]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Emit the prologue/epilogue using frame offsets.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d2af65b9 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
748086b7
JJ
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 25<http://www.gnu.org/licenses/>. */
c98f8742 26
ccf8e764
RH
27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
0a1c5e55
UB
42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
54#define TARGET_AVX OPTION_ISA_AVX
55#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 56#define TARGET_SSE4A OPTION_ISA_SSE4A
cbf2e4d4 57#define TARGET_FMA4 OPTION_ISA_FMA4
43a8b705 58#define TARGET_XOP OPTION_ISA_XOP
3e901069 59#define TARGET_LWP OPTION_ISA_LWP
04e1d06b 60#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
61#define TARGET_ABM OPTION_ISA_ABM
62#define TARGET_POPCNT OPTION_ISA_POPCNT
63#define TARGET_SAHF OPTION_ISA_SAHF
cabf85c3 64#define TARGET_MOVBE OPTION_ISA_MOVBE
8ed0ce99 65#define TARGET_CRC32 OPTION_ISA_CRC32
ab442df7
MM
66#define TARGET_AES OPTION_ISA_AES
67#define TARGET_PCLMUL OPTION_ISA_PCLMUL
68#define TARGET_CMPXCHG16B OPTION_ISA_CX16
4ee89d5f
L
69#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
70#define TARGET_RDRND OPTION_ISA_RDRND
71#define TARGET_F16C OPTION_ISA_F16C
ab442df7 72
04e1d06b 73
cbf2e4d4
HJ
74/* SSE4.1 defines round instructions */
75#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
04e1d06b 76#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 77
26b5109f
RS
78#include "config/vxworks-dummy.h"
79
8c996513
JH
80/* Algorithm to expand string function with. */
81enum stringop_alg
82{
83 no_stringop,
84 libcall,
85 rep_prefix_1_byte,
86 rep_prefix_4_byte,
87 rep_prefix_8_byte,
88 loop_1_byte,
89 loop,
90 unrolled_loop
91};
ccf8e764 92
8c996513 93#define NAX_STRINGOP_ALGS 4
ccf8e764 94
8c996513
JH
95/* Specify what algorithm to use for stringops on known size.
96 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
97 known at compile time or estimated via feedback, the SIZE array
98 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 99 means infinity). Corresponding ALG is used then.
8c996513 100 For example initializer:
4f3f76e6 101 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 102 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 103 be used otherwise. */
8c996513
JH
104struct stringop_algs
105{
106 const enum stringop_alg unknown_size;
107 const struct stringop_strategy {
108 const int max;
109 const enum stringop_alg alg;
110 } size [NAX_STRINGOP_ALGS];
111};
112
d4ba09c0
SC
113/* Define the specific costs for a given cpu */
114
115struct processor_costs {
8b60264b
KG
116 const int add; /* cost of an add instruction */
117 const int lea; /* cost of a lea instruction */
118 const int shift_var; /* variable shift costs */
119 const int shift_const; /* constant shift costs */
f676971a 120 const int mult_init[5]; /* cost of starting a multiply
4977bab6 121 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 122 const int mult_bit; /* cost of multiply per each bit set */
f676971a 123 const int divide[5]; /* cost of a divide/mod
4977bab6 124 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
125 int movsx; /* The cost of movsx operation. */
126 int movzx; /* The cost of movzx operation. */
8b60264b
KG
127 const int large_insn; /* insns larger than this cost more */
128 const int move_ratio; /* The threshold of number of scalar
ac775968 129 memory-to-memory move insns. */
8b60264b
KG
130 const int movzbl_load; /* cost of loading using movzbl */
131 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
132 in QImode, HImode and SImode relative
133 to reg-reg move (2). */
8b60264b 134 const int int_store[3]; /* cost of storing integer register
96e7ae40 135 in QImode, HImode and SImode */
8b60264b
KG
136 const int fp_move; /* cost of reg,reg fld/fst */
137 const int fp_load[3]; /* cost of loading FP register
96e7ae40 138 in SFmode, DFmode and XFmode */
8b60264b 139 const int fp_store[3]; /* cost of storing FP register
96e7ae40 140 in SFmode, DFmode and XFmode */
8b60264b
KG
141 const int mmx_move; /* cost of moving MMX register. */
142 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 143 in SImode and DImode */
8b60264b 144 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 145 in SImode and DImode */
8b60264b
KG
146 const int sse_move; /* cost of moving SSE register. */
147 const int sse_load[3]; /* cost of loading SSE register
fa79946e 148 in SImode, DImode and TImode*/
8b60264b 149 const int sse_store[3]; /* cost of storing SSE register
fa79946e 150 in SImode, DImode and TImode*/
8b60264b 151 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 152 integer and vice versa. */
46cb0441
ZD
153 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
154 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
155 const int prefetch_block; /* bytes moved to cache for prefetch. */
156 const int simultaneous_prefetches; /* number of parallel prefetch
157 operations. */
4977bab6 158 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
159 const int fadd; /* cost of FADD and FSUB instructions. */
160 const int fmul; /* cost of FMUL instruction. */
161 const int fdiv; /* cost of FDIV instruction. */
162 const int fabs; /* cost of FABS instruction. */
163 const int fchs; /* cost of FCHS instruction. */
164 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
165 /* Specify what algorithm
166 to use for stringops on unknown size. */
167 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
168 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
169 load and store. */
170 const int scalar_load_cost; /* Cost of scalar load. */
171 const int scalar_store_cost; /* Cost of scalar store. */
172 const int vec_stmt_cost; /* Cost of any vector operation, excluding
173 load, store, vector-to-scalar and
174 scalar-to-vector operation. */
175 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
176 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 177 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
178 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
179 const int vec_store_cost; /* Cost of vector store. */
180 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
181 cost model. */
182 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
183 vectorizer cost model. */
d4ba09c0
SC
184};
185
8b60264b 186extern const struct processor_costs *ix86_cost;
b2077fd2
JH
187extern const struct processor_costs ix86_size_cost;
188
189#define ix86_cur_cost() \
190 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 191
c98f8742
JVA
192/* Macros used in the machine description to test the flags. */
193
ddd5a7c1 194/* configure can arrange to make this 2, to force a 486. */
e075ae69 195
35b528be 196#ifndef TARGET_CPU_DEFAULT
d326eaf0 197#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 198#endif
35b528be 199
004d3859
GK
200#ifndef TARGET_FPMATH_DEFAULT
201#define TARGET_FPMATH_DEFAULT \
202 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
203#endif
204
6ac49599 205#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 206
5791cc29
JT
207/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
208 compile-time constant. */
209#ifdef IN_LIBGCC2
6ac49599 210#undef TARGET_64BIT
5791cc29
JT
211#ifdef __x86_64__
212#define TARGET_64BIT 1
213#else
214#define TARGET_64BIT 0
215#endif
216#else
6ac49599
RS
217#ifndef TARGET_BI_ARCH
218#undef TARGET_64BIT
67adf6a9 219#if TARGET_64BIT_DEFAULT
0c2dc519
JH
220#define TARGET_64BIT 1
221#else
222#define TARGET_64BIT 0
223#endif
224#endif
5791cc29 225#endif
25f94bb5 226
750054a2
CT
227#define HAS_LONG_COND_BRANCH 1
228#define HAS_LONG_UNCOND_BRANCH 1
229
9e555526
RH
230#define TARGET_386 (ix86_tune == PROCESSOR_I386)
231#define TARGET_486 (ix86_tune == PROCESSOR_I486)
232#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
233#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 234#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
235#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
236#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
237#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
238#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 239#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 240#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 241#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
242#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
243#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
244#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 245#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 246#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
b6837b94 247#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 248
80fd744f
RH
249/* Feature tests against the various tunings. */
250enum ix86_tune_indices {
251 X86_TUNE_USE_LEAVE,
252 X86_TUNE_PUSH_MEMORY,
253 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
254 X86_TUNE_UNROLL_STRLEN,
255 X86_TUNE_DEEP_BRANCH_PREDICTION,
256 X86_TUNE_BRANCH_PREDICTION_HINTS,
257 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 258 X86_TUNE_USE_SAHF,
80fd744f
RH
259 X86_TUNE_MOVX,
260 X86_TUNE_PARTIAL_REG_STALL,
261 X86_TUNE_PARTIAL_FLAG_REG_STALL,
262 X86_TUNE_USE_HIMODE_FIOP,
263 X86_TUNE_USE_SIMODE_FIOP,
264 X86_TUNE_USE_MOV0,
265 X86_TUNE_USE_CLTD,
266 X86_TUNE_USE_XCHGB,
267 X86_TUNE_SPLIT_LONG_MOVES,
268 X86_TUNE_READ_MODIFY_WRITE,
269 X86_TUNE_READ_MODIFY,
270 X86_TUNE_PROMOTE_QIMODE,
271 X86_TUNE_FAST_PREFIX,
272 X86_TUNE_SINGLE_STRINGOP,
273 X86_TUNE_QIMODE_MATH,
274 X86_TUNE_HIMODE_MATH,
275 X86_TUNE_PROMOTE_QI_REGS,
276 X86_TUNE_PROMOTE_HI_REGS,
277 X86_TUNE_ADD_ESP_4,
278 X86_TUNE_ADD_ESP_8,
279 X86_TUNE_SUB_ESP_4,
280 X86_TUNE_SUB_ESP_8,
281 X86_TUNE_INTEGER_DFMODE_MOVES,
282 X86_TUNE_PARTIAL_REG_DEPENDENCY,
283 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
284 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
285 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
286 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
287 X86_TUNE_SSE_SPLIT_REGS,
288 X86_TUNE_SSE_TYPELESS_STORES,
289 X86_TUNE_SSE_LOAD0_BY_PXOR,
290 X86_TUNE_MEMORY_MISMATCH_STALL,
291 X86_TUNE_PROLOGUE_USING_MOVE,
292 X86_TUNE_EPILOGUE_USING_MOVE,
293 X86_TUNE_SHIFT1,
294 X86_TUNE_USE_FFREEP,
295 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 296 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
297 X86_TUNE_FOUR_JUMP_LIMIT,
298 X86_TUNE_SCHEDULE,
299 X86_TUNE_USE_BT,
300 X86_TUNE_USE_INCDEC,
301 X86_TUNE_PAD_RETURNS,
302 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
303 X86_TUNE_SHORTEN_X87_SSE,
304 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 305 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
306 X86_TUNE_SLOW_IMUL_IMM32_MEM,
307 X86_TUNE_SLOW_IMUL_IMM8,
308 X86_TUNE_MOVE_M1_VIA_OR,
309 X86_TUNE_NOT_UNPAIRABLE,
310 X86_TUNE_NOT_VECTORMODE,
54723b46 311 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 312 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 313 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 314 X86_TUNE_OPT_AGU,
80fd744f
RH
315
316 X86_TUNE_LAST
317};
318
ab442df7 319extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
320
321#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
322#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
323#define TARGET_ZERO_EXTEND_WITH_AND \
324 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
325#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
326#define TARGET_DEEP_BRANCH_PREDICTION \
327 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
328#define TARGET_BRANCH_PREDICTION_HINTS \
329 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
330#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
331#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
332#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
333#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
334#define TARGET_PARTIAL_FLAG_REG_STALL \
335 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
336#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
337#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
338#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
339#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
340#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
341#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
342#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
343#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
344#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
345#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
346#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
347#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
348#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
349#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
350#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
351#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
352#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
353#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
354#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
355#define TARGET_INTEGER_DFMODE_MOVES \
356 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
357#define TARGET_PARTIAL_REG_DEPENDENCY \
358 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
359#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
360 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
361#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
362 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
363#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
364 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
365#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
366 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
367#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
368#define TARGET_SSE_TYPELESS_STORES \
369 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
370#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
371#define TARGET_MEMORY_MISMATCH_STALL \
372 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
373#define TARGET_PROLOGUE_USING_MOVE \
374 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
375#define TARGET_EPILOGUE_USING_MOVE \
376 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
377#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
378#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
379#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
380#define TARGET_INTER_UNIT_CONVERSIONS\
381 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
382#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
383#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
384#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
385#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
386#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
387#define TARGET_EXT_80387_CONSTANTS \
388 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
389#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
390#define TARGET_AVOID_VECTOR_DECODE \
391 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
392#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
393 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
394#define TARGET_SLOW_IMUL_IMM32_MEM \
395 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
396#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
397#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
398#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
399#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
400#define TARGET_USE_VECTOR_FP_CONVERTS \
401 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
402#define TARGET_USE_VECTOR_CONVERTS \
403 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
404#define TARGET_FUSE_CMP_AND_BRANCH \
405 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 406#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
80fd744f
RH
407
408/* Feature tests against the various architecture variations. */
409enum ix86_arch_indices {
410 X86_ARCH_CMOVE, /* || TARGET_SSE */
411 X86_ARCH_CMPXCHG,
412 X86_ARCH_CMPXCHG8B,
413 X86_ARCH_XADD,
414 X86_ARCH_BSWAP,
415
416 X86_ARCH_LAST
417};
4f3f76e6 418
ab442df7 419extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
420
421#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
422#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
423#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
424#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
425#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
426
427#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
428
429extern int x86_prefetch_sse;
0a1c5e55 430
80fd744f
RH
431#define TARGET_PREFETCH_SSE x86_prefetch_sse
432
80fd744f
RH
433#define ASSEMBLER_DIALECT (ix86_asm_dialect)
434
435#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
436#define TARGET_MIX_SSE_I387 \
437 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
438
439#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
440#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
441#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 442#define TARGET_SUN_TLS 0
1ef45b77 443
0a1c5e55
UB
444extern int ix86_isa_flags;
445
67adf6a9
RH
446#ifndef TARGET_64BIT_DEFAULT
447#define TARGET_64BIT_DEFAULT 0
25f94bb5 448#endif
74dc3e94
RH
449#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
450#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
451#endif
25f94bb5 452
79f5e442
ZD
453/* Fence to use after loop using storent. */
454
455extern tree x86_mfence;
456#define FENCE_FOLLOWING_MOVNT x86_mfence
457
0ed4a390
JL
458/* Once GDB has been enhanced to deal with functions without frame
459 pointers, we can change this to allow for elimination of
460 the frame pointer in leaf functions. */
461#define TARGET_DEFAULT 0
67adf6a9 462
0a1c5e55
UB
463/* Extra bits to force. */
464#define TARGET_SUBTARGET_DEFAULT 0
465#define TARGET_SUBTARGET_ISA_DEFAULT 0
466
467/* Extra bits to force on w/ 32-bit mode. */
468#define TARGET_SUBTARGET32_DEFAULT 0
469#define TARGET_SUBTARGET32_ISA_DEFAULT 0
470
ccf8e764
RH
471/* Extra bits to force on w/ 64-bit mode. */
472#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 473#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 474
b069de3b
SS
475/* This is not really a target flag, but is done this way so that
476 it's analogous to similar code for Mach-O on PowerPC. darwin.h
477 redefines this to 1. */
478#define TARGET_MACHO 0
479
9005471b
IS
480/* Branch island 'stubs' are emitted for earlier versions of darwin.
481 This provides a default (over-ridden in darwin.h.) */
482#ifndef TARGET_MACHO_BRANCH_ISLANDS
483#define TARGET_MACHO_BRANCH_ISLANDS 0
484#endif
485
486/* For the Windows 64-bit ABI. */
7c800926
KT
487#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
488
489/* Available call abi. */
35cbb299 490enum calling_abi
7c800926
KT
491{
492 SYSV_ABI = 0,
493 MS_ABI = 1
494};
495
51212b32
L
496/* The abi used by target. */
497extern enum calling_abi ix86_abi;
498
499/* The default abi used by target. */
7c800926 500#define DEFAULT_ABI SYSV_ABI
ccf8e764 501
cc69336f
RH
502/* Subtargets may reset this to 1 in order to enable 96-bit long double
503 with the rounding mode forced to 53 bits. */
504#define TARGET_96_ROUND_53_LONG_DOUBLE 0
505
f5316dfe
MM
506/* Sometimes certain combinations of command options do not make
507 sense on a particular target machine. You can define a macro
508 `OVERRIDE_OPTIONS' to take account of this. This macro, if
509 defined, is executed once just after all the command options have
510 been parsed.
511
512 Don't use this macro to turn on various extra optimizations for
513 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
514
ab442df7 515#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 516
d4ba09c0 517/* Define this to change the optimizations performed by default. */
d9a5f180
GS
518#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
519 optimization_options ((LEVEL), (SIZE))
d4ba09c0 520
682cd442
GK
521/* -march=native handling only makes sense with compiler running on
522 an x86 or x86_64 chip. If changing this condition, also change
523 the condition in driver-i386.c. */
524#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
525/* In driver-i386.c. */
526extern const char *host_detect_local_cpu (int argc, const char **argv);
527#define EXTRA_SPEC_FUNCTIONS \
528 { "local_cpu_detect", host_detect_local_cpu },
682cd442 529#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
530#endif
531
8981c15b
JM
532#if TARGET_64BIT_DEFAULT
533#define OPT_ARCH64 "!m32"
534#define OPT_ARCH32 "m32"
535#else
536#define OPT_ARCH64 "m64"
537#define OPT_ARCH32 "!m64"
538#endif
539
1cba2b96
EC
540/* Support for configure-time defaults of some command line options.
541 The order here is important so that -march doesn't squash the
542 tune or cpu values. */
ce998900 543#define OPTION_DEFAULT_SPECS \
da2d4c01 544 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
545 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
546 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 547 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
548 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
549 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
550 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
551 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
552 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 553
241e1a89
SC
554/* Specs for the compiler proper */
555
628714d8 556#ifndef CC1_CPU_SPEC
fa959ce4 557#define CC1_CPU_SPEC_1 "\
9d913bbf 558%{mcpu=*:-mtune=%* \
d347d4c7 559%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 560%<mcpu=* \
c93e80a5
JH
561%{mintel-syntax:-masm=intel \
562%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
5c1a2bb1
JH
563%{msse5:-mavx \
564%n'-msse5' was removed.\n} \
c93e80a5
JH
565%{mno-intel-syntax:-masm=att \
566%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 567
682cd442 568#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
569#define CC1_CPU_SPEC CC1_CPU_SPEC_1
570#else
571#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
572"%{march=native:%<march=native %:local_cpu_detect(arch) \
573 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
574%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
575#endif
241e1a89 576#endif
c98f8742 577\f
30efe578 578/* Target CPU builtins. */
ab442df7
MM
579#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
580
581/* Target Pragmas. */
582#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 583
c2f17e19
UB
584enum target_cpu_default
585{
586 TARGET_CPU_DEFAULT_generic = 0,
587
588 TARGET_CPU_DEFAULT_i386,
589 TARGET_CPU_DEFAULT_i486,
590 TARGET_CPU_DEFAULT_pentium,
591 TARGET_CPU_DEFAULT_pentium_mmx,
592 TARGET_CPU_DEFAULT_pentiumpro,
593 TARGET_CPU_DEFAULT_pentium2,
594 TARGET_CPU_DEFAULT_pentium3,
595 TARGET_CPU_DEFAULT_pentium4,
596 TARGET_CPU_DEFAULT_pentium_m,
597 TARGET_CPU_DEFAULT_prescott,
598 TARGET_CPU_DEFAULT_nocona,
599 TARGET_CPU_DEFAULT_core2,
b6837b94 600 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
601
602 TARGET_CPU_DEFAULT_geode,
603 TARGET_CPU_DEFAULT_k6,
604 TARGET_CPU_DEFAULT_k6_2,
605 TARGET_CPU_DEFAULT_k6_3,
606 TARGET_CPU_DEFAULT_athlon,
607 TARGET_CPU_DEFAULT_athlon_sse,
608 TARGET_CPU_DEFAULT_k8,
609 TARGET_CPU_DEFAULT_amdfam10,
1133125e 610 TARGET_CPU_DEFAULT_bdver1,
c2f17e19
UB
611
612 TARGET_CPU_DEFAULT_max
613};
0c2dc519 614
628714d8 615#ifndef CC1_SPEC
8015b78d 616#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
617#endif
618
619/* This macro defines names of additional specifications to put in the
620 specs that can be used in various specifications like CC1_SPEC. Its
621 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
622
623 Each subgrouping contains a string constant, that defines the
188fc5b5 624 specification name, and a string constant that used by the GCC driver
bcd86433
SC
625 program.
626
627 Do not define this macro if it does not need to do anything. */
628
629#ifndef SUBTARGET_EXTRA_SPECS
630#define SUBTARGET_EXTRA_SPECS
631#endif
632
633#define EXTRA_SPECS \
628714d8 634 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
635 SUBTARGET_EXTRA_SPECS
636\f
ce998900 637
d57a4b98
RH
638/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
639 FPU, assume that the fpcw is set to extended precision; when using
640 only SSE, rounding is correct; when using both SSE and the FPU,
641 the rounding precision is indeterminate, since either may be chosen
642 apparently at random. */
643#define TARGET_FLT_EVAL_METHOD \
5ccd517a 644 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 645
8ce94e44
JM
646/* Whether to allow x87 floating-point arithmetic on MODE (one of
647 SFmode, DFmode and XFmode) in the current excess precision
648 configuration. */
649#define X87_ENABLE_ARITH(MODE) \
650 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
651
652/* Likewise, whether to allow direct conversions from integer mode
653 IMODE (HImode, SImode or DImode) to MODE. */
654#define X87_ENABLE_FLOAT(MODE, IMODE) \
655 (flag_excess_precision == EXCESS_PRECISION_FAST \
656 || (MODE) == XFmode \
657 || ((MODE) == DFmode && (IMODE) == SImode) \
658 || (IMODE) == HImode)
659
979c67a5
UB
660/* target machine storage layout */
661
65d9c0ab
JH
662#define SHORT_TYPE_SIZE 16
663#define INT_TYPE_SIZE 32
664#define FLOAT_TYPE_SIZE 32
665#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
666#define DOUBLE_TYPE_SIZE 64
667#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
668#define LONG_DOUBLE_TYPE_SIZE 80
669
670#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 671
67adf6a9 672#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 673#define MAX_BITS_PER_WORD 64
0c2dc519
JH
674#else
675#define MAX_BITS_PER_WORD 32
0c2dc519
JH
676#endif
677
c98f8742
JVA
678/* Define this if most significant byte of a word is the lowest numbered. */
679/* That is true on the 80386. */
680
681#define BITS_BIG_ENDIAN 0
682
683/* Define this if most significant byte of a word is the lowest numbered. */
684/* That is not true on the 80386. */
685#define BYTES_BIG_ENDIAN 0
686
687/* Define this if most significant word of a multiword number is the lowest
688 numbered. */
689/* Not true for 80386 */
690#define WORDS_BIG_ENDIAN 0
691
c98f8742 692/* Width of a word, in units (bytes). */
4ae8027b 693#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
694#ifdef IN_LIBGCC2
695#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
696#else
697#define MIN_UNITS_PER_WORD 4
698#endif
c98f8742 699
c98f8742 700/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 701#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 702
e075ae69 703/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 704#define STACK_BOUNDARY \
51212b32 705 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 706
2e3f842f
L
707/* Stack boundary of the main function guaranteed by OS. */
708#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
709
de1132d1
L
710/* Minimum stack boundary. */
711#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 712
d1f87653 713/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 714 aligned; the compiler cannot rely on having this alignment. */
e075ae69 715#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 716
de1132d1 717/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
718 both 32bit and 64bit, to support codes that need 128 bit stack
719 alignment for SSE instructions, but can't realign the stack. */
720#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
721
722/* 1 if -mstackrealign should be turned on by default. It will
723 generate an alternate prologue and epilogue that realigns the
724 runtime stack if nessary. This supports mixing codes that keep a
725 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 726 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
727#define STACK_REALIGN_DEFAULT 0
728
729/* Boundary (in *bits*) on which the incoming stack is aligned. */
730#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 731
ebff937c
SH
732/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
733 mandatory for the 64-bit ABI, and may or may not be true for other
734 operating systems. */
735#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
736
f963b5d9
RS
737/* Minimum allocation boundary for the code of a function. */
738#define FUNCTION_BOUNDARY 8
739
740/* C++ stores the virtual bit in the lowest bit of function pointers. */
741#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 742
892a2d68 743/* Alignment of field after `int : 0' in a structure. */
c98f8742 744
65d9c0ab 745#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
746
747/* Minimum size in bits of the largest boundary to which any
748 and all fundamental data types supported by the hardware
749 might need to be aligned. No data type wants to be aligned
17f24ff0 750 rounder than this.
fce5a9f2 751
d1f87653 752 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
753 and Pentium Pro XFmode values at 128 bit boundaries. */
754
95879c72 755#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
17f24ff0 756
2e3f842f
L
757/* Maximum stack alignment. */
758#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
759
6e4f1168
L
760/* Alignment value for attribute ((aligned)). It is a constant since
761 it is the part of the ABI. We shouldn't change it with -mavx. */
762#define ATTRIBUTE_ALIGNED_VALUE 128
763
822eda12 764/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 765#define ALIGN_MODE_128(MODE) \
4501d314 766 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 767
17f24ff0 768/* The published ABIs say that doubles should be aligned on word
d1f87653 769 boundaries, so lower the alignment for structure fields unless
6fc605d8 770 -malign-double is set. */
e932b21b 771
e83f3cff
RH
772/* ??? Blah -- this macro is used directly by libobjc. Since it
773 supports no vector modes, cut out the complexity and fall back
774 on BIGGEST_FIELD_ALIGNMENT. */
775#ifdef IN_TARGET_LIBS
ef49d42e
JH
776#ifdef __x86_64__
777#define BIGGEST_FIELD_ALIGNMENT 128
778#else
e83f3cff 779#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 780#endif
e83f3cff 781#else
e932b21b
JH
782#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
783 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 784#endif
c98f8742 785
e5e8a8bf 786/* If defined, a C expression to compute the alignment given to a
a7180f70 787 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
788 and ALIGN is the alignment that the object would ordinarily have.
789 The value of this macro is used instead of that alignment to align
790 the object.
791
792 If this macro is not defined, then ALIGN is used.
793
794 The typical use of this macro is to increase alignment for string
795 constants to be word aligned so that `strcpy' calls that copy
796 constants can be done inline. */
797
d9a5f180 798#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 799
8a022443
JW
800/* If defined, a C expression to compute the alignment for a static
801 variable. TYPE is the data type, and ALIGN is the alignment that
802 the object would ordinarily have. The value of this macro is used
803 instead of that alignment to align the object.
804
805 If this macro is not defined, then ALIGN is used.
806
807 One use of this macro is to increase alignment of medium-size
808 data to make it all fit in fewer cache lines. Another is to
809 cause character arrays to be word-aligned so that `strcpy' calls
810 that copy constants to character arrays can be done inline. */
811
d9a5f180 812#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
813
814/* If defined, a C expression to compute the alignment for a local
815 variable. TYPE is the data type, and ALIGN is the alignment that
816 the object would ordinarily have. The value of this macro is used
817 instead of that alignment to align the object.
818
819 If this macro is not defined, then ALIGN is used.
820
821 One use of this macro is to increase alignment of medium-size
822 data to make it all fit in fewer cache lines. */
823
76fe54f0
L
824#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
825 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
826
827/* If defined, a C expression to compute the alignment for stack slot.
828 TYPE is the data type, MODE is the widest mode available, and ALIGN
829 is the alignment that the slot would ordinarily have. The value of
830 this macro is used instead of that alignment to align the slot.
831
832 If this macro is not defined, then ALIGN is used when TYPE is NULL,
833 Otherwise, LOCAL_ALIGNMENT will be used.
834
835 One use of this macro is to set alignment of stack slot to the
836 maximum alignment of all possible modes which the slot may have. */
837
838#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
839 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 840
9bfaf89d
JJ
841/* If defined, a C expression to compute the alignment for a local
842 variable DECL.
843
844 If this macro is not defined, then
845 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
846
847 One use of this macro is to increase alignment of medium-size
848 data to make it all fit in fewer cache lines. */
849
850#define LOCAL_DECL_ALIGNMENT(DECL) \
851 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
852
ae58e548
JJ
853/* If defined, a C expression to compute the minimum required alignment
854 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
855 MODE, assuming normal alignment ALIGN.
856
857 If this macro is not defined, then (ALIGN) will be used. */
858
859#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
860 ix86_minimum_alignment (EXP, MODE, ALIGN)
861
9bfaf89d 862
53c17031
JH
863/* If defined, a C expression that gives the alignment boundary, in
864 bits, of an argument with the specified mode and type. If it is
865 not defined, `PARM_BOUNDARY' is used for all arguments. */
866
d9a5f180
GS
867#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
868 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 869
9cd10576 870/* Set this nonzero if move instructions will actually fail to work
c98f8742 871 when given unaligned data. */
b4ac57ab 872#define STRICT_ALIGNMENT 0
c98f8742
JVA
873
874/* If bit field type is int, don't let it cross an int,
875 and give entire struct the alignment of an int. */
43a88a8c 876/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 877#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
878\f
879/* Standard register usage. */
880
881/* This processor has special stack-like registers. See reg-stack.c
892a2d68 882 for details. */
c98f8742
JVA
883
884#define STACK_REGS
ce998900 885
d9a5f180 886#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
887 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
888 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
889 || (MODE) == XFmode)
c98f8742 890
1833192f
VM
891/* Cover class containing the stack registers. */
892#define STACK_REG_COVER_CLASS FLOAT_REGS
893
c98f8742
JVA
894/* Number of actual hardware registers.
895 The hardware registers are assigned numbers for the compiler
896 from 0 to just below FIRST_PSEUDO_REGISTER.
897 All registers that the compiler knows about must be given numbers,
898 even those that are not normally considered general registers.
899
900 In the 80386 we give the 8 general purpose registers the numbers 0-7.
901 We number the floating point registers 8-15.
902 Note that registers 0-7 can be accessed as a short or int,
903 while only 0-3 may be used with byte `mov' instructions.
904
905 Reg 16 does not correspond to any hardware register, but instead
906 appears in the RTL as an argument pointer prior to reload, and is
907 eliminated during reloading in favor of either the stack or frame
892a2d68 908 pointer. */
c98f8742 909
b0d95de8 910#define FIRST_PSEUDO_REGISTER 53
c98f8742 911
3073d01c
ML
912/* Number of hardware registers that go into the DWARF-2 unwind info.
913 If not defined, equals FIRST_PSEUDO_REGISTER. */
914
915#define DWARF_FRAME_REGISTERS 17
916
c98f8742
JVA
917/* 1 for registers that have pervasive standard uses
918 and are not available for the register allocator.
3f3f2124 919 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 920
3a4416fb
RS
921 The value is zero if the register is not fixed on either 32 or
922 64 bit targets, one if the register if fixed on both 32 and 64
923 bit targets, two if it is only fixed on 32bit targets and three
924 if its only fixed on 64bit targets.
925 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 926 */
a7180f70
BS
927#define FIXED_REGISTERS \
928/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 929{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
930/*arg,flags,fpsr,fpcr,frame*/ \
931 1, 1, 1, 1, 1, \
a7180f70
BS
932/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
933 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 934/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
935 0, 0, 0, 0, 0, 0, 0, 0, \
936/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 937 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 938/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 939 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 940
c98f8742
JVA
941
942/* 1 for registers not available across function calls.
943 These must include the FIXED_REGISTERS and also any
944 registers that can be used without being saved.
945 The latter must include the registers where values are returned
946 and the register where structure-value addresses are passed.
fce5a9f2
EC
947 Aside from that, you can include as many other registers as you like.
948
9d72d996
JJ
949 The value is zero if the register is not call used on either 32 or
950 64 bit targets, one if the register if call used on both 32 and 64
951 bit targets, two if it is only call used on 32bit targets and three
952 if its only call used on 64bit targets.
3a4416fb 953 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 954*/
a7180f70
BS
955#define CALL_USED_REGISTERS \
956/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 957{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
958/*arg,flags,fpsr,fpcr,frame*/ \
959 1, 1, 1, 1, 1, \
a7180f70 960/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 961 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 962/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 963 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 964/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 965 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 966/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 967 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 968
3b3c6a3f
MM
969/* Order in which to allocate registers. Each register must be
970 listed once, even those in FIXED_REGISTERS. List frame pointer
971 late and fixed registers last. Note that, in general, we prefer
972 registers listed in CALL_USED_REGISTERS, keeping the others
973 available for storage of persistent values.
974
5a733826 975 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 976 so this is just empty initializer for array. */
3b3c6a3f 977
162f023b
JH
978#define REG_ALLOC_ORDER \
979{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
980 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
981 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 982 48, 49, 50, 51, 52 }
3b3c6a3f 983
5a733826 984/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 985 to be rearranged based on a particular function. When using sse math,
03c259ad 986 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 987
5a733826 988#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 989
f5316dfe 990
7c800926
KT
991#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
992
c98f8742 993/* Macro to conditionally modify fixed_regs/call_used_regs. */
ac2e563f 994#define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
c98f8742
JVA
995
996/* Return number of consecutive hard regs needed starting at reg REGNO
997 to hold something of mode MODE.
998 This is ordinarily the length in words of a value of mode MODE
999 but can be less for certain modes in special long registers.
1000
fce5a9f2 1001 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1002 registers. And only registers 0-3 may have mov byte instructions
1003 applied to them.
1004 */
1005
ce998900 1006#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1007 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1008 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1009 : ((MODE) == XFmode \
92d0fb09 1010 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1011 : (MODE) == XCmode \
92d0fb09 1012 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1013 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1014
8521c414
JM
1015#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1016 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1017 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1018 ? 0 \
1019 : ((MODE) == XFmode || (MODE) == XCmode)) \
1020 : 0)
1021
1022#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1023
95879c72
L
1024#define VALID_AVX256_REG_MODE(MODE) \
1025 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1026 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1027
ce998900
UB
1028#define VALID_SSE2_REG_MODE(MODE) \
1029 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1030 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1031
d9a5f180 1032#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1033 ((MODE) == V1TImode || (MODE) == TImode \
1034 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1035 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1036
47f339cf 1037#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1038 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1039
d9a5f180 1040#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1041 ((MODE == V1DImode) || (MODE) == DImode \
1042 || (MODE) == V2SImode || (MODE) == SImode \
1043 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1044
accde4cf 1045/* ??? No autovectorization into MMX or 3DNOW until we can reliably
95879c72
L
1046 place emms and femms instructions.
1047 FIXME: AVX has 32byte floating point vector operations and 16byte
1048 integer vector operations. But vectorizer doesn't support
1049 different sizes for integer and floating point vectors. We limit
1050 vector size to 16byte. */
1051#define UNITS_PER_SIMD_WORD(MODE) \
1052 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1053 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
0bf43309 1054
ce998900
UB
1055#define VALID_DFP_MODE_P(MODE) \
1056 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1057
d9a5f180 1058#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1059 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1060 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1061
d9a5f180 1062#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1063 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1064 || (MODE) == DImode \
1065 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1066 || (MODE) == CDImode \
1067 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1068 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1069
822eda12 1070/* Return true for modes passed in SSE registers. */
ce998900 1071#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1072 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1073 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1074 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1075 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1076 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1077
e075ae69 1078/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1079
a946dd00 1080#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1081 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1082
1083/* Value is 1 if it is a good idea to tie two pseudo registers
1084 when one has mode MODE1 and one has mode MODE2.
1085 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1086 for any hard reg, then this must be 0 for correct output. */
1087
c1c5b5e3 1088#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1089
ff25ef99
ZD
1090/* It is possible to write patterns to move flags; but until someone
1091 does it, */
1092#define AVOID_CCMODE_COPIES
c98f8742 1093
e075ae69 1094/* Specify the modes required to caller save a given hard regno.
787dc842 1095 We do this on i386 to prevent flags from being saved at all.
e075ae69 1096
787dc842
JH
1097 Kill any attempts to combine saving of modes. */
1098
d9a5f180
GS
1099#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1100 (CC_REGNO_P (REGNO) ? VOIDmode \
1101 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1102 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1103 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1104 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1105 : (MODE))
ce998900 1106
c98f8742
JVA
1107/* Specify the registers used for certain standard purposes.
1108 The values of these macros are register numbers. */
1109
1110/* on the 386 the pc register is %eip, and is not usable as a general
1111 register. The ordinary mov instructions won't work */
1112/* #define PC_REGNUM */
1113
1114/* Register to use for pushing function arguments. */
1115#define STACK_POINTER_REGNUM 7
1116
1117/* Base register for access to local variables of the function. */
564d80f4
JH
1118#define HARD_FRAME_POINTER_REGNUM 6
1119
1120/* Base register for access to local variables of the function. */
b0d95de8 1121#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1122
1123/* First floating point reg */
1124#define FIRST_FLOAT_REG 8
1125
1126/* First & last stack-like regs */
1127#define FIRST_STACK_REG FIRST_FLOAT_REG
1128#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1129
a7180f70
BS
1130#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1131#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1132
a7180f70
BS
1133#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1134#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1135
3f3f2124
JH
1136#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1137#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1138
1139#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1140#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1141
aabcd309 1142/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1143 requiring a frame pointer. */
1144#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1145#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1146#endif
1147
1148/* Make sure we can access arbitrary call frames. */
1149#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1150
1151/* Base register for access to arguments of the function. */
1152#define ARG_POINTER_REGNUM 16
1153
c98f8742 1154/* Register to hold the addressing base for position independent
5b43fed1
RH
1155 code access to data items. We don't use PIC pointer for 64bit
1156 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1157 pessimizing code dealing with EBX.
bd09bdeb
RH
1158
1159 To avoid clobbering a call-saved register unnecessarily, we renumber
1160 the pic register when possible. The change is visible after the
1161 prologue has been emitted. */
1162
2e3f842f 1163#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1164
1165#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1166 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1167 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1168 : reload_completed ? REGNO (pic_offset_table_rtx) \
1169 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1170
5fc0e5df
KW
1171#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1172
c51e6d85 1173/* This is overridden by <cygwin.h>. */
5e062767
DS
1174#define MS_AGGREGATE_RETURN 0
1175
61fec9ff
JB
1176/* This is overridden by <netware.h>. */
1177#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1178\f
1179/* Define the classes of registers for register constraints in the
1180 machine description. Also define ranges of constants.
1181
1182 One of the classes must always be named ALL_REGS and include all hard regs.
1183 If there is more than one class, another class must be named NO_REGS
1184 and contain no registers.
1185
1186 The name GENERAL_REGS must be the name of a class (or an alias for
1187 another name such as ALL_REGS). This is the class of registers
1188 that is allowed by "g" or "r" in a register constraint.
1189 Also, registers outside this class are allocated only when
1190 instructions express preferences for them.
1191
1192 The classes must be numbered in nondecreasing order; that is,
1193 a larger-numbered class must never be contained completely
1194 in a smaller-numbered class.
1195
1196 For any two classes, it is very desirable that there be another
ab408a86
JVA
1197 class that represents their union.
1198
1199 It might seem that class BREG is unnecessary, since no useful 386
1200 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1201 and the "b" register constraint is useful in asms for syscalls.
1202
03c259ad 1203 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1204
1205enum reg_class
1206{
1207 NO_REGS,
e075ae69 1208 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1209 AD_REGS, /* %eax/%edx for DImode */
ac2e563f 1210 CLOBBERED_REGS, /* call-clobbered integers */
c98f8742 1211 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1212 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1213 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1214 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1215 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1216 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1217 FLOAT_REGS,
06f4e35d 1218 SSE_FIRST_REG,
a7180f70
BS
1219 SSE_REGS,
1220 MMX_REGS,
446988df
JH
1221 FP_TOP_SSE_REGS,
1222 FP_SECOND_SSE_REGS,
1223 FLOAT_SSE_REGS,
1224 FLOAT_INT_REGS,
1225 INT_SSE_REGS,
1226 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1227 ALL_REGS, LIM_REG_CLASSES
1228};
1229
d9a5f180
GS
1230#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1231
1232#define INTEGER_CLASS_P(CLASS) \
1233 reg_class_subset_p ((CLASS), GENERAL_REGS)
1234#define FLOAT_CLASS_P(CLASS) \
1235 reg_class_subset_p ((CLASS), FLOAT_REGS)
1236#define SSE_CLASS_P(CLASS) \
06f4e35d 1237 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1238#define MMX_CLASS_P(CLASS) \
f75959a6 1239 ((CLASS) == MMX_REGS)
d9a5f180
GS
1240#define MAYBE_INTEGER_CLASS_P(CLASS) \
1241 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1242#define MAYBE_FLOAT_CLASS_P(CLASS) \
1243 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1244#define MAYBE_SSE_CLASS_P(CLASS) \
1245 reg_classes_intersect_p (SSE_REGS, (CLASS))
1246#define MAYBE_MMX_CLASS_P(CLASS) \
1247 reg_classes_intersect_p (MMX_REGS, (CLASS))
1248
1249#define Q_CLASS_P(CLASS) \
1250 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1251
43f3a59d 1252/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1253
1254#define REG_CLASS_NAMES \
1255{ "NO_REGS", \
ab408a86 1256 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1257 "SIREG", "DIREG", \
e075ae69 1258 "AD_REGS", \
ac2e563f 1259 "CLOBBERED_REGS", \
e075ae69 1260 "Q_REGS", "NON_Q_REGS", \
c98f8742 1261 "INDEX_REGS", \
3f3f2124 1262 "LEGACY_REGS", \
c98f8742
JVA
1263 "GENERAL_REGS", \
1264 "FP_TOP_REG", "FP_SECOND_REG", \
1265 "FLOAT_REGS", \
cb482895 1266 "SSE_FIRST_REG", \
a7180f70
BS
1267 "SSE_REGS", \
1268 "MMX_REGS", \
446988df
JH
1269 "FP_TOP_SSE_REGS", \
1270 "FP_SECOND_SSE_REGS", \
1271 "FLOAT_SSE_REGS", \
8fcaaa80 1272 "FLOAT_INT_REGS", \
446988df
JH
1273 "INT_SSE_REGS", \
1274 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1275 "ALL_REGS" }
1276
ac2e563f
RH
1277/* Define which registers fit in which classes. This is an initializer
1278 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1279
1280 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1281 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
c98f8742 1282
a7180f70 1283#define REG_CLASS_CONTENTS \
3f3f2124
JH
1284{ { 0x00, 0x0 }, \
1285 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1286 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1287 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1288 { 0x03, 0x0 }, /* AD_REGS */ \
ac2e563f 1289 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
3f3f2124 1290 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1291 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1292 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1293 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1294 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1295 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1296 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1297 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1298{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1299{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1300{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1301{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1302{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1303 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1304{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1305{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1306{ 0xffffffff,0x1fffff } \
e075ae69 1307}
c98f8742
JVA
1308
1309/* The same information, inverted:
1310 Return the class number of the smallest class containing
1311 reg number REGNO. This could be a conditional expression
1312 or could index an array. */
1313
c98f8742
JVA
1314#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1315
42db504c
SB
1316/* When this hook returns true for MODE, the compiler allows
1317 registers explicitly used in the rtl to be used as spill registers
1318 but prevents the compiler from extending the lifetime of these
1319 registers. */
1320#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1321
6c6094f1 1322#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1323
d9a5f180 1324#define GENERAL_REGNO_P(N) \
fb84c7a0 1325 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1326
1327#define GENERAL_REG_P(X) \
6189a572 1328 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1329
1330#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1331
fb84c7a0
UB
1332#define REX_INT_REGNO_P(N) \
1333 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1334#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1335
c98f8742 1336#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1337#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1338#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1339#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1340
54a88090 1341#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1342 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1343
fb84c7a0
UB
1344#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1345#define SSE_REGNO_P(N) \
1346 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1347 || REX_SSE_REGNO_P (N))
3f3f2124 1348
4977bab6 1349#define REX_SSE_REGNO_P(N) \
fb84c7a0 1350 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1351
d9a5f180
GS
1352#define SSE_REGNO(N) \
1353 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1354
d9a5f180 1355#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1356 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1357
d6023b50
UB
1358#define SSE_VEC_FLOAT_MODE_P(MODE) \
1359 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1360
95879c72
L
1361#define AVX_FLOAT_MODE_P(MODE) \
1362 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1363
1364#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1365 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1366
1367#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1368 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1369
1370#define AVX_VEC_FLOAT_MODE_P(MODE) \
1371 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1372 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1373
cbf2e4d4
HJ
1374#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1375 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1376 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1377
d9a5f180 1378#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1379#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1380
fb84c7a0 1381#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1382#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1383
d9a5f180 1384#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1385
e075ae69
RH
1386#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1387#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1388
c98f8742
JVA
1389/* The class value for index registers, and the one for base regs. */
1390
1391#define INDEX_REG_CLASS INDEX_REGS
1392#define BASE_REG_CLASS GENERAL_REGS
1393
c98f8742 1394/* Place additional restrictions on the register class to use when it
4cbb525c 1395 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1396 register for which class CLASS would ordinarily be used. */
c98f8742 1397
d2836273
JH
1398#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1399 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1400 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1401 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1402 ? Q_REGS : (CLASS))
1403
1404/* Given an rtx X being reloaded into a reg required to be
1405 in class CLASS, return the class of reg to actually use.
1406 In general this is just CLASS; but on some machines
1407 in some cases it is preferable to use a more restrictive class.
1408 On the 80386 series, we prevent floating constants from being
1409 reloaded into floating registers (since no move-insn can do that)
1410 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1411
d398b3b1 1412/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1413 QImode must go into class Q_REGS.
d398b3b1 1414 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1415 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1416
d9a5f180
GS
1417#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1418 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1419
b5c82fa1
PB
1420/* Discourage putting floating-point values in SSE registers unless
1421 SSE math is being used, and likewise for the 387 registers. */
1422
1423#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1424 ix86_preferred_output_reload_class ((X), (CLASS))
1425
85ff473e 1426/* If we are copying between general and FP registers, we need a memory
f84aa48a 1427 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1428#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1429 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1430
c62b3659
UB
1431/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1432 There is no need to emit full 64 bit move on 64 bit targets
1433 for integral modes that can be moved using 32 bit move. */
1434#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1435 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1436 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1437 : MODE)
1438
c98f8742
JVA
1439/* Return the maximum number of consecutive registers
1440 needed to represent mode MODE in a register of class CLASS. */
1441/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1442 except in the FP regs, where a single reg is always enough. */
a7180f70 1443#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1444 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1445 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1446 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1447 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1448
1449/* A C expression whose value is nonzero if pseudos that have been
1450 assigned to registers of class CLASS would likely be spilled
1451 because registers of CLASS are needed for spill registers.
1452
1453 The default value of this macro returns 1 if CLASS has exactly one
1454 register and zero otherwise. On most machines, this default
1455 should be used. Only define this macro to some other expression
1456 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1457 their hard registers were needed for spill registers. If this
f5316dfe
MM
1458 macro returns nonzero for those classes, those pseudos will only
1459 be allocated by `global.c', which knows how to reallocate the
1460 pseudo to another register. If there would not be another
1461 register available for reallocation, you should not change the
1462 definition of this macro since the only effect of such a
1463 definition would be to slow down register allocation. */
1464
1465#define CLASS_LIKELY_SPILLED_P(CLASS) \
1466 (((CLASS) == AREG) \
1467 || ((CLASS) == DREG) \
1468 || ((CLASS) == CREG) \
1469 || ((CLASS) == BREG) \
1470 || ((CLASS) == AD_REGS) \
1471 || ((CLASS) == SIREG) \
b0af5c03 1472 || ((CLASS) == DIREG) \
2a457a9b 1473 || ((CLASS) == SSE_FIRST_REG) \
b0af5c03
JH
1474 || ((CLASS) == FP_TOP_REG) \
1475 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1476
1272914c
RH
1477/* Return a class of registers that cannot change FROM mode to TO mode. */
1478
1479#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1480 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1481\f
1482/* Stack layout; function entry, exit and calling. */
1483
1484/* Define this if pushing a word on the stack
1485 makes the stack pointer a smaller address. */
1486#define STACK_GROWS_DOWNWARD
1487
a4d05547 1488/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1489 is at the high-address end of the local variables;
1490 that is, each additional local variable allocated
1491 goes at a more negative offset in the frame. */
f62c8a5c 1492#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1493
1494/* Offset within stack frame to start allocating local variables at.
1495 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1496 first local allocated. Otherwise, it is the offset to the BEGINNING
1497 of the first local allocated. */
1498#define STARTING_FRAME_OFFSET 0
1499
1500/* If we generate an insn to push BYTES bytes,
1501 this says how many the stack pointer really advances by.
6541fe75
JJ
1502 On 386, we have pushw instruction that decrements by exactly 2 no
1503 matter what the position was, there is no pushb.
1504 But as CIE data alignment factor on this arch is -4, we need to make
1505 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1506
d2836273
JH
1507 For 64bit ABI we round up to 8 bytes.
1508 */
c98f8742 1509
d2836273
JH
1510#define PUSH_ROUNDING(BYTES) \
1511 (TARGET_64BIT \
1512 ? (((BYTES) + 7) & (-8)) \
6541fe75 1513 : (((BYTES) + 3) & (-4)))
c98f8742 1514
f73ad30e
JH
1515/* If defined, the maximum amount of space required for outgoing arguments will
1516 be computed and placed into the variable
38173d38 1517 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e 1518 stack for each call; instead, the function prologue should increase the stack
9aa5c1b2
JH
1519 frame size by this amount.
1520
1521 MS ABI seem to require 16 byte alignment everywhere except for function
1522 prologue and apilogue. This is not possible without
1523 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1524
6c6094f1
UB
1525#define ACCUMULATE_OUTGOING_ARGS \
1526 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
f73ad30e
JH
1527
1528/* If defined, a C expression whose value is nonzero when we want to use PUSH
1529 instructions to pass outgoing arguments. */
1530
1531#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1532
2da4124d
L
1533/* We want the stack and args grow in opposite directions, even if
1534 PUSH_ARGS is 0. */
1535#define PUSH_ARGS_REVERSED 1
1536
c98f8742
JVA
1537/* Offset of first parameter from the argument pointer register value. */
1538#define FIRST_PARM_OFFSET(FNDECL) 0
1539
a7180f70
BS
1540/* Define this macro if functions should assume that stack space has been
1541 allocated for arguments even when their values are passed in registers.
1542
1543 The value of this macro is the size, in bytes, of the area reserved for
1544 arguments passed in registers for the function represented by FNDECL.
1545
1546 This space can be allocated by the caller, or be a part of the
1547 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1548 which. */
7c800926
KT
1549#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1550
4ae8027b
UB
1551#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1552 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1553
c98f8742
JVA
1554/* Define how to find the value returned by a library function
1555 assuming the value has mode MODE. */
1556
4ae8027b 1557#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1558
e9125c09
TW
1559/* Define the size of the result block used for communication between
1560 untyped_call and untyped_return. The block contains a DImode value
1561 followed by the block used by fnsave and frstor. */
1562
1563#define APPLY_RESULT_SIZE (8+108)
1564
b08de47e 1565/* 1 if N is a possible register number for function argument passing. */
53c17031 1566#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1567
1568/* Define a data type for recording info about an argument list
1569 during the scan of that argument list. This data type should
1570 hold all necessary information about the function itself
1571 and about the args processed so far, enough to enable macros
b08de47e 1572 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1573
e075ae69 1574typedef struct ix86_args {
fa283935 1575 int words; /* # words passed so far */
b08de47e
MM
1576 int nregs; /* # registers available for passing */
1577 int regno; /* next available register number */
3e65f251
KT
1578 int fastcall; /* fastcall or thiscall calling convention
1579 is used */
fa283935 1580 int sse_words; /* # sse words passed so far */
a7180f70 1581 int sse_nregs; /* # sse registers available for passing */
95879c72 1582 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1583 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1584 int warn_mmx; /* True when we want to warn about MMX ABI. */
1585 int sse_regno; /* next available sse register number */
1586 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1587 int mmx_nregs; /* # mmx registers available for passing */
1588 int mmx_regno; /* next available mmx register number */
892a2d68 1589 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1590 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1591 be passed in SSE registers. Otherwise 0. */
51212b32 1592 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1593 MS_ABI for ms abi. */
b08de47e 1594} CUMULATIVE_ARGS;
c98f8742
JVA
1595
1596/* Initialize a variable CUM of type CUMULATIVE_ARGS
1597 for a call to a function whose data type is FNTYPE.
b08de47e 1598 For a library call, FNTYPE is 0. */
c98f8742 1599
0f6937fe 1600#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1601 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742 1602
c98f8742
JVA
1603/* Output assembler code to FILE to increment profiler label # LABELNO
1604 for profiling a function entry. */
1605
a5fa1ecd
JH
1606#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1607
1608#define MCOUNT_NAME "_mcount"
1609
3c5273a9
KT
1610#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1611
a5fa1ecd 1612#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1613
1614/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1615 the stack pointer does not matter. The value is tested only in
1616 functions that have frame pointers.
1617 No definition is equivalent to always zero. */
fce5a9f2 1618/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1619 we have to restore it ourselves from the frame pointer, in order to
1620 use pop */
1621
1622#define EXIT_IGNORE_STACK 1
1623
c98f8742
JVA
1624/* Output assembler code for a block containing the constant parts
1625 of a trampoline, leaving space for the variable parts. */
1626
a269a03c 1627/* On the 386, the trampoline contains two instructions:
c98f8742 1628 mov #STATIC,ecx
a269a03c
JC
1629 jmp FUNCTION
1630 The trampoline is generated entirely at runtime. The operand of JMP
1631 is the address of FUNCTION relative to the instruction following the
1632 JMP (which is 5 bytes long). */
c98f8742
JVA
1633
1634/* Length in units of the trampoline for entering a nested function. */
1635
3452586b 1636#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1637\f
1638/* Definitions for register eliminations.
1639
1640 This is an array of structures. Each structure initializes one pair
1641 of eliminable registers. The "from" register number is given first,
1642 followed by "to". Eliminations of the same "from" register are listed
1643 in order of preference.
1644
afc2cd05
NC
1645 There are two registers that can always be eliminated on the i386.
1646 The frame pointer and the arg pointer can be replaced by either the
1647 hard frame pointer or to the stack pointer, depending upon the
1648 circumstances. The hard frame pointer is not used before reload and
1649 so it is not eligible for elimination. */
c98f8742 1650
564d80f4
JH
1651#define ELIMINABLE_REGS \
1652{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1653 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1654 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1655 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1656
c98f8742
JVA
1657/* Define the offset between two registers, one to be eliminated, and the other
1658 its replacement, at the start of a routine. */
1659
d9a5f180
GS
1660#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1661 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1662\f
1663/* Addressing modes, and classification of registers for them. */
1664
c98f8742
JVA
1665/* Macros to check register numbers against specific register classes. */
1666
1667/* These assume that REGNO is a hard or pseudo reg number.
1668 They give nonzero only if REGNO is a hard reg of the suitable class
1669 or a pseudo reg currently allocated to a suitable hard reg.
1670 Since they use reg_renumber, they are safe only once reg_renumber
1671 has been allocated, which happens in local-alloc.c. */
1672
3f3f2124
JH
1673#define REGNO_OK_FOR_INDEX_P(REGNO) \
1674 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1675 || REX_INT_REGNO_P (REGNO) \
1676 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1677 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1678
3f3f2124 1679#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1680 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1681 || (REGNO) == ARG_POINTER_REGNUM \
1682 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1683 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1684
c98f8742
JVA
1685/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1686 and check its validity for a certain class.
1687 We have two alternate definitions for each of them.
1688 The usual definition accepts all pseudo regs; the other rejects
1689 them unless they have been allocated suitable hard regs.
1690 The symbol REG_OK_STRICT causes the latter definition to be used.
1691
1692 Most source files want to accept pseudo regs in the hope that
1693 they will get allocated to the class that the insn wants them to be in.
1694 Source files for reload pass need to be strict.
1695 After reload, it makes no difference, since pseudo regs have
1696 been eliminated by then. */
1697
c98f8742 1698
ff482c8d 1699/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1700#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1701 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1702 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1703 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1704
3b3c6a3f 1705#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1706 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1707 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1708 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1709 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1710
3b3c6a3f
MM
1711/* Strict versions, hard registers only */
1712#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1713#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1714
3b3c6a3f 1715#ifndef REG_OK_STRICT
d9a5f180
GS
1716#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1717#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1718
1719#else
d9a5f180
GS
1720#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1721#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1722#endif
1723
331d9186 1724/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1725 that is a valid memory address for an instruction.
1726 The MODE argument is the machine mode for the MEM expression
1727 that wants to use this address.
1728
331d9186 1729 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1730 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1731
1732 See legitimize_pic_address in i386.c for details as to what
1733 constitutes a legitimate address when -fpic is used. */
1734
1735#define MAX_REGS_PER_ADDRESS 2
1736
f996902d 1737#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1738
1739/* Nonzero if the constant value X is a legitimate general operand.
1740 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1741
f996902d 1742#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1743
b949ea8b
JW
1744/* If defined, a C expression to determine the base term of address X.
1745 This macro is used in only one place: `find_base_term' in alias.c.
1746
1747 It is always safe for this macro to not be defined. It exists so
1748 that alias analysis can understand machine-dependent addresses.
1749
1750 The typical use of this macro is to handle addresses containing
1751 a label_ref or symbol_ref within an UNSPEC. */
1752
d9a5f180 1753#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1754
c98f8742 1755/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1756 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1757 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1758
f996902d 1759#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1760
1761#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1762 (GET_CODE (X) == SYMBOL_REF \
1763 || GET_CODE (X) == LABEL_REF \
1764 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1765\f
b08de47e
MM
1766/* Max number of args passed in registers. If this is more than 3, we will
1767 have problems with ebx (register #4), since it is a caller save register and
1768 is also used as the pic register in ELF. So for now, don't allow more than
1769 3 registers to be passed in registers. */
1770
7c800926
KT
1771/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1772#define X86_64_REGPARM_MAX 6
72fa3605 1773#define X86_64_MS_REGPARM_MAX 4
7c800926 1774
72fa3605 1775#define X86_32_REGPARM_MAX 3
7c800926 1776
4ae8027b 1777#define REGPARM_MAX \
72fa3605 1778 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \
4ae8027b
UB
1779 : X86_64_REGPARM_MAX) \
1780 : X86_32_REGPARM_MAX)
d2836273 1781
72fa3605
UB
1782#define X86_64_SSE_REGPARM_MAX 8
1783#define X86_64_MS_SSE_REGPARM_MAX 4
1784
b6010cab 1785#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1786
4ae8027b 1787#define SSE_REGPARM_MAX \
72fa3605 1788 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \
4ae8027b
UB
1789 : X86_64_SSE_REGPARM_MAX) \
1790 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1791
1792#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1793
c98f8742
JVA
1794\f
1795/* Specify the machine mode that this machine uses
1796 for the index in the tablejump instruction. */
dc4d7240
JH
1797#define CASE_VECTOR_MODE \
1798 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1799
c98f8742
JVA
1800/* Define this as 1 if `char' should by default be signed; else as 0. */
1801#define DEFAULT_SIGNED_CHAR 1
1802
1803/* Max number of bytes we can move from memory to memory
1804 in one reasonably fast instruction. */
65d9c0ab
JH
1805#define MOVE_MAX 16
1806
1807/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1808 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1809 number of bytes we can move with a single instruction. */
65d9c0ab 1810#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1811
7e24ffc9 1812/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1813 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1814 Increasing the value will always make code faster, but eventually
1815 incurs high cost in increased code size.
c98f8742 1816
e2e52e1b 1817 If you don't define this, a reasonable default is used. */
c98f8742 1818
e04ad03d 1819#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1820
45d78e7f
JJ
1821/* If a clear memory operation would take CLEAR_RATIO or more simple
1822 move-instruction sequences, we will do a clrmem or libcall instead. */
1823
e04ad03d 1824#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1825
53f00dde
UB
1826/* Define if shifts truncate the shift count which implies one can
1827 omit a sign-extension or zero-extension of a shift count.
1828
1829 On i386, shifts do truncate the count. But bit test instructions
1830 take the modulo of the bit offset operand. */
c98f8742
JVA
1831
1832/* #define SHIFT_COUNT_TRUNCATED */
1833
1834/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1835 is done just by pretending it is already truncated. */
1836#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1837
d9f32422
JH
1838/* A macro to update M and UNSIGNEDP when an object whose type is
1839 TYPE and which has the specified mode and signedness is to be
1840 stored in a register. This macro is only called when TYPE is a
1841 scalar type.
1842
f710504c 1843 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1844 quantities to SImode. The choice depends on target type. */
1845
1846#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1847do { \
d9f32422
JH
1848 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1849 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1850 (MODE) = SImode; \
1851} while (0)
d9f32422 1852
c98f8742
JVA
1853/* Specify the machine mode that pointers have.
1854 After generation of rtl, the compiler makes no further distinction
1855 between pointers and any other objects of this machine mode. */
65d9c0ab 1856#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1857
1858/* A function address in a call instruction
1859 is a byte address (for indexing purposes)
1860 so give the MEM rtx a byte's mode. */
1861#define FUNCTION_MODE QImode
d4ba09c0 1862\f
d4ba09c0 1863
d4ba09c0
SC
1864/* A C expression for the cost of a branch instruction. A value of 1
1865 is the default; other values are interpreted relative to that. */
1866
3a4fd356
JH
1867#define BRANCH_COST(speed_p, predictable_p) \
1868 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1869
1870/* Define this macro as a C expression which is nonzero if accessing
1871 less than a word of memory (i.e. a `char' or a `short') is no
1872 faster than accessing a word of memory, i.e., if such access
1873 require more than one instruction or if there is no difference in
1874 cost between byte and (aligned) word loads.
1875
1876 When this macro is not defined, the compiler will access a field by
1877 finding the smallest containing object; when it is defined, a
1878 fullword load will be used if alignment permits. Unless bytes
1879 accesses are faster than word accesses, using word accesses is
1880 preferable since it may eliminate subsequent memory access if
1881 subsequent accesses occur to other fields in the same word of the
1882 structure, but to different bytes. */
1883
1884#define SLOW_BYTE_ACCESS 0
1885
1886/* Nonzero if access to memory by shorts is slow and undesirable. */
1887#define SLOW_SHORT_ACCESS 0
1888
d4ba09c0
SC
1889/* Define this macro to be the value 1 if unaligned accesses have a
1890 cost many times greater than aligned accesses, for example if they
1891 are emulated in a trap handler.
1892
9cd10576
KH
1893 When this macro is nonzero, the compiler will act as if
1894 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1895 moves. This can cause significantly more instructions to be
9cd10576 1896 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1897 accesses only add a cycle or two to the time for a memory access.
1898
1899 If the value of this macro is always zero, it need not be defined. */
1900
e1565e65 1901/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1902
d4ba09c0
SC
1903/* Define this macro if it is as good or better to call a constant
1904 function address than to call an address kept in a register.
1905
1906 Desirable on the 386 because a CALL with a constant address is
1907 faster than one with a register address. */
1908
1909#define NO_FUNCTION_CSE
c98f8742 1910\f
c572e5ba
JVA
1911/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1912 return the mode to be used for the comparison.
1913
1914 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1915 VOIDmode should be used in all other cases.
c572e5ba 1916
16189740 1917 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1918 possible, to allow for more combinations. */
c98f8742 1919
d9a5f180 1920#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1921
9cd10576 1922/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1923 reversed. */
1924
1925#define REVERSIBLE_CC_MODE(MODE) 1
1926
1927/* A C expression whose value is reversed condition code of the CODE for
1928 comparison done in CC_MODE mode. */
3c5cb3e4 1929#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1930
c98f8742
JVA
1931\f
1932/* Control the assembler format that we output, to the extent
1933 this does not vary between assemblers. */
1934
1935/* How to refer to registers in assembler output.
892a2d68 1936 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1937
a7b376ee 1938/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1939 For non floating point regs, the following are the HImode names.
1940
1941 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1942 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1943 "y" code. */
c98f8742 1944
a7180f70
BS
1945#define HI_REGISTER_NAMES \
1946{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1947 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1948 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1949 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1950 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1951 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1952 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1953
c98f8742
JVA
1954#define REGISTER_NAMES HI_REGISTER_NAMES
1955
1956/* Table of additional register names to use in user input. */
1957
1958#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1959{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1960 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1961 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1962 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1963 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1964 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1965
1966/* Note we are omitting these since currently I don't know how
1967to get gcc to use these, since they want the same but different
1968number as al, and ax.
1969*/
1970
c98f8742 1971#define QI_REGISTER_NAMES \
3f3f2124 1972{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1973
1974/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1975 of regs 0 through 3. */
c98f8742
JVA
1976
1977#define QI_HIGH_REGISTER_NAMES \
1978{"ah", "dh", "ch", "bh", }
1979
1980/* How to renumber registers for dbx and gdb. */
1981
d9a5f180
GS
1982#define DBX_REGISTER_NUMBER(N) \
1983 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1984
9a82e702
MS
1985extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1986extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1987extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1988
469ac993
JM
1989/* Before the prologue, RA is at 0(%esp). */
1990#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1991 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1992
e414ab29 1993/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1994#define RETURN_ADDR_RTX(COUNT, FRAME) \
1995 ((COUNT) == 0 \
1996 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1997 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1998
892a2d68 1999/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2000#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2001
a6ab3aad 2002/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2003#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2004
1020a5ab
RH
2005/* Describe how we implement __builtin_eh_return. */
2006#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2007#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2008
ad919812 2009
e4c4ebeb
RH
2010/* Select a format to encode pointers in exception handling data. CODE
2011 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2012 true if the symbol may be affected by dynamic relocations.
2013
2014 ??? All x86 object file formats are capable of representing this.
2015 After all, the relocation needed is the same as for the call insn.
2016 Whether or not a particular assembler allows us to enter such, I
2017 guess we'll have to see. */
d9a5f180 2018#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2019 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2020
c98f8742
JVA
2021/* This is how to output an insn to push a register on the stack.
2022 It need not be very fast code. */
2023
d9a5f180 2024#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2025do { \
2026 if (TARGET_64BIT) \
2027 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2028 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2029 else \
2030 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2031} while (0)
c98f8742
JVA
2032
2033/* This is how to output an insn to pop a register from the stack.
2034 It need not be very fast code. */
2035
d9a5f180 2036#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2037do { \
2038 if (TARGET_64BIT) \
2039 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2040 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2041 else \
2042 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2043} while (0)
c98f8742 2044
f88c65f7 2045/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2046
2047#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2048 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2049
f88c65f7 2050/* This is how to output an element of a case-vector that is relative. */
c98f8742 2051
33f7f353 2052#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2053 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2054
95879c72
L
2055/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2056 true. */
2057
2058#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2059{ \
2060 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2061 { \
2062 if (TARGET_AVX) \
2063 (PTR) += 1; \
2064 else \
2065 (PTR) += 2; \
2066 } \
2067}
2068
2069/* A C statement or statements which output an assembler instruction
2070 opcode to the stdio stream STREAM. The macro-operand PTR is a
2071 variable of type `char *' which points to the opcode name in
2072 its "internal" form--the form that is written in the machine
2073 description. */
2074
2075#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2076 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2077
6a90d232
L
2078/* A C statement to output to the stdio stream FILE an assembler
2079 command to pad the location counter to a multiple of 1<<LOG
2080 bytes if it is within MAX_SKIP bytes. */
2081
2082#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2083#undef ASM_OUTPUT_MAX_SKIP_PAD
2084#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2085 if ((LOG) != 0) \
2086 { \
2087 if ((MAX_SKIP) == 0) \
2088 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2089 else \
2090 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2091 }
2092#endif
2093
135a687e
KT
2094/* Write the extra assembler code needed to declare a function
2095 properly. */
2096
2097#undef ASM_OUTPUT_FUNCTION_LABEL
2098#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2099 ix86_asm_output_function_label (FILE, NAME, DECL)
2100
f7288899
EC
2101/* Under some conditions we need jump tables in the text section,
2102 because the assembler cannot handle label differences between
2103 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2104
2105#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2106 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2107 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2108
cea3bd3e
RH
2109/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2110 and switch back. For x86 we do this only to save a few bytes that
2111 would otherwise be unused in the text section. */
ad211091
KT
2112#define CRT_MKSTR2(VAL) #VAL
2113#define CRT_MKSTR(x) CRT_MKSTR2(x)
2114
2115#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2116 asm (SECTION_OP "\n\t" \
2117 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2118 TEXT_SECTION_ASM_OP);
74b42c8b 2119\f
f996902d
RH
2120#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2121do { \
2122 if (! output_addr_const_extra (FILE, (X))) \
2123 goto FAIL; \
2124} while (0);
d4ba09c0 2125\f
5bf0ebab
RH
2126/* Which processor to schedule for. The cpu attribute defines a list that
2127 mirrors this list, so changes to i386.md must be made at the same time. */
2128
2129enum processor_type
2130{
8383d43c 2131 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2132 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2133 PROCESSOR_PENTIUM,
2134 PROCESSOR_PENTIUMPRO,
cfe1b18f 2135 PROCESSOR_GEODE,
5bf0ebab
RH
2136 PROCESSOR_K6,
2137 PROCESSOR_ATHLON,
2138 PROCESSOR_PENTIUM4,
4977bab6 2139 PROCESSOR_K8,
89c43c0a 2140 PROCESSOR_NOCONA,
05f85dbb 2141 PROCESSOR_CORE2,
d326eaf0
JH
2142 PROCESSOR_GENERIC32,
2143 PROCESSOR_GENERIC64,
21efb4d4 2144 PROCESSOR_AMDFAM10,
1133125e 2145 PROCESSOR_BDVER1,
b6837b94 2146 PROCESSOR_ATOM,
5bf0ebab
RH
2147 PROCESSOR_max
2148};
2149
9e555526 2150extern enum processor_type ix86_tune;
5bf0ebab 2151extern enum processor_type ix86_arch;
5bf0ebab
RH
2152
2153enum fpmath_unit
2154{
2155 FPMATH_387 = 1,
2156 FPMATH_SSE = 2
2157};
2158
2159extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2160
f996902d
RH
2161enum tls_dialect
2162{
2163 TLS_DIALECT_GNU,
5bf5a10b 2164 TLS_DIALECT_GNU2,
f996902d
RH
2165 TLS_DIALECT_SUN
2166};
2167
2168extern enum tls_dialect ix86_tls_dialect;
f996902d 2169
6189a572 2170enum cmodel {
5bf0ebab
RH
2171 CM_32, /* The traditional 32-bit ABI. */
2172 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2173 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2174 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2175 CM_LARGE, /* No assumptions. */
7dcbf659 2176 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2177 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2178 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2179};
2180
5bf0ebab 2181extern enum cmodel ix86_cmodel;
5bf0ebab 2182
8362f420
JH
2183/* Size of the RED_ZONE area. */
2184#define RED_ZONE_SIZE 128
2185/* Reserved area of the red zone for temporaries. */
2186#define RED_ZONE_RESERVE 8
c93e80a5
JH
2187
2188enum asm_dialect {
2189 ASM_ATT,
2190 ASM_INTEL
2191};
5bf0ebab 2192
80f33d06 2193extern enum asm_dialect ix86_asm_dialect;
95899b34 2194extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2195extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2196extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2197
2198/* Smallest class containing REGNO. */
2199extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2200
0948ccb2
PB
2201enum ix86_fpcmp_strategy {
2202 IX86_FPCMP_SAHF,
2203 IX86_FPCMP_COMI,
2204 IX86_FPCMP_ARITH
2205};
22fb740d
JH
2206\f
2207/* To properly truncate FP values into integers, we need to set i387 control
2208 word. We can't emit proper mode switching code before reload, as spills
2209 generated by reload may truncate values incorrectly, but we still can avoid
2210 redundant computation of new control word by the mode switching pass.
2211 The fldcw instructions are still emitted redundantly, but this is probably
2212 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2213 the sequence.
22fb740d
JH
2214
2215 The machinery is to emit simple truncation instructions and split them
2216 before reload to instructions having USEs of two memory locations that
2217 are filled by this code to old and new control word.
fce5a9f2 2218
22fb740d
JH
2219 Post-reload pass may be later used to eliminate the redundant fildcw if
2220 needed. */
2221
ff680eb1
UB
2222enum ix86_entity
2223{
2224 I387_TRUNC = 0,
2225 I387_FLOOR,
2226 I387_CEIL,
2227 I387_MASK_PM,
2228 MAX_386_ENTITIES
2229};
2230
1cba2b96 2231enum ix86_stack_slot
ff680eb1 2232{
80dcd3aa
UB
2233 SLOT_VIRTUAL = 0,
2234 SLOT_TEMP,
ff680eb1
UB
2235 SLOT_CW_STORED,
2236 SLOT_CW_TRUNC,
2237 SLOT_CW_FLOOR,
2238 SLOT_CW_CEIL,
2239 SLOT_CW_MASK_PM,
2240 MAX_386_STACK_LOCALS
2241};
22fb740d
JH
2242
2243/* Define this macro if the port needs extra instructions inserted
2244 for mode switching in an optimizing compilation. */
2245
ff680eb1
UB
2246#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2247 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2248
2249/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2250 initializer for an array of integers. Each initializer element N
2251 refers to an entity that needs mode switching, and specifies the
2252 number of different modes that might need to be set for this
2253 entity. The position of the initializer in the initializer -
2254 starting counting at zero - determines the integer that is used to
2255 refer to the mode-switched entity in question. */
2256
ff680eb1
UB
2257#define NUM_MODES_FOR_MODE_SWITCHING \
2258 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2259
2260/* ENTITY is an integer specifying a mode-switched entity. If
2261 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2262 return an integer value not larger than the corresponding element
2263 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2264 must be switched into prior to the execution of INSN. */
2265
2266#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2267
2268/* This macro specifies the order in which modes for ENTITY are
2269 processed. 0 is the highest priority. */
2270
d9a5f180 2271#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2272
2273/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2274 is the set of hard registers live at the point where the insn(s)
2275 are to be inserted. */
2276
2277#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2278 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2279 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2280 : 0)
ff680eb1 2281
0f0138b6
JH
2282\f
2283/* Avoid renaming of stack registers, as doing so in combination with
2284 scheduling just increases amount of live registers at time and in
2285 the turn amount of fxch instructions needed.
2286
43f3a59d 2287 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2288
d9a5f180 2289#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2290 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2291
3b3c6a3f 2292\f
e91f04de 2293#define FASTCALL_PREFIX '@'
fa1a0d02 2294\f
ec7ded37 2295/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2296
604a6be9 2297#ifndef USED_FOR_TARGET
ec7ded37 2298struct GTY(()) machine_frame_state
cd9c1ca8 2299{
ec7ded37
RH
2300 /* This pair tracks the currently active CFA as reg+offset. When reg
2301 is drap_reg, we don't bother trying to record here the real CFA when
2302 it might really be a DW_CFA_def_cfa_expression. */
2303 rtx cfa_reg;
2304 HOST_WIDE_INT cfa_offset;
2305
2306 /* The current offset (canonically from the CFA) of ESP and EBP.
2307 When stack frame re-alignment is active, these may not be relative
2308 to the CFA. However, in all cases they are relative to the offsets
2309 of the saved registers stored in ix86_frame. */
2310 HOST_WIDE_INT sp_offset;
2311 HOST_WIDE_INT fp_offset;
2312
2313 /* The size of the red-zone that may be assumed for the purposes of
2314 eliding register restore notes in the epilogue. This may be zero
2315 if no red-zone is in effect, or may be reduced from the real
2316 red-zone value by a maximum runtime stack re-alignment value. */
2317 int red_zone_offset;
2318
2319 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2320 value within the frame. If false then the offset above should be
2321 ignored. Note that DRAP, if valid, *always* points to the CFA and
2322 thus has an offset of zero. */
2323 BOOL_BITFIELD sp_valid : 1;
2324 BOOL_BITFIELD fp_valid : 1;
2325 BOOL_BITFIELD drap_valid : 1;
cd9c1ca8
RH
2326};
2327
d1b38208 2328struct GTY(()) machine_function {
fa1a0d02
JH
2329 struct stack_local_entry *stack_locals;
2330 const char *some_ld_name;
4aab97f9
L
2331 int varargs_gpr_size;
2332 int varargs_fpr_size;
ff680eb1 2333 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2334
2335 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2336 has been computed for. */
2337 int use_fast_prologue_epilogue_nregs;
2338
3452586b
RH
2339 /* This value is used for amd64 targets and specifies the current abi
2340 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2341 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2342
2343 /* Nonzero if the function accesses a previous frame. */
2344 BOOL_BITFIELD accesses_prev_frame : 1;
2345
2346 /* Nonzero if the function requires a CLD in the prologue. */
2347 BOOL_BITFIELD needs_cld : 1;
2348
922e3e33
UB
2349 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2350 expander to determine the style used. */
3452586b
RH
2351 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2352
5bf5a10b
AO
2353 /* If true, the current function needs the default PIC register, not
2354 an alternate register (on x86) and must not use the red zone (on
2355 x86_64), even if it's a leaf function. We don't want the
2356 function to be regarded as non-leaf because TLS calls need not
2357 affect register allocation. This flag is set when a TLS call
2358 instruction is expanded within a function, and never reset, even
2359 if all such instructions are optimized away. Use the
2360 ix86_current_function_calls_tls_descriptor macro for a better
2361 approximation. */
3452586b
RH
2362 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2363
2364 /* If true, the current function has a STATIC_CHAIN is placed on the
2365 stack below the return address. */
2366 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2367
ec7ded37
RH
2368 /* During prologue/epilogue generation, the current frame state.
2369 Otherwise, the frame state at the end of the prologue. */
2370 struct machine_frame_state fs;
fa1a0d02 2371};
cd9c1ca8 2372#endif
fa1a0d02
JH
2373
2374#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2375#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2376#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2377#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2378#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2379#define ix86_tls_descriptor_calls_expanded_in_cfun \
2380 (cfun->machine->tls_descriptor_call_expanded_p)
2381/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2382 calls are optimized away, we try to detect cases in which it was
2383 optimized away. Since such instructions (use (reg REG_SP)), we can
2384 verify whether there's any such instruction live by testing that
2385 REG_SP is live. */
2386#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2387 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2388#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2389
1bc7c5b6
ZW
2390/* Control behavior of x86_file_start. */
2391#define X86_FILE_START_VERSION_DIRECTIVE false
2392#define X86_FILE_START_FLTUSED false
2393
7dcbf659
JH
2394/* Flag to mark data that is in the large address area. */
2395#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2396#define SYMBOL_REF_FAR_ADDR_P(X) \
2397 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2398
2399/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2400 have defined always, to avoid ifdefing. */
2401#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2402#define SYMBOL_REF_DLLIMPORT_P(X) \
2403 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2404
2405#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2406#define SYMBOL_REF_DLLEXPORT_P(X) \
2407 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2408
c98f8742
JVA
2409/*
2410Local variables:
2411version-control: t
2412End:
2413*/