select a format to encode pointers in exception handling data. CODE
2140 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2141 true if the symbol may be affected by dynamic relocations.
2142
2143 ??? All x86 object file formats are capable of representing this.
2144 After all, the relocation needed is the same as for the call insn.
2145 Whether or not a particular assembler allows us to enter such, I
2146 guess we'll have to see. */
d9a5f180 2147#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2148 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2149
ec1895c1
UB
2150/* These are a couple of extensions to the formats accepted
2151 by asm_fprintf:
2152 %z prints out opcode suffix for word-mode instruction
2153 %r prints out word-mode name for reg_names[arg] */
2154#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2155 case 'z': \
2156 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2157 break; \
2158 \
2159 case 'r': \
2160 { \
2161 unsigned int regno = va_arg ((ARGS), int); \
2162 if (LEGACY_INT_REGNO_P (regno)) \
2163 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2164 fputs (reg_names[regno], (FILE)); \
2165 break; \
2166 }
2167
2168/* This is how to output an insn to push a register on the stack. */
2169
2170#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2171 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2172
2173/* This is how to output an insn to pop a register from the stack. */
c98f8742 2174
d9a5f180 2175#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2176 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2177
f88c65f7 2178/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2179
2180#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2181 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2182
f88c65f7 2183/* This is how to output an element of a case-vector that is relative. */
c98f8742 2184
33f7f353 2185#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2186 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2187
63001560 2188/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2189
2190#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2191{ \
2192 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2193 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2194}
2195
2196/* A C statement or statements which output an assembler instruction
2197 opcode to the stdio stream STREAM. The macro-operand PTR is a
2198 variable of type `char *' which points to the opcode name in
2199 its "internal" form--the form that is written in the machine
2200 description. */
2201
2202#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2203 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2204
6a90d232
L
2205/* A C statement to output to the stdio stream FILE an assembler
2206 command to pad the location counter to a multiple of 1<<LOG
2207 bytes if it is within MAX_SKIP bytes. */
2208
2209#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2210#undef ASM_OUTPUT_MAX_SKIP_PAD
2211#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2212 if ((LOG) != 0) \
2213 { \
dd047c67 2214 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2215 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2216 else \
2217 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2218 }
2219#endif
2220
135a687e
KT
2221/* Write the extra assembler code needed to declare a function
2222 properly. */
2223
2224#undef ASM_OUTPUT_FUNCTION_LABEL
2225#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2226 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2227
f7288899
EC
2228/* Under some conditions we need jump tables in the text section,
2229 because the assembler cannot handle label differences between
2230 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2231
2232#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2233 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2234 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2235
cea3bd3e
RH
2236/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2237 and switch back. For x86 we do this only to save a few bytes that
2238 would otherwise be unused in the text section. */
ad211091
KT
2239#define CRT_MKSTR2(VAL) #VAL
2240#define CRT_MKSTR(x) CRT_MKSTR2(x)
2241
2242#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2243 asm (SECTION_OP "\n\t" \
2244 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2245 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2246
2247/* Default threshold for putting data in large sections
2248 with x86-64 medium memory model */
2249#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2250\f
b97de419
L
2251/* Which processor to tune code generation for. These must be in sync
2252 with processor_target_table in i386.c. */
5bf0ebab
RH
2253
2254enum processor_type
2255{
b97de419
L
2256 PROCESSOR_GENERIC = 0,
2257 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2258 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2259 PROCESSOR_PENTIUM,
2d6b2e28 2260 PROCESSOR_LAKEMONT,
5bf0ebab 2261 PROCESSOR_PENTIUMPRO,
5bf0ebab 2262 PROCESSOR_PENTIUM4,
89c43c0a 2263 PROCESSOR_NOCONA,
340ef734 2264 PROCESSOR_CORE2,
d3c11974
L
2265 PROCESSOR_NEHALEM,
2266 PROCESSOR_SANDYBRIDGE,
3a579e09 2267 PROCESSOR_HASWELL,
d3c11974
L
2268 PROCESSOR_BONNELL,
2269 PROCESSOR_SILVERMONT,
50e461df 2270 PROCESSOR_GOLDMONT,
74b2bb19 2271 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2272 PROCESSOR_TREMONT,
52747219 2273 PROCESSOR_KNL,
cace2309 2274 PROCESSOR_KNM,
176a3386 2275 PROCESSOR_SKYLAKE,
06caf59d 2276 PROCESSOR_SKYLAKE_AVX512,
c234d831 2277 PROCESSOR_CANNONLAKE,
79ab5364
JK
2278 PROCESSOR_ICELAKE_CLIENT,
2279 PROCESSOR_ICELAKE_SERVER,
7cab07f0 2280 PROCESSOR_CASCADELAKE,
9a7f94d7 2281 PROCESSOR_INTEL,
b97de419
L
2282 PROCESSOR_GEODE,
2283 PROCESSOR_K6,
2284 PROCESSOR_ATHLON,
2285 PROCESSOR_K8,
21efb4d4 2286 PROCESSOR_AMDFAM10,
1133125e 2287 PROCESSOR_BDVER1,
4d652a18 2288 PROCESSOR_BDVER2,
eb2f2b44 2289 PROCESSOR_BDVER3,
ed97ad47 2290 PROCESSOR_BDVER4,
14b52538 2291 PROCESSOR_BTVER1,
e32bfc16 2292 PROCESSOR_BTVER2,
9ce29eb0 2293 PROCESSOR_ZNVER1,
2901f42f 2294 PROCESSOR_ZNVER2,
5bf0ebab
RH
2295 PROCESSOR_max
2296};
2297
c98c2430 2298#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2559ef9f 2299extern const char *const processor_names[];
c98c2430
ML
2300
2301#include "wide-int-bitmask.h"
2302
2303const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2304const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2305const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2306const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2307const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2308const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2309const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2310const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2311const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2312const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2313const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2314const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2315const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2316const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2317const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2318const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2319const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2320const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2321const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2322const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2323const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2324const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2325const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2326const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2327const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2328const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2329const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2330const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2331const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2332const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2333const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2334const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2335const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2336const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2337const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2338const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2339const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2340const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2341const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2342const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2343const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2344const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2345const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2346const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2347/* Hole after PTA_MPX was removed. */
2348const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2349const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2350const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2351const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2352const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2353const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2354const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2355const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2356const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2357const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2358const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2359const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2360const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2361const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2362const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2363const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2364const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2365const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2366const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2367const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2368const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2369const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2370const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2371const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2372const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2373const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2374const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2375const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
e21b52af 2376const wide_int_bitmask PTA_AVX512VP2INTERSECT (0, HOST_WIDE_INT_1U << 9);
c98c2430 2377const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
41f8d1fc 2378const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
4f0e90fa 2379const wide_int_bitmask PTA_AVX512BF16 (0, HOST_WIDE_INT_1U << 11);
c98c2430
ML
2380
2381const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2382 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2383const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2384 | PTA_POPCNT;
c9450033 2385const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
c98c2430
ML
2386const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2387 | PTA_XSAVEOPT;
2388const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2389 | PTA_RDRND | PTA_F16C;
2390const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2391 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2392const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2393 | PTA_RDSEED;
c9450033 2394const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES | PTA_CLFLUSHOPT
c98c2430
ML
2395 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2396const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2397 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2398 | PTA_CLWB;
7cab07f0 2399const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
c98c2430
ML
2400const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2401 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2402 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2403const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2404 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2405 | PTA_RDPID | PTA_CLWB;
2406const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2407 | PTA_WBNOINVD;
2408const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2409 | PTA_AVX512F | PTA_AVX512CD;
2410const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2411const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
c9450033 2412const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA | PTA_XSAVE
c98c2430
ML
2413 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2414 | PTA_FSGSBASE;
2415const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
41f8d1fc 2416 | PTA_SGX | PTA_PTWRITE;
c98c2430
ML
2417const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2418 | PTA_GFNI;
2419const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2420 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2421
2422#ifndef GENERATOR_FILE
2423
2424#include "insn-attr-common.h"
2425
6c1dae73 2426class pta
c98c2430 2427{
6c1dae73 2428public:
c98c2430
ML
2429 const char *const name; /* processor name or nickname. */
2430 const enum processor_type processor;
2431 const enum attr_cpu schedule;
2432 const wide_int_bitmask flags;
2433};
2434
2435extern const pta processor_alias_table[];
2436extern int const pta_size;
2437#endif
2438
2439#endif
2440
9e555526 2441extern enum processor_type ix86_tune;
5bf0ebab 2442extern enum processor_type ix86_arch;
5bf0ebab 2443
8362f420
JH
2444/* Size of the RED_ZONE area. */
2445#define RED_ZONE_SIZE 128
2446/* Reserved area of the red zone for temporaries. */
2447#define RED_ZONE_RESERVE 8
c93e80a5 2448
95899b34 2449extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2450extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2451
2452/* Smallest class containing REGNO. */
2453extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2454
0948ccb2
PB
2455enum ix86_fpcmp_strategy {
2456 IX86_FPCMP_SAHF,
2457 IX86_FPCMP_COMI,
2458 IX86_FPCMP_ARITH
2459};
22fb740d
JH
2460\f
2461/* To properly truncate FP values into integers, we need to set i387 control
2462 word. We can't emit proper mode switching code before reload, as spills
2463 generated by reload may truncate values incorrectly, but we still can avoid
2464 redundant computation of new control word by the mode switching pass.
2465 The fldcw instructions are still emitted redundantly, but this is probably
2466 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2467 the sequence.
22fb740d
JH
2468
2469 The machinery is to emit simple truncation instructions and split them
2470 before reload to instructions having USEs of two memory locations that
2471 are filled by this code to old and new control word.
fce5a9f2 2472
22fb740d
JH
2473 Post-reload pass may be later used to eliminate the redundant fildcw if
2474 needed. */
2475
c7ca8ef8
UB
2476enum ix86_stack_slot
2477{
2478 SLOT_TEMP = 0,
2479 SLOT_CW_STORED,
2480 SLOT_CW_TRUNC,
2481 SLOT_CW_FLOOR,
2482 SLOT_CW_CEIL,
80008279 2483 SLOT_STV_TEMP,
c7ca8ef8
UB
2484 MAX_386_STACK_LOCALS
2485};
2486
ff680eb1
UB
2487enum ix86_entity
2488{
c7ca8ef8
UB
2489 X86_DIRFLAG = 0,
2490 AVX_U128,
ff97910d 2491 I387_TRUNC,
ff680eb1
UB
2492 I387_FLOOR,
2493 I387_CEIL,
ff680eb1
UB
2494 MAX_386_ENTITIES
2495};
2496
c7ca8ef8 2497enum x86_dirflag_state
ff680eb1 2498{
c7ca8ef8
UB
2499 X86_DIRFLAG_RESET,
2500 X86_DIRFLAG_ANY
ff680eb1 2501};
22fb740d 2502
ff97910d
VY
2503enum avx_u128_state
2504{
2505 AVX_U128_CLEAN,
2506 AVX_U128_DIRTY,
2507 AVX_U128_ANY
2508};
2509
22fb740d
JH
2510/* Define this macro if the port needs extra instructions inserted
2511 for mode switching in an optimizing compilation. */
2512
ff680eb1
UB
2513#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2514 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2515
2516/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2517 initializer for an array of integers. Each initializer element N
2518 refers to an entity that needs mode switching, and specifies the
2519 number of different modes that might need to be set for this
2520 entity. The position of the initializer in the initializer -
2521 starting counting at zero - determines the integer that is used to
2522 refer to the mode-switched entity in question. */
2523
c7ca8ef8
UB
2524#define NUM_MODES_FOR_MODE_SWITCHING \
2525 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2526 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2527
0f0138b6
JH
2528\f
2529/* Avoid renaming of stack registers, as doing so in combination with
2530 scheduling just increases amount of live registers at time and in
2531 the turn amount of fxch instructions needed.
2532
3f97cb0b
AI
2533 ??? Maybe Pentium chips benefits from renaming, someone can try....
2534
2535 Don't rename evex to non-evex sse registers. */
0f0138b6 2536
1a6e82b8
UB
2537#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2538 (!STACK_REGNO_P (SRC) \
2539 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2540
3b3c6a3f 2541\f
e91f04de 2542#define FASTCALL_PREFIX '@'
fa1a0d02 2543\f
77560086
BE
2544#ifndef USED_FOR_TARGET
2545/* Structure describing stack frame layout.
2546 Stack grows downward:
2547
2548 [arguments]
2549 <- ARG_POINTER
2550 saved pc
2551
2552 saved static chain if ix86_static_chain_on_stack
2553
2554 saved frame pointer if frame_pointer_needed
2555 <- HARD_FRAME_POINTER
2556 [saved regs]
2557 <- reg_save_offset
2558 [padding0]
2559 <- stack_realign_offset
2560 [saved SSE regs]
2561 OR
2562 [stub-saved registers for ms x64 --> sysv clobbers
2563 <- Start of out-of-line, stub-saved/restored regs
2564 (see libgcc/config/i386/(sav|res)ms64*.S)
2565 [XMM6-15]
2566 [RSI]
2567 [RDI]
2568 [?RBX] only if RBX is clobbered
2569 [?RBP] only if RBP and RBX are clobbered
2570 [?R12] only if R12 and all previous regs are clobbered
2571 [?R13] only if R13 and all previous regs are clobbered
2572 [?R14] only if R14 and all previous regs are clobbered
2573 [?R15] only if R15 and all previous regs are clobbered
2574 <- end of stub-saved/restored regs
2575 [padding1]
2576 ]
5d9d834d 2577 <- sse_reg_save_offset
77560086
BE
2578 [padding2]
2579 | <- FRAME_POINTER
2580 [va_arg registers] |
2581 |
2582 [frame] |
2583 |
2584 [padding2] | = to_allocate
2585 <- STACK_POINTER
2586 */
2587struct GTY(()) ix86_frame
2588{
2589 int nsseregs;
2590 int nregs;
2591 int va_arg_size;
2592 int red_zone_size;
2593 int outgoing_arguments_size;
2594
2595 /* The offsets relative to ARG_POINTER. */
2596 HOST_WIDE_INT frame_pointer_offset;
2597 HOST_WIDE_INT hard_frame_pointer_offset;
2598 HOST_WIDE_INT stack_pointer_offset;
2599 HOST_WIDE_INT hfp_save_offset;
2600 HOST_WIDE_INT reg_save_offset;
122f9da1 2601 HOST_WIDE_INT stack_realign_allocate;
77560086 2602 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2603 HOST_WIDE_INT sse_reg_save_offset;
2604
2605 /* When save_regs_using_mov is set, emit prologue using
2606 move instead of push instructions. */
2607 bool save_regs_using_mov;
2608};
2609
122f9da1
DS
2610/* Machine specific frame tracking during prologue/epilogue generation. All
2611 values are positive, but since the x86 stack grows downward, are subtratced
2612 from the CFA to produce a valid address. */
cd9c1ca8 2613
ec7ded37 2614struct GTY(()) machine_frame_state
cd9c1ca8 2615{
ec7ded37
RH
2616 /* This pair tracks the currently active CFA as reg+offset. When reg
2617 is drap_reg, we don't bother trying to record here the real CFA when
2618 it might really be a DW_CFA_def_cfa_expression. */
2619 rtx cfa_reg;
2620 HOST_WIDE_INT cfa_offset;
2621
2622 /* The current offset (canonically from the CFA) of ESP and EBP.
2623 When stack frame re-alignment is active, these may not be relative
2624 to the CFA. However, in all cases they are relative to the offsets
2625 of the saved registers stored in ix86_frame. */
2626 HOST_WIDE_INT sp_offset;
2627 HOST_WIDE_INT fp_offset;
2628
2629 /* The size of the red-zone that may be assumed for the purposes of
2630 eliding register restore notes in the epilogue. This may be zero
2631 if no red-zone is in effect, or may be reduced from the real
2632 red-zone value by a maximum runtime stack re-alignment value. */
2633 int red_zone_offset;
2634
2635 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2636 value within the frame. If false then the offset above should be
2637 ignored. Note that DRAP, if valid, *always* points to the CFA and
2638 thus has an offset of zero. */
2639 BOOL_BITFIELD sp_valid : 1;
2640 BOOL_BITFIELD fp_valid : 1;
2641 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2642
2643 /* Indicate whether the local stack frame has been re-aligned. When
2644 set, the SP/FP offsets above are relative to the aligned frame
2645 and not the CFA. */
2646 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2647
2648 /* Indicates whether the stack pointer has been re-aligned. When set,
2649 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2650 should only be used for offsets > sp_realigned_offset, while
2651 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2652 The flags realigned and sp_realigned are mutually exclusive. */
2653 BOOL_BITFIELD sp_realigned : 1;
2654
122f9da1
DS
2655 /* If sp_realigned is set, this is the last valid offset from the CFA
2656 that can be used for access with the frame pointer. */
2657 HOST_WIDE_INT sp_realigned_fp_last;
2658
2659 /* If sp_realigned is set, this is the offset from the CFA that the stack
2660 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2661 Access via the stack pointer is only valid for offsets that are greater than
2662 this value. */
d6d4d770 2663 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2664};
2665
f81c9774
RH
2666/* Private to winnt.c. */
2667struct seh_frame_state;
2668
f8071c05
L
2669enum function_type
2670{
2671 TYPE_UNKNOWN = 0,
2672 TYPE_NORMAL,
2673 /* The current function is an interrupt service routine with a
2674 pointer argument as specified by the "interrupt" attribute. */
2675 TYPE_INTERRUPT,
2676 /* The current function is an interrupt service routine with a
2677 pointer argument and an integer argument as specified by the
2678 "interrupt" attribute. */
2679 TYPE_EXCEPTION
2680};
2681
d1b38208 2682struct GTY(()) machine_function {
fa1a0d02 2683 struct stack_local_entry *stack_locals;
4aab97f9
L
2684 int varargs_gpr_size;
2685 int varargs_fpr_size;
ff680eb1 2686 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2687
77560086
BE
2688 /* Cached initial frame layout for the current function. */
2689 struct ix86_frame frame;
3452586b 2690
7458026b
ILT
2691 /* For -fsplit-stack support: A stack local which holds a pointer to
2692 the stack arguments for a function with a variable number of
2693 arguments. This is set at the start of the function and is used
2694 to initialize the overflow_arg_area field of the va_list
2695 structure. */
2696 rtx split_stack_varargs_pointer;
2697
3452586b
RH
2698 /* This value is used for amd64 targets and specifies the current abi
2699 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2700 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2701
2702 /* Nonzero if the function accesses a previous frame. */
2703 BOOL_BITFIELD accesses_prev_frame : 1;
2704
922e3e33
UB
2705 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2706 expander to determine the style used. */
3452586b
RH
2707 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2708
1e4490dc
UB
2709 /* Nonzero if the current function calls pc thunk and
2710 must not use the red zone. */
2711 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2712
5bf5a10b
AO
2713 /* If true, the current function needs the default PIC register, not
2714 an alternate register (on x86) and must not use the red zone (on
2715 x86_64), even if it's a leaf function. We don't want the
2716 function to be regarded as non-leaf because TLS calls need not
2717 affect register allocation. This flag is set when a TLS call
2718 instruction is expanded within a function, and never reset, even
2719 if all such instructions are optimized away. Use the
2720 ix86_current_function_calls_tls_descriptor macro for a better
2721 approximation. */
3452586b
RH
2722 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2723
2724 /* If true, the current function has a STATIC_CHAIN is placed on the
2725 stack below the return address. */
2726 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2727
529a6471
JJ
2728 /* If true, it is safe to not save/restore DRAP register. */
2729 BOOL_BITFIELD no_drap_save_restore : 1;
2730
f8071c05
L
2731 /* Function type. */
2732 ENUM_BITFIELD(function_type) func_type : 2;
2733
da99fd4a
L
2734 /* How to generate indirec branch. */
2735 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2736
2737 /* If true, the current function has local indirect jumps, like
2738 "indirect_jump" or "tablejump". */
2739 BOOL_BITFIELD has_local_indirect_jump : 1;
2740
45e14019
L
2741 /* How to generate function return. */
2742 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2743
f8071c05
L
2744 /* If true, the current function is a function specified with
2745 the "interrupt" or "no_caller_saved_registers" attribute. */
2746 BOOL_BITFIELD no_caller_saved_registers : 1;
2747
a0ff7835
L
2748 /* If true, there is register available for argument passing. This
2749 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2750 if there is scratch register available for indirect sibcall. In
2751 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2752 pass arguments and can be used for indirect sibcall. */
2753 BOOL_BITFIELD arg_reg_available : 1;
2754
d6d4d770 2755 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2756 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2757 BOOL_BITFIELD call_ms2sysv : 1;
2758
2759 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2760 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2761 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2762
d6d4d770
DS
2763 /* This is the number of extra registers saved by stub (valid range is
2764 0-6). Each additional register is only saved/restored by the stubs
2765 if all successive ones are. (Will always be zero when using a hard
2766 frame pointer.) */
2767 unsigned int call_ms2sysv_extra_regs:3;
2768
35c95658
L
2769 /* Nonzero if the function places outgoing arguments on stack. */
2770 BOOL_BITFIELD outgoing_args_on_stack : 1;
2771
708c728d
L
2772 /* If true, ENDBR is queued at function entrance. */
2773 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2774
c2080a1f
L
2775 /* True if the function needs a stack frame. */
2776 BOOL_BITFIELD stack_frame_required : 1;
2777
cd3410cc
L
2778 /* The largest alignment, in bytes, of stack slot actually used. */
2779 unsigned int max_used_stack_alignment;
2780
ec7ded37
RH
2781 /* During prologue/epilogue generation, the current frame state.
2782 Otherwise, the frame state at the end of the prologue. */
2783 struct machine_frame_state fs;
f81c9774
RH
2784
2785 /* During SEH output, this is non-null. */
2786 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2787};
2bf6d935
ML
2788
2789extern GTY(()) tree sysv_va_list_type_node;
2790extern GTY(()) tree ms_va_list_type_node;
cd9c1ca8 2791#endif
fa1a0d02
JH
2792
2793#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2794#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2795#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2796#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2797#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2798#define ix86_tls_descriptor_calls_expanded_in_cfun \
2799 (cfun->machine->tls_descriptor_call_expanded_p)
2800/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2801 calls are optimized away, we try to detect cases in which it was
2802 optimized away. Since such instructions (use (reg REG_SP)), we can
2803 verify whether there's any such instruction live by testing that
2804 REG_SP is live. */
2805#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2806 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2807#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2808#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2809
1bc7c5b6
ZW
2810/* Control behavior of x86_file_start. */
2811#define X86_FILE_START_VERSION_DIRECTIVE false
2812#define X86_FILE_START_FLTUSED false
2813
7dcbf659
JH
2814/* Flag to mark data that is in the large address area. */
2815#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2816#define SYMBOL_REF_FAR_ADDR_P(X) \
2817 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2818
2819/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2820 have defined always, to avoid ifdefing. */
2821#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2822#define SYMBOL_REF_DLLIMPORT_P(X) \
2823 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2824
2825#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2826#define SYMBOL_REF_DLLEXPORT_P(X) \
2827 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2828
82c0e1a0
KT
2829#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2830#define SYMBOL_REF_STUBVAR_P(X) \
2831 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2832
7942e47e
RY
2833extern void debug_ready_dispatch (void);
2834extern void debug_dispatch_window (int);
2835
91afcfa3
QN
2836/* The value at zero is only defined for the BMI instructions
2837 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2838#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2839 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2840#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2841 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2842
2843
b8ce4e94
KT
2844/* Flags returned by ix86_get_callcvt (). */
2845#define IX86_CALLCVT_CDECL 0x1
2846#define IX86_CALLCVT_STDCALL 0x2
2847#define IX86_CALLCVT_FASTCALL 0x4
2848#define IX86_CALLCVT_THISCALL 0x8
2849#define IX86_CALLCVT_REGPARM 0x10
2850#define IX86_CALLCVT_SSEREGPARM 0x20
2851
2852#define IX86_BASE_CALLCVT(FLAGS) \
2853 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2854 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2855
b86b9f44
MM
2856#define RECIP_MASK_NONE 0x00
2857#define RECIP_MASK_DIV 0x01
2858#define RECIP_MASK_SQRT 0x02
2859#define RECIP_MASK_VEC_DIV 0x04
2860#define RECIP_MASK_VEC_SQRT 0x08
2861#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2862 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2863#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2864
2865#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2866#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2867#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2868#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2869
ab2c4ec8
SS
2870/* Use 128-bit AVX instructions in the auto-vectorizer. */
2871#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2872/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2873#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2874 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2875
c2c601b2
L
2876#define TARGET_INDIRECT_BRANCH_REGISTER \
2877 (ix86_indirect_branch_register \
2878 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2879
5dcfdccd
KY
2880#define IX86_HLE_ACQUIRE (1 << 16)
2881#define IX86_HLE_RELEASE (1 << 17)
2882
e83b8e2e
JJ
2883/* For switching between functions with different target attributes. */
2884#define SWITCHABLE_TARGET 1
2885
44d0de8d
UB
2886#define TARGET_SUPPORTS_WIDE_INT 1
2887
2bf6d935
ML
2888#if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2889extern enum attr_cpu ix86_schedule;
2890
2891#define NUM_X86_64_MS_CLOBBERED_REGS 12
2892#endif
2893
c98f8742
JVA
2894/*
2895Local variables:
2896version-control: t
2897End:
2898*/