]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
i386: Fix up X87_ENABLE_{FLOAT,ARITH} in conditions [PR94440]
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
8d9254fc 2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
8cf86e14
HL
84#define TARGET_AVX5124FMAPS TARGET_ISA2_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA2_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA2_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA2_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
8cf86e14
HL
96#define TARGET_AVX512VP2INTERSECT TARGET_ISA2_AVX512VP2INTERSECT
97#define TARGET_AVX512VP2INTERSECT_P(x) TARGET_ISA2_AVX512VP2INTERSECT_P(x)
90922d36 98#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 99#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 100#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 101#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 102#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 103#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 104#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 105#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 106#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 107#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 108#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 109#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
8cf86e14
HL
110#define TARGET_PCONFIG TARGET_ISA2_PCONFIG
111#define TARGET_PCONFIG_P(x) TARGET_ISA2_PCONFIG_P(x)
112#define TARGET_WBNOINVD TARGET_ISA2_WBNOINVD
113#define TARGET_WBNOINVD_P(x) TARGET_ISA2_WBNOINVD_P(x)
114#define TARGET_SGX TARGET_ISA2_SGX
115#define TARGET_SGX_P(x) TARGET_ISA2_SGX_P(x)
116#define TARGET_RDPID TARGET_ISA2_RDPID
117#define TARGET_RDPID_P(x) TARGET_ISA2_RDPID_P(x)
b8cca31c
JK
118#define TARGET_GFNI TARGET_ISA_GFNI
119#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
8cf86e14
HL
120#define TARGET_VAES TARGET_ISA2_VAES
121#define TARGET_VAES_P(x) TARGET_ISA2_VAES_P(x)
6557be99
JK
122#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
123#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 124#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 125#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 126#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 127#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 128#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 129#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 130#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 131#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 132#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 133#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 134#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 135#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
8cf86e14
HL
136#define TARGET_MOVBE TARGET_ISA2_MOVBE
137#define TARGET_MOVBE_P(x) TARGET_ISA2_MOVBE_P(x)
90922d36 138#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 139#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 140#define TARGET_AES TARGET_ISA_AES
bf7b5747 141#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
142#define TARGET_SHA TARGET_ISA_SHA
143#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
144#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
145#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
8cf86e14
HL
146#define TARGET_CLZERO TARGET_ISA2_CLZERO
147#define TARGET_CLZERO_P(x) TARGET_ISA2_CLZERO_P(x)
9cdea277
IT
148#define TARGET_XSAVEC TARGET_ISA_XSAVEC
149#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
150#define TARGET_XSAVES TARGET_ISA_XSAVES
151#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 152#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 153#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
8cf86e14
HL
154#define TARGET_CMPXCHG16B TARGET_ISA2_CX16
155#define TARGET_CMPXCHG16B_P(x) TARGET_ISA2_CX16_P(x)
90922d36 156#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 157#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 158#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 159#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 160#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 161#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
162#define TARGET_RTM TARGET_ISA_RTM
163#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
8cf86e14
HL
164#define TARGET_HLE TARGET_ISA2_HLE
165#define TARGET_HLE_P(x) TARGET_ISA2_HLE_P(x)
90922d36 166#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 167#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 168#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 169#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 170#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 171#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 172#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 173#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 174#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 175#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 176#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 177#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
178#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
179#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
180#define TARGET_CLWB TARGET_ISA_CLWB
181#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
8cf86e14
HL
182#define TARGET_MWAITX TARGET_ISA2_MWAITX
183#define TARGET_MWAITX_P(x) TARGET_ISA2_MWAITX_P(x)
41a4ef22
KY
184#define TARGET_PKU TARGET_ISA_PKU
185#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
186#define TARGET_SHSTK TARGET_ISA_SHSTK
187#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
188#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
189#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
8cf86e14
HL
190#define TARGET_MOVDIR64B TARGET_ISA2_MOVDIR64B
191#define TARGET_MOVDIR64B_P(x) TARGET_ISA2_MOVDIR64B_P(x)
192#define TARGET_WAITPKG TARGET_ISA2_WAITPKG
193#define TARGET_WAITPKG_P(x) TARGET_ISA2_WAITPKG_P(x)
194#define TARGET_CLDEMOTE TARGET_ISA2_CLDEMOTE
195#define TARGET_CLDEMOTE_P(x) TARGET_ISA2_CLDEMOTE_P(x)
196#define TARGET_PTWRITE TARGET_ISA2_PTWRITE
197#define TARGET_PTWRITE_P(x) TARGET_ISA2_PTWRITE_P(x)
198#define TARGET_AVX512BF16 TARGET_ISA2_AVX512BF16
199#define TARGET_AVX512BF16_P(x) TARGET_ISA2_AVX512BF16_P(x)
200#define TARGET_ENQCMD TARGET_ISA2_ENQCMD
201#define TARGET_ENQCMD_P(x) TARGET_ISA2_ENQCMD_P(x)
366386c7 202#define TARGET_SERIALIZE TARGET_ISA2_SERIALIZE
203#define TARGET_SERIALIZE_P(x) TARGET_ISA2_SERIALIZE_P(x)
1e47cb35 204#define TARGET_TSXLDTRK TARGET_ISA2_TSXLDTRK
205#define TARGET_TSXLDTRK_P(x) TARGET_ISA2_TSXLDTRK_P(x)
5c609842 206#define TARGET_AMX_TILE TARGET_ISA2_AMX_TILE
207#define TARGET_AMX_TILE_P(x) TARGET_ISA2_AMX_TILE(x)
208#define TARGET_AMX_INT8 TARGET_ISA2_AMX_INT8
209#define TARGET_AMX_INT8_P(x) TARGET_ISA2_AMX_INT8(x)
210#define TARGET_AMX_BF16 TARGET_ISA2_AMX_BF16
211#define TARGET_AMX_BF16_P(x) TARGET_ISA2_AMX_BF16(x)
299a53d7 212#define TARGET_UINTR TARGET_ISA2_UINTR
213#define TARGET_UINTR_P(x) TARGET_ISA2_UINTR_P(x)
83927c63
HW
214#define TARGET_HRESET TARGET_ISA2_HRESET
215#define TARGET_HRESET_P(x) TARGET_ISA2_HRESET_P(x)
632a2f50 216#define TARGET_KL TARGET_ISA2_KL
217#define TARGET_KL_P(x) TARGET_ISA2_KL_P(x)
218#define TARGET_WIDEKL TARGET_ISA2_WIDEKL
219#define TARGET_WIDEKL_P(x) TARGET_ISA2_WIDEKL_P(x)
ca813880 220#define TARGET_AVXVNNI TARGET_ISA2_AVXVNNI
221#define TARGET_AVXVNNI_P(x) TARGET_ISA2_AVXVNNI_P(x)
41a4ef22 222
90922d36 223#define TARGET_LP64 TARGET_ABI_64
bf7b5747 224#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 225#define TARGET_X32 TARGET_ABI_X32
bf7b5747 226#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
227#define TARGET_16BIT TARGET_CODE16
228#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 229
dfa61b9e
L
230#define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
231
26b5109f
RS
232#include "config/vxworks-dummy.h"
233
7eb68c06 234#include "config/i386/i386-opts.h"
ccf8e764 235
c69fa2d4 236#define MAX_STRINGOP_ALGS 4
ccf8e764 237
8c996513
JH
238/* Specify what algorithm to use for stringops on known size.
239 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
240 known at compile time or estimated via feedback, the SIZE array
241 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 242 means infinity). Corresponding ALG is used then.
340ef734
JH
243 When NOALIGN is true the code guaranting the alignment of the memory
244 block is skipped.
245
8c996513 246 For example initializer:
4f3f76e6 247 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 248 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 249 be used otherwise. */
8c996513
JH
250struct stringop_algs
251{
252 const enum stringop_alg unknown_size;
253 const struct stringop_strategy {
254 const int max;
255 const enum stringop_alg alg;
340ef734 256 int noalign;
c69fa2d4 257 } size [MAX_STRINGOP_ALGS];
8c996513
JH
258};
259
d321551c
L
260/* Define the specific costs for a given cpu. NB: hard_register is used
261 by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
262 hard register move costs by register allocator. Relative costs of
263 pseudo register load and store versus pseudo register moves in RTL
264 expressions for TARGET_RTX_COSTS can be different from relative
265 costs of hard registers to get the most efficient operations with
266 pseudo registers. */
d4ba09c0
SC
267
268struct processor_costs {
d321551c
L
269 /* Costs used by register allocator. integer->integer register move
270 cost is 2. */
271 struct
272 {
273 const int movzbl_load; /* cost of loading using movzbl */
274 const int int_load[3]; /* cost of loading integer registers
275 in QImode, HImode and SImode relative
276 to reg-reg move (2). */
277 const int int_store[3]; /* cost of storing integer register
278 in QImode, HImode and SImode */
279 const int fp_move; /* cost of reg,reg fld/fst */
280 const int fp_load[3]; /* cost of loading FP register
281 in SFmode, DFmode and XFmode */
282 const int fp_store[3]; /* cost of storing FP register
283 in SFmode, DFmode and XFmode */
284 const int mmx_move; /* cost of moving MMX register. */
285 const int mmx_load[2]; /* cost of loading MMX register
286 in SImode and DImode */
287 const int mmx_store[2]; /* cost of storing MMX register
288 in SImode and DImode */
289 const int xmm_move; /* cost of moving XMM register. */
290 const int ymm_move; /* cost of moving XMM register. */
291 const int zmm_move; /* cost of moving XMM register. */
292 const int sse_load[5]; /* cost of loading SSE register
293 in 32bit, 64bit, 128bit, 256bit and 512bit */
294 const int sse_store[5]; /* cost of storing SSE register
295 in SImode, DImode and TImode. */
296 const int sse_to_integer; /* cost of moving SSE register to integer. */
297 const int integer_to_sse; /* cost of moving integer register to SSE. */
00cb3494
L
298 const int mask_to_integer; /* cost of moving mask register to integer. */
299 const int integer_to_mask; /* cost of moving integer register to mask. */
300 const int mask_load[3]; /* cost of loading mask registers
301 in QImode, HImode and SImode. */
302 const int mask_store[3]; /* cost of storing mask register
303 in QImode, HImode and SImode. */
304 const int mask_move; /* cost of moving mask register. */
d321551c
L
305 } hard_register;
306
8b60264b
KG
307 const int add; /* cost of an add instruction */
308 const int lea; /* cost of a lea instruction */
309 const int shift_var; /* variable shift costs */
310 const int shift_const; /* constant shift costs */
f676971a 311 const int mult_init[5]; /* cost of starting a multiply
4977bab6 312 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 313 const int mult_bit; /* cost of multiply per each bit set */
f676971a 314 const int divide[5]; /* cost of a divide/mod
4977bab6 315 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
316 int movsx; /* The cost of movsx operation. */
317 int movzx; /* The cost of movzx operation. */
8b60264b
KG
318 const int large_insn; /* insns larger than this cost more */
319 const int move_ratio; /* The threshold of number of scalar
ac775968 320 memory-to-memory move insns. */
25e22b19
L
321 const int clear_ratio; /* The threshold of number of scalar
322 memory clearing insns. */
8b60264b 323 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
324 in QImode, HImode and SImode relative
325 to reg-reg move (2). */
8b60264b 326 const int int_store[3]; /* cost of storing integer register
96e7ae40 327 in QImode, HImode and SImode */
df41dbaf
JH
328 const int sse_load[5]; /* cost of loading SSE register
329 in 32bit, 64bit, 128bit, 256bit and 512bit */
df41dbaf 330 const int sse_store[5]; /* cost of storing SSE register
d321551c
L
331 in 32bit, 64bit, 128bit, 256bit and 512bit */
332 const int sse_unaligned_load[5];/* cost of unaligned load. */
df41dbaf 333 const int sse_unaligned_store[5];/* cost of unaligned store. */
d321551c
L
334 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
335 zmm_move;
66574c53 336 const int sse_to_integer; /* cost of moving SSE register to integer. */
a4fe6139
JH
337 const int gather_static, gather_per_elt; /* Cost of gather load is computed
338 as static + per_item * nelts. */
339 const int scatter_static, scatter_per_elt; /* Cost of gather store is
340 computed as static + per_item * nelts. */
46cb0441
ZD
341 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
342 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
343 const int prefetch_block; /* bytes moved to cache for prefetch. */
344 const int simultaneous_prefetches; /* number of parallel prefetch
345 operations. */
4977bab6 346 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
347 const int fadd; /* cost of FADD and FSUB instructions. */
348 const int fmul; /* cost of FMUL instruction. */
349 const int fdiv; /* cost of FDIV instruction. */
350 const int fabs; /* cost of FABS instruction. */
351 const int fchs; /* cost of FCHS instruction. */
352 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 353 /* Specify what algorithm
bee51209 354 to use for stringops on unknown size. */
c53c148c 355 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
356 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
357 const int mulss; /* cost of MULSS instructions. */
358 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
359 const int fmass; /* cost of FMASS instructions. */
360 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
361 const int divss; /* cost of DIVSS instructions. */
362 const int divsd; /* cost of DIVSD instructions. */
363 const int sqrtss; /* cost of SQRTSS instructions. */
364 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
365 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
366 /* Specify reassociation width for integer,
367 fp, vector integer and vector fp
368 operations. Generally should correspond
369 to number of instructions executed in
370 parallel. See also
371 ix86_reassociation_width. */
ad83025e 372 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
373 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
374 cost model. */
375 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
376 vectorizer cost model. */
7dc58b50
ML
377
378 /* The "0:0:8" label alignment specified for some processors generates
379 secondary 8-byte alignment only for those label/jump/loop targets
380 which have primary alignment. */
381 const char *const align_loop; /* Loop alignment. */
382 const char *const align_jump; /* Jump alignment. */
383 const char *const align_label; /* Label alignment. */
384 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
385};
386
8b60264b 387extern const struct processor_costs *ix86_cost;
b2077fd2
JH
388extern const struct processor_costs ix86_size_cost;
389
390#define ix86_cur_cost() \
391 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 392
c98f8742
JVA
393/* Macros used in the machine description to test the flags. */
394
b97de419 395/* configure can arrange to change it. */
e075ae69 396
35b528be 397#ifndef TARGET_CPU_DEFAULT
b97de419 398#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 399#endif
35b528be 400
004d3859
GK
401#ifndef TARGET_FPMATH_DEFAULT
402#define TARGET_FPMATH_DEFAULT \
403 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
404#endif
405
bf7b5747
ST
406#ifndef TARGET_FPMATH_DEFAULT_P
407#define TARGET_FPMATH_DEFAULT_P(x) \
408 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
409#endif
410
c207fd99
L
411/* If the i387 is disabled or -miamcu is used , then do not return
412 values in it. */
413#define TARGET_FLOAT_RETURNS_IN_80387 \
414 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
415#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
416 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 417
5791cc29
JT
418/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
419 compile-time constant. */
420#ifdef IN_LIBGCC2
6ac49599 421#undef TARGET_64BIT
5791cc29
JT
422#ifdef __x86_64__
423#define TARGET_64BIT 1
424#else
425#define TARGET_64BIT 0
426#endif
427#else
6ac49599
RS
428#ifndef TARGET_BI_ARCH
429#undef TARGET_64BIT
e49080ec 430#undef TARGET_64BIT_P
67adf6a9 431#if TARGET_64BIT_DEFAULT
0c2dc519 432#define TARGET_64BIT 1
e49080ec 433#define TARGET_64BIT_P(x) 1
0c2dc519
JH
434#else
435#define TARGET_64BIT 0
e49080ec 436#define TARGET_64BIT_P(x) 0
0c2dc519
JH
437#endif
438#endif
5791cc29 439#endif
25f94bb5 440
750054a2
CT
441#define HAS_LONG_COND_BRANCH 1
442#define HAS_LONG_UNCOND_BRANCH 1
443
9e555526
RH
444#define TARGET_386 (ix86_tune == PROCESSOR_I386)
445#define TARGET_486 (ix86_tune == PROCESSOR_I486)
446#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
447#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 448#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
449#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
450#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
451#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
452#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 453#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 454#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 455#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
456#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
457#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 458#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
459#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
460#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 461#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 462#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 463#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 464#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 465#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 466#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 467#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 468#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
469#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
470#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
7cab07f0 471#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
a9fcfec3
HL
472#define TARGET_TIGERLAKE (ix86_tune == PROCESSOR_TIGERLAKE)
473#define TARGET_COOPERLAKE (ix86_tune == PROCESSOR_COOPERLAKE)
ba9c87d3
CL
474#define TARGET_SAPPHIRERAPIDS (ix86_tune == PROCESSOR_SAPPHIRERAPIDS)
475#define TARGET_ALDERLAKE (ix86_tune == PROCESSOR_ALDERLAKE)
9a7f94d7 476#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 477#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 478#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 479#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 480#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 481#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 482#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 483#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 484#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 485#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
2901f42f 486#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
3e2ae3ee 487#define TARGET_ZNVER3 (ix86_tune == PROCESSOR_ZNVER3)
a269a03c 488
80fd744f
RH
489/* Feature tests against the various tunings. */
490enum ix86_tune_indices {
4b8bc035 491#undef DEF_TUNE
3ad20bd4 492#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
493#include "x86-tune.def"
494#undef DEF_TUNE
495X86_TUNE_LAST
80fd744f
RH
496};
497
ab442df7 498extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
499
500#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
501#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
502#define TARGET_ZERO_EXTEND_WITH_AND \
503 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 504#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
505#define TARGET_BRANCH_PREDICTION_HINTS \
506 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
507#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
508#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
509#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
510#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
511#define TARGET_PARTIAL_FLAG_REG_STALL \
512 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
513#define TARGET_LCP_STALL \
514 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
515#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
516#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
517#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
518#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
519#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
520#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
521#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
522#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
523#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
524#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
525#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
526#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
527 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
528#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
529#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
530#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
531#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
532#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
533#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
534#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
535#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
536#define TARGET_INTEGER_DFMODE_MOVES \
537 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
538#define TARGET_PARTIAL_REG_DEPENDENCY \
539 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
540#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
541 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
542#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
543 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
544#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
545 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
546#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
547 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
548#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
549#define TARGET_SSE_TYPELESS_STORES \
550 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
551#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
552#define TARGET_MEMORY_MISMATCH_STALL \
553 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
554#define TARGET_PROLOGUE_USING_MOVE \
555 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
556#define TARGET_EPILOGUE_USING_MOVE \
557 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
558#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
559#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
560#define TARGET_INTER_UNIT_MOVES_TO_VEC \
561 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
562#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
563 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
564#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 565 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
566#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
567#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
568#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
569#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
570#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
571#define TARGET_PAD_SHORT_FUNCTION \
572 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
573#define TARGET_EXT_80387_CONSTANTS \
574 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
575#define TARGET_AVOID_VECTOR_DECODE \
576 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
577#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
578 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
579#define TARGET_SLOW_IMUL_IMM32_MEM \
580 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
581#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
582#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
583#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
584#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
585#define TARGET_USE_VECTOR_FP_CONVERTS \
586 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
587#define TARGET_USE_VECTOR_CONVERTS \
588 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
589#define TARGET_SLOW_PSHUFB \
590 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
591#define TARGET_AVOID_4BYTE_PREFIXES \
592 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
593#define TARGET_USE_GATHER \
594 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
595#define TARGET_FUSE_CMP_AND_BRANCH_32 \
596 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
597#define TARGET_FUSE_CMP_AND_BRANCH_64 \
598 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 599#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
600 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
601 : TARGET_FUSE_CMP_AND_BRANCH_32)
602#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
603 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
604#define TARGET_FUSE_ALU_AND_BRANCH \
605 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 606#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
607#define TARGET_AVOID_LEA_FOR_ADDR \
608 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
609#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
610 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
586bbef1
HL
611#define TARGET_AVX256_SPLIT_REGS \
612 ix86_tune_features[X86_TUNE_AVX256_SPLIT_REGS]
55a2c322
VM
613#define TARGET_GENERAL_REGS_SSE_SPILL \
614 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
615#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
616 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 617#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 618 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
619#define TARGET_ADJUST_UNROLL \
620 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
621#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
622 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
623#define TARGET_ONE_IF_CONV_INSN \
624 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
3c5e83d5 625#define TARGET_AVOID_MFENCE ix86_tune_features[X86_TUNE_AVOID_MFENCE]
348188bf
L
626#define TARGET_EMIT_VZEROUPPER \
627 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
da86c5af
HW
628#define TARGET_EXPAND_ABS \
629 ix86_tune_features[X86_TUNE_EXPAND_ABS]
df7b0cc4 630
80fd744f
RH
631/* Feature tests against the various architecture variations. */
632enum ix86_arch_indices {
cef31f9c 633 X86_ARCH_CMOV,
80fd744f
RH
634 X86_ARCH_CMPXCHG,
635 X86_ARCH_CMPXCHG8B,
636 X86_ARCH_XADD,
637 X86_ARCH_BSWAP,
638
639 X86_ARCH_LAST
640};
4f3f76e6 641
ab442df7 642extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 643
cef31f9c 644#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
645#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
646#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
647#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
648#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
649
cef31f9c
UB
650/* For sane SSE instruction set generation we need fcomi instruction.
651 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
652 expands to a sequence that includes conditional move. */
653#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
654
80fd744f
RH
655#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
656
cb261eb7 657extern unsigned char x86_prefetch_sse;
80fd744f
RH
658#define TARGET_PREFETCH_SSE x86_prefetch_sse
659
80fd744f
RH
660#define ASSEMBLER_DIALECT (ix86_asm_dialect)
661
662#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
663#define TARGET_MIX_SSE_I387 \
664 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
665
5fa578f0
UB
666#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
667#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
668#define TARGET_HARD_XF_REGS (TARGET_80387)
669
80fd744f
RH
670#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
671#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
672#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 673#define TARGET_SUN_TLS 0
1ef45b77 674
67adf6a9
RH
675#ifndef TARGET_64BIT_DEFAULT
676#define TARGET_64BIT_DEFAULT 0
25f94bb5 677#endif
74dc3e94
RH
678#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
679#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
680#endif
25f94bb5 681
e0ea8797
AH
682#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
683#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
684
79f5e442
ZD
685/* Fence to use after loop using storent. */
686
687extern tree x86_mfence;
688#define FENCE_FOLLOWING_MOVNT x86_mfence
689
0ed4a390
JL
690/* Once GDB has been enhanced to deal with functions without frame
691 pointers, we can change this to allow for elimination of
692 the frame pointer in leaf functions. */
693#define TARGET_DEFAULT 0
67adf6a9 694
0a1c5e55
UB
695/* Extra bits to force. */
696#define TARGET_SUBTARGET_DEFAULT 0
697#define TARGET_SUBTARGET_ISA_DEFAULT 0
698
699/* Extra bits to force on w/ 32-bit mode. */
700#define TARGET_SUBTARGET32_DEFAULT 0
701#define TARGET_SUBTARGET32_ISA_DEFAULT 0
702
ccf8e764
RH
703/* Extra bits to force on w/ 64-bit mode. */
704#define TARGET_SUBTARGET64_DEFAULT 0
8b131a8a
UB
705/* Enable MMX, SSE and SSE2 by default. */
706#define TARGET_SUBTARGET64_ISA_DEFAULT \
707 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
ccf8e764 708
fee3eacd
IS
709/* Replace MACH-O, ifdefs by in-line tests, where possible.
710 (a) Macros defined in config/i386/darwin.h */
b069de3b 711#define TARGET_MACHO 0
d308419c 712#define TARGET_MACHO_SYMBOL_STUBS 0
fee3eacd
IS
713#define MACHOPIC_ATT_STUB 0
714/* (b) Macros defined in config/darwin.h */
715#define MACHO_DYNAMIC_NO_PIC_P 0
716#define MACHOPIC_INDIRECT 0
717#define MACHOPIC_PURE 0
9005471b 718
5a579c3b
LE
719/* For the RDOS */
720#define TARGET_RDOS 0
721
9005471b 722/* For the Windows 64-bit ABI. */
7c800926
KT
723#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
724
6510e8bb
KT
725/* For the Windows 32-bit ABI. */
726#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
727
f81c9774
RH
728/* This is re-defined by cygming.h. */
729#define TARGET_SEH 0
730
51212b32 731/* The default abi used by target. */
7c800926 732#define DEFAULT_ABI SYSV_ABI
ccf8e764 733
b8b3f0ca 734/* The default TLS segment register used by target. */
00402c94
RH
735#define DEFAULT_TLS_SEG_REG \
736 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 737
cc69336f
RH
738/* Subtargets may reset this to 1 in order to enable 96-bit long double
739 with the rounding mode forced to 53 bits. */
740#define TARGET_96_ROUND_53_LONG_DOUBLE 0
741
98ae96d2
PB
742#ifndef SUBTARGET_DRIVER_SELF_SPECS
743# define SUBTARGET_DRIVER_SELF_SPECS ""
744#endif
745
746#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
747
682cd442
GK
748/* -march=native handling only makes sense with compiler running on
749 an x86 or x86_64 chip. If changing this condition, also change
750 the condition in driver-i386.c. */
751#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
752/* In driver-i386.c. */
753extern const char *host_detect_local_cpu (int argc, const char **argv);
754#define EXTRA_SPEC_FUNCTIONS \
755 { "local_cpu_detect", host_detect_local_cpu },
682cd442 756#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
757#endif
758
8981c15b
JM
759#if TARGET_64BIT_DEFAULT
760#define OPT_ARCH64 "!m32"
761#define OPT_ARCH32 "m32"
762#else
f0ea7581
L
763#define OPT_ARCH64 "m64|mx32"
764#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
765#endif
766
1cba2b96
EC
767/* Support for configure-time defaults of some command line options.
768 The order here is important so that -march doesn't squash the
769 tune or cpu values. */
ce998900 770#define OPTION_DEFAULT_SPECS \
da2d4c01 771 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
772 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
773 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 774 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
775 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
776 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
777 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
778 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
779 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 780
241e1a89
SC
781/* Specs for the compiler proper */
782
628714d8 783#ifndef CC1_CPU_SPEC
eb5bb0fd 784#define CC1_CPU_SPEC_1 ""
fa959ce4 785
682cd442 786#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
787#define CC1_CPU_SPEC CC1_CPU_SPEC_1
788#else
789#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
790"%{march=native:%>march=native %:local_cpu_detect(arch) \
791 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
792%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 793#endif
241e1a89 794#endif
c98f8742 795\f
30efe578 796/* Target CPU builtins. */
ab442df7
MM
797#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
798
799/* Target Pragmas. */
800#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 801
b4c522fa
IB
802/* Target CPU versions for D. */
803#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
804
628714d8 805#ifndef CC1_SPEC
8015b78d 806#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
807#endif
808
809/* This macro defines names of additional specifications to put in the
810 specs that can be used in various specifications like CC1_SPEC. Its
811 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
812
813 Each subgrouping contains a string constant, that defines the
188fc5b5 814 specification name, and a string constant that used by the GCC driver
bcd86433
SC
815 program.
816
817 Do not define this macro if it does not need to do anything. */
818
819#ifndef SUBTARGET_EXTRA_SPECS
820#define SUBTARGET_EXTRA_SPECS
821#endif
822
823#define EXTRA_SPECS \
628714d8 824 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
825 SUBTARGET_EXTRA_SPECS
826\f
ce998900 827
8ce94e44
JM
828/* Whether to allow x87 floating-point arithmetic on MODE (one of
829 SFmode, DFmode and XFmode) in the current excess precision
830 configuration. */
b8cab8a5 831#define X87_ENABLE_ARITH(MODE) \
e401db7b
JJ
832 (ix86_unsafe_math_optimizations \
833 || ix86_excess_precision == EXCESS_PRECISION_FAST \
b8cab8a5 834 || (MODE) == XFmode)
8ce94e44
JM
835
836/* Likewise, whether to allow direct conversions from integer mode
837 IMODE (HImode, SImode or DImode) to MODE. */
838#define X87_ENABLE_FLOAT(MODE, IMODE) \
e401db7b
JJ
839 (ix86_unsafe_math_optimizations \
840 || ix86_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
841 || (MODE) == XFmode \
842 || ((MODE) == DFmode && (IMODE) == SImode) \
843 || (IMODE) == HImode)
844
979c67a5
UB
845/* target machine storage layout */
846
65d9c0ab
JH
847#define SHORT_TYPE_SIZE 16
848#define INT_TYPE_SIZE 32
f0ea7581
L
849#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
850#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 851#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 852#define FLOAT_TYPE_SIZE 32
65d9c0ab 853#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
854#define LONG_DOUBLE_TYPE_SIZE \
855 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 856
c637141a 857#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 858
67adf6a9 859#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 860#define MAX_BITS_PER_WORD 64
0c2dc519
JH
861#else
862#define MAX_BITS_PER_WORD 32
0c2dc519
JH
863#endif
864
c98f8742
JVA
865/* Define this if most significant byte of a word is the lowest numbered. */
866/* That is true on the 80386. */
867
868#define BITS_BIG_ENDIAN 0
869
870/* Define this if most significant byte of a word is the lowest numbered. */
871/* That is not true on the 80386. */
872#define BYTES_BIG_ENDIAN 0
873
874/* Define this if most significant word of a multiword number is the lowest
875 numbered. */
876/* Not true for 80386 */
877#define WORDS_BIG_ENDIAN 0
878
c98f8742 879/* Width of a word, in units (bytes). */
4ae8027b 880#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
881
882#ifndef IN_LIBGCC2
2e64c636
JH
883#define MIN_UNITS_PER_WORD 4
884#endif
c98f8742 885
c98f8742 886/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 887#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 888
e075ae69 889/* Boundary (in *bits*) on which stack pointer should be aligned. */
bd5d3961 890#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 891
2e3f842f
L
892/* Stack boundary of the main function guaranteed by OS. */
893#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
894
de1132d1 895/* Minimum stack boundary. */
cba9c789 896#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 897
d1f87653 898/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 899 aligned; the compiler cannot rely on having this alignment. */
e075ae69 900#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 901
de1132d1 902/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
903 both 32bit and 64bit, to support codes that need 128 bit stack
904 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
905#define PREFERRED_STACK_BOUNDARY_DEFAULT \
906 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
907
908/* 1 if -mstackrealign should be turned on by default. It will
909 generate an alternate prologue and epilogue that realigns the
910 runtime stack if nessary. This supports mixing codes that keep a
911 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 912 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
913#define STACK_REALIGN_DEFAULT 0
914
915/* Boundary (in *bits*) on which the incoming stack is aligned. */
916#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 917
a2851b75
TG
918/* According to Windows x64 software convention, the maximum stack allocatable
919 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
920 instructions allowed to adjust the stack pointer in the epilog, forcing the
921 use of frame pointer for frames larger than 2 GB. This theorical limit
922 is reduced by 256, an over-estimated upper bound for the stack use by the
923 prologue.
924 We define only one threshold for both the prolog and the epilog. When the
4e523f33 925 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
926 regs, then save them, and then allocate the remaining. There is no SEH
927 unwind info for this later allocation. */
928#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
929
ebff937c
SH
930/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
931 mandatory for the 64-bit ABI, and may or may not be true for other
932 operating systems. */
933#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
934
f963b5d9
RS
935/* Minimum allocation boundary for the code of a function. */
936#define FUNCTION_BOUNDARY 8
937
938/* C++ stores the virtual bit in the lowest bit of function pointers. */
939#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 940
c98f8742
JVA
941/* Minimum size in bits of the largest boundary to which any
942 and all fundamental data types supported by the hardware
943 might need to be aligned. No data type wants to be aligned
17f24ff0 944 rounder than this.
fce5a9f2 945
d1f87653 946 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
947 and Pentium Pro XFmode values at 128 bit boundaries.
948
949 When increasing the maximum, also update
950 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 951
3f97cb0b 952#define BIGGEST_ALIGNMENT \
0076c82f 953 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 954
2e3f842f
L
955/* Maximum stack alignment. */
956#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
957
6e4f1168
L
958/* Alignment value for attribute ((aligned)). It is a constant since
959 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 960#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 961
822eda12 962/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 963#define ALIGN_MODE_128(MODE) \
4501d314 964 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 965
17f24ff0 966/* The published ABIs say that doubles should be aligned on word
d1f87653 967 boundaries, so lower the alignment for structure fields unless
6fc605d8 968 -malign-double is set. */
e932b21b 969
e83f3cff
RH
970/* ??? Blah -- this macro is used directly by libobjc. Since it
971 supports no vector modes, cut out the complexity and fall back
972 on BIGGEST_FIELD_ALIGNMENT. */
973#ifdef IN_TARGET_LIBS
ef49d42e
JH
974#ifdef __x86_64__
975#define BIGGEST_FIELD_ALIGNMENT 128
976#else
e83f3cff 977#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 978#endif
e83f3cff 979#else
a4cf4b64
RB
980#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
981 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 982#endif
c98f8742 983
8a022443
JW
984/* If defined, a C expression to compute the alignment for a static
985 variable. TYPE is the data type, and ALIGN is the alignment that
986 the object would ordinarily have. The value of this macro is used
987 instead of that alignment to align the object.
988
989 If this macro is not defined, then ALIGN is used.
990
991 One use of this macro is to increase alignment of medium-size
992 data to make it all fit in fewer cache lines. Another is to
993 cause character arrays to be word-aligned so that `strcpy' calls
994 that copy constants to character arrays can be done inline. */
995
df8a1d28
JJ
996#define DATA_ALIGNMENT(TYPE, ALIGN) \
997 ix86_data_alignment ((TYPE), (ALIGN), true)
998
999/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
1000 some alignment increase, instead of optimization only purposes. E.g.
1001 AMD x86-64 psABI says that variables with array type larger than 15 bytes
1002 must be aligned to 16 byte boundaries.
1003
1004 If this macro is not defined, then ALIGN is used. */
1005
1006#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
1007 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
1008
1009/* If defined, a C expression to compute the alignment for a local
1010 variable. TYPE is the data type, and ALIGN is the alignment that
1011 the object would ordinarily have. The value of this macro is used
1012 instead of that alignment to align the object.
1013
1014 If this macro is not defined, then ALIGN is used.
1015
1016 One use of this macro is to increase alignment of medium-size
1017 data to make it all fit in fewer cache lines. */
1018
76fe54f0
L
1019#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1020 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
1021
1022/* If defined, a C expression to compute the alignment for stack slot.
1023 TYPE is the data type, MODE is the widest mode available, and ALIGN
1024 is the alignment that the slot would ordinarily have. The value of
1025 this macro is used instead of that alignment to align the slot.
1026
1027 If this macro is not defined, then ALIGN is used when TYPE is NULL,
1028 Otherwise, LOCAL_ALIGNMENT will be used.
1029
1030 One use of this macro is to set alignment of stack slot to the
1031 maximum alignment of all possible modes which the slot may have. */
1032
1033#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
1034 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 1035
9bfaf89d
JJ
1036/* If defined, a C expression to compute the alignment for a local
1037 variable DECL.
1038
1039 If this macro is not defined, then
1040 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
1041
1042 One use of this macro is to increase alignment of medium-size
1043 data to make it all fit in fewer cache lines. */
1044
1045#define LOCAL_DECL_ALIGNMENT(DECL) \
1046 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
1047
ae58e548
JJ
1048/* If defined, a C expression to compute the minimum required alignment
1049 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
1050 MODE, assuming normal alignment ALIGN.
1051
1052 If this macro is not defined, then (ALIGN) will be used. */
1053
1054#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 1055 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 1056
9bfaf89d 1057
9cd10576 1058/* Set this nonzero if move instructions will actually fail to work
c98f8742 1059 when given unaligned data. */
b4ac57ab 1060#define STRICT_ALIGNMENT 0
c98f8742
JVA
1061
1062/* If bit field type is int, don't let it cross an int,
1063 and give entire struct the alignment of an int. */
43a88a8c 1064/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 1065#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
1066\f
1067/* Standard register usage. */
1068
1069/* This processor has special stack-like registers. See reg-stack.c
892a2d68 1070 for details. */
c98f8742
JVA
1071
1072#define STACK_REGS
ce998900 1073
f48b4284
UB
1074#define IS_STACK_MODE(MODE) \
1075 (X87_FLOAT_MODE_P (MODE) \
1076 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1077 || TARGET_MIX_SSE_I387))
c98f8742
JVA
1078
1079/* Number of actual hardware registers.
1080 The hardware registers are assigned numbers for the compiler
1081 from 0 to just below FIRST_PSEUDO_REGISTER.
1082 All registers that the compiler knows about must be given numbers,
1083 even those that are not normally considered general registers.
1084
1085 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1086 We number the floating point registers 8-15.
1087 Note that registers 0-7 can be accessed as a short or int,
1088 while only 0-3 may be used with byte `mov' instructions.
1089
1090 Reg 16 does not correspond to any hardware register, but instead
1091 appears in the RTL as an argument pointer prior to reload, and is
1092 eliminated during reloading in favor of either the stack or frame
892a2d68 1093 pointer. */
c98f8742 1094
05416670 1095#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1096
3073d01c
ML
1097/* Number of hardware registers that go into the DWARF-2 unwind info.
1098 If not defined, equals FIRST_PSEUDO_REGISTER. */
1099
1100#define DWARF_FRAME_REGISTERS 17
1101
c98f8742
JVA
1102/* 1 for registers that have pervasive standard uses
1103 and are not available for the register allocator.
3f3f2124 1104 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1105
621bc046
UB
1106 REX registers are disabled for 32bit targets in
1107 TARGET_CONDITIONAL_REGISTER_USAGE. */
1108
a7180f70
BS
1109#define FIXED_REGISTERS \
1110/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1111{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1112/*arg,flags,fpsr,frame*/ \
1113 1, 1, 1, 1, \
a7180f70
BS
1114/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1115 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1116/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1117 0, 0, 0, 0, 0, 0, 0, 0, \
1118/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1119 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1120/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1121 0, 0, 0, 0, 0, 0, 0, 0, \
1122/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1123 0, 0, 0, 0, 0, 0, 0, 0, \
1124/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1125 0, 0, 0, 0, 0, 0, 0, 0, \
1126/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1127 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1128
1129/* 1 for registers not available across function calls.
1130 These must include the FIXED_REGISTERS and also any
1131 registers that can be used without being saved.
1132 The latter must include the registers where values are returned
1133 and the register where structure-value addresses are passed.
fce5a9f2
EC
1134 Aside from that, you can include as many other registers as you like.
1135
621bc046
UB
1136 Value is set to 1 if the register is call used unconditionally.
1137 Bit one is set if the register is call used on TARGET_32BIT ABI.
1138 Bit two is set if the register is call used on TARGET_64BIT ABI.
1139 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1140
1141 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1142
1f3ccbc8
L
1143#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1144 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1145
a7180f70
BS
1146#define CALL_USED_REGISTERS \
1147/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1148{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1149/*arg,flags,fpsr,frame*/ \
1150 1, 1, 1, 1, \
a7180f70 1151/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1152 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1153/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1154 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1155/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1156 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1157/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1158 6, 6, 6, 6, 6, 6, 6, 6, \
1159/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
79ab8c43 1160 1, 1, 1, 1, 1, 1, 1, 1, \
3f97cb0b 1161/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
79ab8c43 1162 1, 1, 1, 1, 1, 1, 1, 1, \
85a77221 1163 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1164 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1165
3b3c6a3f
MM
1166/* Order in which to allocate registers. Each register must be
1167 listed once, even those in FIXED_REGISTERS. List frame pointer
1168 late and fixed registers last. Note that, in general, we prefer
1169 registers listed in CALL_USED_REGISTERS, keeping the others
1170 available for storage of persistent values.
1171
5a733826 1172 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1173 so this is just empty initializer for array. */
3b3c6a3f 1174
eaa17c21
UB
1175#define REG_ALLOC_ORDER \
1176{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1177 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1178 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1179 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1180 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1181
5a733826 1182/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1183 to be rearranged based on a particular function. When using sse math,
03c259ad 1184 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1185
5a733826 1186#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1187
f5316dfe 1188
7c800926
KT
1189#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1190
8521c414 1191#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1192 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1193 && GENERAL_REGNO_P (REGNO) \
1194 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1195
1196#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1197
e21b52af
HL
1198#define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1199
95879c72
L
1200#define VALID_AVX256_REG_MODE(MODE) \
1201 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1202 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1203 || (MODE) == V4DFmode)
95879c72 1204
4ac005ba 1205#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1206 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1207
3f97cb0b
AI
1208#define VALID_AVX512F_SCALAR_MODE(MODE) \
1209 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1210 || (MODE) == SFmode)
1211
1212#define VALID_AVX512F_REG_MODE(MODE) \
1213 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1214 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1215 || (MODE) == V4TImode)
1216
e6f146d2
SP
1217#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1218 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1219
05416670 1220#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1221 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1222 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1223 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1224
ce998900
UB
1225#define VALID_SSE2_REG_MODE(MODE) \
1226 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1227 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1228
d9a5f180 1229#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1230 ((MODE) == V1TImode || (MODE) == TImode \
1231 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1232 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1233
47f339cf 1234#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1235 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1236
d9a5f180 1237#define VALID_MMX_REG_MODE(MODE) \
879f9d0b 1238 ((MODE) == V1DImode || (MODE) == DImode \
10a97ae6
UB
1239 || (MODE) == V2SImode || (MODE) == SImode \
1240 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1241
05416670
UB
1242#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1243
1244#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1245
ce998900
UB
1246#define VALID_DFP_MODE_P(MODE) \
1247 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1248
d9a5f180 1249#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1250 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1251 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1252
d9a5f180 1253#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1254 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1255 || (MODE) == DImode \
1256 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1257 || (MODE) == CDImode \
1258 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1259 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1260
822eda12 1261/* Return true for modes passed in SSE registers. */
ce998900 1262#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1263 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1264 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1265 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1266 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1267 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1268 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1269 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1270 || (MODE) == V16SFmode)
822eda12 1271
05416670
UB
1272#define X87_FLOAT_MODE_P(MODE) \
1273 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1274
05416670
UB
1275#define SSE_FLOAT_MODE_P(MODE) \
1276 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1277
1278#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1279 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1280 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1281
7026bb95 1282#define VALID_BCST_MODE_P(MODE) \
1283 ((MODE) == SFmode || (MODE) == DFmode \
1284 || (MODE) == SImode || (MODE) == DImode)
1285
ff25ef99
ZD
1286/* It is possible to write patterns to move flags; but until someone
1287 does it, */
1288#define AVOID_CCMODE_COPIES
c98f8742 1289
e075ae69 1290/* Specify the modes required to caller save a given hard regno.
787dc842 1291 We do this on i386 to prevent flags from being saved at all.
e075ae69 1292
787dc842
JH
1293 Kill any attempts to combine saving of modes. */
1294
d9a5f180
GS
1295#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1296 (CC_REGNO_P (REGNO) ? VOIDmode \
1297 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
737d6a1a 1298 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL) \
a60c3351
UB
1299 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1300 && TARGET_PARTIAL_REG_STALL) \
85a77221 1301 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1302 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1303 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1304 : (MODE))
ce998900 1305
c98f8742
JVA
1306/* Specify the registers used for certain standard purposes.
1307 The values of these macros are register numbers. */
1308
1309/* on the 386 the pc register is %eip, and is not usable as a general
1310 register. The ordinary mov instructions won't work */
1311/* #define PC_REGNUM */
1312
05416670
UB
1313/* Base register for access to arguments of the function. */
1314#define ARG_POINTER_REGNUM ARGP_REG
1315
c98f8742 1316/* Register to use for pushing function arguments. */
05416670 1317#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1318
1319/* Base register for access to local variables of the function. */
05416670
UB
1320#define FRAME_POINTER_REGNUM FRAME_REG
1321#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1322
05416670
UB
1323#define FIRST_INT_REG AX_REG
1324#define LAST_INT_REG SP_REG
c98f8742 1325
05416670
UB
1326#define FIRST_QI_REG AX_REG
1327#define LAST_QI_REG BX_REG
c98f8742
JVA
1328
1329/* First & last stack-like regs */
05416670
UB
1330#define FIRST_STACK_REG ST0_REG
1331#define LAST_STACK_REG ST7_REG
c98f8742 1332
05416670
UB
1333#define FIRST_SSE_REG XMM0_REG
1334#define LAST_SSE_REG XMM7_REG
fce5a9f2 1335
05416670
UB
1336#define FIRST_MMX_REG MM0_REG
1337#define LAST_MMX_REG MM7_REG
a7180f70 1338
05416670
UB
1339#define FIRST_REX_INT_REG R8_REG
1340#define LAST_REX_INT_REG R15_REG
3f3f2124 1341
05416670
UB
1342#define FIRST_REX_SSE_REG XMM8_REG
1343#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1344
05416670
UB
1345#define FIRST_EXT_REX_SSE_REG XMM16_REG
1346#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1347
05416670
UB
1348#define FIRST_MASK_REG MASK0_REG
1349#define LAST_MASK_REG MASK7_REG
85a77221 1350
aabcd309 1351/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1352 requiring a frame pointer. */
1353#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1354#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1355#endif
1356
d730fd95
AT
1357/* Define the shadow offset for asan. Other OS's can override in the
1358 respective tm.h files. */
1359#ifndef SUBTARGET_SHADOW_OFFSET
1360#define SUBTARGET_SHADOW_OFFSET \
1361 (TARGET_LP64 ? HOST_WIDE_INT_C (0x7fff8000) : HOST_WIDE_INT_1 << 29)
1362#endif
1363
6fca22eb
RH
1364/* Make sure we can access arbitrary call frames. */
1365#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1366
c98f8742 1367/* Register to hold the addressing base for position independent
5b43fed1
RH
1368 code access to data items. We don't use PIC pointer for 64bit
1369 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1370 pessimizing code dealing with EBX.
bd09bdeb
RH
1371
1372 To avoid clobbering a call-saved register unnecessarily, we renumber
1373 the pic register when possible. The change is visible after the
1374 prologue has been emitted. */
1375
e8b5eb25 1376#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1377
bcb21886 1378#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1379 (ix86_use_pseudo_pic_reg () \
1380 ? (pic_offset_table_rtx \
1381 ? INVALID_REGNUM \
1382 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1383 : INVALID_REGNUM)
c98f8742 1384
5fc0e5df
KW
1385#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1386
c51e6d85 1387/* This is overridden by <cygwin.h>. */
5e062767
DS
1388#define MS_AGGREGATE_RETURN 0
1389
61fec9ff 1390#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1391\f
1392/* Define the classes of registers for register constraints in the
1393 machine description. Also define ranges of constants.
1394
1395 One of the classes must always be named ALL_REGS and include all hard regs.
1396 If there is more than one class, another class must be named NO_REGS
1397 and contain no registers.
1398
1399 The name GENERAL_REGS must be the name of a class (or an alias for
1400 another name such as ALL_REGS). This is the class of registers
1401 that is allowed by "g" or "r" in a register constraint.
1402 Also, registers outside this class are allocated only when
1403 instructions express preferences for them.
1404
1405 The classes must be numbered in nondecreasing order; that is,
1406 a larger-numbered class must never be contained completely
2e24efd3
AM
1407 in a smaller-numbered class. This is why CLOBBERED_REGS class
1408 is listed early, even though in 64-bit mode it contains more
1409 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1410
1411 For any two classes, it is very desirable that there be another
ab408a86
JVA
1412 class that represents their union.
1413
eaa17c21 1414 The flags and fpsr registers are in no class. */
c98f8742
JVA
1415
1416enum reg_class
1417{
1418 NO_REGS,
e075ae69 1419 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1420 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1421 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1422 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1423 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1424 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1425 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1426 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1427 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1428 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1429 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1430 FLOAT_REGS,
06f4e35d 1431 SSE_FIRST_REG,
45392c76 1432 NO_REX_SSE_REGS,
a7180f70 1433 SSE_REGS,
3f97cb0b 1434 ALL_SSE_REGS,
a7180f70 1435 MMX_REGS,
446988df
JH
1436 FLOAT_SSE_REGS,
1437 FLOAT_INT_REGS,
1438 INT_SSE_REGS,
1439 FLOAT_INT_SSE_REGS,
85a77221 1440 MASK_REGS,
d18cbbf6 1441 ALL_MASK_REGS,
2d2bc36c 1442 INT_MASK_REGS,
d18cbbf6
UB
1443 ALL_REGS,
1444 LIM_REG_CLASSES
c98f8742
JVA
1445};
1446
d9a5f180
GS
1447#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1448
1449#define INTEGER_CLASS_P(CLASS) \
1450 reg_class_subset_p ((CLASS), GENERAL_REGS)
1451#define FLOAT_CLASS_P(CLASS) \
1452 reg_class_subset_p ((CLASS), FLOAT_REGS)
1453#define SSE_CLASS_P(CLASS) \
3f97cb0b 1454 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1455#define MMX_CLASS_P(CLASS) \
f75959a6 1456 ((CLASS) == MMX_REGS)
4ed04e93 1457#define MASK_CLASS_P(CLASS) \
d18cbbf6 1458 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1459#define MAYBE_INTEGER_CLASS_P(CLASS) \
1460 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1461#define MAYBE_FLOAT_CLASS_P(CLASS) \
1462 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1463#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1464 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1465#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1466 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1467#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1468 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1469
1470#define Q_CLASS_P(CLASS) \
1471 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1472
0bd72901
UB
1473#define MAYBE_NON_Q_CLASS_P(CLASS) \
1474 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1475
43f3a59d 1476/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1477
1478#define REG_CLASS_NAMES \
1479{ "NO_REGS", \
ab408a86 1480 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1481 "SIREG", "DIREG", \
e075ae69 1482 "AD_REGS", \
2e24efd3 1483 "CLOBBERED_REGS", \
e075ae69 1484 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1485 "TLS_GOTBASE_REGS", \
c98f8742 1486 "INDEX_REGS", \
3f3f2124 1487 "LEGACY_REGS", \
c98f8742
JVA
1488 "GENERAL_REGS", \
1489 "FP_TOP_REG", "FP_SECOND_REG", \
1490 "FLOAT_REGS", \
cb482895 1491 "SSE_FIRST_REG", \
45392c76 1492 "NO_REX_SSE_REGS", \
a7180f70 1493 "SSE_REGS", \
3f97cb0b 1494 "ALL_SSE_REGS", \
a7180f70 1495 "MMX_REGS", \
446988df 1496 "FLOAT_SSE_REGS", \
8fcaaa80 1497 "FLOAT_INT_REGS", \
446988df
JH
1498 "INT_SSE_REGS", \
1499 "FLOAT_INT_SSE_REGS", \
85a77221 1500 "MASK_REGS", \
d18cbbf6 1501 "ALL_MASK_REGS", \
2d2bc36c 1502 "INT_MASK_REGS", \
c98f8742
JVA
1503 "ALL_REGS" }
1504
ac2e563f
RH
1505/* Define which registers fit in which classes. This is an initializer
1506 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1507
621bc046
UB
1508 Note that CLOBBERED_REGS are calculated by
1509 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1510
d18cbbf6 1511#define REG_CLASS_CONTENTS \
eaa17c21
UB
1512{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1513 { 0x01, 0x0, 0x0 }, /* AREG */ \
1514 { 0x02, 0x0, 0x0 }, /* DREG */ \
1515 { 0x04, 0x0, 0x0 }, /* CREG */ \
1516 { 0x08, 0x0, 0x0 }, /* BREG */ \
1517 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1518 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1519 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1520 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1521 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1522 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1523 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1524 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1525 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1526 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1527 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1528 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1529 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1530 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1531 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1532 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1533 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1534{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1535 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1536 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1537 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1538 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1539 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1540 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
2d2bc36c 1541 { 0x900ff, 0xff0, 0xff0 }, /* INT_MASK_REGS */ \
eaa17c21 1542{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1543}
c98f8742
JVA
1544
1545/* The same information, inverted:
1546 Return the class number of the smallest class containing
1547 reg number REGNO. This could be a conditional expression
1548 or could index an array. */
1549
1a6e82b8 1550#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1551
42db504c
SB
1552/* When this hook returns true for MODE, the compiler allows
1553 registers explicitly used in the rtl to be used as spill registers
1554 but prevents the compiler from extending the lifetime of these
1555 registers. */
1556#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1557
fc27f749 1558#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1559#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1560
1561#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1562#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1563
1564#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1565#define REX_INT_REGNO_P(N) \
1566 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1567
58b0b34c 1568#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1569#define GENERAL_REGNO_P(N) \
58b0b34c 1570 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1571
fc27f749
UB
1572#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1573#define ANY_QI_REGNO_P(N) \
1574 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1575
66aaf16f
UB
1576#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1577#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1578
fc27f749 1579#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1580#define SSE_REGNO_P(N) \
1581 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1582 || REX_SSE_REGNO_P (N) \
1583 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1584
4977bab6 1585#define REX_SSE_REGNO_P(N) \
fb84c7a0 1586 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1587
0a48088a
IT
1588#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1589
3f97cb0b
AI
1590#define EXT_REX_SSE_REGNO_P(N) \
1591 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1592
05416670
UB
1593#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1594#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1595
9e4a4dd6 1596#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1597#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
e21b52af 1598#define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
446988df 1599
fc27f749 1600#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1601#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1602
e075ae69 1603#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1604#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1605
5fbb13a7
KY
1606#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1607#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1608 || (N) == XMM4_REG \
1609 || (N) == XMM8_REG \
1610 || (N) == XMM12_REG \
1611 || (N) == XMM16_REG \
1612 || (N) == XMM20_REG \
1613 || (N) == XMM24_REG \
1614 || (N) == XMM28_REG)
1615
05416670
UB
1616/* First floating point reg */
1617#define FIRST_FLOAT_REG FIRST_STACK_REG
1618#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1619
02469d3a
UB
1620#define GET_SSE_REGNO(N) \
1621 ((N) < 8 ? FIRST_SSE_REG + (N) \
1622 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1623 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1624
c98f8742
JVA
1625/* The class value for index registers, and the one for base regs. */
1626
1627#define INDEX_REG_CLASS INDEX_REGS
1628#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1629\f
1630/* Stack layout; function entry, exit and calling. */
1631
1632/* Define this if pushing a word on the stack
1633 makes the stack pointer a smaller address. */
62f9f30b 1634#define STACK_GROWS_DOWNWARD 1
c98f8742 1635
a4d05547 1636/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1637 is at the high-address end of the local variables;
1638 that is, each additional local variable allocated
1639 goes at a more negative offset in the frame. */
f62c8a5c 1640#define FRAME_GROWS_DOWNWARD 1
c98f8742 1641
7b4df2bf 1642#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1643
1644/* If defined, the maximum amount of space required for outgoing arguments
1645 will be computed and placed into the variable `crtl->outgoing_args_size'.
1646 No space will be pushed onto the stack for each call; instead, the
1647 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1648
1649 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1650 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1651 mode the difference is less drastic but visible.
1652
1653 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1654 actually grow with accumulation. Is that because accumulated args
41ee845b 1655 unwind info became unnecesarily bloated?
f830ddc2
RH
1656
1657 With the 64-bit MS ABI, we can generate correct code with or without
1658 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1659 generated without accumulated args is terrible.
41ee845b
JH
1660
1661 If stack probes are required, the space used for large function
1662 arguments on the stack must also be probed, so enable
f8071c05
L
1663 -maccumulate-outgoing-args so this happens in the prologue.
1664
1665 We must use argument accumulation in interrupt function if stack
1666 may be realigned to avoid DRAP. */
f73ad30e 1667
6c6094f1 1668#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1669 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1670 && optimize_function_for_speed_p (cfun)) \
1671 || (cfun->machine->func_type != TYPE_NORMAL \
1672 && crtl->stack_realign_needed) \
1673 || TARGET_STACK_PROBE \
1674 || TARGET_64BIT_MS_ABI \
ff734e26 1675 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1676
1677/* If defined, a C expression whose value is nonzero when we want to use PUSH
1678 instructions to pass outgoing arguments. */
1679
1680#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1681
2da4124d
L
1682/* We want the stack and args grow in opposite directions, even if
1683 PUSH_ARGS is 0. */
1684#define PUSH_ARGS_REVERSED 1
1685
c98f8742
JVA
1686/* Offset of first parameter from the argument pointer register value. */
1687#define FIRST_PARM_OFFSET(FNDECL) 0
1688
a7180f70
BS
1689/* Define this macro if functions should assume that stack space has been
1690 allocated for arguments even when their values are passed in registers.
1691
1692 The value of this macro is the size, in bytes, of the area reserved for
1693 arguments passed in registers for the function represented by FNDECL.
1694
1695 This space can be allocated by the caller, or be a part of the
1696 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1697 which. */
7c800926
KT
1698#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1699
4ae8027b 1700#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1701 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1702
c98f8742
JVA
1703/* Define how to find the value returned by a library function
1704 assuming the value has mode MODE. */
1705
4ae8027b 1706#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1707
e9125c09
TW
1708/* Define the size of the result block used for communication between
1709 untyped_call and untyped_return. The block contains a DImode value
1710 followed by the block used by fnsave and frstor. */
1711
1712#define APPLY_RESULT_SIZE (8+108)
1713
b08de47e 1714/* 1 if N is a possible register number for function argument passing. */
53c17031 1715#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1716
1717/* Define a data type for recording info about an argument list
1718 during the scan of that argument list. This data type should
1719 hold all necessary information about the function itself
1720 and about the args processed so far, enough to enable macros
b08de47e 1721 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1722
e075ae69 1723typedef struct ix86_args {
fa283935 1724 int words; /* # words passed so far */
b08de47e
MM
1725 int nregs; /* # registers available for passing */
1726 int regno; /* next available register number */
3e65f251
KT
1727 int fastcall; /* fastcall or thiscall calling convention
1728 is used */
fa283935 1729 int sse_words; /* # sse words passed so far */
a7180f70 1730 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1731 int warn_avx512f; /* True when we want to warn
1732 about AVX512F ABI. */
95879c72 1733 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1734 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1735 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1736 int warn_empty; /* True when we want to warn about empty classes
1737 passing ABI change. */
fa283935
UB
1738 int sse_regno; /* next available sse register number */
1739 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1740 int mmx_nregs; /* # mmx registers available for passing */
1741 int mmx_regno; /* next available mmx register number */
892a2d68 1742 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1743 int caller; /* true if it is caller. */
2824d6e5
UB
1744 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1745 SFmode/DFmode arguments should be passed
1746 in SSE registers. Otherwise 0. */
d5e254e1 1747 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1748 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1749 MS_ABI for ms abi. */
e66fc623 1750 tree decl; /* Callee decl. */
b08de47e 1751} CUMULATIVE_ARGS;
c98f8742
JVA
1752
1753/* Initialize a variable CUM of type CUMULATIVE_ARGS
1754 for a call to a function whose data type is FNTYPE.
b08de47e 1755 For a library call, FNTYPE is 0. */
c98f8742 1756
0f6937fe 1757#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1758 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1759 (N_NAMED_ARGS) != -1)
c98f8742 1760
c98f8742
JVA
1761/* Output assembler code to FILE to increment profiler label # LABELNO
1762 for profiling a function entry. */
1763
1a6e82b8
UB
1764#define FUNCTION_PROFILER(FILE, LABELNO) \
1765 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1766
1767#define MCOUNT_NAME "_mcount"
1768
3c5273a9
KT
1769#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1770
a5fa1ecd 1771#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1772
1773/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1774 the stack pointer does not matter. The value is tested only in
1775 functions that have frame pointers.
1776 No definition is equivalent to always zero. */
fce5a9f2 1777/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1778 we have to restore it ourselves from the frame pointer, in order to
1779 use pop */
1780
1781#define EXIT_IGNORE_STACK 1
1782
f8071c05
L
1783/* Define this macro as a C expression that is nonzero for registers
1784 used by the epilogue or the `return' pattern. */
1785
1786#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1787
c98f8742
JVA
1788/* Output assembler code for a block containing the constant parts
1789 of a trampoline, leaving space for the variable parts. */
1790
a269a03c 1791/* On the 386, the trampoline contains two instructions:
c98f8742 1792 mov #STATIC,ecx
a269a03c
JC
1793 jmp FUNCTION
1794 The trampoline is generated entirely at runtime. The operand of JMP
1795 is the address of FUNCTION relative to the instruction following the
1796 JMP (which is 5 bytes long). */
c98f8742
JVA
1797
1798/* Length in units of the trampoline for entering a nested function. */
1799
6514899f 1800#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1801\f
1802/* Definitions for register eliminations.
1803
1804 This is an array of structures. Each structure initializes one pair
1805 of eliminable registers. The "from" register number is given first,
1806 followed by "to". Eliminations of the same "from" register are listed
1807 in order of preference.
1808
afc2cd05
NC
1809 There are two registers that can always be eliminated on the i386.
1810 The frame pointer and the arg pointer can be replaced by either the
1811 hard frame pointer or to the stack pointer, depending upon the
1812 circumstances. The hard frame pointer is not used before reload and
1813 so it is not eligible for elimination. */
c98f8742 1814
564d80f4
JH
1815#define ELIMINABLE_REGS \
1816{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1817 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1818 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1819 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1820
c98f8742
JVA
1821/* Define the offset between two registers, one to be eliminated, and the other
1822 its replacement, at the start of a routine. */
1823
d9a5f180
GS
1824#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1825 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1826\f
1827/* Addressing modes, and classification of registers for them. */
1828
c98f8742
JVA
1829/* Macros to check register numbers against specific register classes. */
1830
1831/* These assume that REGNO is a hard or pseudo reg number.
1832 They give nonzero only if REGNO is a hard reg of the suitable class
1833 or a pseudo reg currently allocated to a suitable hard reg.
1834 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1835 has been allocated, which happens in reginfo.c during register
1836 allocation. */
c98f8742 1837
3f3f2124
JH
1838#define REGNO_OK_FOR_INDEX_P(REGNO) \
1839 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1840 || REX_INT_REGNO_P (REGNO) \
1841 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1842 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1843
3f3f2124 1844#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1845 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1846 || (REGNO) == ARG_POINTER_REGNUM \
1847 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1848 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1849
c98f8742
JVA
1850/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1851 and check its validity for a certain class.
1852 We have two alternate definitions for each of them.
1853 The usual definition accepts all pseudo regs; the other rejects
1854 them unless they have been allocated suitable hard regs.
1855 The symbol REG_OK_STRICT causes the latter definition to be used.
1856
1857 Most source files want to accept pseudo regs in the hope that
1858 they will get allocated to the class that the insn wants them to be in.
1859 Source files for reload pass need to be strict.
1860 After reload, it makes no difference, since pseudo regs have
1861 been eliminated by then. */
1862
c98f8742 1863
ff482c8d 1864/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1865#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1866 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1867 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1868 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1869
3b3c6a3f 1870#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1871 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1872 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1873 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1874 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1875
3b3c6a3f
MM
1876/* Strict versions, hard registers only */
1877#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1878#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1879
3b3c6a3f 1880#ifndef REG_OK_STRICT
d9a5f180
GS
1881#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1882#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1883
1884#else
d9a5f180
GS
1885#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1886#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1887#endif
1888
331d9186 1889/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1890 that is a valid memory address for an instruction.
1891 The MODE argument is the machine mode for the MEM expression
1892 that wants to use this address.
1893
331d9186 1894 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1895 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1896
1897 See legitimize_pic_address in i386.c for details as to what
1898 constitutes a legitimate address when -fpic is used. */
1899
1900#define MAX_REGS_PER_ADDRESS 2
1901
f996902d 1902#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1903
b949ea8b
JW
1904/* If defined, a C expression to determine the base term of address X.
1905 This macro is used in only one place: `find_base_term' in alias.c.
1906
1907 It is always safe for this macro to not be defined. It exists so
1908 that alias analysis can understand machine-dependent addresses.
1909
1910 The typical use of this macro is to handle addresses containing
1911 a label_ref or symbol_ref within an UNSPEC. */
1912
d9a5f180 1913#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1914
c98f8742 1915/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1916 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1917 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1918
f996902d 1919#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1920
1921#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1922 (GET_CODE (X) == SYMBOL_REF \
1923 || GET_CODE (X) == LABEL_REF \
1924 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1925\f
b08de47e
MM
1926/* Max number of args passed in registers. If this is more than 3, we will
1927 have problems with ebx (register #4), since it is a caller save register and
1928 is also used as the pic register in ELF. So for now, don't allow more than
1929 3 registers to be passed in registers. */
1930
7c800926
KT
1931/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1932#define X86_64_REGPARM_MAX 6
72fa3605 1933#define X86_64_MS_REGPARM_MAX 4
7c800926 1934
72fa3605 1935#define X86_32_REGPARM_MAX 3
7c800926 1936
4ae8027b 1937#define REGPARM_MAX \
2824d6e5
UB
1938 (TARGET_64BIT \
1939 ? (TARGET_64BIT_MS_ABI \
1940 ? X86_64_MS_REGPARM_MAX \
1941 : X86_64_REGPARM_MAX) \
4ae8027b 1942 : X86_32_REGPARM_MAX)
d2836273 1943
72fa3605
UB
1944#define X86_64_SSE_REGPARM_MAX 8
1945#define X86_64_MS_SSE_REGPARM_MAX 4
1946
b6010cab 1947#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1948
4ae8027b 1949#define SSE_REGPARM_MAX \
2824d6e5
UB
1950 (TARGET_64BIT \
1951 ? (TARGET_64BIT_MS_ABI \
1952 ? X86_64_MS_SSE_REGPARM_MAX \
1953 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1954 : X86_32_SSE_REGPARM_MAX)
bcf17554 1955
f4a0e873
UB
1956#define X86_32_MMX_REGPARM_MAX (TARGET_MMX ? (TARGET_MACHO ? 0 : 3) : 0)
1957
1958#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : X86_32_MMX_REGPARM_MAX)
c98f8742
JVA
1959\f
1960/* Specify the machine mode that this machine uses
1961 for the index in the tablejump instruction. */
dc4d7240 1962#define CASE_VECTOR_MODE \
6025b127 1963 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1964
c98f8742
JVA
1965/* Define this as 1 if `char' should by default be signed; else as 0. */
1966#define DEFAULT_SIGNED_CHAR 1
1967
1968/* Max number of bytes we can move from memory to memory
1969 in one reasonably fast instruction. */
65d9c0ab
JH
1970#define MOVE_MAX 16
1971
1972/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1973 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1974 number of bytes we can move with a single instruction.
1975
1976 ??? We should use TImode in 32-bit mode and use OImode or XImode
1977 if they are available. But since by_pieces_ninsns determines the
1978 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1979 64-bit mode. */
1980#define MOVE_MAX_PIECES \
1981 ((TARGET_64BIT \
1982 && TARGET_SSE2 \
1983 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1984 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1985 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1986
7e24ffc9 1987/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 1988 move-instruction pairs, we will do a cpymem or libcall instead.
7e24ffc9
HPN
1989 Increasing the value will always make code faster, but eventually
1990 incurs high cost in increased code size.
c98f8742 1991
e2e52e1b 1992 If you don't define this, a reasonable default is used. */
c98f8742 1993
e04ad03d 1994#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1995
45d78e7f
JJ
1996/* If a clear memory operation would take CLEAR_RATIO or more simple
1997 move-instruction sequences, we will do a clrmem or libcall instead. */
1998
25e22b19 1999#define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
45d78e7f 2000
53f00dde
UB
2001/* Define if shifts truncate the shift count which implies one can
2002 omit a sign-extension or zero-extension of a shift count.
2003
2004 On i386, shifts do truncate the count. But bit test instructions
2005 take the modulo of the bit offset operand. */
c98f8742
JVA
2006
2007/* #define SHIFT_COUNT_TRUNCATED */
2008
d9f32422
JH
2009/* A macro to update M and UNSIGNEDP when an object whose type is
2010 TYPE and which has the specified mode and signedness is to be
2011 stored in a register. This macro is only called when TYPE is a
2012 scalar type.
2013
f710504c 2014 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2015 quantities to SImode. The choice depends on target type. */
2016
2017#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2018do { \
d9f32422
JH
2019 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2020 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2021 (MODE) = SImode; \
2022} while (0)
d9f32422 2023
c98f8742
JVA
2024/* Specify the machine mode that pointers have.
2025 After generation of rtl, the compiler makes no further distinction
2026 between pointers and any other objects of this machine mode. */
28968d91 2027#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 2028
5e1e91c4
L
2029/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
2030 NONLOCAL needs space to save both shadow stack and stack pointers.
2031
2032 FIXME: We only need to save and restore stack pointer in ptr_mode.
2033 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
2034 to save and restore stack pointer. See
2035 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
2036 */
2037#define STACK_SAVEAREA_MODE(LEVEL) \
2038 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
2039
d16b9d1c
UB
2040/* Specify the machine_mode of the size increment
2041 operand of an 'allocate_stack' named pattern. */
2042#define STACK_SIZE_MODE Pmode
2043
f0ea7581
L
2044/* A C expression whose value is zero if pointers that need to be extended
2045 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
2046 greater then zero if they are zero-extended and less then zero if the
2047 ptr_extend instruction should be used. */
2048
2049#define POINTERS_EXTEND_UNSIGNED 1
2050
c98f8742
JVA
2051/* A function address in a call instruction
2052 is a byte address (for indexing purposes)
2053 so give the MEM rtx a byte's mode. */
2054#define FUNCTION_MODE QImode
d4ba09c0 2055\f
d4ba09c0 2056
d4ba09c0
SC
2057/* A C expression for the cost of a branch instruction. A value of 1
2058 is the default; other values are interpreted relative to that. */
2059
3a4fd356
JH
2060#define BRANCH_COST(speed_p, predictable_p) \
2061 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 2062
e327d1a3
L
2063/* An integer expression for the size in bits of the largest integer machine
2064 mode that should actually be used. We allow pairs of registers. */
2065#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2066
d4ba09c0
SC
2067/* Define this macro as a C expression which is nonzero if accessing
2068 less than a word of memory (i.e. a `char' or a `short') is no
2069 faster than accessing a word of memory, i.e., if such access
2070 require more than one instruction or if there is no difference in
2071 cost between byte and (aligned) word loads.
2072
2073 When this macro is not defined, the compiler will access a field by
2074 finding the smallest containing object; when it is defined, a
2075 fullword load will be used if alignment permits. Unless bytes
2076 accesses are faster than word accesses, using word accesses is
2077 preferable since it may eliminate subsequent memory access if
2078 subsequent accesses occur to other fields in the same word of the
2079 structure, but to different bytes. */
2080
2081#define SLOW_BYTE_ACCESS 0
2082
2083/* Nonzero if access to memory by shorts is slow and undesirable. */
2084#define SLOW_SHORT_ACCESS 0
2085
d4ba09c0
SC
2086/* Define this macro if it is as good or better to call a constant
2087 function address than to call an address kept in a register.
2088
2089 Desirable on the 386 because a CALL with a constant address is
2090 faster than one with a register address. */
2091
1e8552c2 2092#define NO_FUNCTION_CSE 1
c98f8742 2093\f
c572e5ba
JVA
2094/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2095 return the mode to be used for the comparison.
2096
2097 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2098 VOIDmode should be used in all other cases.
c572e5ba 2099
16189740 2100 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2101 possible, to allow for more combinations. */
c98f8742 2102
d9a5f180 2103#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2104
9cd10576 2105/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2106 reversed. */
2107
2108#define REVERSIBLE_CC_MODE(MODE) 1
2109
2110/* A C expression whose value is reversed condition code of the CODE for
2111 comparison done in CC_MODE mode. */
3c5cb3e4 2112#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2113
c98f8742
JVA
2114\f
2115/* Control the assembler format that we output, to the extent
2116 this does not vary between assemblers. */
2117
2118/* How to refer to registers in assembler output.
892a2d68 2119 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2120
a7b376ee 2121/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2122 For non floating point regs, the following are the HImode names.
2123
2124 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2125 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2126 "y" code. */
c98f8742 2127
a7180f70
BS
2128#define HI_REGISTER_NAMES \
2129{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2130 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2131 "argp", "flags", "fpsr", "frame", \
a7180f70 2132 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2133 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2135 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2136 "xmm16", "xmm17", "xmm18", "xmm19", \
2137 "xmm20", "xmm21", "xmm22", "xmm23", \
2138 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2139 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2140 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2141
c98f8742
JVA
2142#define REGISTER_NAMES HI_REGISTER_NAMES
2143
50bec228
UB
2144#define QI_REGISTER_NAMES \
2145{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2146
2147#define QI_HIGH_REGISTER_NAMES \
2148{"ah", "dh", "ch", "bh"}
2149
c98f8742
JVA
2150/* Table of additional register names to use in user input. */
2151
eaa17c21
UB
2152#define ADDITIONAL_REGISTER_NAMES \
2153{ \
2154 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2155 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2156 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2157 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2158 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
50bec228 2159 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
eaa17c21
UB
2160 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2161 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2162 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2163 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2164 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2165 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2166 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2167 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2168 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2169 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2170 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2171 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2172 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2173 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2174 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2175 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2176 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2177}
c98f8742 2178
c98f8742
JVA
2179/* How to renumber registers for dbx and gdb. */
2180
d9a5f180
GS
2181#define DBX_REGISTER_NUMBER(N) \
2182 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2183
9a82e702
MS
2184extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2185extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2186extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2187
469ac993
JM
2188/* Before the prologue, RA is at 0(%esp). */
2189#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2190 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2191
e414ab29 2192/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2193#define RETURN_ADDR_RTX(COUNT, FRAME) \
2194 ((COUNT) == 0 \
2195 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2196 -UNITS_PER_WORD)) \
2197 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2198
892a2d68 2199/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2200#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2201
a10b3cf1
L
2202/* Before the prologue, there are return address and error code for
2203 exception handler on the top of the frame. */
2204#define INCOMING_FRAME_SP_OFFSET \
2205 (cfun->machine->func_type == TYPE_EXCEPTION \
2206 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2207
26fc730d
JJ
2208/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2209 .cfi_startproc. */
2210#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2211
1020a5ab 2212/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2213#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2214#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2215
ad919812 2216
e4c4ebeb
RH
2217/* Select a format to encode pointers in exception handling data. CODE
2218 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2219 true if the symbol may be affected by dynamic relocations.
2220
2221 ??? All x86 object file formats are capable of representing this.
2222 After all, the relocation needed is the same as for the call insn.
2223 Whether or not a particular assembler allows us to enter such, I
2224 guess we'll have to see. */
d9a5f180 2225#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2226 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2227
ec1895c1
UB
2228/* These are a couple of extensions to the formats accepted
2229 by asm_fprintf:
2230 %z prints out opcode suffix for word-mode instruction
2231 %r prints out word-mode name for reg_names[arg] */
2232#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2233 case 'z': \
2234 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2235 break; \
2236 \
2237 case 'r': \
2238 { \
2239 unsigned int regno = va_arg ((ARGS), int); \
2240 if (LEGACY_INT_REGNO_P (regno)) \
2241 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2242 fputs (reg_names[regno], (FILE)); \
2243 break; \
2244 }
2245
2246/* This is how to output an insn to push a register on the stack. */
2247
2248#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2249 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2250
2251/* This is how to output an insn to pop a register from the stack. */
c98f8742 2252
d9a5f180 2253#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2254 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2255
f88c65f7 2256/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2257
2258#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2259 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2260
f88c65f7 2261/* This is how to output an element of a case-vector that is relative. */
c98f8742 2262
33f7f353 2263#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2264 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2265
63001560 2266/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2267
2268#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2269{ \
2270 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2271 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2272}
2273
2274/* A C statement or statements which output an assembler instruction
2275 opcode to the stdio stream STREAM. The macro-operand PTR is a
2276 variable of type `char *' which points to the opcode name in
2277 its "internal" form--the form that is written in the machine
2278 description. */
2279
2280#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2281 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2282
6a90d232
L
2283/* A C statement to output to the stdio stream FILE an assembler
2284 command to pad the location counter to a multiple of 1<<LOG
2285 bytes if it is within MAX_SKIP bytes. */
2286
2287#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2288#undef ASM_OUTPUT_MAX_SKIP_PAD
2289#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2290 if ((LOG) != 0) \
2291 { \
dd047c67 2292 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2293 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2294 else \
2295 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2296 }
2297#endif
2298
135a687e
KT
2299/* Write the extra assembler code needed to declare a function
2300 properly. */
2301
2302#undef ASM_OUTPUT_FUNCTION_LABEL
2303#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2304 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2305
c892d8f5
JJ
2306/* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
2307 If not defined, assemble_name will be used to output the name of the
2308 symbol. This macro may be used to modify the way a symbol is referenced
2309 depending on information encoded by TARGET_ENCODE_SECTION_INFO. */
2310
2311#ifndef ASM_OUTPUT_SYMBOL_REF
2312#define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
2313 do { \
2314 const char *name \
2315 = assemble_name_resolve (XSTR (x, 0)); \
2316 /* In -masm=att wrap identifiers that start with $ \
2317 into parens. */ \
2318 if (ASSEMBLER_DIALECT == ASM_ATT \
2319 && name[0] == '$' \
2320 && user_label_prefix[0] == '\0') \
2321 { \
2322 fputc ('(', (FILE)); \
2323 assemble_name_raw ((FILE), name); \
2324 fputc (')', (FILE)); \
2325 } \
2326 else \
2327 assemble_name_raw ((FILE), name); \
2328 } while (0)
2329#endif
2330
f7288899
EC
2331/* Under some conditions we need jump tables in the text section,
2332 because the assembler cannot handle label differences between
85e10e4f 2333 sections. */
f88c65f7
RH
2334
2335#define JUMP_TABLES_IN_TEXT_SECTION \
85e10e4f 2336 (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
c98f8742 2337
cea3bd3e
RH
2338/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2339 and switch back. For x86 we do this only to save a few bytes that
2340 would otherwise be unused in the text section. */
ad211091
KT
2341#define CRT_MKSTR2(VAL) #VAL
2342#define CRT_MKSTR(x) CRT_MKSTR2(x)
2343
2344#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2345 asm (SECTION_OP "\n\t" \
2346 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2347 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2348
2349/* Default threshold for putting data in large sections
2350 with x86-64 medium memory model */
2351#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2352\f
b97de419
L
2353/* Which processor to tune code generation for. These must be in sync
2354 with processor_target_table in i386.c. */
5bf0ebab
RH
2355
2356enum processor_type
2357{
b97de419
L
2358 PROCESSOR_GENERIC = 0,
2359 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2360 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2361 PROCESSOR_PENTIUM,
2d6b2e28 2362 PROCESSOR_LAKEMONT,
5bf0ebab 2363 PROCESSOR_PENTIUMPRO,
5bf0ebab 2364 PROCESSOR_PENTIUM4,
89c43c0a 2365 PROCESSOR_NOCONA,
340ef734 2366 PROCESSOR_CORE2,
d3c11974
L
2367 PROCESSOR_NEHALEM,
2368 PROCESSOR_SANDYBRIDGE,
3a579e09 2369 PROCESSOR_HASWELL,
d3c11974
L
2370 PROCESSOR_BONNELL,
2371 PROCESSOR_SILVERMONT,
50e461df 2372 PROCESSOR_GOLDMONT,
74b2bb19 2373 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2374 PROCESSOR_TREMONT,
52747219 2375 PROCESSOR_KNL,
cace2309 2376 PROCESSOR_KNM,
176a3386 2377 PROCESSOR_SKYLAKE,
06caf59d 2378 PROCESSOR_SKYLAKE_AVX512,
c234d831 2379 PROCESSOR_CANNONLAKE,
79ab5364
JK
2380 PROCESSOR_ICELAKE_CLIENT,
2381 PROCESSOR_ICELAKE_SERVER,
7cab07f0 2382 PROCESSOR_CASCADELAKE,
a9fcfec3
HL
2383 PROCESSOR_TIGERLAKE,
2384 PROCESSOR_COOPERLAKE,
ba9c87d3
CL
2385 PROCESSOR_SAPPHIRERAPIDS,
2386 PROCESSOR_ALDERLAKE,
9a7f94d7 2387 PROCESSOR_INTEL,
b97de419
L
2388 PROCESSOR_GEODE,
2389 PROCESSOR_K6,
2390 PROCESSOR_ATHLON,
2391 PROCESSOR_K8,
21efb4d4 2392 PROCESSOR_AMDFAM10,
1133125e 2393 PROCESSOR_BDVER1,
4d652a18 2394 PROCESSOR_BDVER2,
eb2f2b44 2395 PROCESSOR_BDVER3,
ed97ad47 2396 PROCESSOR_BDVER4,
14b52538 2397 PROCESSOR_BTVER1,
e32bfc16 2398 PROCESSOR_BTVER2,
9ce29eb0 2399 PROCESSOR_ZNVER1,
2901f42f 2400 PROCESSOR_ZNVER2,
3e2ae3ee 2401 PROCESSOR_ZNVER3,
5bf0ebab
RH
2402 PROCESSOR_max
2403};
2404
c98c2430 2405#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2559ef9f 2406extern const char *const processor_names[];
c98c2430
ML
2407
2408#include "wide-int-bitmask.h"
2409
2410const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2411const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2412const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2413const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2414const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2415const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2416const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2417const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2418const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2419const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2420const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2421const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2422const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2423const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2424const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2425const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2426const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2427const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2428const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2429const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2430const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2431const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2432const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2433const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2434const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2435const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2436const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2437const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2438const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2439const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2440const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2441const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2442const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2443const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2444const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2445const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2446const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2447const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2448const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2449const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2450const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2451const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2452const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2453const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
324bec55 2454const wide_int_bitmask PTA_NO_TUNE (HOST_WIDE_INT_1U << 44);
c98c2430
ML
2455const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2456const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2457const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2458const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2459const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2460const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2461const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2462const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2463const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2464const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2465const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2466const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2467const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2468const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2469const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2470const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2471const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2472const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2473const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2474const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2475const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2476const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2477const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2478const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2479const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2480const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2481const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2482const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
e21b52af 2483const wide_int_bitmask PTA_AVX512VP2INTERSECT (0, HOST_WIDE_INT_1U << 9);
41f8d1fc 2484const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
4f0e90fa 2485const wide_int_bitmask PTA_AVX512BF16 (0, HOST_WIDE_INT_1U << 11);
6c6931a3 2486const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 12);
6b797b65 2487const wide_int_bitmask PTA_MOVDIRI (0, HOST_WIDE_INT_1U << 13);
2488const wide_int_bitmask PTA_MOVDIR64B (0, HOST_WIDE_INT_1U << 14);
ba9c87d3
CL
2489const wide_int_bitmask PTA_ENQCMD (0, HOST_WIDE_INT_1U << 15);
2490const wide_int_bitmask PTA_CLDEMOTE (0, HOST_WIDE_INT_1U << 16);
2491const wide_int_bitmask PTA_SERIALIZE (0, HOST_WIDE_INT_1U << 17);
2492const wide_int_bitmask PTA_TSXLDTRK (0, HOST_WIDE_INT_1U << 18);
6b797b65 2493const wide_int_bitmask PTA_AMX_TILE (0, HOST_WIDE_INT_1U << 19);
2494const wide_int_bitmask PTA_AMX_INT8 (0, HOST_WIDE_INT_1U << 20);
2495const wide_int_bitmask PTA_AMX_BF16 (0, HOST_WIDE_INT_1U << 21);
299a53d7 2496const wide_int_bitmask PTA_UINTR (0, HOST_WIDE_INT_1U << 22);
6b797b65 2497const wide_int_bitmask PTA_HRESET (0, HOST_WIDE_INT_1U << 23);
632a2f50 2498const wide_int_bitmask PTA_KL (0, HOST_WIDE_INT_1U << 24);
2499const wide_int_bitmask PTA_WIDEKL (0, HOST_WIDE_INT_1U << 25);
ca813880 2500const wide_int_bitmask PTA_AVXVNNI (0, HOST_WIDE_INT_1U << 26);
c98c2430 2501
324bec55
FW
2502const wide_int_bitmask PTA_X86_64_BASELINE = PTA_64BIT | PTA_MMX | PTA_SSE
2503 | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR;
2504const wide_int_bitmask PTA_X86_64_V2 = (PTA_X86_64_BASELINE & (~PTA_NO_SAHF))
2505 | PTA_CX16 | PTA_POPCNT | PTA_SSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_SSSE3;
2506const wide_int_bitmask PTA_X86_64_V3 = PTA_X86_64_V2
2507 | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2508 | PTA_MOVBE | PTA_XSAVE;
2509const wide_int_bitmask PTA_X86_64_V4 = PTA_X86_64_V3
2510 | PTA_AVX512F | PTA_AVX512BW | PTA_AVX512CD | PTA_AVX512DQ | PTA_AVX512VL;
299a53d7 2511
c98c2430
ML
2512const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2513 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2514const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2515 | PTA_POPCNT;
c9450033 2516const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
c98c2430
ML
2517const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2518 | PTA_XSAVEOPT;
2519const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2520 | PTA_RDRND | PTA_F16C;
2521const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2522 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
c2099c16
CL
2523const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_RDSEED
2524 | PTA_PRFCHW;
c9450033 2525const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES | PTA_CLFLUSHOPT
c98c2430
ML
2526 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2527const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2528 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2529 | PTA_CLWB;
7cab07f0 2530const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
a9fcfec3 2531const wide_int_bitmask PTA_COOPERLAKE = PTA_CASCADELAKE | PTA_AVX512BF16;
c98c2430
ML
2532const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2533 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2534 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2535const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2536 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
c422e5f8 2537 | PTA_RDPID | PTA_AVX512VPOPCNTDQ;
c98c2430 2538const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
c422e5f8 2539 | PTA_WBNOINVD | PTA_CLWB;
a9fcfec3 2540const wide_int_bitmask PTA_TIGERLAKE = PTA_ICELAKE_CLIENT | PTA_MOVDIRI
632a2f50 2541 | PTA_MOVDIR64B | PTA_CLWB | PTA_AVX512VP2INTERSECT | PTA_KL | PTA_WIDEKL;
ba9c87d3
CL
2542const wide_int_bitmask PTA_SAPPHIRERAPIDS = PTA_COOPERLAKE | PTA_MOVDIRI
2543 | PTA_MOVDIR64B | PTA_AVX512VP2INTERSECT | PTA_ENQCMD | PTA_CLDEMOTE
5c609842 2544 | PTA_PTWRITE | PTA_WAITPKG | PTA_SERIALIZE | PTA_TSXLDTRK | PTA_AMX_TILE
ca813880 2545 | PTA_AMX_INT8 | PTA_AMX_BF16 | PTA_UINTR | PTA_AVXVNNI;
ba9c87d3 2546const wide_int_bitmask PTA_ALDERLAKE = PTA_SKYLAKE | PTA_CLDEMOTE | PTA_PTWRITE
ca813880 2547 | PTA_WAITPKG | PTA_SERIALIZE | PTA_HRESET | PTA_KL | PTA_WIDEKL | PTA_AVXVNNI;
c98c2430 2548const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
dc7e8839 2549 | PTA_AVX512F | PTA_AVX512CD | PTA_PREFETCHWT1;
c98c2430 2550const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
dc7e8839
CL
2551const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND
2552 | PTA_PRFCHW;
c9450033 2553const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA | PTA_XSAVE
c98c2430
ML
2554 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2555 | PTA_FSGSBASE;
2556const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
41f8d1fc 2557 | PTA_SGX | PTA_PTWRITE;
c98c2430 2558const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
dc7e8839 2559 | PTA_GFNI | PTA_MOVDIRI | PTA_MOVDIR64B | PTA_CLDEMOTE | PTA_WAITPKG;
c98c2430
ML
2560const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2561 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2562
2563#ifndef GENERATOR_FILE
2564
2565#include "insn-attr-common.h"
2566
3fb2c2f4
L
2567#include "common/config/i386/i386-cpuinfo.h"
2568
6c1dae73 2569class pta
c98c2430 2570{
6c1dae73 2571public:
c98c2430
ML
2572 const char *const name; /* processor name or nickname. */
2573 const enum processor_type processor;
2574 const enum attr_cpu schedule;
2575 const wide_int_bitmask flags;
3fb2c2f4
L
2576 const int model;
2577 const enum feature_priority priority;
c98c2430
ML
2578};
2579
2580extern const pta processor_alias_table[];
2581extern int const pta_size;
3fb2c2f4 2582extern unsigned int const num_arch_names;
c98c2430
ML
2583#endif
2584
2585#endif
2586
9e555526 2587extern enum processor_type ix86_tune;
5bf0ebab 2588extern enum processor_type ix86_arch;
5bf0ebab 2589
8362f420
JH
2590/* Size of the RED_ZONE area. */
2591#define RED_ZONE_SIZE 128
2592/* Reserved area of the red zone for temporaries. */
2593#define RED_ZONE_RESERVE 8
c93e80a5 2594
95899b34 2595extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2596extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2597
2598/* Smallest class containing REGNO. */
2599extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2600
0948ccb2
PB
2601enum ix86_fpcmp_strategy {
2602 IX86_FPCMP_SAHF,
2603 IX86_FPCMP_COMI,
2604 IX86_FPCMP_ARITH
2605};
22fb740d
JH
2606\f
2607/* To properly truncate FP values into integers, we need to set i387 control
2608 word. We can't emit proper mode switching code before reload, as spills
2609 generated by reload may truncate values incorrectly, but we still can avoid
2610 redundant computation of new control word by the mode switching pass.
2611 The fldcw instructions are still emitted redundantly, but this is probably
2612 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2613 the sequence.
22fb740d
JH
2614
2615 The machinery is to emit simple truncation instructions and split them
2616 before reload to instructions having USEs of two memory locations that
2617 are filled by this code to old and new control word.
fce5a9f2 2618
22fb740d
JH
2619 Post-reload pass may be later used to eliminate the redundant fildcw if
2620 needed. */
2621
c7ca8ef8
UB
2622enum ix86_stack_slot
2623{
2624 SLOT_TEMP = 0,
2625 SLOT_CW_STORED,
d3b92f35 2626 SLOT_CW_ROUNDEVEN,
c7ca8ef8
UB
2627 SLOT_CW_TRUNC,
2628 SLOT_CW_FLOOR,
2629 SLOT_CW_CEIL,
80008279 2630 SLOT_STV_TEMP,
c7ca8ef8
UB
2631 MAX_386_STACK_LOCALS
2632};
2633
ff680eb1
UB
2634enum ix86_entity
2635{
c7ca8ef8
UB
2636 X86_DIRFLAG = 0,
2637 AVX_U128,
d3b92f35 2638 I387_ROUNDEVEN,
ff97910d 2639 I387_TRUNC,
ff680eb1
UB
2640 I387_FLOOR,
2641 I387_CEIL,
ff680eb1
UB
2642 MAX_386_ENTITIES
2643};
2644
c7ca8ef8 2645enum x86_dirflag_state
ff680eb1 2646{
c7ca8ef8
UB
2647 X86_DIRFLAG_RESET,
2648 X86_DIRFLAG_ANY
ff680eb1 2649};
22fb740d 2650
ff97910d
VY
2651enum avx_u128_state
2652{
2653 AVX_U128_CLEAN,
2654 AVX_U128_DIRTY,
2655 AVX_U128_ANY
2656};
2657
22fb740d
JH
2658/* Define this macro if the port needs extra instructions inserted
2659 for mode switching in an optimizing compilation. */
2660
ff680eb1
UB
2661#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2662 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2663
2664/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2665 initializer for an array of integers. Each initializer element N
2666 refers to an entity that needs mode switching, and specifies the
2667 number of different modes that might need to be set for this
2668 entity. The position of the initializer in the initializer -
2669 starting counting at zero - determines the integer that is used to
2670 refer to the mode-switched entity in question. */
2671
c7ca8ef8
UB
2672#define NUM_MODES_FOR_MODE_SWITCHING \
2673 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
d3b92f35 2674 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2675
0f0138b6
JH
2676\f
2677/* Avoid renaming of stack registers, as doing so in combination with
2678 scheduling just increases amount of live registers at time and in
2679 the turn amount of fxch instructions needed.
2680
3f97cb0b
AI
2681 ??? Maybe Pentium chips benefits from renaming, someone can try....
2682
2683 Don't rename evex to non-evex sse registers. */
0f0138b6 2684
1a6e82b8
UB
2685#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2686 (!STACK_REGNO_P (SRC) \
2687 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2688
3b3c6a3f 2689\f
e91f04de 2690#define FASTCALL_PREFIX '@'
fa1a0d02 2691\f
77560086
BE
2692#ifndef USED_FOR_TARGET
2693/* Structure describing stack frame layout.
2694 Stack grows downward:
2695
2696 [arguments]
2697 <- ARG_POINTER
2698 saved pc
2699
2700 saved static chain if ix86_static_chain_on_stack
2701
2702 saved frame pointer if frame_pointer_needed
2703 <- HARD_FRAME_POINTER
2704 [saved regs]
2705 <- reg_save_offset
2706 [padding0]
2707 <- stack_realign_offset
2708 [saved SSE regs]
2709 OR
2710 [stub-saved registers for ms x64 --> sysv clobbers
2711 <- Start of out-of-line, stub-saved/restored regs
2712 (see libgcc/config/i386/(sav|res)ms64*.S)
2713 [XMM6-15]
2714 [RSI]
2715 [RDI]
2716 [?RBX] only if RBX is clobbered
2717 [?RBP] only if RBP and RBX are clobbered
2718 [?R12] only if R12 and all previous regs are clobbered
2719 [?R13] only if R13 and all previous regs are clobbered
2720 [?R14] only if R14 and all previous regs are clobbered
2721 [?R15] only if R15 and all previous regs are clobbered
2722 <- end of stub-saved/restored regs
2723 [padding1]
2724 ]
5d9d834d 2725 <- sse_reg_save_offset
77560086
BE
2726 [padding2]
2727 | <- FRAME_POINTER
2728 [va_arg registers] |
2729 |
2730 [frame] |
2731 |
2732 [padding2] | = to_allocate
2733 <- STACK_POINTER
2734 */
2735struct GTY(()) ix86_frame
2736{
2737 int nsseregs;
2738 int nregs;
2739 int va_arg_size;
2740 int red_zone_size;
2741 int outgoing_arguments_size;
2742
2743 /* The offsets relative to ARG_POINTER. */
2744 HOST_WIDE_INT frame_pointer_offset;
2745 HOST_WIDE_INT hard_frame_pointer_offset;
2746 HOST_WIDE_INT stack_pointer_offset;
2747 HOST_WIDE_INT hfp_save_offset;
2748 HOST_WIDE_INT reg_save_offset;
122f9da1 2749 HOST_WIDE_INT stack_realign_allocate;
77560086 2750 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2751 HOST_WIDE_INT sse_reg_save_offset;
2752
2753 /* When save_regs_using_mov is set, emit prologue using
2754 move instead of push instructions. */
2755 bool save_regs_using_mov;
2f007861
RS
2756
2757 /* Assume without checking that:
2758 EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT). */
2759 bool expensive_p;
2760 int expensive_count;
77560086
BE
2761};
2762
122f9da1
DS
2763/* Machine specific frame tracking during prologue/epilogue generation. All
2764 values are positive, but since the x86 stack grows downward, are subtratced
2765 from the CFA to produce a valid address. */
cd9c1ca8 2766
ec7ded37 2767struct GTY(()) machine_frame_state
cd9c1ca8 2768{
ec7ded37
RH
2769 /* This pair tracks the currently active CFA as reg+offset. When reg
2770 is drap_reg, we don't bother trying to record here the real CFA when
2771 it might really be a DW_CFA_def_cfa_expression. */
2772 rtx cfa_reg;
2773 HOST_WIDE_INT cfa_offset;
2774
2775 /* The current offset (canonically from the CFA) of ESP and EBP.
2776 When stack frame re-alignment is active, these may not be relative
2777 to the CFA. However, in all cases they are relative to the offsets
2778 of the saved registers stored in ix86_frame. */
2779 HOST_WIDE_INT sp_offset;
2780 HOST_WIDE_INT fp_offset;
2781
2782 /* The size of the red-zone that may be assumed for the purposes of
2783 eliding register restore notes in the epilogue. This may be zero
2784 if no red-zone is in effect, or may be reduced from the real
2785 red-zone value by a maximum runtime stack re-alignment value. */
2786 int red_zone_offset;
2787
2788 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2789 value within the frame. If false then the offset above should be
2790 ignored. Note that DRAP, if valid, *always* points to the CFA and
2791 thus has an offset of zero. */
2792 BOOL_BITFIELD sp_valid : 1;
2793 BOOL_BITFIELD fp_valid : 1;
2794 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2795
2796 /* Indicate whether the local stack frame has been re-aligned. When
2797 set, the SP/FP offsets above are relative to the aligned frame
2798 and not the CFA. */
2799 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2800
2801 /* Indicates whether the stack pointer has been re-aligned. When set,
2802 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2803 should only be used for offsets > sp_realigned_offset, while
2804 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2805 The flags realigned and sp_realigned are mutually exclusive. */
2806 BOOL_BITFIELD sp_realigned : 1;
2807
122f9da1
DS
2808 /* If sp_realigned is set, this is the last valid offset from the CFA
2809 that can be used for access with the frame pointer. */
2810 HOST_WIDE_INT sp_realigned_fp_last;
2811
2812 /* If sp_realigned is set, this is the offset from the CFA that the stack
2813 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2814 Access via the stack pointer is only valid for offsets that are greater than
2815 this value. */
d6d4d770 2816 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2817};
2818
f81c9774
RH
2819/* Private to winnt.c. */
2820struct seh_frame_state;
2821
f8071c05
L
2822enum function_type
2823{
2824 TYPE_UNKNOWN = 0,
2825 TYPE_NORMAL,
2826 /* The current function is an interrupt service routine with a
2827 pointer argument as specified by the "interrupt" attribute. */
2828 TYPE_INTERRUPT,
2829 /* The current function is an interrupt service routine with a
2830 pointer argument and an integer argument as specified by the
2831 "interrupt" attribute. */
2832 TYPE_EXCEPTION
2833};
2834
3dcea658
L
2835enum queued_insn_type
2836{
2837 TYPE_NONE = 0,
2838 TYPE_ENDBR,
2839 TYPE_PATCHABLE_AREA
2840};
2841
d1b38208 2842struct GTY(()) machine_function {
fa1a0d02 2843 struct stack_local_entry *stack_locals;
4aab97f9
L
2844 int varargs_gpr_size;
2845 int varargs_fpr_size;
ff680eb1 2846 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2847
77560086
BE
2848 /* Cached initial frame layout for the current function. */
2849 struct ix86_frame frame;
3452586b 2850
7458026b
ILT
2851 /* For -fsplit-stack support: A stack local which holds a pointer to
2852 the stack arguments for a function with a variable number of
2853 arguments. This is set at the start of the function and is used
2854 to initialize the overflow_arg_area field of the va_list
2855 structure. */
2856 rtx split_stack_varargs_pointer;
2857
3452586b
RH
2858 /* This value is used for amd64 targets and specifies the current abi
2859 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2860 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2861
2862 /* Nonzero if the function accesses a previous frame. */
2863 BOOL_BITFIELD accesses_prev_frame : 1;
2864
922e3e33
UB
2865 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2866 expander to determine the style used. */
3452586b
RH
2867 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2868
1e4490dc
UB
2869 /* Nonzero if the current function calls pc thunk and
2870 must not use the red zone. */
2871 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2872
5bf5a10b
AO
2873 /* If true, the current function needs the default PIC register, not
2874 an alternate register (on x86) and must not use the red zone (on
2875 x86_64), even if it's a leaf function. We don't want the
2876 function to be regarded as non-leaf because TLS calls need not
2877 affect register allocation. This flag is set when a TLS call
2878 instruction is expanded within a function, and never reset, even
2879 if all such instructions are optimized away. Use the
2880 ix86_current_function_calls_tls_descriptor macro for a better
2881 approximation. */
3452586b
RH
2882 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2883
2884 /* If true, the current function has a STATIC_CHAIN is placed on the
2885 stack below the return address. */
2886 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2887
529a6471
JJ
2888 /* If true, it is safe to not save/restore DRAP register. */
2889 BOOL_BITFIELD no_drap_save_restore : 1;
2890
f8071c05
L
2891 /* Function type. */
2892 ENUM_BITFIELD(function_type) func_type : 2;
2893
da99fd4a
L
2894 /* How to generate indirec branch. */
2895 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2896
2897 /* If true, the current function has local indirect jumps, like
2898 "indirect_jump" or "tablejump". */
2899 BOOL_BITFIELD has_local_indirect_jump : 1;
2900
45e14019
L
2901 /* How to generate function return. */
2902 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2903
f8071c05
L
2904 /* If true, the current function is a function specified with
2905 the "interrupt" or "no_caller_saved_registers" attribute. */
2906 BOOL_BITFIELD no_caller_saved_registers : 1;
2907
a0ff7835
L
2908 /* If true, there is register available for argument passing. This
2909 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2910 if there is scratch register available for indirect sibcall. In
2911 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2912 pass arguments and can be used for indirect sibcall. */
2913 BOOL_BITFIELD arg_reg_available : 1;
2914
d6d4d770 2915 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2916 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2917 BOOL_BITFIELD call_ms2sysv : 1;
2918
2919 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2920 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2921 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2922
d6d4d770
DS
2923 /* This is the number of extra registers saved by stub (valid range is
2924 0-6). Each additional register is only saved/restored by the stubs
2925 if all successive ones are. (Will always be zero when using a hard
2926 frame pointer.) */
2927 unsigned int call_ms2sysv_extra_regs:3;
2928
35c95658
L
2929 /* Nonzero if the function places outgoing arguments on stack. */
2930 BOOL_BITFIELD outgoing_args_on_stack : 1;
2931
3dcea658
L
2932 /* If true, ENDBR or patchable area is queued at function entrance. */
2933 ENUM_BITFIELD(queued_insn_type) insn_queued_at_entrance : 2;
2934
2935 /* If true, the function label has been emitted. */
2936 BOOL_BITFIELD function_label_emitted : 1;
708c728d 2937
c2080a1f
L
2938 /* True if the function needs a stack frame. */
2939 BOOL_BITFIELD stack_frame_required : 1;
2940
cd3410cc
L
2941 /* The largest alignment, in bytes, of stack slot actually used. */
2942 unsigned int max_used_stack_alignment;
2943
ec7ded37
RH
2944 /* During prologue/epilogue generation, the current frame state.
2945 Otherwise, the frame state at the end of the prologue. */
2946 struct machine_frame_state fs;
f81c9774
RH
2947
2948 /* During SEH output, this is non-null. */
2949 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2950};
2bf6d935
ML
2951
2952extern GTY(()) tree sysv_va_list_type_node;
2953extern GTY(()) tree ms_va_list_type_node;
cd9c1ca8 2954#endif
fa1a0d02
JH
2955
2956#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2957#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2958#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2959#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2960#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2961#define ix86_tls_descriptor_calls_expanded_in_cfun \
2962 (cfun->machine->tls_descriptor_call_expanded_p)
2963/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2964 calls are optimized away, we try to detect cases in which it was
2965 optimized away. Since such instructions (use (reg REG_SP)), we can
2966 verify whether there's any such instruction live by testing that
2967 REG_SP is live. */
2968#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2969 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2970#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2971#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2972
1bc7c5b6
ZW
2973/* Control behavior of x86_file_start. */
2974#define X86_FILE_START_VERSION_DIRECTIVE false
2975#define X86_FILE_START_FLTUSED false
2976
7dcbf659
JH
2977/* Flag to mark data that is in the large address area. */
2978#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2979#define SYMBOL_REF_FAR_ADDR_P(X) \
2980 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2981
2982/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2983 have defined always, to avoid ifdefing. */
2984#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2985#define SYMBOL_REF_DLLIMPORT_P(X) \
2986 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2987
2988#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2989#define SYMBOL_REF_DLLEXPORT_P(X) \
2990 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2991
82c0e1a0
KT
2992#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2993#define SYMBOL_REF_STUBVAR_P(X) \
2994 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2995
7942e47e
RY
2996extern void debug_ready_dispatch (void);
2997extern void debug_dispatch_window (int);
2998
91afcfa3
QN
2999/* The value at zero is only defined for the BMI instructions
3000 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
3001#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
4f73bf20 3002 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 2 : 0)
91afcfa3 3003#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
4f73bf20 3004 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 2 : 0)
91afcfa3
QN
3005
3006
b8ce4e94
KT
3007/* Flags returned by ix86_get_callcvt (). */
3008#define IX86_CALLCVT_CDECL 0x1
3009#define IX86_CALLCVT_STDCALL 0x2
3010#define IX86_CALLCVT_FASTCALL 0x4
3011#define IX86_CALLCVT_THISCALL 0x8
3012#define IX86_CALLCVT_REGPARM 0x10
3013#define IX86_CALLCVT_SSEREGPARM 0x20
3014
3015#define IX86_BASE_CALLCVT(FLAGS) \
3016 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
3017 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
3018
b86b9f44
MM
3019#define RECIP_MASK_NONE 0x00
3020#define RECIP_MASK_DIV 0x01
3021#define RECIP_MASK_SQRT 0x02
3022#define RECIP_MASK_VEC_DIV 0x04
3023#define RECIP_MASK_VEC_SQRT 0x08
3024#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
3025 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 3026#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
3027
3028#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
3029#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
3030#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
3031#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
3032
ab2c4ec8
SS
3033/* Use 128-bit AVX instructions in the auto-vectorizer. */
3034#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
3035/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
3036#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
3037 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 3038
c2c601b2
L
3039#define TARGET_INDIRECT_BRANCH_REGISTER \
3040 (ix86_indirect_branch_register \
3041 || cfun->machine->indirect_branch_type != indirect_branch_keep)
3042
5dcfdccd
KY
3043#define IX86_HLE_ACQUIRE (1 << 16)
3044#define IX86_HLE_RELEASE (1 << 17)
3045
e83b8e2e
JJ
3046/* For switching between functions with different target attributes. */
3047#define SWITCHABLE_TARGET 1
3048
44d0de8d
UB
3049#define TARGET_SUPPORTS_WIDE_INT 1
3050
2bf6d935
ML
3051#if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
3052extern enum attr_cpu ix86_schedule;
3053
3054#define NUM_X86_64_MS_CLOBBERED_REGS 12
3055#endif
3056
c98f8742
JVA
3057/*
3058Local variables:
3059version-control: t
3060End:
3061*/