]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
i386.md: Add missing gen_sse2_cvtdq2p to convert splitter.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2f83c7d6
NC
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
49#define TARGET_AVX OPTION_ISA_AVX
50#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 51#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
52#define TARGET_SSE5 OPTION_ISA_SSE5
53#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
54#define TARGET_ABM OPTION_ISA_ABM
55#define TARGET_POPCNT OPTION_ISA_POPCNT
56#define TARGET_SAHF OPTION_ISA_SAHF
57#define TARGET_AES OPTION_ISA_AES
58#define TARGET_PCLMUL OPTION_ISA_PCLMUL
59#define TARGET_CMPXCHG16B OPTION_ISA_CX16
60
04e1d06b
MM
61
62/* SSE5 and SSE4.1 define the same round instructions */
63#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
64#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 65
26b5109f
RS
66#include "config/vxworks-dummy.h"
67
8c996513
JH
68/* Algorithm to expand string function with. */
69enum stringop_alg
70{
71 no_stringop,
72 libcall,
73 rep_prefix_1_byte,
74 rep_prefix_4_byte,
75 rep_prefix_8_byte,
76 loop_1_byte,
77 loop,
78 unrolled_loop
79};
ccf8e764 80
8c996513 81#define NAX_STRINGOP_ALGS 4
ccf8e764 82
8c996513
JH
83/* Specify what algorithm to use for stringops on known size.
84 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
85 known at compile time or estimated via feedback, the SIZE array
86 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 87 means infinity). Corresponding ALG is used then.
8c996513 88 For example initializer:
4f3f76e6 89 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 90 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 91 be used otherwise. */
8c996513
JH
92struct stringop_algs
93{
94 const enum stringop_alg unknown_size;
95 const struct stringop_strategy {
96 const int max;
97 const enum stringop_alg alg;
98 } size [NAX_STRINGOP_ALGS];
99};
100
d4ba09c0
SC
101/* Define the specific costs for a given cpu */
102
103struct processor_costs {
8b60264b
KG
104 const int add; /* cost of an add instruction */
105 const int lea; /* cost of a lea instruction */
106 const int shift_var; /* variable shift costs */
107 const int shift_const; /* constant shift costs */
f676971a 108 const int mult_init[5]; /* cost of starting a multiply
4977bab6 109 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 110 const int mult_bit; /* cost of multiply per each bit set */
f676971a 111 const int divide[5]; /* cost of a divide/mod
4977bab6 112 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
113 int movsx; /* The cost of movsx operation. */
114 int movzx; /* The cost of movzx operation. */
8b60264b
KG
115 const int large_insn; /* insns larger than this cost more */
116 const int move_ratio; /* The threshold of number of scalar
ac775968 117 memory-to-memory move insns. */
8b60264b
KG
118 const int movzbl_load; /* cost of loading using movzbl */
119 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
120 in QImode, HImode and SImode relative
121 to reg-reg move (2). */
8b60264b 122 const int int_store[3]; /* cost of storing integer register
96e7ae40 123 in QImode, HImode and SImode */
8b60264b
KG
124 const int fp_move; /* cost of reg,reg fld/fst */
125 const int fp_load[3]; /* cost of loading FP register
96e7ae40 126 in SFmode, DFmode and XFmode */
8b60264b 127 const int fp_store[3]; /* cost of storing FP register
96e7ae40 128 in SFmode, DFmode and XFmode */
8b60264b
KG
129 const int mmx_move; /* cost of moving MMX register. */
130 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 131 in SImode and DImode */
8b60264b 132 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 133 in SImode and DImode */
8b60264b
KG
134 const int sse_move; /* cost of moving SSE register. */
135 const int sse_load[3]; /* cost of loading SSE register
fa79946e 136 in SImode, DImode and TImode*/
8b60264b 137 const int sse_store[3]; /* cost of storing SSE register
fa79946e 138 in SImode, DImode and TImode*/
8b60264b 139 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 140 integer and vice versa. */
46cb0441
ZD
141 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
142 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
143 const int prefetch_block; /* bytes moved to cache for prefetch. */
144 const int simultaneous_prefetches; /* number of parallel prefetch
145 operations. */
4977bab6 146 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
147 const int fadd; /* cost of FADD and FSUB instructions. */
148 const int fmul; /* cost of FMUL instruction. */
149 const int fdiv; /* cost of FDIV instruction. */
150 const int fabs; /* cost of FABS instruction. */
151 const int fchs; /* cost of FCHS instruction. */
152 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
153 /* Specify what algorithm
154 to use for stringops on unknown size. */
155 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
156 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
157 load and store. */
158 const int scalar_load_cost; /* Cost of scalar load. */
159 const int scalar_store_cost; /* Cost of scalar store. */
160 const int vec_stmt_cost; /* Cost of any vector operation, excluding
161 load, store, vector-to-scalar and
162 scalar-to-vector operation. */
163 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
164 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 165 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
166 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
167 const int vec_store_cost; /* Cost of vector store. */
168 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
169 cost model. */
170 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
171 vectorizer cost model. */
d4ba09c0
SC
172};
173
8b60264b 174extern const struct processor_costs *ix86_cost;
b2077fd2
JH
175extern const struct processor_costs ix86_size_cost;
176
177#define ix86_cur_cost() \
178 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 179
c98f8742
JVA
180/* Macros used in the machine description to test the flags. */
181
ddd5a7c1 182/* configure can arrange to make this 2, to force a 486. */
e075ae69 183
35b528be 184#ifndef TARGET_CPU_DEFAULT
d326eaf0 185#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 186#endif
35b528be 187
004d3859
GK
188#ifndef TARGET_FPMATH_DEFAULT
189#define TARGET_FPMATH_DEFAULT \
190 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
191#endif
192
6ac49599 193#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 194
5791cc29
JT
195/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
196 compile-time constant. */
197#ifdef IN_LIBGCC2
6ac49599 198#undef TARGET_64BIT
5791cc29
JT
199#ifdef __x86_64__
200#define TARGET_64BIT 1
201#else
202#define TARGET_64BIT 0
203#endif
204#else
6ac49599
RS
205#ifndef TARGET_BI_ARCH
206#undef TARGET_64BIT
67adf6a9 207#if TARGET_64BIT_DEFAULT
0c2dc519
JH
208#define TARGET_64BIT 1
209#else
210#define TARGET_64BIT 0
211#endif
212#endif
5791cc29 213#endif
25f94bb5 214
750054a2
CT
215#define HAS_LONG_COND_BRANCH 1
216#define HAS_LONG_UNCOND_BRANCH 1
217
9e555526
RH
218#define TARGET_386 (ix86_tune == PROCESSOR_I386)
219#define TARGET_486 (ix86_tune == PROCESSOR_I486)
220#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
221#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 222#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
223#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
224#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
225#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
226#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 227#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 228#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 229#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
230#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
231#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
232#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 233#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 234
80fd744f
RH
235/* Feature tests against the various tunings. */
236enum ix86_tune_indices {
237 X86_TUNE_USE_LEAVE,
238 X86_TUNE_PUSH_MEMORY,
239 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
240 X86_TUNE_UNROLL_STRLEN,
241 X86_TUNE_DEEP_BRANCH_PREDICTION,
242 X86_TUNE_BRANCH_PREDICTION_HINTS,
243 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 244 X86_TUNE_USE_SAHF,
80fd744f
RH
245 X86_TUNE_MOVX,
246 X86_TUNE_PARTIAL_REG_STALL,
247 X86_TUNE_PARTIAL_FLAG_REG_STALL,
248 X86_TUNE_USE_HIMODE_FIOP,
249 X86_TUNE_USE_SIMODE_FIOP,
250 X86_TUNE_USE_MOV0,
251 X86_TUNE_USE_CLTD,
252 X86_TUNE_USE_XCHGB,
253 X86_TUNE_SPLIT_LONG_MOVES,
254 X86_TUNE_READ_MODIFY_WRITE,
255 X86_TUNE_READ_MODIFY,
256 X86_TUNE_PROMOTE_QIMODE,
257 X86_TUNE_FAST_PREFIX,
258 X86_TUNE_SINGLE_STRINGOP,
259 X86_TUNE_QIMODE_MATH,
260 X86_TUNE_HIMODE_MATH,
261 X86_TUNE_PROMOTE_QI_REGS,
262 X86_TUNE_PROMOTE_HI_REGS,
263 X86_TUNE_ADD_ESP_4,
264 X86_TUNE_ADD_ESP_8,
265 X86_TUNE_SUB_ESP_4,
266 X86_TUNE_SUB_ESP_8,
267 X86_TUNE_INTEGER_DFMODE_MOVES,
268 X86_TUNE_PARTIAL_REG_DEPENDENCY,
269 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
270 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
271 X86_TUNE_SSE_SPLIT_REGS,
272 X86_TUNE_SSE_TYPELESS_STORES,
273 X86_TUNE_SSE_LOAD0_BY_PXOR,
274 X86_TUNE_MEMORY_MISMATCH_STALL,
275 X86_TUNE_PROLOGUE_USING_MOVE,
276 X86_TUNE_EPILOGUE_USING_MOVE,
277 X86_TUNE_SHIFT1,
278 X86_TUNE_USE_FFREEP,
279 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 280 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
281 X86_TUNE_FOUR_JUMP_LIMIT,
282 X86_TUNE_SCHEDULE,
283 X86_TUNE_USE_BT,
284 X86_TUNE_USE_INCDEC,
285 X86_TUNE_PAD_RETURNS,
286 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
287 X86_TUNE_SHORTEN_X87_SSE,
288 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 289 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
290 X86_TUNE_SLOW_IMUL_IMM32_MEM,
291 X86_TUNE_SLOW_IMUL_IMM8,
292 X86_TUNE_MOVE_M1_VIA_OR,
293 X86_TUNE_NOT_UNPAIRABLE,
294 X86_TUNE_NOT_VECTORMODE,
4e9d897d 295 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 296 X86_TUNE_FUSE_CMP_AND_BRANCH,
80fd744f
RH
297
298 X86_TUNE_LAST
299};
300
ab442df7 301extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
302
303#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
304#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
305#define TARGET_ZERO_EXTEND_WITH_AND \
306 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
307#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
308#define TARGET_DEEP_BRANCH_PREDICTION \
309 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
310#define TARGET_BRANCH_PREDICTION_HINTS \
311 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
312#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
313#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
314#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
315#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
316#define TARGET_PARTIAL_FLAG_REG_STALL \
317 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
318#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
319#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
320#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
321#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
322#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
323#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
324#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
325#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
326#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
327#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
328#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
329#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
330#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
331#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
332#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
333#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
334#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
335#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
336#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
337#define TARGET_INTEGER_DFMODE_MOVES \
338 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
339#define TARGET_PARTIAL_REG_DEPENDENCY \
340 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
341#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
342 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
343#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
344 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
345#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
346#define TARGET_SSE_TYPELESS_STORES \
347 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
348#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
349#define TARGET_MEMORY_MISMATCH_STALL \
350 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
351#define TARGET_PROLOGUE_USING_MOVE \
352 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
353#define TARGET_EPILOGUE_USING_MOVE \
354 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
355#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
356#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
357#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
358#define TARGET_INTER_UNIT_CONVERSIONS\
359 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
360#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
361#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
362#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
363#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
364#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
365#define TARGET_EXT_80387_CONSTANTS \
366 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
367#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
368#define TARGET_AVOID_VECTOR_DECODE \
369 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
370#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
371 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
372#define TARGET_SLOW_IMUL_IMM32_MEM \
373 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
374#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
375#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
376#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
377#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
354f84af
UB
378#define TARGET_USE_VECTOR_CONVERTS \
379 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
380#define TARGET_FUSE_CMP_AND_BRANCH \
381 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
80fd744f
RH
382
383/* Feature tests against the various architecture variations. */
384enum ix86_arch_indices {
385 X86_ARCH_CMOVE, /* || TARGET_SSE */
386 X86_ARCH_CMPXCHG,
387 X86_ARCH_CMPXCHG8B,
388 X86_ARCH_XADD,
389 X86_ARCH_BSWAP,
390
391 X86_ARCH_LAST
392};
4f3f76e6 393
ab442df7 394extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
395
396#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
397#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
398#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
399#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
400#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
401
402#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
403
404extern int x86_prefetch_sse;
0a1c5e55 405
80fd744f
RH
406#define TARGET_PREFETCH_SSE x86_prefetch_sse
407
80fd744f
RH
408#define ASSEMBLER_DIALECT (ix86_asm_dialect)
409
410#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
411#define TARGET_MIX_SSE_I387 \
412 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
413
414#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
415#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
416#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
417#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 418
0a1c5e55
UB
419extern int ix86_isa_flags;
420
67adf6a9
RH
421#ifndef TARGET_64BIT_DEFAULT
422#define TARGET_64BIT_DEFAULT 0
25f94bb5 423#endif
74dc3e94
RH
424#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
425#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
426#endif
25f94bb5 427
79f5e442
ZD
428/* Fence to use after loop using storent. */
429
430extern tree x86_mfence;
431#define FENCE_FOLLOWING_MOVNT x86_mfence
432
0ed4a390
JL
433/* Once GDB has been enhanced to deal with functions without frame
434 pointers, we can change this to allow for elimination of
435 the frame pointer in leaf functions. */
436#define TARGET_DEFAULT 0
67adf6a9 437
0a1c5e55
UB
438/* Extra bits to force. */
439#define TARGET_SUBTARGET_DEFAULT 0
440#define TARGET_SUBTARGET_ISA_DEFAULT 0
441
442/* Extra bits to force on w/ 32-bit mode. */
443#define TARGET_SUBTARGET32_DEFAULT 0
444#define TARGET_SUBTARGET32_ISA_DEFAULT 0
445
ccf8e764
RH
446/* Extra bits to force on w/ 64-bit mode. */
447#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 448#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 449
b069de3b
SS
450/* This is not really a target flag, but is done this way so that
451 it's analogous to similar code for Mach-O on PowerPC. darwin.h
452 redefines this to 1. */
453#define TARGET_MACHO 0
454
ccf8e764 455/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
456#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
457
458/* Available call abi. */
35cbb299 459enum calling_abi
7c800926
KT
460{
461 SYSV_ABI = 0,
462 MS_ABI = 1
463};
464
465/* The default abi form used by target. */
466#define DEFAULT_ABI SYSV_ABI
ccf8e764 467
cc69336f
RH
468/* Subtargets may reset this to 1 in order to enable 96-bit long double
469 with the rounding mode forced to 53 bits. */
470#define TARGET_96_ROUND_53_LONG_DOUBLE 0
471
f5316dfe
MM
472/* Sometimes certain combinations of command options do not make
473 sense on a particular target machine. You can define a macro
474 `OVERRIDE_OPTIONS' to take account of this. This macro, if
475 defined, is executed once just after all the command options have
476 been parsed.
477
478 Don't use this macro to turn on various extra optimizations for
479 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
480
ab442df7 481#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 482
d4ba09c0 483/* Define this to change the optimizations performed by default. */
d9a5f180
GS
484#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
485 optimization_options ((LEVEL), (SIZE))
d4ba09c0 486
682cd442
GK
487/* -march=native handling only makes sense with compiler running on
488 an x86 or x86_64 chip. If changing this condition, also change
489 the condition in driver-i386.c. */
490#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
491/* In driver-i386.c. */
492extern const char *host_detect_local_cpu (int argc, const char **argv);
493#define EXTRA_SPEC_FUNCTIONS \
494 { "local_cpu_detect", host_detect_local_cpu },
682cd442 495#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
496#endif
497
8981c15b
JM
498#if TARGET_64BIT_DEFAULT
499#define OPT_ARCH64 "!m32"
500#define OPT_ARCH32 "m32"
501#else
502#define OPT_ARCH64 "m64"
503#define OPT_ARCH32 "!m64"
504#endif
505
1cba2b96
EC
506/* Support for configure-time defaults of some command line options.
507 The order here is important so that -march doesn't squash the
508 tune or cpu values. */
ce998900 509#define OPTION_DEFAULT_SPECS \
da2d4c01 510 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
511 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
512 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
514 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
515 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
516 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
517 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
518 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 519
241e1a89
SC
520/* Specs for the compiler proper */
521
628714d8 522#ifndef CC1_CPU_SPEC
fa959ce4 523#define CC1_CPU_SPEC_1 "\
9d913bbf 524%{mcpu=*:-mtune=%* \
d347d4c7 525%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 526%<mcpu=* \
c93e80a5
JH
527%{mintel-syntax:-masm=intel \
528%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
529%{mno-intel-syntax:-masm=att \
530%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 531
682cd442 532#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
533#define CC1_CPU_SPEC CC1_CPU_SPEC_1
534#else
535#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
536"%{march=native:%<march=native %:local_cpu_detect(arch) \
537 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
538%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
539#endif
241e1a89 540#endif
c98f8742 541\f
30efe578 542/* Target CPU builtins. */
ab442df7
MM
543#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
544
545/* Target Pragmas. */
546#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 547
c2f17e19
UB
548enum target_cpu_default
549{
550 TARGET_CPU_DEFAULT_generic = 0,
551
552 TARGET_CPU_DEFAULT_i386,
553 TARGET_CPU_DEFAULT_i486,
554 TARGET_CPU_DEFAULT_pentium,
555 TARGET_CPU_DEFAULT_pentium_mmx,
556 TARGET_CPU_DEFAULT_pentiumpro,
557 TARGET_CPU_DEFAULT_pentium2,
558 TARGET_CPU_DEFAULT_pentium3,
559 TARGET_CPU_DEFAULT_pentium4,
560 TARGET_CPU_DEFAULT_pentium_m,
561 TARGET_CPU_DEFAULT_prescott,
562 TARGET_CPU_DEFAULT_nocona,
563 TARGET_CPU_DEFAULT_core2,
564
565 TARGET_CPU_DEFAULT_geode,
566 TARGET_CPU_DEFAULT_k6,
567 TARGET_CPU_DEFAULT_k6_2,
568 TARGET_CPU_DEFAULT_k6_3,
569 TARGET_CPU_DEFAULT_athlon,
570 TARGET_CPU_DEFAULT_athlon_sse,
571 TARGET_CPU_DEFAULT_k8,
572 TARGET_CPU_DEFAULT_amdfam10,
573
574 TARGET_CPU_DEFAULT_max
575};
0c2dc519 576
628714d8 577#ifndef CC1_SPEC
8015b78d 578#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
579#endif
580
581/* This macro defines names of additional specifications to put in the
582 specs that can be used in various specifications like CC1_SPEC. Its
583 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
584
585 Each subgrouping contains a string constant, that defines the
188fc5b5 586 specification name, and a string constant that used by the GCC driver
bcd86433
SC
587 program.
588
589 Do not define this macro if it does not need to do anything. */
590
591#ifndef SUBTARGET_EXTRA_SPECS
592#define SUBTARGET_EXTRA_SPECS
593#endif
594
595#define EXTRA_SPECS \
628714d8 596 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
597 SUBTARGET_EXTRA_SPECS
598\f
ce998900 599
d57a4b98
RH
600/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
601 FPU, assume that the fpcw is set to extended precision; when using
602 only SSE, rounding is correct; when using both SSE and the FPU,
603 the rounding precision is indeterminate, since either may be chosen
604 apparently at random. */
605#define TARGET_FLT_EVAL_METHOD \
5ccd517a 606 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 607
979c67a5
UB
608/* target machine storage layout */
609
65d9c0ab
JH
610#define SHORT_TYPE_SIZE 16
611#define INT_TYPE_SIZE 32
612#define FLOAT_TYPE_SIZE 32
613#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
614#define DOUBLE_TYPE_SIZE 64
615#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
616#define LONG_DOUBLE_TYPE_SIZE 80
617
618#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 619
67adf6a9 620#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 621#define MAX_BITS_PER_WORD 64
0c2dc519
JH
622#else
623#define MAX_BITS_PER_WORD 32
0c2dc519
JH
624#endif
625
c98f8742
JVA
626/* Define this if most significant byte of a word is the lowest numbered. */
627/* That is true on the 80386. */
628
629#define BITS_BIG_ENDIAN 0
630
631/* Define this if most significant byte of a word is the lowest numbered. */
632/* That is not true on the 80386. */
633#define BYTES_BIG_ENDIAN 0
634
635/* Define this if most significant word of a multiword number is the lowest
636 numbered. */
637/* Not true for 80386 */
638#define WORDS_BIG_ENDIAN 0
639
c98f8742 640/* Width of a word, in units (bytes). */
4ae8027b 641#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
642#ifdef IN_LIBGCC2
643#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
644#else
645#define MIN_UNITS_PER_WORD 4
646#endif
c98f8742 647
c98f8742 648/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 649#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 650
e075ae69 651/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b
UB
652#define STACK_BOUNDARY \
653 (TARGET_64BIT && DEFAULT_ABI == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 654
2e3f842f
L
655/* Stack boundary of the main function guaranteed by OS. */
656#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
657
de1132d1
L
658/* Minimum stack boundary. */
659#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 660
d1f87653 661/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 662 aligned; the compiler cannot rely on having this alignment. */
e075ae69 663#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 664
de1132d1 665/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
666 both 32bit and 64bit, to support codes that need 128 bit stack
667 alignment for SSE instructions, but can't realign the stack. */
668#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
669
670/* 1 if -mstackrealign should be turned on by default. It will
671 generate an alternate prologue and epilogue that realigns the
672 runtime stack if nessary. This supports mixing codes that keep a
673 4-byte aligned stack, as specified by i386 psABI, with codes that
674 need a 16-byte aligned stack, as required by SSE instructions. If
675 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
676 128, stacks for all functions may be realigned. */
677#define STACK_REALIGN_DEFAULT 0
678
679/* Boundary (in *bits*) on which the incoming stack is aligned. */
680#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 681
ebff937c
SH
682/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
683 mandatory for the 64-bit ABI, and may or may not be true for other
684 operating systems. */
685#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
686
f963b5d9
RS
687/* Minimum allocation boundary for the code of a function. */
688#define FUNCTION_BOUNDARY 8
689
690/* C++ stores the virtual bit in the lowest bit of function pointers. */
691#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 692
892a2d68 693/* Alignment of field after `int : 0' in a structure. */
c98f8742 694
65d9c0ab 695#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
696
697/* Minimum size in bits of the largest boundary to which any
698 and all fundamental data types supported by the hardware
699 might need to be aligned. No data type wants to be aligned
17f24ff0 700 rounder than this.
fce5a9f2 701
d1f87653 702 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
703 and Pentium Pro XFmode values at 128 bit boundaries. */
704
95879c72 705#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
17f24ff0 706
2e3f842f
L
707/* Maximum stack alignment. */
708#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
709
822eda12 710/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 711#define ALIGN_MODE_128(MODE) \
4501d314 712 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 713
17f24ff0 714/* The published ABIs say that doubles should be aligned on word
d1f87653 715 boundaries, so lower the alignment for structure fields unless
6fc605d8 716 -malign-double is set. */
e932b21b 717
e83f3cff
RH
718/* ??? Blah -- this macro is used directly by libobjc. Since it
719 supports no vector modes, cut out the complexity and fall back
720 on BIGGEST_FIELD_ALIGNMENT. */
721#ifdef IN_TARGET_LIBS
ef49d42e
JH
722#ifdef __x86_64__
723#define BIGGEST_FIELD_ALIGNMENT 128
724#else
e83f3cff 725#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 726#endif
e83f3cff 727#else
e932b21b
JH
728#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
729 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 730#endif
c98f8742 731
e5e8a8bf 732/* If defined, a C expression to compute the alignment given to a
a7180f70 733 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
734 and ALIGN is the alignment that the object would ordinarily have.
735 The value of this macro is used instead of that alignment to align
736 the object.
737
738 If this macro is not defined, then ALIGN is used.
739
740 The typical use of this macro is to increase alignment for string
741 constants to be word aligned so that `strcpy' calls that copy
742 constants can be done inline. */
743
d9a5f180 744#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 745
8a022443
JW
746/* If defined, a C expression to compute the alignment for a static
747 variable. TYPE is the data type, and ALIGN is the alignment that
748 the object would ordinarily have. The value of this macro is used
749 instead of that alignment to align the object.
750
751 If this macro is not defined, then ALIGN is used.
752
753 One use of this macro is to increase alignment of medium-size
754 data to make it all fit in fewer cache lines. Another is to
755 cause character arrays to be word-aligned so that `strcpy' calls
756 that copy constants to character arrays can be done inline. */
757
d9a5f180 758#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
759
760/* If defined, a C expression to compute the alignment for a local
761 variable. TYPE is the data type, and ALIGN is the alignment that
762 the object would ordinarily have. The value of this macro is used
763 instead of that alignment to align the object.
764
765 If this macro is not defined, then ALIGN is used.
766
767 One use of this macro is to increase alignment of medium-size
768 data to make it all fit in fewer cache lines. */
769
76fe54f0
L
770#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
771 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
772
773/* If defined, a C expression to compute the alignment for stack slot.
774 TYPE is the data type, MODE is the widest mode available, and ALIGN
775 is the alignment that the slot would ordinarily have. The value of
776 this macro is used instead of that alignment to align the slot.
777
778 If this macro is not defined, then ALIGN is used when TYPE is NULL,
779 Otherwise, LOCAL_ALIGNMENT will be used.
780
781 One use of this macro is to set alignment of stack slot to the
782 maximum alignment of all possible modes which the slot may have. */
783
784#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
785 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 786
53c17031
JH
787/* If defined, a C expression that gives the alignment boundary, in
788 bits, of an argument with the specified mode and type. If it is
789 not defined, `PARM_BOUNDARY' is used for all arguments. */
790
d9a5f180
GS
791#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
792 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 793
9cd10576 794/* Set this nonzero if move instructions will actually fail to work
c98f8742 795 when given unaligned data. */
b4ac57ab 796#define STRICT_ALIGNMENT 0
c98f8742
JVA
797
798/* If bit field type is int, don't let it cross an int,
799 and give entire struct the alignment of an int. */
43a88a8c 800/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 801#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
802\f
803/* Standard register usage. */
804
805/* This processor has special stack-like registers. See reg-stack.c
892a2d68 806 for details. */
c98f8742
JVA
807
808#define STACK_REGS
ce998900 809
d9a5f180 810#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
811 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
812 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
813 || (MODE) == XFmode)
c98f8742
JVA
814
815/* Number of actual hardware registers.
816 The hardware registers are assigned numbers for the compiler
817 from 0 to just below FIRST_PSEUDO_REGISTER.
818 All registers that the compiler knows about must be given numbers,
819 even those that are not normally considered general registers.
820
821 In the 80386 we give the 8 general purpose registers the numbers 0-7.
822 We number the floating point registers 8-15.
823 Note that registers 0-7 can be accessed as a short or int,
824 while only 0-3 may be used with byte `mov' instructions.
825
826 Reg 16 does not correspond to any hardware register, but instead
827 appears in the RTL as an argument pointer prior to reload, and is
828 eliminated during reloading in favor of either the stack or frame
892a2d68 829 pointer. */
c98f8742 830
b0d95de8 831#define FIRST_PSEUDO_REGISTER 53
c98f8742 832
3073d01c
ML
833/* Number of hardware registers that go into the DWARF-2 unwind info.
834 If not defined, equals FIRST_PSEUDO_REGISTER. */
835
836#define DWARF_FRAME_REGISTERS 17
837
c98f8742
JVA
838/* 1 for registers that have pervasive standard uses
839 and are not available for the register allocator.
3f3f2124 840 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 841
3a4416fb
RS
842 The value is zero if the register is not fixed on either 32 or
843 64 bit targets, one if the register if fixed on both 32 and 64
844 bit targets, two if it is only fixed on 32bit targets and three
845 if its only fixed on 64bit targets.
846 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 847 */
a7180f70
BS
848#define FIXED_REGISTERS \
849/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 850{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
851/*arg,flags,fpsr,fpcr,frame*/ \
852 1, 1, 1, 1, 1, \
a7180f70
BS
853/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
854 0, 0, 0, 0, 0, 0, 0, 0, \
855/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
856 0, 0, 0, 0, 0, 0, 0, 0, \
857/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 858 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 859/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 860 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 861
c98f8742
JVA
862
863/* 1 for registers not available across function calls.
864 These must include the FIXED_REGISTERS and also any
865 registers that can be used without being saved.
866 The latter must include the registers where values are returned
867 and the register where structure-value addresses are passed.
fce5a9f2
EC
868 Aside from that, you can include as many other registers as you like.
869
9d72d996
JJ
870 The value is zero if the register is not call used on either 32 or
871 64 bit targets, one if the register if call used on both 32 and 64
872 bit targets, two if it is only call used on 32bit targets and three
873 if its only call used on 64bit targets.
3a4416fb 874 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 875*/
a7180f70
BS
876#define CALL_USED_REGISTERS \
877/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 878{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
879/*arg,flags,fpsr,fpcr,frame*/ \
880 1, 1, 1, 1, 1, \
a7180f70 881/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 882 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 883/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 884 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 885/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 886 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 887/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 888 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 889
3b3c6a3f
MM
890/* Order in which to allocate registers. Each register must be
891 listed once, even those in FIXED_REGISTERS. List frame pointer
892 late and fixed registers last. Note that, in general, we prefer
893 registers listed in CALL_USED_REGISTERS, keeping the others
894 available for storage of persistent values.
895
162f023b
JH
896 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
897 so this is just empty initializer for array. */
3b3c6a3f 898
162f023b
JH
899#define REG_ALLOC_ORDER \
900{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
901 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
902 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 903 48, 49, 50, 51, 52 }
3b3c6a3f 904
162f023b
JH
905/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
906 to be rearranged based on a particular function. When using sse math,
03c259ad 907 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 908
162f023b 909#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 910
f5316dfe 911
7c800926
KT
912#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
913
c98f8742 914/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 915#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 916do { \
3f3f2124 917 int i; \
b0fede98 918 unsigned int j; \
3f3f2124
JH
919 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
920 { \
3a4416fb
RS
921 if (fixed_regs[i] > 1) \
922 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
923 if (call_used_regs[i] > 1) \
924 call_used_regs[i] = (call_used_regs[i] \
925 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 926 } \
b0fede98 927 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 928 if (j != INVALID_REGNUM) \
a7180f70 929 { \
7706ca5d
L
930 fixed_regs[j] = 1; \
931 call_used_regs[j] = 1; \
a7180f70
BS
932 } \
933 if (! TARGET_MMX) \
934 { \
935 int i; \
936 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
937 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 938 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
939 } \
940 if (! TARGET_SSE) \
941 { \
942 int i; \
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
944 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 945 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
946 } \
947 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
948 { \
949 int i; \
950 HARD_REG_SET x; \
951 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
953 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
954 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
955 } \
956 if (! TARGET_64BIT) \
957 { \
958 int i; \
959 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
960 reg_names[i] = ""; \
961 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
962 reg_names[i] = ""; \
a7180f70 963 } \
7c800926 964 if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) \
d29899ba
KT
965 { \
966 call_used_regs[4 /*RSI*/] = 0; \
967 call_used_regs[5 /*RDI*/] = 0; \
968 } \
d9a5f180 969 } while (0)
c98f8742
JVA
970
971/* Return number of consecutive hard regs needed starting at reg REGNO
972 to hold something of mode MODE.
973 This is ordinarily the length in words of a value of mode MODE
974 but can be less for certain modes in special long registers.
975
fce5a9f2 976 Actually there are no two word move instructions for consecutive
c98f8742
JVA
977 registers. And only registers 0-3 may have mov byte instructions
978 applied to them.
979 */
980
ce998900 981#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
982 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
983 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 984 : ((MODE) == XFmode \
92d0fb09 985 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 986 : (MODE) == XCmode \
92d0fb09 987 ? (TARGET_64BIT ? 4 : 6) \
2b589241 988 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 989
8521c414
JM
990#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
991 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
992 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
993 ? 0 \
994 : ((MODE) == XFmode || (MODE) == XCmode)) \
995 : 0)
996
997#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
998
95879c72
L
999#define VALID_AVX256_REG_MODE(MODE) \
1000 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1001 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1002
ce998900
UB
1003#define VALID_SSE2_REG_MODE(MODE) \
1004 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1005 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1006
d9a5f180 1007#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1008 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1009 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1010
47f339cf 1011#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1012 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1013
d9a5f180 1014#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1015 ((MODE == V1DImode) || (MODE) == DImode \
1016 || (MODE) == V2SImode || (MODE) == SImode \
1017 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1018
accde4cf 1019/* ??? No autovectorization into MMX or 3DNOW until we can reliably
95879c72
L
1020 place emms and femms instructions.
1021 FIXME: AVX has 32byte floating point vector operations and 16byte
1022 integer vector operations. But vectorizer doesn't support
1023 different sizes for integer and floating point vectors. We limit
1024 vector size to 16byte. */
1025#define UNITS_PER_SIMD_WORD(MODE) \
1026 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1027 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
0bf43309 1028
ce998900
UB
1029#define VALID_DFP_MODE_P(MODE) \
1030 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1031
d9a5f180 1032#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1033 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1034 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1035
d9a5f180 1036#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1037 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1038 || (MODE) == DImode \
1039 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1040 || (MODE) == CDImode \
1041 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1042 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1043
822eda12 1044/* Return true for modes passed in SSE registers. */
ce998900
UB
1045#define SSE_REG_MODE_P(MODE) \
1046 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12 1047 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
95879c72
L
1048 || (MODE) == V4SFmode || (MODE) == V4SImode || (MODE) == V32QImode \
1049 || (MODE) == V16HImode || (MODE) == V8SImode || (MODE) == V4DImode \
1050 || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1051
e075ae69 1052/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1053
a946dd00 1054#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1055 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1056
1057/* Value is 1 if it is a good idea to tie two pseudo registers
1058 when one has mode MODE1 and one has mode MODE2.
1059 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1060 for any hard reg, then this must be 0 for correct output. */
1061
c1c5b5e3 1062#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1063
ff25ef99
ZD
1064/* It is possible to write patterns to move flags; but until someone
1065 does it, */
1066#define AVOID_CCMODE_COPIES
c98f8742 1067
e075ae69 1068/* Specify the modes required to caller save a given hard regno.
787dc842 1069 We do this on i386 to prevent flags from being saved at all.
e075ae69 1070
787dc842
JH
1071 Kill any attempts to combine saving of modes. */
1072
d9a5f180
GS
1073#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1074 (CC_REGNO_P (REGNO) ? VOIDmode \
1075 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1076 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180
GS
1077 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1078 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1079 : (MODE))
ce998900 1080
c98f8742
JVA
1081/* Specify the registers used for certain standard purposes.
1082 The values of these macros are register numbers. */
1083
1084/* on the 386 the pc register is %eip, and is not usable as a general
1085 register. The ordinary mov instructions won't work */
1086/* #define PC_REGNUM */
1087
1088/* Register to use for pushing function arguments. */
1089#define STACK_POINTER_REGNUM 7
1090
1091/* Base register for access to local variables of the function. */
564d80f4
JH
1092#define HARD_FRAME_POINTER_REGNUM 6
1093
1094/* Base register for access to local variables of the function. */
b0d95de8 1095#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1096
1097/* First floating point reg */
1098#define FIRST_FLOAT_REG 8
1099
1100/* First & last stack-like regs */
1101#define FIRST_STACK_REG FIRST_FLOAT_REG
1102#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1103
a7180f70
BS
1104#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1105#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1106
a7180f70
BS
1107#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1108#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1109
3f3f2124
JH
1110#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1111#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1112
1113#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1114#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1115
c98f8742
JVA
1116/* Value should be nonzero if functions must have frame pointers.
1117 Zero means the frame pointer need not be set up (and parms
1118 may be accessed via the stack pointer) in functions that seem suitable.
1119 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1120#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1121
aabcd309 1122/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1123 requiring a frame pointer. */
1124#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1125#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1126#endif
1127
1128/* Make sure we can access arbitrary call frames. */
1129#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1130
1131/* Base register for access to arguments of the function. */
1132#define ARG_POINTER_REGNUM 16
1133
d2836273
JH
1134/* Register in which static-chain is passed to a function.
1135 We do use ECX as static chain register for 32 bit ABI. On the
1136 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1137#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1138
1139/* Register to hold the addressing base for position independent
5b43fed1
RH
1140 code access to data items. We don't use PIC pointer for 64bit
1141 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1142 pessimizing code dealing with EBX.
bd09bdeb
RH
1143
1144 To avoid clobbering a call-saved register unnecessarily, we renumber
1145 the pic register when possible. The change is visible after the
1146 prologue has been emitted. */
1147
2e3f842f 1148#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1149
1150#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1151 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1152 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1153 : reload_completed ? REGNO (pic_offset_table_rtx) \
1154 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1155
5fc0e5df
KW
1156#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1157
c51e6d85 1158/* This is overridden by <cygwin.h>. */
5e062767
DS
1159#define MS_AGGREGATE_RETURN 0
1160
61fec9ff
JB
1161/* This is overridden by <netware.h>. */
1162#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1163\f
1164/* Define the classes of registers for register constraints in the
1165 machine description. Also define ranges of constants.
1166
1167 One of the classes must always be named ALL_REGS and include all hard regs.
1168 If there is more than one class, another class must be named NO_REGS
1169 and contain no registers.
1170
1171 The name GENERAL_REGS must be the name of a class (or an alias for
1172 another name such as ALL_REGS). This is the class of registers
1173 that is allowed by "g" or "r" in a register constraint.
1174 Also, registers outside this class are allocated only when
1175 instructions express preferences for them.
1176
1177 The classes must be numbered in nondecreasing order; that is,
1178 a larger-numbered class must never be contained completely
1179 in a smaller-numbered class.
1180
1181 For any two classes, it is very desirable that there be another
ab408a86
JVA
1182 class that represents their union.
1183
1184 It might seem that class BREG is unnecessary, since no useful 386
1185 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1186 and the "b" register constraint is useful in asms for syscalls.
1187
03c259ad 1188 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1189
1190enum reg_class
1191{
1192 NO_REGS,
e075ae69 1193 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1194 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1195 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1196 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1197 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1198 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1199 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1200 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1201 FLOAT_REGS,
06f4e35d 1202 SSE_FIRST_REG,
a7180f70
BS
1203 SSE_REGS,
1204 MMX_REGS,
446988df
JH
1205 FP_TOP_SSE_REGS,
1206 FP_SECOND_SSE_REGS,
1207 FLOAT_SSE_REGS,
1208 FLOAT_INT_REGS,
1209 INT_SSE_REGS,
1210 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1211 ALL_REGS, LIM_REG_CLASSES
1212};
1213
d9a5f180
GS
1214#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1215
1216#define INTEGER_CLASS_P(CLASS) \
1217 reg_class_subset_p ((CLASS), GENERAL_REGS)
1218#define FLOAT_CLASS_P(CLASS) \
1219 reg_class_subset_p ((CLASS), FLOAT_REGS)
1220#define SSE_CLASS_P(CLASS) \
06f4e35d 1221 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1222#define MMX_CLASS_P(CLASS) \
f75959a6 1223 ((CLASS) == MMX_REGS)
d9a5f180
GS
1224#define MAYBE_INTEGER_CLASS_P(CLASS) \
1225 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1226#define MAYBE_FLOAT_CLASS_P(CLASS) \
1227 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1228#define MAYBE_SSE_CLASS_P(CLASS) \
1229 reg_classes_intersect_p (SSE_REGS, (CLASS))
1230#define MAYBE_MMX_CLASS_P(CLASS) \
1231 reg_classes_intersect_p (MMX_REGS, (CLASS))
1232
1233#define Q_CLASS_P(CLASS) \
1234 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1235
43f3a59d 1236/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1237
1238#define REG_CLASS_NAMES \
1239{ "NO_REGS", \
ab408a86 1240 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1241 "SIREG", "DIREG", \
e075ae69
RH
1242 "AD_REGS", \
1243 "Q_REGS", "NON_Q_REGS", \
c98f8742 1244 "INDEX_REGS", \
3f3f2124 1245 "LEGACY_REGS", \
c98f8742
JVA
1246 "GENERAL_REGS", \
1247 "FP_TOP_REG", "FP_SECOND_REG", \
1248 "FLOAT_REGS", \
cb482895 1249 "SSE_FIRST_REG", \
a7180f70
BS
1250 "SSE_REGS", \
1251 "MMX_REGS", \
446988df
JH
1252 "FP_TOP_SSE_REGS", \
1253 "FP_SECOND_SSE_REGS", \
1254 "FLOAT_SSE_REGS", \
8fcaaa80 1255 "FLOAT_INT_REGS", \
446988df
JH
1256 "INT_SSE_REGS", \
1257 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1258 "ALL_REGS" }
1259
1260/* Define which registers fit in which classes.
1261 This is an initializer for a vector of HARD_REG_SET
1262 of length N_REG_CLASSES. */
1263
a7180f70 1264#define REG_CLASS_CONTENTS \
3f3f2124
JH
1265{ { 0x00, 0x0 }, \
1266 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1267 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1268 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1269 { 0x03, 0x0 }, /* AD_REGS */ \
1270 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1271 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1272 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1273 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1274 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1275 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1276 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1277 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1278{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1279{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1280{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1281{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1282{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1283 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1284{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1285{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1286{ 0xffffffff,0x1fffff } \
e075ae69 1287}
c98f8742 1288
058e97ec
VM
1289/* The following macro defines cover classes for Integrated Register
1290 Allocator. Cover classes is a set of non-intersected register
1291 classes covering all hard registers used for register allocation
1292 purpose. Any move between two registers of a cover class should be
1293 cheaper than load or store of the registers. The macro value is
1294 array of register classes with LIM_REG_CLASSES used as the end
1295 marker. */
1296
1297#define IRA_COVER_CLASSES \
1298{ \
1299 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1300}
1301
c98f8742
JVA
1302/* The same information, inverted:
1303 Return the class number of the smallest class containing
1304 reg number REGNO. This could be a conditional expression
1305 or could index an array. */
1306
c98f8742
JVA
1307#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1308
1309/* When defined, the compiler allows registers explicitly used in the
1310 rtl to be used as spill registers but prevents the compiler from
892a2d68 1311 extending the lifetime of these registers. */
c98f8742 1312
2922fe9e 1313#define SMALL_REGISTER_CLASSES 1
c98f8742 1314
fb84c7a0 1315#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1316
d9a5f180 1317#define GENERAL_REGNO_P(N) \
fb84c7a0 1318 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1319
1320#define GENERAL_REG_P(X) \
6189a572 1321 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1322
1323#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1324
fb84c7a0
UB
1325#define REX_INT_REGNO_P(N) \
1326 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1327#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1328
c98f8742 1329#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1330#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1331#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1332#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1333
54a88090 1334#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1335 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1336
fb84c7a0
UB
1337#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1338#define SSE_REGNO_P(N) \
1339 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1340 || REX_SSE_REGNO_P (N))
3f3f2124 1341
4977bab6 1342#define REX_SSE_REGNO_P(N) \
fb84c7a0 1343 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1344
d9a5f180
GS
1345#define SSE_REGNO(N) \
1346 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1347
d9a5f180 1348#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1349 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1350
d6023b50
UB
1351#define SSE_VEC_FLOAT_MODE_P(MODE) \
1352 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1353
95879c72
L
1354#define AVX_FLOAT_MODE_P(MODE) \
1355 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1356
1357#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1358 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1359
1360#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1361 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1362
1363#define AVX_VEC_FLOAT_MODE_P(MODE) \
1364 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1365 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1366
d9a5f180 1367#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1368#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1369
fb84c7a0 1370#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1371#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1372
d9a5f180 1373#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1374
e075ae69
RH
1375#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1376#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1377
c98f8742
JVA
1378/* The class value for index registers, and the one for base regs. */
1379
1380#define INDEX_REG_CLASS INDEX_REGS
1381#define BASE_REG_CLASS GENERAL_REGS
1382
c98f8742 1383/* Place additional restrictions on the register class to use when it
4cbb525c 1384 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1385 register for which class CLASS would ordinarily be used. */
c98f8742 1386
d2836273
JH
1387#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1388 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1389 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1390 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1391 ? Q_REGS : (CLASS))
1392
1393/* Given an rtx X being reloaded into a reg required to be
1394 in class CLASS, return the class of reg to actually use.
1395 In general this is just CLASS; but on some machines
1396 in some cases it is preferable to use a more restrictive class.
1397 On the 80386 series, we prevent floating constants from being
1398 reloaded into floating registers (since no move-insn can do that)
1399 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1400
d398b3b1 1401/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1402 QImode must go into class Q_REGS.
d398b3b1 1403 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1404 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1405
d9a5f180
GS
1406#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1407 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1408
b5c82fa1
PB
1409/* Discourage putting floating-point values in SSE registers unless
1410 SSE math is being used, and likewise for the 387 registers. */
1411
1412#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1413 ix86_preferred_output_reload_class ((X), (CLASS))
1414
85ff473e 1415/* If we are copying between general and FP registers, we need a memory
f84aa48a 1416 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1417#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1418 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1419
c62b3659
UB
1420/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1421 There is no need to emit full 64 bit move on 64 bit targets
1422 for integral modes that can be moved using 32 bit move. */
1423#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1424 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1425 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1426 : MODE)
1427
c98f8742
JVA
1428/* Return the maximum number of consecutive registers
1429 needed to represent mode MODE in a register of class CLASS. */
1430/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1431 except in the FP regs, where a single reg is always enough. */
a7180f70 1432#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1433 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1434 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1435 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1436 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1437
1438/* A C expression whose value is nonzero if pseudos that have been
1439 assigned to registers of class CLASS would likely be spilled
1440 because registers of CLASS are needed for spill registers.
1441
1442 The default value of this macro returns 1 if CLASS has exactly one
1443 register and zero otherwise. On most machines, this default
1444 should be used. Only define this macro to some other expression
1445 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1446 their hard registers were needed for spill registers. If this
f5316dfe
MM
1447 macro returns nonzero for those classes, those pseudos will only
1448 be allocated by `global.c', which knows how to reallocate the
1449 pseudo to another register. If there would not be another
1450 register available for reallocation, you should not change the
1451 definition of this macro since the only effect of such a
1452 definition would be to slow down register allocation. */
1453
1454#define CLASS_LIKELY_SPILLED_P(CLASS) \
1455 (((CLASS) == AREG) \
1456 || ((CLASS) == DREG) \
1457 || ((CLASS) == CREG) \
1458 || ((CLASS) == BREG) \
1459 || ((CLASS) == AD_REGS) \
1460 || ((CLASS) == SIREG) \
b0af5c03
JH
1461 || ((CLASS) == DIREG) \
1462 || ((CLASS) == FP_TOP_REG) \
1463 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1464
1272914c
RH
1465/* Return a class of registers that cannot change FROM mode to TO mode. */
1466
1467#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1468 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1469\f
1470/* Stack layout; function entry, exit and calling. */
1471
1472/* Define this if pushing a word on the stack
1473 makes the stack pointer a smaller address. */
1474#define STACK_GROWS_DOWNWARD
1475
a4d05547 1476/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1477 is at the high-address end of the local variables;
1478 that is, each additional local variable allocated
1479 goes at a more negative offset in the frame. */
f62c8a5c 1480#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1481
1482/* Offset within stack frame to start allocating local variables at.
1483 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1484 first local allocated. Otherwise, it is the offset to the BEGINNING
1485 of the first local allocated. */
1486#define STARTING_FRAME_OFFSET 0
1487
1488/* If we generate an insn to push BYTES bytes,
1489 this says how many the stack pointer really advances by.
6541fe75
JJ
1490 On 386, we have pushw instruction that decrements by exactly 2 no
1491 matter what the position was, there is no pushb.
1492 But as CIE data alignment factor on this arch is -4, we need to make
1493 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1494
d2836273
JH
1495 For 64bit ABI we round up to 8 bytes.
1496 */
c98f8742 1497
d2836273
JH
1498#define PUSH_ROUNDING(BYTES) \
1499 (TARGET_64BIT \
1500 ? (((BYTES) + 7) & (-8)) \
6541fe75 1501 : (((BYTES) + 3) & (-4)))
c98f8742 1502
f73ad30e
JH
1503/* If defined, the maximum amount of space required for outgoing arguments will
1504 be computed and placed into the variable
38173d38 1505 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e
JH
1506 stack for each call; instead, the function prologue should increase the stack
1507 frame size by this amount. */
1508
1509#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1510
1511/* If defined, a C expression whose value is nonzero when we want to use PUSH
1512 instructions to pass outgoing arguments. */
1513
1514#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1515
2da4124d
L
1516/* We want the stack and args grow in opposite directions, even if
1517 PUSH_ARGS is 0. */
1518#define PUSH_ARGS_REVERSED 1
1519
c98f8742
JVA
1520/* Offset of first parameter from the argument pointer register value. */
1521#define FIRST_PARM_OFFSET(FNDECL) 0
1522
a7180f70
BS
1523/* Define this macro if functions should assume that stack space has been
1524 allocated for arguments even when their values are passed in registers.
1525
1526 The value of this macro is the size, in bytes, of the area reserved for
1527 arguments passed in registers for the function represented by FNDECL.
1528
1529 This space can be allocated by the caller, or be a part of the
1530 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1531 which. */
7c800926
KT
1532#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1533
4ae8027b
UB
1534#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1535 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1536
c98f8742
JVA
1537/* Value is the number of bytes of arguments automatically
1538 popped when returning from a subroutine call.
8b109b37 1539 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1540 FUNTYPE is the data type of the function (as a tree),
1541 or for a library call it is an identifier node for the subroutine name.
1542 SIZE is the number of bytes of arguments passed on the stack.
1543
1544 On the 80386, the RTD insn may be used to pop them if the number
1545 of args is fixed, but if the number is variable then the caller
1546 must pop them all. RTD can't be used for library calls now
1547 because the library is compiled with the Unix compiler.
1548 Use of RTD is a selectable option, since it is incompatible with
1549 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1550 the caller must always pop the args.
1551
1552 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1553
d9a5f180
GS
1554#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1555 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1556
4ae8027b 1557#define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
c98f8742
JVA
1558
1559/* Define how to find the value returned by a library function
1560 assuming the value has mode MODE. */
1561
4ae8027b 1562#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1563
e9125c09
TW
1564/* Define the size of the result block used for communication between
1565 untyped_call and untyped_return. The block contains a DImode value
1566 followed by the block used by fnsave and frstor. */
1567
1568#define APPLY_RESULT_SIZE (8+108)
1569
b08de47e 1570/* 1 if N is a possible register number for function argument passing. */
53c17031 1571#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1572
1573/* Define a data type for recording info about an argument list
1574 during the scan of that argument list. This data type should
1575 hold all necessary information about the function itself
1576 and about the args processed so far, enough to enable macros
b08de47e 1577 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1578
e075ae69 1579typedef struct ix86_args {
fa283935 1580 int words; /* # words passed so far */
b08de47e
MM
1581 int nregs; /* # registers available for passing */
1582 int regno; /* next available register number */
9d72d996 1583 int fastcall; /* fastcall calling convention is used */
fa283935 1584 int sse_words; /* # sse words passed so far */
a7180f70 1585 int sse_nregs; /* # sse registers available for passing */
95879c72 1586 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1587 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1588 int warn_mmx; /* True when we want to warn about MMX ABI. */
1589 int sse_regno; /* next available sse register number */
1590 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1591 int mmx_nregs; /* # mmx registers available for passing */
1592 int mmx_regno; /* next available mmx register number */
892a2d68 1593 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1594 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1595 be passed in SSE registers. Otherwise 0. */
7c800926
KT
1596 int call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1597 MS_ABI for ms abi. */
b08de47e 1598} CUMULATIVE_ARGS;
c98f8742
JVA
1599
1600/* Initialize a variable CUM of type CUMULATIVE_ARGS
1601 for a call to a function whose data type is FNTYPE.
b08de47e 1602 For a library call, FNTYPE is 0. */
c98f8742 1603
0f6937fe 1604#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1605 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1606
1607/* Update the data in CUM to advance over an argument
1608 of mode MODE and data type TYPE.
1609 (TYPE is null for libcalls where that information may not be available.) */
1610
d9a5f180
GS
1611#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1612 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1613
1614/* Define where to put the arguments to a function.
1615 Value is zero to push the argument on the stack,
1616 or a hard register in which to store the argument.
1617
1618 MODE is the argument's machine mode.
1619 TYPE is the data type of the argument (as a tree).
1620 This is null for libcalls where that information may
1621 not be available.
1622 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1623 the preceding args and about the function being called.
1624 NAMED is nonzero if this argument is a named parameter
1625 (otherwise it is an extra parameter matching an ellipsis). */
1626
c98f8742 1627#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1628 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1629
a5fe455b
ZW
1630#define TARGET_ASM_FILE_END ix86_file_end
1631#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1632
c98f8742
JVA
1633/* Output assembler code to FILE to increment profiler label # LABELNO
1634 for profiling a function entry. */
1635
a5fa1ecd
JH
1636#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1637
1638#define MCOUNT_NAME "_mcount"
1639
1640#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1641
1642/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1643 the stack pointer does not matter. The value is tested only in
1644 functions that have frame pointers.
1645 No definition is equivalent to always zero. */
fce5a9f2 1646/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1647 we have to restore it ourselves from the frame pointer, in order to
1648 use pop */
1649
1650#define EXIT_IGNORE_STACK 1
1651
c98f8742
JVA
1652/* Output assembler code for a block containing the constant parts
1653 of a trampoline, leaving space for the variable parts. */
1654
a269a03c 1655/* On the 386, the trampoline contains two instructions:
c98f8742 1656 mov #STATIC,ecx
a269a03c
JC
1657 jmp FUNCTION
1658 The trampoline is generated entirely at runtime. The operand of JMP
1659 is the address of FUNCTION relative to the instruction following the
1660 JMP (which is 5 bytes long). */
c98f8742
JVA
1661
1662/* Length in units of the trampoline for entering a nested function. */
1663
39d04363 1664#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1665
1666/* Emit RTL insns to initialize the variable parts of a trampoline.
1667 FNADDR is an RTX for the address of the function's pure code.
1668 CXT is an RTX for the static chain value for the function. */
1669
d9a5f180
GS
1670#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1671 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1672\f
1673/* Definitions for register eliminations.
1674
1675 This is an array of structures. Each structure initializes one pair
1676 of eliminable registers. The "from" register number is given first,
1677 followed by "to". Eliminations of the same "from" register are listed
1678 in order of preference.
1679
afc2cd05
NC
1680 There are two registers that can always be eliminated on the i386.
1681 The frame pointer and the arg pointer can be replaced by either the
1682 hard frame pointer or to the stack pointer, depending upon the
1683 circumstances. The hard frame pointer is not used before reload and
1684 so it is not eligible for elimination. */
c98f8742 1685
564d80f4
JH
1686#define ELIMINABLE_REGS \
1687{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1688 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1689 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1690 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1691
2c5a510c 1692/* Given FROM and TO register numbers, say whether this elimination is
2e3f842f 1693 allowed. */
c98f8742 1694
2e3f842f 1695#define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
c98f8742
JVA
1696
1697/* Define the offset between two registers, one to be eliminated, and the other
1698 its replacement, at the start of a routine. */
1699
d9a5f180
GS
1700#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1701 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1702\f
1703/* Addressing modes, and classification of registers for them. */
1704
c98f8742
JVA
1705/* Macros to check register numbers against specific register classes. */
1706
1707/* These assume that REGNO is a hard or pseudo reg number.
1708 They give nonzero only if REGNO is a hard reg of the suitable class
1709 or a pseudo reg currently allocated to a suitable hard reg.
1710 Since they use reg_renumber, they are safe only once reg_renumber
1711 has been allocated, which happens in local-alloc.c. */
1712
3f3f2124
JH
1713#define REGNO_OK_FOR_INDEX_P(REGNO) \
1714 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1715 || REX_INT_REGNO_P (REGNO) \
1716 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1717 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1718
3f3f2124 1719#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1720 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1721 || (REGNO) == ARG_POINTER_REGNUM \
1722 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1723 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1724
c98f8742
JVA
1725/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1726 and check its validity for a certain class.
1727 We have two alternate definitions for each of them.
1728 The usual definition accepts all pseudo regs; the other rejects
1729 them unless they have been allocated suitable hard regs.
1730 The symbol REG_OK_STRICT causes the latter definition to be used.
1731
1732 Most source files want to accept pseudo regs in the hope that
1733 they will get allocated to the class that the insn wants them to be in.
1734 Source files for reload pass need to be strict.
1735 After reload, it makes no difference, since pseudo regs have
1736 been eliminated by then. */
1737
c98f8742 1738
ff482c8d 1739/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1740#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1741 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1742 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1743 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1744
3b3c6a3f 1745#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1746 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1747 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1748 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1749 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1750
3b3c6a3f
MM
1751/* Strict versions, hard registers only */
1752#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1753#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1754
3b3c6a3f 1755#ifndef REG_OK_STRICT
d9a5f180
GS
1756#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1757#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1758
1759#else
d9a5f180
GS
1760#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1761#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1762#endif
1763
1764/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1765 that is a valid memory address for an instruction.
1766 The MODE argument is the machine mode for the MEM expression
1767 that wants to use this address.
1768
1769 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1770 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1771
1772 See legitimize_pic_address in i386.c for details as to what
1773 constitutes a legitimate address when -fpic is used. */
1774
1775#define MAX_REGS_PER_ADDRESS 2
1776
f996902d 1777#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1778
1779/* Nonzero if the constant value X is a legitimate general operand.
1780 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1781
f996902d 1782#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1783
3b3c6a3f
MM
1784#ifdef REG_OK_STRICT
1785#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1786do { \
1787 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1788 goto ADDR; \
d9a5f180 1789} while (0)
c98f8742 1790
3b3c6a3f
MM
1791#else
1792#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1793do { \
1794 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1795 goto ADDR; \
d9a5f180 1796} while (0)
c98f8742 1797
3b3c6a3f
MM
1798#endif
1799
b949ea8b
JW
1800/* If defined, a C expression to determine the base term of address X.
1801 This macro is used in only one place: `find_base_term' in alias.c.
1802
1803 It is always safe for this macro to not be defined. It exists so
1804 that alias analysis can understand machine-dependent addresses.
1805
1806 The typical use of this macro is to handle addresses containing
1807 a label_ref or symbol_ref within an UNSPEC. */
1808
d9a5f180 1809#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1810
c98f8742
JVA
1811/* Try machine-dependent ways of modifying an illegitimate address
1812 to be legitimate. If we find one, return the new, valid address.
1813 This macro is used in only one place: `memory_address' in explow.c.
1814
1815 OLDX is the address as it was before break_out_memory_refs was called.
1816 In some cases it is useful to look at this to decide what needs to be done.
1817
1818 MODE and WIN are passed so that this macro can use
1819 GO_IF_LEGITIMATE_ADDRESS.
1820
1821 It is always safe for this macro to do nothing. It exists to recognize
1822 opportunities to optimize the output.
1823
1824 For the 80386, we handle X+REG by loading X into a register R and
1825 using R+REG. R will go in a general reg and indexing will be used.
1826 However, if REG is a broken-out memory address or multiplication,
1827 nothing needs to be done because REG can certainly go in a general reg.
1828
1829 When -fpic is used, special handling is needed for symbolic references.
1830 See comments by legitimize_pic_address in i386.c for details. */
1831
3b3c6a3f 1832#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1833do { \
1834 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1835 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1836 goto WIN; \
d9a5f180 1837} while (0)
c98f8742
JVA
1838
1839/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1840 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1841 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1842
f996902d 1843#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1844
1845#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1846 (GET_CODE (X) == SYMBOL_REF \
1847 || GET_CODE (X) == LABEL_REF \
1848 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1849
1850/* Go to LABEL if ADDR (a legitimate address expression)
1851 has an effect that depends on the machine mode it is used for.
1852 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1853 (the amount of decrement or increment being the length of the operand).
1854 These are now caught in recog.c. */
1855#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1856\f
b08de47e
MM
1857/* Max number of args passed in registers. If this is more than 3, we will
1858 have problems with ebx (register #4), since it is a caller save register and
1859 is also used as the pic register in ELF. So for now, don't allow more than
1860 3 registers to be passed in registers. */
1861
7c800926
KT
1862/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1863#define X86_64_REGPARM_MAX 6
1864#define X64_REGPARM_MAX 4
1865#define X86_32_REGPARM_MAX 3
1866
1867#define X86_64_SSE_REGPARM_MAX 8
1868#define X64_SSE_REGPARM_MAX 4
1869#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1870
4ae8027b
UB
1871#define REGPARM_MAX \
1872 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1873 : X86_64_REGPARM_MAX) \
1874 : X86_32_REGPARM_MAX)
d2836273 1875
4ae8027b
UB
1876#define SSE_REGPARM_MAX \
1877 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1878 : X86_64_SSE_REGPARM_MAX) \
1879 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1880
1881#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1882
c98f8742
JVA
1883\f
1884/* Specify the machine mode that this machine uses
1885 for the index in the tablejump instruction. */
dc4d7240
JH
1886#define CASE_VECTOR_MODE \
1887 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1888
c98f8742
JVA
1889/* Define this as 1 if `char' should by default be signed; else as 0. */
1890#define DEFAULT_SIGNED_CHAR 1
1891
1892/* Max number of bytes we can move from memory to memory
1893 in one reasonably fast instruction. */
65d9c0ab
JH
1894#define MOVE_MAX 16
1895
1896/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1897 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1898 number of bytes we can move with a single instruction. */
65d9c0ab 1899#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1900
7e24ffc9 1901/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1902 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1903 Increasing the value will always make code faster, but eventually
1904 incurs high cost in increased code size.
c98f8742 1905
e2e52e1b 1906 If you don't define this, a reasonable default is used. */
c98f8742 1907
e04ad03d 1908#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1909
45d78e7f
JJ
1910/* If a clear memory operation would take CLEAR_RATIO or more simple
1911 move-instruction sequences, we will do a clrmem or libcall instead. */
1912
e04ad03d 1913#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1914
c98f8742
JVA
1915/* Define if shifts truncate the shift count
1916 which implies one can omit a sign-extension or zero-extension
1917 of a shift count. */
892a2d68 1918/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1919
1920/* #define SHIFT_COUNT_TRUNCATED */
1921
1922/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1923 is done just by pretending it is already truncated. */
1924#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1925
d9f32422
JH
1926/* A macro to update M and UNSIGNEDP when an object whose type is
1927 TYPE and which has the specified mode and signedness is to be
1928 stored in a register. This macro is only called when TYPE is a
1929 scalar type.
1930
f710504c 1931 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1932 quantities to SImode. The choice depends on target type. */
1933
1934#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1935do { \
d9f32422
JH
1936 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1937 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1938 (MODE) = SImode; \
1939} while (0)
d9f32422 1940
c98f8742
JVA
1941/* Specify the machine mode that pointers have.
1942 After generation of rtl, the compiler makes no further distinction
1943 between pointers and any other objects of this machine mode. */
65d9c0ab 1944#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1945
1946/* A function address in a call instruction
1947 is a byte address (for indexing purposes)
1948 so give the MEM rtx a byte's mode. */
1949#define FUNCTION_MODE QImode
d4ba09c0 1950\f
96e7ae40
JH
1951/* A C expression for the cost of moving data from a register in class FROM to
1952 one in class TO. The classes are expressed using the enumeration values
1953 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1954 interpreted relative to that.
d4ba09c0 1955
96e7ae40
JH
1956 It is not required that the cost always equal 2 when FROM is the same as TO;
1957 on some machines it is expensive to move between registers if they are not
f84aa48a 1958 general registers. */
d4ba09c0 1959
f84aa48a 1960#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1961 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1962
1963/* A C expression for the cost of moving data of mode M between a
1964 register and memory. A value of 2 is the default; this cost is
1965 relative to those in `REGISTER_MOVE_COST'.
1966
1967 If moving between registers and memory is more expensive than
1968 between two registers, you should define this macro to express the
fa79946e 1969 relative cost. */
d4ba09c0 1970
d9a5f180
GS
1971#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1972 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1973
1974/* A C expression for the cost of a branch instruction. A value of 1
1975 is the default; other values are interpreted relative to that. */
1976
3a4fd356
JH
1977#define BRANCH_COST(speed_p, predictable_p) \
1978 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1979
1980/* Define this macro as a C expression which is nonzero if accessing
1981 less than a word of memory (i.e. a `char' or a `short') is no
1982 faster than accessing a word of memory, i.e., if such access
1983 require more than one instruction or if there is no difference in
1984 cost between byte and (aligned) word loads.
1985
1986 When this macro is not defined, the compiler will access a field by
1987 finding the smallest containing object; when it is defined, a
1988 fullword load will be used if alignment permits. Unless bytes
1989 accesses are faster than word accesses, using word accesses is
1990 preferable since it may eliminate subsequent memory access if
1991 subsequent accesses occur to other fields in the same word of the
1992 structure, but to different bytes. */
1993
1994#define SLOW_BYTE_ACCESS 0
1995
1996/* Nonzero if access to memory by shorts is slow and undesirable. */
1997#define SLOW_SHORT_ACCESS 0
1998
d4ba09c0
SC
1999/* Define this macro to be the value 1 if unaligned accesses have a
2000 cost many times greater than aligned accesses, for example if they
2001 are emulated in a trap handler.
2002
9cd10576
KH
2003 When this macro is nonzero, the compiler will act as if
2004 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2005 moves. This can cause significantly more instructions to be
9cd10576 2006 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2007 accesses only add a cycle or two to the time for a memory access.
2008
2009 If the value of this macro is always zero, it need not be defined. */
2010
e1565e65 2011/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2012
d4ba09c0
SC
2013/* Define this macro if it is as good or better to call a constant
2014 function address than to call an address kept in a register.
2015
2016 Desirable on the 386 because a CALL with a constant address is
2017 faster than one with a register address. */
2018
2019#define NO_FUNCTION_CSE
c98f8742 2020\f
c572e5ba
JVA
2021/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2022 return the mode to be used for the comparison.
2023
2024 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2025 VOIDmode should be used in all other cases.
c572e5ba 2026
16189740 2027 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2028 possible, to allow for more combinations. */
c98f8742 2029
d9a5f180 2030#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2031
9cd10576 2032/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2033 reversed. */
2034
2035#define REVERSIBLE_CC_MODE(MODE) 1
2036
2037/* A C expression whose value is reversed condition code of the CODE for
2038 comparison done in CC_MODE mode. */
3c5cb3e4 2039#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2040
c98f8742
JVA
2041\f
2042/* Control the assembler format that we output, to the extent
2043 this does not vary between assemblers. */
2044
2045/* How to refer to registers in assembler output.
892a2d68 2046 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2047
a7b376ee 2048/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2049 For non floating point regs, the following are the HImode names.
2050
2051 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2052 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2053
a7180f70
BS
2054#define HI_REGISTER_NAMES \
2055{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2056 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2057 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2058 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2059 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2060 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2061 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2062
c98f8742
JVA
2063#define REGISTER_NAMES HI_REGISTER_NAMES
2064
2065/* Table of additional register names to use in user input. */
2066
2067#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2068{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2069 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2070 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2071 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2072 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2073 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2074
2075/* Note we are omitting these since currently I don't know how
2076to get gcc to use these, since they want the same but different
2077number as al, and ax.
2078*/
2079
c98f8742 2080#define QI_REGISTER_NAMES \
3f3f2124 2081{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2082
2083/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2084 of regs 0 through 3. */
c98f8742
JVA
2085
2086#define QI_HIGH_REGISTER_NAMES \
2087{"ah", "dh", "ch", "bh", }
2088
2089/* How to renumber registers for dbx and gdb. */
2090
d9a5f180
GS
2091#define DBX_REGISTER_NUMBER(N) \
2092 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2093
9a82e702
MS
2094extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2095extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2096extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2097
469ac993
JM
2098/* Before the prologue, RA is at 0(%esp). */
2099#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2100 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2101
e414ab29 2102/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2103#define RETURN_ADDR_RTX(COUNT, FRAME) \
2104 ((COUNT) == 0 \
2105 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2106 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2107
892a2d68 2108/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2109#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2110
a6ab3aad 2111/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2112#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2113
1020a5ab
RH
2114/* Describe how we implement __builtin_eh_return. */
2115#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2116#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2117
ad919812 2118
e4c4ebeb
RH
2119/* Select a format to encode pointers in exception handling data. CODE
2120 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2121 true if the symbol may be affected by dynamic relocations.
2122
2123 ??? All x86 object file formats are capable of representing this.
2124 After all, the relocation needed is the same as for the call insn.
2125 Whether or not a particular assembler allows us to enter such, I
2126 guess we'll have to see. */
d9a5f180 2127#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2128 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2129
c98f8742
JVA
2130/* This is how to output an insn to push a register on the stack.
2131 It need not be very fast code. */
2132
d9a5f180 2133#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2134do { \
2135 if (TARGET_64BIT) \
2136 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2137 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2138 else \
2139 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2140} while (0)
c98f8742
JVA
2141
2142/* This is how to output an insn to pop a register from the stack.
2143 It need not be very fast code. */
2144
d9a5f180 2145#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2146do { \
2147 if (TARGET_64BIT) \
2148 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2149 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2150 else \
2151 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2152} while (0)
c98f8742 2153
f88c65f7 2154/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2155
2156#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2157 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2158
f88c65f7 2159/* This is how to output an element of a case-vector that is relative. */
c98f8742 2160
33f7f353 2161#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2162 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2163
95879c72
L
2164/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2165 true. */
2166
2167#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2168{ \
2169 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2170 { \
2171 if (TARGET_AVX) \
2172 (PTR) += 1; \
2173 else \
2174 (PTR) += 2; \
2175 } \
2176}
2177
2178/* A C statement or statements which output an assembler instruction
2179 opcode to the stdio stream STREAM. The macro-operand PTR is a
2180 variable of type `char *' which points to the opcode name in
2181 its "internal" form--the form that is written in the machine
2182 description. */
2183
2184#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2185 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2186
f7288899
EC
2187/* Under some conditions we need jump tables in the text section,
2188 because the assembler cannot handle label differences between
2189 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2190
2191#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2192 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2193 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2194
cea3bd3e
RH
2195/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2196 and switch back. For x86 we do this only to save a few bytes that
2197 would otherwise be unused in the text section. */
2198#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2199 asm (SECTION_OP "\n\t" \
2200 "call " USER_LABEL_PREFIX #FUNC "\n" \
2201 TEXT_SECTION_ASM_OP);
74b42c8b 2202\f
c98f8742
JVA
2203/* Print operand X (an rtx) in assembler syntax to file FILE.
2204 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2205 Effect of various CODE letters is described in i386.c near
2206 print_operand function. */
c98f8742 2207
d9a5f180 2208#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2209 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2210
2211#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2212 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2213
2214#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2215 print_operand_address ((FILE), (ADDR))
c98f8742 2216
f996902d
RH
2217#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2218do { \
2219 if (! output_addr_const_extra (FILE, (X))) \
2220 goto FAIL; \
2221} while (0);
d4ba09c0 2222\f
5bf0ebab
RH
2223/* Which processor to schedule for. The cpu attribute defines a list that
2224 mirrors this list, so changes to i386.md must be made at the same time. */
2225
2226enum processor_type
2227{
8383d43c 2228 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2229 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2230 PROCESSOR_PENTIUM,
2231 PROCESSOR_PENTIUMPRO,
cfe1b18f 2232 PROCESSOR_GEODE,
5bf0ebab
RH
2233 PROCESSOR_K6,
2234 PROCESSOR_ATHLON,
2235 PROCESSOR_PENTIUM4,
4977bab6 2236 PROCESSOR_K8,
89c43c0a 2237 PROCESSOR_NOCONA,
05f85dbb 2238 PROCESSOR_CORE2,
d326eaf0
JH
2239 PROCESSOR_GENERIC32,
2240 PROCESSOR_GENERIC64,
21efb4d4 2241 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2242 PROCESSOR_max
2243};
2244
9e555526 2245extern enum processor_type ix86_tune;
5bf0ebab 2246extern enum processor_type ix86_arch;
5bf0ebab
RH
2247
2248enum fpmath_unit
2249{
2250 FPMATH_387 = 1,
2251 FPMATH_SSE = 2
2252};
2253
2254extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2255
f996902d
RH
2256enum tls_dialect
2257{
2258 TLS_DIALECT_GNU,
5bf5a10b 2259 TLS_DIALECT_GNU2,
f996902d
RH
2260 TLS_DIALECT_SUN
2261};
2262
2263extern enum tls_dialect ix86_tls_dialect;
f996902d 2264
6189a572 2265enum cmodel {
5bf0ebab
RH
2266 CM_32, /* The traditional 32-bit ABI. */
2267 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2268 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2269 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2270 CM_LARGE, /* No assumptions. */
7dcbf659 2271 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2272 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2273 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2274};
2275
5bf0ebab 2276extern enum cmodel ix86_cmodel;
5bf0ebab 2277
8362f420
JH
2278/* Size of the RED_ZONE area. */
2279#define RED_ZONE_SIZE 128
2280/* Reserved area of the red zone for temporaries. */
2281#define RED_ZONE_RESERVE 8
c93e80a5
JH
2282
2283enum asm_dialect {
2284 ASM_ATT,
2285 ASM_INTEL
2286};
5bf0ebab 2287
80f33d06 2288extern enum asm_dialect ix86_asm_dialect;
95899b34 2289extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2290extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2291extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2292
2293/* Smallest class containing REGNO. */
2294extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2295
d9a5f180
GS
2296extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2297extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2298extern rtx ix86_compare_emitted;
22fb740d
JH
2299\f
2300/* To properly truncate FP values into integers, we need to set i387 control
2301 word. We can't emit proper mode switching code before reload, as spills
2302 generated by reload may truncate values incorrectly, but we still can avoid
2303 redundant computation of new control word by the mode switching pass.
2304 The fldcw instructions are still emitted redundantly, but this is probably
2305 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2306 the sequence.
22fb740d
JH
2307
2308 The machinery is to emit simple truncation instructions and split them
2309 before reload to instructions having USEs of two memory locations that
2310 are filled by this code to old and new control word.
fce5a9f2 2311
22fb740d
JH
2312 Post-reload pass may be later used to eliminate the redundant fildcw if
2313 needed. */
2314
ff680eb1
UB
2315enum ix86_entity
2316{
2317 I387_TRUNC = 0,
2318 I387_FLOOR,
2319 I387_CEIL,
2320 I387_MASK_PM,
2321 MAX_386_ENTITIES
2322};
2323
1cba2b96 2324enum ix86_stack_slot
ff680eb1 2325{
80dcd3aa
UB
2326 SLOT_VIRTUAL = 0,
2327 SLOT_TEMP,
ff680eb1
UB
2328 SLOT_CW_STORED,
2329 SLOT_CW_TRUNC,
2330 SLOT_CW_FLOOR,
2331 SLOT_CW_CEIL,
2332 SLOT_CW_MASK_PM,
2333 MAX_386_STACK_LOCALS
2334};
22fb740d
JH
2335
2336/* Define this macro if the port needs extra instructions inserted
2337 for mode switching in an optimizing compilation. */
2338
ff680eb1
UB
2339#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2340 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2341
2342/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2343 initializer for an array of integers. Each initializer element N
2344 refers to an entity that needs mode switching, and specifies the
2345 number of different modes that might need to be set for this
2346 entity. The position of the initializer in the initializer -
2347 starting counting at zero - determines the integer that is used to
2348 refer to the mode-switched entity in question. */
2349
ff680eb1
UB
2350#define NUM_MODES_FOR_MODE_SWITCHING \
2351 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2352
2353/* ENTITY is an integer specifying a mode-switched entity. If
2354 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2355 return an integer value not larger than the corresponding element
2356 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2357 must be switched into prior to the execution of INSN. */
2358
2359#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2360
2361/* This macro specifies the order in which modes for ENTITY are
2362 processed. 0 is the highest priority. */
2363
d9a5f180 2364#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2365
2366/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2367 is the set of hard registers live at the point where the insn(s)
2368 are to be inserted. */
2369
2370#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2371 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2372 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2373 : 0)
ff680eb1 2374
0f0138b6
JH
2375\f
2376/* Avoid renaming of stack registers, as doing so in combination with
2377 scheduling just increases amount of live registers at time and in
2378 the turn amount of fxch instructions needed.
2379
43f3a59d 2380 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2381
d9a5f180 2382#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2383 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2384
3b3c6a3f 2385\f
e91f04de 2386#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2387\f
2388struct machine_function GTY(())
2389{
2390 struct stack_local_entry *stack_locals;
2391 const char *some_ld_name;
4aab97f9
L
2392 int varargs_gpr_size;
2393 int varargs_fpr_size;
fa1a0d02 2394 int accesses_prev_frame;
ff680eb1 2395 int optimize_mode_switching[MAX_386_ENTITIES];
922e3e33
UB
2396 int needs_cld;
2397 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2398 expander to determine the style used. */
d9b40e8d 2399 int use_fast_prologue_epilogue;
d7394366
JH
2400 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2401 for. */
2402 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2403 /* If true, the current function needs the default PIC register, not
2404 an alternate register (on x86) and must not use the red zone (on
2405 x86_64), even if it's a leaf function. We don't want the
2406 function to be regarded as non-leaf because TLS calls need not
2407 affect register allocation. This flag is set when a TLS call
2408 instruction is expanded within a function, and never reset, even
2409 if all such instructions are optimized away. Use the
2410 ix86_current_function_calls_tls_descriptor macro for a better
2411 approximation. */
2412 int tls_descriptor_call_expanded_p;
7c800926
KT
2413 /* This value is used for amd64 targets and specifies the current abi
2414 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2415 int call_abi;
fa1a0d02
JH
2416};
2417
2418#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2419#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2420#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2421#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2422#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2423#define ix86_tls_descriptor_calls_expanded_in_cfun \
2424 (cfun->machine->tls_descriptor_call_expanded_p)
2425/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2426 calls are optimized away, we try to detect cases in which it was
2427 optimized away. Since such instructions (use (reg REG_SP)), we can
2428 verify whether there's any such instruction live by testing that
2429 REG_SP is live. */
2430#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2431 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2432
1bc7c5b6
ZW
2433/* Control behavior of x86_file_start. */
2434#define X86_FILE_START_VERSION_DIRECTIVE false
2435#define X86_FILE_START_FLTUSED false
2436
7dcbf659
JH
2437/* Flag to mark data that is in the large address area. */
2438#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2439#define SYMBOL_REF_FAR_ADDR_P(X) \
2440 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2441
2442/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2443 have defined always, to avoid ifdefing. */
2444#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2445#define SYMBOL_REF_DLLIMPORT_P(X) \
2446 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2447
2448#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2449#define SYMBOL_REF_DLLEXPORT_P(X) \
2450 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2451
e70444a8
HJ
2452/* Model costs for vectorizer. */
2453
2454/* Cost of conditional branch. */
2455#undef TARG_COND_BRANCH_COST
2456#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2457
4ae8027b
UB
2458/* Enum through the target specific extra va_list types.
2459 Please, do not iterate the base va_list type name. */
35cbb299 2460#define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
4ae8027b 2461 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
35cbb299 2462
e70444a8
HJ
2463/* Cost of any scalar operation, excluding load and store. */
2464#undef TARG_SCALAR_STMT_COST
2465#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2466
2467/* Cost of scalar load. */
2468#undef TARG_SCALAR_LOAD_COST
2469#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2470
2471/* Cost of scalar store. */
2472#undef TARG_SCALAR_STORE_COST
2473#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2474
2475/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2476 operation. */
e70444a8
HJ
2477#undef TARG_VEC_STMT_COST
2478#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2479
2480/* Cost of vector to scalar operation. */
2481#undef TARG_VEC_TO_SCALAR_COST
2482#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2483
2484/* Cost of scalar to vector operation. */
2485#undef TARG_SCALAR_TO_VEC_COST
2486#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2487
2488/* Cost of aligned vector load. */
2489#undef TARG_VEC_LOAD_COST
2490#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2491
2492/* Cost of misaligned vector load. */
2493#undef TARG_VEC_UNALIGNED_LOAD_COST
2494#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2495
2496/* Cost of vector store. */
2497#undef TARG_VEC_STORE_COST
2498#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2499
2500/* Cost of conditional taken branch for vectorizer cost model. */
2501#undef TARG_COND_TAKEN_BRANCH_COST
2502#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2503
2504/* Cost of conditional not taken branch for vectorizer cost model. */
2505#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2506#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2507
c98f8742
JVA
2508/*
2509Local variables:
2510version-control: t
2511End:
2512*/