]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
arm.c (TARGET_MAX_ANCHOR_OFFSET): New.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2f83c7d6
NC
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
0a1c5e55 49#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
50#define TARGET_SSE5 OPTION_ISA_SSE5
51#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
52#define TARGET_ABM OPTION_ISA_ABM
53#define TARGET_POPCNT OPTION_ISA_POPCNT
54#define TARGET_SAHF OPTION_ISA_SAHF
55#define TARGET_AES OPTION_ISA_AES
56#define TARGET_PCLMUL OPTION_ISA_PCLMUL
57#define TARGET_CMPXCHG16B OPTION_ISA_CX16
58
04e1d06b
MM
59
60/* SSE5 and SSE4.1 define the same round instructions */
61#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
62#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 63
26b5109f
RS
64#include "config/vxworks-dummy.h"
65
8c996513
JH
66/* Algorithm to expand string function with. */
67enum stringop_alg
68{
69 no_stringop,
70 libcall,
71 rep_prefix_1_byte,
72 rep_prefix_4_byte,
73 rep_prefix_8_byte,
74 loop_1_byte,
75 loop,
76 unrolled_loop
77};
ccf8e764 78
8c996513 79#define NAX_STRINGOP_ALGS 4
ccf8e764 80
8c996513
JH
81/* Specify what algorithm to use for stringops on known size.
82 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
83 known at compile time or estimated via feedback, the SIZE array
84 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 85 means infinity). Corresponding ALG is used then.
8c996513 86 For example initializer:
4f3f76e6 87 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 88 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 89 be used otherwise. */
8c996513
JH
90struct stringop_algs
91{
92 const enum stringop_alg unknown_size;
93 const struct stringop_strategy {
94 const int max;
95 const enum stringop_alg alg;
96 } size [NAX_STRINGOP_ALGS];
97};
98
d4ba09c0
SC
99/* Define the specific costs for a given cpu */
100
101struct processor_costs {
8b60264b
KG
102 const int add; /* cost of an add instruction */
103 const int lea; /* cost of a lea instruction */
104 const int shift_var; /* variable shift costs */
105 const int shift_const; /* constant shift costs */
f676971a 106 const int mult_init[5]; /* cost of starting a multiply
4977bab6 107 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 108 const int mult_bit; /* cost of multiply per each bit set */
f676971a 109 const int divide[5]; /* cost of a divide/mod
4977bab6 110 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
111 int movsx; /* The cost of movsx operation. */
112 int movzx; /* The cost of movzx operation. */
8b60264b
KG
113 const int large_insn; /* insns larger than this cost more */
114 const int move_ratio; /* The threshold of number of scalar
ac775968 115 memory-to-memory move insns. */
8b60264b
KG
116 const int movzbl_load; /* cost of loading using movzbl */
117 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
118 in QImode, HImode and SImode relative
119 to reg-reg move (2). */
8b60264b 120 const int int_store[3]; /* cost of storing integer register
96e7ae40 121 in QImode, HImode and SImode */
8b60264b
KG
122 const int fp_move; /* cost of reg,reg fld/fst */
123 const int fp_load[3]; /* cost of loading FP register
96e7ae40 124 in SFmode, DFmode and XFmode */
8b60264b 125 const int fp_store[3]; /* cost of storing FP register
96e7ae40 126 in SFmode, DFmode and XFmode */
8b60264b
KG
127 const int mmx_move; /* cost of moving MMX register. */
128 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 129 in SImode and DImode */
8b60264b 130 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 131 in SImode and DImode */
8b60264b
KG
132 const int sse_move; /* cost of moving SSE register. */
133 const int sse_load[3]; /* cost of loading SSE register
fa79946e 134 in SImode, DImode and TImode*/
8b60264b 135 const int sse_store[3]; /* cost of storing SSE register
fa79946e 136 in SImode, DImode and TImode*/
8b60264b 137 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 138 integer and vice versa. */
46cb0441
ZD
139 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
140 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
141 const int prefetch_block; /* bytes moved to cache for prefetch. */
142 const int simultaneous_prefetches; /* number of parallel prefetch
143 operations. */
4977bab6 144 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
145 const int fadd; /* cost of FADD and FSUB instructions. */
146 const int fmul; /* cost of FMUL instruction. */
147 const int fdiv; /* cost of FDIV instruction. */
148 const int fabs; /* cost of FABS instruction. */
149 const int fchs; /* cost of FCHS instruction. */
150 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
151 /* Specify what algorithm
152 to use for stringops on unknown size. */
153 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
154 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
155 load and store. */
156 const int scalar_load_cost; /* Cost of scalar load. */
157 const int scalar_store_cost; /* Cost of scalar store. */
158 const int vec_stmt_cost; /* Cost of any vector operation, excluding
159 load, store, vector-to-scalar and
160 scalar-to-vector operation. */
161 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
162 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 163 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
164 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
165 const int vec_store_cost; /* Cost of vector store. */
166 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
167 cost model. */
168 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
169 vectorizer cost model. */
d4ba09c0
SC
170};
171
8b60264b 172extern const struct processor_costs *ix86_cost;
b2077fd2
JH
173extern const struct processor_costs ix86_size_cost;
174
175#define ix86_cur_cost() \
176 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 177
c98f8742
JVA
178/* Macros used in the machine description to test the flags. */
179
ddd5a7c1 180/* configure can arrange to make this 2, to force a 486. */
e075ae69 181
35b528be 182#ifndef TARGET_CPU_DEFAULT
d326eaf0 183#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 184#endif
35b528be 185
004d3859
GK
186#ifndef TARGET_FPMATH_DEFAULT
187#define TARGET_FPMATH_DEFAULT \
188 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
189#endif
190
6ac49599 191#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 192
5791cc29
JT
193/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
194 compile-time constant. */
195#ifdef IN_LIBGCC2
6ac49599 196#undef TARGET_64BIT
5791cc29
JT
197#ifdef __x86_64__
198#define TARGET_64BIT 1
199#else
200#define TARGET_64BIT 0
201#endif
202#else
6ac49599
RS
203#ifndef TARGET_BI_ARCH
204#undef TARGET_64BIT
67adf6a9 205#if TARGET_64BIT_DEFAULT
0c2dc519
JH
206#define TARGET_64BIT 1
207#else
208#define TARGET_64BIT 0
209#endif
210#endif
5791cc29 211#endif
25f94bb5 212
750054a2
CT
213#define HAS_LONG_COND_BRANCH 1
214#define HAS_LONG_UNCOND_BRANCH 1
215
9e555526
RH
216#define TARGET_386 (ix86_tune == PROCESSOR_I386)
217#define TARGET_486 (ix86_tune == PROCESSOR_I486)
218#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
219#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 220#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
221#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
222#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
223#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
224#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 225#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 226#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 227#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
228#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
229#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
230#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 231#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 232
80fd744f
RH
233/* Feature tests against the various tunings. */
234enum ix86_tune_indices {
235 X86_TUNE_USE_LEAVE,
236 X86_TUNE_PUSH_MEMORY,
237 X86_TUNE_ZERO_EXTEND_WITH_AND,
238 X86_TUNE_USE_BIT_TEST,
239 X86_TUNE_UNROLL_STRLEN,
240 X86_TUNE_DEEP_BRANCH_PREDICTION,
241 X86_TUNE_BRANCH_PREDICTION_HINTS,
242 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 243 X86_TUNE_USE_SAHF,
80fd744f
RH
244 X86_TUNE_MOVX,
245 X86_TUNE_PARTIAL_REG_STALL,
246 X86_TUNE_PARTIAL_FLAG_REG_STALL,
247 X86_TUNE_USE_HIMODE_FIOP,
248 X86_TUNE_USE_SIMODE_FIOP,
249 X86_TUNE_USE_MOV0,
250 X86_TUNE_USE_CLTD,
251 X86_TUNE_USE_XCHGB,
252 X86_TUNE_SPLIT_LONG_MOVES,
253 X86_TUNE_READ_MODIFY_WRITE,
254 X86_TUNE_READ_MODIFY,
255 X86_TUNE_PROMOTE_QIMODE,
256 X86_TUNE_FAST_PREFIX,
257 X86_TUNE_SINGLE_STRINGOP,
258 X86_TUNE_QIMODE_MATH,
259 X86_TUNE_HIMODE_MATH,
260 X86_TUNE_PROMOTE_QI_REGS,
261 X86_TUNE_PROMOTE_HI_REGS,
262 X86_TUNE_ADD_ESP_4,
263 X86_TUNE_ADD_ESP_8,
264 X86_TUNE_SUB_ESP_4,
265 X86_TUNE_SUB_ESP_8,
266 X86_TUNE_INTEGER_DFMODE_MOVES,
267 X86_TUNE_PARTIAL_REG_DEPENDENCY,
268 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
269 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
270 X86_TUNE_SSE_SPLIT_REGS,
271 X86_TUNE_SSE_TYPELESS_STORES,
272 X86_TUNE_SSE_LOAD0_BY_PXOR,
273 X86_TUNE_MEMORY_MISMATCH_STALL,
274 X86_TUNE_PROLOGUE_USING_MOVE,
275 X86_TUNE_EPILOGUE_USING_MOVE,
276 X86_TUNE_SHIFT1,
277 X86_TUNE_USE_FFREEP,
278 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 279 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
280 X86_TUNE_FOUR_JUMP_LIMIT,
281 X86_TUNE_SCHEDULE,
282 X86_TUNE_USE_BT,
283 X86_TUNE_USE_INCDEC,
284 X86_TUNE_PAD_RETURNS,
285 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
286 X86_TUNE_SHORTEN_X87_SSE,
287 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 288 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
289 X86_TUNE_SLOW_IMUL_IMM32_MEM,
290 X86_TUNE_SLOW_IMUL_IMM8,
291 X86_TUNE_MOVE_M1_VIA_OR,
292 X86_TUNE_NOT_UNPAIRABLE,
293 X86_TUNE_NOT_VECTORMODE,
4e9d897d 294 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 295 X86_TUNE_FUSE_CMP_AND_BRANCH,
80fd744f
RH
296
297 X86_TUNE_LAST
298};
299
ab442df7 300extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
301
302#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
303#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
304#define TARGET_ZERO_EXTEND_WITH_AND \
305 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
306#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
307#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
308#define TARGET_DEEP_BRANCH_PREDICTION \
309 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
310#define TARGET_BRANCH_PREDICTION_HINTS \
311 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
312#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
313#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
314#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
315#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
316#define TARGET_PARTIAL_FLAG_REG_STALL \
317 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
318#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
319#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
320#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
321#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
322#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
323#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
324#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
325#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
326#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
327#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
328#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
329#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
330#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
331#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
332#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
333#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
334#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
335#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
336#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
337#define TARGET_INTEGER_DFMODE_MOVES \
338 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
339#define TARGET_PARTIAL_REG_DEPENDENCY \
340 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
341#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
342 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
343#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
344 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
345#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
346#define TARGET_SSE_TYPELESS_STORES \
347 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
348#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
349#define TARGET_MEMORY_MISMATCH_STALL \
350 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
351#define TARGET_PROLOGUE_USING_MOVE \
352 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
353#define TARGET_EPILOGUE_USING_MOVE \
354 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
355#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
356#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
357#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
358#define TARGET_INTER_UNIT_CONVERSIONS\
359 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
360#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
361#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
362#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
363#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
364#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
365#define TARGET_EXT_80387_CONSTANTS \
366 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
367#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
368#define TARGET_AVOID_VECTOR_DECODE \
369 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
370#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
371 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
372#define TARGET_SLOW_IMUL_IMM32_MEM \
373 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
374#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
375#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
376#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
377#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
354f84af
UB
378#define TARGET_USE_VECTOR_CONVERTS \
379 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
380#define TARGET_FUSE_CMP_AND_BRANCH \
381 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
80fd744f
RH
382
383/* Feature tests against the various architecture variations. */
384enum ix86_arch_indices {
385 X86_ARCH_CMOVE, /* || TARGET_SSE */
386 X86_ARCH_CMPXCHG,
387 X86_ARCH_CMPXCHG8B,
388 X86_ARCH_XADD,
389 X86_ARCH_BSWAP,
390
391 X86_ARCH_LAST
392};
4f3f76e6 393
ab442df7 394extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
395
396#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
397#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
398#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
399#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
400#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
401
402#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
403
404extern int x86_prefetch_sse;
0a1c5e55 405
80fd744f
RH
406#define TARGET_PREFETCH_SSE x86_prefetch_sse
407
80fd744f
RH
408#define ASSEMBLER_DIALECT (ix86_asm_dialect)
409
410#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
411#define TARGET_MIX_SSE_I387 \
412 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
413
414#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
415#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
416#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
417#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 418
0a1c5e55
UB
419extern int ix86_isa_flags;
420
67adf6a9
RH
421#ifndef TARGET_64BIT_DEFAULT
422#define TARGET_64BIT_DEFAULT 0
25f94bb5 423#endif
74dc3e94
RH
424#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
425#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
426#endif
25f94bb5 427
79f5e442
ZD
428/* Fence to use after loop using storent. */
429
430extern tree x86_mfence;
431#define FENCE_FOLLOWING_MOVNT x86_mfence
432
0ed4a390
JL
433/* Once GDB has been enhanced to deal with functions without frame
434 pointers, we can change this to allow for elimination of
435 the frame pointer in leaf functions. */
436#define TARGET_DEFAULT 0
67adf6a9 437
0a1c5e55
UB
438/* Extra bits to force. */
439#define TARGET_SUBTARGET_DEFAULT 0
440#define TARGET_SUBTARGET_ISA_DEFAULT 0
441
442/* Extra bits to force on w/ 32-bit mode. */
443#define TARGET_SUBTARGET32_DEFAULT 0
444#define TARGET_SUBTARGET32_ISA_DEFAULT 0
445
ccf8e764
RH
446/* Extra bits to force on w/ 64-bit mode. */
447#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 448#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 449
b069de3b
SS
450/* This is not really a target flag, but is done this way so that
451 it's analogous to similar code for Mach-O on PowerPC. darwin.h
452 redefines this to 1. */
453#define TARGET_MACHO 0
454
ccf8e764 455/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
456#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
457
458/* Available call abi. */
35cbb299 459enum calling_abi
7c800926
KT
460{
461 SYSV_ABI = 0,
462 MS_ABI = 1
463};
464
465/* The default abi form used by target. */
466#define DEFAULT_ABI SYSV_ABI
ccf8e764 467
cc69336f
RH
468/* Subtargets may reset this to 1 in order to enable 96-bit long double
469 with the rounding mode forced to 53 bits. */
470#define TARGET_96_ROUND_53_LONG_DOUBLE 0
471
f5316dfe
MM
472/* Sometimes certain combinations of command options do not make
473 sense on a particular target machine. You can define a macro
474 `OVERRIDE_OPTIONS' to take account of this. This macro, if
475 defined, is executed once just after all the command options have
476 been parsed.
477
478 Don't use this macro to turn on various extra optimizations for
479 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
480
ab442df7 481#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 482
d4ba09c0 483/* Define this to change the optimizations performed by default. */
d9a5f180
GS
484#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
485 optimization_options ((LEVEL), (SIZE))
d4ba09c0 486
682cd442
GK
487/* -march=native handling only makes sense with compiler running on
488 an x86 or x86_64 chip. If changing this condition, also change
489 the condition in driver-i386.c. */
490#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
491/* In driver-i386.c. */
492extern const char *host_detect_local_cpu (int argc, const char **argv);
493#define EXTRA_SPEC_FUNCTIONS \
494 { "local_cpu_detect", host_detect_local_cpu },
682cd442 495#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
496#endif
497
8981c15b
JM
498#if TARGET_64BIT_DEFAULT
499#define OPT_ARCH64 "!m32"
500#define OPT_ARCH32 "m32"
501#else
502#define OPT_ARCH64 "m64"
503#define OPT_ARCH32 "!m64"
504#endif
505
1cba2b96
EC
506/* Support for configure-time defaults of some command line options.
507 The order here is important so that -march doesn't squash the
508 tune or cpu values. */
ce998900 509#define OPTION_DEFAULT_SPECS \
da2d4c01 510 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
511 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
512 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
514 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
515 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
516 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
517 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
518 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 519
241e1a89
SC
520/* Specs for the compiler proper */
521
628714d8 522#ifndef CC1_CPU_SPEC
fa959ce4 523#define CC1_CPU_SPEC_1 "\
9d913bbf 524%{mcpu=*:-mtune=%* \
d347d4c7 525%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 526%<mcpu=* \
c93e80a5
JH
527%{mintel-syntax:-masm=intel \
528%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
529%{mno-intel-syntax:-masm=att \
530%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 531
682cd442 532#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
533#define CC1_CPU_SPEC CC1_CPU_SPEC_1
534#else
535#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
536"%{march=native:%<march=native %:local_cpu_detect(arch) \
537 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
538%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
539#endif
241e1a89 540#endif
c98f8742 541\f
30efe578 542/* Target CPU builtins. */
ab442df7
MM
543#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
544
545/* Target Pragmas. */
546#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 547
c2f17e19
UB
548enum target_cpu_default
549{
550 TARGET_CPU_DEFAULT_generic = 0,
551
552 TARGET_CPU_DEFAULT_i386,
553 TARGET_CPU_DEFAULT_i486,
554 TARGET_CPU_DEFAULT_pentium,
555 TARGET_CPU_DEFAULT_pentium_mmx,
556 TARGET_CPU_DEFAULT_pentiumpro,
557 TARGET_CPU_DEFAULT_pentium2,
558 TARGET_CPU_DEFAULT_pentium3,
559 TARGET_CPU_DEFAULT_pentium4,
560 TARGET_CPU_DEFAULT_pentium_m,
561 TARGET_CPU_DEFAULT_prescott,
562 TARGET_CPU_DEFAULT_nocona,
563 TARGET_CPU_DEFAULT_core2,
564
565 TARGET_CPU_DEFAULT_geode,
566 TARGET_CPU_DEFAULT_k6,
567 TARGET_CPU_DEFAULT_k6_2,
568 TARGET_CPU_DEFAULT_k6_3,
569 TARGET_CPU_DEFAULT_athlon,
570 TARGET_CPU_DEFAULT_athlon_sse,
571 TARGET_CPU_DEFAULT_k8,
572 TARGET_CPU_DEFAULT_amdfam10,
573
574 TARGET_CPU_DEFAULT_max
575};
0c2dc519 576
628714d8 577#ifndef CC1_SPEC
8015b78d 578#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
579#endif
580
581/* This macro defines names of additional specifications to put in the
582 specs that can be used in various specifications like CC1_SPEC. Its
583 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
584
585 Each subgrouping contains a string constant, that defines the
188fc5b5 586 specification name, and a string constant that used by the GCC driver
bcd86433
SC
587 program.
588
589 Do not define this macro if it does not need to do anything. */
590
591#ifndef SUBTARGET_EXTRA_SPECS
592#define SUBTARGET_EXTRA_SPECS
593#endif
594
595#define EXTRA_SPECS \
628714d8 596 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
597 SUBTARGET_EXTRA_SPECS
598\f
ce998900 599
d57a4b98
RH
600/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
601 FPU, assume that the fpcw is set to extended precision; when using
602 only SSE, rounding is correct; when using both SSE and the FPU,
603 the rounding precision is indeterminate, since either may be chosen
604 apparently at random. */
605#define TARGET_FLT_EVAL_METHOD \
5ccd517a 606 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 607
979c67a5
UB
608/* target machine storage layout */
609
65d9c0ab
JH
610#define SHORT_TYPE_SIZE 16
611#define INT_TYPE_SIZE 32
612#define FLOAT_TYPE_SIZE 32
613#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
614#define DOUBLE_TYPE_SIZE 64
615#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
616#define LONG_DOUBLE_TYPE_SIZE 80
617
618#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 619
67adf6a9 620#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 621#define MAX_BITS_PER_WORD 64
0c2dc519
JH
622#else
623#define MAX_BITS_PER_WORD 32
0c2dc519
JH
624#endif
625
c98f8742
JVA
626/* Define this if most significant byte of a word is the lowest numbered. */
627/* That is true on the 80386. */
628
629#define BITS_BIG_ENDIAN 0
630
631/* Define this if most significant byte of a word is the lowest numbered. */
632/* That is not true on the 80386. */
633#define BYTES_BIG_ENDIAN 0
634
635/* Define this if most significant word of a multiword number is the lowest
636 numbered. */
637/* Not true for 80386 */
638#define WORDS_BIG_ENDIAN 0
639
c98f8742 640/* Width of a word, in units (bytes). */
65d9c0ab 641#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
642#ifdef IN_LIBGCC2
643#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
644#else
645#define MIN_UNITS_PER_WORD 4
646#endif
c98f8742 647
c98f8742 648/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 649#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 650
e075ae69 651/* Boundary (in *bits*) on which stack pointer should be aligned. */
7c800926
KT
652#define STACK_BOUNDARY (TARGET_64BIT && DEFAULT_ABI == MS_ABI ? 128 \
653 : BITS_PER_WORD)
c98f8742 654
2e3f842f
L
655/* Stack boundary of the main function guaranteed by OS. */
656#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
657
de1132d1
L
658/* Minimum stack boundary. */
659#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 660
d1f87653 661/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 662 aligned; the compiler cannot rely on having this alignment. */
e075ae69 663#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 664
de1132d1 665/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
666 both 32bit and 64bit, to support codes that need 128 bit stack
667 alignment for SSE instructions, but can't realign the stack. */
668#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
669
670/* 1 if -mstackrealign should be turned on by default. It will
671 generate an alternate prologue and epilogue that realigns the
672 runtime stack if nessary. This supports mixing codes that keep a
673 4-byte aligned stack, as specified by i386 psABI, with codes that
674 need a 16-byte aligned stack, as required by SSE instructions. If
675 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
676 128, stacks for all functions may be realigned. */
677#define STACK_REALIGN_DEFAULT 0
678
679/* Boundary (in *bits*) on which the incoming stack is aligned. */
680#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 681
ebff937c
SH
682/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
683 mandatory for the 64-bit ABI, and may or may not be true for other
684 operating systems. */
685#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
686
f963b5d9
RS
687/* Minimum allocation boundary for the code of a function. */
688#define FUNCTION_BOUNDARY 8
689
690/* C++ stores the virtual bit in the lowest bit of function pointers. */
691#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 692
892a2d68 693/* Alignment of field after `int : 0' in a structure. */
c98f8742 694
65d9c0ab 695#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
696
697/* Minimum size in bits of the largest boundary to which any
698 and all fundamental data types supported by the hardware
699 might need to be aligned. No data type wants to be aligned
17f24ff0 700 rounder than this.
fce5a9f2 701
d1f87653 702 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
703 and Pentium Pro XFmode values at 128 bit boundaries. */
704
705#define BIGGEST_ALIGNMENT 128
706
2e3f842f
L
707/* Maximum stack alignment. */
708#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
709
822eda12 710/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 711#define ALIGN_MODE_128(MODE) \
4501d314 712 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 713
17f24ff0 714/* The published ABIs say that doubles should be aligned on word
d1f87653 715 boundaries, so lower the alignment for structure fields unless
6fc605d8 716 -malign-double is set. */
e932b21b 717
e83f3cff
RH
718/* ??? Blah -- this macro is used directly by libobjc. Since it
719 supports no vector modes, cut out the complexity and fall back
720 on BIGGEST_FIELD_ALIGNMENT. */
721#ifdef IN_TARGET_LIBS
ef49d42e
JH
722#ifdef __x86_64__
723#define BIGGEST_FIELD_ALIGNMENT 128
724#else
e83f3cff 725#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 726#endif
e83f3cff 727#else
e932b21b
JH
728#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
729 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 730#endif
c98f8742 731
e5e8a8bf 732/* If defined, a C expression to compute the alignment given to a
a7180f70 733 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
734 and ALIGN is the alignment that the object would ordinarily have.
735 The value of this macro is used instead of that alignment to align
736 the object.
737
738 If this macro is not defined, then ALIGN is used.
739
740 The typical use of this macro is to increase alignment for string
741 constants to be word aligned so that `strcpy' calls that copy
742 constants can be done inline. */
743
d9a5f180 744#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 745
8a022443
JW
746/* If defined, a C expression to compute the alignment for a static
747 variable. TYPE is the data type, and ALIGN is the alignment that
748 the object would ordinarily have. The value of this macro is used
749 instead of that alignment to align the object.
750
751 If this macro is not defined, then ALIGN is used.
752
753 One use of this macro is to increase alignment of medium-size
754 data to make it all fit in fewer cache lines. Another is to
755 cause character arrays to be word-aligned so that `strcpy' calls
756 that copy constants to character arrays can be done inline. */
757
d9a5f180 758#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
759
760/* If defined, a C expression to compute the alignment for a local
761 variable. TYPE is the data type, and ALIGN is the alignment that
762 the object would ordinarily have. The value of this macro is used
763 instead of that alignment to align the object.
764
765 If this macro is not defined, then ALIGN is used.
766
767 One use of this macro is to increase alignment of medium-size
768 data to make it all fit in fewer cache lines. */
769
76fe54f0
L
770#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
771 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
772
773/* If defined, a C expression to compute the alignment for stack slot.
774 TYPE is the data type, MODE is the widest mode available, and ALIGN
775 is the alignment that the slot would ordinarily have. The value of
776 this macro is used instead of that alignment to align the slot.
777
778 If this macro is not defined, then ALIGN is used when TYPE is NULL,
779 Otherwise, LOCAL_ALIGNMENT will be used.
780
781 One use of this macro is to set alignment of stack slot to the
782 maximum alignment of all possible modes which the slot may have. */
783
784#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
785 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 786
53c17031
JH
787/* If defined, a C expression that gives the alignment boundary, in
788 bits, of an argument with the specified mode and type. If it is
789 not defined, `PARM_BOUNDARY' is used for all arguments. */
790
d9a5f180
GS
791#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
792 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 793
9cd10576 794/* Set this nonzero if move instructions will actually fail to work
c98f8742 795 when given unaligned data. */
b4ac57ab 796#define STRICT_ALIGNMENT 0
c98f8742
JVA
797
798/* If bit field type is int, don't let it cross an int,
799 and give entire struct the alignment of an int. */
43a88a8c 800/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 801#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
802\f
803/* Standard register usage. */
804
805/* This processor has special stack-like registers. See reg-stack.c
892a2d68 806 for details. */
c98f8742
JVA
807
808#define STACK_REGS
ce998900 809
d9a5f180 810#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
811 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
812 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
813 || (MODE) == XFmode)
c98f8742
JVA
814
815/* Number of actual hardware registers.
816 The hardware registers are assigned numbers for the compiler
817 from 0 to just below FIRST_PSEUDO_REGISTER.
818 All registers that the compiler knows about must be given numbers,
819 even those that are not normally considered general registers.
820
821 In the 80386 we give the 8 general purpose registers the numbers 0-7.
822 We number the floating point registers 8-15.
823 Note that registers 0-7 can be accessed as a short or int,
824 while only 0-3 may be used with byte `mov' instructions.
825
826 Reg 16 does not correspond to any hardware register, but instead
827 appears in the RTL as an argument pointer prior to reload, and is
828 eliminated during reloading in favor of either the stack or frame
892a2d68 829 pointer. */
c98f8742 830
b0d95de8 831#define FIRST_PSEUDO_REGISTER 53
c98f8742 832
3073d01c
ML
833/* Number of hardware registers that go into the DWARF-2 unwind info.
834 If not defined, equals FIRST_PSEUDO_REGISTER. */
835
836#define DWARF_FRAME_REGISTERS 17
837
c98f8742
JVA
838/* 1 for registers that have pervasive standard uses
839 and are not available for the register allocator.
3f3f2124 840 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 841
3a4416fb
RS
842 The value is zero if the register is not fixed on either 32 or
843 64 bit targets, one if the register if fixed on both 32 and 64
844 bit targets, two if it is only fixed on 32bit targets and three
845 if its only fixed on 64bit targets.
846 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 847 */
a7180f70
BS
848#define FIXED_REGISTERS \
849/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 850{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
851/*arg,flags,fpsr,fpcr,frame*/ \
852 1, 1, 1, 1, 1, \
a7180f70
BS
853/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
854 0, 0, 0, 0, 0, 0, 0, 0, \
855/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
856 0, 0, 0, 0, 0, 0, 0, 0, \
857/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 858 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 859/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 860 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 861
c98f8742
JVA
862
863/* 1 for registers not available across function calls.
864 These must include the FIXED_REGISTERS and also any
865 registers that can be used without being saved.
866 The latter must include the registers where values are returned
867 and the register where structure-value addresses are passed.
fce5a9f2
EC
868 Aside from that, you can include as many other registers as you like.
869
9d72d996
JJ
870 The value is zero if the register is not call used on either 32 or
871 64 bit targets, one if the register if call used on both 32 and 64
872 bit targets, two if it is only call used on 32bit targets and three
873 if its only call used on 64bit targets.
3a4416fb 874 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 875*/
a7180f70
BS
876#define CALL_USED_REGISTERS \
877/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 878{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
879/*arg,flags,fpsr,fpcr,frame*/ \
880 1, 1, 1, 1, 1, \
a7180f70 881/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 882 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 883/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 884 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 885/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 886 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 887/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 888 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 889
3b3c6a3f
MM
890/* Order in which to allocate registers. Each register must be
891 listed once, even those in FIXED_REGISTERS. List frame pointer
892 late and fixed registers last. Note that, in general, we prefer
893 registers listed in CALL_USED_REGISTERS, keeping the others
894 available for storage of persistent values.
895
162f023b
JH
896 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
897 so this is just empty initializer for array. */
3b3c6a3f 898
162f023b
JH
899#define REG_ALLOC_ORDER \
900{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
901 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
902 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 903 48, 49, 50, 51, 52 }
3b3c6a3f 904
162f023b
JH
905/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
906 to be rearranged based on a particular function. When using sse math,
03c259ad 907 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 908
162f023b 909#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 910
f5316dfe 911
7c800926
KT
912#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
913
c98f8742 914/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 915#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 916do { \
3f3f2124 917 int i; \
b0fede98 918 unsigned int j; \
3f3f2124
JH
919 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
920 { \
3a4416fb
RS
921 if (fixed_regs[i] > 1) \
922 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
923 if (call_used_regs[i] > 1) \
924 call_used_regs[i] = (call_used_regs[i] \
925 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 926 } \
b0fede98 927 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 928 if (j != INVALID_REGNUM) \
a7180f70 929 { \
7706ca5d
L
930 fixed_regs[j] = 1; \
931 call_used_regs[j] = 1; \
a7180f70
BS
932 } \
933 if (! TARGET_MMX) \
934 { \
935 int i; \
936 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
937 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 938 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
939 } \
940 if (! TARGET_SSE) \
941 { \
942 int i; \
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
944 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 945 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
946 } \
947 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
948 { \
949 int i; \
950 HARD_REG_SET x; \
951 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
953 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
954 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
955 } \
956 if (! TARGET_64BIT) \
957 { \
958 int i; \
959 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
960 reg_names[i] = ""; \
961 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
962 reg_names[i] = ""; \
a7180f70 963 } \
7c800926 964 if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) \
d29899ba
KT
965 { \
966 call_used_regs[4 /*RSI*/] = 0; \
967 call_used_regs[5 /*RDI*/] = 0; \
968 } \
d9a5f180 969 } while (0)
c98f8742
JVA
970
971/* Return number of consecutive hard regs needed starting at reg REGNO
972 to hold something of mode MODE.
973 This is ordinarily the length in words of a value of mode MODE
974 but can be less for certain modes in special long registers.
975
fce5a9f2 976 Actually there are no two word move instructions for consecutive
c98f8742
JVA
977 registers. And only registers 0-3 may have mov byte instructions
978 applied to them.
979 */
980
ce998900 981#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
982 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
983 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 984 : ((MODE) == XFmode \
92d0fb09 985 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 986 : (MODE) == XCmode \
92d0fb09 987 ? (TARGET_64BIT ? 4 : 6) \
2b589241 988 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 989
8521c414
JM
990#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
991 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
992 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
993 ? 0 \
994 : ((MODE) == XFmode || (MODE) == XCmode)) \
995 : 0)
996
997#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
998
ce998900
UB
999#define VALID_SSE2_REG_MODE(MODE) \
1000 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1001 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1002
d9a5f180 1003#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1004 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1005 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1006
47f339cf 1007#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1008 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1009
d9a5f180 1010#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1011 ((MODE == V1DImode) || (MODE) == DImode \
1012 || (MODE) == V2SImode || (MODE) == SImode \
1013 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1014
accde4cf
RH
1015/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1016 place emms and femms instructions. */
9d3a9de1 1017#define UNITS_PER_SIMD_WORD(MODE) (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1018
ce998900
UB
1019#define VALID_DFP_MODE_P(MODE) \
1020 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1021
d9a5f180 1022#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1023 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1024 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1025
d9a5f180 1026#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1027 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1028 || (MODE) == DImode \
1029 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1030 || (MODE) == CDImode \
1031 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1032 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1033
822eda12 1034/* Return true for modes passed in SSE registers. */
ce998900
UB
1035#define SSE_REG_MODE_P(MODE) \
1036 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1037 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1038 || (MODE) == V4SFmode || (MODE) == V4SImode)
1039
e075ae69 1040/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1041
a946dd00 1042#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1043 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1044
1045/* Value is 1 if it is a good idea to tie two pseudo registers
1046 when one has mode MODE1 and one has mode MODE2.
1047 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1048 for any hard reg, then this must be 0 for correct output. */
1049
c1c5b5e3 1050#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1051
ff25ef99
ZD
1052/* It is possible to write patterns to move flags; but until someone
1053 does it, */
1054#define AVOID_CCMODE_COPIES
c98f8742 1055
e075ae69 1056/* Specify the modes required to caller save a given hard regno.
787dc842 1057 We do this on i386 to prevent flags from being saved at all.
e075ae69 1058
787dc842
JH
1059 Kill any attempts to combine saving of modes. */
1060
d9a5f180
GS
1061#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1062 (CC_REGNO_P (REGNO) ? VOIDmode \
1063 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1064 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180
GS
1065 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1066 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1067 : (MODE))
ce998900 1068
c98f8742
JVA
1069/* Specify the registers used for certain standard purposes.
1070 The values of these macros are register numbers. */
1071
1072/* on the 386 the pc register is %eip, and is not usable as a general
1073 register. The ordinary mov instructions won't work */
1074/* #define PC_REGNUM */
1075
1076/* Register to use for pushing function arguments. */
1077#define STACK_POINTER_REGNUM 7
1078
1079/* Base register for access to local variables of the function. */
564d80f4
JH
1080#define HARD_FRAME_POINTER_REGNUM 6
1081
1082/* Base register for access to local variables of the function. */
b0d95de8 1083#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1084
1085/* First floating point reg */
1086#define FIRST_FLOAT_REG 8
1087
1088/* First & last stack-like regs */
1089#define FIRST_STACK_REG FIRST_FLOAT_REG
1090#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1091
a7180f70
BS
1092#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1093#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1094
a7180f70
BS
1095#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1096#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1097
3f3f2124
JH
1098#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1099#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1100
1101#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1102#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1103
c98f8742
JVA
1104/* Value should be nonzero if functions must have frame pointers.
1105 Zero means the frame pointer need not be set up (and parms
1106 may be accessed via the stack pointer) in functions that seem suitable.
1107 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1108#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1109
aabcd309 1110/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1111 requiring a frame pointer. */
1112#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1113#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1114#endif
1115
1116/* Make sure we can access arbitrary call frames. */
1117#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1118
1119/* Base register for access to arguments of the function. */
1120#define ARG_POINTER_REGNUM 16
1121
d2836273
JH
1122/* Register in which static-chain is passed to a function.
1123 We do use ECX as static chain register for 32 bit ABI. On the
1124 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1125#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1126
1127/* Register to hold the addressing base for position independent
5b43fed1
RH
1128 code access to data items. We don't use PIC pointer for 64bit
1129 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1130 pessimizing code dealing with EBX.
bd09bdeb
RH
1131
1132 To avoid clobbering a call-saved register unnecessarily, we renumber
1133 the pic register when possible. The change is visible after the
1134 prologue has been emitted. */
1135
2e3f842f 1136#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1137
1138#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1139 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1140 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1141 : reload_completed ? REGNO (pic_offset_table_rtx) \
1142 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1143
5fc0e5df
KW
1144#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1145
c51e6d85 1146/* This is overridden by <cygwin.h>. */
5e062767
DS
1147#define MS_AGGREGATE_RETURN 0
1148
61fec9ff
JB
1149/* This is overridden by <netware.h>. */
1150#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1151\f
1152/* Define the classes of registers for register constraints in the
1153 machine description. Also define ranges of constants.
1154
1155 One of the classes must always be named ALL_REGS and include all hard regs.
1156 If there is more than one class, another class must be named NO_REGS
1157 and contain no registers.
1158
1159 The name GENERAL_REGS must be the name of a class (or an alias for
1160 another name such as ALL_REGS). This is the class of registers
1161 that is allowed by "g" or "r" in a register constraint.
1162 Also, registers outside this class are allocated only when
1163 instructions express preferences for them.
1164
1165 The classes must be numbered in nondecreasing order; that is,
1166 a larger-numbered class must never be contained completely
1167 in a smaller-numbered class.
1168
1169 For any two classes, it is very desirable that there be another
ab408a86
JVA
1170 class that represents their union.
1171
1172 It might seem that class BREG is unnecessary, since no useful 386
1173 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1174 and the "b" register constraint is useful in asms for syscalls.
1175
03c259ad 1176 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1177
1178enum reg_class
1179{
1180 NO_REGS,
e075ae69 1181 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1182 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1183 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1184 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1185 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1186 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1187 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1188 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1189 FLOAT_REGS,
06f4e35d 1190 SSE_FIRST_REG,
a7180f70
BS
1191 SSE_REGS,
1192 MMX_REGS,
446988df
JH
1193 FP_TOP_SSE_REGS,
1194 FP_SECOND_SSE_REGS,
1195 FLOAT_SSE_REGS,
1196 FLOAT_INT_REGS,
1197 INT_SSE_REGS,
1198 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1199 ALL_REGS, LIM_REG_CLASSES
1200};
1201
d9a5f180
GS
1202#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1203
1204#define INTEGER_CLASS_P(CLASS) \
1205 reg_class_subset_p ((CLASS), GENERAL_REGS)
1206#define FLOAT_CLASS_P(CLASS) \
1207 reg_class_subset_p ((CLASS), FLOAT_REGS)
1208#define SSE_CLASS_P(CLASS) \
06f4e35d 1209 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1210#define MMX_CLASS_P(CLASS) \
f75959a6 1211 ((CLASS) == MMX_REGS)
d9a5f180
GS
1212#define MAYBE_INTEGER_CLASS_P(CLASS) \
1213 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1214#define MAYBE_FLOAT_CLASS_P(CLASS) \
1215 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1216#define MAYBE_SSE_CLASS_P(CLASS) \
1217 reg_classes_intersect_p (SSE_REGS, (CLASS))
1218#define MAYBE_MMX_CLASS_P(CLASS) \
1219 reg_classes_intersect_p (MMX_REGS, (CLASS))
1220
1221#define Q_CLASS_P(CLASS) \
1222 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1223
43f3a59d 1224/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1225
1226#define REG_CLASS_NAMES \
1227{ "NO_REGS", \
ab408a86 1228 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1229 "SIREG", "DIREG", \
e075ae69
RH
1230 "AD_REGS", \
1231 "Q_REGS", "NON_Q_REGS", \
c98f8742 1232 "INDEX_REGS", \
3f3f2124 1233 "LEGACY_REGS", \
c98f8742
JVA
1234 "GENERAL_REGS", \
1235 "FP_TOP_REG", "FP_SECOND_REG", \
1236 "FLOAT_REGS", \
cb482895 1237 "SSE_FIRST_REG", \
a7180f70
BS
1238 "SSE_REGS", \
1239 "MMX_REGS", \
446988df
JH
1240 "FP_TOP_SSE_REGS", \
1241 "FP_SECOND_SSE_REGS", \
1242 "FLOAT_SSE_REGS", \
8fcaaa80 1243 "FLOAT_INT_REGS", \
446988df
JH
1244 "INT_SSE_REGS", \
1245 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1246 "ALL_REGS" }
1247
1248/* Define which registers fit in which classes.
1249 This is an initializer for a vector of HARD_REG_SET
1250 of length N_REG_CLASSES. */
1251
a7180f70 1252#define REG_CLASS_CONTENTS \
3f3f2124
JH
1253{ { 0x00, 0x0 }, \
1254 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1255 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1256 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1257 { 0x03, 0x0 }, /* AD_REGS */ \
1258 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1259 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1260 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1261 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1262 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1263 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1264 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1265 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1266{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1267{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1268{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1269{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1270{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1271 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1272{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1273{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1274{ 0xffffffff,0x1fffff } \
e075ae69 1275}
c98f8742 1276
058e97ec
VM
1277/* The following macro defines cover classes for Integrated Register
1278 Allocator. Cover classes is a set of non-intersected register
1279 classes covering all hard registers used for register allocation
1280 purpose. Any move between two registers of a cover class should be
1281 cheaper than load or store of the registers. The macro value is
1282 array of register classes with LIM_REG_CLASSES used as the end
1283 marker. */
1284
1285#define IRA_COVER_CLASSES \
1286{ \
1287 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1288}
1289
c98f8742
JVA
1290/* The same information, inverted:
1291 Return the class number of the smallest class containing
1292 reg number REGNO. This could be a conditional expression
1293 or could index an array. */
1294
c98f8742
JVA
1295#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1296
1297/* When defined, the compiler allows registers explicitly used in the
1298 rtl to be used as spill registers but prevents the compiler from
892a2d68 1299 extending the lifetime of these registers. */
c98f8742 1300
2922fe9e 1301#define SMALL_REGISTER_CLASSES 1
c98f8742 1302
fb84c7a0 1303#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1304
d9a5f180 1305#define GENERAL_REGNO_P(N) \
fb84c7a0 1306 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1307
1308#define GENERAL_REG_P(X) \
6189a572 1309 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1310
1311#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1312
fb84c7a0
UB
1313#define REX_INT_REGNO_P(N) \
1314 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1315#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1316
c98f8742 1317#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1318#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1319#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1320#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1321
54a88090 1322#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1323 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1324
fb84c7a0
UB
1325#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1326#define SSE_REGNO_P(N) \
1327 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1328 || REX_SSE_REGNO_P (N))
3f3f2124 1329
4977bab6 1330#define REX_SSE_REGNO_P(N) \
fb84c7a0 1331 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1332
d9a5f180
GS
1333#define SSE_REGNO(N) \
1334 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1335
d9a5f180 1336#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1337 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1338
d6023b50
UB
1339#define SSE_VEC_FLOAT_MODE_P(MODE) \
1340 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1341
d9a5f180 1342#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1343#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1344
fb84c7a0 1345#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1346#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1347
d9a5f180 1348#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1349
e075ae69
RH
1350#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1351#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1352
c98f8742
JVA
1353/* The class value for index registers, and the one for base regs. */
1354
1355#define INDEX_REG_CLASS INDEX_REGS
1356#define BASE_REG_CLASS GENERAL_REGS
1357
c98f8742 1358/* Place additional restrictions on the register class to use when it
4cbb525c 1359 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1360 register for which class CLASS would ordinarily be used. */
c98f8742 1361
d2836273
JH
1362#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1363 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1364 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1365 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1366 ? Q_REGS : (CLASS))
1367
1368/* Given an rtx X being reloaded into a reg required to be
1369 in class CLASS, return the class of reg to actually use.
1370 In general this is just CLASS; but on some machines
1371 in some cases it is preferable to use a more restrictive class.
1372 On the 80386 series, we prevent floating constants from being
1373 reloaded into floating registers (since no move-insn can do that)
1374 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1375
d398b3b1 1376/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1377 QImode must go into class Q_REGS.
d398b3b1 1378 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1379 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1380
d9a5f180
GS
1381#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1382 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1383
b5c82fa1
PB
1384/* Discourage putting floating-point values in SSE registers unless
1385 SSE math is being used, and likewise for the 387 registers. */
1386
1387#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1388 ix86_preferred_output_reload_class ((X), (CLASS))
1389
85ff473e 1390/* If we are copying between general and FP registers, we need a memory
f84aa48a 1391 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1392#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1393 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1394
c62b3659
UB
1395/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1396 There is no need to emit full 64 bit move on 64 bit targets
1397 for integral modes that can be moved using 32 bit move. */
1398#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1399 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1400 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1401 : MODE)
1402
c98f8742
JVA
1403/* Return the maximum number of consecutive registers
1404 needed to represent mode MODE in a register of class CLASS. */
1405/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1406 except in the FP regs, where a single reg is always enough. */
a7180f70 1407#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1408 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1409 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1410 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1411 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1412
1413/* A C expression whose value is nonzero if pseudos that have been
1414 assigned to registers of class CLASS would likely be spilled
1415 because registers of CLASS are needed for spill registers.
1416
1417 The default value of this macro returns 1 if CLASS has exactly one
1418 register and zero otherwise. On most machines, this default
1419 should be used. Only define this macro to some other expression
1420 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1421 their hard registers were needed for spill registers. If this
f5316dfe
MM
1422 macro returns nonzero for those classes, those pseudos will only
1423 be allocated by `global.c', which knows how to reallocate the
1424 pseudo to another register. If there would not be another
1425 register available for reallocation, you should not change the
1426 definition of this macro since the only effect of such a
1427 definition would be to slow down register allocation. */
1428
1429#define CLASS_LIKELY_SPILLED_P(CLASS) \
1430 (((CLASS) == AREG) \
1431 || ((CLASS) == DREG) \
1432 || ((CLASS) == CREG) \
1433 || ((CLASS) == BREG) \
1434 || ((CLASS) == AD_REGS) \
1435 || ((CLASS) == SIREG) \
b0af5c03
JH
1436 || ((CLASS) == DIREG) \
1437 || ((CLASS) == FP_TOP_REG) \
1438 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1439
1272914c
RH
1440/* Return a class of registers that cannot change FROM mode to TO mode. */
1441
1442#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1443 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1444\f
1445/* Stack layout; function entry, exit and calling. */
1446
1447/* Define this if pushing a word on the stack
1448 makes the stack pointer a smaller address. */
1449#define STACK_GROWS_DOWNWARD
1450
a4d05547 1451/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1452 is at the high-address end of the local variables;
1453 that is, each additional local variable allocated
1454 goes at a more negative offset in the frame. */
f62c8a5c 1455#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1456
1457/* Offset within stack frame to start allocating local variables at.
1458 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1459 first local allocated. Otherwise, it is the offset to the BEGINNING
1460 of the first local allocated. */
1461#define STARTING_FRAME_OFFSET 0
1462
1463/* If we generate an insn to push BYTES bytes,
1464 this says how many the stack pointer really advances by.
6541fe75
JJ
1465 On 386, we have pushw instruction that decrements by exactly 2 no
1466 matter what the position was, there is no pushb.
1467 But as CIE data alignment factor on this arch is -4, we need to make
1468 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1469
d2836273
JH
1470 For 64bit ABI we round up to 8 bytes.
1471 */
c98f8742 1472
d2836273
JH
1473#define PUSH_ROUNDING(BYTES) \
1474 (TARGET_64BIT \
1475 ? (((BYTES) + 7) & (-8)) \
6541fe75 1476 : (((BYTES) + 3) & (-4)))
c98f8742 1477
f73ad30e
JH
1478/* If defined, the maximum amount of space required for outgoing arguments will
1479 be computed and placed into the variable
38173d38 1480 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e
JH
1481 stack for each call; instead, the function prologue should increase the stack
1482 frame size by this amount. */
1483
1484#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1485
1486/* If defined, a C expression whose value is nonzero when we want to use PUSH
1487 instructions to pass outgoing arguments. */
1488
1489#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1490
2da4124d
L
1491/* We want the stack and args grow in opposite directions, even if
1492 PUSH_ARGS is 0. */
1493#define PUSH_ARGS_REVERSED 1
1494
c98f8742
JVA
1495/* Offset of first parameter from the argument pointer register value. */
1496#define FIRST_PARM_OFFSET(FNDECL) 0
1497
a7180f70
BS
1498/* Define this macro if functions should assume that stack space has been
1499 allocated for arguments even when their values are passed in registers.
1500
1501 The value of this macro is the size, in bytes, of the area reserved for
1502 arguments passed in registers for the function represented by FNDECL.
1503
1504 This space can be allocated by the caller, or be a part of the
1505 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1506 which. */
7c800926
KT
1507#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1508
1509#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) (ix86_function_type_abi (FNTYPE) == MS_ABI ? 1 : 0)
1510
c98f8742
JVA
1511/* Value is the number of bytes of arguments automatically
1512 popped when returning from a subroutine call.
8b109b37 1513 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1514 FUNTYPE is the data type of the function (as a tree),
1515 or for a library call it is an identifier node for the subroutine name.
1516 SIZE is the number of bytes of arguments passed on the stack.
1517
1518 On the 80386, the RTD insn may be used to pop them if the number
1519 of args is fixed, but if the number is variable then the caller
1520 must pop them all. RTD can't be used for library calls now
1521 because the library is compiled with the Unix compiler.
1522 Use of RTD is a selectable option, since it is incompatible with
1523 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1524 the caller must always pop the args.
1525
1526 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1527
d9a5f180
GS
1528#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1529 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1530
53c17031
JH
1531#define FUNCTION_VALUE_REGNO_P(N) \
1532 ix86_function_value_regno_p (N)
c98f8742
JVA
1533
1534/* Define how to find the value returned by a library function
1535 assuming the value has mode MODE. */
1536
1537#define LIBCALL_VALUE(MODE) \
53c17031 1538 ix86_libcall_value (MODE)
c98f8742 1539
e9125c09
TW
1540/* Define the size of the result block used for communication between
1541 untyped_call and untyped_return. The block contains a DImode value
1542 followed by the block used by fnsave and frstor. */
1543
1544#define APPLY_RESULT_SIZE (8+108)
1545
b08de47e 1546/* 1 if N is a possible register number for function argument passing. */
53c17031 1547#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1548
1549/* Define a data type for recording info about an argument list
1550 during the scan of that argument list. This data type should
1551 hold all necessary information about the function itself
1552 and about the args processed so far, enough to enable macros
b08de47e 1553 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1554
e075ae69 1555typedef struct ix86_args {
fa283935 1556 int words; /* # words passed so far */
b08de47e
MM
1557 int nregs; /* # registers available for passing */
1558 int regno; /* next available register number */
9d72d996 1559 int fastcall; /* fastcall calling convention is used */
fa283935 1560 int sse_words; /* # sse words passed so far */
a7180f70 1561 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1562 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1563 int warn_mmx; /* True when we want to warn about MMX ABI. */
1564 int sse_regno; /* next available sse register number */
1565 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1566 int mmx_nregs; /* # mmx registers available for passing */
1567 int mmx_regno; /* next available mmx register number */
892a2d68 1568 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1569 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1570 be passed in SSE registers. Otherwise 0. */
7c800926
KT
1571 int call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1572 MS_ABI for ms abi. */
b08de47e 1573} CUMULATIVE_ARGS;
c98f8742
JVA
1574
1575/* Initialize a variable CUM of type CUMULATIVE_ARGS
1576 for a call to a function whose data type is FNTYPE.
b08de47e 1577 For a library call, FNTYPE is 0. */
c98f8742 1578
0f6937fe 1579#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1580 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1581
1582/* Update the data in CUM to advance over an argument
1583 of mode MODE and data type TYPE.
1584 (TYPE is null for libcalls where that information may not be available.) */
1585
d9a5f180
GS
1586#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1587 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1588
1589/* Define where to put the arguments to a function.
1590 Value is zero to push the argument on the stack,
1591 or a hard register in which to store the argument.
1592
1593 MODE is the argument's machine mode.
1594 TYPE is the data type of the argument (as a tree).
1595 This is null for libcalls where that information may
1596 not be available.
1597 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1598 the preceding args and about the function being called.
1599 NAMED is nonzero if this argument is a named parameter
1600 (otherwise it is an extra parameter matching an ellipsis). */
1601
c98f8742 1602#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1603 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1604
a5fe455b
ZW
1605#define TARGET_ASM_FILE_END ix86_file_end
1606#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1607
c98f8742
JVA
1608/* Output assembler code to FILE to increment profiler label # LABELNO
1609 for profiling a function entry. */
1610
a5fa1ecd
JH
1611#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1612
1613#define MCOUNT_NAME "_mcount"
1614
1615#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1616
1617/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1618 the stack pointer does not matter. The value is tested only in
1619 functions that have frame pointers.
1620 No definition is equivalent to always zero. */
fce5a9f2 1621/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1622 we have to restore it ourselves from the frame pointer, in order to
1623 use pop */
1624
1625#define EXIT_IGNORE_STACK 1
1626
c98f8742
JVA
1627/* Output assembler code for a block containing the constant parts
1628 of a trampoline, leaving space for the variable parts. */
1629
a269a03c 1630/* On the 386, the trampoline contains two instructions:
c98f8742 1631 mov #STATIC,ecx
a269a03c
JC
1632 jmp FUNCTION
1633 The trampoline is generated entirely at runtime. The operand of JMP
1634 is the address of FUNCTION relative to the instruction following the
1635 JMP (which is 5 bytes long). */
c98f8742
JVA
1636
1637/* Length in units of the trampoline for entering a nested function. */
1638
39d04363 1639#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1640
1641/* Emit RTL insns to initialize the variable parts of a trampoline.
1642 FNADDR is an RTX for the address of the function's pure code.
1643 CXT is an RTX for the static chain value for the function. */
1644
d9a5f180
GS
1645#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1646 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1647\f
1648/* Definitions for register eliminations.
1649
1650 This is an array of structures. Each structure initializes one pair
1651 of eliminable registers. The "from" register number is given first,
1652 followed by "to". Eliminations of the same "from" register are listed
1653 in order of preference.
1654
afc2cd05
NC
1655 There are two registers that can always be eliminated on the i386.
1656 The frame pointer and the arg pointer can be replaced by either the
1657 hard frame pointer or to the stack pointer, depending upon the
1658 circumstances. The hard frame pointer is not used before reload and
1659 so it is not eligible for elimination. */
c98f8742 1660
564d80f4
JH
1661#define ELIMINABLE_REGS \
1662{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1663 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1664 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1665 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1666
2c5a510c 1667/* Given FROM and TO register numbers, say whether this elimination is
2e3f842f 1668 allowed. */
c98f8742 1669
2e3f842f 1670#define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
c98f8742
JVA
1671
1672/* Define the offset between two registers, one to be eliminated, and the other
1673 its replacement, at the start of a routine. */
1674
d9a5f180
GS
1675#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1676 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1677\f
1678/* Addressing modes, and classification of registers for them. */
1679
c98f8742
JVA
1680/* Macros to check register numbers against specific register classes. */
1681
1682/* These assume that REGNO is a hard or pseudo reg number.
1683 They give nonzero only if REGNO is a hard reg of the suitable class
1684 or a pseudo reg currently allocated to a suitable hard reg.
1685 Since they use reg_renumber, they are safe only once reg_renumber
1686 has been allocated, which happens in local-alloc.c. */
1687
3f3f2124
JH
1688#define REGNO_OK_FOR_INDEX_P(REGNO) \
1689 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1690 || REX_INT_REGNO_P (REGNO) \
1691 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1692 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1693
3f3f2124 1694#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1695 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1696 || (REGNO) == ARG_POINTER_REGNUM \
1697 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1698 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1699
c98f8742
JVA
1700/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1701 and check its validity for a certain class.
1702 We have two alternate definitions for each of them.
1703 The usual definition accepts all pseudo regs; the other rejects
1704 them unless they have been allocated suitable hard regs.
1705 The symbol REG_OK_STRICT causes the latter definition to be used.
1706
1707 Most source files want to accept pseudo regs in the hope that
1708 they will get allocated to the class that the insn wants them to be in.
1709 Source files for reload pass need to be strict.
1710 After reload, it makes no difference, since pseudo regs have
1711 been eliminated by then. */
1712
c98f8742 1713
ff482c8d 1714/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1715#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1716 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1717 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1718 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1719
3b3c6a3f 1720#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1721 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1722 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1723 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1724 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1725
3b3c6a3f
MM
1726/* Strict versions, hard registers only */
1727#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1728#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1729
3b3c6a3f 1730#ifndef REG_OK_STRICT
d9a5f180
GS
1731#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1732#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1733
1734#else
d9a5f180
GS
1735#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1736#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1737#endif
1738
1739/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1740 that is a valid memory address for an instruction.
1741 The MODE argument is the machine mode for the MEM expression
1742 that wants to use this address.
1743
1744 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1745 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1746
1747 See legitimize_pic_address in i386.c for details as to what
1748 constitutes a legitimate address when -fpic is used. */
1749
1750#define MAX_REGS_PER_ADDRESS 2
1751
f996902d 1752#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1753
1754/* Nonzero if the constant value X is a legitimate general operand.
1755 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1756
f996902d 1757#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1758
3b3c6a3f
MM
1759#ifdef REG_OK_STRICT
1760#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1761do { \
1762 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1763 goto ADDR; \
d9a5f180 1764} while (0)
c98f8742 1765
3b3c6a3f
MM
1766#else
1767#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1768do { \
1769 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1770 goto ADDR; \
d9a5f180 1771} while (0)
c98f8742 1772
3b3c6a3f
MM
1773#endif
1774
b949ea8b
JW
1775/* If defined, a C expression to determine the base term of address X.
1776 This macro is used in only one place: `find_base_term' in alias.c.
1777
1778 It is always safe for this macro to not be defined. It exists so
1779 that alias analysis can understand machine-dependent addresses.
1780
1781 The typical use of this macro is to handle addresses containing
1782 a label_ref or symbol_ref within an UNSPEC. */
1783
d9a5f180 1784#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1785
c98f8742
JVA
1786/* Try machine-dependent ways of modifying an illegitimate address
1787 to be legitimate. If we find one, return the new, valid address.
1788 This macro is used in only one place: `memory_address' in explow.c.
1789
1790 OLDX is the address as it was before break_out_memory_refs was called.
1791 In some cases it is useful to look at this to decide what needs to be done.
1792
1793 MODE and WIN are passed so that this macro can use
1794 GO_IF_LEGITIMATE_ADDRESS.
1795
1796 It is always safe for this macro to do nothing. It exists to recognize
1797 opportunities to optimize the output.
1798
1799 For the 80386, we handle X+REG by loading X into a register R and
1800 using R+REG. R will go in a general reg and indexing will be used.
1801 However, if REG is a broken-out memory address or multiplication,
1802 nothing needs to be done because REG can certainly go in a general reg.
1803
1804 When -fpic is used, special handling is needed for symbolic references.
1805 See comments by legitimize_pic_address in i386.c for details. */
1806
3b3c6a3f 1807#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1808do { \
1809 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1810 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1811 goto WIN; \
d9a5f180 1812} while (0)
c98f8742
JVA
1813
1814/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1815 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1816 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1817
f996902d 1818#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1819
1820#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1821 (GET_CODE (X) == SYMBOL_REF \
1822 || GET_CODE (X) == LABEL_REF \
1823 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1824
1825/* Go to LABEL if ADDR (a legitimate address expression)
1826 has an effect that depends on the machine mode it is used for.
1827 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1828 (the amount of decrement or increment being the length of the operand).
1829 These are now caught in recog.c. */
1830#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1831\f
b08de47e
MM
1832/* Max number of args passed in registers. If this is more than 3, we will
1833 have problems with ebx (register #4), since it is a caller save register and
1834 is also used as the pic register in ELF. So for now, don't allow more than
1835 3 registers to be passed in registers. */
1836
7c800926
KT
1837/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1838#define X86_64_REGPARM_MAX 6
1839#define X64_REGPARM_MAX 4
1840#define X86_32_REGPARM_MAX 3
1841
1842#define X86_64_SSE_REGPARM_MAX 8
1843#define X64_SSE_REGPARM_MAX 4
1844#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1845
1846#define REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1847 : X86_64_REGPARM_MAX) \
1848 : X86_32_REGPARM_MAX)
d2836273 1849
7c800926
KT
1850#define SSE_REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1851 : X86_64_SSE_REGPARM_MAX) \
1852 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1853
1854#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1855
c98f8742
JVA
1856\f
1857/* Specify the machine mode that this machine uses
1858 for the index in the tablejump instruction. */
dc4d7240
JH
1859#define CASE_VECTOR_MODE \
1860 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1861
c98f8742
JVA
1862/* Define this as 1 if `char' should by default be signed; else as 0. */
1863#define DEFAULT_SIGNED_CHAR 1
1864
1865/* Max number of bytes we can move from memory to memory
1866 in one reasonably fast instruction. */
65d9c0ab
JH
1867#define MOVE_MAX 16
1868
1869/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1870 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1871 number of bytes we can move with a single instruction. */
65d9c0ab 1872#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1873
7e24ffc9 1874/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1875 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1876 Increasing the value will always make code faster, but eventually
1877 incurs high cost in increased code size.
c98f8742 1878
e2e52e1b 1879 If you don't define this, a reasonable default is used. */
c98f8742 1880
e2e52e1b 1881#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1882
45d78e7f
JJ
1883/* If a clear memory operation would take CLEAR_RATIO or more simple
1884 move-instruction sequences, we will do a clrmem or libcall instead. */
1885
979c67a5 1886#define CLEAR_RATIO (optimize_size ? 2 : MIN (6, ix86_cost->move_ratio))
45d78e7f 1887
c98f8742
JVA
1888/* Define if shifts truncate the shift count
1889 which implies one can omit a sign-extension or zero-extension
1890 of a shift count. */
892a2d68 1891/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1892
1893/* #define SHIFT_COUNT_TRUNCATED */
1894
1895/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1896 is done just by pretending it is already truncated. */
1897#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1898
d9f32422
JH
1899/* A macro to update M and UNSIGNEDP when an object whose type is
1900 TYPE and which has the specified mode and signedness is to be
1901 stored in a register. This macro is only called when TYPE is a
1902 scalar type.
1903
f710504c 1904 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1905 quantities to SImode. The choice depends on target type. */
1906
1907#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1908do { \
d9f32422
JH
1909 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1910 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1911 (MODE) = SImode; \
1912} while (0)
d9f32422 1913
c98f8742
JVA
1914/* Specify the machine mode that pointers have.
1915 After generation of rtl, the compiler makes no further distinction
1916 between pointers and any other objects of this machine mode. */
65d9c0ab 1917#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1918
1919/* A function address in a call instruction
1920 is a byte address (for indexing purposes)
1921 so give the MEM rtx a byte's mode. */
1922#define FUNCTION_MODE QImode
d4ba09c0 1923\f
96e7ae40
JH
1924/* A C expression for the cost of moving data from a register in class FROM to
1925 one in class TO. The classes are expressed using the enumeration values
1926 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1927 interpreted relative to that.
d4ba09c0 1928
96e7ae40
JH
1929 It is not required that the cost always equal 2 when FROM is the same as TO;
1930 on some machines it is expensive to move between registers if they are not
f84aa48a 1931 general registers. */
d4ba09c0 1932
f84aa48a 1933#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1934 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1935
1936/* A C expression for the cost of moving data of mode M between a
1937 register and memory. A value of 2 is the default; this cost is
1938 relative to those in `REGISTER_MOVE_COST'.
1939
1940 If moving between registers and memory is more expensive than
1941 between two registers, you should define this macro to express the
fa79946e 1942 relative cost. */
d4ba09c0 1943
d9a5f180
GS
1944#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1945 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1946
1947/* A C expression for the cost of a branch instruction. A value of 1
1948 is the default; other values are interpreted relative to that. */
1949
e075ae69 1950#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
1951
1952/* Define this macro as a C expression which is nonzero if accessing
1953 less than a word of memory (i.e. a `char' or a `short') is no
1954 faster than accessing a word of memory, i.e., if such access
1955 require more than one instruction or if there is no difference in
1956 cost between byte and (aligned) word loads.
1957
1958 When this macro is not defined, the compiler will access a field by
1959 finding the smallest containing object; when it is defined, a
1960 fullword load will be used if alignment permits. Unless bytes
1961 accesses are faster than word accesses, using word accesses is
1962 preferable since it may eliminate subsequent memory access if
1963 subsequent accesses occur to other fields in the same word of the
1964 structure, but to different bytes. */
1965
1966#define SLOW_BYTE_ACCESS 0
1967
1968/* Nonzero if access to memory by shorts is slow and undesirable. */
1969#define SLOW_SHORT_ACCESS 0
1970
d4ba09c0
SC
1971/* Define this macro to be the value 1 if unaligned accesses have a
1972 cost many times greater than aligned accesses, for example if they
1973 are emulated in a trap handler.
1974
9cd10576
KH
1975 When this macro is nonzero, the compiler will act as if
1976 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1977 moves. This can cause significantly more instructions to be
9cd10576 1978 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1979 accesses only add a cycle or two to the time for a memory access.
1980
1981 If the value of this macro is always zero, it need not be defined. */
1982
e1565e65 1983/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1984
d4ba09c0
SC
1985/* Define this macro if it is as good or better to call a constant
1986 function address than to call an address kept in a register.
1987
1988 Desirable on the 386 because a CALL with a constant address is
1989 faster than one with a register address. */
1990
1991#define NO_FUNCTION_CSE
c98f8742 1992\f
c572e5ba
JVA
1993/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1994 return the mode to be used for the comparison.
1995
1996 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1997 VOIDmode should be used in all other cases.
c572e5ba 1998
16189740 1999 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2000 possible, to allow for more combinations. */
c98f8742 2001
d9a5f180 2002#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2003
9cd10576 2004/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2005 reversed. */
2006
2007#define REVERSIBLE_CC_MODE(MODE) 1
2008
2009/* A C expression whose value is reversed condition code of the CODE for
2010 comparison done in CC_MODE mode. */
3c5cb3e4 2011#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2012
c98f8742
JVA
2013\f
2014/* Control the assembler format that we output, to the extent
2015 this does not vary between assemblers. */
2016
2017/* How to refer to registers in assembler output.
892a2d68 2018 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2019
a7b376ee 2020/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2021 For non floating point regs, the following are the HImode names.
2022
2023 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2024 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2025
a7180f70
BS
2026#define HI_REGISTER_NAMES \
2027{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2028 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2029 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2030 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2031 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2032 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2033 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2034
c98f8742
JVA
2035#define REGISTER_NAMES HI_REGISTER_NAMES
2036
2037/* Table of additional register names to use in user input. */
2038
2039#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2040{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2041 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2042 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2043 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2044 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2045 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2046
2047/* Note we are omitting these since currently I don't know how
2048to get gcc to use these, since they want the same but different
2049number as al, and ax.
2050*/
2051
c98f8742 2052#define QI_REGISTER_NAMES \
3f3f2124 2053{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2054
2055/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2056 of regs 0 through 3. */
c98f8742
JVA
2057
2058#define QI_HIGH_REGISTER_NAMES \
2059{"ah", "dh", "ch", "bh", }
2060
2061/* How to renumber registers for dbx and gdb. */
2062
d9a5f180
GS
2063#define DBX_REGISTER_NUMBER(N) \
2064 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2065
9a82e702
MS
2066extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2067extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2068extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2069
469ac993
JM
2070/* Before the prologue, RA is at 0(%esp). */
2071#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2072 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2073
e414ab29 2074/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2075#define RETURN_ADDR_RTX(COUNT, FRAME) \
2076 ((COUNT) == 0 \
2077 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2078 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2079
892a2d68 2080/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2081#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2082
a6ab3aad 2083/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2084#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2085
1020a5ab
RH
2086/* Describe how we implement __builtin_eh_return. */
2087#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2088#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2089
ad919812 2090
e4c4ebeb
RH
2091/* Select a format to encode pointers in exception handling data. CODE
2092 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2093 true if the symbol may be affected by dynamic relocations.
2094
2095 ??? All x86 object file formats are capable of representing this.
2096 After all, the relocation needed is the same as for the call insn.
2097 Whether or not a particular assembler allows us to enter such, I
2098 guess we'll have to see. */
d9a5f180 2099#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2100 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2101
c98f8742
JVA
2102/* This is how to output an insn to push a register on the stack.
2103 It need not be very fast code. */
2104
d9a5f180 2105#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2106do { \
2107 if (TARGET_64BIT) \
2108 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2109 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2110 else \
2111 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2112} while (0)
c98f8742
JVA
2113
2114/* This is how to output an insn to pop a register from the stack.
2115 It need not be very fast code. */
2116
d9a5f180 2117#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2118do { \
2119 if (TARGET_64BIT) \
2120 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2121 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2122 else \
2123 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2124} while (0)
c98f8742 2125
f88c65f7 2126/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2127
2128#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2129 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2130
f88c65f7 2131/* This is how to output an element of a case-vector that is relative. */
c98f8742 2132
33f7f353 2133#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2134 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2135
f7288899
EC
2136/* Under some conditions we need jump tables in the text section,
2137 because the assembler cannot handle label differences between
2138 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2139
2140#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2141 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2142 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2143
cea3bd3e
RH
2144/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2145 and switch back. For x86 we do this only to save a few bytes that
2146 would otherwise be unused in the text section. */
2147#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2148 asm (SECTION_OP "\n\t" \
2149 "call " USER_LABEL_PREFIX #FUNC "\n" \
2150 TEXT_SECTION_ASM_OP);
74b42c8b 2151\f
c98f8742
JVA
2152/* Print operand X (an rtx) in assembler syntax to file FILE.
2153 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2154 Effect of various CODE letters is described in i386.c near
2155 print_operand function. */
c98f8742 2156
d9a5f180 2157#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2158 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2159
2160#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2161 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2162
2163#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2164 print_operand_address ((FILE), (ADDR))
c98f8742 2165
f996902d
RH
2166#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2167do { \
2168 if (! output_addr_const_extra (FILE, (X))) \
2169 goto FAIL; \
2170} while (0);
d4ba09c0 2171\f
5bf0ebab
RH
2172/* Which processor to schedule for. The cpu attribute defines a list that
2173 mirrors this list, so changes to i386.md must be made at the same time. */
2174
2175enum processor_type
2176{
8383d43c 2177 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2178 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2179 PROCESSOR_PENTIUM,
2180 PROCESSOR_PENTIUMPRO,
cfe1b18f 2181 PROCESSOR_GEODE,
5bf0ebab
RH
2182 PROCESSOR_K6,
2183 PROCESSOR_ATHLON,
2184 PROCESSOR_PENTIUM4,
4977bab6 2185 PROCESSOR_K8,
89c43c0a 2186 PROCESSOR_NOCONA,
05f85dbb 2187 PROCESSOR_CORE2,
d326eaf0
JH
2188 PROCESSOR_GENERIC32,
2189 PROCESSOR_GENERIC64,
21efb4d4 2190 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2191 PROCESSOR_max
2192};
2193
9e555526 2194extern enum processor_type ix86_tune;
5bf0ebab 2195extern enum processor_type ix86_arch;
5bf0ebab
RH
2196
2197enum fpmath_unit
2198{
2199 FPMATH_387 = 1,
2200 FPMATH_SSE = 2
2201};
2202
2203extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2204
f996902d
RH
2205enum tls_dialect
2206{
2207 TLS_DIALECT_GNU,
5bf5a10b 2208 TLS_DIALECT_GNU2,
f996902d
RH
2209 TLS_DIALECT_SUN
2210};
2211
2212extern enum tls_dialect ix86_tls_dialect;
f996902d 2213
6189a572 2214enum cmodel {
5bf0ebab
RH
2215 CM_32, /* The traditional 32-bit ABI. */
2216 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2217 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2218 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2219 CM_LARGE, /* No assumptions. */
7dcbf659 2220 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2221 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2222 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2223};
2224
5bf0ebab 2225extern enum cmodel ix86_cmodel;
5bf0ebab 2226
8362f420
JH
2227/* Size of the RED_ZONE area. */
2228#define RED_ZONE_SIZE 128
2229/* Reserved area of the red zone for temporaries. */
2230#define RED_ZONE_RESERVE 8
c93e80a5
JH
2231
2232enum asm_dialect {
2233 ASM_ATT,
2234 ASM_INTEL
2235};
5bf0ebab 2236
80f33d06 2237extern enum asm_dialect ix86_asm_dialect;
95899b34 2238extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2239extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2240extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2241
2242/* Smallest class containing REGNO. */
2243extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2244
d9a5f180
GS
2245extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2246extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2247extern rtx ix86_compare_emitted;
22fb740d
JH
2248\f
2249/* To properly truncate FP values into integers, we need to set i387 control
2250 word. We can't emit proper mode switching code before reload, as spills
2251 generated by reload may truncate values incorrectly, but we still can avoid
2252 redundant computation of new control word by the mode switching pass.
2253 The fldcw instructions are still emitted redundantly, but this is probably
2254 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2255 the sequence.
22fb740d
JH
2256
2257 The machinery is to emit simple truncation instructions and split them
2258 before reload to instructions having USEs of two memory locations that
2259 are filled by this code to old and new control word.
fce5a9f2 2260
22fb740d
JH
2261 Post-reload pass may be later used to eliminate the redundant fildcw if
2262 needed. */
2263
ff680eb1
UB
2264enum ix86_entity
2265{
2266 I387_TRUNC = 0,
2267 I387_FLOOR,
2268 I387_CEIL,
2269 I387_MASK_PM,
2270 MAX_386_ENTITIES
2271};
2272
1cba2b96 2273enum ix86_stack_slot
ff680eb1 2274{
80dcd3aa
UB
2275 SLOT_VIRTUAL = 0,
2276 SLOT_TEMP,
ff680eb1
UB
2277 SLOT_CW_STORED,
2278 SLOT_CW_TRUNC,
2279 SLOT_CW_FLOOR,
2280 SLOT_CW_CEIL,
2281 SLOT_CW_MASK_PM,
2282 MAX_386_STACK_LOCALS
2283};
22fb740d
JH
2284
2285/* Define this macro if the port needs extra instructions inserted
2286 for mode switching in an optimizing compilation. */
2287
ff680eb1
UB
2288#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2289 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2290
2291/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2292 initializer for an array of integers. Each initializer element N
2293 refers to an entity that needs mode switching, and specifies the
2294 number of different modes that might need to be set for this
2295 entity. The position of the initializer in the initializer -
2296 starting counting at zero - determines the integer that is used to
2297 refer to the mode-switched entity in question. */
2298
ff680eb1
UB
2299#define NUM_MODES_FOR_MODE_SWITCHING \
2300 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2301
2302/* ENTITY is an integer specifying a mode-switched entity. If
2303 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2304 return an integer value not larger than the corresponding element
2305 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2306 must be switched into prior to the execution of INSN. */
2307
2308#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2309
2310/* This macro specifies the order in which modes for ENTITY are
2311 processed. 0 is the highest priority. */
2312
d9a5f180 2313#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2314
2315/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2316 is the set of hard registers live at the point where the insn(s)
2317 are to be inserted. */
2318
2319#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2320 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2321 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2322 : 0)
ff680eb1 2323
0f0138b6
JH
2324\f
2325/* Avoid renaming of stack registers, as doing so in combination with
2326 scheduling just increases amount of live registers at time and in
2327 the turn amount of fxch instructions needed.
2328
43f3a59d 2329 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2330
d9a5f180 2331#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2332 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2333
3b3c6a3f 2334\f
e91f04de 2335#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2336\f
2337struct machine_function GTY(())
2338{
2339 struct stack_local_entry *stack_locals;
2340 const char *some_ld_name;
2341 int save_varrargs_registers;
2342 int accesses_prev_frame;
ff680eb1 2343 int optimize_mode_switching[MAX_386_ENTITIES];
922e3e33
UB
2344 int needs_cld;
2345 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2346 expander to determine the style used. */
d9b40e8d 2347 int use_fast_prologue_epilogue;
d7394366
JH
2348 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2349 for. */
2350 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2351 /* If true, the current function needs the default PIC register, not
2352 an alternate register (on x86) and must not use the red zone (on
2353 x86_64), even if it's a leaf function. We don't want the
2354 function to be regarded as non-leaf because TLS calls need not
2355 affect register allocation. This flag is set when a TLS call
2356 instruction is expanded within a function, and never reset, even
2357 if all such instructions are optimized away. Use the
2358 ix86_current_function_calls_tls_descriptor macro for a better
2359 approximation. */
2360 int tls_descriptor_call_expanded_p;
7c800926
KT
2361 /* This value is used for amd64 targets and specifies the current abi
2362 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2363 int call_abi;
fa1a0d02
JH
2364};
2365
2366#define ix86_stack_locals (cfun->machine->stack_locals)
2367#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2368#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2369#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2370#define ix86_tls_descriptor_calls_expanded_in_cfun \
2371 (cfun->machine->tls_descriptor_call_expanded_p)
2372/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2373 calls are optimized away, we try to detect cases in which it was
2374 optimized away. Since such instructions (use (reg REG_SP)), we can
2375 verify whether there's any such instruction live by testing that
2376 REG_SP is live. */
2377#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2378 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2379
1bc7c5b6
ZW
2380/* Control behavior of x86_file_start. */
2381#define X86_FILE_START_VERSION_DIRECTIVE false
2382#define X86_FILE_START_FLTUSED false
2383
7dcbf659
JH
2384/* Flag to mark data that is in the large address area. */
2385#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2386#define SYMBOL_REF_FAR_ADDR_P(X) \
2387 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2388
2389/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2390 have defined always, to avoid ifdefing. */
2391#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2392#define SYMBOL_REF_DLLIMPORT_P(X) \
2393 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2394
2395#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2396#define SYMBOL_REF_DLLEXPORT_P(X) \
2397 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2398
e70444a8
HJ
2399/* Model costs for vectorizer. */
2400
2401/* Cost of conditional branch. */
2402#undef TARG_COND_BRANCH_COST
2403#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2404
35cbb299
KT
2405/* Enum through the target specific extra va_list types. Please, do not
2406 iterate the base va_list type name. */
2407#define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
2408 (!TARGET_64BIT ? 0 : ix86_enum_va_list (IDX, PNAME, PTYPE))
2409
e70444a8
HJ
2410/* Cost of any scalar operation, excluding load and store. */
2411#undef TARG_SCALAR_STMT_COST
2412#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2413
2414/* Cost of scalar load. */
2415#undef TARG_SCALAR_LOAD_COST
2416#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2417
2418/* Cost of scalar store. */
2419#undef TARG_SCALAR_STORE_COST
2420#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2421
2422/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2423 operation. */
e70444a8
HJ
2424#undef TARG_VEC_STMT_COST
2425#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2426
2427/* Cost of vector to scalar operation. */
2428#undef TARG_VEC_TO_SCALAR_COST
2429#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2430
2431/* Cost of scalar to vector operation. */
2432#undef TARG_SCALAR_TO_VEC_COST
2433#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2434
2435/* Cost of aligned vector load. */
2436#undef TARG_VEC_LOAD_COST
2437#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2438
2439/* Cost of misaligned vector load. */
2440#undef TARG_VEC_UNALIGNED_LOAD_COST
2441#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2442
2443/* Cost of vector store. */
2444#undef TARG_VEC_STORE_COST
2445#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2446
2447/* Cost of conditional taken branch for vectorizer cost model. */
2448#undef TARG_COND_TAKEN_BRANCH_COST
2449#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2450
2451/* Cost of conditional not taken branch for vectorizer cost model. */
2452#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2453#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2454
c98f8742
JVA
2455/*
2456Local variables:
2457version-control: t
2458End:
2459*/