]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
MAINTAINERS (Write After Approval): Add myself.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
e075ae69 1/* Definitions of target machine for GNU compiler for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d9a5f180 3 2001, 2002 Free Software Foundation, Inc.
c98f8742
JVA
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
97aadbb9 19the Free Software Foundation, 59 Temple Place - Suite 330,
892a2d68 20Boston, MA 02111-1307, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init; /* cost of starting a multiply */
45 const int mult_bit; /* cost of multiply per each bit set */
46 const int divide; /* cost of a divide/mod */
44cf5b6a
JH
47 int movsx; /* The cost of movsx operation. */
48 int movzx; /* The cost of movzx operation. */
8b60264b
KG
49 const int large_insn; /* insns larger than this cost more */
50 const int move_ratio; /* The threshold of number of scalar
ac775968 51 memory-to-memory move insns. */
8b60264b
KG
52 const int movzbl_load; /* cost of loading using movzbl */
53 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
54 in QImode, HImode and SImode relative
55 to reg-reg move (2). */
8b60264b 56 const int int_store[3]; /* cost of storing integer register
96e7ae40 57 in QImode, HImode and SImode */
8b60264b
KG
58 const int fp_move; /* cost of reg,reg fld/fst */
59 const int fp_load[3]; /* cost of loading FP register
96e7ae40 60 in SFmode, DFmode and XFmode */
8b60264b 61 const int fp_store[3]; /* cost of storing FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b
KG
63 const int mmx_move; /* cost of moving MMX register. */
64 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 65 in SImode and DImode */
8b60264b 66 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 67 in SImode and DImode */
8b60264b
KG
68 const int sse_move; /* cost of moving SSE register. */
69 const int sse_load[3]; /* cost of loading SSE register
fa79946e 70 in SImode, DImode and TImode*/
8b60264b 71 const int sse_store[3]; /* cost of storing SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 74 integer and vice versa. */
f4365627
JH
75 const int prefetch_block; /* bytes moved to cache for prefetch. */
76 const int simultaneous_prefetches; /* number of parallel prefetch
77 operations. */
229b303a
RS
78 const int fadd; /* cost of FADD and FSUB instructions. */
79 const int fmul; /* cost of FMUL instruction. */
80 const int fdiv; /* cost of FDIV instruction. */
81 const int fabs; /* cost of FABS instruction. */
82 const int fchs; /* cost of FCHS instruction. */
83 const int fsqrt; /* cost of FSQRT instruction. */
d4ba09c0
SC
84};
85
8b60264b 86extern const struct processor_costs *ix86_cost;
d4ba09c0 87
c98f8742
JVA
88/* Run-time compilation parameters selecting different hardware subsets. */
89
90extern int target_flags;
91
92/* Macros used in the machine description to test the flags. */
93
ddd5a7c1 94/* configure can arrange to make this 2, to force a 486. */
e075ae69 95
35b528be
RS
96#ifndef TARGET_CPU_DEFAULT
97#define TARGET_CPU_DEFAULT 0
98#endif
99
3b3c6a3f 100/* Masks for the -m switches */
e075ae69
RH
101#define MASK_80387 0x00000001 /* Hardware floating point */
102#define MASK_RTD 0x00000002 /* Use ret that pops args */
103#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
104#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
105#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
106#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
107#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
108#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
109#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
0dd0e980
JH
110#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
111#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
112#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
113#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
9ef1b13a
RH
114#define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
115#define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
116#define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
117#define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
118#define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
119#define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
120#define MASK_64BIT 0x00080000 /* Produce 64bit code */
121
122/* Unused: 0x03f0000 */
123
c93e80a5
JH
124/* ... overlap with subtarget options starts by 0x04000000. */
125#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
3b3c6a3f
MM
126
127/* Use the floating point instructions */
128#define TARGET_80387 (target_flags & MASK_80387)
129
c98f8742
JVA
130/* Compile using ret insn that pops args.
131 This will not work unless you use prototypes at least
fce5a9f2 132 for all functions that can take varying numbers of args. */
3b3c6a3f
MM
133#define TARGET_RTD (target_flags & MASK_RTD)
134
b08de47e
MM
135/* Align doubles to a two word boundary. This breaks compatibility with
136 the published ABI's for structures containing doubles, but produces
137 faster code on the pentium. */
138#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
c98f8742 139
f73ad30e
JH
140/* Use push instructions to save outgoing args. */
141#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
142
143/* Accumulate stack adjustments to prologue/epilogue. */
144#define TARGET_ACCUMULATE_OUTGOING_ARGS \
145 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
146
d7cd15e9
RS
147/* Put uninitialized locals into bss, not data.
148 Meaningful only on svr3. */
3b3c6a3f 149#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
d7cd15e9 150
c572e5ba
JVA
151/* Use IEEE floating point comparisons. These handle correctly the cases
152 where the result of a comparison is unordered. Normally SIGFPE is
153 generated in such cases, in which case this isn't needed. */
3b3c6a3f 154#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
c572e5ba 155
8c2bf92a
JVA
156/* Functions that return a floating point value may return that value
157 in the 387 FPU or in 386 integer registers. If set, this flag causes
892a2d68 158 the 387 to be used, which is compatible with most calling conventions. */
3b3c6a3f 159#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
8c2bf92a 160
2b589241 161/* Long double is 128bit instead of 96bit, even when only 80bits are used.
f5143c46 162 This mode wastes cache, but avoid misaligned data accesses and simplifies
2b589241
JH
163 address calculations. */
164#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
165
099800e3
RK
166/* Disable generation of FP sin, cos and sqrt operations for 387.
167 This is because FreeBSD lacks these in the math-emulator-code */
3b3c6a3f
MM
168#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
169
2f2fa5b1 170/* Don't create frame pointers for leaf functions */
e075ae69
RH
171#define TARGET_OMIT_LEAF_FRAME_POINTER \
172 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
f6f58ba3 173
3b3c6a3f 174/* Debug GO_IF_LEGITIMATE_ADDRESS */
c93e80a5 175#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
3b3c6a3f 176
b08de47e 177/* Debug FUNCTION_ARG macros */
c93e80a5 178#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
b08de47e 179
5791cc29
JT
180/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
181 compile-time constant. */
182#ifdef IN_LIBGCC2
183#ifdef __x86_64__
184#define TARGET_64BIT 1
185#else
186#define TARGET_64BIT 0
187#endif
188#else
0c2dc519 189#ifdef TARGET_BI_ARCH
25f94bb5 190#define TARGET_64BIT (target_flags & MASK_64BIT)
0c2dc519 191#else
67adf6a9 192#if TARGET_64BIT_DEFAULT
0c2dc519
JH
193#define TARGET_64BIT 1
194#else
195#define TARGET_64BIT 0
196#endif
197#endif
5791cc29 198#endif
25f94bb5 199
f7746310
SC
200#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
201#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
202#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
3a0433fd 203#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
a269a03c 204#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
309ada50 205#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
b4e89e2d 206#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
a269a03c
JC
207
208#define CPUMASK (1 << ix86_cpu)
209extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
210extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 211extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69
RH
212extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
213extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
214extern const int x86_use_cltd, x86_read_modify_write;
215extern const int x86_read_modify, x86_split_long_moves;
285464d0 216extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 217extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 218extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 219extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 220extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 221extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 222extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 223extern const int x86_arch_always_fancy_math_387, x86_shift1;
f4365627 224extern int x86_prefetch_sse;
a269a03c
JC
225
226#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
227#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
228#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
229#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
230#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
0644b628
JH
231/* For sane SSE instruction set generation we need fcomi instruction. It is
232 safe to enable all CMOVE instructions. */
233#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
a269a03c 234#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
ef6257cd 235#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
a269a03c 236#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
0d7d98ee 237#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
e075ae69
RH
238#define TARGET_MOVX (x86_movx & CPUMASK)
239#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
240#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
241#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
242#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
243#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
244#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
245#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
246#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
e9e80858 247#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
285464d0 248#define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
f90800f8 249#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
d9f32422
JH
250#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
251#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
252#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
253#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
bdeb029c
JH
254#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
255#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
256#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
257#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
0b5107cf
JH
258#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
259#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
260#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
c6036a37
JH
261#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
262#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
b972dd02 263#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
f4365627 264#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
495333a6 265#define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
a269a03c 266
8c9be447 267#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
3b3c6a3f 268
79f05c19
JH
269#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
270#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
271
c93e80a5 272#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 273
446988df
JH
274#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
275#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
965f5423
JH
276#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
277#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
278 && (ix86_fpmath & FPMATH_387))
a7180f70 279#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
47f339cf
BS
280#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
281#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
a7180f70 282
8362f420
JH
283#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
284
f996902d
RH
285#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
286#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
287
a5d17ff3
PT
288/* WARNING: Do not mark empty strings for translation, as calling
289 gettext on an empty string does NOT return an empty
290 string. */
291
292
e075ae69 293#define TARGET_SWITCHES \
047142d3
PT
294{ { "80387", MASK_80387, N_("Use hardware fp") }, \
295 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
296 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
297 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
298 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
a5d17ff3
PT
299 { "386", 0, "" /*Deprecated.*/}, \
300 { "486", 0, "" /*Deprecated.*/}, \
301 { "pentium", 0, "" /*Deprecated.*/}, \
302 { "pentiumpro", 0, "" /*Deprecated.*/}, \
303 { "intel-syntax", 0, "" /*Deprecated.*/}, \
304 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
047142d3
PT
305 { "rtd", MASK_RTD, \
306 N_("Alternate calling convention") }, \
307 { "no-rtd", -MASK_RTD, \
308 N_("Use normal calling convention") }, \
e075ae69 309 { "align-double", MASK_ALIGN_DOUBLE, \
047142d3 310 N_("Align some doubles on dword boundary") }, \
e075ae69 311 { "no-align-double", -MASK_ALIGN_DOUBLE, \
047142d3 312 N_("Align doubles on word boundary") }, \
e075ae69 313 { "svr3-shlib", MASK_SVR3_SHLIB, \
047142d3 314 N_("Uninitialized locals in .bss") }, \
e075ae69 315 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
047142d3 316 N_("Uninitialized locals in .data") }, \
e075ae69 317 { "ieee-fp", MASK_IEEE_FP, \
047142d3 318 N_("Use IEEE math for fp comparisons") }, \
e075ae69 319 { "no-ieee-fp", -MASK_IEEE_FP, \
047142d3 320 N_("Do not use IEEE math for fp comparisons") }, \
e075ae69 321 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
047142d3 322 N_("Return values of functions in FPU registers") }, \
e075ae69 323 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
047142d3 324 N_("Do not return values of functions in FPU registers")}, \
e075ae69 325 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
047142d3 326 N_("Do not generate sin, cos, sqrt for FPU") }, \
e075ae69 327 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
047142d3 328 N_("Generate sin, cos, sqrt for FPU")}, \
e075ae69 329 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
047142d3 330 N_("Omit the frame pointer in leaf functions") }, \
e075ae69 331 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
047142d3
PT
332 { "stack-arg-probe", MASK_STACK_PROBE, \
333 N_("Enable stack probing") }, \
e075ae69
RH
334 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
335 { "windows", 0, 0 /* undocumented */ }, \
336 { "dll", 0, 0 /* undocumented */ }, \
79f05c19 337 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
047142d3 338 N_("Align destination of the string operations") }, \
79f05c19 339 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
047142d3 340 N_("Do not align destination of the string operations") }, \
4be2e5d9 341 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
047142d3 342 N_("Inline all known string operations") }, \
79f05c19 343 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
047142d3 344 N_("Do not inline all known string operations") }, \
f73ad30e 345 { "push-args", -MASK_NO_PUSH_ARGS, \
047142d3 346 N_("Use push instructions to save outgoing arguments") }, \
053f1126 347 { "no-push-args", MASK_NO_PUSH_ARGS, \
047142d3 348 N_("Do not use push instructions to save outgoing arguments") }, \
9ef1b13a 349 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
047142d3 350 N_("Use push instructions to save outgoing arguments") }, \
9ef1b13a 351 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
047142d3 352 N_("Do not use push instructions to save outgoing arguments") }, \
9ef1b13a 353 { "mmx", MASK_MMX, \
b0287a90 354 N_("Support MMX built-in functions") }, \
0dd0e980 355 { "no-mmx", -MASK_MMX, \
b0287a90 356 N_("Do not support MMX built-in functions") }, \
9ef1b13a 357 { "3dnow", MASK_3DNOW, \
b0287a90 358 N_("Support 3DNow! built-in functions") }, \
9ef1b13a 359 { "no-3dnow", -MASK_3DNOW, \
b0287a90 360 N_("Do not support 3DNow! built-in functions") }, \
9ef1b13a 361 { "sse", MASK_SSE, \
b0287a90 362 N_("Support MMX and SSE built-in functions and code generation") }, \
9ef1b13a 363 { "no-sse", -MASK_SSE, \
b0287a90 364 N_("Do not support MMX and SSE built-in functions and code generation") },\
9ef1b13a 365 { "sse2", MASK_SSE2, \
b0287a90 366 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
9ef1b13a 367 { "no-sse2", -MASK_SSE2, \
b0287a90 368 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
2b589241 369 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
c725bd79 370 N_("sizeof(long double) is 16") }, \
2b589241 371 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
c725bd79 372 N_("sizeof(long double) is 12") }, \
25f94bb5
JH
373 { "64", MASK_64BIT, \
374 N_("Generate 64bit x86-64 code") }, \
375 { "32", -MASK_64BIT, \
376 N_("Generate 32bit i386 code") }, \
8362f420
JH
377 { "red-zone", -MASK_NO_RED_ZONE, \
378 N_("Use red-zone in the x86-64 code") }, \
379 { "no-red-zone", MASK_NO_RED_ZONE, \
4cba3b67 380 N_("Do not use red-zone in the x86-64 code") }, \
e075ae69 381 SUBTARGET_SWITCHES \
67adf6a9 382 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
241e1a89 383
67adf6a9
RH
384#ifndef TARGET_64BIT_DEFAULT
385#define TARGET_64BIT_DEFAULT 0
25f94bb5
JH
386#endif
387
0ed4a390
JL
388/* Once GDB has been enhanced to deal with functions without frame
389 pointers, we can change this to allow for elimination of
390 the frame pointer in leaf functions. */
391#define TARGET_DEFAULT 0
67adf6a9 392
b069de3b
SS
393/* This is not really a target flag, but is done this way so that
394 it's analogous to similar code for Mach-O on PowerPC. darwin.h
395 redefines this to 1. */
396#define TARGET_MACHO 0
397
f5316dfe
MM
398/* This macro is similar to `TARGET_SWITCHES' but defines names of
399 command options that have values. Its definition is an
400 initializer with a subgrouping for each command option.
401
402 Each subgrouping contains a string constant, that defines the
403 fixed part of the option name, and the address of a variable. The
404 variable, type `char *', is set to the variable part of the given
405 option if the fixed part matches. The actual option name is made
406 by appending `-m' to the specified name. */
e075ae69
RH
407#define TARGET_OPTIONS \
408{ { "cpu=", &ix86_cpu_string, \
047142d3 409 N_("Schedule code for given CPU")}, \
965f5423
JH
410 { "fpmath=", &ix86_fpmath_string, \
411 N_("Generate floating point mathematics using given instruction set")},\
e075ae69 412 { "arch=", &ix86_arch_string, \
047142d3 413 N_("Generate code for given CPU")}, \
e075ae69 414 { "regparm=", &ix86_regparm_string, \
047142d3 415 N_("Number of registers used to pass integer arguments") }, \
e075ae69 416 { "align-loops=", &ix86_align_loops_string, \
047142d3 417 N_("Loop code aligned to this power of 2") }, \
e075ae69 418 { "align-jumps=", &ix86_align_jumps_string, \
047142d3 419 N_("Jump targets are aligned to this power of 2") }, \
e075ae69 420 { "align-functions=", &ix86_align_funcs_string, \
047142d3 421 N_("Function starts are aligned to this power of 2") }, \
e075ae69
RH
422 { "preferred-stack-boundary=", \
423 &ix86_preferred_stack_boundary_string, \
047142d3 424 N_("Attempt to keep stack aligned to this power of 2") }, \
e075ae69 425 { "branch-cost=", &ix86_branch_cost_string, \
047142d3 426 N_("Branches are this expensive (1-5, arbitrary units)") }, \
6189a572
JH
427 { "cmodel=", &ix86_cmodel_string, \
428 N_("Use given x86-64 code model") }, \
c93e80a5 429 { "debug-arg", &ix86_debug_arg_string, \
a5d17ff3 430 "" /* Undocumented. */ }, \
c93e80a5 431 { "debug-addr", &ix86_debug_addr_string, \
a5d17ff3 432 "" /* Undocumented. */ }, \
c93e80a5
JH
433 { "asm=", &ix86_asm_string, \
434 N_("Use given assembler dialect") }, \
f996902d
RH
435 { "tls-dialect=", &ix86_tls_dialect_string, \
436 N_("Use given thread-local storage dialect") }, \
e075ae69 437 SUBTARGET_OPTIONS \
b08de47e 438}
f5316dfe
MM
439
440/* Sometimes certain combinations of command options do not make
441 sense on a particular target machine. You can define a macro
442 `OVERRIDE_OPTIONS' to take account of this. This macro, if
443 defined, is executed once just after all the command options have
444 been parsed.
445
446 Don't use this macro to turn on various extra optimizations for
447 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
448
449#define OVERRIDE_OPTIONS override_options ()
450
451/* These are meant to be redefined in the host dependent files */
95393dfd 452#define SUBTARGET_SWITCHES
f5316dfe 453#define SUBTARGET_OPTIONS
95393dfd 454
d4ba09c0 455/* Define this to change the optimizations performed by default. */
d9a5f180
GS
456#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
457 optimization_options ((LEVEL), (SIZE))
d4ba09c0 458
241e1a89
SC
459/* Specs for the compiler proper */
460
628714d8
RK
461#ifndef CC1_CPU_SPEC
462#define CC1_CPU_SPEC "\
241e1a89 463%{!mcpu*: \
4a88a060 464%{m386:-mcpu=i386 \
3f0e0fa2 465%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
4a88a060 466%{m486:-mcpu=i486 \
3f0e0fa2 467%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
4a88a060 468%{mpentium:-mcpu=pentium \
3f0e0fa2 469%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
4a88a060 470%{mpentiumpro:-mcpu=pentiumpro \
c93e80a5
JH
471%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
472%{mintel-syntax:-masm=intel \
473%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
474%{mno-intel-syntax:-masm=att \
475%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
241e1a89 476#endif
c98f8742 477\f
30efe578 478/* Target CPU builtins. */
1ba7b414
NB
479#define TARGET_CPU_CPP_BUILTINS() \
480 do \
481 { \
482 size_t arch_len = strlen (ix86_arch_string); \
483 size_t cpu_len = strlen (ix86_cpu_string); \
484 int last_arch_char = ix86_arch_string[arch_len - 1]; \
485 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
486 \
487 if (TARGET_64BIT) \
488 { \
489 builtin_assert ("cpu=x86_64"); \
490 builtin_assert ("machine=x86_64"); \
491 builtin_define ("__x86_64"); \
492 builtin_define ("__x86_64__"); \
493 } \
494 else \
495 { \
496 builtin_assert ("cpu=i386"); \
497 builtin_assert ("machine=i386"); \
498 builtin_define_std ("i386"); \
499 } \
500 \
501 /* Built-ins based on -mcpu= (or -march= if no \
502 CPU given). */ \
503 if (TARGET_386) \
504 builtin_define ("__tune_i386__"); \
505 else if (TARGET_486) \
506 builtin_define ("__tune_i486__"); \
507 else if (TARGET_PENTIUM) \
508 { \
509 builtin_define ("__tune_i586__"); \
510 builtin_define ("__tune_pentium__"); \
511 if (last_cpu_char == 'x') \
512 builtin_define ("__tune_pentium_mmx__"); \
513 } \
514 else if (TARGET_PENTIUMPRO) \
515 { \
516 builtin_define ("__tune_i686__"); \
517 builtin_define ("__tune_pentiumpro__"); \
518 } \
519 else if (TARGET_K6) \
520 { \
521 builtin_define ("__tune_k6__"); \
522 if (last_cpu_char == '2') \
523 builtin_define ("__tune_k6_2__"); \
524 else if (last_cpu_char == '3') \
525 builtin_define ("__tune_k6_3__"); \
526 } \
527 else if (TARGET_ATHLON) \
528 { \
529 builtin_define ("__tune_athlon__"); \
530 /* Only plain "athlon" lacks SSE. */ \
531 if (last_cpu_char != 'n') \
532 builtin_define ("__tune_athlon_sse__"); \
533 } \
534 else if (TARGET_PENTIUM4) \
535 builtin_define ("__tune_pentium4__"); \
536 \
537 if (TARGET_MMX) \
538 builtin_define ("__MMX__"); \
539 if (TARGET_3DNOW) \
540 builtin_define ("__3dNOW__"); \
541 if (TARGET_3DNOW_A) \
542 builtin_define ("__3dNOW_A__"); \
543 if (TARGET_SSE) \
544 builtin_define ("__SSE__"); \
545 if (TARGET_SSE2) \
546 builtin_define ("__SSE2__"); \
48ddd46c
JH
547 if (TARGET_SSE_MATH && TARGET_SSE) \
548 builtin_define ("__SSE_MATH__"); \
549 if (TARGET_SSE_MATH && TARGET_SSE2) \
550 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
551 \
552 /* Built-ins based on -march=. */ \
553 if (ix86_arch == PROCESSOR_I486) \
554 { \
555 builtin_define ("__i486"); \
556 builtin_define ("__i486__"); \
557 } \
558 else if (ix86_arch == PROCESSOR_PENTIUM) \
559 { \
560 builtin_define ("__i586"); \
561 builtin_define ("__i586__"); \
562 builtin_define ("__pentium"); \
563 builtin_define ("__pentium__"); \
564 if (last_arch_char == 'x') \
565 builtin_define ("__pentium_mmx__"); \
566 } \
567 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
568 { \
569 builtin_define ("__i686"); \
570 builtin_define ("__i686__"); \
571 builtin_define ("__pentiumpro"); \
572 builtin_define ("__pentiumpro__"); \
573 } \
574 else if (ix86_arch == PROCESSOR_K6) \
575 { \
576 \
577 builtin_define ("__k6"); \
578 builtin_define ("__k6__"); \
579 if (last_arch_char == '2') \
580 builtin_define ("__k6_2__"); \
581 else if (last_arch_char == '3') \
582 builtin_define ("__k6_3__"); \
583 } \
584 else if (ix86_arch == PROCESSOR_ATHLON) \
585 { \
586 builtin_define ("__athlon"); \
587 builtin_define ("__athlon__"); \
588 /* Only plain "athlon" lacks SSE. */ \
589 if (last_arch_char != 'n') \
590 builtin_define ("__athlon_sse__"); \
591 } \
592 else if (ix86_arch == PROCESSOR_PENTIUM4) \
593 { \
594 builtin_define ("__pentium4"); \
595 builtin_define ("__pentium4__"); \
596 } \
597 } \
30efe578
NB
598 while (0)
599
f4365627
JH
600#define TARGET_CPU_DEFAULT_i386 0
601#define TARGET_CPU_DEFAULT_i486 1
602#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
603#define TARGET_CPU_DEFAULT_pentium_mmx 3
604#define TARGET_CPU_DEFAULT_pentiumpro 4
605#define TARGET_CPU_DEFAULT_pentium2 5
606#define TARGET_CPU_DEFAULT_pentium3 6
607#define TARGET_CPU_DEFAULT_pentium4 7
608#define TARGET_CPU_DEFAULT_k6 8
609#define TARGET_CPU_DEFAULT_k6_2 9
610#define TARGET_CPU_DEFAULT_k6_3 10
611#define TARGET_CPU_DEFAULT_athlon 11
612#define TARGET_CPU_DEFAULT_athlon_sse 12
f4365627
JH
613
614#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
615 "pentiumpro", "pentium2", "pentium3", \
616 "pentium4", "k6", "k6-2", "k6-3",\
617 "athlon", "athlon-4"}
0c2dc519 618
628714d8 619#ifndef CC1_SPEC
8015b78d 620#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
621#endif
622
623/* This macro defines names of additional specifications to put in the
624 specs that can be used in various specifications like CC1_SPEC. Its
625 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
626
627 Each subgrouping contains a string constant, that defines the
628 specification name, and a string constant that used by the GNU CC driver
629 program.
630
631 Do not define this macro if it does not need to do anything. */
632
633#ifndef SUBTARGET_EXTRA_SPECS
634#define SUBTARGET_EXTRA_SPECS
635#endif
636
637#define EXTRA_SPECS \
628714d8 638 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
639 SUBTARGET_EXTRA_SPECS
640\f
c98f8742
JVA
641/* target machine storage layout */
642
2b589241 643/* Define for XFmode or TFmode extended real floating point support.
2b589241 644 The XFmode is specified by i386 ABI, while TFmode may be faster
3dc85dfb 645 due to alignment and simplifications in the address calculations. */
2b589241
JH
646#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
647#define MAX_LONG_DOUBLE_TYPE_SIZE 128
65d9c0ab
JH
648#ifdef __x86_64__
649#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
650#else
651#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
652#endif
2b589241 653
d57a4b98
RH
654/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
655 FPU, assume that the fpcw is set to extended precision; when using
656 only SSE, rounding is correct; when using both SSE and the FPU,
657 the rounding precision is indeterminate, since either may be chosen
658 apparently at random. */
659#define TARGET_FLT_EVAL_METHOD \
660 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
0038aea6 661
65d9c0ab
JH
662#define SHORT_TYPE_SIZE 16
663#define INT_TYPE_SIZE 32
664#define FLOAT_TYPE_SIZE 32
665#define LONG_TYPE_SIZE BITS_PER_WORD
2faf6b96 666#define MAX_WCHAR_TYPE_SIZE 32
65d9c0ab
JH
667#define DOUBLE_TYPE_SIZE 64
668#define LONG_LONG_TYPE_SIZE 64
669
67adf6a9 670#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519
JH
671#define MAX_BITS_PER_WORD 64
672#define MAX_LONG_TYPE_SIZE 64
673#else
674#define MAX_BITS_PER_WORD 32
675#define MAX_LONG_TYPE_SIZE 32
676#endif
677
c98f8742
JVA
678/* Define this if most significant byte of a word is the lowest numbered. */
679/* That is true on the 80386. */
680
681#define BITS_BIG_ENDIAN 0
682
683/* Define this if most significant byte of a word is the lowest numbered. */
684/* That is not true on the 80386. */
685#define BYTES_BIG_ENDIAN 0
686
687/* Define this if most significant word of a multiword number is the lowest
688 numbered. */
689/* Not true for 80386 */
690#define WORDS_BIG_ENDIAN 0
691
c98f8742 692/* Width of a word, in units (bytes). */
65d9c0ab 693#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
694#ifdef IN_LIBGCC2
695#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
696#else
697#define MIN_UNITS_PER_WORD 4
698#endif
c98f8742 699
c98f8742 700/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 701#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 702
e075ae69 703/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 704#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 705
3af4bd89
JH
706/* Boundary (in *bits*) on which the stack pointer preferrs to be
707 aligned; the compiler cannot rely on having this alignment. */
e075ae69 708#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 709
1d482056
RH
710/* As of July 2001, many runtimes to not align the stack properly when
711 entering main. This causes expand_main_function to forcably align
712 the stack, which results in aligned frames for functions called from
713 main, though it does nothing for the alignment of main itself. */
714#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 715 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 716
f963b5d9
RS
717/* Minimum allocation boundary for the code of a function. */
718#define FUNCTION_BOUNDARY 8
719
720/* C++ stores the virtual bit in the lowest bit of function pointers. */
721#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 722
892a2d68 723/* Alignment of field after `int : 0' in a structure. */
c98f8742 724
65d9c0ab 725#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
726
727/* Minimum size in bits of the largest boundary to which any
728 and all fundamental data types supported by the hardware
729 might need to be aligned. No data type wants to be aligned
17f24ff0 730 rounder than this.
fce5a9f2 731
3e18fdf6 732 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
733 and Pentium Pro XFmode values at 128 bit boundaries. */
734
735#define BIGGEST_ALIGNMENT 128
736
822eda12 737/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 738#define ALIGN_MODE_128(MODE) \
822eda12 739 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
a7180f70 740
17f24ff0 741/* The published ABIs say that doubles should be aligned on word
6fc605d8
ZW
742 boundaries, so lower the aligment for structure fields unless
743 -malign-double is set. */
e932b21b 744
e83f3cff
RH
745/* ??? Blah -- this macro is used directly by libobjc. Since it
746 supports no vector modes, cut out the complexity and fall back
747 on BIGGEST_FIELD_ALIGNMENT. */
748#ifdef IN_TARGET_LIBS
ef49d42e
JH
749#ifdef __x86_64__
750#define BIGGEST_FIELD_ALIGNMENT 128
751#else
e83f3cff 752#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 753#endif
e83f3cff 754#else
e932b21b
JH
755#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
756 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 757#endif
c98f8742 758
e5e8a8bf 759/* If defined, a C expression to compute the alignment given to a
a7180f70 760 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
761 and ALIGN is the alignment that the object would ordinarily have.
762 The value of this macro is used instead of that alignment to align
763 the object.
764
765 If this macro is not defined, then ALIGN is used.
766
767 The typical use of this macro is to increase alignment for string
768 constants to be word aligned so that `strcpy' calls that copy
769 constants can be done inline. */
770
d9a5f180 771#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 772
8a022443
JW
773/* If defined, a C expression to compute the alignment for a static
774 variable. TYPE is the data type, and ALIGN is the alignment that
775 the object would ordinarily have. The value of this macro is used
776 instead of that alignment to align the object.
777
778 If this macro is not defined, then ALIGN is used.
779
780 One use of this macro is to increase alignment of medium-size
781 data to make it all fit in fewer cache lines. Another is to
782 cause character arrays to be word-aligned so that `strcpy' calls
783 that copy constants to character arrays can be done inline. */
784
d9a5f180 785#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
786
787/* If defined, a C expression to compute the alignment for a local
788 variable. TYPE is the data type, and ALIGN is the alignment that
789 the object would ordinarily have. The value of this macro is used
790 instead of that alignment to align the object.
791
792 If this macro is not defined, then ALIGN is used.
793
794 One use of this macro is to increase alignment of medium-size
795 data to make it all fit in fewer cache lines. */
796
d9a5f180 797#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 798
53c17031
JH
799/* If defined, a C expression that gives the alignment boundary, in
800 bits, of an argument with the specified mode and type. If it is
801 not defined, `PARM_BOUNDARY' is used for all arguments. */
802
d9a5f180
GS
803#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
804 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 805
9cd10576 806/* Set this nonzero if move instructions will actually fail to work
c98f8742 807 when given unaligned data. */
b4ac57ab 808#define STRICT_ALIGNMENT 0
c98f8742
JVA
809
810/* If bit field type is int, don't let it cross an int,
811 and give entire struct the alignment of an int. */
43a88a8c 812/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 813#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
814\f
815/* Standard register usage. */
816
817/* This processor has special stack-like registers. See reg-stack.c
892a2d68 818 for details. */
c98f8742
JVA
819
820#define STACK_REGS
d9a5f180
GS
821#define IS_STACK_MODE(MODE) \
822 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
823 || (MODE) == TFmode)
c98f8742
JVA
824
825/* Number of actual hardware registers.
826 The hardware registers are assigned numbers for the compiler
827 from 0 to just below FIRST_PSEUDO_REGISTER.
828 All registers that the compiler knows about must be given numbers,
829 even those that are not normally considered general registers.
830
831 In the 80386 we give the 8 general purpose registers the numbers 0-7.
832 We number the floating point registers 8-15.
833 Note that registers 0-7 can be accessed as a short or int,
834 while only 0-3 may be used with byte `mov' instructions.
835
836 Reg 16 does not correspond to any hardware register, but instead
837 appears in the RTL as an argument pointer prior to reload, and is
838 eliminated during reloading in favor of either the stack or frame
892a2d68 839 pointer. */
c98f8742 840
3f3f2124 841#define FIRST_PSEUDO_REGISTER 53
c98f8742 842
3073d01c
ML
843/* Number of hardware registers that go into the DWARF-2 unwind info.
844 If not defined, equals FIRST_PSEUDO_REGISTER. */
845
846#define DWARF_FRAME_REGISTERS 17
847
c98f8742
JVA
848/* 1 for registers that have pervasive standard uses
849 and are not available for the register allocator.
3f3f2124 850 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 851
3f3f2124
JH
852 The value is an mask - bit 1 is set for fixed registers
853 for 32bit target, while 2 is set for fixed registers for 64bit.
854 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
855 */
a7180f70
BS
856#define FIXED_REGISTERS \
857/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 858{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
a7180f70 859/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 860 3, 3, 3, 3, 3, \
a7180f70
BS
861/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
862 0, 0, 0, 0, 0, 0, 0, 0, \
863/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
864 0, 0, 0, 0, 0, 0, 0, 0, \
865/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
866 1, 1, 1, 1, 1, 1, 1, 1, \
867/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
868 1, 1, 1, 1, 1, 1, 1, 1}
fce5a9f2 869
c98f8742
JVA
870
871/* 1 for registers not available across function calls.
872 These must include the FIXED_REGISTERS and also any
873 registers that can be used without being saved.
874 The latter must include the registers where values are returned
875 and the register where structure-value addresses are passed.
fce5a9f2
EC
876 Aside from that, you can include as many other registers as you like.
877
3f3f2124
JH
878 The value is an mask - bit 1 is set for call used
879 for 32bit target, while 2 is set for call used for 64bit.
880 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
881*/
a7180f70
BS
882#define CALL_USED_REGISTERS \
883/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 884{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 885/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 886 3, 3, 3, 3, 3, \
a7180f70 887/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3f3f2124 888 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 889/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
890 3, 3, 3, 3, 3, 3, 3, 3, \
891/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
892 3, 3, 3, 3, 1, 1, 1, 1, \
893/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
894 3, 3, 3, 3, 3, 3, 3, 3} \
c98f8742 895
3b3c6a3f
MM
896/* Order in which to allocate registers. Each register must be
897 listed once, even those in FIXED_REGISTERS. List frame pointer
898 late and fixed registers last. Note that, in general, we prefer
899 registers listed in CALL_USED_REGISTERS, keeping the others
900 available for storage of persistent values.
901
162f023b
JH
902 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
903 so this is just empty initializer for array. */
3b3c6a3f 904
162f023b
JH
905#define REG_ALLOC_ORDER \
906{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
907 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
908 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
909 48, 49, 50, 51, 52 }
3b3c6a3f 910
162f023b
JH
911/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
912 to be rearranged based on a particular function. When using sse math,
913 we want to allocase SSE before x87 registers and vice vera. */
3b3c6a3f 914
162f023b 915#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 916
f5316dfe 917
c98f8742 918/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 919#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 920do { \
3f3f2124
JH
921 int i; \
922 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
923 { \
924 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
925 call_used_regs[i] = (call_used_regs[i] \
926 & (TARGET_64BIT ? 2 : 1)) != 0; \
927 } \
5b43fed1 928 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
929 { \
930 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
931 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
932 } \
933 if (! TARGET_MMX) \
934 { \
935 int i; \
936 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
937 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
938 fixed_regs[i] = call_used_regs[i] = 1; \
939 } \
940 if (! TARGET_SSE) \
941 { \
942 int i; \
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
944 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
945 fixed_regs[i] = call_used_regs[i] = 1; \
946 } \
947 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
948 { \
949 int i; \
950 HARD_REG_SET x; \
951 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
953 if (TEST_HARD_REG_BIT (x, i)) \
954 fixed_regs[i] = call_used_regs[i] = 1; \
955 } \
d9a5f180 956 } while (0)
c98f8742
JVA
957
958/* Return number of consecutive hard regs needed starting at reg REGNO
959 to hold something of mode MODE.
960 This is ordinarily the length in words of a value of mode MODE
961 but can be less for certain modes in special long registers.
962
fce5a9f2 963 Actually there are no two word move instructions for consecutive
c98f8742
JVA
964 registers. And only registers 0-3 may have mov byte instructions
965 applied to them.
966 */
967
968#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
969 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
970 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
d9a5f180 971 : ((MODE) == TFmode \
92d0fb09 972 ? (TARGET_64BIT ? 2 : 3) \
d9a5f180 973 : (MODE) == TCmode \
92d0fb09 974 ? (TARGET_64BIT ? 4 : 6) \
2b589241 975 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 976
fbe5eb6d
BS
977#define VALID_SSE2_REG_MODE(MODE) \
978 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
979 || (MODE) == V2DImode)
980
d9a5f180
GS
981#define VALID_SSE_REG_MODE(MODE) \
982 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
983 || (MODE) == SFmode \
fbe5eb6d
BS
984 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
985 || VALID_SSE2_REG_MODE (MODE) \
141e454b 986 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
a7180f70 987
47f339cf
BS
988#define VALID_MMX_REG_MODE_3DNOW(MODE) \
989 ((MODE) == V2SFmode || (MODE) == SFmode)
990
d9a5f180
GS
991#define VALID_MMX_REG_MODE(MODE) \
992 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
993 || (MODE) == V2SImode || (MODE) == SImode)
994
995#define VECTOR_MODE_SUPPORTED_P(MODE) \
996 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
47f339cf
BS
997 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
998 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
a7180f70 999
d9a5f180
GS
1000#define VALID_FP_MODE_P(MODE) \
1001 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1002 || (!TARGET_64BIT && (MODE) == XFmode) \
1003 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1004 || (!TARGET_64BIT && (MODE) == XCmode))
a946dd00 1005
d9a5f180
GS
1006#define VALID_INT_MODE_P(MODE) \
1007 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1008 || (MODE) == DImode \
1009 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1010 || (MODE) == CDImode \
1011 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
a946dd00 1012
822eda12
JH
1013/* Return true for modes passed in SSE registers. */
1014#define SSE_REG_MODE_P(MODE) \
1015 ((MODE) == TImode || (MODE) == V16QImode \
1016 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1017 || (MODE) == V4SFmode || (MODE) == V4SImode)
1018
1019/* Return true for modes passed in MMX registers. */
1020#define MMX_REG_MODE_P(MODE) \
1021 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1022 || (MODE) == V2SFmode)
1023
e075ae69 1024/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1025
a946dd00 1026#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1027 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1028
1029/* Value is 1 if it is a good idea to tie two pseudo registers
1030 when one has mode MODE1 and one has mode MODE2.
1031 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1032 for any hard reg, then this must be 0 for correct output. */
1033
95912252
RH
1034#define MODES_TIEABLE_P(MODE1, MODE2) \
1035 ((MODE1) == (MODE2) \
d2836273
JH
1036 || (((MODE1) == HImode || (MODE1) == SImode \
1037 || ((MODE1) == QImode \
1038 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1039 || ((MODE1) == DImode && TARGET_64BIT)) \
1040 && ((MODE2) == HImode || (MODE2) == SImode \
1041 || ((MODE1) == QImode \
1042 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1043 || ((MODE2) == DImode && TARGET_64BIT))))
1044
c98f8742 1045
e075ae69 1046/* Specify the modes required to caller save a given hard regno.
787dc842 1047 We do this on i386 to prevent flags from being saved at all.
e075ae69 1048
787dc842
JH
1049 Kill any attempts to combine saving of modes. */
1050
d9a5f180
GS
1051#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1052 (CC_REGNO_P (REGNO) ? VOIDmode \
1053 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1054 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1055 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1056 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1057 : (MODE))
c98f8742
JVA
1058/* Specify the registers used for certain standard purposes.
1059 The values of these macros are register numbers. */
1060
1061/* on the 386 the pc register is %eip, and is not usable as a general
1062 register. The ordinary mov instructions won't work */
1063/* #define PC_REGNUM */
1064
1065/* Register to use for pushing function arguments. */
1066#define STACK_POINTER_REGNUM 7
1067
1068/* Base register for access to local variables of the function. */
564d80f4
JH
1069#define HARD_FRAME_POINTER_REGNUM 6
1070
1071/* Base register for access to local variables of the function. */
1072#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1073
1074/* First floating point reg */
1075#define FIRST_FLOAT_REG 8
1076
1077/* First & last stack-like regs */
1078#define FIRST_STACK_REG FIRST_FLOAT_REG
1079#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1080
e075ae69
RH
1081#define FLAGS_REG 17
1082#define FPSR_REG 18
7c7ef435 1083#define DIRFLAG_REG 19
e075ae69 1084
a7180f70
BS
1085#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1086#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1087
a7180f70
BS
1088#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1089#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1090
3f3f2124
JH
1091#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1092#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1093
1094#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1095#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1096
c98f8742
JVA
1097/* Value should be nonzero if functions must have frame pointers.
1098 Zero means the frame pointer need not be set up (and parms
1099 may be accessed via the stack pointer) in functions that seem suitable.
1100 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1101#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1102
1103/* Override this in other tm.h files to cope with various OS losage
1104 requiring a frame pointer. */
1105#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1106#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1107#endif
1108
1109/* Make sure we can access arbitrary call frames. */
1110#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1111
1112/* Base register for access to arguments of the function. */
1113#define ARG_POINTER_REGNUM 16
1114
d2836273
JH
1115/* Register in which static-chain is passed to a function.
1116 We do use ECX as static chain register for 32 bit ABI. On the
1117 64bit ABI, ECX is an argument register, so we use R10 instead. */
1118#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1119
1120/* Register to hold the addressing base for position independent
5b43fed1
RH
1121 code access to data items. We don't use PIC pointer for 64bit
1122 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1123 pessimizing code dealing with EBX.
bd09bdeb
RH
1124
1125 To avoid clobbering a call-saved register unnecessarily, we renumber
1126 the pic register when possible. The change is visible after the
1127 prologue has been emitted. */
1128
1129#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1130
1131#define PIC_OFFSET_TABLE_REGNUM \
1132 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1133 : reload_completed ? REGNO (pic_offset_table_rtx) \
1134 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1135
5fc0e5df
KW
1136#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1137
c98f8742
JVA
1138/* Register in which address to store a structure value
1139 arrives in the function. On the 386, the prologue
1140 copies this from the stack to register %eax. */
1141#define STRUCT_VALUE_INCOMING 0
1142
1143/* Place in which caller passes the structure value address.
1144 0 means push the value on the stack like an argument. */
1145#define STRUCT_VALUE 0
713225d4
MM
1146
1147/* A C expression which can inhibit the returning of certain function
1148 values in registers, based on the type of value. A nonzero value
1149 says to return the function value in memory, just as large
1150 structures are always returned. Here TYPE will be a C expression
1151 of type `tree', representing the data type of the value.
1152
1153 Note that values of mode `BLKmode' must be explicitly handled by
1154 this macro. Also, the option `-fpcc-struct-return' takes effect
1155 regardless of this macro. On most systems, it is possible to
1156 leave the macro undefined; this causes a default definition to be
1157 used, whose value is the constant 1 for `BLKmode' values, and 0
1158 otherwise.
1159
1160 Do not use this macro to indicate that structures and unions
1161 should always be returned in memory. You should instead use
1162 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1163
d9a5f180 1164#define RETURN_IN_MEMORY(TYPE) \
53c17031 1165 ix86_return_in_memory (TYPE)
713225d4 1166
c98f8742
JVA
1167\f
1168/* Define the classes of registers for register constraints in the
1169 machine description. Also define ranges of constants.
1170
1171 One of the classes must always be named ALL_REGS and include all hard regs.
1172 If there is more than one class, another class must be named NO_REGS
1173 and contain no registers.
1174
1175 The name GENERAL_REGS must be the name of a class (or an alias for
1176 another name such as ALL_REGS). This is the class of registers
1177 that is allowed by "g" or "r" in a register constraint.
1178 Also, registers outside this class are allocated only when
1179 instructions express preferences for them.
1180
1181 The classes must be numbered in nondecreasing order; that is,
1182 a larger-numbered class must never be contained completely
1183 in a smaller-numbered class.
1184
1185 For any two classes, it is very desirable that there be another
ab408a86
JVA
1186 class that represents their union.
1187
1188 It might seem that class BREG is unnecessary, since no useful 386
1189 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1190 and the "b" register constraint is useful in asms for syscalls.
1191
1192 The flags and fpsr registers are in no class. */
c98f8742
JVA
1193
1194enum reg_class
1195{
1196 NO_REGS,
e075ae69 1197 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1198 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1199 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1200 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1201 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1202 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1203 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1204 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1205 FLOAT_REGS,
a7180f70
BS
1206 SSE_REGS,
1207 MMX_REGS,
446988df
JH
1208 FP_TOP_SSE_REGS,
1209 FP_SECOND_SSE_REGS,
1210 FLOAT_SSE_REGS,
1211 FLOAT_INT_REGS,
1212 INT_SSE_REGS,
1213 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1214 ALL_REGS, LIM_REG_CLASSES
1215};
1216
d9a5f180
GS
1217#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1218
1219#define INTEGER_CLASS_P(CLASS) \
1220 reg_class_subset_p ((CLASS), GENERAL_REGS)
1221#define FLOAT_CLASS_P(CLASS) \
1222 reg_class_subset_p ((CLASS), FLOAT_REGS)
1223#define SSE_CLASS_P(CLASS) \
1224 reg_class_subset_p ((CLASS), SSE_REGS)
1225#define MMX_CLASS_P(CLASS) \
1226 reg_class_subset_p ((CLASS), MMX_REGS)
1227#define MAYBE_INTEGER_CLASS_P(CLASS) \
1228 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1229#define MAYBE_FLOAT_CLASS_P(CLASS) \
1230 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1231#define MAYBE_SSE_CLASS_P(CLASS) \
1232 reg_classes_intersect_p (SSE_REGS, (CLASS))
1233#define MAYBE_MMX_CLASS_P(CLASS) \
1234 reg_classes_intersect_p (MMX_REGS, (CLASS))
1235
1236#define Q_CLASS_P(CLASS) \
1237 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1238
c98f8742
JVA
1239/* Give names of register classes as strings for dump file. */
1240
1241#define REG_CLASS_NAMES \
1242{ "NO_REGS", \
ab408a86 1243 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1244 "SIREG", "DIREG", \
e075ae69
RH
1245 "AD_REGS", \
1246 "Q_REGS", "NON_Q_REGS", \
c98f8742 1247 "INDEX_REGS", \
3f3f2124 1248 "LEGACY_REGS", \
c98f8742
JVA
1249 "GENERAL_REGS", \
1250 "FP_TOP_REG", "FP_SECOND_REG", \
1251 "FLOAT_REGS", \
a7180f70
BS
1252 "SSE_REGS", \
1253 "MMX_REGS", \
446988df
JH
1254 "FP_TOP_SSE_REGS", \
1255 "FP_SECOND_SSE_REGS", \
1256 "FLOAT_SSE_REGS", \
8fcaaa80 1257 "FLOAT_INT_REGS", \
446988df
JH
1258 "INT_SSE_REGS", \
1259 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1260 "ALL_REGS" }
1261
1262/* Define which registers fit in which classes.
1263 This is an initializer for a vector of HARD_REG_SET
1264 of length N_REG_CLASSES. */
1265
a7180f70 1266#define REG_CLASS_CONTENTS \
3f3f2124
JH
1267{ { 0x00, 0x0 }, \
1268 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1269 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1270 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1271 { 0x03, 0x0 }, /* AD_REGS */ \
1272 { 0x0f, 0x0 }, /* Q_REGS */ \
1273 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1274 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1275 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1276 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1277 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1278 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1279{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1280{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1281{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1282{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1283{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1284 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1285{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1286{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1287{ 0xffffffff,0x1fffff } \
e075ae69 1288}
c98f8742
JVA
1289
1290/* The same information, inverted:
1291 Return the class number of the smallest class containing
1292 reg number REGNO. This could be a conditional expression
1293 or could index an array. */
1294
c98f8742
JVA
1295#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1296
1297/* When defined, the compiler allows registers explicitly used in the
1298 rtl to be used as spill registers but prevents the compiler from
892a2d68 1299 extending the lifetime of these registers. */
c98f8742 1300
2922fe9e 1301#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1302
1303#define QI_REG_P(X) \
1304 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1305
d9a5f180
GS
1306#define GENERAL_REGNO_P(N) \
1307 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1308
1309#define GENERAL_REG_P(X) \
6189a572 1310 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1311
1312#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1313
c98f8742
JVA
1314#define NON_QI_REG_P(X) \
1315 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1316
d9a5f180 1317#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1318#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1319
c98f8742 1320#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1321#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1322#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1323#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1324
d9a5f180
GS
1325#define SSE_REGNO_P(N) \
1326 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1327 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1328
d9a5f180
GS
1329#define SSE_REGNO(N) \
1330 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1331#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1332
d9a5f180 1333#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1334 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1335
d9a5f180
GS
1336#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1337#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fce5a9f2 1338
d9a5f180
GS
1339#define STACK_REG_P(XOP) \
1340 (REG_P (XOP) && \
1341 REGNO (XOP) >= FIRST_STACK_REG && \
1342 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1343
d9a5f180 1344#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1345
d9a5f180 1346#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1347
e075ae69
RH
1348#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1349#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1350
cdbca172
JO
1351/* Indicate whether hard register numbered REG_NO should be converted
1352 to SSA form. */
1353#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
d9a5f180 1354 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
cdbca172 1355
c98f8742
JVA
1356/* The class value for index registers, and the one for base regs. */
1357
1358#define INDEX_REG_CLASS INDEX_REGS
1359#define BASE_REG_CLASS GENERAL_REGS
1360
1361/* Get reg_class from a letter such as appears in the machine description. */
1362
1363#define REG_CLASS_FROM_LETTER(C) \
8c2bf92a 1364 ((C) == 'r' ? GENERAL_REGS : \
3f3f2124
JH
1365 (C) == 'R' ? LEGACY_REGS : \
1366 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1367 (C) == 'Q' ? Q_REGS : \
8c2bf92a
JVA
1368 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1369 ? FLOAT_REGS \
1370 : NO_REGS) : \
1371 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1372 ? FP_TOP_REG \
1373 : NO_REGS) : \
1374 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1375 ? FP_SECOND_REG \
1376 : NO_REGS) : \
1377 (C) == 'a' ? AREG : \
1378 (C) == 'b' ? BREG : \
1379 (C) == 'c' ? CREG : \
1380 (C) == 'd' ? DREG : \
446988df
JH
1381 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1382 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1383 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
4b71cd6e 1384 (C) == 'A' ? AD_REGS : \
8c2bf92a 1385 (C) == 'D' ? DIREG : \
c98f8742
JVA
1386 (C) == 'S' ? SIREG : NO_REGS)
1387
1388/* The letters I, J, K, L and M in a register constraint string
1389 can be used to stand for particular ranges of immediate operands.
1390 This macro defines what the ranges are.
1391 C is the letter, and VALUE is a constant value.
1392 Return 1 if VALUE is in the range specified by C.
1393
1394 I is for non-DImode shifts.
1395 J is for DImode shifts.
e075ae69
RH
1396 K is for signed imm8 operands.
1397 L is for andsi as zero-extending move.
c98f8742 1398 M is for shifts that can be executed by the "lea" opcode.
1aa9fd24 1399 N is for immedaite operands for out/in instructions (0-255)
c98f8742
JVA
1400 */
1401
e075ae69
RH
1402#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1403 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1404 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1405 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1406 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1407 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1aa9fd24 1408 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
e075ae69 1409 : 0)
c98f8742
JVA
1410
1411/* Similar, but for floating constants, and defining letters G and H.
b4ac57ab
RS
1412 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1413 TARGET_387 isn't set, because the stack register converter may need to
c47f5ea5 1414 load 0.0 into the function value register. */
c98f8742
JVA
1415
1416#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2b04e52b 1417 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
f8ca7923 1418 : 0)
c98f8742 1419
6189a572
JH
1420/* A C expression that defines the optional machine-dependent
1421 constraint letters that can be used to segregate specific types of
1422 operands, usually memory references, for the target machine. Any
1423 letter that is not elsewhere defined and not matched by
1424 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1425 be defined.
1426
1427 If it is required for a particular target machine, it should
1428 return 1 if VALUE corresponds to the operand type represented by
1429 the constraint letter C. If C is not defined as an extra
1430 constraint, the value returned should be 0 regardless of VALUE. */
1431
0e67d460
JH
1432#define EXTRA_CONSTRAINT(VALUE, D) \
1433 ((D) == 'e' ? x86_64_sign_extended_value (VALUE, 0) \
1434 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1435 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
6189a572
JH
1436 : 0)
1437
c98f8742 1438/* Place additional restrictions on the register class to use when it
4cbb525c 1439 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1440 register for which class CLASS would ordinarily be used. */
c98f8742 1441
d2836273
JH
1442#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1443 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1444 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1445 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1446 ? Q_REGS : (CLASS))
1447
1448/* Given an rtx X being reloaded into a reg required to be
1449 in class CLASS, return the class of reg to actually use.
1450 In general this is just CLASS; but on some machines
1451 in some cases it is preferable to use a more restrictive class.
1452 On the 80386 series, we prevent floating constants from being
1453 reloaded into floating registers (since no move-insn can do that)
1454 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1455
d398b3b1 1456/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1457 QImode must go into class Q_REGS.
d398b3b1 1458 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1459 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1460
d9a5f180
GS
1461#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1462 ix86_preferred_reload_class ((X), (CLASS))
85ff473e
JVA
1463
1464/* If we are copying between general and FP registers, we need a memory
f84aa48a 1465 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1466#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1467 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1468
1469/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1470 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1471 pseudo. */
1472
d9a5f180 1473#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1474 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1475 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1476 ? Q_REGS : NO_REGS)
c98f8742
JVA
1477
1478/* Return the maximum number of consecutive registers
1479 needed to represent mode MODE in a register of class CLASS. */
1480/* On the 80386, this is the size of MODE in words,
92d0fb09
JH
1481 except in the FP regs, where a single reg is always enough.
1482 The TFmodes are really just 80bit values, so we use only 3 registers
1483 to hold them, instead of 4, as the size would suggest.
1484 */
a7180f70 1485#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1486 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1487 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1488 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1489 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1490
1491/* A C expression whose value is nonzero if pseudos that have been
1492 assigned to registers of class CLASS would likely be spilled
1493 because registers of CLASS are needed for spill registers.
1494
1495 The default value of this macro returns 1 if CLASS has exactly one
1496 register and zero otherwise. On most machines, this default
1497 should be used. Only define this macro to some other expression
1498 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1499 their hard registers were needed for spill registers. If this
f5316dfe
MM
1500 macro returns nonzero for those classes, those pseudos will only
1501 be allocated by `global.c', which knows how to reallocate the
1502 pseudo to another register. If there would not be another
1503 register available for reallocation, you should not change the
1504 definition of this macro since the only effect of such a
1505 definition would be to slow down register allocation. */
1506
1507#define CLASS_LIKELY_SPILLED_P(CLASS) \
1508 (((CLASS) == AREG) \
1509 || ((CLASS) == DREG) \
1510 || ((CLASS) == CREG) \
1511 || ((CLASS) == BREG) \
1512 || ((CLASS) == AD_REGS) \
1513 || ((CLASS) == SIREG) \
1514 || ((CLASS) == DIREG))
1515
e075ae69 1516/* A C statement that adds to CLOBBERS any hard regs the port wishes
fce5a9f2 1517 to automatically clobber for all asms.
e075ae69
RH
1518
1519 We do this in the new i386 backend to maintain source compatibility
1520 with the old cc0-based compiler. */
1521
d9a5f180
GS
1522#define MD_ASM_CLOBBERS(CLOBBERS) \
1523 do { \
1524 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1525 (CLOBBERS)); \
1526 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1527 (CLOBBERS)); \
1528 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1529 (CLOBBERS)); \
e075ae69 1530 } while (0)
c98f8742
JVA
1531\f
1532/* Stack layout; function entry, exit and calling. */
1533
1534/* Define this if pushing a word on the stack
1535 makes the stack pointer a smaller address. */
1536#define STACK_GROWS_DOWNWARD
1537
1538/* Define this if the nominal address of the stack frame
1539 is at the high-address end of the local variables;
1540 that is, each additional local variable allocated
1541 goes at a more negative offset in the frame. */
1542#define FRAME_GROWS_DOWNWARD
1543
1544/* Offset within stack frame to start allocating local variables at.
1545 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1546 first local allocated. Otherwise, it is the offset to the BEGINNING
1547 of the first local allocated. */
1548#define STARTING_FRAME_OFFSET 0
1549
1550/* If we generate an insn to push BYTES bytes,
1551 this says how many the stack pointer really advances by.
1552 On 386 pushw decrements by exactly 2 no matter what the position was.
1553 On the 386 there is no pushb; we use pushw instead, and this
d2836273 1554 has the effect of rounding up to 2.
fce5a9f2 1555
d2836273
JH
1556 For 64bit ABI we round up to 8 bytes.
1557 */
c98f8742 1558
d2836273
JH
1559#define PUSH_ROUNDING(BYTES) \
1560 (TARGET_64BIT \
1561 ? (((BYTES) + 7) & (-8)) \
1562 : (((BYTES) + 1) & (-2)))
c98f8742 1563
f73ad30e
JH
1564/* If defined, the maximum amount of space required for outgoing arguments will
1565 be computed and placed into the variable
1566 `current_function_outgoing_args_size'. No space will be pushed onto the
1567 stack for each call; instead, the function prologue should increase the stack
1568 frame size by this amount. */
1569
1570#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1571
1572/* If defined, a C expression whose value is nonzero when we want to use PUSH
1573 instructions to pass outgoing arguments. */
1574
1575#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1576
2da4124d
L
1577/* We want the stack and args grow in opposite directions, even if
1578 PUSH_ARGS is 0. */
1579#define PUSH_ARGS_REVERSED 1
1580
c98f8742
JVA
1581/* Offset of first parameter from the argument pointer register value. */
1582#define FIRST_PARM_OFFSET(FNDECL) 0
1583
a7180f70
BS
1584/* Define this macro if functions should assume that stack space has been
1585 allocated for arguments even when their values are passed in registers.
1586
1587 The value of this macro is the size, in bytes, of the area reserved for
1588 arguments passed in registers for the function represented by FNDECL.
1589
1590 This space can be allocated by the caller, or be a part of the
1591 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1592 which. */
1593#define REG_PARM_STACK_SPACE(FNDECL) 0
1594
1595/* Define as a C expression that evaluates to nonzero if we do not know how
1596 to pass TYPE solely in registers. The file expr.h defines a
1597 definition that is usually appropriate, refer to expr.h for additional
1598 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1599 computed in the stack and then loaded into a register. */
d9a5f180
GS
1600#define MUST_PASS_IN_STACK(MODE, TYPE) \
1601 ((TYPE) != 0 \
1602 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1603 || TREE_ADDRESSABLE (TYPE) \
1604 || ((MODE) == TImode) \
1605 || ((MODE) == BLKmode \
1606 && ! ((TYPE) != 0 \
1607 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1608 && 0 == (int_size_in_bytes (TYPE) \
1609 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1610 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
a7180f70
BS
1611 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1612
c98f8742
JVA
1613/* Value is the number of bytes of arguments automatically
1614 popped when returning from a subroutine call.
8b109b37 1615 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1616 FUNTYPE is the data type of the function (as a tree),
1617 or for a library call it is an identifier node for the subroutine name.
1618 SIZE is the number of bytes of arguments passed on the stack.
1619
1620 On the 80386, the RTD insn may be used to pop them if the number
1621 of args is fixed, but if the number is variable then the caller
1622 must pop them all. RTD can't be used for library calls now
1623 because the library is compiled with the Unix compiler.
1624 Use of RTD is a selectable option, since it is incompatible with
1625 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1626 the caller must always pop the args.
1627
1628 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1629
d9a5f180
GS
1630#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1631 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1632
8c2bf92a
JVA
1633/* Define how to find the value returned by a function.
1634 VALTYPE is the data type of the value (as a tree).
1635 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1636 otherwise, FUNC is 0. */
c98f8742 1637#define FUNCTION_VALUE(VALTYPE, FUNC) \
53c17031
JH
1638 ix86_function_value (VALTYPE)
1639
1640#define FUNCTION_VALUE_REGNO_P(N) \
1641 ix86_function_value_regno_p (N)
c98f8742
JVA
1642
1643/* Define how to find the value returned by a library function
1644 assuming the value has mode MODE. */
1645
1646#define LIBCALL_VALUE(MODE) \
53c17031 1647 ix86_libcall_value (MODE)
c98f8742 1648
e9125c09
TW
1649/* Define the size of the result block used for communication between
1650 untyped_call and untyped_return. The block contains a DImode value
1651 followed by the block used by fnsave and frstor. */
1652
1653#define APPLY_RESULT_SIZE (8+108)
1654
b08de47e 1655/* 1 if N is a possible register number for function argument passing. */
53c17031 1656#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1657
1658/* Define a data type for recording info about an argument list
1659 during the scan of that argument list. This data type should
1660 hold all necessary information about the function itself
1661 and about the args processed so far, enough to enable macros
b08de47e 1662 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1663
e075ae69 1664typedef struct ix86_args {
b08de47e
MM
1665 int words; /* # words passed so far */
1666 int nregs; /* # registers available for passing */
1667 int regno; /* next available register number */
a7180f70
BS
1668 int sse_words; /* # sse words passed so far */
1669 int sse_nregs; /* # sse registers available for passing */
1670 int sse_regno; /* next available sse register number */
892a2d68 1671 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
b08de47e 1672} CUMULATIVE_ARGS;
c98f8742
JVA
1673
1674/* Initialize a variable CUM of type CUMULATIVE_ARGS
1675 for a call to a function whose data type is FNTYPE.
b08de47e 1676 For a library call, FNTYPE is 0. */
c98f8742 1677
d9a5f180
GS
1678#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1679 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
c98f8742
JVA
1680
1681/* Update the data in CUM to advance over an argument
1682 of mode MODE and data type TYPE.
1683 (TYPE is null for libcalls where that information may not be available.) */
1684
d9a5f180
GS
1685#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1686 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1687
1688/* Define where to put the arguments to a function.
1689 Value is zero to push the argument on the stack,
1690 or a hard register in which to store the argument.
1691
1692 MODE is the argument's machine mode.
1693 TYPE is the data type of the argument (as a tree).
1694 This is null for libcalls where that information may
1695 not be available.
1696 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1697 the preceding args and about the function being called.
1698 NAMED is nonzero if this argument is a named parameter
1699 (otherwise it is an extra parameter matching an ellipsis). */
1700
c98f8742 1701#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1702 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1703
1704/* For an arg passed partly in registers and partly in memory,
1705 this is the number of registers used.
1706 For args passed entirely in registers or entirely in memory, zero. */
1707
e075ae69 1708#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
c98f8742 1709
26f2c02a
ZW
1710/* If PIC, we cannot make sibling calls to global functions
1711 because the PLT requires %ebx live.
1712 If we are returning floats on the register stack, we cannot make
1713 sibling calls to functions that return floats. (The stack adjust
1714 instruction will wind up after the sibcall jump, and not be executed.) */
d9a5f180
GS
1715#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1716 ((DECL) \
1717 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1718 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1719 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
26f2c02a 1720 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
cbbf65e0 1721
ad919812
JH
1722/* Perform any needed actions needed for a function that is receiving a
1723 variable number of arguments.
1724
1725 CUM is as above.
1726
1727 MODE and TYPE are the mode and type of the current parameter.
1728
1729 PRETEND_SIZE is a variable that should be set to the amount of stack
1730 that must be pushed by the prolog to pretend that our caller pushed
1731 it.
1732
1733 Normally, this macro will push all remaining incoming registers on the
1734 stack and set PRETEND_SIZE to the length of the registers pushed. */
1735
d9a5f180
GS
1736#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1737 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1738 (NO_RTL))
ad919812
JH
1739
1740/* Define the `__builtin_va_list' type for the ABI. */
1741#define BUILD_VA_LIST_TYPE(VALIST) \
d9a5f180 1742 ((VALIST) = ix86_build_va_list ())
ad919812
JH
1743
1744/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1745#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1746 ix86_va_start (VALIST, NEXTARG)
ad919812
JH
1747
1748/* Implement `va_arg'. */
d9a5f180
GS
1749#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1750 ix86_va_arg ((VALIST), (TYPE))
ad919812 1751
4cf12e7e
RH
1752/* This macro is invoked at the end of compilation. It is used here to
1753 output code for -fpic that will load the return address into %ebx. */
3a0433fd 1754
4cf12e7e
RH
1755#undef ASM_FILE_END
1756#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
3a0433fd 1757
c98f8742
JVA
1758/* Output assembler code to FILE to increment profiler label # LABELNO
1759 for profiling a function entry. */
1760
d9a5f180
GS
1761#define FUNCTION_PROFILER(FILE, LABELNO) \
1762do { \
c98f8742
JVA
1763 if (flag_pic) \
1764 { \
d9a5f180 1765 fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
c98f8742 1766 LPREFIX, (LABELNO)); \
d9a5f180 1767 fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
c98f8742
JVA
1768 } \
1769 else \
1770 { \
d9a5f180
GS
1771 fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1772 fprintf ((FILE), "\tcall\t_mcount\n"); \
c98f8742 1773 } \
d9a5f180 1774} while (0)
c98f8742
JVA
1775
1776/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1777 the stack pointer does not matter. The value is tested only in
1778 functions that have frame pointers.
1779 No definition is equivalent to always zero. */
fce5a9f2 1780/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1781 we have to restore it ourselves from the frame pointer, in order to
1782 use pop */
1783
1784#define EXIT_IGNORE_STACK 1
1785
c98f8742
JVA
1786/* Output assembler code for a block containing the constant parts
1787 of a trampoline, leaving space for the variable parts. */
1788
a269a03c 1789/* On the 386, the trampoline contains two instructions:
c98f8742 1790 mov #STATIC,ecx
a269a03c
JC
1791 jmp FUNCTION
1792 The trampoline is generated entirely at runtime. The operand of JMP
1793 is the address of FUNCTION relative to the instruction following the
1794 JMP (which is 5 bytes long). */
c98f8742
JVA
1795
1796/* Length in units of the trampoline for entering a nested function. */
1797
39d04363 1798#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1799
1800/* Emit RTL insns to initialize the variable parts of a trampoline.
1801 FNADDR is an RTX for the address of the function's pure code.
1802 CXT is an RTX for the static chain value for the function. */
1803
d9a5f180
GS
1804#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1805 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1806\f
1807/* Definitions for register eliminations.
1808
1809 This is an array of structures. Each structure initializes one pair
1810 of eliminable registers. The "from" register number is given first,
1811 followed by "to". Eliminations of the same "from" register are listed
1812 in order of preference.
1813
afc2cd05
NC
1814 There are two registers that can always be eliminated on the i386.
1815 The frame pointer and the arg pointer can be replaced by either the
1816 hard frame pointer or to the stack pointer, depending upon the
1817 circumstances. The hard frame pointer is not used before reload and
1818 so it is not eligible for elimination. */
c98f8742 1819
564d80f4
JH
1820#define ELIMINABLE_REGS \
1821{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1822 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1823 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1824 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1825
2c5a510c
RH
1826/* Given FROM and TO register numbers, say whether this elimination is
1827 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1828
1829 All other eliminations are valid. */
1830
2c5a510c
RH
1831#define CAN_ELIMINATE(FROM, TO) \
1832 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1833
1834/* Define the offset between two registers, one to be eliminated, and the other
1835 its replacement, at the start of a routine. */
1836
d9a5f180
GS
1837#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1838 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1839\f
1840/* Addressing modes, and classification of registers for them. */
1841
940da324
JL
1842/* #define HAVE_POST_INCREMENT 0 */
1843/* #define HAVE_POST_DECREMENT 0 */
c98f8742 1844
940da324
JL
1845/* #define HAVE_PRE_DECREMENT 0 */
1846/* #define HAVE_PRE_INCREMENT 0 */
c98f8742
JVA
1847
1848/* Macros to check register numbers against specific register classes. */
1849
1850/* These assume that REGNO is a hard or pseudo reg number.
1851 They give nonzero only if REGNO is a hard reg of the suitable class
1852 or a pseudo reg currently allocated to a suitable hard reg.
1853 Since they use reg_renumber, they are safe only once reg_renumber
1854 has been allocated, which happens in local-alloc.c. */
1855
3f3f2124
JH
1856#define REGNO_OK_FOR_INDEX_P(REGNO) \
1857 ((REGNO) < STACK_POINTER_REGNUM \
1858 || (REGNO >= FIRST_REX_INT_REG \
1859 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1860 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1861 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1862 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1863
3f3f2124
JH
1864#define REGNO_OK_FOR_BASE_P(REGNO) \
1865 ((REGNO) <= STACK_POINTER_REGNUM \
1866 || (REGNO) == ARG_POINTER_REGNUM \
1867 || (REGNO) == FRAME_POINTER_REGNUM \
1868 || (REGNO >= FIRST_REX_INT_REG \
1869 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1870 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1871 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1872 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1873
d9a5f180
GS
1874#define REGNO_OK_FOR_SIREG_P(REGNO) \
1875 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1876#define REGNO_OK_FOR_DIREG_P(REGNO) \
1877 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1878
1879/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1880 and check its validity for a certain class.
1881 We have two alternate definitions for each of them.
1882 The usual definition accepts all pseudo regs; the other rejects
1883 them unless they have been allocated suitable hard regs.
1884 The symbol REG_OK_STRICT causes the latter definition to be used.
1885
1886 Most source files want to accept pseudo regs in the hope that
1887 they will get allocated to the class that the insn wants them to be in.
1888 Source files for reload pass need to be strict.
1889 After reload, it makes no difference, since pseudo regs have
1890 been eliminated by then. */
1891
c98f8742 1892
3b3c6a3f
MM
1893/* Non strict versions, pseudos are ok */
1894#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1895 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1896 || (REGNO (X) >= FIRST_REX_INT_REG \
1897 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1898 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1899
3b3c6a3f
MM
1900#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1901 (REGNO (X) <= STACK_POINTER_REGNUM \
1902 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1903 || REGNO (X) == FRAME_POINTER_REGNUM \
1904 || (REGNO (X) >= FIRST_REX_INT_REG \
1905 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1906 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1907
3b3c6a3f
MM
1908/* Strict versions, hard registers only */
1909#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1910#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1911
3b3c6a3f 1912#ifndef REG_OK_STRICT
d9a5f180
GS
1913#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1914#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1915
1916#else
d9a5f180
GS
1917#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1918#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1919#endif
1920
1921/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1922 that is a valid memory address for an instruction.
1923 The MODE argument is the machine mode for the MEM expression
1924 that wants to use this address.
1925
1926 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1927 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1928
1929 See legitimize_pic_address in i386.c for details as to what
1930 constitutes a legitimate address when -fpic is used. */
1931
1932#define MAX_REGS_PER_ADDRESS 2
1933
f996902d 1934#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1935
1936/* Nonzero if the constant value X is a legitimate general operand.
1937 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1938
f996902d 1939#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1940
3b3c6a3f
MM
1941#ifdef REG_OK_STRICT
1942#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1943do { \
1944 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1945 goto ADDR; \
d9a5f180 1946} while (0)
c98f8742 1947
3b3c6a3f
MM
1948#else
1949#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1950do { \
1951 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1952 goto ADDR; \
d9a5f180 1953} while (0)
c98f8742 1954
3b3c6a3f
MM
1955#endif
1956
b949ea8b
JW
1957/* If defined, a C expression to determine the base term of address X.
1958 This macro is used in only one place: `find_base_term' in alias.c.
1959
1960 It is always safe for this macro to not be defined. It exists so
1961 that alias analysis can understand machine-dependent addresses.
1962
1963 The typical use of this macro is to handle addresses containing
1964 a label_ref or symbol_ref within an UNSPEC. */
1965
d9a5f180 1966#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1967
c98f8742
JVA
1968/* Try machine-dependent ways of modifying an illegitimate address
1969 to be legitimate. If we find one, return the new, valid address.
1970 This macro is used in only one place: `memory_address' in explow.c.
1971
1972 OLDX is the address as it was before break_out_memory_refs was called.
1973 In some cases it is useful to look at this to decide what needs to be done.
1974
1975 MODE and WIN are passed so that this macro can use
1976 GO_IF_LEGITIMATE_ADDRESS.
1977
1978 It is always safe for this macro to do nothing. It exists to recognize
1979 opportunities to optimize the output.
1980
1981 For the 80386, we handle X+REG by loading X into a register R and
1982 using R+REG. R will go in a general reg and indexing will be used.
1983 However, if REG is a broken-out memory address or multiplication,
1984 nothing needs to be done because REG can certainly go in a general reg.
1985
1986 When -fpic is used, special handling is needed for symbolic references.
1987 See comments by legitimize_pic_address in i386.c for details. */
1988
3b3c6a3f 1989#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1990do { \
1991 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1992 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1993 goto WIN; \
d9a5f180 1994} while (0)
c98f8742 1995
d9a5f180 1996#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1997
c98f8742 1998/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1999 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
2000 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2001
f996902d 2002#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
2003
2004#define SYMBOLIC_CONST(X) \
d9a5f180
GS
2005 (GET_CODE (X) == SYMBOL_REF \
2006 || GET_CODE (X) == LABEL_REF \
2007 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
2008
2009/* Go to LABEL if ADDR (a legitimate address expression)
2010 has an effect that depends on the machine mode it is used for.
2011 On the 80386, only postdecrement and postincrement address depend thus
2012 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
2013#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2014do { \
2015 if (GET_CODE (ADDR) == POST_INC \
2016 || GET_CODE (ADDR) == POST_DEC) \
2017 goto LABEL; \
2018} while (0)
c98f8742 2019\f
bd793c65
BS
2020/* Codes for all the SSE/MMX builtins. */
2021enum ix86_builtins
2022{
2023 IX86_BUILTIN_ADDPS,
2024 IX86_BUILTIN_ADDSS,
2025 IX86_BUILTIN_DIVPS,
2026 IX86_BUILTIN_DIVSS,
2027 IX86_BUILTIN_MULPS,
2028 IX86_BUILTIN_MULSS,
2029 IX86_BUILTIN_SUBPS,
2030 IX86_BUILTIN_SUBSS,
2031
2032 IX86_BUILTIN_CMPEQPS,
2033 IX86_BUILTIN_CMPLTPS,
2034 IX86_BUILTIN_CMPLEPS,
2035 IX86_BUILTIN_CMPGTPS,
2036 IX86_BUILTIN_CMPGEPS,
2037 IX86_BUILTIN_CMPNEQPS,
2038 IX86_BUILTIN_CMPNLTPS,
2039 IX86_BUILTIN_CMPNLEPS,
2040 IX86_BUILTIN_CMPNGTPS,
2041 IX86_BUILTIN_CMPNGEPS,
2042 IX86_BUILTIN_CMPORDPS,
2043 IX86_BUILTIN_CMPUNORDPS,
2044 IX86_BUILTIN_CMPNEPS,
2045 IX86_BUILTIN_CMPEQSS,
2046 IX86_BUILTIN_CMPLTSS,
2047 IX86_BUILTIN_CMPLESS,
bd793c65
BS
2048 IX86_BUILTIN_CMPNEQSS,
2049 IX86_BUILTIN_CMPNLTSS,
2050 IX86_BUILTIN_CMPNLESS,
bd793c65
BS
2051 IX86_BUILTIN_CMPORDSS,
2052 IX86_BUILTIN_CMPUNORDSS,
2053 IX86_BUILTIN_CMPNESS,
2054
2055 IX86_BUILTIN_COMIEQSS,
2056 IX86_BUILTIN_COMILTSS,
2057 IX86_BUILTIN_COMILESS,
2058 IX86_BUILTIN_COMIGTSS,
2059 IX86_BUILTIN_COMIGESS,
2060 IX86_BUILTIN_COMINEQSS,
2061 IX86_BUILTIN_UCOMIEQSS,
2062 IX86_BUILTIN_UCOMILTSS,
2063 IX86_BUILTIN_UCOMILESS,
2064 IX86_BUILTIN_UCOMIGTSS,
2065 IX86_BUILTIN_UCOMIGESS,
2066 IX86_BUILTIN_UCOMINEQSS,
2067
2068 IX86_BUILTIN_CVTPI2PS,
2069 IX86_BUILTIN_CVTPS2PI,
2070 IX86_BUILTIN_CVTSI2SS,
2071 IX86_BUILTIN_CVTSS2SI,
2072 IX86_BUILTIN_CVTTPS2PI,
2073 IX86_BUILTIN_CVTTSS2SI,
bd793c65
BS
2074
2075 IX86_BUILTIN_MAXPS,
2076 IX86_BUILTIN_MAXSS,
2077 IX86_BUILTIN_MINPS,
2078 IX86_BUILTIN_MINSS,
2079
2080 IX86_BUILTIN_LOADAPS,
2081 IX86_BUILTIN_LOADUPS,
2082 IX86_BUILTIN_STOREAPS,
2083 IX86_BUILTIN_STOREUPS,
2084 IX86_BUILTIN_LOADSS,
2085 IX86_BUILTIN_STORESS,
2086 IX86_BUILTIN_MOVSS,
2087
2088 IX86_BUILTIN_MOVHLPS,
2089 IX86_BUILTIN_MOVLHPS,
2090 IX86_BUILTIN_LOADHPS,
2091 IX86_BUILTIN_LOADLPS,
2092 IX86_BUILTIN_STOREHPS,
2093 IX86_BUILTIN_STORELPS,
2094
2095 IX86_BUILTIN_MASKMOVQ,
2096 IX86_BUILTIN_MOVMSKPS,
2097 IX86_BUILTIN_PMOVMSKB,
2098
2099 IX86_BUILTIN_MOVNTPS,
2100 IX86_BUILTIN_MOVNTQ,
2101
f02e1358
JH
2102 IX86_BUILTIN_LOADDQA,
2103 IX86_BUILTIN_LOADDQU,
2104 IX86_BUILTIN_STOREDQA,
2105 IX86_BUILTIN_STOREDQU,
2106 IX86_BUILTIN_MOVQ,
2107 IX86_BUILTIN_LOADD,
2108 IX86_BUILTIN_STORED,
2109
2110 IX86_BUILTIN_CLRTI,
2111
bd793c65
BS
2112 IX86_BUILTIN_PACKSSWB,
2113 IX86_BUILTIN_PACKSSDW,
2114 IX86_BUILTIN_PACKUSWB,
2115
2116 IX86_BUILTIN_PADDB,
2117 IX86_BUILTIN_PADDW,
2118 IX86_BUILTIN_PADDD,
2119 IX86_BUILTIN_PADDSB,
2120 IX86_BUILTIN_PADDSW,
2121 IX86_BUILTIN_PADDUSB,
2122 IX86_BUILTIN_PADDUSW,
2123 IX86_BUILTIN_PSUBB,
2124 IX86_BUILTIN_PSUBW,
2125 IX86_BUILTIN_PSUBD,
2126 IX86_BUILTIN_PSUBSB,
2127 IX86_BUILTIN_PSUBSW,
2128 IX86_BUILTIN_PSUBUSB,
2129 IX86_BUILTIN_PSUBUSW,
2130
2131 IX86_BUILTIN_PAND,
2132 IX86_BUILTIN_PANDN,
2133 IX86_BUILTIN_POR,
2134 IX86_BUILTIN_PXOR,
2135
2136 IX86_BUILTIN_PAVGB,
2137 IX86_BUILTIN_PAVGW,
2138
2139 IX86_BUILTIN_PCMPEQB,
2140 IX86_BUILTIN_PCMPEQW,
2141 IX86_BUILTIN_PCMPEQD,
2142 IX86_BUILTIN_PCMPGTB,
2143 IX86_BUILTIN_PCMPGTW,
2144 IX86_BUILTIN_PCMPGTD,
2145
2146 IX86_BUILTIN_PEXTRW,
2147 IX86_BUILTIN_PINSRW,
2148
2149 IX86_BUILTIN_PMADDWD,
2150
2151 IX86_BUILTIN_PMAXSW,
2152 IX86_BUILTIN_PMAXUB,
2153 IX86_BUILTIN_PMINSW,
2154 IX86_BUILTIN_PMINUB,
2155
2156 IX86_BUILTIN_PMULHUW,
2157 IX86_BUILTIN_PMULHW,
2158 IX86_BUILTIN_PMULLW,
2159
2160 IX86_BUILTIN_PSADBW,
2161 IX86_BUILTIN_PSHUFW,
2162
2163 IX86_BUILTIN_PSLLW,
2164 IX86_BUILTIN_PSLLD,
2165 IX86_BUILTIN_PSLLQ,
2166 IX86_BUILTIN_PSRAW,
2167 IX86_BUILTIN_PSRAD,
2168 IX86_BUILTIN_PSRLW,
2169 IX86_BUILTIN_PSRLD,
2170 IX86_BUILTIN_PSRLQ,
2171 IX86_BUILTIN_PSLLWI,
2172 IX86_BUILTIN_PSLLDI,
2173 IX86_BUILTIN_PSLLQI,
2174 IX86_BUILTIN_PSRAWI,
2175 IX86_BUILTIN_PSRADI,
2176 IX86_BUILTIN_PSRLWI,
2177 IX86_BUILTIN_PSRLDI,
2178 IX86_BUILTIN_PSRLQI,
2179
2180 IX86_BUILTIN_PUNPCKHBW,
2181 IX86_BUILTIN_PUNPCKHWD,
2182 IX86_BUILTIN_PUNPCKHDQ,
2183 IX86_BUILTIN_PUNPCKLBW,
2184 IX86_BUILTIN_PUNPCKLWD,
2185 IX86_BUILTIN_PUNPCKLDQ,
2186
2187 IX86_BUILTIN_SHUFPS,
2188
2189 IX86_BUILTIN_RCPPS,
2190 IX86_BUILTIN_RCPSS,
2191 IX86_BUILTIN_RSQRTPS,
2192 IX86_BUILTIN_RSQRTSS,
2193 IX86_BUILTIN_SQRTPS,
2194 IX86_BUILTIN_SQRTSS,
fce5a9f2 2195
bd793c65
BS
2196 IX86_BUILTIN_UNPCKHPS,
2197 IX86_BUILTIN_UNPCKLPS,
2198
2199 IX86_BUILTIN_ANDPS,
2200 IX86_BUILTIN_ANDNPS,
2201 IX86_BUILTIN_ORPS,
2202 IX86_BUILTIN_XORPS,
2203
2204 IX86_BUILTIN_EMMS,
2205 IX86_BUILTIN_LDMXCSR,
2206 IX86_BUILTIN_STMXCSR,
2207 IX86_BUILTIN_SFENCE,
bd793c65 2208
47f339cf
BS
2209 /* 3DNow! Original */
2210 IX86_BUILTIN_FEMMS,
2211 IX86_BUILTIN_PAVGUSB,
2212 IX86_BUILTIN_PF2ID,
2213 IX86_BUILTIN_PFACC,
2214 IX86_BUILTIN_PFADD,
2215 IX86_BUILTIN_PFCMPEQ,
2216 IX86_BUILTIN_PFCMPGE,
2217 IX86_BUILTIN_PFCMPGT,
2218 IX86_BUILTIN_PFMAX,
2219 IX86_BUILTIN_PFMIN,
2220 IX86_BUILTIN_PFMUL,
2221 IX86_BUILTIN_PFRCP,
2222 IX86_BUILTIN_PFRCPIT1,
2223 IX86_BUILTIN_PFRCPIT2,
2224 IX86_BUILTIN_PFRSQIT1,
2225 IX86_BUILTIN_PFRSQRT,
2226 IX86_BUILTIN_PFSUB,
2227 IX86_BUILTIN_PFSUBR,
2228 IX86_BUILTIN_PI2FD,
2229 IX86_BUILTIN_PMULHRW,
47f339cf
BS
2230
2231 /* 3DNow! Athlon Extensions */
2232 IX86_BUILTIN_PF2IW,
2233 IX86_BUILTIN_PFNACC,
2234 IX86_BUILTIN_PFPNACC,
2235 IX86_BUILTIN_PI2FW,
2236 IX86_BUILTIN_PSWAPDSI,
2237 IX86_BUILTIN_PSWAPDSF,
2238
e37af218 2239 IX86_BUILTIN_SSE_ZERO,
bd793c65
BS
2240 IX86_BUILTIN_MMX_ZERO,
2241
fbe5eb6d
BS
2242 /* SSE2 */
2243 IX86_BUILTIN_ADDPD,
2244 IX86_BUILTIN_ADDSD,
2245 IX86_BUILTIN_DIVPD,
2246 IX86_BUILTIN_DIVSD,
2247 IX86_BUILTIN_MULPD,
2248 IX86_BUILTIN_MULSD,
2249 IX86_BUILTIN_SUBPD,
2250 IX86_BUILTIN_SUBSD,
2251
2252 IX86_BUILTIN_CMPEQPD,
2253 IX86_BUILTIN_CMPLTPD,
2254 IX86_BUILTIN_CMPLEPD,
2255 IX86_BUILTIN_CMPGTPD,
2256 IX86_BUILTIN_CMPGEPD,
2257 IX86_BUILTIN_CMPNEQPD,
2258 IX86_BUILTIN_CMPNLTPD,
2259 IX86_BUILTIN_CMPNLEPD,
2260 IX86_BUILTIN_CMPNGTPD,
2261 IX86_BUILTIN_CMPNGEPD,
2262 IX86_BUILTIN_CMPORDPD,
2263 IX86_BUILTIN_CMPUNORDPD,
2264 IX86_BUILTIN_CMPNEPD,
2265 IX86_BUILTIN_CMPEQSD,
2266 IX86_BUILTIN_CMPLTSD,
2267 IX86_BUILTIN_CMPLESD,
fbe5eb6d
BS
2268 IX86_BUILTIN_CMPNEQSD,
2269 IX86_BUILTIN_CMPNLTSD,
2270 IX86_BUILTIN_CMPNLESD,
fbe5eb6d
BS
2271 IX86_BUILTIN_CMPORDSD,
2272 IX86_BUILTIN_CMPUNORDSD,
2273 IX86_BUILTIN_CMPNESD,
2274
2275 IX86_BUILTIN_COMIEQSD,
2276 IX86_BUILTIN_COMILTSD,
2277 IX86_BUILTIN_COMILESD,
2278 IX86_BUILTIN_COMIGTSD,
2279 IX86_BUILTIN_COMIGESD,
2280 IX86_BUILTIN_COMINEQSD,
2281 IX86_BUILTIN_UCOMIEQSD,
2282 IX86_BUILTIN_UCOMILTSD,
2283 IX86_BUILTIN_UCOMILESD,
2284 IX86_BUILTIN_UCOMIGTSD,
2285 IX86_BUILTIN_UCOMIGESD,
2286 IX86_BUILTIN_UCOMINEQSD,
2287
2288 IX86_BUILTIN_MAXPD,
2289 IX86_BUILTIN_MAXSD,
2290 IX86_BUILTIN_MINPD,
2291 IX86_BUILTIN_MINSD,
2292
2293 IX86_BUILTIN_ANDPD,
2294 IX86_BUILTIN_ANDNPD,
2295 IX86_BUILTIN_ORPD,
2296 IX86_BUILTIN_XORPD,
2297
2298 IX86_BUILTIN_SQRTPD,
2299 IX86_BUILTIN_SQRTSD,
2300
2301 IX86_BUILTIN_UNPCKHPD,
2302 IX86_BUILTIN_UNPCKLPD,
2303
2304 IX86_BUILTIN_SHUFPD,
2305
2306 IX86_BUILTIN_LOADAPD,
2307 IX86_BUILTIN_LOADUPD,
2308 IX86_BUILTIN_STOREAPD,
2309 IX86_BUILTIN_STOREUPD,
2310 IX86_BUILTIN_LOADSD,
2311 IX86_BUILTIN_STORESD,
2312 IX86_BUILTIN_MOVSD,
2313
2314 IX86_BUILTIN_LOADHPD,
2315 IX86_BUILTIN_LOADLPD,
2316 IX86_BUILTIN_STOREHPD,
2317 IX86_BUILTIN_STORELPD,
2318
2319 IX86_BUILTIN_CVTDQ2PD,
2320 IX86_BUILTIN_CVTDQ2PS,
2321
2322 IX86_BUILTIN_CVTPD2DQ,
2323 IX86_BUILTIN_CVTPD2PI,
2324 IX86_BUILTIN_CVTPD2PS,
2325 IX86_BUILTIN_CVTTPD2DQ,
2326 IX86_BUILTIN_CVTTPD2PI,
2327
2328 IX86_BUILTIN_CVTPI2PD,
2329 IX86_BUILTIN_CVTSI2SD,
2330
2331 IX86_BUILTIN_CVTSD2SI,
2332 IX86_BUILTIN_CVTSD2SS,
2333 IX86_BUILTIN_CVTSS2SD,
2334 IX86_BUILTIN_CVTTSD2SI,
2335
2336 IX86_BUILTIN_CVTPS2DQ,
2337 IX86_BUILTIN_CVTPS2PD,
2338 IX86_BUILTIN_CVTTPS2DQ,
2339
2340 IX86_BUILTIN_MOVNTI,
2341 IX86_BUILTIN_MOVNTPD,
2342 IX86_BUILTIN_MOVNTDQ,
2343
2344 IX86_BUILTIN_SETPD1,
2345 IX86_BUILTIN_SETPD,
2346 IX86_BUILTIN_CLRPD,
2347 IX86_BUILTIN_SETRPD,
2348 IX86_BUILTIN_LOADPD1,
2349 IX86_BUILTIN_LOADRPD,
2350 IX86_BUILTIN_STOREPD1,
2351 IX86_BUILTIN_STORERPD,
2352
2353 /* SSE2 MMX */
2354 IX86_BUILTIN_MASKMOVDQU,
2355 IX86_BUILTIN_MOVMSKPD,
2356 IX86_BUILTIN_PMOVMSKB128,
2357 IX86_BUILTIN_MOVQ2DQ,
f02e1358 2358 IX86_BUILTIN_MOVDQ2Q,
fbe5eb6d
BS
2359
2360 IX86_BUILTIN_PACKSSWB128,
2361 IX86_BUILTIN_PACKSSDW128,
2362 IX86_BUILTIN_PACKUSWB128,
2363
2364 IX86_BUILTIN_PADDB128,
2365 IX86_BUILTIN_PADDW128,
2366 IX86_BUILTIN_PADDD128,
2367 IX86_BUILTIN_PADDQ128,
2368 IX86_BUILTIN_PADDSB128,
2369 IX86_BUILTIN_PADDSW128,
2370 IX86_BUILTIN_PADDUSB128,
2371 IX86_BUILTIN_PADDUSW128,
2372 IX86_BUILTIN_PSUBB128,
2373 IX86_BUILTIN_PSUBW128,
2374 IX86_BUILTIN_PSUBD128,
2375 IX86_BUILTIN_PSUBQ128,
2376 IX86_BUILTIN_PSUBSB128,
2377 IX86_BUILTIN_PSUBSW128,
2378 IX86_BUILTIN_PSUBUSB128,
2379 IX86_BUILTIN_PSUBUSW128,
2380
2381 IX86_BUILTIN_PAND128,
2382 IX86_BUILTIN_PANDN128,
2383 IX86_BUILTIN_POR128,
2384 IX86_BUILTIN_PXOR128,
2385
2386 IX86_BUILTIN_PAVGB128,
2387 IX86_BUILTIN_PAVGW128,
2388
2389 IX86_BUILTIN_PCMPEQB128,
2390 IX86_BUILTIN_PCMPEQW128,
2391 IX86_BUILTIN_PCMPEQD128,
2392 IX86_BUILTIN_PCMPGTB128,
2393 IX86_BUILTIN_PCMPGTW128,
2394 IX86_BUILTIN_PCMPGTD128,
2395
2396 IX86_BUILTIN_PEXTRW128,
2397 IX86_BUILTIN_PINSRW128,
2398
2399 IX86_BUILTIN_PMADDWD128,
2400
2401 IX86_BUILTIN_PMAXSW128,
2402 IX86_BUILTIN_PMAXUB128,
2403 IX86_BUILTIN_PMINSW128,
2404 IX86_BUILTIN_PMINUB128,
2405
2406 IX86_BUILTIN_PMULUDQ,
2407 IX86_BUILTIN_PMULUDQ128,
2408 IX86_BUILTIN_PMULHUW128,
2409 IX86_BUILTIN_PMULHW128,
2410 IX86_BUILTIN_PMULLW128,
2411
2412 IX86_BUILTIN_PSADBW128,
2413 IX86_BUILTIN_PSHUFHW,
2414 IX86_BUILTIN_PSHUFLW,
2415 IX86_BUILTIN_PSHUFD,
2416
2417 IX86_BUILTIN_PSLLW128,
2418 IX86_BUILTIN_PSLLD128,
2419 IX86_BUILTIN_PSLLQ128,
2420 IX86_BUILTIN_PSRAW128,
2421 IX86_BUILTIN_PSRAD128,
2422 IX86_BUILTIN_PSRLW128,
2423 IX86_BUILTIN_PSRLD128,
2424 IX86_BUILTIN_PSRLQ128,
ab3146fd 2425 IX86_BUILTIN_PSLLDQI128,
fbe5eb6d
BS
2426 IX86_BUILTIN_PSLLWI128,
2427 IX86_BUILTIN_PSLLDI128,
2428 IX86_BUILTIN_PSLLQI128,
2429 IX86_BUILTIN_PSRAWI128,
2430 IX86_BUILTIN_PSRADI128,
ab3146fd 2431 IX86_BUILTIN_PSRLDQI128,
fbe5eb6d
BS
2432 IX86_BUILTIN_PSRLWI128,
2433 IX86_BUILTIN_PSRLDI128,
2434 IX86_BUILTIN_PSRLQI128,
2435
2436 IX86_BUILTIN_PUNPCKHBW128,
2437 IX86_BUILTIN_PUNPCKHWD128,
2438 IX86_BUILTIN_PUNPCKHDQ128,
077084dd 2439 IX86_BUILTIN_PUNPCKHQDQ128,
fbe5eb6d
BS
2440 IX86_BUILTIN_PUNPCKLBW128,
2441 IX86_BUILTIN_PUNPCKLWD128,
2442 IX86_BUILTIN_PUNPCKLDQ128,
f02e1358 2443 IX86_BUILTIN_PUNPCKLQDQ128,
fbe5eb6d
BS
2444
2445 IX86_BUILTIN_CLFLUSH,
2446 IX86_BUILTIN_MFENCE,
2447 IX86_BUILTIN_LFENCE,
2448
bd793c65
BS
2449 IX86_BUILTIN_MAX
2450};
bd793c65 2451\f
f996902d
RH
2452#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2453#define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2454
2455#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2456 do { \
2457 const char *xname = (NAME); \
2458 if (xname[0] == '%') \
2459 xname += 2; \
2460 if (xname[0] == '*') \
2461 xname += 1; \
2462 else \
2463 fputs (user_label_prefix, FILE); \
2464 fputs (xname, FILE); \
2465 } while (0)
b08de47e 2466\f
b08de47e
MM
2467/* Max number of args passed in registers. If this is more than 3, we will
2468 have problems with ebx (register #4), since it is a caller save register and
2469 is also used as the pic register in ELF. So for now, don't allow more than
2470 3 registers to be passed in registers. */
2471
d2836273
JH
2472#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2473
df4e780e 2474#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
b08de47e 2475
c98f8742
JVA
2476\f
2477/* Specify the machine mode that this machine uses
2478 for the index in the tablejump instruction. */
6eb791fc 2479#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 2480
18543a22
ILT
2481/* Define as C expression which evaluates to nonzero if the tablejump
2482 instruction expects the table to contain offsets from the address of the
2483 table.
892a2d68 2484 Do not define this if the table should contain absolute addresses. */
18543a22 2485/* #define CASE_VECTOR_PC_RELATIVE 1 */
c98f8742 2486
c98f8742
JVA
2487/* Define this as 1 if `char' should by default be signed; else as 0. */
2488#define DEFAULT_SIGNED_CHAR 1
2489
f4365627
JH
2490/* Number of bytes moved into a data cache for a single prefetch operation. */
2491#define PREFETCH_BLOCK ix86_cost->prefetch_block
2492
2493/* Number of prefetch operations that can be done in parallel. */
2494#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2495
c98f8742
JVA
2496/* Max number of bytes we can move from memory to memory
2497 in one reasonably fast instruction. */
65d9c0ab
JH
2498#define MOVE_MAX 16
2499
2500/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2501 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 2502 number of bytes we can move with a single instruction. */
65d9c0ab 2503#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 2504
7e24ffc9
HPN
2505/* If a memory-to-memory move would take MOVE_RATIO or more simple
2506 move-instruction pairs, we will do a movstr or libcall instead.
2507 Increasing the value will always make code faster, but eventually
2508 incurs high cost in increased code size.
c98f8742 2509
e2e52e1b 2510 If you don't define this, a reasonable default is used. */
c98f8742 2511
e2e52e1b 2512#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742
JVA
2513
2514/* Define if shifts truncate the shift count
2515 which implies one can omit a sign-extension or zero-extension
2516 of a shift count. */
892a2d68 2517/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
2518
2519/* #define SHIFT_COUNT_TRUNCATED */
2520
2521/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2522 is done just by pretending it is already truncated. */
2523#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2524
2525/* We assume that the store-condition-codes instructions store 0 for false
2526 and some other value for true. This is the value stored for true. */
2527
2528#define STORE_FLAG_VALUE 1
2529
2530/* When a prototype says `char' or `short', really pass an `int'.
2531 (The 386 can't easily push less than an int.) */
2532
cb560352 2533#define PROMOTE_PROTOTYPES 1
c98f8742 2534
d9f32422
JH
2535/* A macro to update M and UNSIGNEDP when an object whose type is
2536 TYPE and which has the specified mode and signedness is to be
2537 stored in a register. This macro is only called when TYPE is a
2538 scalar type.
2539
f710504c 2540 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2541 quantities to SImode. The choice depends on target type. */
2542
2543#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2544do { \
d9f32422
JH
2545 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2546 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2547 (MODE) = SImode; \
2548} while (0)
d9f32422 2549
c98f8742
JVA
2550/* Specify the machine mode that pointers have.
2551 After generation of rtl, the compiler makes no further distinction
2552 between pointers and any other objects of this machine mode. */
65d9c0ab 2553#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2554
2555/* A function address in a call instruction
2556 is a byte address (for indexing purposes)
2557 so give the MEM rtx a byte's mode. */
2558#define FUNCTION_MODE QImode
d4ba09c0
SC
2559\f
2560/* A part of a C `switch' statement that describes the relative costs
2561 of constant RTL expressions. It must contain `case' labels for
2562 expression codes `const_int', `const', `symbol_ref', `label_ref'
2563 and `const_double'. Each case must ultimately reach a `return'
2564 statement to return the relative cost of the use of that kind of
2565 constant value in an expression. The cost may depend on the
2566 precise value of the constant, which is available for examination
2567 in X, and the rtx code of the expression in which it is contained,
2568 found in OUTER_CODE.
fce5a9f2 2569
d4ba09c0
SC
2570 CODE is the expression code--redundant, since it can be obtained
2571 with `GET_CODE (X)'. */
c98f8742 2572
d9a5f180 2573#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
c98f8742
JVA
2574 case CONST_INT: \
2575 case CONST: \
2576 case LABEL_REF: \
2577 case SYMBOL_REF: \
75d38379 2578 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX, 0)) \
44cf5b6a
JH
2579 return 3; \
2580 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2581 return 2; \
1acc845e 2582 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
d4ba09c0 2583 \
c98f8742 2584 case CONST_DOUBLE: \
51286de6
RH
2585 if (GET_MODE (RTX) == VOIDmode) \
2586 return 0; \
2587 switch (standard_80387_constant_p (RTX)) \
2588 { \
2589 case 1: /* 0.0 */ \
2590 return 1; \
2591 case 2: /* 1.0 */ \
2592 return 2; \
2593 default: \
2594 /* Start with (MEM (SYMBOL_REF)), since that's where \
2595 it'll probably end up. Add a penalty for size. */ \
2596 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2597 + (GET_MODE (RTX) == SFmode ? 0 \
2598 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2599 }
c98f8742 2600
76565a24 2601/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
e075ae69
RH
2602#define TOPLEVEL_COSTS_N_INSNS(N) \
2603 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
76565a24 2604
d4ba09c0
SC
2605/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2606 This can be used, for example, to indicate how costly a multiply
2607 instruction is. In writing this macro, you can use the construct
2608 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2609 instructions. OUTER_CODE is the code of the expression in which X
2610 is contained.
2611
2612 This macro is optional; do not define it if the default cost
2613 assumptions are adequate for the target machine. */
2614
d9a5f180 2615#define RTX_COSTS(X, CODE, OUTER_CODE) \
44cf5b6a
JH
2616 case ZERO_EXTEND: \
2617 /* The zero extensions is often completely free on x86_64, so make \
2618 it as cheap as possible. */ \
2619 if (TARGET_64BIT && GET_MODE (X) == DImode \
2620 && GET_MODE (XEXP (X, 0)) == SImode) \
2621 { \
2622 total = 1; goto egress_rtx_costs; \
2623 } \
2624 else \
2625 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2626 ix86_cost->add : ix86_cost->movzx); \
2627 break; \
2628 case SIGN_EXTEND: \
2629 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2630 break; \
d4ba09c0
SC
2631 case ASHIFT: \
2632 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
44cf5b6a 2633 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
d4ba09c0
SC
2634 { \
2635 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
d4ba09c0 2636 if (value == 1) \
e075ae69 2637 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
b972dd02
JH
2638 if ((value == 2 || value == 3) \
2639 && !TARGET_DECOMPOSE_LEA \
2640 && ix86_cost->lea <= ix86_cost->shift_const) \
e075ae69 2641 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
d4ba09c0
SC
2642 } \
2643 /* fall through */ \
2644 \
2645 case ROTATE: \
2646 case ASHIFTRT: \
2647 case LSHIFTRT: \
2648 case ROTATERT: \
44cf5b6a 2649 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
76565a24
SC
2650 { \
2651 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
54d26233
MH
2652 { \
2653 if (INTVAL (XEXP (X, 1)) > 32) \
e075ae69
RH
2654 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2655 else \
2656 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2657 } \
2658 else \
2659 { \
2660 if (GET_CODE (XEXP (X, 1)) == AND) \
2661 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2662 else \
2663 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
54d26233 2664 } \
76565a24 2665 } \
e075ae69
RH
2666 else \
2667 { \
2668 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2669 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2670 else \
2671 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2672 } \
2673 break; \
d4ba09c0
SC
2674 \
2675 case MULT: \
229b303a
RS
2676 if (FLOAT_MODE_P (GET_MODE (X))) \
2677 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul); \
2678 else if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
d4ba09c0
SC
2679 { \
2680 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2681 int nbits = 0; \
2682 \
2683 while (value != 0) \
2684 { \
2685 nbits++; \
2686 value >>= 1; \
2687 } \
2688 \
630c79be
BS
2689 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2690 + nbits * ix86_cost->mult_bit); \
d4ba09c0 2691 } \
d4ba09c0 2692 else /* This is arbitrary */ \
76565a24
SC
2693 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2694 + 7 * ix86_cost->mult_bit); \
d4ba09c0
SC
2695 \
2696 case DIV: \
2697 case UDIV: \
2698 case MOD: \
2699 case UMOD: \
229b303a
RS
2700 if (FLOAT_MODE_P (GET_MODE (X))) \
2701 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv); \
2702 else \
2703 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2704 break; \
d4ba09c0
SC
2705 \
2706 case PLUS: \
229b303a
RS
2707 if (FLOAT_MODE_P (GET_MODE (X))) \
2708 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2709 else if (!TARGET_DECOMPOSE_LEA \
b972dd02
JH
2710 && INTEGRAL_MODE_P (GET_MODE (X)) \
2711 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
e075ae69 2712 { \
b972dd02
JH
2713 if (GET_CODE (XEXP (X, 0)) == PLUS \
2714 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2715 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2716 && CONSTANT_P (XEXP (X, 1))) \
e075ae69 2717 { \
b972dd02
JH
2718 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2719 if (val == 2 || val == 4 || val == 8) \
2720 { \
2721 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2722 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2723 (OUTER_CODE)) \
2724 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2725 (OUTER_CODE)) \
2726 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02 2727 } \
e075ae69 2728 } \
b972dd02
JH
2729 else if (GET_CODE (XEXP (X, 0)) == MULT \
2730 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2731 { \
2732 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2733 if (val == 2 || val == 4 || val == 8) \
2734 { \
2735 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2736 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2737 (OUTER_CODE)) \
2738 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02
JH
2739 } \
2740 } \
2741 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
e075ae69
RH
2742 { \
2743 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2744 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2745 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2746 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
e075ae69 2747 } \
e075ae69 2748 } \
229b303a 2749 /* fall through */ \
d4ba09c0 2750 \
229b303a
RS
2751 case MINUS: \
2752 if (FLOAT_MODE_P (GET_MODE (X))) \
2753 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
d4ba09c0 2754 /* fall through */ \
229b303a 2755 \
d4ba09c0
SC
2756 case AND: \
2757 case IOR: \
2758 case XOR: \
44cf5b6a 2759 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69 2760 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
d9a5f180 2761 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
e075ae69 2762 << (GET_MODE (XEXP (X, 0)) != DImode)) \
d9a5f180 2763 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
e075ae69 2764 << (GET_MODE (XEXP (X, 1)) != DImode))); \
e075ae69 2765 /* fall through */ \
229b303a 2766 \
d4ba09c0 2767 case NEG: \
229b303a
RS
2768 if (FLOAT_MODE_P (GET_MODE (X))) \
2769 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs); \
2770 /* fall through */ \
2771 \
d4ba09c0 2772 case NOT: \
44cf5b6a 2773 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69
RH
2774 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2775 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2776 \
51286de6 2777 case FLOAT_EXTEND: \
285464d0
JH
2778 if (!TARGET_SSE_MATH \
2779 || !VALID_SSE_REG_MODE (GET_MODE (X))) \
2780 TOPLEVEL_COSTS_N_INSNS (0); \
2781 break; \
51286de6 2782 \
229b303a
RS
2783 case ABS: \
2784 if (FLOAT_MODE_P (GET_MODE (X))) \
2785 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs); \
2786 break; \
2787 \
2788 case SQRT: \
2789 if (FLOAT_MODE_P (GET_MODE (X))) \
2790 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt); \
2791 break; \
2792 \
e075ae69
RH
2793 egress_rtx_costs: \
2794 break;
d4ba09c0
SC
2795
2796
2797/* An expression giving the cost of an addressing mode that contains
2798 ADDRESS. If not defined, the cost is computed from the ADDRESS
2799 expression and the `CONST_COSTS' values.
2800
2801 For most CISC machines, the default cost is a good approximation
2802 of the true cost of the addressing mode. However, on RISC
2803 machines, all instructions normally have the same length and
2804 execution time. Hence all addresses will have equal costs.
2805
2806 In cases where more than one form of an address is known, the form
2807 with the lowest cost will be used. If multiple forms have the
2808 same, lowest, cost, the one that is the most complex will be used.
2809
2810 For example, suppose an address that is equal to the sum of a
2811 register and a constant is used twice in the same basic block.
2812 When this macro is not defined, the address will be computed in a
2813 register and memory references will be indirect through that
2814 register. On machines where the cost of the addressing mode
2815 containing the sum is no higher than that of a simple indirect
2816 reference, this will produce an additional instruction and
2817 possibly require an additional register. Proper specification of
2818 this macro eliminates this overhead for such machines.
2819
2820 Similar use of this macro is made in strength reduction of loops.
2821
2822 ADDRESS need not be valid as an address. In such a case, the cost
2823 is not relevant and can be any value; invalid addresses need not be
2824 assigned a different cost.
2825
2826 On machines where an address involving more than one register is as
2827 cheap as an address computation involving only one register,
2828 defining `ADDRESS_COST' to reflect this can cause two registers to
2829 be live over a region of code where only one would have been if
2830 `ADDRESS_COST' were not defined in that manner. This effect should
2831 be considered in the definition of this macro. Equivalent costs
2832 should probably only be given to addresses with different numbers
2833 of registers on machines with lots of registers.
2834
2835 This macro will normally either not be defined or be defined as a
2836 constant.
c98f8742
JVA
2837
2838 For i386, it is better to use a complex address than let gcc copy
2839 the address into a reg and make a new pseudo. But not if the address
2840 requires to two regs - that would mean more pseudos with longer
2841 lifetimes. */
2842
2843#define ADDRESS_COST(RTX) \
0806f95f 2844 ix86_address_cost (RTX)
d4ba09c0 2845
96e7ae40
JH
2846/* A C expression for the cost of moving data from a register in class FROM to
2847 one in class TO. The classes are expressed using the enumeration values
2848 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2849 interpreted relative to that.
d4ba09c0 2850
96e7ae40
JH
2851 It is not required that the cost always equal 2 when FROM is the same as TO;
2852 on some machines it is expensive to move between registers if they are not
f84aa48a 2853 general registers. */
d4ba09c0 2854
f84aa48a 2855#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2856 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2857
2858/* A C expression for the cost of moving data of mode M between a
2859 register and memory. A value of 2 is the default; this cost is
2860 relative to those in `REGISTER_MOVE_COST'.
2861
2862 If moving between registers and memory is more expensive than
2863 between two registers, you should define this macro to express the
fa79946e 2864 relative cost. */
d4ba09c0 2865
d9a5f180
GS
2866#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2867 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2868
2869/* A C expression for the cost of a branch instruction. A value of 1
2870 is the default; other values are interpreted relative to that. */
2871
e075ae69 2872#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2873
2874/* Define this macro as a C expression which is nonzero if accessing
2875 less than a word of memory (i.e. a `char' or a `short') is no
2876 faster than accessing a word of memory, i.e., if such access
2877 require more than one instruction or if there is no difference in
2878 cost between byte and (aligned) word loads.
2879
2880 When this macro is not defined, the compiler will access a field by
2881 finding the smallest containing object; when it is defined, a
2882 fullword load will be used if alignment permits. Unless bytes
2883 accesses are faster than word accesses, using word accesses is
2884 preferable since it may eliminate subsequent memory access if
2885 subsequent accesses occur to other fields in the same word of the
2886 structure, but to different bytes. */
2887
2888#define SLOW_BYTE_ACCESS 0
2889
2890/* Nonzero if access to memory by shorts is slow and undesirable. */
2891#define SLOW_SHORT_ACCESS 0
2892
d4ba09c0
SC
2893/* Define this macro to be the value 1 if unaligned accesses have a
2894 cost many times greater than aligned accesses, for example if they
2895 are emulated in a trap handler.
2896
9cd10576
KH
2897 When this macro is nonzero, the compiler will act as if
2898 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2899 moves. This can cause significantly more instructions to be
9cd10576 2900 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2901 accesses only add a cycle or two to the time for a memory access.
2902
2903 If the value of this macro is always zero, it need not be defined. */
2904
e1565e65 2905/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0
SC
2906
2907/* Define this macro to inhibit strength reduction of memory
2908 addresses. (On some machines, such strength reduction seems to do
2909 harm rather than good.) */
2910
2911/* #define DONT_REDUCE_ADDR */
2912
2913/* Define this macro if it is as good or better to call a constant
2914 function address than to call an address kept in a register.
2915
2916 Desirable on the 386 because a CALL with a constant address is
2917 faster than one with a register address. */
2918
2919#define NO_FUNCTION_CSE
2920
2921/* Define this macro if it is as good or better for a function to call
2922 itself with an explicit address than to call an address kept in a
2923 register. */
2924
2925#define NO_RECURSIVE_FUNCTION_CSE
c98f8742 2926\f
c572e5ba
JVA
2927/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2928 return the mode to be used for the comparison.
2929
2930 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2931 VOIDmode should be used in all other cases.
c572e5ba 2932
16189740 2933 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2934 possible, to allow for more combinations. */
c98f8742 2935
d9a5f180 2936#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2937
9cd10576 2938/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2939 reversed. */
2940
2941#define REVERSIBLE_CC_MODE(MODE) 1
2942
2943/* A C expression whose value is reversed condition code of the CODE for
2944 comparison done in CC_MODE mode. */
2945#define REVERSE_CONDITION(CODE, MODE) \
2946 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2947 : reverse_condition_maybe_unordered (CODE))
2948
c98f8742
JVA
2949\f
2950/* Control the assembler format that we output, to the extent
2951 this does not vary between assemblers. */
2952
2953/* How to refer to registers in assembler output.
892a2d68 2954 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742
JVA
2955
2956/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2957 For non floating point regs, the following are the HImode names.
2958
2959 For float regs, the stack top is sometimes referred to as "%st(0)"
9e06e321 2960 instead of just "%st". PRINT_REG handles this with the "y" code. */
c98f8742 2961
fce5a9f2 2962#undef HI_REGISTER_NAMES
a7180f70
BS
2963#define HI_REGISTER_NAMES \
2964{"ax","dx","cx","bx","si","di","bp","sp", \
2965 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2966 "flags","fpsr", "dirflag", "frame", \
2967 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
3f3f2124
JH
2968 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2969 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2970 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2971
c98f8742
JVA
2972#define REGISTER_NAMES HI_REGISTER_NAMES
2973
2974/* Table of additional register names to use in user input. */
2975
2976#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2977{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2978 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2979 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2980 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2981 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
a7180f70
BS
2982 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2983 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2984 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
c98f8742
JVA
2985
2986/* Note we are omitting these since currently I don't know how
2987to get gcc to use these, since they want the same but different
2988number as al, and ax.
2989*/
2990
c98f8742 2991#define QI_REGISTER_NAMES \
3f3f2124 2992{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2993
2994/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2995 of regs 0 through 3. */
c98f8742
JVA
2996
2997#define QI_HIGH_REGISTER_NAMES \
2998{"ah", "dh", "ch", "bh", }
2999
3000/* How to renumber registers for dbx and gdb. */
3001
d9a5f180
GS
3002#define DBX_REGISTER_NUMBER(N) \
3003 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849
RH
3004
3005extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
0f7fa3d0 3006extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
83774849 3007extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 3008
469ac993
JM
3009/* Before the prologue, RA is at 0(%esp). */
3010#define INCOMING_RETURN_ADDR_RTX \
f64cecad 3011 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 3012
e414ab29 3013/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
3014#define RETURN_ADDR_RTX(COUNT, FRAME) \
3015 ((COUNT) == 0 \
3016 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3017 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 3018
892a2d68 3019/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 3020#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 3021
a6ab3aad 3022/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 3023#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 3024
1020a5ab
RH
3025/* Describe how we implement __builtin_eh_return. */
3026#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
3027#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
3028
ad919812 3029
e4c4ebeb
RH
3030/* Select a format to encode pointers in exception handling data. CODE
3031 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
3032 true if the symbol may be affected by dynamic relocations.
3033
3034 ??? All x86 object file formats are capable of representing this.
3035 After all, the relocation needed is the same as for the call insn.
3036 Whether or not a particular assembler allows us to enter such, I
3037 guess we'll have to see. */
d9a5f180 3038#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
b932f770 3039 (flag_pic \
d9a5f180 3040 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
e4c4ebeb
RH
3041 : DW_EH_PE_absptr)
3042
c98f8742
JVA
3043/* Store in OUTPUT a string (made with alloca) containing
3044 an assembler-name for a local static variable named NAME.
3045 LABELNO is an integer which is different for each call. */
3046
3047#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3048( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3049 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3050
c98f8742
JVA
3051/* This is how to output an insn to push a register on the stack.
3052 It need not be very fast code. */
3053
d9a5f180 3054#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
3055do { \
3056 if (TARGET_64BIT) \
3057 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
3058 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3059 else \
3060 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
3061} while (0)
c98f8742
JVA
3062
3063/* This is how to output an insn to pop a register from the stack.
3064 It need not be very fast code. */
3065
d9a5f180 3066#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
3067do { \
3068 if (TARGET_64BIT) \
3069 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
3070 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3071 else \
3072 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
3073} while (0)
c98f8742 3074
f88c65f7 3075/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
3076
3077#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 3078 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 3079
f88c65f7 3080/* This is how to output an element of a case-vector that is relative. */
c98f8742 3081
33f7f353 3082#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 3083 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7
RH
3084
3085/* Under some conditions we need jump tables in the text section, because
3086 the assembler cannot handle label differences between sections. */
3087
3088#define JUMP_TABLES_IN_TEXT_SECTION \
3089 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
c98f8742 3090
fce5a9f2 3091/* A C statement that outputs an address constant appropriate to
1865dbb5
JM
3092 for DWARF debugging. */
3093
d9a5f180
GS
3094#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3095 i386_dwarf_output_addr_const ((FILE), (X))
1865dbb5
JM
3096
3097/* Either simplify a location expression, or return the original. */
3098
3099#define ASM_SIMPLIFY_DWARF_ADDR(X) \
d9a5f180 3100 i386_simplify_dwarf_addr (X)
cea3bd3e 3101
b9203463
RH
3102/* Emit a dtp-relative reference to a TLS variable. */
3103
3104#ifdef HAVE_AS_TLS
3105#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3106 i386_output_dwarf_dtprel (FILE, SIZE, X)
3107#endif
3108
cea3bd3e
RH
3109/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3110 and switch back. For x86 we do this only to save a few bytes that
3111 would otherwise be unused in the text section. */
3112#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3113 asm (SECTION_OP "\n\t" \
3114 "call " USER_LABEL_PREFIX #FUNC "\n" \
3115 TEXT_SECTION_ASM_OP);
74b42c8b 3116\f
c98f8742
JVA
3117/* Print operand X (an rtx) in assembler syntax to file FILE.
3118 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
3119 Effect of various CODE letters is described in i386.c near
3120 print_operand function. */
c98f8742 3121
d9a5f180 3122#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 3123 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742 3124
74b42c8b
RS
3125/* Print the name of a register based on its machine mode and number.
3126 If CODE is 'w', pretend the mode is HImode.
3127 If CODE is 'b', pretend the mode is QImode.
3128 If CODE is 'k', pretend the mode is SImode.
ef6257cd 3129 If CODE is 'q', pretend the mode is DImode.
74b42c8b 3130 If CODE is 'h', pretend the reg is the `high' byte register.
ef6257cd 3131 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
74b42c8b 3132
e075ae69 3133#define PRINT_REG(X, CODE, FILE) \
d9a5f180 3134 print_reg ((X), (CODE), (FILE))
74b42c8b 3135
c98f8742 3136#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 3137 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
3138
3139#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 3140 print_operand_address ((FILE), (ADDR))
c98f8742 3141
f996902d
RH
3142#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3143do { \
3144 if (! output_addr_const_extra (FILE, (X))) \
3145 goto FAIL; \
3146} while (0);
3147
aa3e8d2a
JVA
3148/* Print the name of a register for based on its machine mode and number.
3149 This macro is used to print debugging output.
3150 This macro is different from PRINT_REG in that it may be used in
3151 programs that are not linked with aux-output.o. */
3152
e075ae69 3153#define DEBUG_PRINT_REG(X, CODE, FILE) \
69ddee61
KG
3154 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3155 static const char * const qi_name[] = QI_REGISTER_NAMES; \
d9a5f180 3156 fprintf ((FILE), "%d ", REGNO (X)); \
e075ae69 3157 if (REGNO (X) == FLAGS_REG) \
d9a5f180 3158 { fputs ("flags", (FILE)); break; } \
7c7ef435 3159 if (REGNO (X) == DIRFLAG_REG) \
d9a5f180 3160 { fputs ("dirflag", (FILE)); break; } \
e075ae69 3161 if (REGNO (X) == FPSR_REG) \
d9a5f180 3162 { fputs ("fpsr", (FILE)); break; } \
aa3e8d2a 3163 if (REGNO (X) == ARG_POINTER_REGNUM) \
d9a5f180 3164 { fputs ("argp", (FILE)); break; } \
564d80f4 3165 if (REGNO (X) == FRAME_POINTER_REGNUM) \
d9a5f180 3166 { fputs ("frame", (FILE)); break; } \
aa3e8d2a 3167 if (STACK_TOP_P (X)) \
d9a5f180 3168 { fputs ("st(0)", (FILE)); break; } \
b0ceea8c 3169 if (FP_REG_P (X)) \
d9a5f180 3170 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3f3f2124
JH
3171 if (REX_INT_REG_P (X)) \
3172 { \
3173 switch (GET_MODE_SIZE (GET_MODE (X))) \
3174 { \
3175 default: \
3176 case 8: \
d9a5f180 3177 fprintf ((FILE), "r%i", REGNO (X) \
3f3f2124
JH
3178 - FIRST_REX_INT_REG + 8); \
3179 break; \
3180 case 4: \
d9a5f180 3181 fprintf ((FILE), "r%id", REGNO (X) \
3f3f2124
JH
3182 - FIRST_REX_INT_REG + 8); \
3183 break; \
3184 case 2: \
d9a5f180 3185 fprintf ((FILE), "r%iw", REGNO (X) \
3f3f2124
JH
3186 - FIRST_REX_INT_REG + 8); \
3187 break; \
3188 case 1: \
d9a5f180 3189 fprintf ((FILE), "r%ib", REGNO (X) \
3f3f2124
JH
3190 - FIRST_REX_INT_REG + 8); \
3191 break; \
3192 } \
3193 break; \
3194 } \
aa3e8d2a
JVA
3195 switch (GET_MODE_SIZE (GET_MODE (X))) \
3196 { \
3f3f2124 3197 case 8: \
d9a5f180
GS
3198 fputs ("r", (FILE)); \
3199 fputs (hi_name[REGNO (X)], (FILE)); \
3f3f2124 3200 break; \
b0ceea8c 3201 default: \
d9a5f180 3202 fputs ("e", (FILE)); \
aa3e8d2a 3203 case 2: \
d9a5f180 3204 fputs (hi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3205 break; \
3206 case 1: \
d9a5f180 3207 fputs (qi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3208 break; \
3209 } \
3210 } while (0)
3211
c98f8742
JVA
3212/* a letter which is not needed by the normal asm syntax, which
3213 we can use for operand syntax in the extended asm */
3214
3215#define ASM_OPERAND_LETTER '#'
c98f8742 3216#define RET return ""
d9a5f180 3217#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 3218\f
e075ae69
RH
3219/* Define the codes that are matched by predicates in i386.c. */
3220
3221#define PREDICATE_CODES \
7dd4b4a3
JH
3222 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3223 SYMBOL_REF, LABEL_REF, CONST}}, \
3224 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3225 SYMBOL_REF, LABEL_REF, CONST}}, \
3226 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3227 SYMBOL_REF, LABEL_REF, CONST}}, \
3228 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3229 SYMBOL_REF, LABEL_REF, CONST}}, \
3230 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3231 SYMBOL_REF, LABEL_REF, CONST}}, \
3232 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3233 SYMBOL_REF, LABEL_REF, CONST}}, \
3234 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3235 SYMBOL_REF, LABEL_REF}}, \
371bc54b 3236 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
8bad7136 3237 {"const_int_1_operand", {CONST_INT}}, \
794a292d 3238 {"const_int_1_31_operand", {CONST_INT}}, \
e075ae69 3239 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2247f6ed
JH
3240 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3241 LABEL_REF, SUBREG, REG, MEM}}, \
e075ae69 3242 {"pic_symbolic_operand", {CONST}}, \
e1ff012c 3243 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
eaf19aba 3244 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
e075ae69
RH
3245 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3246 {"const1_operand", {CONST_INT}}, \
3247 {"const248_operand", {CONST_INT}}, \
3248 {"incdec_operand", {CONST_INT}}, \
915119a5 3249 {"mmx_reg_operand", {REG}}, \
e075ae69 3250 {"reg_no_sp_operand", {SUBREG, REG}}, \
2c5a510c
RH
3251 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3252 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3253 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
7ec70495 3254 {"index_register_operand", {SUBREG, REG}}, \
e075ae69
RH
3255 {"q_regs_operand", {SUBREG, REG}}, \
3256 {"non_q_regs_operand", {SUBREG, REG}}, \
9e7adcb3
JH
3257 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3258 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3259 GE, UNGE, LTGT, UNEQ}}, \
bf71a4f8
JH
3260 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3261 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3262 }}, \
9076b9c1 3263 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
9e7adcb3
JH
3264 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3265 UNGE, UNGT, LTGT, UNEQ }}, \
e075ae69
RH
3266 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3267 {"ext_register_operand", {SUBREG, REG}}, \
3268 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3269 {"mult_operator", {MULT}}, \
3270 {"div_operator", {DIV}}, \
3271 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3272 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3273 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3274 LSHIFTRT, ROTATERT}}, \
e9e80858 3275 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
e075ae69
RH
3276 {"memory_displacement_operand", {MEM}}, \
3277 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
6343a50e 3278 LABEL_REF, SUBREG, REG, MEM, AND}}, \
f996902d
RH
3279 {"long_memory_operand", {MEM}}, \
3280 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3281 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3282 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3283 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
c3c637e3
GS
3284 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3285 {"any_fp_register_operand", {REG}}, \
3286 {"register_and_not_any_fp_reg_operand", {REG}}, \
3287 {"fp_register_operand", {REG}}, \
3288 {"register_and_not_fp_reg_operand", {REG}}, \
c76aab11
RH
3289
3290/* A list of predicates that do special things with modes, and so
3291 should not elicit warnings for VOIDmode match_operand. */
3292
3293#define SPECIAL_MODE_PREDICATES \
3294 "ext_register_operand",
c98f8742 3295\f
5bf0ebab
RH
3296/* Which processor to schedule for. The cpu attribute defines a list that
3297 mirrors this list, so changes to i386.md must be made at the same time. */
3298
3299enum processor_type
3300{
3301 PROCESSOR_I386, /* 80386 */
3302 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3303 PROCESSOR_PENTIUM,
3304 PROCESSOR_PENTIUMPRO,
3305 PROCESSOR_K6,
3306 PROCESSOR_ATHLON,
3307 PROCESSOR_PENTIUM4,
3308 PROCESSOR_max
3309};
3310
3311extern enum processor_type ix86_cpu;
3312extern const char *ix86_cpu_string;
3313
3314extern enum processor_type ix86_arch;
3315extern const char *ix86_arch_string;
3316
3317enum fpmath_unit
3318{
3319 FPMATH_387 = 1,
3320 FPMATH_SSE = 2
3321};
3322
3323extern enum fpmath_unit ix86_fpmath;
3324extern const char *ix86_fpmath_string;
3325
f996902d
RH
3326enum tls_dialect
3327{
3328 TLS_DIALECT_GNU,
3329 TLS_DIALECT_SUN
3330};
3331
3332extern enum tls_dialect ix86_tls_dialect;
3333extern const char *ix86_tls_dialect_string;
3334
6189a572 3335enum cmodel {
5bf0ebab
RH
3336 CM_32, /* The traditional 32-bit ABI. */
3337 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3338 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3339 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3340 CM_LARGE, /* No assumptions. */
3341 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
6189a572
JH
3342};
3343
5bf0ebab
RH
3344extern enum cmodel ix86_cmodel;
3345extern const char *ix86_cmodel_string;
3346
8362f420
JH
3347/* Size of the RED_ZONE area. */
3348#define RED_ZONE_SIZE 128
3349/* Reserved area of the red zone for temporaries. */
3350#define RED_ZONE_RESERVE 8
c93e80a5
JH
3351
3352enum asm_dialect {
3353 ASM_ATT,
3354 ASM_INTEL
3355};
5bf0ebab 3356
c93e80a5 3357extern const char *ix86_asm_string;
80f33d06 3358extern enum asm_dialect ix86_asm_dialect;
5bf0ebab
RH
3359
3360extern int ix86_regparm;
fce5a9f2 3361extern const char *ix86_regparm_string;
5bf0ebab
RH
3362
3363extern int ix86_preferred_stack_boundary;
3364extern const char *ix86_preferred_stack_boundary_string;
3365
3366extern int ix86_branch_cost;
3367extern const char *ix86_branch_cost_string;
3368
3369extern const char *ix86_debug_arg_string;
3370extern const char *ix86_debug_addr_string;
3371
3372/* Obsoleted by -f options. Remove before 3.2 ships. */
3373extern const char *ix86_align_loops_string;
3374extern const char *ix86_align_jumps_string;
3375extern const char *ix86_align_funcs_string;
3376
3377/* Smallest class containing REGNO. */
3378extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3379
d9a5f180
GS
3380extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3381extern rtx ix86_compare_op1; /* operand 1 for comparisons */
22fb740d
JH
3382\f
3383/* To properly truncate FP values into integers, we need to set i387 control
3384 word. We can't emit proper mode switching code before reload, as spills
3385 generated by reload may truncate values incorrectly, but we still can avoid
3386 redundant computation of new control word by the mode switching pass.
3387 The fldcw instructions are still emitted redundantly, but this is probably
3388 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 3389 the sequence.
22fb740d
JH
3390
3391 The machinery is to emit simple truncation instructions and split them
3392 before reload to instructions having USEs of two memory locations that
3393 are filled by this code to old and new control word.
fce5a9f2 3394
22fb740d
JH
3395 Post-reload pass may be later used to eliminate the redundant fildcw if
3396 needed. */
3397
3398enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3399
3400/* Define this macro if the port needs extra instructions inserted
3401 for mode switching in an optimizing compilation. */
3402
3403#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3404
3405/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3406 initializer for an array of integers. Each initializer element N
3407 refers to an entity that needs mode switching, and specifies the
3408 number of different modes that might need to be set for this
3409 entity. The position of the initializer in the initializer -
3410 starting counting at zero - determines the integer that is used to
3411 refer to the mode-switched entity in question. */
3412
3413#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3414
3415/* ENTITY is an integer specifying a mode-switched entity. If
3416 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3417 return an integer value not larger than the corresponding element
3418 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3419 must be switched into prior to the execution of INSN. */
3420
3421#define MODE_NEEDED(ENTITY, I) \
3422 (GET_CODE (I) == CALL_INSN \
3423 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3424 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3425 ? FP_CW_UNINITIALIZED \
3426 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3427 ? FP_CW_ANY \
3428 : FP_CW_STORED)
3429
3430/* This macro specifies the order in which modes for ENTITY are
3431 processed. 0 is the highest priority. */
3432
d9a5f180 3433#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
3434
3435/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3436 is the set of hard registers live at the point where the insn(s)
3437 are to be inserted. */
3438
3439#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
d9a5f180 3440 ((MODE) == FP_CW_STORED \
22fb740d
JH
3441 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3442 assign_386_stack_local (HImode, 2)), 0\
3443 : 0)
0f0138b6
JH
3444\f
3445/* Avoid renaming of stack registers, as doing so in combination with
3446 scheduling just increases amount of live registers at time and in
3447 the turn amount of fxch instructions needed.
3448
3449 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3450
d9a5f180
GS
3451#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3452 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 3453
3b3c6a3f 3454\f
2a500b9e 3455#define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
c98f8742
JVA
3456/*
3457Local variables:
3458version-control: t
3459End:
3460*/