]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
libsanitizer merge from upstream r191666
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
d1e082c2 2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
90922d36 74#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 75#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 76#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 77#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 78#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 79#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 80#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 81#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 82#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 83#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
84#define TARGET_ROUND TARGET_ISA_ROUND
85#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 86#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 87#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 88#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 89#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 90#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 91#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 92#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 93#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 94#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 95#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 96#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 97#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 98#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 99#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 100#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 101#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 102#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 103#define TARGET_AES TARGET_ISA_AES
bf7b5747 104#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
90922d36 105#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 106#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
107#define TARGET_CMPXCHG16B TARGET_ISA_CX16
108#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 109#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 110#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 111#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 112#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 113#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 114#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
115#define TARGET_RTM TARGET_ISA_RTM
116#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 117#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 118#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 119#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 120#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 121#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 122#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 123#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 124#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 125#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 126#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 127#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 128#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 129#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 130#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
cb610367
UB
131#define TARGET_MPX TARGET_ISA_MPX
132#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
ab442df7 133
90922d36 134#define TARGET_LP64 TARGET_ABI_64
bf7b5747 135#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 136#define TARGET_X32 TARGET_ABI_X32
bf7b5747 137#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
04e1d06b 138
cbf2e4d4
HJ
139/* SSE4.1 defines round instructions */
140#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 141#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 142
26b5109f
RS
143#include "config/vxworks-dummy.h"
144
7eb68c06 145#include "config/i386/i386-opts.h"
ccf8e764 146
c69fa2d4 147#define MAX_STRINGOP_ALGS 4
ccf8e764 148
8c996513
JH
149/* Specify what algorithm to use for stringops on known size.
150 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
151 known at compile time or estimated via feedback, the SIZE array
152 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 153 means infinity). Corresponding ALG is used then.
340ef734
JH
154 When NOALIGN is true the code guaranting the alignment of the memory
155 block is skipped.
156
8c996513 157 For example initializer:
4f3f76e6 158 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 159 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 160 be used otherwise. */
8c996513
JH
161struct stringop_algs
162{
163 const enum stringop_alg unknown_size;
164 const struct stringop_strategy {
165 const int max;
166 const enum stringop_alg alg;
340ef734 167 int noalign;
c69fa2d4 168 } size [MAX_STRINGOP_ALGS];
8c996513
JH
169};
170
d4ba09c0
SC
171/* Define the specific costs for a given cpu */
172
173struct processor_costs {
8b60264b
KG
174 const int add; /* cost of an add instruction */
175 const int lea; /* cost of a lea instruction */
176 const int shift_var; /* variable shift costs */
177 const int shift_const; /* constant shift costs */
f676971a 178 const int mult_init[5]; /* cost of starting a multiply
4977bab6 179 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 180 const int mult_bit; /* cost of multiply per each bit set */
f676971a 181 const int divide[5]; /* cost of a divide/mod
4977bab6 182 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
183 int movsx; /* The cost of movsx operation. */
184 int movzx; /* The cost of movzx operation. */
8b60264b
KG
185 const int large_insn; /* insns larger than this cost more */
186 const int move_ratio; /* The threshold of number of scalar
ac775968 187 memory-to-memory move insns. */
8b60264b
KG
188 const int movzbl_load; /* cost of loading using movzbl */
189 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
190 in QImode, HImode and SImode relative
191 to reg-reg move (2). */
8b60264b 192 const int int_store[3]; /* cost of storing integer register
96e7ae40 193 in QImode, HImode and SImode */
8b60264b
KG
194 const int fp_move; /* cost of reg,reg fld/fst */
195 const int fp_load[3]; /* cost of loading FP register
96e7ae40 196 in SFmode, DFmode and XFmode */
8b60264b 197 const int fp_store[3]; /* cost of storing FP register
96e7ae40 198 in SFmode, DFmode and XFmode */
8b60264b
KG
199 const int mmx_move; /* cost of moving MMX register. */
200 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 201 in SImode and DImode */
8b60264b 202 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 203 in SImode and DImode */
8b60264b
KG
204 const int sse_move; /* cost of moving SSE register. */
205 const int sse_load[3]; /* cost of loading SSE register
fa79946e 206 in SImode, DImode and TImode*/
8b60264b 207 const int sse_store[3]; /* cost of storing SSE register
fa79946e 208 in SImode, DImode and TImode*/
8b60264b 209 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 210 integer and vice versa. */
46cb0441
ZD
211 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
212 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
213 const int prefetch_block; /* bytes moved to cache for prefetch. */
214 const int simultaneous_prefetches; /* number of parallel prefetch
215 operations. */
4977bab6 216 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
217 const int fadd; /* cost of FADD and FSUB instructions. */
218 const int fmul; /* cost of FMUL instruction. */
219 const int fdiv; /* cost of FDIV instruction. */
220 const int fabs; /* cost of FABS instruction. */
221 const int fchs; /* cost of FCHS instruction. */
222 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 223 /* Specify what algorithm
bee51209 224 to use for stringops on unknown size. */
ad83025e 225 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
226 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
227 load and store. */
228 const int scalar_load_cost; /* Cost of scalar load. */
229 const int scalar_store_cost; /* Cost of scalar store. */
230 const int vec_stmt_cost; /* Cost of any vector operation, excluding
231 load, store, vector-to-scalar and
232 scalar-to-vector operation. */
233 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
234 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 235 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
236 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
237 const int vec_store_cost; /* Cost of vector store. */
238 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
239 cost model. */
240 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
241 vectorizer cost model. */
d4ba09c0
SC
242};
243
8b60264b 244extern const struct processor_costs *ix86_cost;
b2077fd2
JH
245extern const struct processor_costs ix86_size_cost;
246
247#define ix86_cur_cost() \
248 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 249
c98f8742
JVA
250/* Macros used in the machine description to test the flags. */
251
ddd5a7c1 252/* configure can arrange to make this 2, to force a 486. */
e075ae69 253
35b528be 254#ifndef TARGET_CPU_DEFAULT
d326eaf0 255#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 256#endif
35b528be 257
004d3859
GK
258#ifndef TARGET_FPMATH_DEFAULT
259#define TARGET_FPMATH_DEFAULT \
260 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
261#endif
262
bf7b5747
ST
263#ifndef TARGET_FPMATH_DEFAULT_P
264#define TARGET_FPMATH_DEFAULT_P(x) \
265 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
266#endif
267
6ac49599 268#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 269#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 270
5791cc29
JT
271/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
272 compile-time constant. */
273#ifdef IN_LIBGCC2
6ac49599 274#undef TARGET_64BIT
5791cc29
JT
275#ifdef __x86_64__
276#define TARGET_64BIT 1
277#else
278#define TARGET_64BIT 0
279#endif
280#else
6ac49599
RS
281#ifndef TARGET_BI_ARCH
282#undef TARGET_64BIT
67adf6a9 283#if TARGET_64BIT_DEFAULT
0c2dc519
JH
284#define TARGET_64BIT 1
285#else
286#define TARGET_64BIT 0
287#endif
288#endif
5791cc29 289#endif
25f94bb5 290
750054a2
CT
291#define HAS_LONG_COND_BRANCH 1
292#define HAS_LONG_UNCOND_BRANCH 1
293
9e555526
RH
294#define TARGET_386 (ix86_tune == PROCESSOR_I386)
295#define TARGET_486 (ix86_tune == PROCESSOR_I486)
296#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
297#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 298#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
299#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
300#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
301#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
302#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 303#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 304#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734
JH
305#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
306#define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
fd5564d3 307#define TARGET_COREI7_AVX (ix86_tune == PROCESSOR_COREI7_AVX)
3a579e09 308#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
9d532162 309#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 310#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 311#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 312#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 313#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
14b52538 314#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 315#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 316#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
0b871ccf 317#define TARGET_SLM (ix86_tune == PROCESSOR_SLM)
a269a03c 318
80fd744f
RH
319/* Feature tests against the various tunings. */
320enum ix86_tune_indices {
4b8bc035 321#undef DEF_TUNE
3ad20bd4 322#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
323#include "x86-tune.def"
324#undef DEF_TUNE
325X86_TUNE_LAST
80fd744f
RH
326};
327
ab442df7 328extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
329
330#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
331#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
332#define TARGET_ZERO_EXTEND_WITH_AND \
333 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 334#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
335#define TARGET_BRANCH_PREDICTION_HINTS \
336 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
337#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
338#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
339#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
340#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
341#define TARGET_PARTIAL_FLAG_REG_STALL \
342 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
343#define TARGET_LCP_STALL \
344 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
345#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
346#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
347#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
348#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
349#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
350#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
351#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
352#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
353#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
354#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
355#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
561400f0
JH
356#define TARGET_MISALIGNED_MOVE_STRING_PROLOGUES_EPILOGUES \
357 ix86_tune_features[TARGET_MISALIGNED_MOVE_STRING_PROLOGUES]
80fd744f
RH
358#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
359#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
360#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
361#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
362#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
363#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
364#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
365#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
366#define TARGET_INTEGER_DFMODE_MOVES \
367 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
368#define TARGET_PARTIAL_REG_DEPENDENCY \
369 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
370#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
371 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
372#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
373 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
374#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
375 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
376#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
378#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
379#define TARGET_SSE_TYPELESS_STORES \
380 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
381#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
382#define TARGET_MEMORY_MISMATCH_STALL \
383 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
384#define TARGET_PROLOGUE_USING_MOVE \
385 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
386#define TARGET_EPILOGUE_USING_MOVE \
387 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
388#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
389#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
390#define TARGET_INTER_UNIT_MOVES_TO_VEC \
391 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
392#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
393 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
394#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 395 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
396#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
397#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
398#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
399#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
400#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
401#define TARGET_PAD_SHORT_FUNCTION \
402 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
403#define TARGET_EXT_80387_CONSTANTS \
404 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
405#define TARGET_AVOID_VECTOR_DECODE \
406 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
407#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
408 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
409#define TARGET_SLOW_IMUL_IMM32_MEM \
410 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
411#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
412#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
413#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
414#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
415#define TARGET_USE_VECTOR_FP_CONVERTS \
416 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
417#define TARGET_USE_VECTOR_CONVERTS \
418 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
419#define TARGET_FUSE_CMP_AND_BRANCH \
420 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 421#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
422#define TARGET_VECTORIZE_DOUBLE \
423 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
424#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
425 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
426#define TARGET_AVX128_OPTIMAL \
427 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
428#define TARGET_REASSOC_INT_TO_PARALLEL \
429 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
430#define TARGET_REASSOC_FP_TO_PARALLEL \
431 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
432#define TARGET_GENERAL_REGS_SSE_SPILL \
433 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
434#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
435 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 436#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 437 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
df7b0cc4 438
80fd744f
RH
439/* Feature tests against the various architecture variations. */
440enum ix86_arch_indices {
cef31f9c 441 X86_ARCH_CMOV,
80fd744f
RH
442 X86_ARCH_CMPXCHG,
443 X86_ARCH_CMPXCHG8B,
444 X86_ARCH_XADD,
445 X86_ARCH_BSWAP,
446
447 X86_ARCH_LAST
448};
4f3f76e6 449
ab442df7 450extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 451
cef31f9c 452#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
453#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
454#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
455#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
456#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
457
cef31f9c
UB
458/* For sane SSE instruction set generation we need fcomi instruction.
459 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
460 expands to a sequence that includes conditional move. */
461#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
462
80fd744f
RH
463#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
464
cb261eb7 465extern unsigned char x86_prefetch_sse;
80fd744f
RH
466#define TARGET_PREFETCH_SSE x86_prefetch_sse
467
80fd744f
RH
468#define ASSEMBLER_DIALECT (ix86_asm_dialect)
469
470#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
471#define TARGET_MIX_SSE_I387 \
472 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
473
474#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
475#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
476#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 477#define TARGET_SUN_TLS 0
1ef45b77 478
67adf6a9
RH
479#ifndef TARGET_64BIT_DEFAULT
480#define TARGET_64BIT_DEFAULT 0
25f94bb5 481#endif
74dc3e94
RH
482#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
483#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
484#endif
25f94bb5 485
e0ea8797
AH
486#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
487#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
488
79f5e442
ZD
489/* Fence to use after loop using storent. */
490
491extern tree x86_mfence;
492#define FENCE_FOLLOWING_MOVNT x86_mfence
493
0ed4a390
JL
494/* Once GDB has been enhanced to deal with functions without frame
495 pointers, we can change this to allow for elimination of
496 the frame pointer in leaf functions. */
497#define TARGET_DEFAULT 0
67adf6a9 498
0a1c5e55
UB
499/* Extra bits to force. */
500#define TARGET_SUBTARGET_DEFAULT 0
501#define TARGET_SUBTARGET_ISA_DEFAULT 0
502
503/* Extra bits to force on w/ 32-bit mode. */
504#define TARGET_SUBTARGET32_DEFAULT 0
505#define TARGET_SUBTARGET32_ISA_DEFAULT 0
506
ccf8e764
RH
507/* Extra bits to force on w/ 64-bit mode. */
508#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 509#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 510
fee3eacd
IS
511/* Replace MACH-O, ifdefs by in-line tests, where possible.
512 (a) Macros defined in config/i386/darwin.h */
b069de3b 513#define TARGET_MACHO 0
9005471b 514#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
515#define MACHOPIC_ATT_STUB 0
516/* (b) Macros defined in config/darwin.h */
517#define MACHO_DYNAMIC_NO_PIC_P 0
518#define MACHOPIC_INDIRECT 0
519#define MACHOPIC_PURE 0
9005471b 520
5a579c3b
LE
521/* For the RDOS */
522#define TARGET_RDOS 0
523
9005471b 524/* For the Windows 64-bit ABI. */
7c800926
KT
525#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
526
6510e8bb
KT
527/* For the Windows 32-bit ABI. */
528#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
529
f81c9774
RH
530/* This is re-defined by cygming.h. */
531#define TARGET_SEH 0
532
a3d7ab92
KT
533/* This is re-defined by cygming.h. */
534#define TARGET_PECOFF 0
535
51212b32 536/* The default abi used by target. */
7c800926 537#define DEFAULT_ABI SYSV_ABI
ccf8e764 538
b8b3f0ca
LE
539/* The default TLS segment register used by target. */
540#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
541
cc69336f
RH
542/* Subtargets may reset this to 1 in order to enable 96-bit long double
543 with the rounding mode forced to 53 bits. */
544#define TARGET_96_ROUND_53_LONG_DOUBLE 0
545
682cd442
GK
546/* -march=native handling only makes sense with compiler running on
547 an x86 or x86_64 chip. If changing this condition, also change
548 the condition in driver-i386.c. */
549#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
550/* In driver-i386.c. */
551extern const char *host_detect_local_cpu (int argc, const char **argv);
552#define EXTRA_SPEC_FUNCTIONS \
553 { "local_cpu_detect", host_detect_local_cpu },
682cd442 554#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
555#endif
556
8981c15b
JM
557#if TARGET_64BIT_DEFAULT
558#define OPT_ARCH64 "!m32"
559#define OPT_ARCH32 "m32"
560#else
f0ea7581
L
561#define OPT_ARCH64 "m64|mx32"
562#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
563#endif
564
1cba2b96
EC
565/* Support for configure-time defaults of some command line options.
566 The order here is important so that -march doesn't squash the
567 tune or cpu values. */
ce998900 568#define OPTION_DEFAULT_SPECS \
da2d4c01 569 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
570 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
571 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 572 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
573 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
574 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
575 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
576 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
577 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 578
241e1a89
SC
579/* Specs for the compiler proper */
580
628714d8 581#ifndef CC1_CPU_SPEC
eb5bb0fd 582#define CC1_CPU_SPEC_1 ""
fa959ce4 583
682cd442 584#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
585#define CC1_CPU_SPEC CC1_CPU_SPEC_1
586#else
587#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
588"%{march=native:%>march=native %:local_cpu_detect(arch) \
589 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
590%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 591#endif
241e1a89 592#endif
c98f8742 593\f
30efe578 594/* Target CPU builtins. */
ab442df7
MM
595#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
596
597/* Target Pragmas. */
598#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 599
c2f17e19
UB
600enum target_cpu_default
601{
602 TARGET_CPU_DEFAULT_generic = 0,
603
604 TARGET_CPU_DEFAULT_i386,
605 TARGET_CPU_DEFAULT_i486,
606 TARGET_CPU_DEFAULT_pentium,
607 TARGET_CPU_DEFAULT_pentium_mmx,
608 TARGET_CPU_DEFAULT_pentiumpro,
609 TARGET_CPU_DEFAULT_pentium2,
610 TARGET_CPU_DEFAULT_pentium3,
611 TARGET_CPU_DEFAULT_pentium4,
612 TARGET_CPU_DEFAULT_pentium_m,
613 TARGET_CPU_DEFAULT_prescott,
614 TARGET_CPU_DEFAULT_nocona,
615 TARGET_CPU_DEFAULT_core2,
9d8477b6 616 TARGET_CPU_DEFAULT_corei7,
fd5564d3 617 TARGET_CPU_DEFAULT_corei7_avx,
3a579e09 618 TARGET_CPU_DEFAULT_haswell,
b6837b94 619 TARGET_CPU_DEFAULT_atom,
0b871ccf 620 TARGET_CPU_DEFAULT_slm,
c2f17e19
UB
621
622 TARGET_CPU_DEFAULT_geode,
623 TARGET_CPU_DEFAULT_k6,
624 TARGET_CPU_DEFAULT_k6_2,
625 TARGET_CPU_DEFAULT_k6_3,
626 TARGET_CPU_DEFAULT_athlon,
627 TARGET_CPU_DEFAULT_athlon_sse,
628 TARGET_CPU_DEFAULT_k8,
629 TARGET_CPU_DEFAULT_amdfam10,
1133125e 630 TARGET_CPU_DEFAULT_bdver1,
4d652a18 631 TARGET_CPU_DEFAULT_bdver2,
eb2f2b44 632 TARGET_CPU_DEFAULT_bdver3,
14b52538 633 TARGET_CPU_DEFAULT_btver1,
e32bfc16 634 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
635
636 TARGET_CPU_DEFAULT_max
637};
0c2dc519 638
628714d8 639#ifndef CC1_SPEC
8015b78d 640#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
641#endif
642
643/* This macro defines names of additional specifications to put in the
644 specs that can be used in various specifications like CC1_SPEC. Its
645 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
646
647 Each subgrouping contains a string constant, that defines the
188fc5b5 648 specification name, and a string constant that used by the GCC driver
bcd86433
SC
649 program.
650
651 Do not define this macro if it does not need to do anything. */
652
653#ifndef SUBTARGET_EXTRA_SPECS
654#define SUBTARGET_EXTRA_SPECS
655#endif
656
657#define EXTRA_SPECS \
628714d8 658 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
659 SUBTARGET_EXTRA_SPECS
660\f
ce998900 661
d57a4b98
RH
662/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
663 FPU, assume that the fpcw is set to extended precision; when using
664 only SSE, rounding is correct; when using both SSE and the FPU,
665 the rounding precision is indeterminate, since either may be chosen
666 apparently at random. */
667#define TARGET_FLT_EVAL_METHOD \
5ccd517a 668 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 669
8ce94e44
JM
670/* Whether to allow x87 floating-point arithmetic on MODE (one of
671 SFmode, DFmode and XFmode) in the current excess precision
672 configuration. */
673#define X87_ENABLE_ARITH(MODE) \
674 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
675
676/* Likewise, whether to allow direct conversions from integer mode
677 IMODE (HImode, SImode or DImode) to MODE. */
678#define X87_ENABLE_FLOAT(MODE, IMODE) \
679 (flag_excess_precision == EXCESS_PRECISION_FAST \
680 || (MODE) == XFmode \
681 || ((MODE) == DFmode && (IMODE) == SImode) \
682 || (IMODE) == HImode)
683
979c67a5
UB
684/* target machine storage layout */
685
65d9c0ab
JH
686#define SHORT_TYPE_SIZE 16
687#define INT_TYPE_SIZE 32
f0ea7581
L
688#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
689#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 690#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 691#define FLOAT_TYPE_SIZE 32
65d9c0ab 692#define DOUBLE_TYPE_SIZE 64
c637141a 693#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 694
c637141a
L
695/* Define this to set long double type size to use in libgcc2.c, which can
696 not depend on target_flags. */
697#ifdef __LONG_DOUBLE_64__
698#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
699#else
700#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
701#endif
702
703#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 704
67adf6a9 705#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 706#define MAX_BITS_PER_WORD 64
0c2dc519
JH
707#else
708#define MAX_BITS_PER_WORD 32
0c2dc519
JH
709#endif
710
c98f8742
JVA
711/* Define this if most significant byte of a word is the lowest numbered. */
712/* That is true on the 80386. */
713
714#define BITS_BIG_ENDIAN 0
715
716/* Define this if most significant byte of a word is the lowest numbered. */
717/* That is not true on the 80386. */
718#define BYTES_BIG_ENDIAN 0
719
720/* Define this if most significant word of a multiword number is the lowest
721 numbered. */
722/* Not true for 80386 */
723#define WORDS_BIG_ENDIAN 0
724
c98f8742 725/* Width of a word, in units (bytes). */
4ae8027b 726#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
727
728#ifndef IN_LIBGCC2
2e64c636
JH
729#define MIN_UNITS_PER_WORD 4
730#endif
c98f8742 731
c98f8742 732/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 733#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 734
e075ae69 735/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 736#define STACK_BOUNDARY \
51212b32 737 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 738
2e3f842f
L
739/* Stack boundary of the main function guaranteed by OS. */
740#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
741
de1132d1 742/* Minimum stack boundary. */
5bfb2af2 743#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 744
d1f87653 745/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 746 aligned; the compiler cannot rely on having this alignment. */
e075ae69 747#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 748
de1132d1 749/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
750 both 32bit and 64bit, to support codes that need 128 bit stack
751 alignment for SSE instructions, but can't realign the stack. */
752#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
753
754/* 1 if -mstackrealign should be turned on by default. It will
755 generate an alternate prologue and epilogue that realigns the
756 runtime stack if nessary. This supports mixing codes that keep a
757 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 758 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
759#define STACK_REALIGN_DEFAULT 0
760
761/* Boundary (in *bits*) on which the incoming stack is aligned. */
762#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 763
a2851b75
TG
764/* According to Windows x64 software convention, the maximum stack allocatable
765 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
766 instructions allowed to adjust the stack pointer in the epilog, forcing the
767 use of frame pointer for frames larger than 2 GB. This theorical limit
768 is reduced by 256, an over-estimated upper bound for the stack use by the
769 prologue.
770 We define only one threshold for both the prolog and the epilog. When the
4e523f33 771 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
772 regs, then save them, and then allocate the remaining. There is no SEH
773 unwind info for this later allocation. */
774#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
775
ebff937c
SH
776/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
777 mandatory for the 64-bit ABI, and may or may not be true for other
778 operating systems. */
779#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
780
f963b5d9
RS
781/* Minimum allocation boundary for the code of a function. */
782#define FUNCTION_BOUNDARY 8
783
784/* C++ stores the virtual bit in the lowest bit of function pointers. */
785#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 786
c98f8742
JVA
787/* Minimum size in bits of the largest boundary to which any
788 and all fundamental data types supported by the hardware
789 might need to be aligned. No data type wants to be aligned
17f24ff0 790 rounder than this.
fce5a9f2 791
d1f87653 792 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
793 and Pentium Pro XFmode values at 128 bit boundaries. */
794
3f97cb0b
AI
795#define BIGGEST_ALIGNMENT \
796 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 797
2e3f842f
L
798/* Maximum stack alignment. */
799#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
800
6e4f1168
L
801/* Alignment value for attribute ((aligned)). It is a constant since
802 it is the part of the ABI. We shouldn't change it with -mavx. */
803#define ATTRIBUTE_ALIGNED_VALUE 128
804
822eda12 805/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 806#define ALIGN_MODE_128(MODE) \
4501d314 807 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 808
17f24ff0 809/* The published ABIs say that doubles should be aligned on word
d1f87653 810 boundaries, so lower the alignment for structure fields unless
6fc605d8 811 -malign-double is set. */
e932b21b 812
e83f3cff
RH
813/* ??? Blah -- this macro is used directly by libobjc. Since it
814 supports no vector modes, cut out the complexity and fall back
815 on BIGGEST_FIELD_ALIGNMENT. */
816#ifdef IN_TARGET_LIBS
ef49d42e
JH
817#ifdef __x86_64__
818#define BIGGEST_FIELD_ALIGNMENT 128
819#else
e83f3cff 820#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 821#endif
e83f3cff 822#else
e932b21b
JH
823#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
824 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 825#endif
c98f8742 826
e5e8a8bf 827/* If defined, a C expression to compute the alignment given to a
a7180f70 828 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
829 and ALIGN is the alignment that the object would ordinarily have.
830 The value of this macro is used instead of that alignment to align
831 the object.
832
833 If this macro is not defined, then ALIGN is used.
834
835 The typical use of this macro is to increase alignment for string
836 constants to be word aligned so that `strcpy' calls that copy
837 constants can be done inline. */
838
d9a5f180 839#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 840
8a022443
JW
841/* If defined, a C expression to compute the alignment for a static
842 variable. TYPE is the data type, and ALIGN is the alignment that
843 the object would ordinarily have. The value of this macro is used
844 instead of that alignment to align the object.
845
846 If this macro is not defined, then ALIGN is used.
847
848 One use of this macro is to increase alignment of medium-size
849 data to make it all fit in fewer cache lines. Another is to
850 cause character arrays to be word-aligned so that `strcpy' calls
851 that copy constants to character arrays can be done inline. */
852
df8a1d28
JJ
853#define DATA_ALIGNMENT(TYPE, ALIGN) \
854 ix86_data_alignment ((TYPE), (ALIGN), true)
855
856/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
857 some alignment increase, instead of optimization only purposes. E.g.
858 AMD x86-64 psABI says that variables with array type larger than 15 bytes
859 must be aligned to 16 byte boundaries.
860
861 If this macro is not defined, then ALIGN is used. */
862
863#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
864 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
865
866/* If defined, a C expression to compute the alignment for a local
867 variable. TYPE is the data type, and ALIGN is the alignment that
868 the object would ordinarily have. The value of this macro is used
869 instead of that alignment to align the object.
870
871 If this macro is not defined, then ALIGN is used.
872
873 One use of this macro is to increase alignment of medium-size
874 data to make it all fit in fewer cache lines. */
875
76fe54f0
L
876#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
877 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
878
879/* If defined, a C expression to compute the alignment for stack slot.
880 TYPE is the data type, MODE is the widest mode available, and ALIGN
881 is the alignment that the slot would ordinarily have. The value of
882 this macro is used instead of that alignment to align the slot.
883
884 If this macro is not defined, then ALIGN is used when TYPE is NULL,
885 Otherwise, LOCAL_ALIGNMENT will be used.
886
887 One use of this macro is to set alignment of stack slot to the
888 maximum alignment of all possible modes which the slot may have. */
889
890#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
891 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 892
9bfaf89d
JJ
893/* If defined, a C expression to compute the alignment for a local
894 variable DECL.
895
896 If this macro is not defined, then
897 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
898
899 One use of this macro is to increase alignment of medium-size
900 data to make it all fit in fewer cache lines. */
901
902#define LOCAL_DECL_ALIGNMENT(DECL) \
903 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
904
ae58e548
JJ
905/* If defined, a C expression to compute the minimum required alignment
906 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
907 MODE, assuming normal alignment ALIGN.
908
909 If this macro is not defined, then (ALIGN) will be used. */
910
911#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
912 ix86_minimum_alignment (EXP, MODE, ALIGN)
913
9bfaf89d 914
9cd10576 915/* Set this nonzero if move instructions will actually fail to work
c98f8742 916 when given unaligned data. */
b4ac57ab 917#define STRICT_ALIGNMENT 0
c98f8742
JVA
918
919/* If bit field type is int, don't let it cross an int,
920 and give entire struct the alignment of an int. */
43a88a8c 921/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 922#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
923\f
924/* Standard register usage. */
925
926/* This processor has special stack-like registers. See reg-stack.c
892a2d68 927 for details. */
c98f8742
JVA
928
929#define STACK_REGS
ce998900 930
d9a5f180 931#define IS_STACK_MODE(MODE) \
63001560
UB
932 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
933 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 934 || (MODE) == XFmode)
c98f8742
JVA
935
936/* Number of actual hardware registers.
937 The hardware registers are assigned numbers for the compiler
938 from 0 to just below FIRST_PSEUDO_REGISTER.
939 All registers that the compiler knows about must be given numbers,
940 even those that are not normally considered general registers.
941
942 In the 80386 we give the 8 general purpose registers the numbers 0-7.
943 We number the floating point registers 8-15.
944 Note that registers 0-7 can be accessed as a short or int,
945 while only 0-3 may be used with byte `mov' instructions.
946
947 Reg 16 does not correspond to any hardware register, but instead
948 appears in the RTL as an argument pointer prior to reload, and is
949 eliminated during reloading in favor of either the stack or frame
892a2d68 950 pointer. */
c98f8742 951
66d6cbaa 952#define FIRST_PSEUDO_REGISTER 81
c98f8742 953
3073d01c
ML
954/* Number of hardware registers that go into the DWARF-2 unwind info.
955 If not defined, equals FIRST_PSEUDO_REGISTER. */
956
957#define DWARF_FRAME_REGISTERS 17
958
c98f8742
JVA
959/* 1 for registers that have pervasive standard uses
960 and are not available for the register allocator.
3f3f2124 961 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 962
621bc046
UB
963 REX registers are disabled for 32bit targets in
964 TARGET_CONDITIONAL_REGISTER_USAGE. */
965
a7180f70
BS
966#define FIXED_REGISTERS \
967/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 968{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
969/*arg,flags,fpsr,fpcr,frame*/ \
970 1, 1, 1, 1, 1, \
a7180f70
BS
971/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
972 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 973/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
974 0, 0, 0, 0, 0, 0, 0, 0, \
975/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 976 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 977/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
978 0, 0, 0, 0, 0, 0, 0, 0, \
979/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
980 0, 0, 0, 0, 0, 0, 0, 0, \
981/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
982 0, 0, 0, 0, 0, 0, 0, 0, \
983/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
66d6cbaa
IE
984 0, 0, 0, 0, 0, 0, 0, 0, \
985/* b0, b1, b2, b3*/ \
986 0, 0, 0, 0 }
c98f8742
JVA
987
988/* 1 for registers not available across function calls.
989 These must include the FIXED_REGISTERS and also any
990 registers that can be used without being saved.
991 The latter must include the registers where values are returned
992 and the register where structure-value addresses are passed.
fce5a9f2
EC
993 Aside from that, you can include as many other registers as you like.
994
621bc046
UB
995 Value is set to 1 if the register is call used unconditionally.
996 Bit one is set if the register is call used on TARGET_32BIT ABI.
997 Bit two is set if the register is call used on TARGET_64BIT ABI.
998 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
999
1000 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1001
a7180f70
BS
1002#define CALL_USED_REGISTERS \
1003/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1004{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1005/*arg,flags,fpsr,fpcr,frame*/ \
1006 1, 1, 1, 1, 1, \
a7180f70 1007/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1008 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1009/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1010 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1011/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1012 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1013/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1014 6, 6, 6, 6, 6, 6, 6, 6, \
1015/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1016 6, 6, 6, 6, 6, 6, 6, 6, \
1017/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1018 6, 6, 6, 6, 6, 6, 6, 6, \
1019 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
66d6cbaa
IE
1020 1, 1, 1, 1, 1, 1, 1, 1, \
1021/* b0, b1, b2, b3*/ \
1022 1, 1, 1, 1 }
c98f8742 1023
3b3c6a3f
MM
1024/* Order in which to allocate registers. Each register must be
1025 listed once, even those in FIXED_REGISTERS. List frame pointer
1026 late and fixed registers last. Note that, in general, we prefer
1027 registers listed in CALL_USED_REGISTERS, keeping the others
1028 available for storage of persistent values.
1029
5a733826 1030 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1031 so this is just empty initializer for array. */
3b3c6a3f 1032
162f023b
JH
1033#define REG_ALLOC_ORDER \
1034{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1035 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1036 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1037 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
66d6cbaa
IE
1038 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1039 78, 79, 80 }
3b3c6a3f 1040
5a733826 1041/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1042 to be rearranged based on a particular function. When using sse math,
03c259ad 1043 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1044
5a733826 1045#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1046
f5316dfe 1047
7c800926
KT
1048#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1049
c98f8742
JVA
1050/* Return number of consecutive hard regs needed starting at reg REGNO
1051 to hold something of mode MODE.
1052 This is ordinarily the length in words of a value of mode MODE
1053 but can be less for certain modes in special long registers.
1054
fce5a9f2 1055 Actually there are no two word move instructions for consecutive
c98f8742 1056 registers. And only registers 0-3 may have mov byte instructions
63001560 1057 applied to them. */
c98f8742 1058
ce998900 1059#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1060 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
66d6cbaa 1061 || BND_REGNO_P (REGNO) \
92d0fb09 1062 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1063 : ((MODE) == XFmode \
92d0fb09 1064 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1065 : (MODE) == XCmode \
92d0fb09 1066 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1067 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1068
8521c414
JM
1069#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1070 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1071 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1072 ? 0 \
1073 : ((MODE) == XFmode || (MODE) == XCmode)) \
1074 : 0)
1075
1076#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1077
95879c72
L
1078#define VALID_AVX256_REG_MODE(MODE) \
1079 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1080 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1081 || (MODE) == V4DFmode)
95879c72 1082
ff97910d
VY
1083#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1084 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1085
3f97cb0b
AI
1086#define VALID_AVX512F_SCALAR_MODE(MODE) \
1087 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1088 || (MODE) == SFmode)
1089
1090#define VALID_AVX512F_REG_MODE(MODE) \
1091 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1092 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1093
ce998900
UB
1094#define VALID_SSE2_REG_MODE(MODE) \
1095 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1096 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1097
d9a5f180 1098#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1099 ((MODE) == V1TImode || (MODE) == TImode \
1100 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1101 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1102
47f339cf 1103#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1104 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1105
d9a5f180 1106#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1107 ((MODE == V1DImode) || (MODE) == DImode \
1108 || (MODE) == V2SImode || (MODE) == SImode \
1109 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1110
66d6cbaa
IE
1111#define VALID_BND_REG_MODE(MODE) \
1112 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1113
ce998900
UB
1114#define VALID_DFP_MODE_P(MODE) \
1115 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1116
d9a5f180 1117#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1118 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1119 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1120
d9a5f180 1121#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1122 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1123 || (MODE) == DImode \
1124 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1125 || (MODE) == CDImode \
1126 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1127 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1128
822eda12 1129/* Return true for modes passed in SSE registers. */
ce998900 1130#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1131 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1132 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1133 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1134 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1135 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1136 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1137 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1138 || (MODE) == V16SFmode)
822eda12 1139
85a77221
AI
1140#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1141
e075ae69 1142/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1143
a946dd00 1144#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1145 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1146
1147/* Value is 1 if it is a good idea to tie two pseudo registers
1148 when one has mode MODE1 and one has mode MODE2.
1149 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1150 for any hard reg, then this must be 0 for correct output. */
1151
c1c5b5e3 1152#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1153
ff25ef99
ZD
1154/* It is possible to write patterns to move flags; but until someone
1155 does it, */
1156#define AVOID_CCMODE_COPIES
c98f8742 1157
e075ae69 1158/* Specify the modes required to caller save a given hard regno.
787dc842 1159 We do this on i386 to prevent flags from being saved at all.
e075ae69 1160
787dc842
JH
1161 Kill any attempts to combine saving of modes. */
1162
d9a5f180
GS
1163#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1164 (CC_REGNO_P (REGNO) ? VOIDmode \
1165 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1166 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1167 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1168 || MASK_REGNO_P (REGNO)) ? SImode \
1169 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1170 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1171 : (MODE))
ce998900 1172
51ba747a
RH
1173/* The only ABI that saves SSE registers across calls is Win64 (thus no
1174 need to check the current ABI here), and with AVX enabled Win64 only
1175 guarantees that the low 16 bytes are saved. */
1176#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1177 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1178
c98f8742
JVA
1179/* Specify the registers used for certain standard purposes.
1180 The values of these macros are register numbers. */
1181
1182/* on the 386 the pc register is %eip, and is not usable as a general
1183 register. The ordinary mov instructions won't work */
1184/* #define PC_REGNUM */
1185
1186/* Register to use for pushing function arguments. */
1187#define STACK_POINTER_REGNUM 7
1188
1189/* Base register for access to local variables of the function. */
564d80f4
JH
1190#define HARD_FRAME_POINTER_REGNUM 6
1191
1192/* Base register for access to local variables of the function. */
b0d95de8 1193#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1194
1195/* First floating point reg */
1196#define FIRST_FLOAT_REG 8
1197
1198/* First & last stack-like regs */
1199#define FIRST_STACK_REG FIRST_FLOAT_REG
1200#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1201
a7180f70
BS
1202#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1203#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1204
3f97cb0b 1205#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1206#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1207
3f97cb0b 1208#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1209#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1210
3f97cb0b 1211#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1212#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1213
3f97cb0b
AI
1214#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1215#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1216
85a77221
AI
1217#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1218#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1219
66d6cbaa
IE
1220#define FIRST_BND_REG (LAST_MASK_REG + 1) /*77*/
1221#define LAST_BND_REG (FIRST_BND_REG + 3) /*80*/
1222
aabcd309 1223/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1224 requiring a frame pointer. */
1225#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1226#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1227#endif
1228
1229/* Make sure we can access arbitrary call frames. */
1230#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1231
1232/* Base register for access to arguments of the function. */
1233#define ARG_POINTER_REGNUM 16
1234
c98f8742 1235/* Register to hold the addressing base for position independent
5b43fed1
RH
1236 code access to data items. We don't use PIC pointer for 64bit
1237 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1238 pessimizing code dealing with EBX.
bd09bdeb
RH
1239
1240 To avoid clobbering a call-saved register unnecessarily, we renumber
1241 the pic register when possible. The change is visible after the
1242 prologue has been emitted. */
1243
2e3f842f 1244#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1245
1246#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1247 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1248 || TARGET_PECOFF)) \
7dcbf659 1249 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1250 : reload_completed ? REGNO (pic_offset_table_rtx) \
1251 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1252
5fc0e5df
KW
1253#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1254
c51e6d85 1255/* This is overridden by <cygwin.h>. */
5e062767
DS
1256#define MS_AGGREGATE_RETURN 0
1257
61fec9ff 1258#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1259\f
1260/* Define the classes of registers for register constraints in the
1261 machine description. Also define ranges of constants.
1262
1263 One of the classes must always be named ALL_REGS and include all hard regs.
1264 If there is more than one class, another class must be named NO_REGS
1265 and contain no registers.
1266
1267 The name GENERAL_REGS must be the name of a class (or an alias for
1268 another name such as ALL_REGS). This is the class of registers
1269 that is allowed by "g" or "r" in a register constraint.
1270 Also, registers outside this class are allocated only when
1271 instructions express preferences for them.
1272
1273 The classes must be numbered in nondecreasing order; that is,
1274 a larger-numbered class must never be contained completely
1275 in a smaller-numbered class.
1276
1277 For any two classes, it is very desirable that there be another
ab408a86
JVA
1278 class that represents their union.
1279
1280 It might seem that class BREG is unnecessary, since no useful 386
1281 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1282 and the "b" register constraint is useful in asms for syscalls.
1283
03c259ad 1284 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1285
1286enum reg_class
1287{
1288 NO_REGS,
e075ae69 1289 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1290 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1291 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1292 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1293 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1294 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1295 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1296 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1297 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1298 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1299 FLOAT_REGS,
06f4e35d 1300 SSE_FIRST_REG,
a7180f70 1301 SSE_REGS,
3f97cb0b 1302 EVEX_SSE_REGS,
66d6cbaa 1303 BND_REGS,
3f97cb0b 1304 ALL_SSE_REGS,
a7180f70 1305 MMX_REGS,
446988df
JH
1306 FP_TOP_SSE_REGS,
1307 FP_SECOND_SSE_REGS,
1308 FLOAT_SSE_REGS,
1309 FLOAT_INT_REGS,
1310 INT_SSE_REGS,
1311 FLOAT_INT_SSE_REGS,
85a77221
AI
1312 MASK_EVEX_REGS,
1313 MASK_REGS,
c98f8742
JVA
1314 ALL_REGS, LIM_REG_CLASSES
1315};
1316
d9a5f180
GS
1317#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1318
1319#define INTEGER_CLASS_P(CLASS) \
1320 reg_class_subset_p ((CLASS), GENERAL_REGS)
1321#define FLOAT_CLASS_P(CLASS) \
1322 reg_class_subset_p ((CLASS), FLOAT_REGS)
1323#define SSE_CLASS_P(CLASS) \
3f97cb0b 1324 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1325#define MMX_CLASS_P(CLASS) \
f75959a6 1326 ((CLASS) == MMX_REGS)
d9a5f180
GS
1327#define MAYBE_INTEGER_CLASS_P(CLASS) \
1328 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1329#define MAYBE_FLOAT_CLASS_P(CLASS) \
1330 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1331#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1332 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1333#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1334 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1335#define MAYBE_MASK_CLASS_P(CLASS) \
1336 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1337
1338#define Q_CLASS_P(CLASS) \
1339 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1340
0bd72901
UB
1341#define MAYBE_NON_Q_CLASS_P(CLASS) \
1342 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1343
43f3a59d 1344/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1345
1346#define REG_CLASS_NAMES \
1347{ "NO_REGS", \
ab408a86 1348 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1349 "SIREG", "DIREG", \
e075ae69
RH
1350 "AD_REGS", \
1351 "Q_REGS", "NON_Q_REGS", \
c98f8742 1352 "INDEX_REGS", \
3f3f2124 1353 "LEGACY_REGS", \
621bc046 1354 "CLOBBERED_REGS", \
c98f8742
JVA
1355 "GENERAL_REGS", \
1356 "FP_TOP_REG", "FP_SECOND_REG", \
1357 "FLOAT_REGS", \
cb482895 1358 "SSE_FIRST_REG", \
a7180f70 1359 "SSE_REGS", \
3f97cb0b 1360 "EVEX_SSE_REGS", \
66d6cbaa 1361 "BND_REGS", \
3f97cb0b 1362 "ALL_SSE_REGS", \
a7180f70 1363 "MMX_REGS", \
446988df
JH
1364 "FP_TOP_SSE_REGS", \
1365 "FP_SECOND_SSE_REGS", \
1366 "FLOAT_SSE_REGS", \
8fcaaa80 1367 "FLOAT_INT_REGS", \
446988df
JH
1368 "INT_SSE_REGS", \
1369 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1370 "MASK_EVEX_REGS", \
1371 "MASK_REGS", \
c98f8742
JVA
1372 "ALL_REGS" }
1373
ac2e563f
RH
1374/* Define which registers fit in which classes. This is an initializer
1375 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1376
621bc046
UB
1377 Note that CLOBBERED_REGS are calculated by
1378 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1379
3f97cb0b 1380#define REG_CLASS_CONTENTS \
66d6cbaa
IE
1381{ { 0x00, 0x0, 0x0 }, \
1382 { 0x01, 0x0, 0x0 }, /* AREG */ \
1383 { 0x02, 0x0, 0x0 }, /* DREG */ \
1384 { 0x04, 0x0, 0x0 }, /* CREG */ \
1385 { 0x08, 0x0, 0x0 }, /* BREG */ \
1386 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1387 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1388 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1389 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1390 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1391 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1392 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1393 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1394 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1395 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1396 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1397 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1398 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1399{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1400 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1401 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1402{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1403{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1404{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1405{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1406{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1407{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1408{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1409{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1410 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1411 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1412{ 0xffffffff,0xffffffff, 0x1fff } \
e075ae69 1413}
c98f8742
JVA
1414
1415/* The same information, inverted:
1416 Return the class number of the smallest class containing
1417 reg number REGNO. This could be a conditional expression
1418 or could index an array. */
1419
c98f8742
JVA
1420#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1421
42db504c
SB
1422/* When this hook returns true for MODE, the compiler allows
1423 registers explicitly used in the rtl to be used as spill registers
1424 but prevents the compiler from extending the lifetime of these
1425 registers. */
1426#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1427
fc27f749
UB
1428#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1429#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1430
1431#define GENERAL_REG_P(X) \
6189a572 1432 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1433#define GENERAL_REGNO_P(N) \
1434 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1435
fc27f749
UB
1436#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1437#define ANY_QI_REGNO_P(N) \
1438 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1439
fc27f749 1440#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1441#define REX_INT_REGNO_P(N) \
1442 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1443
66aaf16f
UB
1444#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1445#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1446
446988df 1447#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1448#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1449
54a88090 1450#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1451 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1452
fc27f749 1453#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1454#define SSE_REGNO_P(N) \
1455 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1456 || REX_SSE_REGNO_P (N) \
1457 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1458
4977bab6 1459#define REX_SSE_REGNO_P(N) \
fb84c7a0 1460 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1461
3f97cb0b
AI
1462#define EXT_REX_SSE_REGNO_P(N) \
1463 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1464
d9a5f180 1465#define SSE_REGNO(N) \
3f97cb0b
AI
1466 ((N) < 8 ? FIRST_SSE_REG + (N) \
1467 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1468 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1469
85a77221
AI
1470#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1471#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1472
d9a5f180 1473#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1474 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1475
cbf2e4d4
HJ
1476#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1477 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1478 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1479
fc27f749 1480#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1481#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1482
fc27f749 1483#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1484
e075ae69
RH
1485#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1486#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1487
66d6cbaa
IE
1488#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1489#define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1490
c98f8742
JVA
1491/* The class value for index registers, and the one for base regs. */
1492
1493#define INDEX_REG_CLASS INDEX_REGS
1494#define BASE_REG_CLASS GENERAL_REGS
1495
c98f8742 1496/* Place additional restrictions on the register class to use when it
4cbb525c 1497 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1498 register for which class CLASS would ordinarily be used.
1499
1500 We avoid classes containing registers from multiple units due to
1501 the limitation in ix86_secondary_memory_needed. We limit these
1502 classes to their "natural mode" single unit register class, depending
1503 on the unit availability.
1504
1505 Please note that reg_class_subset_p is not commutative, so these
1506 conditions mean "... if (CLASS) includes ALL registers from the
1507 register set." */
1508
1509#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1510 (((MODE) == QImode && !TARGET_64BIT \
1511 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1512 : (((MODE) == SImode || (MODE) == DImode) \
1513 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1514 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1515 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1516 : (X87_FLOAT_MODE_P (MODE) \
1517 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1518 : (CLASS))
c98f8742 1519
85ff473e 1520/* If we are copying between general and FP registers, we need a memory
f84aa48a 1521 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1522#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1523 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1524
c62b3659
UB
1525/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1526 There is no need to emit full 64 bit move on 64 bit targets
1527 for integral modes that can be moved using 32 bit move. */
1528#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1529 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1530 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1531 : MODE)
1532
1272914c
RH
1533/* Return a class of registers that cannot change FROM mode to TO mode. */
1534
1535#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1536 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1537\f
1538/* Stack layout; function entry, exit and calling. */
1539
1540/* Define this if pushing a word on the stack
1541 makes the stack pointer a smaller address. */
1542#define STACK_GROWS_DOWNWARD
1543
a4d05547 1544/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1545 is at the high-address end of the local variables;
1546 that is, each additional local variable allocated
1547 goes at a more negative offset in the frame. */
f62c8a5c 1548#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1549
1550/* Offset within stack frame to start allocating local variables at.
1551 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1552 first local allocated. Otherwise, it is the offset to the BEGINNING
1553 of the first local allocated. */
1554#define STARTING_FRAME_OFFSET 0
1555
8c2b2fae
UB
1556/* If we generate an insn to push BYTES bytes, this says how many the stack
1557 pointer really advances by. On 386, we have pushw instruction that
1558 decrements by exactly 2 no matter what the position was, there is no pushb.
1559
1560 But as CIE data alignment factor on this arch is -4 for 32bit targets
1561 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1562 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1563
d2836273 1564#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1565 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1566
1567/* If defined, the maximum amount of space required for outgoing arguments
1568 will be computed and placed into the variable `crtl->outgoing_args_size'.
1569 No space will be pushed onto the stack for each call; instead, the
1570 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1571
1572 In 32bit mode enabling argument accumulation results in about 5% code size
1573 growth becuase move instructions are less compact than push. In 64bit
1574 mode the difference is less drastic but visible.
1575
1576 FIXME: Unlike earlier implementations, the size of unwind info seems to
1577 actually grouw with accumulation. Is that because accumulated args
1578 unwind info became unnecesarily bloated?
9aa5c1b2 1579
6510e8bb 1580 64-bit MS ABI seem to require 16 byte alignment everywhere except for
41ee845b
JH
1581 function prologue and epilogue. This is not possible without
1582 ACCUMULATE_OUTGOING_ARGS.
1583
1584 If stack probes are required, the space used for large function
1585 arguments on the stack must also be probed, so enable
1586 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1587
6c6094f1 1588#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1589 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1590 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1591
1592/* If defined, a C expression whose value is nonzero when we want to use PUSH
1593 instructions to pass outgoing arguments. */
1594
1595#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1596
2da4124d
L
1597/* We want the stack and args grow in opposite directions, even if
1598 PUSH_ARGS is 0. */
1599#define PUSH_ARGS_REVERSED 1
1600
c98f8742
JVA
1601/* Offset of first parameter from the argument pointer register value. */
1602#define FIRST_PARM_OFFSET(FNDECL) 0
1603
a7180f70
BS
1604/* Define this macro if functions should assume that stack space has been
1605 allocated for arguments even when their values are passed in registers.
1606
1607 The value of this macro is the size, in bytes, of the area reserved for
1608 arguments passed in registers for the function represented by FNDECL.
1609
1610 This space can be allocated by the caller, or be a part of the
1611 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1612 which. */
7c800926
KT
1613#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1614
4ae8027b 1615#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1616 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1617
c98f8742
JVA
1618/* Define how to find the value returned by a library function
1619 assuming the value has mode MODE. */
1620
4ae8027b 1621#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1622
e9125c09
TW
1623/* Define the size of the result block used for communication between
1624 untyped_call and untyped_return. The block contains a DImode value
1625 followed by the block used by fnsave and frstor. */
1626
1627#define APPLY_RESULT_SIZE (8+108)
1628
b08de47e 1629/* 1 if N is a possible register number for function argument passing. */
53c17031 1630#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1631
1632/* Define a data type for recording info about an argument list
1633 during the scan of that argument list. This data type should
1634 hold all necessary information about the function itself
1635 and about the args processed so far, enough to enable macros
b08de47e 1636 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1637
e075ae69 1638typedef struct ix86_args {
fa283935 1639 int words; /* # words passed so far */
b08de47e
MM
1640 int nregs; /* # registers available for passing */
1641 int regno; /* next available register number */
3e65f251
KT
1642 int fastcall; /* fastcall or thiscall calling convention
1643 is used */
fa283935 1644 int sse_words; /* # sse words passed so far */
a7180f70 1645 int sse_nregs; /* # sse registers available for passing */
95879c72 1646 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1647 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1648 int warn_mmx; /* True when we want to warn about MMX ABI. */
1649 int sse_regno; /* next available sse register number */
1650 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1651 int mmx_nregs; /* # mmx registers available for passing */
1652 int mmx_regno; /* next available mmx register number */
892a2d68 1653 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1654 int caller; /* true if it is caller. */
2824d6e5
UB
1655 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1656 SFmode/DFmode arguments should be passed
1657 in SSE registers. Otherwise 0. */
51212b32 1658 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1659 MS_ABI for ms abi. */
b08de47e 1660} CUMULATIVE_ARGS;
c98f8742
JVA
1661
1662/* Initialize a variable CUM of type CUMULATIVE_ARGS
1663 for a call to a function whose data type is FNTYPE.
b08de47e 1664 For a library call, FNTYPE is 0. */
c98f8742 1665
0f6937fe 1666#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1667 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1668 (N_NAMED_ARGS) != -1)
c98f8742 1669
c98f8742
JVA
1670/* Output assembler code to FILE to increment profiler label # LABELNO
1671 for profiling a function entry. */
1672
a5fa1ecd
JH
1673#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1674
1675#define MCOUNT_NAME "_mcount"
1676
3c5273a9
KT
1677#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1678
a5fa1ecd 1679#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1680
1681/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1682 the stack pointer does not matter. The value is tested only in
1683 functions that have frame pointers.
1684 No definition is equivalent to always zero. */
fce5a9f2 1685/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1686 we have to restore it ourselves from the frame pointer, in order to
1687 use pop */
1688
1689#define EXIT_IGNORE_STACK 1
1690
c98f8742
JVA
1691/* Output assembler code for a block containing the constant parts
1692 of a trampoline, leaving space for the variable parts. */
1693
a269a03c 1694/* On the 386, the trampoline contains two instructions:
c98f8742 1695 mov #STATIC,ecx
a269a03c
JC
1696 jmp FUNCTION
1697 The trampoline is generated entirely at runtime. The operand of JMP
1698 is the address of FUNCTION relative to the instruction following the
1699 JMP (which is 5 bytes long). */
c98f8742
JVA
1700
1701/* Length in units of the trampoline for entering a nested function. */
1702
3452586b 1703#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1704\f
1705/* Definitions for register eliminations.
1706
1707 This is an array of structures. Each structure initializes one pair
1708 of eliminable registers. The "from" register number is given first,
1709 followed by "to". Eliminations of the same "from" register are listed
1710 in order of preference.
1711
afc2cd05
NC
1712 There are two registers that can always be eliminated on the i386.
1713 The frame pointer and the arg pointer can be replaced by either the
1714 hard frame pointer or to the stack pointer, depending upon the
1715 circumstances. The hard frame pointer is not used before reload and
1716 so it is not eligible for elimination. */
c98f8742 1717
564d80f4
JH
1718#define ELIMINABLE_REGS \
1719{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1720 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1721 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1722 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1723
c98f8742
JVA
1724/* Define the offset between two registers, one to be eliminated, and the other
1725 its replacement, at the start of a routine. */
1726
d9a5f180
GS
1727#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1728 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1729\f
1730/* Addressing modes, and classification of registers for them. */
1731
c98f8742
JVA
1732/* Macros to check register numbers against specific register classes. */
1733
1734/* These assume that REGNO is a hard or pseudo reg number.
1735 They give nonzero only if REGNO is a hard reg of the suitable class
1736 or a pseudo reg currently allocated to a suitable hard reg.
1737 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1738 has been allocated, which happens in reginfo.c during register
1739 allocation. */
c98f8742 1740
3f3f2124
JH
1741#define REGNO_OK_FOR_INDEX_P(REGNO) \
1742 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1743 || REX_INT_REGNO_P (REGNO) \
1744 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1745 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1746
3f3f2124 1747#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1748 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1749 || (REGNO) == ARG_POINTER_REGNUM \
1750 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1751 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1752
c98f8742
JVA
1753/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1754 and check its validity for a certain class.
1755 We have two alternate definitions for each of them.
1756 The usual definition accepts all pseudo regs; the other rejects
1757 them unless they have been allocated suitable hard regs.
1758 The symbol REG_OK_STRICT causes the latter definition to be used.
1759
1760 Most source files want to accept pseudo regs in the hope that
1761 they will get allocated to the class that the insn wants them to be in.
1762 Source files for reload pass need to be strict.
1763 After reload, it makes no difference, since pseudo regs have
1764 been eliminated by then. */
1765
c98f8742 1766
ff482c8d 1767/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1768#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1769 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1770 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1771 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1772
3b3c6a3f 1773#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1774 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1775 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1776 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1777 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1778
3b3c6a3f
MM
1779/* Strict versions, hard registers only */
1780#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1781#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1782
3b3c6a3f 1783#ifndef REG_OK_STRICT
d9a5f180
GS
1784#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1785#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1786
1787#else
d9a5f180
GS
1788#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1789#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1790#endif
1791
331d9186 1792/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1793 that is a valid memory address for an instruction.
1794 The MODE argument is the machine mode for the MEM expression
1795 that wants to use this address.
1796
331d9186 1797 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1798 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1799
1800 See legitimize_pic_address in i386.c for details as to what
1801 constitutes a legitimate address when -fpic is used. */
1802
1803#define MAX_REGS_PER_ADDRESS 2
1804
f996902d 1805#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1806
ae1547cc
UB
1807/* Try a machine-dependent way of reloading an illegitimate address
1808 operand. If we find one, push the reload and jump to WIN. This
1809 macro is used in only one place: `find_reloads_address' in reload.c. */
1810
1811#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1812do { \
1813 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1814 (int)(TYPE), (INDL))) \
1815 goto WIN; \
1816} while (0)
1817
b949ea8b
JW
1818/* If defined, a C expression to determine the base term of address X.
1819 This macro is used in only one place: `find_base_term' in alias.c.
1820
1821 It is always safe for this macro to not be defined. It exists so
1822 that alias analysis can understand machine-dependent addresses.
1823
1824 The typical use of this macro is to handle addresses containing
1825 a label_ref or symbol_ref within an UNSPEC. */
1826
d9a5f180 1827#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1828
c98f8742 1829/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1830 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1831 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1832
f996902d 1833#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1834
1835#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1836 (GET_CODE (X) == SYMBOL_REF \
1837 || GET_CODE (X) == LABEL_REF \
1838 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1839\f
b08de47e
MM
1840/* Max number of args passed in registers. If this is more than 3, we will
1841 have problems with ebx (register #4), since it is a caller save register and
1842 is also used as the pic register in ELF. So for now, don't allow more than
1843 3 registers to be passed in registers. */
1844
7c800926
KT
1845/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1846#define X86_64_REGPARM_MAX 6
72fa3605 1847#define X86_64_MS_REGPARM_MAX 4
7c800926 1848
72fa3605 1849#define X86_32_REGPARM_MAX 3
7c800926 1850
4ae8027b 1851#define REGPARM_MAX \
2824d6e5
UB
1852 (TARGET_64BIT \
1853 ? (TARGET_64BIT_MS_ABI \
1854 ? X86_64_MS_REGPARM_MAX \
1855 : X86_64_REGPARM_MAX) \
4ae8027b 1856 : X86_32_REGPARM_MAX)
d2836273 1857
72fa3605
UB
1858#define X86_64_SSE_REGPARM_MAX 8
1859#define X86_64_MS_SSE_REGPARM_MAX 4
1860
b6010cab 1861#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1862
4ae8027b 1863#define SSE_REGPARM_MAX \
2824d6e5
UB
1864 (TARGET_64BIT \
1865 ? (TARGET_64BIT_MS_ABI \
1866 ? X86_64_MS_SSE_REGPARM_MAX \
1867 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1868 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1869
1870#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1871\f
1872/* Specify the machine mode that this machine uses
1873 for the index in the tablejump instruction. */
dc4d7240 1874#define CASE_VECTOR_MODE \
6025b127 1875 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1876
c98f8742
JVA
1877/* Define this as 1 if `char' should by default be signed; else as 0. */
1878#define DEFAULT_SIGNED_CHAR 1
1879
1880/* Max number of bytes we can move from memory to memory
1881 in one reasonably fast instruction. */
65d9c0ab
JH
1882#define MOVE_MAX 16
1883
1884/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1885 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1886 number of bytes we can move with a single instruction. */
63001560 1887#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1888
7e24ffc9 1889/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1890 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1891 Increasing the value will always make code faster, but eventually
1892 incurs high cost in increased code size.
c98f8742 1893
e2e52e1b 1894 If you don't define this, a reasonable default is used. */
c98f8742 1895
e04ad03d 1896#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1897
45d78e7f
JJ
1898/* If a clear memory operation would take CLEAR_RATIO or more simple
1899 move-instruction sequences, we will do a clrmem or libcall instead. */
1900
e04ad03d 1901#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1902
53f00dde
UB
1903/* Define if shifts truncate the shift count which implies one can
1904 omit a sign-extension or zero-extension of a shift count.
1905
1906 On i386, shifts do truncate the count. But bit test instructions
1907 take the modulo of the bit offset operand. */
c98f8742
JVA
1908
1909/* #define SHIFT_COUNT_TRUNCATED */
1910
1911/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1912 is done just by pretending it is already truncated. */
1913#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1914
d9f32422
JH
1915/* A macro to update M and UNSIGNEDP when an object whose type is
1916 TYPE and which has the specified mode and signedness is to be
1917 stored in a register. This macro is only called when TYPE is a
1918 scalar type.
1919
f710504c 1920 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1921 quantities to SImode. The choice depends on target type. */
1922
1923#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1924do { \
d9f32422
JH
1925 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1926 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1927 (MODE) = SImode; \
1928} while (0)
d9f32422 1929
c98f8742
JVA
1930/* Specify the machine mode that pointers have.
1931 After generation of rtl, the compiler makes no further distinction
1932 between pointers and any other objects of this machine mode. */
28968d91 1933#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1934
66d6cbaa
IE
1935/* Specify the machine mode that bounds have. */
1936#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1937
f0ea7581
L
1938/* A C expression whose value is zero if pointers that need to be extended
1939 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1940 greater then zero if they are zero-extended and less then zero if the
1941 ptr_extend instruction should be used. */
1942
1943#define POINTERS_EXTEND_UNSIGNED 1
1944
c98f8742
JVA
1945/* A function address in a call instruction
1946 is a byte address (for indexing purposes)
1947 so give the MEM rtx a byte's mode. */
1948#define FUNCTION_MODE QImode
d4ba09c0 1949\f
d4ba09c0 1950
d4ba09c0
SC
1951/* A C expression for the cost of a branch instruction. A value of 1
1952 is the default; other values are interpreted relative to that. */
1953
3a4fd356
JH
1954#define BRANCH_COST(speed_p, predictable_p) \
1955 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1956
e327d1a3
L
1957/* An integer expression for the size in bits of the largest integer machine
1958 mode that should actually be used. We allow pairs of registers. */
1959#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1960
d4ba09c0
SC
1961/* Define this macro as a C expression which is nonzero if accessing
1962 less than a word of memory (i.e. a `char' or a `short') is no
1963 faster than accessing a word of memory, i.e., if such access
1964 require more than one instruction or if there is no difference in
1965 cost between byte and (aligned) word loads.
1966
1967 When this macro is not defined, the compiler will access a field by
1968 finding the smallest containing object; when it is defined, a
1969 fullword load will be used if alignment permits. Unless bytes
1970 accesses are faster than word accesses, using word accesses is
1971 preferable since it may eliminate subsequent memory access if
1972 subsequent accesses occur to other fields in the same word of the
1973 structure, but to different bytes. */
1974
1975#define SLOW_BYTE_ACCESS 0
1976
1977/* Nonzero if access to memory by shorts is slow and undesirable. */
1978#define SLOW_SHORT_ACCESS 0
1979
d4ba09c0
SC
1980/* Define this macro to be the value 1 if unaligned accesses have a
1981 cost many times greater than aligned accesses, for example if they
1982 are emulated in a trap handler.
1983
9cd10576
KH
1984 When this macro is nonzero, the compiler will act as if
1985 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1986 moves. This can cause significantly more instructions to be
9cd10576 1987 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1988 accesses only add a cycle or two to the time for a memory access.
1989
1990 If the value of this macro is always zero, it need not be defined. */
1991
e1565e65 1992/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1993
d4ba09c0
SC
1994/* Define this macro if it is as good or better to call a constant
1995 function address than to call an address kept in a register.
1996
1997 Desirable on the 386 because a CALL with a constant address is
1998 faster than one with a register address. */
1999
2000#define NO_FUNCTION_CSE
c98f8742 2001\f
c572e5ba
JVA
2002/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2003 return the mode to be used for the comparison.
2004
2005 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2006 VOIDmode should be used in all other cases.
c572e5ba 2007
16189740 2008 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2009 possible, to allow for more combinations. */
c98f8742 2010
d9a5f180 2011#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2012
9cd10576 2013/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2014 reversed. */
2015
2016#define REVERSIBLE_CC_MODE(MODE) 1
2017
2018/* A C expression whose value is reversed condition code of the CODE for
2019 comparison done in CC_MODE mode. */
3c5cb3e4 2020#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2021
c98f8742
JVA
2022\f
2023/* Control the assembler format that we output, to the extent
2024 this does not vary between assemblers. */
2025
2026/* How to refer to registers in assembler output.
892a2d68 2027 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2028
a7b376ee 2029/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2030 For non floating point regs, the following are the HImode names.
2031
2032 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2033 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2034 "y" code. */
c98f8742 2035
a7180f70
BS
2036#define HI_REGISTER_NAMES \
2037{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2038 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2039 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2040 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2041 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2042 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2043 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2044 "xmm16", "xmm17", "xmm18", "xmm19", \
2045 "xmm20", "xmm21", "xmm22", "xmm23", \
2046 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2047 "xmm28", "xmm29", "xmm30", "xmm31", \
66d6cbaa
IE
2048 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2049 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2050
c98f8742
JVA
2051#define REGISTER_NAMES HI_REGISTER_NAMES
2052
2053/* Table of additional register names to use in user input. */
2054
2055#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2056{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2057 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2058 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2059 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2060 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2061 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2062
2063/* Note we are omitting these since currently I don't know how
2064to get gcc to use these, since they want the same but different
2065number as al, and ax.
2066*/
2067
c98f8742 2068#define QI_REGISTER_NAMES \
3f3f2124 2069{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2070
2071/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2072 of regs 0 through 3. */
c98f8742
JVA
2073
2074#define QI_HIGH_REGISTER_NAMES \
2075{"ah", "dh", "ch", "bh", }
2076
2077/* How to renumber registers for dbx and gdb. */
2078
d9a5f180
GS
2079#define DBX_REGISTER_NUMBER(N) \
2080 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2081
9a82e702
MS
2082extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2083extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2084extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2085
780a5b71
UB
2086extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2087
469ac993
JM
2088/* Before the prologue, RA is at 0(%esp). */
2089#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2090 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2091
e414ab29 2092/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2093#define RETURN_ADDR_RTX(COUNT, FRAME) \
2094 ((COUNT) == 0 \
0a81f074
RS
2095 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2096 -UNITS_PER_WORD)) \
2097 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2098
892a2d68 2099/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2100#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2101
a6ab3aad 2102/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2103#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2104
1020a5ab 2105/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2106#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2107#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2108
ad919812 2109
e4c4ebeb
RH
2110/* Select a format to encode pointers in exception handling data. CODE
2111 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2112 true if the symbol may be affected by dynamic relocations.
2113
2114 ??? All x86 object file formats are capable of representing this.
2115 After all, the relocation needed is the same as for the call insn.
2116 Whether or not a particular assembler allows us to enter such, I
2117 guess we'll have to see. */
d9a5f180 2118#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2119 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2120
c98f8742
JVA
2121/* This is how to output an insn to push a register on the stack.
2122 It need not be very fast code. */
2123
d9a5f180 2124#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2125do { \
2126 if (TARGET_64BIT) \
2127 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2128 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2129 else \
2130 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2131} while (0)
c98f8742
JVA
2132
2133/* This is how to output an insn to pop a register from the stack.
2134 It need not be very fast code. */
2135
d9a5f180 2136#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2137do { \
2138 if (TARGET_64BIT) \
2139 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2140 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2141 else \
2142 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2143} while (0)
c98f8742 2144
f88c65f7 2145/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2146
2147#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2148 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2149
f88c65f7 2150/* This is how to output an element of a case-vector that is relative. */
c98f8742 2151
33f7f353 2152#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2153 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2154
63001560 2155/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2156
2157#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2158{ \
2159 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2160 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2161}
2162
2163/* A C statement or statements which output an assembler instruction
2164 opcode to the stdio stream STREAM. The macro-operand PTR is a
2165 variable of type `char *' which points to the opcode name in
2166 its "internal" form--the form that is written in the machine
2167 description. */
2168
2169#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2170 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2171
6a90d232
L
2172/* A C statement to output to the stdio stream FILE an assembler
2173 command to pad the location counter to a multiple of 1<<LOG
2174 bytes if it is within MAX_SKIP bytes. */
2175
2176#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2177#undef ASM_OUTPUT_MAX_SKIP_PAD
2178#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2179 if ((LOG) != 0) \
2180 { \
2181 if ((MAX_SKIP) == 0) \
2182 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2183 else \
2184 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2185 }
2186#endif
2187
135a687e
KT
2188/* Write the extra assembler code needed to declare a function
2189 properly. */
2190
2191#undef ASM_OUTPUT_FUNCTION_LABEL
2192#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2193 ix86_asm_output_function_label (FILE, NAME, DECL)
2194
f7288899
EC
2195/* Under some conditions we need jump tables in the text section,
2196 because the assembler cannot handle label differences between
2197 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2198
2199#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2200 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2201 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2202
cea3bd3e
RH
2203/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2204 and switch back. For x86 we do this only to save a few bytes that
2205 would otherwise be unused in the text section. */
ad211091
KT
2206#define CRT_MKSTR2(VAL) #VAL
2207#define CRT_MKSTR(x) CRT_MKSTR2(x)
2208
2209#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2210 asm (SECTION_OP "\n\t" \
2211 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2212 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2213
2214/* Default threshold for putting data in large sections
2215 with x86-64 medium memory model */
2216#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2217\f
b2b01543 2218/* Which processor to tune code generation for. */
5bf0ebab
RH
2219
2220enum processor_type
2221{
8383d43c 2222 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2223 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2224 PROCESSOR_PENTIUM,
2225 PROCESSOR_PENTIUMPRO,
cfe1b18f 2226 PROCESSOR_GEODE,
5bf0ebab
RH
2227 PROCESSOR_K6,
2228 PROCESSOR_ATHLON,
2229 PROCESSOR_PENTIUM4,
4977bab6 2230 PROCESSOR_K8,
89c43c0a 2231 PROCESSOR_NOCONA,
340ef734
JH
2232 PROCESSOR_CORE2,
2233 PROCESSOR_COREI7,
fd5564d3 2234 PROCESSOR_COREI7_AVX,
3a579e09 2235 PROCESSOR_HASWELL,
9d532162 2236 PROCESSOR_GENERIC,
21efb4d4 2237 PROCESSOR_AMDFAM10,
1133125e 2238 PROCESSOR_BDVER1,
4d652a18 2239 PROCESSOR_BDVER2,
eb2f2b44 2240 PROCESSOR_BDVER3,
14b52538 2241 PROCESSOR_BTVER1,
e32bfc16 2242 PROCESSOR_BTVER2,
b6837b94 2243 PROCESSOR_ATOM,
0b871ccf 2244 PROCESSOR_SLM,
5bf0ebab
RH
2245 PROCESSOR_max
2246};
2247
9e555526 2248extern enum processor_type ix86_tune;
5bf0ebab 2249extern enum processor_type ix86_arch;
5bf0ebab 2250
8362f420
JH
2251/* Size of the RED_ZONE area. */
2252#define RED_ZONE_SIZE 128
2253/* Reserved area of the red zone for temporaries. */
2254#define RED_ZONE_RESERVE 8
c93e80a5 2255
95899b34 2256extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2257extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2258
2259/* Smallest class containing REGNO. */
2260extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2261
0948ccb2
PB
2262enum ix86_fpcmp_strategy {
2263 IX86_FPCMP_SAHF,
2264 IX86_FPCMP_COMI,
2265 IX86_FPCMP_ARITH
2266};
22fb740d
JH
2267\f
2268/* To properly truncate FP values into integers, we need to set i387 control
2269 word. We can't emit proper mode switching code before reload, as spills
2270 generated by reload may truncate values incorrectly, but we still can avoid
2271 redundant computation of new control word by the mode switching pass.
2272 The fldcw instructions are still emitted redundantly, but this is probably
2273 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2274 the sequence.
22fb740d
JH
2275
2276 The machinery is to emit simple truncation instructions and split them
2277 before reload to instructions having USEs of two memory locations that
2278 are filled by this code to old and new control word.
fce5a9f2 2279
22fb740d
JH
2280 Post-reload pass may be later used to eliminate the redundant fildcw if
2281 needed. */
2282
ff680eb1
UB
2283enum ix86_entity
2284{
ff97910d
VY
2285 AVX_U128 = 0,
2286 I387_TRUNC,
ff680eb1
UB
2287 I387_FLOOR,
2288 I387_CEIL,
2289 I387_MASK_PM,
2290 MAX_386_ENTITIES
2291};
2292
1cba2b96 2293enum ix86_stack_slot
ff680eb1 2294{
443ca5fc 2295 SLOT_TEMP = 0,
ff680eb1
UB
2296 SLOT_CW_STORED,
2297 SLOT_CW_TRUNC,
2298 SLOT_CW_FLOOR,
2299 SLOT_CW_CEIL,
2300 SLOT_CW_MASK_PM,
2301 MAX_386_STACK_LOCALS
2302};
22fb740d 2303
ff97910d
VY
2304enum avx_u128_state
2305{
2306 AVX_U128_CLEAN,
2307 AVX_U128_DIRTY,
2308 AVX_U128_ANY
2309};
2310
22fb740d
JH
2311/* Define this macro if the port needs extra instructions inserted
2312 for mode switching in an optimizing compilation. */
2313
ff680eb1
UB
2314#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2315 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2316
2317/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2318 initializer for an array of integers. Each initializer element N
2319 refers to an entity that needs mode switching, and specifies the
2320 number of different modes that might need to be set for this
2321 entity. The position of the initializer in the initializer -
2322 starting counting at zero - determines the integer that is used to
2323 refer to the mode-switched entity in question. */
2324
ff680eb1 2325#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2326 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2327
2328/* ENTITY is an integer specifying a mode-switched entity. If
2329 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2330 return an integer value not larger than the corresponding element
2331 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff97910d 2332 must be switched into prior to the execution of INSN. */
ff680eb1
UB
2333
2334#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d 2335
ff97910d
VY
2336/* If this macro is defined, it is evaluated for every INSN during
2337 mode switching. It determines the mode that an insn results in (if
2338 different from the incoming mode). */
2339
2340#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2341
2342/* If this macro is defined, it is evaluated for every ENTITY that
2343 needs mode switching. It should evaluate to an integer, which is
2344 a mode that ENTITY is assumed to be switched to at function entry. */
2345
2346#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2347
2348/* If this macro is defined, it is evaluated for every ENTITY that
2349 needs mode switching. It should evaluate to an integer, which is
2350 a mode that ENTITY is assumed to be switched to at function exit. */
2351
2352#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2353
22fb740d
JH
2354/* This macro specifies the order in which modes for ENTITY are
2355 processed. 0 is the highest priority. */
2356
d9a5f180 2357#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2358
2359/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2360 is the set of hard registers live at the point where the insn(s)
2361 are to be inserted. */
2362
ff97910d 2363#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
5756eff7 2364 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
0f0138b6
JH
2365\f
2366/* Avoid renaming of stack registers, as doing so in combination with
2367 scheduling just increases amount of live registers at time and in
2368 the turn amount of fxch instructions needed.
2369
3f97cb0b
AI
2370 ??? Maybe Pentium chips benefits from renaming, someone can try....
2371
2372 Don't rename evex to non-evex sse registers. */
0f0138b6 2373
3f97cb0b
AI
2374#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2375 (EXT_REX_SSE_REGNO_P (SRC) == \
2376 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2377
3b3c6a3f 2378\f
e91f04de 2379#define FASTCALL_PREFIX '@'
fa1a0d02 2380\f
ec7ded37 2381/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2382
604a6be9 2383#ifndef USED_FOR_TARGET
ec7ded37 2384struct GTY(()) machine_frame_state
cd9c1ca8 2385{
ec7ded37
RH
2386 /* This pair tracks the currently active CFA as reg+offset. When reg
2387 is drap_reg, we don't bother trying to record here the real CFA when
2388 it might really be a DW_CFA_def_cfa_expression. */
2389 rtx cfa_reg;
2390 HOST_WIDE_INT cfa_offset;
2391
2392 /* The current offset (canonically from the CFA) of ESP and EBP.
2393 When stack frame re-alignment is active, these may not be relative
2394 to the CFA. However, in all cases they are relative to the offsets
2395 of the saved registers stored in ix86_frame. */
2396 HOST_WIDE_INT sp_offset;
2397 HOST_WIDE_INT fp_offset;
2398
2399 /* The size of the red-zone that may be assumed for the purposes of
2400 eliding register restore notes in the epilogue. This may be zero
2401 if no red-zone is in effect, or may be reduced from the real
2402 red-zone value by a maximum runtime stack re-alignment value. */
2403 int red_zone_offset;
2404
2405 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2406 value within the frame. If false then the offset above should be
2407 ignored. Note that DRAP, if valid, *always* points to the CFA and
2408 thus has an offset of zero. */
2409 BOOL_BITFIELD sp_valid : 1;
2410 BOOL_BITFIELD fp_valid : 1;
2411 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2412
2413 /* Indicate whether the local stack frame has been re-aligned. When
2414 set, the SP/FP offsets above are relative to the aligned frame
2415 and not the CFA. */
2416 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2417};
2418
f81c9774
RH
2419/* Private to winnt.c. */
2420struct seh_frame_state;
2421
d1b38208 2422struct GTY(()) machine_function {
fa1a0d02
JH
2423 struct stack_local_entry *stack_locals;
2424 const char *some_ld_name;
4aab97f9
L
2425 int varargs_gpr_size;
2426 int varargs_fpr_size;
ff680eb1 2427 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2428
2429 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2430 has been computed for. */
2431 int use_fast_prologue_epilogue_nregs;
2432
7458026b
ILT
2433 /* For -fsplit-stack support: A stack local which holds a pointer to
2434 the stack arguments for a function with a variable number of
2435 arguments. This is set at the start of the function and is used
2436 to initialize the overflow_arg_area field of the va_list
2437 structure. */
2438 rtx split_stack_varargs_pointer;
2439
3452586b
RH
2440 /* This value is used for amd64 targets and specifies the current abi
2441 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2442 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2443
2444 /* Nonzero if the function accesses a previous frame. */
2445 BOOL_BITFIELD accesses_prev_frame : 1;
2446
2447 /* Nonzero if the function requires a CLD in the prologue. */
2448 BOOL_BITFIELD needs_cld : 1;
2449
922e3e33
UB
2450 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2451 expander to determine the style used. */
3452586b
RH
2452 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2453
5bf5a10b
AO
2454 /* If true, the current function needs the default PIC register, not
2455 an alternate register (on x86) and must not use the red zone (on
2456 x86_64), even if it's a leaf function. We don't want the
2457 function to be regarded as non-leaf because TLS calls need not
2458 affect register allocation. This flag is set when a TLS call
2459 instruction is expanded within a function, and never reset, even
2460 if all such instructions are optimized away. Use the
2461 ix86_current_function_calls_tls_descriptor macro for a better
2462 approximation. */
3452586b
RH
2463 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2464
2465 /* If true, the current function has a STATIC_CHAIN is placed on the
2466 stack below the return address. */
2467 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2468
ec7ded37
RH
2469 /* During prologue/epilogue generation, the current frame state.
2470 Otherwise, the frame state at the end of the prologue. */
2471 struct machine_frame_state fs;
f81c9774
RH
2472
2473 /* During SEH output, this is non-null. */
2474 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2475};
cd9c1ca8 2476#endif
fa1a0d02
JH
2477
2478#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2479#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2480#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2481#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2482#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2483#define ix86_tls_descriptor_calls_expanded_in_cfun \
2484 (cfun->machine->tls_descriptor_call_expanded_p)
2485/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2486 calls are optimized away, we try to detect cases in which it was
2487 optimized away. Since such instructions (use (reg REG_SP)), we can
2488 verify whether there's any such instruction live by testing that
2489 REG_SP is live. */
2490#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2491 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2492#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2493
1bc7c5b6
ZW
2494/* Control behavior of x86_file_start. */
2495#define X86_FILE_START_VERSION_DIRECTIVE false
2496#define X86_FILE_START_FLTUSED false
2497
7dcbf659
JH
2498/* Flag to mark data that is in the large address area. */
2499#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2500#define SYMBOL_REF_FAR_ADDR_P(X) \
2501 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2502
2503/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2504 have defined always, to avoid ifdefing. */
2505#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2506#define SYMBOL_REF_DLLIMPORT_P(X) \
2507 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2508
2509#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2510#define SYMBOL_REF_DLLEXPORT_P(X) \
2511 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2512
82c0e1a0
KT
2513#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2514#define SYMBOL_REF_STUBVAR_P(X) \
2515 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2516
7942e47e
RY
2517extern void debug_ready_dispatch (void);
2518extern void debug_dispatch_window (int);
2519
91afcfa3
QN
2520/* The value at zero is only defined for the BMI instructions
2521 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2522#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2523 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2524#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2525 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2526
2527
b8ce4e94
KT
2528/* Flags returned by ix86_get_callcvt (). */
2529#define IX86_CALLCVT_CDECL 0x1
2530#define IX86_CALLCVT_STDCALL 0x2
2531#define IX86_CALLCVT_FASTCALL 0x4
2532#define IX86_CALLCVT_THISCALL 0x8
2533#define IX86_CALLCVT_REGPARM 0x10
2534#define IX86_CALLCVT_SSEREGPARM 0x20
2535
2536#define IX86_BASE_CALLCVT(FLAGS) \
2537 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2538 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2539
b86b9f44
MM
2540#define RECIP_MASK_NONE 0x00
2541#define RECIP_MASK_DIV 0x01
2542#define RECIP_MASK_SQRT 0x02
2543#define RECIP_MASK_VEC_DIV 0x04
2544#define RECIP_MASK_VEC_SQRT 0x08
2545#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2546 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2547#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2548
2549#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2550#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2551#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2552#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2553
5dcfdccd
KY
2554#define IX86_HLE_ACQUIRE (1 << 16)
2555#define IX86_HLE_RELEASE (1 << 17)
2556
c98f8742
JVA
2557/*
2558Local variables:
2559version-control: t
2560End:
2561*/