]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
[PATCH, AArch64] Remove excessive braces.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
d1e082c2 2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36
MM
42#define TARGET_64BIT TARGET_ISA_64BIT
43#define TARGET_MMX TARGET_ISA_MMX
44#define TARGET_3DNOW TARGET_ISA_3DNOW
45#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
46#define TARGET_SSE TARGET_ISA_SSE
47#define TARGET_SSE2 TARGET_ISA_SSE2
48#define TARGET_SSE3 TARGET_ISA_SSE3
49#define TARGET_SSSE3 TARGET_ISA_SSSE3
50#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
51#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
52#define TARGET_AVX TARGET_ISA_AVX
53#define TARGET_AVX2 TARGET_ISA_AVX2
54#define TARGET_FMA TARGET_ISA_FMA
55#define TARGET_SSE4A TARGET_ISA_SSE4A
56#define TARGET_FMA4 TARGET_ISA_FMA4
57#define TARGET_XOP TARGET_ISA_XOP
58#define TARGET_LWP TARGET_ISA_LWP
59#define TARGET_ROUND TARGET_ISA_ROUND
60#define TARGET_ABM TARGET_ISA_ABM
61#define TARGET_BMI TARGET_ISA_BMI
62#define TARGET_BMI2 TARGET_ISA_BMI2
63#define TARGET_LZCNT TARGET_ISA_LZCNT
64#define TARGET_TBM TARGET_ISA_TBM
65#define TARGET_POPCNT TARGET_ISA_POPCNT
66#define TARGET_SAHF TARGET_ISA_SAHF
67#define TARGET_MOVBE TARGET_ISA_MOVBE
68#define TARGET_CRC32 TARGET_ISA_CRC32
69#define TARGET_AES TARGET_ISA_AES
70#define TARGET_PCLMUL TARGET_ISA_PCLMUL
71#define TARGET_CMPXCHG16B TARGET_ISA_CX16
72#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
73#define TARGET_RDRND TARGET_ISA_RDRND
74#define TARGET_F16C TARGET_ISA_F16C
75#define TARGET_RTM TARGET_ISA_RTM
76#define TARGET_HLE TARGET_ISA_HLE
77#define TARGET_RDSEED TARGET_ISA_RDSEED
78#define TARGET_PRFCHW TARGET_ISA_PRFCHW
79#define TARGET_ADX TARGET_ISA_ADX
3a0d99bb
AI
80#define TARGET_FXSR TARGET_ISA_FXSR
81#define TARGET_XSAVE TARGET_ISA_XSAVE
82#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
ab442df7 83
90922d36
MM
84#define TARGET_LP64 TARGET_ABI_64
85#define TARGET_X32 TARGET_ABI_X32
04e1d06b 86
cbf2e4d4
HJ
87/* SSE4.1 defines round instructions */
88#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 89#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 90
26b5109f
RS
91#include "config/vxworks-dummy.h"
92
7eb68c06 93#include "config/i386/i386-opts.h"
ccf8e764 94
c69fa2d4 95#define MAX_STRINGOP_ALGS 4
ccf8e764 96
8c996513
JH
97/* Specify what algorithm to use for stringops on known size.
98 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
99 known at compile time or estimated via feedback, the SIZE array
100 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 101 means infinity). Corresponding ALG is used then.
340ef734
JH
102 When NOALIGN is true the code guaranting the alignment of the memory
103 block is skipped.
104
8c996513 105 For example initializer:
4f3f76e6 106 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 107 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 108 be used otherwise. */
8c996513
JH
109struct stringop_algs
110{
111 const enum stringop_alg unknown_size;
112 const struct stringop_strategy {
113 const int max;
114 const enum stringop_alg alg;
340ef734 115 int noalign;
c69fa2d4 116 } size [MAX_STRINGOP_ALGS];
8c996513
JH
117};
118
d4ba09c0
SC
119/* Define the specific costs for a given cpu */
120
121struct processor_costs {
8b60264b
KG
122 const int add; /* cost of an add instruction */
123 const int lea; /* cost of a lea instruction */
124 const int shift_var; /* variable shift costs */
125 const int shift_const; /* constant shift costs */
f676971a 126 const int mult_init[5]; /* cost of starting a multiply
4977bab6 127 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 128 const int mult_bit; /* cost of multiply per each bit set */
f676971a 129 const int divide[5]; /* cost of a divide/mod
4977bab6 130 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
131 int movsx; /* The cost of movsx operation. */
132 int movzx; /* The cost of movzx operation. */
8b60264b
KG
133 const int large_insn; /* insns larger than this cost more */
134 const int move_ratio; /* The threshold of number of scalar
ac775968 135 memory-to-memory move insns. */
8b60264b
KG
136 const int movzbl_load; /* cost of loading using movzbl */
137 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
138 in QImode, HImode and SImode relative
139 to reg-reg move (2). */
8b60264b 140 const int int_store[3]; /* cost of storing integer register
96e7ae40 141 in QImode, HImode and SImode */
8b60264b
KG
142 const int fp_move; /* cost of reg,reg fld/fst */
143 const int fp_load[3]; /* cost of loading FP register
96e7ae40 144 in SFmode, DFmode and XFmode */
8b60264b 145 const int fp_store[3]; /* cost of storing FP register
96e7ae40 146 in SFmode, DFmode and XFmode */
8b60264b
KG
147 const int mmx_move; /* cost of moving MMX register. */
148 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 149 in SImode and DImode */
8b60264b 150 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 151 in SImode and DImode */
8b60264b
KG
152 const int sse_move; /* cost of moving SSE register. */
153 const int sse_load[3]; /* cost of loading SSE register
fa79946e 154 in SImode, DImode and TImode*/
8b60264b 155 const int sse_store[3]; /* cost of storing SSE register
fa79946e 156 in SImode, DImode and TImode*/
8b60264b 157 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 158 integer and vice versa. */
46cb0441
ZD
159 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
160 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
161 const int prefetch_block; /* bytes moved to cache for prefetch. */
162 const int simultaneous_prefetches; /* number of parallel prefetch
163 operations. */
4977bab6 164 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
165 const int fadd; /* cost of FADD and FSUB instructions. */
166 const int fmul; /* cost of FMUL instruction. */
167 const int fdiv; /* cost of FDIV instruction. */
168 const int fabs; /* cost of FABS instruction. */
169 const int fchs; /* cost of FCHS instruction. */
170 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 171 /* Specify what algorithm
bee51209
L
172 to use for stringops on unknown size. */
173 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
174 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
175 load and store. */
176 const int scalar_load_cost; /* Cost of scalar load. */
177 const int scalar_store_cost; /* Cost of scalar store. */
178 const int vec_stmt_cost; /* Cost of any vector operation, excluding
179 load, store, vector-to-scalar and
180 scalar-to-vector operation. */
181 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
182 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 183 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
184 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
185 const int vec_store_cost; /* Cost of vector store. */
186 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
187 cost model. */
188 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
189 vectorizer cost model. */
d4ba09c0
SC
190};
191
8b60264b 192extern const struct processor_costs *ix86_cost;
b2077fd2
JH
193extern const struct processor_costs ix86_size_cost;
194
195#define ix86_cur_cost() \
196 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 197
c98f8742
JVA
198/* Macros used in the machine description to test the flags. */
199
ddd5a7c1 200/* configure can arrange to make this 2, to force a 486. */
e075ae69 201
35b528be 202#ifndef TARGET_CPU_DEFAULT
d326eaf0 203#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 204#endif
35b528be 205
004d3859
GK
206#ifndef TARGET_FPMATH_DEFAULT
207#define TARGET_FPMATH_DEFAULT \
208 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
209#endif
210
6ac49599 211#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 212
5791cc29
JT
213/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
214 compile-time constant. */
215#ifdef IN_LIBGCC2
6ac49599 216#undef TARGET_64BIT
5791cc29
JT
217#ifdef __x86_64__
218#define TARGET_64BIT 1
219#else
220#define TARGET_64BIT 0
221#endif
222#else
6ac49599
RS
223#ifndef TARGET_BI_ARCH
224#undef TARGET_64BIT
67adf6a9 225#if TARGET_64BIT_DEFAULT
0c2dc519
JH
226#define TARGET_64BIT 1
227#else
228#define TARGET_64BIT 0
229#endif
230#endif
5791cc29 231#endif
25f94bb5 232
750054a2
CT
233#define HAS_LONG_COND_BRANCH 1
234#define HAS_LONG_UNCOND_BRANCH 1
235
9e555526
RH
236#define TARGET_386 (ix86_tune == PROCESSOR_I386)
237#define TARGET_486 (ix86_tune == PROCESSOR_I486)
238#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
239#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 240#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
241#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
242#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
243#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
244#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 245#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 246#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734
JH
247#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
248#define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
3a579e09 249#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d326eaf0
JH
250#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
251#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
252#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 253#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 254#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 255#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 256#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
14b52538 257#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 258#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 259#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
0b871ccf 260#define TARGET_SLM (ix86_tune == PROCESSOR_SLM)
a269a03c 261
80fd744f
RH
262/* Feature tests against the various tunings. */
263enum ix86_tune_indices {
264 X86_TUNE_USE_LEAVE,
265 X86_TUNE_PUSH_MEMORY,
266 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 267 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
268 X86_TUNE_BRANCH_PREDICTION_HINTS,
269 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 270 X86_TUNE_USE_SAHF,
80fd744f
RH
271 X86_TUNE_MOVX,
272 X86_TUNE_PARTIAL_REG_STALL,
273 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 274 X86_TUNE_LCP_STALL,
80fd744f
RH
275 X86_TUNE_USE_HIMODE_FIOP,
276 X86_TUNE_USE_SIMODE_FIOP,
277 X86_TUNE_USE_MOV0,
278 X86_TUNE_USE_CLTD,
279 X86_TUNE_USE_XCHGB,
280 X86_TUNE_SPLIT_LONG_MOVES,
281 X86_TUNE_READ_MODIFY_WRITE,
282 X86_TUNE_READ_MODIFY,
283 X86_TUNE_PROMOTE_QIMODE,
284 X86_TUNE_FAST_PREFIX,
285 X86_TUNE_SINGLE_STRINGOP,
286 X86_TUNE_QIMODE_MATH,
287 X86_TUNE_HIMODE_MATH,
288 X86_TUNE_PROMOTE_QI_REGS,
289 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
290 X86_TUNE_SINGLE_POP,
291 X86_TUNE_DOUBLE_POP,
292 X86_TUNE_SINGLE_PUSH,
293 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
294 X86_TUNE_INTEGER_DFMODE_MOVES,
295 X86_TUNE_PARTIAL_REG_DEPENDENCY,
296 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
297 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
298 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
299 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
300 X86_TUNE_SSE_SPLIT_REGS,
301 X86_TUNE_SSE_TYPELESS_STORES,
302 X86_TUNE_SSE_LOAD0_BY_PXOR,
303 X86_TUNE_MEMORY_MISMATCH_STALL,
304 X86_TUNE_PROLOGUE_USING_MOVE,
305 X86_TUNE_EPILOGUE_USING_MOVE,
306 X86_TUNE_SHIFT1,
307 X86_TUNE_USE_FFREEP,
00fcb892
UB
308 X86_TUNE_INTER_UNIT_MOVES_TO_VEC,
309 X86_TUNE_INTER_UNIT_MOVES_FROM_VEC,
630ecd8d 310 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
311 X86_TUNE_FOUR_JUMP_LIMIT,
312 X86_TUNE_SCHEDULE,
313 X86_TUNE_USE_BT,
314 X86_TUNE_USE_INCDEC,
315 X86_TUNE_PAD_RETURNS,
e7ed95a2 316 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 317 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9 318 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 319 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
320 X86_TUNE_SLOW_IMUL_IMM32_MEM,
321 X86_TUNE_SLOW_IMUL_IMM8,
322 X86_TUNE_MOVE_M1_VIA_OR,
323 X86_TUNE_NOT_UNPAIRABLE,
324 X86_TUNE_NOT_VECTORMODE,
54723b46 325 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 326 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 327 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 328 X86_TUNE_OPT_AGU,
e72eba85 329 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 330 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 331 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
332 X86_TUNE_REASSOC_INT_TO_PARALLEL,
333 X86_TUNE_REASSOC_FP_TO_PARALLEL,
55a2c322 334 X86_TUNE_GENERAL_REGS_SSE_SPILL,
6c72ea12 335 X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE,
80fd744f
RH
336
337 X86_TUNE_LAST
338};
339
ab442df7 340extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
341
342#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
343#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
344#define TARGET_ZERO_EXTEND_WITH_AND \
345 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 346#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
347#define TARGET_BRANCH_PREDICTION_HINTS \
348 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
349#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
350#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
351#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
352#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
353#define TARGET_PARTIAL_FLAG_REG_STALL \
354 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
355#define TARGET_LCP_STALL \
356 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
357#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
358#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
359#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
360#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
361#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
362#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
363#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
364#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
365#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
366#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
367#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
368#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
369#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
370#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
371#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
372#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
373#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
374#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
375#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
376#define TARGET_INTEGER_DFMODE_MOVES \
377 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
378#define TARGET_PARTIAL_REG_DEPENDENCY \
379 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
380#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
381 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
382#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
383 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
384#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
385 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
386#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
387 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
388#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
389#define TARGET_SSE_TYPELESS_STORES \
390 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
391#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
392#define TARGET_MEMORY_MISMATCH_STALL \
393 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
394#define TARGET_PROLOGUE_USING_MOVE \
395 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
396#define TARGET_EPILOGUE_USING_MOVE \
397 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
398#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
399#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
400#define TARGET_INTER_UNIT_MOVES_TO_VEC \
401 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
402#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
403 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
404#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 405 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
406#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
407#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
408#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
409#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
410#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
411#define TARGET_PAD_SHORT_FUNCTION \
412 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
413#define TARGET_EXT_80387_CONSTANTS \
414 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
415#define TARGET_AVOID_VECTOR_DECODE \
416 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
417#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
418 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
419#define TARGET_SLOW_IMUL_IMM32_MEM \
420 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
421#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
422#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
423#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
424#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
425#define TARGET_USE_VECTOR_FP_CONVERTS \
426 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
427#define TARGET_USE_VECTOR_CONVERTS \
428 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
429#define TARGET_FUSE_CMP_AND_BRANCH \
430 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 431#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
432#define TARGET_VECTORIZE_DOUBLE \
433 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
434#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
435 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
436#define TARGET_AVX128_OPTIMAL \
437 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
438#define TARGET_REASSOC_INT_TO_PARALLEL \
439 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
440#define TARGET_REASSOC_FP_TO_PARALLEL \
441 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
442#define TARGET_GENERAL_REGS_SSE_SPILL \
443 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
444#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
445 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
df7b0cc4 446
80fd744f
RH
447/* Feature tests against the various architecture variations. */
448enum ix86_arch_indices {
cef31f9c 449 X86_ARCH_CMOV,
80fd744f
RH
450 X86_ARCH_CMPXCHG,
451 X86_ARCH_CMPXCHG8B,
452 X86_ARCH_XADD,
453 X86_ARCH_BSWAP,
454
455 X86_ARCH_LAST
456};
4f3f76e6 457
ab442df7 458extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 459
cef31f9c 460#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
461#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
462#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
463#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
464#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
465
cef31f9c
UB
466/* For sane SSE instruction set generation we need fcomi instruction.
467 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
468 expands to a sequence that includes conditional move. */
469#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
470
80fd744f
RH
471#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
472
cb261eb7 473extern unsigned char x86_prefetch_sse;
80fd744f
RH
474#define TARGET_PREFETCH_SSE x86_prefetch_sse
475
80fd744f
RH
476#define ASSEMBLER_DIALECT (ix86_asm_dialect)
477
478#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
479#define TARGET_MIX_SSE_I387 \
480 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
481
482#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
483#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
484#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 485#define TARGET_SUN_TLS 0
1ef45b77 486
67adf6a9
RH
487#ifndef TARGET_64BIT_DEFAULT
488#define TARGET_64BIT_DEFAULT 0
25f94bb5 489#endif
74dc3e94
RH
490#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
491#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
492#endif
25f94bb5 493
e0ea8797
AH
494#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
495#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
496
79f5e442
ZD
497/* Fence to use after loop using storent. */
498
499extern tree x86_mfence;
500#define FENCE_FOLLOWING_MOVNT x86_mfence
501
0ed4a390
JL
502/* Once GDB has been enhanced to deal with functions without frame
503 pointers, we can change this to allow for elimination of
504 the frame pointer in leaf functions. */
505#define TARGET_DEFAULT 0
67adf6a9 506
0a1c5e55
UB
507/* Extra bits to force. */
508#define TARGET_SUBTARGET_DEFAULT 0
509#define TARGET_SUBTARGET_ISA_DEFAULT 0
510
511/* Extra bits to force on w/ 32-bit mode. */
512#define TARGET_SUBTARGET32_DEFAULT 0
513#define TARGET_SUBTARGET32_ISA_DEFAULT 0
514
ccf8e764
RH
515/* Extra bits to force on w/ 64-bit mode. */
516#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 517#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 518
fee3eacd
IS
519/* Replace MACH-O, ifdefs by in-line tests, where possible.
520 (a) Macros defined in config/i386/darwin.h */
b069de3b 521#define TARGET_MACHO 0
9005471b 522#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
523#define MACHOPIC_ATT_STUB 0
524/* (b) Macros defined in config/darwin.h */
525#define MACHO_DYNAMIC_NO_PIC_P 0
526#define MACHOPIC_INDIRECT 0
527#define MACHOPIC_PURE 0
9005471b 528
5a579c3b
LE
529/* For the RDOS */
530#define TARGET_RDOS 0
531
9005471b 532/* For the Windows 64-bit ABI. */
7c800926
KT
533#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
534
6510e8bb
KT
535/* For the Windows 32-bit ABI. */
536#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
537
f81c9774
RH
538/* This is re-defined by cygming.h. */
539#define TARGET_SEH 0
540
a3d7ab92
KT
541/* This is re-defined by cygming.h. */
542#define TARGET_PECOFF 0
543
51212b32 544/* The default abi used by target. */
7c800926 545#define DEFAULT_ABI SYSV_ABI
ccf8e764 546
b8b3f0ca
LE
547/* The default TLS segment register used by target. */
548#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
549
cc69336f
RH
550/* Subtargets may reset this to 1 in order to enable 96-bit long double
551 with the rounding mode forced to 53 bits. */
552#define TARGET_96_ROUND_53_LONG_DOUBLE 0
553
682cd442
GK
554/* -march=native handling only makes sense with compiler running on
555 an x86 or x86_64 chip. If changing this condition, also change
556 the condition in driver-i386.c. */
557#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
558/* In driver-i386.c. */
559extern const char *host_detect_local_cpu (int argc, const char **argv);
560#define EXTRA_SPEC_FUNCTIONS \
561 { "local_cpu_detect", host_detect_local_cpu },
682cd442 562#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
563#endif
564
8981c15b
JM
565#if TARGET_64BIT_DEFAULT
566#define OPT_ARCH64 "!m32"
567#define OPT_ARCH32 "m32"
568#else
f0ea7581
L
569#define OPT_ARCH64 "m64|mx32"
570#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
571#endif
572
1cba2b96
EC
573/* Support for configure-time defaults of some command line options.
574 The order here is important so that -march doesn't squash the
575 tune or cpu values. */
ce998900 576#define OPTION_DEFAULT_SPECS \
da2d4c01 577 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
578 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
579 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 580 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
581 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
582 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
583 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
584 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
585 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 586
241e1a89
SC
587/* Specs for the compiler proper */
588
628714d8 589#ifndef CC1_CPU_SPEC
eb5bb0fd 590#define CC1_CPU_SPEC_1 ""
fa959ce4 591
682cd442 592#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
593#define CC1_CPU_SPEC CC1_CPU_SPEC_1
594#else
595#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
596"%{march=native:%>march=native %:local_cpu_detect(arch) \
597 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
598%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 599#endif
241e1a89 600#endif
c98f8742 601\f
30efe578 602/* Target CPU builtins. */
ab442df7
MM
603#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
604
605/* Target Pragmas. */
606#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 607
c2f17e19
UB
608enum target_cpu_default
609{
610 TARGET_CPU_DEFAULT_generic = 0,
611
612 TARGET_CPU_DEFAULT_i386,
613 TARGET_CPU_DEFAULT_i486,
614 TARGET_CPU_DEFAULT_pentium,
615 TARGET_CPU_DEFAULT_pentium_mmx,
616 TARGET_CPU_DEFAULT_pentiumpro,
617 TARGET_CPU_DEFAULT_pentium2,
618 TARGET_CPU_DEFAULT_pentium3,
619 TARGET_CPU_DEFAULT_pentium4,
620 TARGET_CPU_DEFAULT_pentium_m,
621 TARGET_CPU_DEFAULT_prescott,
622 TARGET_CPU_DEFAULT_nocona,
623 TARGET_CPU_DEFAULT_core2,
9d8477b6 624 TARGET_CPU_DEFAULT_corei7,
3a579e09 625 TARGET_CPU_DEFAULT_haswell,
b6837b94 626 TARGET_CPU_DEFAULT_atom,
0b871ccf 627 TARGET_CPU_DEFAULT_slm,
c2f17e19
UB
628
629 TARGET_CPU_DEFAULT_geode,
630 TARGET_CPU_DEFAULT_k6,
631 TARGET_CPU_DEFAULT_k6_2,
632 TARGET_CPU_DEFAULT_k6_3,
633 TARGET_CPU_DEFAULT_athlon,
634 TARGET_CPU_DEFAULT_athlon_sse,
635 TARGET_CPU_DEFAULT_k8,
636 TARGET_CPU_DEFAULT_amdfam10,
1133125e 637 TARGET_CPU_DEFAULT_bdver1,
4d652a18 638 TARGET_CPU_DEFAULT_bdver2,
eb2f2b44 639 TARGET_CPU_DEFAULT_bdver3,
14b52538 640 TARGET_CPU_DEFAULT_btver1,
e32bfc16 641 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
642
643 TARGET_CPU_DEFAULT_max
644};
0c2dc519 645
628714d8 646#ifndef CC1_SPEC
8015b78d 647#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
648#endif
649
650/* This macro defines names of additional specifications to put in the
651 specs that can be used in various specifications like CC1_SPEC. Its
652 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
653
654 Each subgrouping contains a string constant, that defines the
188fc5b5 655 specification name, and a string constant that used by the GCC driver
bcd86433
SC
656 program.
657
658 Do not define this macro if it does not need to do anything. */
659
660#ifndef SUBTARGET_EXTRA_SPECS
661#define SUBTARGET_EXTRA_SPECS
662#endif
663
664#define EXTRA_SPECS \
628714d8 665 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
666 SUBTARGET_EXTRA_SPECS
667\f
ce998900 668
d57a4b98
RH
669/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
670 FPU, assume that the fpcw is set to extended precision; when using
671 only SSE, rounding is correct; when using both SSE and the FPU,
672 the rounding precision is indeterminate, since either may be chosen
673 apparently at random. */
674#define TARGET_FLT_EVAL_METHOD \
5ccd517a 675 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 676
8ce94e44
JM
677/* Whether to allow x87 floating-point arithmetic on MODE (one of
678 SFmode, DFmode and XFmode) in the current excess precision
679 configuration. */
680#define X87_ENABLE_ARITH(MODE) \
681 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
682
683/* Likewise, whether to allow direct conversions from integer mode
684 IMODE (HImode, SImode or DImode) to MODE. */
685#define X87_ENABLE_FLOAT(MODE, IMODE) \
686 (flag_excess_precision == EXCESS_PRECISION_FAST \
687 || (MODE) == XFmode \
688 || ((MODE) == DFmode && (IMODE) == SImode) \
689 || (IMODE) == HImode)
690
979c67a5
UB
691/* target machine storage layout */
692
65d9c0ab
JH
693#define SHORT_TYPE_SIZE 16
694#define INT_TYPE_SIZE 32
f0ea7581
L
695#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
696#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 697#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 698#define FLOAT_TYPE_SIZE 32
65d9c0ab 699#define DOUBLE_TYPE_SIZE 64
c637141a 700#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 701
c637141a
L
702/* Define this to set long double type size to use in libgcc2.c, which can
703 not depend on target_flags. */
704#ifdef __LONG_DOUBLE_64__
705#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
706#else
707#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
708#endif
709
710#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 711
67adf6a9 712#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 713#define MAX_BITS_PER_WORD 64
0c2dc519
JH
714#else
715#define MAX_BITS_PER_WORD 32
0c2dc519
JH
716#endif
717
c98f8742
JVA
718/* Define this if most significant byte of a word is the lowest numbered. */
719/* That is true on the 80386. */
720
721#define BITS_BIG_ENDIAN 0
722
723/* Define this if most significant byte of a word is the lowest numbered. */
724/* That is not true on the 80386. */
725#define BYTES_BIG_ENDIAN 0
726
727/* Define this if most significant word of a multiword number is the lowest
728 numbered. */
729/* Not true for 80386 */
730#define WORDS_BIG_ENDIAN 0
731
c98f8742 732/* Width of a word, in units (bytes). */
4ae8027b 733#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
734
735#ifndef IN_LIBGCC2
2e64c636
JH
736#define MIN_UNITS_PER_WORD 4
737#endif
c98f8742 738
c98f8742 739/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 740#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 741
e075ae69 742/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 743#define STACK_BOUNDARY \
51212b32 744 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 745
2e3f842f
L
746/* Stack boundary of the main function guaranteed by OS. */
747#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
748
de1132d1 749/* Minimum stack boundary. */
5bfb2af2 750#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 751
d1f87653 752/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 753 aligned; the compiler cannot rely on having this alignment. */
e075ae69 754#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 755
de1132d1 756/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
757 both 32bit and 64bit, to support codes that need 128 bit stack
758 alignment for SSE instructions, but can't realign the stack. */
759#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
760
761/* 1 if -mstackrealign should be turned on by default. It will
762 generate an alternate prologue and epilogue that realigns the
763 runtime stack if nessary. This supports mixing codes that keep a
764 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 765 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
766#define STACK_REALIGN_DEFAULT 0
767
768/* Boundary (in *bits*) on which the incoming stack is aligned. */
769#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 770
a2851b75
TG
771/* According to Windows x64 software convention, the maximum stack allocatable
772 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
773 instructions allowed to adjust the stack pointer in the epilog, forcing the
774 use of frame pointer for frames larger than 2 GB. This theorical limit
775 is reduced by 256, an over-estimated upper bound for the stack use by the
776 prologue.
777 We define only one threshold for both the prolog and the epilog. When the
4e523f33 778 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
779 regs, then save them, and then allocate the remaining. There is no SEH
780 unwind info for this later allocation. */
781#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
782
ebff937c
SH
783/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
784 mandatory for the 64-bit ABI, and may or may not be true for other
785 operating systems. */
786#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
787
f963b5d9
RS
788/* Minimum allocation boundary for the code of a function. */
789#define FUNCTION_BOUNDARY 8
790
791/* C++ stores the virtual bit in the lowest bit of function pointers. */
792#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 793
c98f8742
JVA
794/* Minimum size in bits of the largest boundary to which any
795 and all fundamental data types supported by the hardware
796 might need to be aligned. No data type wants to be aligned
17f24ff0 797 rounder than this.
fce5a9f2 798
d1f87653 799 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
800 and Pentium Pro XFmode values at 128 bit boundaries. */
801
2824d6e5 802#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 803
2e3f842f
L
804/* Maximum stack alignment. */
805#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
806
6e4f1168
L
807/* Alignment value for attribute ((aligned)). It is a constant since
808 it is the part of the ABI. We shouldn't change it with -mavx. */
809#define ATTRIBUTE_ALIGNED_VALUE 128
810
822eda12 811/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 812#define ALIGN_MODE_128(MODE) \
4501d314 813 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 814
17f24ff0 815/* The published ABIs say that doubles should be aligned on word
d1f87653 816 boundaries, so lower the alignment for structure fields unless
6fc605d8 817 -malign-double is set. */
e932b21b 818
e83f3cff
RH
819/* ??? Blah -- this macro is used directly by libobjc. Since it
820 supports no vector modes, cut out the complexity and fall back
821 on BIGGEST_FIELD_ALIGNMENT. */
822#ifdef IN_TARGET_LIBS
ef49d42e
JH
823#ifdef __x86_64__
824#define BIGGEST_FIELD_ALIGNMENT 128
825#else
e83f3cff 826#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 827#endif
e83f3cff 828#else
e932b21b
JH
829#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
830 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 831#endif
c98f8742 832
e5e8a8bf 833/* If defined, a C expression to compute the alignment given to a
a7180f70 834 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
835 and ALIGN is the alignment that the object would ordinarily have.
836 The value of this macro is used instead of that alignment to align
837 the object.
838
839 If this macro is not defined, then ALIGN is used.
840
841 The typical use of this macro is to increase alignment for string
842 constants to be word aligned so that `strcpy' calls that copy
843 constants can be done inline. */
844
d9a5f180 845#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 846
8a022443
JW
847/* If defined, a C expression to compute the alignment for a static
848 variable. TYPE is the data type, and ALIGN is the alignment that
849 the object would ordinarily have. The value of this macro is used
850 instead of that alignment to align the object.
851
852 If this macro is not defined, then ALIGN is used.
853
854 One use of this macro is to increase alignment of medium-size
855 data to make it all fit in fewer cache lines. Another is to
856 cause character arrays to be word-aligned so that `strcpy' calls
857 that copy constants to character arrays can be done inline. */
858
d9a5f180 859#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
860
861/* If defined, a C expression to compute the alignment for a local
862 variable. TYPE is the data type, and ALIGN is the alignment that
863 the object would ordinarily have. The value of this macro is used
864 instead of that alignment to align the object.
865
866 If this macro is not defined, then ALIGN is used.
867
868 One use of this macro is to increase alignment of medium-size
869 data to make it all fit in fewer cache lines. */
870
76fe54f0
L
871#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
872 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
873
874/* If defined, a C expression to compute the alignment for stack slot.
875 TYPE is the data type, MODE is the widest mode available, and ALIGN
876 is the alignment that the slot would ordinarily have. The value of
877 this macro is used instead of that alignment to align the slot.
878
879 If this macro is not defined, then ALIGN is used when TYPE is NULL,
880 Otherwise, LOCAL_ALIGNMENT will be used.
881
882 One use of this macro is to set alignment of stack slot to the
883 maximum alignment of all possible modes which the slot may have. */
884
885#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
886 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 887
9bfaf89d
JJ
888/* If defined, a C expression to compute the alignment for a local
889 variable DECL.
890
891 If this macro is not defined, then
892 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
893
894 One use of this macro is to increase alignment of medium-size
895 data to make it all fit in fewer cache lines. */
896
897#define LOCAL_DECL_ALIGNMENT(DECL) \
898 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
899
ae58e548
JJ
900/* If defined, a C expression to compute the minimum required alignment
901 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
902 MODE, assuming normal alignment ALIGN.
903
904 If this macro is not defined, then (ALIGN) will be used. */
905
906#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
907 ix86_minimum_alignment (EXP, MODE, ALIGN)
908
9bfaf89d 909
9cd10576 910/* Set this nonzero if move instructions will actually fail to work
c98f8742 911 when given unaligned data. */
b4ac57ab 912#define STRICT_ALIGNMENT 0
c98f8742
JVA
913
914/* If bit field type is int, don't let it cross an int,
915 and give entire struct the alignment of an int. */
43a88a8c 916/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 917#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
918\f
919/* Standard register usage. */
920
921/* This processor has special stack-like registers. See reg-stack.c
892a2d68 922 for details. */
c98f8742
JVA
923
924#define STACK_REGS
ce998900 925
d9a5f180 926#define IS_STACK_MODE(MODE) \
63001560
UB
927 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
928 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 929 || (MODE) == XFmode)
c98f8742
JVA
930
931/* Number of actual hardware registers.
932 The hardware registers are assigned numbers for the compiler
933 from 0 to just below FIRST_PSEUDO_REGISTER.
934 All registers that the compiler knows about must be given numbers,
935 even those that are not normally considered general registers.
936
937 In the 80386 we give the 8 general purpose registers the numbers 0-7.
938 We number the floating point registers 8-15.
939 Note that registers 0-7 can be accessed as a short or int,
940 while only 0-3 may be used with byte `mov' instructions.
941
942 Reg 16 does not correspond to any hardware register, but instead
943 appears in the RTL as an argument pointer prior to reload, and is
944 eliminated during reloading in favor of either the stack or frame
892a2d68 945 pointer. */
c98f8742 946
b0d95de8 947#define FIRST_PSEUDO_REGISTER 53
c98f8742 948
3073d01c
ML
949/* Number of hardware registers that go into the DWARF-2 unwind info.
950 If not defined, equals FIRST_PSEUDO_REGISTER. */
951
952#define DWARF_FRAME_REGISTERS 17
953
c98f8742
JVA
954/* 1 for registers that have pervasive standard uses
955 and are not available for the register allocator.
3f3f2124 956 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 957
621bc046
UB
958 REX registers are disabled for 32bit targets in
959 TARGET_CONDITIONAL_REGISTER_USAGE. */
960
a7180f70
BS
961#define FIXED_REGISTERS \
962/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 963{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
964/*arg,flags,fpsr,fpcr,frame*/ \
965 1, 1, 1, 1, 1, \
a7180f70
BS
966/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
967 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 968/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
969 0, 0, 0, 0, 0, 0, 0, 0, \
970/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 971 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 972/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 973 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
974
975/* 1 for registers not available across function calls.
976 These must include the FIXED_REGISTERS and also any
977 registers that can be used without being saved.
978 The latter must include the registers where values are returned
979 and the register where structure-value addresses are passed.
fce5a9f2
EC
980 Aside from that, you can include as many other registers as you like.
981
621bc046
UB
982 Value is set to 1 if the register is call used unconditionally.
983 Bit one is set if the register is call used on TARGET_32BIT ABI.
984 Bit two is set if the register is call used on TARGET_64BIT ABI.
985 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
986
987 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
988
a7180f70
BS
989#define CALL_USED_REGISTERS \
990/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 991{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
992/*arg,flags,fpsr,fpcr,frame*/ \
993 1, 1, 1, 1, 1, \
a7180f70 994/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 995 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 996/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 997 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 998/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 999 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1000/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 1001 6, 6, 6, 6, 6, 6, 6, 6 }
c98f8742 1002
3b3c6a3f
MM
1003/* Order in which to allocate registers. Each register must be
1004 listed once, even those in FIXED_REGISTERS. List frame pointer
1005 late and fixed registers last. Note that, in general, we prefer
1006 registers listed in CALL_USED_REGISTERS, keeping the others
1007 available for storage of persistent values.
1008
5a733826 1009 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1010 so this is just empty initializer for array. */
3b3c6a3f 1011
162f023b
JH
1012#define REG_ALLOC_ORDER \
1013{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1014 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1015 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 1016 48, 49, 50, 51, 52 }
3b3c6a3f 1017
5a733826 1018/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1019 to be rearranged based on a particular function. When using sse math,
03c259ad 1020 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1021
5a733826 1022#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1023
f5316dfe 1024
7c800926
KT
1025#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1026
c98f8742
JVA
1027/* Return number of consecutive hard regs needed starting at reg REGNO
1028 to hold something of mode MODE.
1029 This is ordinarily the length in words of a value of mode MODE
1030 but can be less for certain modes in special long registers.
1031
fce5a9f2 1032 Actually there are no two word move instructions for consecutive
c98f8742 1033 registers. And only registers 0-3 may have mov byte instructions
63001560 1034 applied to them. */
c98f8742 1035
ce998900 1036#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1037 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1038 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1039 : ((MODE) == XFmode \
92d0fb09 1040 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1041 : (MODE) == XCmode \
92d0fb09 1042 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1043 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1044
8521c414
JM
1045#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1046 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1047 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1048 ? 0 \
1049 : ((MODE) == XFmode || (MODE) == XCmode)) \
1050 : 0)
1051
1052#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1053
95879c72
L
1054#define VALID_AVX256_REG_MODE(MODE) \
1055 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1056 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1057 || (MODE) == V4DFmode)
95879c72 1058
ff97910d
VY
1059#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1060 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1061
ce998900
UB
1062#define VALID_SSE2_REG_MODE(MODE) \
1063 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1064 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1065
d9a5f180 1066#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1067 ((MODE) == V1TImode || (MODE) == TImode \
1068 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1069 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1070
47f339cf 1071#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1072 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1073
d9a5f180 1074#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1075 ((MODE == V1DImode) || (MODE) == DImode \
1076 || (MODE) == V2SImode || (MODE) == SImode \
1077 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1078
ce998900
UB
1079#define VALID_DFP_MODE_P(MODE) \
1080 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1081
d9a5f180 1082#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1083 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1084 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1085
d9a5f180 1086#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1087 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1088 || (MODE) == DImode \
1089 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1090 || (MODE) == CDImode \
1091 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1092 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1093
822eda12 1094/* Return true for modes passed in SSE registers. */
ce998900 1095#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1096 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1097 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1098 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1099 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1100 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1101 || (MODE) == V2TImode)
822eda12 1102
e075ae69 1103/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1104
a946dd00 1105#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1106 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1107
1108/* Value is 1 if it is a good idea to tie two pseudo registers
1109 when one has mode MODE1 and one has mode MODE2.
1110 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1111 for any hard reg, then this must be 0 for correct output. */
1112
c1c5b5e3 1113#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1114
ff25ef99
ZD
1115/* It is possible to write patterns to move flags; but until someone
1116 does it, */
1117#define AVOID_CCMODE_COPIES
c98f8742 1118
e075ae69 1119/* Specify the modes required to caller save a given hard regno.
787dc842 1120 We do this on i386 to prevent flags from being saved at all.
e075ae69 1121
787dc842
JH
1122 Kill any attempts to combine saving of modes. */
1123
d9a5f180
GS
1124#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1125 (CC_REGNO_P (REGNO) ? VOIDmode \
1126 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1127 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1128 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
fc27f749 1129 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
d2836273 1130 : (MODE))
ce998900 1131
51ba747a
RH
1132/* The only ABI that saves SSE registers across calls is Win64 (thus no
1133 need to check the current ABI here), and with AVX enabled Win64 only
1134 guarantees that the low 16 bytes are saved. */
1135#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1136 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1137
c98f8742
JVA
1138/* Specify the registers used for certain standard purposes.
1139 The values of these macros are register numbers. */
1140
1141/* on the 386 the pc register is %eip, and is not usable as a general
1142 register. The ordinary mov instructions won't work */
1143/* #define PC_REGNUM */
1144
1145/* Register to use for pushing function arguments. */
1146#define STACK_POINTER_REGNUM 7
1147
1148/* Base register for access to local variables of the function. */
564d80f4
JH
1149#define HARD_FRAME_POINTER_REGNUM 6
1150
1151/* Base register for access to local variables of the function. */
b0d95de8 1152#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1153
1154/* First floating point reg */
1155#define FIRST_FLOAT_REG 8
1156
1157/* First & last stack-like regs */
1158#define FIRST_STACK_REG FIRST_FLOAT_REG
1159#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1160
a7180f70
BS
1161#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1162#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1163
a7180f70
BS
1164#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1165#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1166
3f3f2124
JH
1167#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1168#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1169
1170#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1171#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1172
aabcd309 1173/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1174 requiring a frame pointer. */
1175#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1176#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1177#endif
1178
1179/* Make sure we can access arbitrary call frames. */
1180#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1181
1182/* Base register for access to arguments of the function. */
1183#define ARG_POINTER_REGNUM 16
1184
c98f8742 1185/* Register to hold the addressing base for position independent
5b43fed1
RH
1186 code access to data items. We don't use PIC pointer for 64bit
1187 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1188 pessimizing code dealing with EBX.
bd09bdeb
RH
1189
1190 To avoid clobbering a call-saved register unnecessarily, we renumber
1191 the pic register when possible. The change is visible after the
1192 prologue has been emitted. */
1193
2e3f842f 1194#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1195
1196#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1197 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1198 || TARGET_PECOFF)) \
7dcbf659 1199 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1200 : reload_completed ? REGNO (pic_offset_table_rtx) \
1201 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1202
5fc0e5df
KW
1203#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1204
c51e6d85 1205/* This is overridden by <cygwin.h>. */
5e062767
DS
1206#define MS_AGGREGATE_RETURN 0
1207
61fec9ff 1208#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1209\f
1210/* Define the classes of registers for register constraints in the
1211 machine description. Also define ranges of constants.
1212
1213 One of the classes must always be named ALL_REGS and include all hard regs.
1214 If there is more than one class, another class must be named NO_REGS
1215 and contain no registers.
1216
1217 The name GENERAL_REGS must be the name of a class (or an alias for
1218 another name such as ALL_REGS). This is the class of registers
1219 that is allowed by "g" or "r" in a register constraint.
1220 Also, registers outside this class are allocated only when
1221 instructions express preferences for them.
1222
1223 The classes must be numbered in nondecreasing order; that is,
1224 a larger-numbered class must never be contained completely
1225 in a smaller-numbered class.
1226
1227 For any two classes, it is very desirable that there be another
ab408a86
JVA
1228 class that represents their union.
1229
1230 It might seem that class BREG is unnecessary, since no useful 386
1231 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1232 and the "b" register constraint is useful in asms for syscalls.
1233
03c259ad 1234 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1235
1236enum reg_class
1237{
1238 NO_REGS,
e075ae69 1239 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1240 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1241 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1242 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1243 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1244 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1245 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1246 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1247 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1248 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1249 FLOAT_REGS,
06f4e35d 1250 SSE_FIRST_REG,
a7180f70
BS
1251 SSE_REGS,
1252 MMX_REGS,
446988df
JH
1253 FP_TOP_SSE_REGS,
1254 FP_SECOND_SSE_REGS,
1255 FLOAT_SSE_REGS,
1256 FLOAT_INT_REGS,
1257 INT_SSE_REGS,
1258 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1259 ALL_REGS, LIM_REG_CLASSES
1260};
1261
d9a5f180
GS
1262#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1263
1264#define INTEGER_CLASS_P(CLASS) \
1265 reg_class_subset_p ((CLASS), GENERAL_REGS)
1266#define FLOAT_CLASS_P(CLASS) \
1267 reg_class_subset_p ((CLASS), FLOAT_REGS)
1268#define SSE_CLASS_P(CLASS) \
06f4e35d 1269 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1270#define MMX_CLASS_P(CLASS) \
f75959a6 1271 ((CLASS) == MMX_REGS)
d9a5f180
GS
1272#define MAYBE_INTEGER_CLASS_P(CLASS) \
1273 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1274#define MAYBE_FLOAT_CLASS_P(CLASS) \
1275 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1276#define MAYBE_SSE_CLASS_P(CLASS) \
1277 reg_classes_intersect_p (SSE_REGS, (CLASS))
1278#define MAYBE_MMX_CLASS_P(CLASS) \
1279 reg_classes_intersect_p (MMX_REGS, (CLASS))
1280
1281#define Q_CLASS_P(CLASS) \
1282 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1283
43f3a59d 1284/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1285
1286#define REG_CLASS_NAMES \
1287{ "NO_REGS", \
ab408a86 1288 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1289 "SIREG", "DIREG", \
e075ae69
RH
1290 "AD_REGS", \
1291 "Q_REGS", "NON_Q_REGS", \
c98f8742 1292 "INDEX_REGS", \
3f3f2124 1293 "LEGACY_REGS", \
621bc046 1294 "CLOBBERED_REGS", \
c98f8742
JVA
1295 "GENERAL_REGS", \
1296 "FP_TOP_REG", "FP_SECOND_REG", \
1297 "FLOAT_REGS", \
cb482895 1298 "SSE_FIRST_REG", \
a7180f70
BS
1299 "SSE_REGS", \
1300 "MMX_REGS", \
446988df
JH
1301 "FP_TOP_SSE_REGS", \
1302 "FP_SECOND_SSE_REGS", \
1303 "FLOAT_SSE_REGS", \
8fcaaa80 1304 "FLOAT_INT_REGS", \
446988df
JH
1305 "INT_SSE_REGS", \
1306 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1307 "ALL_REGS" }
1308
ac2e563f
RH
1309/* Define which registers fit in which classes. This is an initializer
1310 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1311
621bc046
UB
1312 Note that CLOBBERED_REGS are calculated by
1313 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1314
a7180f70 1315#define REG_CLASS_CONTENTS \
3f3f2124
JH
1316{ { 0x00, 0x0 }, \
1317 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1318 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1319 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1320 { 0x03, 0x0 }, /* AD_REGS */ \
1321 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1322 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1323 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1324 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
621bc046 1325 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
b0d95de8 1326 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1327 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1328 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1329 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1330{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1331{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1332{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1333{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1334{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b197fc48
UB
1335 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1336{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1337{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
b0d95de8 1338{ 0xffffffff,0x1fffff } \
e075ae69 1339}
c98f8742
JVA
1340
1341/* The same information, inverted:
1342 Return the class number of the smallest class containing
1343 reg number REGNO. This could be a conditional expression
1344 or could index an array. */
1345
c98f8742
JVA
1346#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1347
42db504c
SB
1348/* When this hook returns true for MODE, the compiler allows
1349 registers explicitly used in the rtl to be used as spill registers
1350 but prevents the compiler from extending the lifetime of these
1351 registers. */
1352#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1353
fc27f749
UB
1354#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1355#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1356
1357#define GENERAL_REG_P(X) \
6189a572 1358 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1359#define GENERAL_REGNO_P(N) \
1360 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1361
fc27f749
UB
1362#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1363#define ANY_QI_REGNO_P(N) \
1364 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1365
fc27f749 1366#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1367#define REX_INT_REGNO_P(N) \
1368 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1369
66aaf16f
UB
1370#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1371#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1372
446988df 1373#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1374#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1375
54a88090 1376#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1377 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1378
fc27f749 1379#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1380#define SSE_REGNO_P(N) \
1381 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1382 || REX_SSE_REGNO_P (N))
3f3f2124 1383
4977bab6 1384#define REX_SSE_REGNO_P(N) \
fb84c7a0 1385 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1386
d9a5f180
GS
1387#define SSE_REGNO(N) \
1388 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1389
d9a5f180 1390#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1391 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1392
cbf2e4d4
HJ
1393#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1394 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1395 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1396
fc27f749 1397#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1398#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1399
fc27f749 1400#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1401
e075ae69
RH
1402#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1403#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1404
c98f8742
JVA
1405/* The class value for index registers, and the one for base regs. */
1406
1407#define INDEX_REG_CLASS INDEX_REGS
1408#define BASE_REG_CLASS GENERAL_REGS
1409
c98f8742 1410/* Place additional restrictions on the register class to use when it
4cbb525c 1411 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1412 register for which class CLASS would ordinarily be used.
1413
1414 We avoid classes containing registers from multiple units due to
1415 the limitation in ix86_secondary_memory_needed. We limit these
1416 classes to their "natural mode" single unit register class, depending
1417 on the unit availability.
1418
1419 Please note that reg_class_subset_p is not commutative, so these
1420 conditions mean "... if (CLASS) includes ALL registers from the
1421 register set." */
1422
1423#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1424 (((MODE) == QImode && !TARGET_64BIT \
1425 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1426 : (((MODE) == SImode || (MODE) == DImode) \
1427 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1428 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1429 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1430 : (X87_FLOAT_MODE_P (MODE) \
1431 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1432 : (CLASS))
c98f8742 1433
85ff473e 1434/* If we are copying between general and FP registers, we need a memory
f84aa48a 1435 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1436#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1437 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1438
c62b3659
UB
1439/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1440 There is no need to emit full 64 bit move on 64 bit targets
1441 for integral modes that can be moved using 32 bit move. */
1442#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1443 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1444 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1445 : MODE)
1446
1272914c
RH
1447/* Return a class of registers that cannot change FROM mode to TO mode. */
1448
1449#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1450 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1451\f
1452/* Stack layout; function entry, exit and calling. */
1453
1454/* Define this if pushing a word on the stack
1455 makes the stack pointer a smaller address. */
1456#define STACK_GROWS_DOWNWARD
1457
a4d05547 1458/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1459 is at the high-address end of the local variables;
1460 that is, each additional local variable allocated
1461 goes at a more negative offset in the frame. */
f62c8a5c 1462#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1463
1464/* Offset within stack frame to start allocating local variables at.
1465 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1466 first local allocated. Otherwise, it is the offset to the BEGINNING
1467 of the first local allocated. */
1468#define STARTING_FRAME_OFFSET 0
1469
8c2b2fae
UB
1470/* If we generate an insn to push BYTES bytes, this says how many the stack
1471 pointer really advances by. On 386, we have pushw instruction that
1472 decrements by exactly 2 no matter what the position was, there is no pushb.
1473
1474 But as CIE data alignment factor on this arch is -4 for 32bit targets
1475 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1476 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1477
d2836273 1478#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1479 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1480
1481/* If defined, the maximum amount of space required for outgoing arguments
1482 will be computed and placed into the variable `crtl->outgoing_args_size'.
1483 No space will be pushed onto the stack for each call; instead, the
1484 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1485
6510e8bb
KT
1486 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1487 function prologue and apilogue. This is not possible without
9aa5c1b2 1488 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1489
6c6094f1 1490#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1491 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1492
1493/* If defined, a C expression whose value is nonzero when we want to use PUSH
1494 instructions to pass outgoing arguments. */
1495
1496#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1497
2da4124d
L
1498/* We want the stack and args grow in opposite directions, even if
1499 PUSH_ARGS is 0. */
1500#define PUSH_ARGS_REVERSED 1
1501
c98f8742
JVA
1502/* Offset of first parameter from the argument pointer register value. */
1503#define FIRST_PARM_OFFSET(FNDECL) 0
1504
a7180f70
BS
1505/* Define this macro if functions should assume that stack space has been
1506 allocated for arguments even when their values are passed in registers.
1507
1508 The value of this macro is the size, in bytes, of the area reserved for
1509 arguments passed in registers for the function represented by FNDECL.
1510
1511 This space can be allocated by the caller, or be a part of the
1512 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1513 which. */
7c800926
KT
1514#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1515
4ae8027b 1516#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1517 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1518
c98f8742
JVA
1519/* Define how to find the value returned by a library function
1520 assuming the value has mode MODE. */
1521
4ae8027b 1522#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1523
e9125c09
TW
1524/* Define the size of the result block used for communication between
1525 untyped_call and untyped_return. The block contains a DImode value
1526 followed by the block used by fnsave and frstor. */
1527
1528#define APPLY_RESULT_SIZE (8+108)
1529
b08de47e 1530/* 1 if N is a possible register number for function argument passing. */
53c17031 1531#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1532
1533/* Define a data type for recording info about an argument list
1534 during the scan of that argument list. This data type should
1535 hold all necessary information about the function itself
1536 and about the args processed so far, enough to enable macros
b08de47e 1537 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1538
e075ae69 1539typedef struct ix86_args {
fa283935 1540 int words; /* # words passed so far */
b08de47e
MM
1541 int nregs; /* # registers available for passing */
1542 int regno; /* next available register number */
3e65f251
KT
1543 int fastcall; /* fastcall or thiscall calling convention
1544 is used */
fa283935 1545 int sse_words; /* # sse words passed so far */
a7180f70 1546 int sse_nregs; /* # sse registers available for passing */
95879c72 1547 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1548 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1549 int warn_mmx; /* True when we want to warn about MMX ABI. */
1550 int sse_regno; /* next available sse register number */
1551 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1552 int mmx_nregs; /* # mmx registers available for passing */
1553 int mmx_regno; /* next available mmx register number */
892a2d68 1554 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1555 int caller; /* true if it is caller. */
2824d6e5
UB
1556 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1557 SFmode/DFmode arguments should be passed
1558 in SSE registers. Otherwise 0. */
51212b32 1559 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1560 MS_ABI for ms abi. */
b08de47e 1561} CUMULATIVE_ARGS;
c98f8742
JVA
1562
1563/* Initialize a variable CUM of type CUMULATIVE_ARGS
1564 for a call to a function whose data type is FNTYPE.
b08de47e 1565 For a library call, FNTYPE is 0. */
c98f8742 1566
0f6937fe 1567#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1568 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1569 (N_NAMED_ARGS) != -1)
c98f8742 1570
c98f8742
JVA
1571/* Output assembler code to FILE to increment profiler label # LABELNO
1572 for profiling a function entry. */
1573
a5fa1ecd
JH
1574#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1575
1576#define MCOUNT_NAME "_mcount"
1577
3c5273a9
KT
1578#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1579
a5fa1ecd 1580#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1581
1582/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1583 the stack pointer does not matter. The value is tested only in
1584 functions that have frame pointers.
1585 No definition is equivalent to always zero. */
fce5a9f2 1586/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1587 we have to restore it ourselves from the frame pointer, in order to
1588 use pop */
1589
1590#define EXIT_IGNORE_STACK 1
1591
c98f8742
JVA
1592/* Output assembler code for a block containing the constant parts
1593 of a trampoline, leaving space for the variable parts. */
1594
a269a03c 1595/* On the 386, the trampoline contains two instructions:
c98f8742 1596 mov #STATIC,ecx
a269a03c
JC
1597 jmp FUNCTION
1598 The trampoline is generated entirely at runtime. The operand of JMP
1599 is the address of FUNCTION relative to the instruction following the
1600 JMP (which is 5 bytes long). */
c98f8742
JVA
1601
1602/* Length in units of the trampoline for entering a nested function. */
1603
3452586b 1604#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1605\f
1606/* Definitions for register eliminations.
1607
1608 This is an array of structures. Each structure initializes one pair
1609 of eliminable registers. The "from" register number is given first,
1610 followed by "to". Eliminations of the same "from" register are listed
1611 in order of preference.
1612
afc2cd05
NC
1613 There are two registers that can always be eliminated on the i386.
1614 The frame pointer and the arg pointer can be replaced by either the
1615 hard frame pointer or to the stack pointer, depending upon the
1616 circumstances. The hard frame pointer is not used before reload and
1617 so it is not eligible for elimination. */
c98f8742 1618
564d80f4
JH
1619#define ELIMINABLE_REGS \
1620{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1621 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1622 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1623 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1624
c98f8742
JVA
1625/* Define the offset between two registers, one to be eliminated, and the other
1626 its replacement, at the start of a routine. */
1627
d9a5f180
GS
1628#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1629 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1630\f
1631/* Addressing modes, and classification of registers for them. */
1632
c98f8742
JVA
1633/* Macros to check register numbers against specific register classes. */
1634
1635/* These assume that REGNO is a hard or pseudo reg number.
1636 They give nonzero only if REGNO is a hard reg of the suitable class
1637 or a pseudo reg currently allocated to a suitable hard reg.
1638 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1639 has been allocated, which happens in reginfo.c during register
1640 allocation. */
c98f8742 1641
3f3f2124
JH
1642#define REGNO_OK_FOR_INDEX_P(REGNO) \
1643 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1644 || REX_INT_REGNO_P (REGNO) \
1645 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1646 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1647
3f3f2124 1648#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1649 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1650 || (REGNO) == ARG_POINTER_REGNUM \
1651 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1652 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1653
c98f8742
JVA
1654/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1655 and check its validity for a certain class.
1656 We have two alternate definitions for each of them.
1657 The usual definition accepts all pseudo regs; the other rejects
1658 them unless they have been allocated suitable hard regs.
1659 The symbol REG_OK_STRICT causes the latter definition to be used.
1660
1661 Most source files want to accept pseudo regs in the hope that
1662 they will get allocated to the class that the insn wants them to be in.
1663 Source files for reload pass need to be strict.
1664 After reload, it makes no difference, since pseudo regs have
1665 been eliminated by then. */
1666
c98f8742 1667
ff482c8d 1668/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1669#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1670 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1671 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1672 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1673
3b3c6a3f 1674#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1675 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1676 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1677 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1678 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1679
3b3c6a3f
MM
1680/* Strict versions, hard registers only */
1681#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1682#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1683
3b3c6a3f 1684#ifndef REG_OK_STRICT
d9a5f180
GS
1685#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1686#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1687
1688#else
d9a5f180
GS
1689#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1690#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1691#endif
1692
331d9186 1693/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1694 that is a valid memory address for an instruction.
1695 The MODE argument is the machine mode for the MEM expression
1696 that wants to use this address.
1697
331d9186 1698 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1699 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1700
1701 See legitimize_pic_address in i386.c for details as to what
1702 constitutes a legitimate address when -fpic is used. */
1703
1704#define MAX_REGS_PER_ADDRESS 2
1705
f996902d 1706#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1707
ae1547cc
UB
1708/* Try a machine-dependent way of reloading an illegitimate address
1709 operand. If we find one, push the reload and jump to WIN. This
1710 macro is used in only one place: `find_reloads_address' in reload.c. */
1711
1712#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1713do { \
1714 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1715 (int)(TYPE), (INDL))) \
1716 goto WIN; \
1717} while (0)
1718
b949ea8b
JW
1719/* If defined, a C expression to determine the base term of address X.
1720 This macro is used in only one place: `find_base_term' in alias.c.
1721
1722 It is always safe for this macro to not be defined. It exists so
1723 that alias analysis can understand machine-dependent addresses.
1724
1725 The typical use of this macro is to handle addresses containing
1726 a label_ref or symbol_ref within an UNSPEC. */
1727
d9a5f180 1728#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1729
c98f8742 1730/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1731 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1732 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1733
f996902d 1734#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1735
1736#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1737 (GET_CODE (X) == SYMBOL_REF \
1738 || GET_CODE (X) == LABEL_REF \
1739 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1740\f
b08de47e
MM
1741/* Max number of args passed in registers. If this is more than 3, we will
1742 have problems with ebx (register #4), since it is a caller save register and
1743 is also used as the pic register in ELF. So for now, don't allow more than
1744 3 registers to be passed in registers. */
1745
7c800926
KT
1746/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1747#define X86_64_REGPARM_MAX 6
72fa3605 1748#define X86_64_MS_REGPARM_MAX 4
7c800926 1749
72fa3605 1750#define X86_32_REGPARM_MAX 3
7c800926 1751
4ae8027b 1752#define REGPARM_MAX \
2824d6e5
UB
1753 (TARGET_64BIT \
1754 ? (TARGET_64BIT_MS_ABI \
1755 ? X86_64_MS_REGPARM_MAX \
1756 : X86_64_REGPARM_MAX) \
4ae8027b 1757 : X86_32_REGPARM_MAX)
d2836273 1758
72fa3605
UB
1759#define X86_64_SSE_REGPARM_MAX 8
1760#define X86_64_MS_SSE_REGPARM_MAX 4
1761
b6010cab 1762#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1763
4ae8027b 1764#define SSE_REGPARM_MAX \
2824d6e5
UB
1765 (TARGET_64BIT \
1766 ? (TARGET_64BIT_MS_ABI \
1767 ? X86_64_MS_SSE_REGPARM_MAX \
1768 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1769 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1770
1771#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1772\f
1773/* Specify the machine mode that this machine uses
1774 for the index in the tablejump instruction. */
dc4d7240 1775#define CASE_VECTOR_MODE \
6025b127 1776 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1777
c98f8742
JVA
1778/* Define this as 1 if `char' should by default be signed; else as 0. */
1779#define DEFAULT_SIGNED_CHAR 1
1780
1781/* Max number of bytes we can move from memory to memory
1782 in one reasonably fast instruction. */
65d9c0ab
JH
1783#define MOVE_MAX 16
1784
1785/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1786 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1787 number of bytes we can move with a single instruction. */
63001560 1788#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1789
7e24ffc9 1790/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1791 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1792 Increasing the value will always make code faster, but eventually
1793 incurs high cost in increased code size.
c98f8742 1794
e2e52e1b 1795 If you don't define this, a reasonable default is used. */
c98f8742 1796
e04ad03d 1797#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1798
45d78e7f
JJ
1799/* If a clear memory operation would take CLEAR_RATIO or more simple
1800 move-instruction sequences, we will do a clrmem or libcall instead. */
1801
e04ad03d 1802#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1803
53f00dde
UB
1804/* Define if shifts truncate the shift count which implies one can
1805 omit a sign-extension or zero-extension of a shift count.
1806
1807 On i386, shifts do truncate the count. But bit test instructions
1808 take the modulo of the bit offset operand. */
c98f8742
JVA
1809
1810/* #define SHIFT_COUNT_TRUNCATED */
1811
1812/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1813 is done just by pretending it is already truncated. */
1814#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1815
d9f32422
JH
1816/* A macro to update M and UNSIGNEDP when an object whose type is
1817 TYPE and which has the specified mode and signedness is to be
1818 stored in a register. This macro is only called when TYPE is a
1819 scalar type.
1820
f710504c 1821 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1822 quantities to SImode. The choice depends on target type. */
1823
1824#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1825do { \
d9f32422
JH
1826 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1827 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1828 (MODE) = SImode; \
1829} while (0)
d9f32422 1830
c98f8742
JVA
1831/* Specify the machine mode that pointers have.
1832 After generation of rtl, the compiler makes no further distinction
1833 between pointers and any other objects of this machine mode. */
28968d91 1834#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1835
f0ea7581
L
1836/* A C expression whose value is zero if pointers that need to be extended
1837 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1838 greater then zero if they are zero-extended and less then zero if the
1839 ptr_extend instruction should be used. */
1840
1841#define POINTERS_EXTEND_UNSIGNED 1
1842
c98f8742
JVA
1843/* A function address in a call instruction
1844 is a byte address (for indexing purposes)
1845 so give the MEM rtx a byte's mode. */
1846#define FUNCTION_MODE QImode
d4ba09c0 1847\f
d4ba09c0 1848
d4ba09c0
SC
1849/* A C expression for the cost of a branch instruction. A value of 1
1850 is the default; other values are interpreted relative to that. */
1851
3a4fd356
JH
1852#define BRANCH_COST(speed_p, predictable_p) \
1853 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1854
e327d1a3
L
1855/* An integer expression for the size in bits of the largest integer machine
1856 mode that should actually be used. We allow pairs of registers. */
1857#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1858
d4ba09c0
SC
1859/* Define this macro as a C expression which is nonzero if accessing
1860 less than a word of memory (i.e. a `char' or a `short') is no
1861 faster than accessing a word of memory, i.e., if such access
1862 require more than one instruction or if there is no difference in
1863 cost between byte and (aligned) word loads.
1864
1865 When this macro is not defined, the compiler will access a field by
1866 finding the smallest containing object; when it is defined, a
1867 fullword load will be used if alignment permits. Unless bytes
1868 accesses are faster than word accesses, using word accesses is
1869 preferable since it may eliminate subsequent memory access if
1870 subsequent accesses occur to other fields in the same word of the
1871 structure, but to different bytes. */
1872
1873#define SLOW_BYTE_ACCESS 0
1874
1875/* Nonzero if access to memory by shorts is slow and undesirable. */
1876#define SLOW_SHORT_ACCESS 0
1877
d4ba09c0
SC
1878/* Define this macro to be the value 1 if unaligned accesses have a
1879 cost many times greater than aligned accesses, for example if they
1880 are emulated in a trap handler.
1881
9cd10576
KH
1882 When this macro is nonzero, the compiler will act as if
1883 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1884 moves. This can cause significantly more instructions to be
9cd10576 1885 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1886 accesses only add a cycle or two to the time for a memory access.
1887
1888 If the value of this macro is always zero, it need not be defined. */
1889
e1565e65 1890/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1891
d4ba09c0
SC
1892/* Define this macro if it is as good or better to call a constant
1893 function address than to call an address kept in a register.
1894
1895 Desirable on the 386 because a CALL with a constant address is
1896 faster than one with a register address. */
1897
1898#define NO_FUNCTION_CSE
c98f8742 1899\f
c572e5ba
JVA
1900/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1901 return the mode to be used for the comparison.
1902
1903 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1904 VOIDmode should be used in all other cases.
c572e5ba 1905
16189740 1906 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1907 possible, to allow for more combinations. */
c98f8742 1908
d9a5f180 1909#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1910
9cd10576 1911/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1912 reversed. */
1913
1914#define REVERSIBLE_CC_MODE(MODE) 1
1915
1916/* A C expression whose value is reversed condition code of the CODE for
1917 comparison done in CC_MODE mode. */
3c5cb3e4 1918#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1919
c98f8742
JVA
1920\f
1921/* Control the assembler format that we output, to the extent
1922 this does not vary between assemblers. */
1923
1924/* How to refer to registers in assembler output.
892a2d68 1925 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1926
a7b376ee 1927/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1928 For non floating point regs, the following are the HImode names.
1929
1930 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1931 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1932 "y" code. */
c98f8742 1933
a7180f70
BS
1934#define HI_REGISTER_NAMES \
1935{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1936 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1937 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1938 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1939 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1940 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1941 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1942
c98f8742
JVA
1943#define REGISTER_NAMES HI_REGISTER_NAMES
1944
1945/* Table of additional register names to use in user input. */
1946
1947#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1948{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1949 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1950 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1951 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1952 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1953 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1954
1955/* Note we are omitting these since currently I don't know how
1956to get gcc to use these, since they want the same but different
1957number as al, and ax.
1958*/
1959
c98f8742 1960#define QI_REGISTER_NAMES \
3f3f2124 1961{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1962
1963/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1964 of regs 0 through 3. */
c98f8742
JVA
1965
1966#define QI_HIGH_REGISTER_NAMES \
1967{"ah", "dh", "ch", "bh", }
1968
1969/* How to renumber registers for dbx and gdb. */
1970
d9a5f180
GS
1971#define DBX_REGISTER_NUMBER(N) \
1972 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1973
9a82e702
MS
1974extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1975extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1976extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1977
780a5b71
UB
1978extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
1979
469ac993
JM
1980/* Before the prologue, RA is at 0(%esp). */
1981#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1982 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1983
e414ab29 1984/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1985#define RETURN_ADDR_RTX(COUNT, FRAME) \
1986 ((COUNT) == 0 \
0a81f074
RS
1987 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1988 -UNITS_PER_WORD)) \
1989 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 1990
892a2d68 1991/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1992#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1993
a6ab3aad 1994/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1995#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1996
1020a5ab 1997/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1998#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1999#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2000
ad919812 2001
e4c4ebeb
RH
2002/* Select a format to encode pointers in exception handling data. CODE
2003 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2004 true if the symbol may be affected by dynamic relocations.
2005
2006 ??? All x86 object file formats are capable of representing this.
2007 After all, the relocation needed is the same as for the call insn.
2008 Whether or not a particular assembler allows us to enter such, I
2009 guess we'll have to see. */
d9a5f180 2010#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2011 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2012
c98f8742
JVA
2013/* This is how to output an insn to push a register on the stack.
2014 It need not be very fast code. */
2015
d9a5f180 2016#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2017do { \
2018 if (TARGET_64BIT) \
2019 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2020 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2021 else \
2022 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2023} while (0)
c98f8742
JVA
2024
2025/* This is how to output an insn to pop a register from the stack.
2026 It need not be very fast code. */
2027
d9a5f180 2028#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2029do { \
2030 if (TARGET_64BIT) \
2031 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2032 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2033 else \
2034 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2035} while (0)
c98f8742 2036
f88c65f7 2037/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2038
2039#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2040 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2041
f88c65f7 2042/* This is how to output an element of a case-vector that is relative. */
c98f8742 2043
33f7f353 2044#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2045 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2046
63001560 2047/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2048
2049#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2050{ \
2051 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2052 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2053}
2054
2055/* A C statement or statements which output an assembler instruction
2056 opcode to the stdio stream STREAM. The macro-operand PTR is a
2057 variable of type `char *' which points to the opcode name in
2058 its "internal" form--the form that is written in the machine
2059 description. */
2060
2061#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2062 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2063
6a90d232
L
2064/* A C statement to output to the stdio stream FILE an assembler
2065 command to pad the location counter to a multiple of 1<<LOG
2066 bytes if it is within MAX_SKIP bytes. */
2067
2068#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2069#undef ASM_OUTPUT_MAX_SKIP_PAD
2070#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2071 if ((LOG) != 0) \
2072 { \
2073 if ((MAX_SKIP) == 0) \
2074 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2075 else \
2076 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2077 }
2078#endif
2079
135a687e
KT
2080/* Write the extra assembler code needed to declare a function
2081 properly. */
2082
2083#undef ASM_OUTPUT_FUNCTION_LABEL
2084#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2085 ix86_asm_output_function_label (FILE, NAME, DECL)
2086
f7288899
EC
2087/* Under some conditions we need jump tables in the text section,
2088 because the assembler cannot handle label differences between
2089 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2090
2091#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2092 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2093 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2094
cea3bd3e
RH
2095/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2096 and switch back. For x86 we do this only to save a few bytes that
2097 would otherwise be unused in the text section. */
ad211091
KT
2098#define CRT_MKSTR2(VAL) #VAL
2099#define CRT_MKSTR(x) CRT_MKSTR2(x)
2100
2101#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2102 asm (SECTION_OP "\n\t" \
2103 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2104 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2105
2106/* Default threshold for putting data in large sections
2107 with x86-64 medium memory model */
2108#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2109\f
b2b01543 2110/* Which processor to tune code generation for. */
5bf0ebab
RH
2111
2112enum processor_type
2113{
8383d43c 2114 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2115 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2116 PROCESSOR_PENTIUM,
2117 PROCESSOR_PENTIUMPRO,
cfe1b18f 2118 PROCESSOR_GEODE,
5bf0ebab
RH
2119 PROCESSOR_K6,
2120 PROCESSOR_ATHLON,
2121 PROCESSOR_PENTIUM4,
4977bab6 2122 PROCESSOR_K8,
89c43c0a 2123 PROCESSOR_NOCONA,
340ef734
JH
2124 PROCESSOR_CORE2,
2125 PROCESSOR_COREI7,
3a579e09 2126 PROCESSOR_HASWELL,
d326eaf0
JH
2127 PROCESSOR_GENERIC32,
2128 PROCESSOR_GENERIC64,
21efb4d4 2129 PROCESSOR_AMDFAM10,
1133125e 2130 PROCESSOR_BDVER1,
4d652a18 2131 PROCESSOR_BDVER2,
eb2f2b44 2132 PROCESSOR_BDVER3,
14b52538 2133 PROCESSOR_BTVER1,
e32bfc16 2134 PROCESSOR_BTVER2,
b6837b94 2135 PROCESSOR_ATOM,
0b871ccf 2136 PROCESSOR_SLM,
5bf0ebab
RH
2137 PROCESSOR_max
2138};
2139
9e555526 2140extern enum processor_type ix86_tune;
5bf0ebab 2141extern enum processor_type ix86_arch;
5bf0ebab 2142
8362f420
JH
2143/* Size of the RED_ZONE area. */
2144#define RED_ZONE_SIZE 128
2145/* Reserved area of the red zone for temporaries. */
2146#define RED_ZONE_RESERVE 8
c93e80a5 2147
95899b34 2148extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2149extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2150
2151/* Smallest class containing REGNO. */
2152extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2153
0948ccb2
PB
2154enum ix86_fpcmp_strategy {
2155 IX86_FPCMP_SAHF,
2156 IX86_FPCMP_COMI,
2157 IX86_FPCMP_ARITH
2158};
22fb740d
JH
2159\f
2160/* To properly truncate FP values into integers, we need to set i387 control
2161 word. We can't emit proper mode switching code before reload, as spills
2162 generated by reload may truncate values incorrectly, but we still can avoid
2163 redundant computation of new control word by the mode switching pass.
2164 The fldcw instructions are still emitted redundantly, but this is probably
2165 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2166 the sequence.
22fb740d
JH
2167
2168 The machinery is to emit simple truncation instructions and split them
2169 before reload to instructions having USEs of two memory locations that
2170 are filled by this code to old and new control word.
fce5a9f2 2171
22fb740d
JH
2172 Post-reload pass may be later used to eliminate the redundant fildcw if
2173 needed. */
2174
ff680eb1
UB
2175enum ix86_entity
2176{
ff97910d
VY
2177 AVX_U128 = 0,
2178 I387_TRUNC,
ff680eb1
UB
2179 I387_FLOOR,
2180 I387_CEIL,
2181 I387_MASK_PM,
2182 MAX_386_ENTITIES
2183};
2184
1cba2b96 2185enum ix86_stack_slot
ff680eb1 2186{
443ca5fc 2187 SLOT_TEMP = 0,
ff680eb1
UB
2188 SLOT_CW_STORED,
2189 SLOT_CW_TRUNC,
2190 SLOT_CW_FLOOR,
2191 SLOT_CW_CEIL,
2192 SLOT_CW_MASK_PM,
2193 MAX_386_STACK_LOCALS
2194};
22fb740d 2195
ff97910d
VY
2196enum avx_u128_state
2197{
2198 AVX_U128_CLEAN,
2199 AVX_U128_DIRTY,
2200 AVX_U128_ANY
2201};
2202
22fb740d
JH
2203/* Define this macro if the port needs extra instructions inserted
2204 for mode switching in an optimizing compilation. */
2205
ff680eb1
UB
2206#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2207 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2208
2209/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2210 initializer for an array of integers. Each initializer element N
2211 refers to an entity that needs mode switching, and specifies the
2212 number of different modes that might need to be set for this
2213 entity. The position of the initializer in the initializer -
2214 starting counting at zero - determines the integer that is used to
2215 refer to the mode-switched entity in question. */
2216
ff680eb1 2217#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2218 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2219
2220/* ENTITY is an integer specifying a mode-switched entity. If
2221 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2222 return an integer value not larger than the corresponding element
2223 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff97910d 2224 must be switched into prior to the execution of INSN. */
ff680eb1
UB
2225
2226#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d 2227
ff97910d
VY
2228/* If this macro is defined, it is evaluated for every INSN during
2229 mode switching. It determines the mode that an insn results in (if
2230 different from the incoming mode). */
2231
2232#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2233
2234/* If this macro is defined, it is evaluated for every ENTITY that
2235 needs mode switching. It should evaluate to an integer, which is
2236 a mode that ENTITY is assumed to be switched to at function entry. */
2237
2238#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2239
2240/* If this macro is defined, it is evaluated for every ENTITY that
2241 needs mode switching. It should evaluate to an integer, which is
2242 a mode that ENTITY is assumed to be switched to at function exit. */
2243
2244#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2245
22fb740d
JH
2246/* This macro specifies the order in which modes for ENTITY are
2247 processed. 0 is the highest priority. */
2248
d9a5f180 2249#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2250
2251/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2252 is the set of hard registers live at the point where the insn(s)
2253 are to be inserted. */
2254
ff97910d 2255#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
5756eff7 2256 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
0f0138b6
JH
2257\f
2258/* Avoid renaming of stack registers, as doing so in combination with
2259 scheduling just increases amount of live registers at time and in
2260 the turn amount of fxch instructions needed.
2261
43f3a59d 2262 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2263
66aaf16f 2264#define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
22fb740d 2265
3b3c6a3f 2266\f
e91f04de 2267#define FASTCALL_PREFIX '@'
fa1a0d02 2268\f
ec7ded37 2269/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2270
604a6be9 2271#ifndef USED_FOR_TARGET
ec7ded37 2272struct GTY(()) machine_frame_state
cd9c1ca8 2273{
ec7ded37
RH
2274 /* This pair tracks the currently active CFA as reg+offset. When reg
2275 is drap_reg, we don't bother trying to record here the real CFA when
2276 it might really be a DW_CFA_def_cfa_expression. */
2277 rtx cfa_reg;
2278 HOST_WIDE_INT cfa_offset;
2279
2280 /* The current offset (canonically from the CFA) of ESP and EBP.
2281 When stack frame re-alignment is active, these may not be relative
2282 to the CFA. However, in all cases they are relative to the offsets
2283 of the saved registers stored in ix86_frame. */
2284 HOST_WIDE_INT sp_offset;
2285 HOST_WIDE_INT fp_offset;
2286
2287 /* The size of the red-zone that may be assumed for the purposes of
2288 eliding register restore notes in the epilogue. This may be zero
2289 if no red-zone is in effect, or may be reduced from the real
2290 red-zone value by a maximum runtime stack re-alignment value. */
2291 int red_zone_offset;
2292
2293 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2294 value within the frame. If false then the offset above should be
2295 ignored. Note that DRAP, if valid, *always* points to the CFA and
2296 thus has an offset of zero. */
2297 BOOL_BITFIELD sp_valid : 1;
2298 BOOL_BITFIELD fp_valid : 1;
2299 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2300
2301 /* Indicate whether the local stack frame has been re-aligned. When
2302 set, the SP/FP offsets above are relative to the aligned frame
2303 and not the CFA. */
2304 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2305};
2306
f81c9774
RH
2307/* Private to winnt.c. */
2308struct seh_frame_state;
2309
d1b38208 2310struct GTY(()) machine_function {
fa1a0d02
JH
2311 struct stack_local_entry *stack_locals;
2312 const char *some_ld_name;
4aab97f9
L
2313 int varargs_gpr_size;
2314 int varargs_fpr_size;
ff680eb1 2315 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2316
2317 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2318 has been computed for. */
2319 int use_fast_prologue_epilogue_nregs;
2320
7458026b
ILT
2321 /* For -fsplit-stack support: A stack local which holds a pointer to
2322 the stack arguments for a function with a variable number of
2323 arguments. This is set at the start of the function and is used
2324 to initialize the overflow_arg_area field of the va_list
2325 structure. */
2326 rtx split_stack_varargs_pointer;
2327
3452586b
RH
2328 /* This value is used for amd64 targets and specifies the current abi
2329 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2330 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2331
2332 /* Nonzero if the function accesses a previous frame. */
2333 BOOL_BITFIELD accesses_prev_frame : 1;
2334
2335 /* Nonzero if the function requires a CLD in the prologue. */
2336 BOOL_BITFIELD needs_cld : 1;
2337
922e3e33
UB
2338 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2339 expander to determine the style used. */
3452586b
RH
2340 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2341
5bf5a10b
AO
2342 /* If true, the current function needs the default PIC register, not
2343 an alternate register (on x86) and must not use the red zone (on
2344 x86_64), even if it's a leaf function. We don't want the
2345 function to be regarded as non-leaf because TLS calls need not
2346 affect register allocation. This flag is set when a TLS call
2347 instruction is expanded within a function, and never reset, even
2348 if all such instructions are optimized away. Use the
2349 ix86_current_function_calls_tls_descriptor macro for a better
2350 approximation. */
3452586b
RH
2351 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2352
2353 /* If true, the current function has a STATIC_CHAIN is placed on the
2354 stack below the return address. */
2355 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2356
ec7ded37
RH
2357 /* During prologue/epilogue generation, the current frame state.
2358 Otherwise, the frame state at the end of the prologue. */
2359 struct machine_frame_state fs;
f81c9774
RH
2360
2361 /* During SEH output, this is non-null. */
2362 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2363};
cd9c1ca8 2364#endif
fa1a0d02
JH
2365
2366#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2367#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2368#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2369#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2370#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2371#define ix86_tls_descriptor_calls_expanded_in_cfun \
2372 (cfun->machine->tls_descriptor_call_expanded_p)
2373/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2374 calls are optimized away, we try to detect cases in which it was
2375 optimized away. Since such instructions (use (reg REG_SP)), we can
2376 verify whether there's any such instruction live by testing that
2377 REG_SP is live. */
2378#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2379 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2380#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2381
1bc7c5b6
ZW
2382/* Control behavior of x86_file_start. */
2383#define X86_FILE_START_VERSION_DIRECTIVE false
2384#define X86_FILE_START_FLTUSED false
2385
7dcbf659
JH
2386/* Flag to mark data that is in the large address area. */
2387#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2388#define SYMBOL_REF_FAR_ADDR_P(X) \
2389 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2390
2391/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2392 have defined always, to avoid ifdefing. */
2393#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2394#define SYMBOL_REF_DLLIMPORT_P(X) \
2395 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2396
2397#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2398#define SYMBOL_REF_DLLEXPORT_P(X) \
2399 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2400
82c0e1a0
KT
2401#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2402#define SYMBOL_REF_STUBVAR_P(X) \
2403 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2404
7942e47e
RY
2405extern void debug_ready_dispatch (void);
2406extern void debug_dispatch_window (int);
2407
91afcfa3
QN
2408/* The value at zero is only defined for the BMI instructions
2409 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2410#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2411 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2412#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2413 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2414
2415
b8ce4e94
KT
2416/* Flags returned by ix86_get_callcvt (). */
2417#define IX86_CALLCVT_CDECL 0x1
2418#define IX86_CALLCVT_STDCALL 0x2
2419#define IX86_CALLCVT_FASTCALL 0x4
2420#define IX86_CALLCVT_THISCALL 0x8
2421#define IX86_CALLCVT_REGPARM 0x10
2422#define IX86_CALLCVT_SSEREGPARM 0x20
2423
2424#define IX86_BASE_CALLCVT(FLAGS) \
2425 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2426 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2427
b86b9f44
MM
2428#define RECIP_MASK_NONE 0x00
2429#define RECIP_MASK_DIV 0x01
2430#define RECIP_MASK_SQRT 0x02
2431#define RECIP_MASK_VEC_DIV 0x04
2432#define RECIP_MASK_VEC_SQRT 0x08
2433#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2434 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2435#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2436
2437#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2438#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2439#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2440#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2441
5dcfdccd
KY
2442#define IX86_HLE_ACQUIRE (1 << 16)
2443#define IX86_HLE_RELEASE (1 << 17)
2444
c98f8742
JVA
2445/*
2446Local variables:
2447version-control: t
2448End:
2449*/