]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR rtl-optimization/63952 (bootstrap failure (ICE in prepare_cmp_insn) on s390x...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
4190ea38
IT
80#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
81#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
90922d36 82#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 83#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 84#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 85#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 86#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 87#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 88#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 89#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 90#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 91#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
92#define TARGET_ROUND TARGET_ISA_ROUND
93#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 94#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 95#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 96#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 97#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 98#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 99#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 100#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 101#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 102#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 103#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 104#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 105#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 106#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 107#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 108#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 109#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 110#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 111#define TARGET_AES TARGET_ISA_AES
bf7b5747 112#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
113#define TARGET_SHA TARGET_ISA_SHA
114#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
115#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
116#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
117#define TARGET_XSAVEC TARGET_ISA_XSAVEC
118#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
119#define TARGET_XSAVES TARGET_ISA_XSAVES
120#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 121#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 122#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
123#define TARGET_CMPXCHG16B TARGET_ISA_CX16
124#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 125#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 126#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 127#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 128#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 129#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 130#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
131#define TARGET_RTM TARGET_ISA_RTM
132#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 133#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 134#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 135#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 136#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 137#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 138#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 139#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 140#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 141#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 142#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 143#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 144#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 145#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 146#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
147#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
148#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
149#define TARGET_MPX TARGET_ISA_MPX
150#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
ab442df7 151
90922d36 152#define TARGET_LP64 TARGET_ABI_64
bf7b5747 153#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 154#define TARGET_X32 TARGET_ABI_X32
bf7b5747 155#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
156#define TARGET_16BIT TARGET_CODE16
157#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 158
cbf2e4d4
HJ
159/* SSE4.1 defines round instructions */
160#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 161#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 162
26b5109f
RS
163#include "config/vxworks-dummy.h"
164
7eb68c06 165#include "config/i386/i386-opts.h"
ccf8e764 166
c69fa2d4 167#define MAX_STRINGOP_ALGS 4
ccf8e764 168
8c996513
JH
169/* Specify what algorithm to use for stringops on known size.
170 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
171 known at compile time or estimated via feedback, the SIZE array
172 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 173 means infinity). Corresponding ALG is used then.
340ef734
JH
174 When NOALIGN is true the code guaranting the alignment of the memory
175 block is skipped.
176
8c996513 177 For example initializer:
4f3f76e6 178 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 179 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 180 be used otherwise. */
8c996513
JH
181struct stringop_algs
182{
183 const enum stringop_alg unknown_size;
184 const struct stringop_strategy {
185 const int max;
186 const enum stringop_alg alg;
340ef734 187 int noalign;
c69fa2d4 188 } size [MAX_STRINGOP_ALGS];
8c996513
JH
189};
190
d4ba09c0
SC
191/* Define the specific costs for a given cpu */
192
193struct processor_costs {
8b60264b
KG
194 const int add; /* cost of an add instruction */
195 const int lea; /* cost of a lea instruction */
196 const int shift_var; /* variable shift costs */
197 const int shift_const; /* constant shift costs */
f676971a 198 const int mult_init[5]; /* cost of starting a multiply
4977bab6 199 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 200 const int mult_bit; /* cost of multiply per each bit set */
f676971a 201 const int divide[5]; /* cost of a divide/mod
4977bab6 202 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
203 int movsx; /* The cost of movsx operation. */
204 int movzx; /* The cost of movzx operation. */
8b60264b
KG
205 const int large_insn; /* insns larger than this cost more */
206 const int move_ratio; /* The threshold of number of scalar
ac775968 207 memory-to-memory move insns. */
8b60264b
KG
208 const int movzbl_load; /* cost of loading using movzbl */
209 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
210 in QImode, HImode and SImode relative
211 to reg-reg move (2). */
8b60264b 212 const int int_store[3]; /* cost of storing integer register
96e7ae40 213 in QImode, HImode and SImode */
8b60264b
KG
214 const int fp_move; /* cost of reg,reg fld/fst */
215 const int fp_load[3]; /* cost of loading FP register
96e7ae40 216 in SFmode, DFmode and XFmode */
8b60264b 217 const int fp_store[3]; /* cost of storing FP register
96e7ae40 218 in SFmode, DFmode and XFmode */
8b60264b
KG
219 const int mmx_move; /* cost of moving MMX register. */
220 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 221 in SImode and DImode */
8b60264b 222 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 223 in SImode and DImode */
8b60264b
KG
224 const int sse_move; /* cost of moving SSE register. */
225 const int sse_load[3]; /* cost of loading SSE register
fa79946e 226 in SImode, DImode and TImode*/
8b60264b 227 const int sse_store[3]; /* cost of storing SSE register
fa79946e 228 in SImode, DImode and TImode*/
8b60264b 229 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 230 integer and vice versa. */
46cb0441
ZD
231 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
232 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
233 const int prefetch_block; /* bytes moved to cache for prefetch. */
234 const int simultaneous_prefetches; /* number of parallel prefetch
235 operations. */
4977bab6 236 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
237 const int fadd; /* cost of FADD and FSUB instructions. */
238 const int fmul; /* cost of FMUL instruction. */
239 const int fdiv; /* cost of FDIV instruction. */
240 const int fabs; /* cost of FABS instruction. */
241 const int fchs; /* cost of FCHS instruction. */
242 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 243 /* Specify what algorithm
bee51209 244 to use for stringops on unknown size. */
ad83025e 245 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
246 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
247 load and store. */
248 const int scalar_load_cost; /* Cost of scalar load. */
249 const int scalar_store_cost; /* Cost of scalar store. */
250 const int vec_stmt_cost; /* Cost of any vector operation, excluding
251 load, store, vector-to-scalar and
252 scalar-to-vector operation. */
253 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
254 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 255 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
256 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
257 const int vec_store_cost; /* Cost of vector store. */
258 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
259 cost model. */
260 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
261 vectorizer cost model. */
d4ba09c0
SC
262};
263
8b60264b 264extern const struct processor_costs *ix86_cost;
b2077fd2
JH
265extern const struct processor_costs ix86_size_cost;
266
267#define ix86_cur_cost() \
268 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 269
c98f8742
JVA
270/* Macros used in the machine description to test the flags. */
271
b97de419 272/* configure can arrange to change it. */
e075ae69 273
35b528be 274#ifndef TARGET_CPU_DEFAULT
b97de419 275#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 276#endif
35b528be 277
004d3859
GK
278#ifndef TARGET_FPMATH_DEFAULT
279#define TARGET_FPMATH_DEFAULT \
280 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
281#endif
282
bf7b5747
ST
283#ifndef TARGET_FPMATH_DEFAULT_P
284#define TARGET_FPMATH_DEFAULT_P(x) \
285 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
286#endif
287
6ac49599 288#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 289#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 290
5791cc29
JT
291/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
292 compile-time constant. */
293#ifdef IN_LIBGCC2
6ac49599 294#undef TARGET_64BIT
5791cc29
JT
295#ifdef __x86_64__
296#define TARGET_64BIT 1
297#else
298#define TARGET_64BIT 0
299#endif
300#else
6ac49599
RS
301#ifndef TARGET_BI_ARCH
302#undef TARGET_64BIT
e49080ec 303#undef TARGET_64BIT_P
67adf6a9 304#if TARGET_64BIT_DEFAULT
0c2dc519 305#define TARGET_64BIT 1
e49080ec 306#define TARGET_64BIT_P(x) 1
0c2dc519
JH
307#else
308#define TARGET_64BIT 0
e49080ec 309#define TARGET_64BIT_P(x) 0
0c2dc519
JH
310#endif
311#endif
5791cc29 312#endif
25f94bb5 313
750054a2
CT
314#define HAS_LONG_COND_BRANCH 1
315#define HAS_LONG_UNCOND_BRANCH 1
316
9e555526
RH
317#define TARGET_386 (ix86_tune == PROCESSOR_I386)
318#define TARGET_486 (ix86_tune == PROCESSOR_I486)
319#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
320#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 321#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
322#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
323#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
324#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
325#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 326#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 327#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 328#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
329#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
330#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 331#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
332#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
333#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 334#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 335#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 336#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 337#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 338#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 339#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 340#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 341#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 342#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 343
80fd744f
RH
344/* Feature tests against the various tunings. */
345enum ix86_tune_indices {
4b8bc035 346#undef DEF_TUNE
3ad20bd4 347#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
348#include "x86-tune.def"
349#undef DEF_TUNE
350X86_TUNE_LAST
80fd744f
RH
351};
352
ab442df7 353extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
354
355#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
356#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
357#define TARGET_ZERO_EXTEND_WITH_AND \
358 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 359#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
360#define TARGET_BRANCH_PREDICTION_HINTS \
361 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
362#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
363#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
364#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
365#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
366#define TARGET_PARTIAL_FLAG_REG_STALL \
367 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
368#define TARGET_LCP_STALL \
369 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
370#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
371#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
372#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
373#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
374#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
375#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
376#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
377#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
378#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
379#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
380#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
381#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
382 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
383#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
384#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
385#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
386#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
387#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
388#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
389#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
390#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
391#define TARGET_INTEGER_DFMODE_MOVES \
392 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
393#define TARGET_PARTIAL_REG_DEPENDENCY \
394 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
395#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
396 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
397#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
398 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
399#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
400 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
401#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
402 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
403#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
404#define TARGET_SSE_TYPELESS_STORES \
405 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
406#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
407#define TARGET_MEMORY_MISMATCH_STALL \
408 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
409#define TARGET_PROLOGUE_USING_MOVE \
410 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
411#define TARGET_EPILOGUE_USING_MOVE \
412 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
413#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
414#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
415#define TARGET_INTER_UNIT_MOVES_TO_VEC \
416 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
417#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
418 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
419#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 420 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
421#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
422#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
423#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
424#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
425#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
426#define TARGET_PAD_SHORT_FUNCTION \
427 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
428#define TARGET_EXT_80387_CONSTANTS \
429 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
430#define TARGET_AVOID_VECTOR_DECODE \
431 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
432#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
433 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
434#define TARGET_SLOW_IMUL_IMM32_MEM \
435 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
436#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
437#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
438#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
439#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
440#define TARGET_USE_VECTOR_FP_CONVERTS \
441 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
442#define TARGET_USE_VECTOR_CONVERTS \
443 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
444#define TARGET_SLOW_PSHUFB \
445 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
446#define TARGET_VECTOR_PARALLEL_EXECUTION \
447 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
448#define TARGET_FUSE_CMP_AND_BRANCH_32 \
449 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
450#define TARGET_FUSE_CMP_AND_BRANCH_64 \
451 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 452#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
453 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
454 : TARGET_FUSE_CMP_AND_BRANCH_32)
455#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
456 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
457#define TARGET_FUSE_ALU_AND_BRANCH \
458 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 459#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
460#define TARGET_AVOID_LEA_FOR_ADDR \
461 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
462#define TARGET_VECTORIZE_DOUBLE \
463 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
464#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
465 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
466#define TARGET_AVX128_OPTIMAL \
467 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
468#define TARGET_REASSOC_INT_TO_PARALLEL \
469 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
470#define TARGET_REASSOC_FP_TO_PARALLEL \
471 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
472#define TARGET_GENERAL_REGS_SSE_SPILL \
473 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
474#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
475 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 476#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 477 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
478#define TARGET_ADJUST_UNROLL \
479 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
480#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
481 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 482
80fd744f
RH
483/* Feature tests against the various architecture variations. */
484enum ix86_arch_indices {
cef31f9c 485 X86_ARCH_CMOV,
80fd744f
RH
486 X86_ARCH_CMPXCHG,
487 X86_ARCH_CMPXCHG8B,
488 X86_ARCH_XADD,
489 X86_ARCH_BSWAP,
490
491 X86_ARCH_LAST
492};
4f3f76e6 493
ab442df7 494extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 495
cef31f9c 496#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
497#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
498#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
499#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
500#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
501
cef31f9c
UB
502/* For sane SSE instruction set generation we need fcomi instruction.
503 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
504 expands to a sequence that includes conditional move. */
505#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
506
80fd744f
RH
507#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
508
cb261eb7 509extern unsigned char x86_prefetch_sse;
80fd744f
RH
510#define TARGET_PREFETCH_SSE x86_prefetch_sse
511
80fd744f
RH
512#define ASSEMBLER_DIALECT (ix86_asm_dialect)
513
514#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
515#define TARGET_MIX_SSE_I387 \
516 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
517
518#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
519#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
520#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 521#define TARGET_SUN_TLS 0
1ef45b77 522
67adf6a9
RH
523#ifndef TARGET_64BIT_DEFAULT
524#define TARGET_64BIT_DEFAULT 0
25f94bb5 525#endif
74dc3e94
RH
526#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
527#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
528#endif
25f94bb5 529
e0ea8797
AH
530#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
531#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
532
79f5e442
ZD
533/* Fence to use after loop using storent. */
534
535extern tree x86_mfence;
536#define FENCE_FOLLOWING_MOVNT x86_mfence
537
0ed4a390
JL
538/* Once GDB has been enhanced to deal with functions without frame
539 pointers, we can change this to allow for elimination of
540 the frame pointer in leaf functions. */
541#define TARGET_DEFAULT 0
67adf6a9 542
0a1c5e55
UB
543/* Extra bits to force. */
544#define TARGET_SUBTARGET_DEFAULT 0
545#define TARGET_SUBTARGET_ISA_DEFAULT 0
546
547/* Extra bits to force on w/ 32-bit mode. */
548#define TARGET_SUBTARGET32_DEFAULT 0
549#define TARGET_SUBTARGET32_ISA_DEFAULT 0
550
ccf8e764
RH
551/* Extra bits to force on w/ 64-bit mode. */
552#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 553#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 554
fee3eacd
IS
555/* Replace MACH-O, ifdefs by in-line tests, where possible.
556 (a) Macros defined in config/i386/darwin.h */
b069de3b 557#define TARGET_MACHO 0
9005471b 558#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
559#define MACHOPIC_ATT_STUB 0
560/* (b) Macros defined in config/darwin.h */
561#define MACHO_DYNAMIC_NO_PIC_P 0
562#define MACHOPIC_INDIRECT 0
563#define MACHOPIC_PURE 0
9005471b 564
5a579c3b
LE
565/* For the RDOS */
566#define TARGET_RDOS 0
567
9005471b 568/* For the Windows 64-bit ABI. */
7c800926
KT
569#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
570
6510e8bb
KT
571/* For the Windows 32-bit ABI. */
572#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
573
f81c9774
RH
574/* This is re-defined by cygming.h. */
575#define TARGET_SEH 0
576
a3d7ab92
KT
577/* This is re-defined by cygming.h. */
578#define TARGET_PECOFF 0
579
51212b32 580/* The default abi used by target. */
7c800926 581#define DEFAULT_ABI SYSV_ABI
ccf8e764 582
b8b3f0ca
LE
583/* The default TLS segment register used by target. */
584#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
585
cc69336f
RH
586/* Subtargets may reset this to 1 in order to enable 96-bit long double
587 with the rounding mode forced to 53 bits. */
588#define TARGET_96_ROUND_53_LONG_DOUBLE 0
589
682cd442
GK
590/* -march=native handling only makes sense with compiler running on
591 an x86 or x86_64 chip. If changing this condition, also change
592 the condition in driver-i386.c. */
593#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
594/* In driver-i386.c. */
595extern const char *host_detect_local_cpu (int argc, const char **argv);
596#define EXTRA_SPEC_FUNCTIONS \
597 { "local_cpu_detect", host_detect_local_cpu },
682cd442 598#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
599#endif
600
8981c15b
JM
601#if TARGET_64BIT_DEFAULT
602#define OPT_ARCH64 "!m32"
603#define OPT_ARCH32 "m32"
604#else
f0ea7581
L
605#define OPT_ARCH64 "m64|mx32"
606#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
607#endif
608
1cba2b96
EC
609/* Support for configure-time defaults of some command line options.
610 The order here is important so that -march doesn't squash the
611 tune or cpu values. */
ce998900 612#define OPTION_DEFAULT_SPECS \
da2d4c01 613 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
614 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
615 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 616 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
617 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
618 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
619 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
620 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
621 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 622
241e1a89
SC
623/* Specs for the compiler proper */
624
628714d8 625#ifndef CC1_CPU_SPEC
eb5bb0fd 626#define CC1_CPU_SPEC_1 ""
fa959ce4 627
682cd442 628#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
629#define CC1_CPU_SPEC CC1_CPU_SPEC_1
630#else
631#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
632"%{march=native:%>march=native %:local_cpu_detect(arch) \
633 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
634%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 635#endif
241e1a89 636#endif
c98f8742 637\f
30efe578 638/* Target CPU builtins. */
ab442df7
MM
639#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
640
641/* Target Pragmas. */
642#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 643
628714d8 644#ifndef CC1_SPEC
8015b78d 645#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
646#endif
647
648/* This macro defines names of additional specifications to put in the
649 specs that can be used in various specifications like CC1_SPEC. Its
650 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
651
652 Each subgrouping contains a string constant, that defines the
188fc5b5 653 specification name, and a string constant that used by the GCC driver
bcd86433
SC
654 program.
655
656 Do not define this macro if it does not need to do anything. */
657
658#ifndef SUBTARGET_EXTRA_SPECS
659#define SUBTARGET_EXTRA_SPECS
660#endif
661
662#define EXTRA_SPECS \
628714d8 663 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
664 SUBTARGET_EXTRA_SPECS
665\f
ce998900 666
d57a4b98
RH
667/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
668 FPU, assume that the fpcw is set to extended precision; when using
669 only SSE, rounding is correct; when using both SSE and the FPU,
670 the rounding precision is indeterminate, since either may be chosen
671 apparently at random. */
672#define TARGET_FLT_EVAL_METHOD \
5ccd517a 673 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 674
8ce94e44
JM
675/* Whether to allow x87 floating-point arithmetic on MODE (one of
676 SFmode, DFmode and XFmode) in the current excess precision
677 configuration. */
678#define X87_ENABLE_ARITH(MODE) \
679 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
680
681/* Likewise, whether to allow direct conversions from integer mode
682 IMODE (HImode, SImode or DImode) to MODE. */
683#define X87_ENABLE_FLOAT(MODE, IMODE) \
684 (flag_excess_precision == EXCESS_PRECISION_FAST \
685 || (MODE) == XFmode \
686 || ((MODE) == DFmode && (IMODE) == SImode) \
687 || (IMODE) == HImode)
688
979c67a5
UB
689/* target machine storage layout */
690
65d9c0ab
JH
691#define SHORT_TYPE_SIZE 16
692#define INT_TYPE_SIZE 32
f0ea7581
L
693#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
694#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 695#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 696#define FLOAT_TYPE_SIZE 32
65d9c0ab 697#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
698#define LONG_DOUBLE_TYPE_SIZE \
699 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 700
c637141a 701#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 702
67adf6a9 703#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 704#define MAX_BITS_PER_WORD 64
0c2dc519
JH
705#else
706#define MAX_BITS_PER_WORD 32
0c2dc519
JH
707#endif
708
c98f8742
JVA
709/* Define this if most significant byte of a word is the lowest numbered. */
710/* That is true on the 80386. */
711
712#define BITS_BIG_ENDIAN 0
713
714/* Define this if most significant byte of a word is the lowest numbered. */
715/* That is not true on the 80386. */
716#define BYTES_BIG_ENDIAN 0
717
718/* Define this if most significant word of a multiword number is the lowest
719 numbered. */
720/* Not true for 80386 */
721#define WORDS_BIG_ENDIAN 0
722
c98f8742 723/* Width of a word, in units (bytes). */
4ae8027b 724#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
725
726#ifndef IN_LIBGCC2
2e64c636
JH
727#define MIN_UNITS_PER_WORD 4
728#endif
c98f8742 729
c98f8742 730/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 731#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 732
e075ae69 733/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 734#define STACK_BOUNDARY \
51212b32 735 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 736
2e3f842f
L
737/* Stack boundary of the main function guaranteed by OS. */
738#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
739
de1132d1 740/* Minimum stack boundary. */
5bfb2af2 741#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 742
d1f87653 743/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 744 aligned; the compiler cannot rely on having this alignment. */
e075ae69 745#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 746
de1132d1 747/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
748 both 32bit and 64bit, to support codes that need 128 bit stack
749 alignment for SSE instructions, but can't realign the stack. */
750#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
751
752/* 1 if -mstackrealign should be turned on by default. It will
753 generate an alternate prologue and epilogue that realigns the
754 runtime stack if nessary. This supports mixing codes that keep a
755 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 756 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
757#define STACK_REALIGN_DEFAULT 0
758
759/* Boundary (in *bits*) on which the incoming stack is aligned. */
760#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 761
a2851b75
TG
762/* According to Windows x64 software convention, the maximum stack allocatable
763 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
764 instructions allowed to adjust the stack pointer in the epilog, forcing the
765 use of frame pointer for frames larger than 2 GB. This theorical limit
766 is reduced by 256, an over-estimated upper bound for the stack use by the
767 prologue.
768 We define only one threshold for both the prolog and the epilog. When the
4e523f33 769 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
770 regs, then save them, and then allocate the remaining. There is no SEH
771 unwind info for this later allocation. */
772#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
773
ebff937c
SH
774/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
775 mandatory for the 64-bit ABI, and may or may not be true for other
776 operating systems. */
777#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
778
f963b5d9
RS
779/* Minimum allocation boundary for the code of a function. */
780#define FUNCTION_BOUNDARY 8
781
782/* C++ stores the virtual bit in the lowest bit of function pointers. */
783#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 784
c98f8742
JVA
785/* Minimum size in bits of the largest boundary to which any
786 and all fundamental data types supported by the hardware
787 might need to be aligned. No data type wants to be aligned
17f24ff0 788 rounder than this.
fce5a9f2 789
d1f87653 790 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
791 and Pentium Pro XFmode values at 128 bit boundaries. */
792
3f97cb0b
AI
793#define BIGGEST_ALIGNMENT \
794 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 795
2e3f842f
L
796/* Maximum stack alignment. */
797#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
798
6e4f1168
L
799/* Alignment value for attribute ((aligned)). It is a constant since
800 it is the part of the ABI. We shouldn't change it with -mavx. */
801#define ATTRIBUTE_ALIGNED_VALUE 128
802
822eda12 803/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 804#define ALIGN_MODE_128(MODE) \
4501d314 805 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 806
17f24ff0 807/* The published ABIs say that doubles should be aligned on word
d1f87653 808 boundaries, so lower the alignment for structure fields unless
6fc605d8 809 -malign-double is set. */
e932b21b 810
e83f3cff
RH
811/* ??? Blah -- this macro is used directly by libobjc. Since it
812 supports no vector modes, cut out the complexity and fall back
813 on BIGGEST_FIELD_ALIGNMENT. */
814#ifdef IN_TARGET_LIBS
ef49d42e
JH
815#ifdef __x86_64__
816#define BIGGEST_FIELD_ALIGNMENT 128
817#else
e83f3cff 818#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 819#endif
e83f3cff 820#else
e932b21b
JH
821#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
822 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 823#endif
c98f8742 824
e5e8a8bf 825/* If defined, a C expression to compute the alignment given to a
a7180f70 826 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
827 and ALIGN is the alignment that the object would ordinarily have.
828 The value of this macro is used instead of that alignment to align
829 the object.
830
831 If this macro is not defined, then ALIGN is used.
832
833 The typical use of this macro is to increase alignment for string
834 constants to be word aligned so that `strcpy' calls that copy
835 constants can be done inline. */
836
d9a5f180 837#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 838
8a022443
JW
839/* If defined, a C expression to compute the alignment for a static
840 variable. TYPE is the data type, and ALIGN is the alignment that
841 the object would ordinarily have. The value of this macro is used
842 instead of that alignment to align the object.
843
844 If this macro is not defined, then ALIGN is used.
845
846 One use of this macro is to increase alignment of medium-size
847 data to make it all fit in fewer cache lines. Another is to
848 cause character arrays to be word-aligned so that `strcpy' calls
849 that copy constants to character arrays can be done inline. */
850
df8a1d28
JJ
851#define DATA_ALIGNMENT(TYPE, ALIGN) \
852 ix86_data_alignment ((TYPE), (ALIGN), true)
853
854/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
855 some alignment increase, instead of optimization only purposes. E.g.
856 AMD x86-64 psABI says that variables with array type larger than 15 bytes
857 must be aligned to 16 byte boundaries.
858
859 If this macro is not defined, then ALIGN is used. */
860
861#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
862 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
863
864/* If defined, a C expression to compute the alignment for a local
865 variable. TYPE is the data type, and ALIGN is the alignment that
866 the object would ordinarily have. The value of this macro is used
867 instead of that alignment to align the object.
868
869 If this macro is not defined, then ALIGN is used.
870
871 One use of this macro is to increase alignment of medium-size
872 data to make it all fit in fewer cache lines. */
873
76fe54f0
L
874#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
875 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
876
877/* If defined, a C expression to compute the alignment for stack slot.
878 TYPE is the data type, MODE is the widest mode available, and ALIGN
879 is the alignment that the slot would ordinarily have. The value of
880 this macro is used instead of that alignment to align the slot.
881
882 If this macro is not defined, then ALIGN is used when TYPE is NULL,
883 Otherwise, LOCAL_ALIGNMENT will be used.
884
885 One use of this macro is to set alignment of stack slot to the
886 maximum alignment of all possible modes which the slot may have. */
887
888#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
889 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 890
9bfaf89d
JJ
891/* If defined, a C expression to compute the alignment for a local
892 variable DECL.
893
894 If this macro is not defined, then
895 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
896
897 One use of this macro is to increase alignment of medium-size
898 data to make it all fit in fewer cache lines. */
899
900#define LOCAL_DECL_ALIGNMENT(DECL) \
901 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
902
ae58e548
JJ
903/* If defined, a C expression to compute the minimum required alignment
904 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
905 MODE, assuming normal alignment ALIGN.
906
907 If this macro is not defined, then (ALIGN) will be used. */
908
909#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
910 ix86_minimum_alignment (EXP, MODE, ALIGN)
911
9bfaf89d 912
9cd10576 913/* Set this nonzero if move instructions will actually fail to work
c98f8742 914 when given unaligned data. */
b4ac57ab 915#define STRICT_ALIGNMENT 0
c98f8742
JVA
916
917/* If bit field type is int, don't let it cross an int,
918 and give entire struct the alignment of an int. */
43a88a8c 919/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 920#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
921\f
922/* Standard register usage. */
923
924/* This processor has special stack-like registers. See reg-stack.c
892a2d68 925 for details. */
c98f8742
JVA
926
927#define STACK_REGS
ce998900 928
d9a5f180 929#define IS_STACK_MODE(MODE) \
63001560
UB
930 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
931 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 932 || (MODE) == XFmode)
c98f8742
JVA
933
934/* Number of actual hardware registers.
935 The hardware registers are assigned numbers for the compiler
936 from 0 to just below FIRST_PSEUDO_REGISTER.
937 All registers that the compiler knows about must be given numbers,
938 even those that are not normally considered general registers.
939
940 In the 80386 we give the 8 general purpose registers the numbers 0-7.
941 We number the floating point registers 8-15.
942 Note that registers 0-7 can be accessed as a short or int,
943 while only 0-3 may be used with byte `mov' instructions.
944
945 Reg 16 does not correspond to any hardware register, but instead
946 appears in the RTL as an argument pointer prior to reload, and is
947 eliminated during reloading in favor of either the stack or frame
892a2d68 948 pointer. */
c98f8742 949
d5e254e1 950#define FIRST_PSEUDO_REGISTER 81
c98f8742 951
3073d01c
ML
952/* Number of hardware registers that go into the DWARF-2 unwind info.
953 If not defined, equals FIRST_PSEUDO_REGISTER. */
954
955#define DWARF_FRAME_REGISTERS 17
956
c98f8742
JVA
957/* 1 for registers that have pervasive standard uses
958 and are not available for the register allocator.
3f3f2124 959 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 960
621bc046
UB
961 REX registers are disabled for 32bit targets in
962 TARGET_CONDITIONAL_REGISTER_USAGE. */
963
a7180f70
BS
964#define FIXED_REGISTERS \
965/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 966{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
967/*arg,flags,fpsr,fpcr,frame*/ \
968 1, 1, 1, 1, 1, \
a7180f70
BS
969/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
970 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 971/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
972 0, 0, 0, 0, 0, 0, 0, 0, \
973/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 974 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 975/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
976 0, 0, 0, 0, 0, 0, 0, 0, \
977/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
978 0, 0, 0, 0, 0, 0, 0, 0, \
979/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
980 0, 0, 0, 0, 0, 0, 0, 0, \
981/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
982 0, 0, 0, 0, 0, 0, 0, 0, \
983/* b0, b1, b2, b3*/ \
984 0, 0, 0, 0 }
c98f8742
JVA
985
986/* 1 for registers not available across function calls.
987 These must include the FIXED_REGISTERS and also any
988 registers that can be used without being saved.
989 The latter must include the registers where values are returned
990 and the register where structure-value addresses are passed.
fce5a9f2
EC
991 Aside from that, you can include as many other registers as you like.
992
621bc046
UB
993 Value is set to 1 if the register is call used unconditionally.
994 Bit one is set if the register is call used on TARGET_32BIT ABI.
995 Bit two is set if the register is call used on TARGET_64BIT ABI.
996 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
997
998 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
999
a7180f70
BS
1000#define CALL_USED_REGISTERS \
1001/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1002{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1003/*arg,flags,fpsr,fpcr,frame*/ \
1004 1, 1, 1, 1, 1, \
a7180f70 1005/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1006 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1007/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1008 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1009/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1010 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1011/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1012 6, 6, 6, 6, 6, 6, 6, 6, \
1013/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1014 6, 6, 6, 6, 6, 6, 6, 6, \
1015/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1016 6, 6, 6, 6, 6, 6, 6, 6, \
1017 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1018 1, 1, 1, 1, 1, 1, 1, 1, \
1019/* b0, b1, b2, b3*/ \
1020 1, 1, 1, 1 }
c98f8742 1021
3b3c6a3f
MM
1022/* Order in which to allocate registers. Each register must be
1023 listed once, even those in FIXED_REGISTERS. List frame pointer
1024 late and fixed registers last. Note that, in general, we prefer
1025 registers listed in CALL_USED_REGISTERS, keeping the others
1026 available for storage of persistent values.
1027
5a733826 1028 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1029 so this is just empty initializer for array. */
3b3c6a3f 1030
162f023b
JH
1031#define REG_ALLOC_ORDER \
1032{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1033 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1034 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1035 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1036 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1037 78, 79, 80 }
3b3c6a3f 1038
5a733826 1039/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1040 to be rearranged based on a particular function. When using sse math,
03c259ad 1041 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1042
5a733826 1043#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1044
f5316dfe 1045
7c800926
KT
1046#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1047
c98f8742
JVA
1048/* Return number of consecutive hard regs needed starting at reg REGNO
1049 to hold something of mode MODE.
1050 This is ordinarily the length in words of a value of mode MODE
1051 but can be less for certain modes in special long registers.
1052
fce5a9f2 1053 Actually there are no two word move instructions for consecutive
c98f8742 1054 registers. And only registers 0-3 may have mov byte instructions
63001560 1055 applied to them. */
c98f8742 1056
ce998900 1057#define HARD_REGNO_NREGS(REGNO, MODE) \
d5e254e1
IE
1058 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1059 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
92d0fb09 1060 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1061 : ((MODE) == XFmode \
92d0fb09 1062 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1063 : (MODE) == XCmode \
92d0fb09 1064 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1065 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1066
8521c414
JM
1067#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1068 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1069 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1070 ? 0 \
1071 : ((MODE) == XFmode || (MODE) == XCmode)) \
1072 : 0)
1073
1074#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1075
95879c72
L
1076#define VALID_AVX256_REG_MODE(MODE) \
1077 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1078 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1079 || (MODE) == V4DFmode)
95879c72 1080
4ac005ba 1081#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1082 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1083
3f97cb0b
AI
1084#define VALID_AVX512F_SCALAR_MODE(MODE) \
1085 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1086 || (MODE) == SFmode)
1087
1088#define VALID_AVX512F_REG_MODE(MODE) \
1089 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1090 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1091 || (MODE) == V4TImode)
1092
1093#define VALID_AVX512VL_128_REG_MODE(MODE) \
1094 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1095 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1096
ce998900
UB
1097#define VALID_SSE2_REG_MODE(MODE) \
1098 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1099 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1100
d9a5f180 1101#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1102 ((MODE) == V1TImode || (MODE) == TImode \
1103 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1104 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1105
47f339cf 1106#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1107 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1108
d9a5f180 1109#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1110 ((MODE == V1DImode) || (MODE) == DImode \
1111 || (MODE) == V2SImode || (MODE) == SImode \
1112 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1113
d5e254e1
IE
1114#define VALID_BND_REG_MODE(MODE) \
1115 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1116
ce998900
UB
1117#define VALID_DFP_MODE_P(MODE) \
1118 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1119
d9a5f180 1120#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1121 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1122 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1123
d9a5f180 1124#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1125 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1126 || (MODE) == DImode \
1127 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1128 || (MODE) == CDImode \
1129 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1130 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1131
822eda12 1132/* Return true for modes passed in SSE registers. */
ce998900 1133#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1134 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1135 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1136 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1137 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1138 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1139 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1140 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1141 || (MODE) == V16SFmode)
822eda12 1142
85a77221
AI
1143#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1144
9e4a4dd6
AI
1145#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1146
e075ae69 1147/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1148
a946dd00 1149#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1150 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1151
1152/* Value is 1 if it is a good idea to tie two pseudo registers
1153 when one has mode MODE1 and one has mode MODE2.
1154 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1155 for any hard reg, then this must be 0 for correct output. */
1156
c1c5b5e3 1157#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1158
ff25ef99
ZD
1159/* It is possible to write patterns to move flags; but until someone
1160 does it, */
1161#define AVOID_CCMODE_COPIES
c98f8742 1162
e075ae69 1163/* Specify the modes required to caller save a given hard regno.
787dc842 1164 We do this on i386 to prevent flags from being saved at all.
e075ae69 1165
787dc842
JH
1166 Kill any attempts to combine saving of modes. */
1167
d9a5f180
GS
1168#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1169 (CC_REGNO_P (REGNO) ? VOIDmode \
1170 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1171 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1172 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1173 || MASK_REGNO_P (REGNO)) ? SImode \
1174 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1175 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1176 : (MODE))
ce998900 1177
51ba747a
RH
1178/* The only ABI that saves SSE registers across calls is Win64 (thus no
1179 need to check the current ABI here), and with AVX enabled Win64 only
1180 guarantees that the low 16 bytes are saved. */
1181#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1182 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1183
c98f8742
JVA
1184/* Specify the registers used for certain standard purposes.
1185 The values of these macros are register numbers. */
1186
1187/* on the 386 the pc register is %eip, and is not usable as a general
1188 register. The ordinary mov instructions won't work */
1189/* #define PC_REGNUM */
1190
1191/* Register to use for pushing function arguments. */
1192#define STACK_POINTER_REGNUM 7
1193
1194/* Base register for access to local variables of the function. */
564d80f4
JH
1195#define HARD_FRAME_POINTER_REGNUM 6
1196
1197/* Base register for access to local variables of the function. */
b0d95de8 1198#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1199
1200/* First floating point reg */
1201#define FIRST_FLOAT_REG 8
1202
1203/* First & last stack-like regs */
1204#define FIRST_STACK_REG FIRST_FLOAT_REG
1205#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1206
a7180f70
BS
1207#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1208#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1209
3f97cb0b 1210#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1211#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1212
3f97cb0b 1213#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1214#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1215
3f97cb0b 1216#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1217#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1218
3f97cb0b
AI
1219#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1220#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1221
85a77221
AI
1222#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1223#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1224
d5e254e1
IE
1225#define FIRST_BND_REG (LAST_MASK_REG + 1) /*77*/
1226#define LAST_BND_REG (FIRST_BND_REG + 3) /*80*/
1227
aabcd309 1228/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1229 requiring a frame pointer. */
1230#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1231#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1232#endif
1233
1234/* Make sure we can access arbitrary call frames. */
1235#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1236
1237/* Base register for access to arguments of the function. */
1238#define ARG_POINTER_REGNUM 16
1239
c98f8742 1240/* Register to hold the addressing base for position independent
5b43fed1
RH
1241 code access to data items. We don't use PIC pointer for 64bit
1242 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1243 pessimizing code dealing with EBX.
bd09bdeb
RH
1244
1245 To avoid clobbering a call-saved register unnecessarily, we renumber
1246 the pic register when possible. The change is visible after the
1247 prologue has been emitted. */
1248
2e3f842f 1249#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb 1250
bcb21886
KY
1251#define PIC_OFFSET_TABLE_REGNUM \
1252 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1253 || TARGET_PECOFF)) \
1254 || !flag_pic \
1255 ? INVALID_REGNUM \
1256 : pic_offset_table_rtx \
1257 ? INVALID_REGNUM \
1258 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1259
5fc0e5df
KW
1260#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1261
c51e6d85 1262/* This is overridden by <cygwin.h>. */
5e062767
DS
1263#define MS_AGGREGATE_RETURN 0
1264
61fec9ff 1265#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1266\f
1267/* Define the classes of registers for register constraints in the
1268 machine description. Also define ranges of constants.
1269
1270 One of the classes must always be named ALL_REGS and include all hard regs.
1271 If there is more than one class, another class must be named NO_REGS
1272 and contain no registers.
1273
1274 The name GENERAL_REGS must be the name of a class (or an alias for
1275 another name such as ALL_REGS). This is the class of registers
1276 that is allowed by "g" or "r" in a register constraint.
1277 Also, registers outside this class are allocated only when
1278 instructions express preferences for them.
1279
1280 The classes must be numbered in nondecreasing order; that is,
1281 a larger-numbered class must never be contained completely
1282 in a smaller-numbered class.
1283
1284 For any two classes, it is very desirable that there be another
ab408a86
JVA
1285 class that represents their union.
1286
1287 It might seem that class BREG is unnecessary, since no useful 386
1288 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1289 and the "b" register constraint is useful in asms for syscalls.
1290
03c259ad 1291 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1292
1293enum reg_class
1294{
1295 NO_REGS,
e075ae69 1296 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1297 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1298 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1299 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1300 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1301 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1302 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1303 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1304 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1305 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1306 FLOAT_REGS,
06f4e35d 1307 SSE_FIRST_REG,
a7180f70 1308 SSE_REGS,
3f97cb0b 1309 EVEX_SSE_REGS,
d5e254e1 1310 BND_REGS,
3f97cb0b 1311 ALL_SSE_REGS,
a7180f70 1312 MMX_REGS,
446988df
JH
1313 FP_TOP_SSE_REGS,
1314 FP_SECOND_SSE_REGS,
1315 FLOAT_SSE_REGS,
1316 FLOAT_INT_REGS,
1317 INT_SSE_REGS,
1318 FLOAT_INT_SSE_REGS,
85a77221
AI
1319 MASK_EVEX_REGS,
1320 MASK_REGS,
c98f8742
JVA
1321 ALL_REGS, LIM_REG_CLASSES
1322};
1323
d9a5f180
GS
1324#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1325
1326#define INTEGER_CLASS_P(CLASS) \
1327 reg_class_subset_p ((CLASS), GENERAL_REGS)
1328#define FLOAT_CLASS_P(CLASS) \
1329 reg_class_subset_p ((CLASS), FLOAT_REGS)
1330#define SSE_CLASS_P(CLASS) \
3f97cb0b 1331 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1332#define MMX_CLASS_P(CLASS) \
f75959a6 1333 ((CLASS) == MMX_REGS)
d9a5f180
GS
1334#define MAYBE_INTEGER_CLASS_P(CLASS) \
1335 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1336#define MAYBE_FLOAT_CLASS_P(CLASS) \
1337 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1338#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1339 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1340#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1341 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1342#define MAYBE_MASK_CLASS_P(CLASS) \
1343 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1344
1345#define Q_CLASS_P(CLASS) \
1346 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1347
0bd72901
UB
1348#define MAYBE_NON_Q_CLASS_P(CLASS) \
1349 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1350
43f3a59d 1351/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1352
1353#define REG_CLASS_NAMES \
1354{ "NO_REGS", \
ab408a86 1355 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1356 "SIREG", "DIREG", \
e075ae69
RH
1357 "AD_REGS", \
1358 "Q_REGS", "NON_Q_REGS", \
c98f8742 1359 "INDEX_REGS", \
3f3f2124 1360 "LEGACY_REGS", \
621bc046 1361 "CLOBBERED_REGS", \
c98f8742
JVA
1362 "GENERAL_REGS", \
1363 "FP_TOP_REG", "FP_SECOND_REG", \
1364 "FLOAT_REGS", \
cb482895 1365 "SSE_FIRST_REG", \
a7180f70 1366 "SSE_REGS", \
3f97cb0b 1367 "EVEX_SSE_REGS", \
d5e254e1 1368 "BND_REGS", \
3f97cb0b 1369 "ALL_SSE_REGS", \
a7180f70 1370 "MMX_REGS", \
446988df
JH
1371 "FP_TOP_SSE_REGS", \
1372 "FP_SECOND_SSE_REGS", \
1373 "FLOAT_SSE_REGS", \
8fcaaa80 1374 "FLOAT_INT_REGS", \
446988df
JH
1375 "INT_SSE_REGS", \
1376 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1377 "MASK_EVEX_REGS", \
1378 "MASK_REGS", \
c98f8742
JVA
1379 "ALL_REGS" }
1380
ac2e563f
RH
1381/* Define which registers fit in which classes. This is an initializer
1382 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1383
621bc046
UB
1384 Note that CLOBBERED_REGS are calculated by
1385 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1386
3f97cb0b 1387#define REG_CLASS_CONTENTS \
d5e254e1
IE
1388{ { 0x00, 0x0, 0x0 }, \
1389 { 0x01, 0x0, 0x0 }, /* AREG */ \
1390 { 0x02, 0x0, 0x0 }, /* DREG */ \
1391 { 0x04, 0x0, 0x0 }, /* CREG */ \
1392 { 0x08, 0x0, 0x0 }, /* BREG */ \
1393 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1394 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1395 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1396 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1397 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1398 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1399 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1400 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1401 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1402 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1403 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1404 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1405 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1406{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1407 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1408 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1409{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1410{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1411{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1412{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1413{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1414{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1415{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1416{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1417 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1418 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1419{ 0xffffffff,0xffffffff, 0x1fff } \
e075ae69 1420}
c98f8742
JVA
1421
1422/* The same information, inverted:
1423 Return the class number of the smallest class containing
1424 reg number REGNO. This could be a conditional expression
1425 or could index an array. */
1426
c98f8742
JVA
1427#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1428
42db504c
SB
1429/* When this hook returns true for MODE, the compiler allows
1430 registers explicitly used in the rtl to be used as spill registers
1431 but prevents the compiler from extending the lifetime of these
1432 registers. */
1433#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1434
fc27f749
UB
1435#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1436#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1437
1438#define GENERAL_REG_P(X) \
6189a572 1439 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1440#define GENERAL_REGNO_P(N) \
1441 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1442
fc27f749
UB
1443#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1444#define ANY_QI_REGNO_P(N) \
1445 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1446
fc27f749 1447#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1448#define REX_INT_REGNO_P(N) \
1449 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1450
66aaf16f
UB
1451#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1452#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1453
446988df 1454#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1455#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1456
54a88090 1457#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1458 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1459
fc27f749 1460#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1461#define SSE_REGNO_P(N) \
1462 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1463 || REX_SSE_REGNO_P (N) \
1464 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1465
4977bab6 1466#define REX_SSE_REGNO_P(N) \
fb84c7a0 1467 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1468
3f97cb0b
AI
1469#define EXT_REX_SSE_REGNO_P(N) \
1470 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1471
d9a5f180 1472#define SSE_REGNO(N) \
3f97cb0b
AI
1473 ((N) < 8 ? FIRST_SSE_REG + (N) \
1474 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1475 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1476
9e4a4dd6 1477#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221
AI
1478#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1479#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1480
d9a5f180 1481#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1482 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1483
cbf2e4d4
HJ
1484#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1485 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1486 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1487
fc27f749 1488#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1489#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1490
fc27f749 1491#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1492
e075ae69
RH
1493#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1494#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1495
d5e254e1
IE
1496#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1497#define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1498
c98f8742
JVA
1499/* The class value for index registers, and the one for base regs. */
1500
1501#define INDEX_REG_CLASS INDEX_REGS
1502#define BASE_REG_CLASS GENERAL_REGS
1503
c98f8742 1504/* Place additional restrictions on the register class to use when it
4cbb525c 1505 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1506 register for which class CLASS would ordinarily be used.
1507
1508 We avoid classes containing registers from multiple units due to
1509 the limitation in ix86_secondary_memory_needed. We limit these
1510 classes to their "natural mode" single unit register class, depending
1511 on the unit availability.
1512
1513 Please note that reg_class_subset_p is not commutative, so these
1514 conditions mean "... if (CLASS) includes ALL registers from the
1515 register set." */
1516
1517#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1518 (((MODE) == QImode && !TARGET_64BIT \
1519 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1520 : (((MODE) == SImode || (MODE) == DImode) \
1521 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1522 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1523 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1524 : (X87_FLOAT_MODE_P (MODE) \
1525 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1526 : (CLASS))
c98f8742 1527
85ff473e 1528/* If we are copying between general and FP registers, we need a memory
f84aa48a 1529 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1530#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1531 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1532
c62b3659
UB
1533/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1534 There is no need to emit full 64 bit move on 64 bit targets
1535 for integral modes that can be moved using 32 bit move. */
1536#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1537 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1538 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1539 : MODE)
1540
1272914c
RH
1541/* Return a class of registers that cannot change FROM mode to TO mode. */
1542
1543#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1544 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1545\f
1546/* Stack layout; function entry, exit and calling. */
1547
1548/* Define this if pushing a word on the stack
1549 makes the stack pointer a smaller address. */
1550#define STACK_GROWS_DOWNWARD
1551
a4d05547 1552/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1553 is at the high-address end of the local variables;
1554 that is, each additional local variable allocated
1555 goes at a more negative offset in the frame. */
f62c8a5c 1556#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1557
1558/* Offset within stack frame to start allocating local variables at.
1559 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1560 first local allocated. Otherwise, it is the offset to the BEGINNING
1561 of the first local allocated. */
1562#define STARTING_FRAME_OFFSET 0
1563
8c2b2fae
UB
1564/* If we generate an insn to push BYTES bytes, this says how many the stack
1565 pointer really advances by. On 386, we have pushw instruction that
1566 decrements by exactly 2 no matter what the position was, there is no pushb.
1567
1568 But as CIE data alignment factor on this arch is -4 for 32bit targets
1569 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1570 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1571
d2836273 1572#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1573 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1574
1575/* If defined, the maximum amount of space required for outgoing arguments
1576 will be computed and placed into the variable `crtl->outgoing_args_size'.
1577 No space will be pushed onto the stack for each call; instead, the
1578 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1579
1580 In 32bit mode enabling argument accumulation results in about 5% code size
1581 growth becuase move instructions are less compact than push. In 64bit
1582 mode the difference is less drastic but visible.
1583
1584 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1585 actually grow with accumulation. Is that because accumulated args
41ee845b 1586 unwind info became unnecesarily bloated?
f830ddc2
RH
1587
1588 With the 64-bit MS ABI, we can generate correct code with or without
1589 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1590 generated without accumulated args is terrible.
41ee845b
JH
1591
1592 If stack probes are required, the space used for large function
1593 arguments on the stack must also be probed, so enable
1594 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1595
6c6094f1 1596#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1597 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1598 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1599
1600/* If defined, a C expression whose value is nonzero when we want to use PUSH
1601 instructions to pass outgoing arguments. */
1602
1603#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1604
2da4124d
L
1605/* We want the stack and args grow in opposite directions, even if
1606 PUSH_ARGS is 0. */
1607#define PUSH_ARGS_REVERSED 1
1608
c98f8742
JVA
1609/* Offset of first parameter from the argument pointer register value. */
1610#define FIRST_PARM_OFFSET(FNDECL) 0
1611
a7180f70
BS
1612/* Define this macro if functions should assume that stack space has been
1613 allocated for arguments even when their values are passed in registers.
1614
1615 The value of this macro is the size, in bytes, of the area reserved for
1616 arguments passed in registers for the function represented by FNDECL.
1617
1618 This space can be allocated by the caller, or be a part of the
1619 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1620 which. */
7c800926
KT
1621#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1622
4ae8027b 1623#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1624 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1625
c98f8742
JVA
1626/* Define how to find the value returned by a library function
1627 assuming the value has mode MODE. */
1628
4ae8027b 1629#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1630
e9125c09
TW
1631/* Define the size of the result block used for communication between
1632 untyped_call and untyped_return. The block contains a DImode value
1633 followed by the block used by fnsave and frstor. */
1634
1635#define APPLY_RESULT_SIZE (8+108)
1636
b08de47e 1637/* 1 if N is a possible register number for function argument passing. */
53c17031 1638#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1639
1640/* Define a data type for recording info about an argument list
1641 during the scan of that argument list. This data type should
1642 hold all necessary information about the function itself
1643 and about the args processed so far, enough to enable macros
b08de47e 1644 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1645
e075ae69 1646typedef struct ix86_args {
fa283935 1647 int words; /* # words passed so far */
b08de47e
MM
1648 int nregs; /* # registers available for passing */
1649 int regno; /* next available register number */
3e65f251
KT
1650 int fastcall; /* fastcall or thiscall calling convention
1651 is used */
fa283935 1652 int sse_words; /* # sse words passed so far */
a7180f70 1653 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1654 int warn_avx512f; /* True when we want to warn
1655 about AVX512F ABI. */
95879c72 1656 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1657 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1658 int warn_mmx; /* True when we want to warn about MMX ABI. */
1659 int sse_regno; /* next available sse register number */
1660 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1661 int mmx_nregs; /* # mmx registers available for passing */
1662 int mmx_regno; /* next available mmx register number */
892a2d68 1663 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1664 int caller; /* true if it is caller. */
2824d6e5
UB
1665 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1666 SFmode/DFmode arguments should be passed
1667 in SSE registers. Otherwise 0. */
d5e254e1
IE
1668 int bnd_regno; /* next available bnd register number */
1669 int bnds_in_bt; /* number of bounds expected in BT. */
1670 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1671 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1672 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1673 MS_ABI for ms abi. */
b08de47e 1674} CUMULATIVE_ARGS;
c98f8742
JVA
1675
1676/* Initialize a variable CUM of type CUMULATIVE_ARGS
1677 for a call to a function whose data type is FNTYPE.
b08de47e 1678 For a library call, FNTYPE is 0. */
c98f8742 1679
0f6937fe 1680#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1681 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1682 (N_NAMED_ARGS) != -1)
c98f8742 1683
c98f8742
JVA
1684/* Output assembler code to FILE to increment profiler label # LABELNO
1685 for profiling a function entry. */
1686
a5fa1ecd
JH
1687#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1688
1689#define MCOUNT_NAME "_mcount"
1690
3c5273a9
KT
1691#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1692
a5fa1ecd 1693#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1694
1695/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1696 the stack pointer does not matter. The value is tested only in
1697 functions that have frame pointers.
1698 No definition is equivalent to always zero. */
fce5a9f2 1699/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1700 we have to restore it ourselves from the frame pointer, in order to
1701 use pop */
1702
1703#define EXIT_IGNORE_STACK 1
1704
c98f8742
JVA
1705/* Output assembler code for a block containing the constant parts
1706 of a trampoline, leaving space for the variable parts. */
1707
a269a03c 1708/* On the 386, the trampoline contains two instructions:
c98f8742 1709 mov #STATIC,ecx
a269a03c
JC
1710 jmp FUNCTION
1711 The trampoline is generated entirely at runtime. The operand of JMP
1712 is the address of FUNCTION relative to the instruction following the
1713 JMP (which is 5 bytes long). */
c98f8742
JVA
1714
1715/* Length in units of the trampoline for entering a nested function. */
1716
3452586b 1717#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1718\f
1719/* Definitions for register eliminations.
1720
1721 This is an array of structures. Each structure initializes one pair
1722 of eliminable registers. The "from" register number is given first,
1723 followed by "to". Eliminations of the same "from" register are listed
1724 in order of preference.
1725
afc2cd05
NC
1726 There are two registers that can always be eliminated on the i386.
1727 The frame pointer and the arg pointer can be replaced by either the
1728 hard frame pointer or to the stack pointer, depending upon the
1729 circumstances. The hard frame pointer is not used before reload and
1730 so it is not eligible for elimination. */
c98f8742 1731
564d80f4
JH
1732#define ELIMINABLE_REGS \
1733{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1734 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1735 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1736 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1737
c98f8742
JVA
1738/* Define the offset between two registers, one to be eliminated, and the other
1739 its replacement, at the start of a routine. */
1740
d9a5f180
GS
1741#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1742 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1743\f
1744/* Addressing modes, and classification of registers for them. */
1745
c98f8742
JVA
1746/* Macros to check register numbers against specific register classes. */
1747
1748/* These assume that REGNO is a hard or pseudo reg number.
1749 They give nonzero only if REGNO is a hard reg of the suitable class
1750 or a pseudo reg currently allocated to a suitable hard reg.
1751 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1752 has been allocated, which happens in reginfo.c during register
1753 allocation. */
c98f8742 1754
3f3f2124
JH
1755#define REGNO_OK_FOR_INDEX_P(REGNO) \
1756 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1757 || REX_INT_REGNO_P (REGNO) \
1758 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1759 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1760
3f3f2124 1761#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1762 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1763 || (REGNO) == ARG_POINTER_REGNUM \
1764 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1765 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1766
c98f8742
JVA
1767/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1768 and check its validity for a certain class.
1769 We have two alternate definitions for each of them.
1770 The usual definition accepts all pseudo regs; the other rejects
1771 them unless they have been allocated suitable hard regs.
1772 The symbol REG_OK_STRICT causes the latter definition to be used.
1773
1774 Most source files want to accept pseudo regs in the hope that
1775 they will get allocated to the class that the insn wants them to be in.
1776 Source files for reload pass need to be strict.
1777 After reload, it makes no difference, since pseudo regs have
1778 been eliminated by then. */
1779
c98f8742 1780
ff482c8d 1781/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1782#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1783 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1784 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1785 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1786
3b3c6a3f 1787#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1788 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1789 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1790 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1791 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1792
3b3c6a3f
MM
1793/* Strict versions, hard registers only */
1794#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1795#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1796
3b3c6a3f 1797#ifndef REG_OK_STRICT
d9a5f180
GS
1798#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1799#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1800
1801#else
d9a5f180
GS
1802#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1803#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1804#endif
1805
331d9186 1806/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1807 that is a valid memory address for an instruction.
1808 The MODE argument is the machine mode for the MEM expression
1809 that wants to use this address.
1810
331d9186 1811 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1812 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1813
1814 See legitimize_pic_address in i386.c for details as to what
1815 constitutes a legitimate address when -fpic is used. */
1816
1817#define MAX_REGS_PER_ADDRESS 2
1818
f996902d 1819#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1820
ae1547cc
UB
1821/* Try a machine-dependent way of reloading an illegitimate address
1822 operand. If we find one, push the reload and jump to WIN. This
1823 macro is used in only one place: `find_reloads_address' in reload.c. */
1824
1825#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1826do { \
1827 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1828 (int)(TYPE), (INDL))) \
1829 goto WIN; \
1830} while (0)
1831
b949ea8b
JW
1832/* If defined, a C expression to determine the base term of address X.
1833 This macro is used in only one place: `find_base_term' in alias.c.
1834
1835 It is always safe for this macro to not be defined. It exists so
1836 that alias analysis can understand machine-dependent addresses.
1837
1838 The typical use of this macro is to handle addresses containing
1839 a label_ref or symbol_ref within an UNSPEC. */
1840
d9a5f180 1841#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1842
c98f8742 1843/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1844 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1845 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1846
f996902d 1847#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1848
1849#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1850 (GET_CODE (X) == SYMBOL_REF \
1851 || GET_CODE (X) == LABEL_REF \
1852 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1853\f
b08de47e
MM
1854/* Max number of args passed in registers. If this is more than 3, we will
1855 have problems with ebx (register #4), since it is a caller save register and
1856 is also used as the pic register in ELF. So for now, don't allow more than
1857 3 registers to be passed in registers. */
1858
7c800926
KT
1859/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1860#define X86_64_REGPARM_MAX 6
72fa3605 1861#define X86_64_MS_REGPARM_MAX 4
7c800926 1862
72fa3605 1863#define X86_32_REGPARM_MAX 3
7c800926 1864
4ae8027b 1865#define REGPARM_MAX \
2824d6e5
UB
1866 (TARGET_64BIT \
1867 ? (TARGET_64BIT_MS_ABI \
1868 ? X86_64_MS_REGPARM_MAX \
1869 : X86_64_REGPARM_MAX) \
4ae8027b 1870 : X86_32_REGPARM_MAX)
d2836273 1871
72fa3605
UB
1872#define X86_64_SSE_REGPARM_MAX 8
1873#define X86_64_MS_SSE_REGPARM_MAX 4
1874
b6010cab 1875#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1876
4ae8027b 1877#define SSE_REGPARM_MAX \
2824d6e5
UB
1878 (TARGET_64BIT \
1879 ? (TARGET_64BIT_MS_ABI \
1880 ? X86_64_MS_SSE_REGPARM_MAX \
1881 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1882 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1883
1884#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1885\f
1886/* Specify the machine mode that this machine uses
1887 for the index in the tablejump instruction. */
dc4d7240 1888#define CASE_VECTOR_MODE \
6025b127 1889 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1890
c98f8742
JVA
1891/* Define this as 1 if `char' should by default be signed; else as 0. */
1892#define DEFAULT_SIGNED_CHAR 1
1893
1894/* Max number of bytes we can move from memory to memory
1895 in one reasonably fast instruction. */
65d9c0ab
JH
1896#define MOVE_MAX 16
1897
1898/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1899 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1900 number of bytes we can move with a single instruction. */
63001560 1901#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1902
7e24ffc9 1903/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1904 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1905 Increasing the value will always make code faster, but eventually
1906 incurs high cost in increased code size.
c98f8742 1907
e2e52e1b 1908 If you don't define this, a reasonable default is used. */
c98f8742 1909
e04ad03d 1910#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1911
45d78e7f
JJ
1912/* If a clear memory operation would take CLEAR_RATIO or more simple
1913 move-instruction sequences, we will do a clrmem or libcall instead. */
1914
e04ad03d 1915#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1916
53f00dde
UB
1917/* Define if shifts truncate the shift count which implies one can
1918 omit a sign-extension or zero-extension of a shift count.
1919
1920 On i386, shifts do truncate the count. But bit test instructions
1921 take the modulo of the bit offset operand. */
c98f8742
JVA
1922
1923/* #define SHIFT_COUNT_TRUNCATED */
1924
1925/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1926 is done just by pretending it is already truncated. */
1927#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1928
d9f32422
JH
1929/* A macro to update M and UNSIGNEDP when an object whose type is
1930 TYPE and which has the specified mode and signedness is to be
1931 stored in a register. This macro is only called when TYPE is a
1932 scalar type.
1933
f710504c 1934 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1935 quantities to SImode. The choice depends on target type. */
1936
1937#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1938do { \
d9f32422
JH
1939 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1940 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1941 (MODE) = SImode; \
1942} while (0)
d9f32422 1943
c98f8742
JVA
1944/* Specify the machine mode that pointers have.
1945 After generation of rtl, the compiler makes no further distinction
1946 between pointers and any other objects of this machine mode. */
28968d91 1947#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1948
d5e254e1
IE
1949/* Specify the machine mode that bounds have. */
1950#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1951
f0ea7581
L
1952/* A C expression whose value is zero if pointers that need to be extended
1953 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1954 greater then zero if they are zero-extended and less then zero if the
1955 ptr_extend instruction should be used. */
1956
1957#define POINTERS_EXTEND_UNSIGNED 1
1958
c98f8742
JVA
1959/* A function address in a call instruction
1960 is a byte address (for indexing purposes)
1961 so give the MEM rtx a byte's mode. */
1962#define FUNCTION_MODE QImode
d4ba09c0 1963\f
d4ba09c0 1964
d4ba09c0
SC
1965/* A C expression for the cost of a branch instruction. A value of 1
1966 is the default; other values are interpreted relative to that. */
1967
3a4fd356
JH
1968#define BRANCH_COST(speed_p, predictable_p) \
1969 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1970
e327d1a3
L
1971/* An integer expression for the size in bits of the largest integer machine
1972 mode that should actually be used. We allow pairs of registers. */
1973#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1974
d4ba09c0
SC
1975/* Define this macro as a C expression which is nonzero if accessing
1976 less than a word of memory (i.e. a `char' or a `short') is no
1977 faster than accessing a word of memory, i.e., if such access
1978 require more than one instruction or if there is no difference in
1979 cost between byte and (aligned) word loads.
1980
1981 When this macro is not defined, the compiler will access a field by
1982 finding the smallest containing object; when it is defined, a
1983 fullword load will be used if alignment permits. Unless bytes
1984 accesses are faster than word accesses, using word accesses is
1985 preferable since it may eliminate subsequent memory access if
1986 subsequent accesses occur to other fields in the same word of the
1987 structure, but to different bytes. */
1988
1989#define SLOW_BYTE_ACCESS 0
1990
1991/* Nonzero if access to memory by shorts is slow and undesirable. */
1992#define SLOW_SHORT_ACCESS 0
1993
d4ba09c0
SC
1994/* Define this macro to be the value 1 if unaligned accesses have a
1995 cost many times greater than aligned accesses, for example if they
1996 are emulated in a trap handler.
1997
9cd10576
KH
1998 When this macro is nonzero, the compiler will act as if
1999 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2000 moves. This can cause significantly more instructions to be
9cd10576 2001 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2002 accesses only add a cycle or two to the time for a memory access.
2003
2004 If the value of this macro is always zero, it need not be defined. */
2005
e1565e65 2006/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2007
d4ba09c0
SC
2008/* Define this macro if it is as good or better to call a constant
2009 function address than to call an address kept in a register.
2010
2011 Desirable on the 386 because a CALL with a constant address is
2012 faster than one with a register address. */
2013
2014#define NO_FUNCTION_CSE
c98f8742 2015\f
c572e5ba
JVA
2016/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2017 return the mode to be used for the comparison.
2018
2019 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2020 VOIDmode should be used in all other cases.
c572e5ba 2021
16189740 2022 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2023 possible, to allow for more combinations. */
c98f8742 2024
d9a5f180 2025#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2026
9cd10576 2027/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2028 reversed. */
2029
2030#define REVERSIBLE_CC_MODE(MODE) 1
2031
2032/* A C expression whose value is reversed condition code of the CODE for
2033 comparison done in CC_MODE mode. */
3c5cb3e4 2034#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2035
c98f8742
JVA
2036\f
2037/* Control the assembler format that we output, to the extent
2038 this does not vary between assemblers. */
2039
2040/* How to refer to registers in assembler output.
892a2d68 2041 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2042
a7b376ee 2043/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2044 For non floating point regs, the following are the HImode names.
2045
2046 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2047 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2048 "y" code. */
c98f8742 2049
a7180f70
BS
2050#define HI_REGISTER_NAMES \
2051{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2052 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2053 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2054 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2055 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2056 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2057 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2058 "xmm16", "xmm17", "xmm18", "xmm19", \
2059 "xmm20", "xmm21", "xmm22", "xmm23", \
2060 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2061 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2062 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2063 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2064
c98f8742
JVA
2065#define REGISTER_NAMES HI_REGISTER_NAMES
2066
2067/* Table of additional register names to use in user input. */
2068
2069#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2070{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2071 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2072 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2073 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2074 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2075 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2076 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2077 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2078 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2079 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2080 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2081 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2082 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2083 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2084 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2085 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2086 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2087 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2088 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2089 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2090 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2091 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2092
2093/* Note we are omitting these since currently I don't know how
2094to get gcc to use these, since they want the same but different
2095number as al, and ax.
2096*/
2097
c98f8742 2098#define QI_REGISTER_NAMES \
3f3f2124 2099{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2100
2101/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2102 of regs 0 through 3. */
c98f8742
JVA
2103
2104#define QI_HIGH_REGISTER_NAMES \
2105{"ah", "dh", "ch", "bh", }
2106
2107/* How to renumber registers for dbx and gdb. */
2108
d9a5f180
GS
2109#define DBX_REGISTER_NUMBER(N) \
2110 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2111
9a82e702
MS
2112extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2113extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2114extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2115
780a5b71
UB
2116extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2117
469ac993
JM
2118/* Before the prologue, RA is at 0(%esp). */
2119#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2120 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2121
e414ab29 2122/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2123#define RETURN_ADDR_RTX(COUNT, FRAME) \
2124 ((COUNT) == 0 \
0a81f074
RS
2125 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2126 -UNITS_PER_WORD)) \
2127 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2128
892a2d68 2129/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2130#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2131
a6ab3aad 2132/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2133#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2134
1020a5ab 2135/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2136#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2137#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2138
ad919812 2139
e4c4ebeb
RH
2140/* Select a format to encode pointers in exception handling data. CODE
2141 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2142 true if the symbol may be affected by dynamic relocations.
2143
2144 ??? All x86 object file formats are capable of representing this.
2145 After all, the relocation needed is the same as for the call insn.
2146 Whether or not a particular assembler allows us to enter such, I
2147 guess we'll have to see. */
d9a5f180 2148#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2149 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2150
c98f8742
JVA
2151/* This is how to output an insn to push a register on the stack.
2152 It need not be very fast code. */
2153
d9a5f180 2154#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2155do { \
2156 if (TARGET_64BIT) \
2157 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2158 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2159 else \
2160 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2161} while (0)
c98f8742
JVA
2162
2163/* This is how to output an insn to pop a register from the stack.
2164 It need not be very fast code. */
2165
d9a5f180 2166#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2167do { \
2168 if (TARGET_64BIT) \
2169 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2170 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2171 else \
2172 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2173} while (0)
c98f8742 2174
f88c65f7 2175/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2176
2177#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2178 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2179
f88c65f7 2180/* This is how to output an element of a case-vector that is relative. */
c98f8742 2181
33f7f353 2182#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2183 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2184
63001560 2185/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2186
2187#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2188{ \
2189 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2190 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2191}
2192
2193/* A C statement or statements which output an assembler instruction
2194 opcode to the stdio stream STREAM. The macro-operand PTR is a
2195 variable of type `char *' which points to the opcode name in
2196 its "internal" form--the form that is written in the machine
2197 description. */
2198
2199#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2200 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2201
6a90d232
L
2202/* A C statement to output to the stdio stream FILE an assembler
2203 command to pad the location counter to a multiple of 1<<LOG
2204 bytes if it is within MAX_SKIP bytes. */
2205
2206#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2207#undef ASM_OUTPUT_MAX_SKIP_PAD
2208#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2209 if ((LOG) != 0) \
2210 { \
2211 if ((MAX_SKIP) == 0) \
2212 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2213 else \
2214 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2215 }
2216#endif
2217
135a687e
KT
2218/* Write the extra assembler code needed to declare a function
2219 properly. */
2220
2221#undef ASM_OUTPUT_FUNCTION_LABEL
2222#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2223 ix86_asm_output_function_label (FILE, NAME, DECL)
2224
f7288899
EC
2225/* Under some conditions we need jump tables in the text section,
2226 because the assembler cannot handle label differences between
2227 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2228
2229#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2230 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2231 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2232
cea3bd3e
RH
2233/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2234 and switch back. For x86 we do this only to save a few bytes that
2235 would otherwise be unused in the text section. */
ad211091
KT
2236#define CRT_MKSTR2(VAL) #VAL
2237#define CRT_MKSTR(x) CRT_MKSTR2(x)
2238
2239#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2240 asm (SECTION_OP "\n\t" \
2241 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2242 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2243
2244/* Default threshold for putting data in large sections
2245 with x86-64 medium memory model */
2246#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2247\f
b97de419
L
2248/* Which processor to tune code generation for. These must be in sync
2249 with processor_target_table in i386.c. */
5bf0ebab
RH
2250
2251enum processor_type
2252{
b97de419
L
2253 PROCESSOR_GENERIC = 0,
2254 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2255 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2256 PROCESSOR_PENTIUM,
2257 PROCESSOR_PENTIUMPRO,
5bf0ebab 2258 PROCESSOR_PENTIUM4,
89c43c0a 2259 PROCESSOR_NOCONA,
340ef734 2260 PROCESSOR_CORE2,
d3c11974
L
2261 PROCESSOR_NEHALEM,
2262 PROCESSOR_SANDYBRIDGE,
3a579e09 2263 PROCESSOR_HASWELL,
d3c11974
L
2264 PROCESSOR_BONNELL,
2265 PROCESSOR_SILVERMONT,
9a7f94d7 2266 PROCESSOR_INTEL,
b97de419
L
2267 PROCESSOR_GEODE,
2268 PROCESSOR_K6,
2269 PROCESSOR_ATHLON,
2270 PROCESSOR_K8,
21efb4d4 2271 PROCESSOR_AMDFAM10,
1133125e 2272 PROCESSOR_BDVER1,
4d652a18 2273 PROCESSOR_BDVER2,
eb2f2b44 2274 PROCESSOR_BDVER3,
ed97ad47 2275 PROCESSOR_BDVER4,
14b52538 2276 PROCESSOR_BTVER1,
e32bfc16 2277 PROCESSOR_BTVER2,
5bf0ebab
RH
2278 PROCESSOR_max
2279};
2280
9e555526 2281extern enum processor_type ix86_tune;
5bf0ebab 2282extern enum processor_type ix86_arch;
5bf0ebab 2283
8362f420
JH
2284/* Size of the RED_ZONE area. */
2285#define RED_ZONE_SIZE 128
2286/* Reserved area of the red zone for temporaries. */
2287#define RED_ZONE_RESERVE 8
c93e80a5 2288
95899b34 2289extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2290extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2291
2292/* Smallest class containing REGNO. */
2293extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2294
0948ccb2
PB
2295enum ix86_fpcmp_strategy {
2296 IX86_FPCMP_SAHF,
2297 IX86_FPCMP_COMI,
2298 IX86_FPCMP_ARITH
2299};
22fb740d
JH
2300\f
2301/* To properly truncate FP values into integers, we need to set i387 control
2302 word. We can't emit proper mode switching code before reload, as spills
2303 generated by reload may truncate values incorrectly, but we still can avoid
2304 redundant computation of new control word by the mode switching pass.
2305 The fldcw instructions are still emitted redundantly, but this is probably
2306 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2307 the sequence.
22fb740d
JH
2308
2309 The machinery is to emit simple truncation instructions and split them
2310 before reload to instructions having USEs of two memory locations that
2311 are filled by this code to old and new control word.
fce5a9f2 2312
22fb740d
JH
2313 Post-reload pass may be later used to eliminate the redundant fildcw if
2314 needed. */
2315
ff680eb1
UB
2316enum ix86_entity
2317{
ff97910d
VY
2318 AVX_U128 = 0,
2319 I387_TRUNC,
ff680eb1
UB
2320 I387_FLOOR,
2321 I387_CEIL,
2322 I387_MASK_PM,
2323 MAX_386_ENTITIES
2324};
2325
1cba2b96 2326enum ix86_stack_slot
ff680eb1 2327{
443ca5fc 2328 SLOT_TEMP = 0,
ff680eb1
UB
2329 SLOT_CW_STORED,
2330 SLOT_CW_TRUNC,
2331 SLOT_CW_FLOOR,
2332 SLOT_CW_CEIL,
2333 SLOT_CW_MASK_PM,
2334 MAX_386_STACK_LOCALS
2335};
22fb740d 2336
ff97910d
VY
2337enum avx_u128_state
2338{
2339 AVX_U128_CLEAN,
2340 AVX_U128_DIRTY,
2341 AVX_U128_ANY
2342};
2343
22fb740d
JH
2344/* Define this macro if the port needs extra instructions inserted
2345 for mode switching in an optimizing compilation. */
2346
ff680eb1
UB
2347#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2348 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2349
2350/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2351 initializer for an array of integers. Each initializer element N
2352 refers to an entity that needs mode switching, and specifies the
2353 number of different modes that might need to be set for this
2354 entity. The position of the initializer in the initializer -
2355 starting counting at zero - determines the integer that is used to
2356 refer to the mode-switched entity in question. */
2357
ff680eb1 2358#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2359 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2360
0f0138b6
JH
2361\f
2362/* Avoid renaming of stack registers, as doing so in combination with
2363 scheduling just increases amount of live registers at time and in
2364 the turn amount of fxch instructions needed.
2365
3f97cb0b
AI
2366 ??? Maybe Pentium chips benefits from renaming, someone can try....
2367
2368 Don't rename evex to non-evex sse registers. */
0f0138b6 2369
3f97cb0b
AI
2370#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2371 (EXT_REX_SSE_REGNO_P (SRC) == \
2372 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2373
3b3c6a3f 2374\f
e91f04de 2375#define FASTCALL_PREFIX '@'
fa1a0d02 2376\f
ec7ded37 2377/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2378
604a6be9 2379#ifndef USED_FOR_TARGET
ec7ded37 2380struct GTY(()) machine_frame_state
cd9c1ca8 2381{
ec7ded37
RH
2382 /* This pair tracks the currently active CFA as reg+offset. When reg
2383 is drap_reg, we don't bother trying to record here the real CFA when
2384 it might really be a DW_CFA_def_cfa_expression. */
2385 rtx cfa_reg;
2386 HOST_WIDE_INT cfa_offset;
2387
2388 /* The current offset (canonically from the CFA) of ESP and EBP.
2389 When stack frame re-alignment is active, these may not be relative
2390 to the CFA. However, in all cases they are relative to the offsets
2391 of the saved registers stored in ix86_frame. */
2392 HOST_WIDE_INT sp_offset;
2393 HOST_WIDE_INT fp_offset;
2394
2395 /* The size of the red-zone that may be assumed for the purposes of
2396 eliding register restore notes in the epilogue. This may be zero
2397 if no red-zone is in effect, or may be reduced from the real
2398 red-zone value by a maximum runtime stack re-alignment value. */
2399 int red_zone_offset;
2400
2401 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2402 value within the frame. If false then the offset above should be
2403 ignored. Note that DRAP, if valid, *always* points to the CFA and
2404 thus has an offset of zero. */
2405 BOOL_BITFIELD sp_valid : 1;
2406 BOOL_BITFIELD fp_valid : 1;
2407 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2408
2409 /* Indicate whether the local stack frame has been re-aligned. When
2410 set, the SP/FP offsets above are relative to the aligned frame
2411 and not the CFA. */
2412 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2413};
2414
f81c9774
RH
2415/* Private to winnt.c. */
2416struct seh_frame_state;
2417
d1b38208 2418struct GTY(()) machine_function {
fa1a0d02
JH
2419 struct stack_local_entry *stack_locals;
2420 const char *some_ld_name;
4aab97f9
L
2421 int varargs_gpr_size;
2422 int varargs_fpr_size;
ff680eb1 2423 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2424
2425 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2426 has been computed for. */
2427 int use_fast_prologue_epilogue_nregs;
2428
7458026b
ILT
2429 /* For -fsplit-stack support: A stack local which holds a pointer to
2430 the stack arguments for a function with a variable number of
2431 arguments. This is set at the start of the function and is used
2432 to initialize the overflow_arg_area field of the va_list
2433 structure. */
2434 rtx split_stack_varargs_pointer;
2435
3452586b
RH
2436 /* This value is used for amd64 targets and specifies the current abi
2437 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2438 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2439
2440 /* Nonzero if the function accesses a previous frame. */
2441 BOOL_BITFIELD accesses_prev_frame : 1;
2442
2443 /* Nonzero if the function requires a CLD in the prologue. */
2444 BOOL_BITFIELD needs_cld : 1;
2445
922e3e33
UB
2446 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2447 expander to determine the style used. */
3452586b
RH
2448 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2449
5bf5a10b
AO
2450 /* If true, the current function needs the default PIC register, not
2451 an alternate register (on x86) and must not use the red zone (on
2452 x86_64), even if it's a leaf function. We don't want the
2453 function to be regarded as non-leaf because TLS calls need not
2454 affect register allocation. This flag is set when a TLS call
2455 instruction is expanded within a function, and never reset, even
2456 if all such instructions are optimized away. Use the
2457 ix86_current_function_calls_tls_descriptor macro for a better
2458 approximation. */
3452586b
RH
2459 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2460
2461 /* If true, the current function has a STATIC_CHAIN is placed on the
2462 stack below the return address. */
2463 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2464
529a6471
JJ
2465 /* If true, it is safe to not save/restore DRAP register. */
2466 BOOL_BITFIELD no_drap_save_restore : 1;
2467
ec7ded37
RH
2468 /* During prologue/epilogue generation, the current frame state.
2469 Otherwise, the frame state at the end of the prologue. */
2470 struct machine_frame_state fs;
f81c9774
RH
2471
2472 /* During SEH output, this is non-null. */
2473 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2474};
cd9c1ca8 2475#endif
fa1a0d02
JH
2476
2477#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2478#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2479#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2480#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2481#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2482#define ix86_tls_descriptor_calls_expanded_in_cfun \
2483 (cfun->machine->tls_descriptor_call_expanded_p)
2484/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2485 calls are optimized away, we try to detect cases in which it was
2486 optimized away. Since such instructions (use (reg REG_SP)), we can
2487 verify whether there's any such instruction live by testing that
2488 REG_SP is live. */
2489#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2490 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2491#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2492
1bc7c5b6
ZW
2493/* Control behavior of x86_file_start. */
2494#define X86_FILE_START_VERSION_DIRECTIVE false
2495#define X86_FILE_START_FLTUSED false
2496
7dcbf659
JH
2497/* Flag to mark data that is in the large address area. */
2498#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2499#define SYMBOL_REF_FAR_ADDR_P(X) \
2500 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2501
2502/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2503 have defined always, to avoid ifdefing. */
2504#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2505#define SYMBOL_REF_DLLIMPORT_P(X) \
2506 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2507
2508#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2509#define SYMBOL_REF_DLLEXPORT_P(X) \
2510 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2511
82c0e1a0
KT
2512#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2513#define SYMBOL_REF_STUBVAR_P(X) \
2514 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2515
7942e47e
RY
2516extern void debug_ready_dispatch (void);
2517extern void debug_dispatch_window (int);
2518
91afcfa3
QN
2519/* The value at zero is only defined for the BMI instructions
2520 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2521#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2522 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2523#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2524 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2525
2526
b8ce4e94
KT
2527/* Flags returned by ix86_get_callcvt (). */
2528#define IX86_CALLCVT_CDECL 0x1
2529#define IX86_CALLCVT_STDCALL 0x2
2530#define IX86_CALLCVT_FASTCALL 0x4
2531#define IX86_CALLCVT_THISCALL 0x8
2532#define IX86_CALLCVT_REGPARM 0x10
2533#define IX86_CALLCVT_SSEREGPARM 0x20
2534
2535#define IX86_BASE_CALLCVT(FLAGS) \
2536 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2537 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2538
b86b9f44
MM
2539#define RECIP_MASK_NONE 0x00
2540#define RECIP_MASK_DIV 0x01
2541#define RECIP_MASK_SQRT 0x02
2542#define RECIP_MASK_VEC_DIV 0x04
2543#define RECIP_MASK_VEC_SQRT 0x08
2544#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2545 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2546#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2547
2548#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2549#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2550#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2551#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2552
5dcfdccd
KY
2553#define IX86_HLE_ACQUIRE (1 << 16)
2554#define IX86_HLE_RELEASE (1 << 17)
2555
e83b8e2e
JJ
2556/* For switching between functions with different target attributes. */
2557#define SWITCHABLE_TARGET 1
2558
c98f8742
JVA
2559/*
2560Local variables:
2561version-control: t
2562End:
2563*/