]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
configure.in (HAVE_AS_TLS): New test.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
e075ae69 1/* Definitions of target machine for GNU compiler for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
d9a5f180 3 2001, 2002 Free Software Foundation, Inc.
c98f8742
JVA
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
97aadbb9 19the Free Software Foundation, 59 Temple Place - Suite 330,
892a2d68 20Boston, MA 02111-1307, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
95393dfd
CH
37/* Stubs for half-pic support if not OSF/1 reference platform. */
38
39#ifndef HALF_PIC_P
40#define HALF_PIC_P() 0
41#define HALF_PIC_NUMBER_PTRS 0
42#define HALF_PIC_NUMBER_REFS 0
43#define HALF_PIC_ENCODE(DECL)
44#define HALF_PIC_DECLARE(NAME)
c725bd79 45#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
95393dfd 46#define HALF_PIC_ADDRESS_P(X) 0
d9a5f180 47#define HALF_PIC_PTR(X) (X)
95393dfd
CH
48#define HALF_PIC_FINISH(STREAM)
49#endif
50
d4ba09c0
SC
51/* Define the specific costs for a given cpu */
52
53struct processor_costs {
8b60264b
KG
54 const int add; /* cost of an add instruction */
55 const int lea; /* cost of a lea instruction */
56 const int shift_var; /* variable shift costs */
57 const int shift_const; /* constant shift costs */
58 const int mult_init; /* cost of starting a multiply */
59 const int mult_bit; /* cost of multiply per each bit set */
60 const int divide; /* cost of a divide/mod */
44cf5b6a
JH
61 int movsx; /* The cost of movsx operation. */
62 int movzx; /* The cost of movzx operation. */
8b60264b
KG
63 const int large_insn; /* insns larger than this cost more */
64 const int move_ratio; /* The threshold of number of scalar
ac775968 65 memory-to-memory move insns. */
8b60264b
KG
66 const int movzbl_load; /* cost of loading using movzbl */
67 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
68 in QImode, HImode and SImode relative
69 to reg-reg move (2). */
8b60264b 70 const int int_store[3]; /* cost of storing integer register
96e7ae40 71 in QImode, HImode and SImode */
8b60264b
KG
72 const int fp_move; /* cost of reg,reg fld/fst */
73 const int fp_load[3]; /* cost of loading FP register
96e7ae40 74 in SFmode, DFmode and XFmode */
8b60264b 75 const int fp_store[3]; /* cost of storing FP register
96e7ae40 76 in SFmode, DFmode and XFmode */
8b60264b
KG
77 const int mmx_move; /* cost of moving MMX register. */
78 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 79 in SImode and DImode */
8b60264b 80 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 81 in SImode and DImode */
8b60264b
KG
82 const int sse_move; /* cost of moving SSE register. */
83 const int sse_load[3]; /* cost of loading SSE register
fa79946e 84 in SImode, DImode and TImode*/
8b60264b 85 const int sse_store[3]; /* cost of storing SSE register
fa79946e 86 in SImode, DImode and TImode*/
8b60264b 87 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 88 integer and vice versa. */
f4365627
JH
89 const int prefetch_block; /* bytes moved to cache for prefetch. */
90 const int simultaneous_prefetches; /* number of parallel prefetch
91 operations. */
d4ba09c0
SC
92};
93
8b60264b 94extern const struct processor_costs *ix86_cost;
d4ba09c0 95
c98f8742
JVA
96/* Run-time compilation parameters selecting different hardware subsets. */
97
98extern int target_flags;
99
100/* Macros used in the machine description to test the flags. */
101
ddd5a7c1 102/* configure can arrange to make this 2, to force a 486. */
e075ae69 103
35b528be
RS
104#ifndef TARGET_CPU_DEFAULT
105#define TARGET_CPU_DEFAULT 0
106#endif
107
3b3c6a3f 108/* Masks for the -m switches */
e075ae69
RH
109#define MASK_80387 0x00000001 /* Hardware floating point */
110#define MASK_RTD 0x00000002 /* Use ret that pops args */
111#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
112#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
113#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
114#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
115#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
116#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
117#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
0dd0e980
JH
118#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
119#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
120#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
121#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
122#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
123#define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
124#define MASK_MMX_SET 0x00008000
125#define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
126#define MASK_SSE_SET 0x00020000
127#define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
128#define MASK_SSE2_SET 0x00080000
47f339cf 129#define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
0dd0e980
JH
130#define MASK_3DNOW_SET 0x00200000
131#define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
132#define MASK_3DNOW_A_SET 0x00800000
133#define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
c93e80a5
JH
134#define MASK_64BIT 0x02000000 /* Produce 64bit code */
135/* ... overlap with subtarget options starts by 0x04000000. */
136#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
3b3c6a3f
MM
137
138/* Use the floating point instructions */
139#define TARGET_80387 (target_flags & MASK_80387)
140
c98f8742
JVA
141/* Compile using ret insn that pops args.
142 This will not work unless you use prototypes at least
143 for all functions that can take varying numbers of args. */
3b3c6a3f
MM
144#define TARGET_RTD (target_flags & MASK_RTD)
145
b08de47e
MM
146/* Align doubles to a two word boundary. This breaks compatibility with
147 the published ABI's for structures containing doubles, but produces
148 faster code on the pentium. */
149#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
c98f8742 150
f73ad30e
JH
151/* Use push instructions to save outgoing args. */
152#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
153
154/* Accumulate stack adjustments to prologue/epilogue. */
155#define TARGET_ACCUMULATE_OUTGOING_ARGS \
156 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
157
d7cd15e9
RS
158/* Put uninitialized locals into bss, not data.
159 Meaningful only on svr3. */
3b3c6a3f 160#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
d7cd15e9 161
c572e5ba
JVA
162/* Use IEEE floating point comparisons. These handle correctly the cases
163 where the result of a comparison is unordered. Normally SIGFPE is
164 generated in such cases, in which case this isn't needed. */
3b3c6a3f 165#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
c572e5ba 166
8c2bf92a
JVA
167/* Functions that return a floating point value may return that value
168 in the 387 FPU or in 386 integer registers. If set, this flag causes
892a2d68 169 the 387 to be used, which is compatible with most calling conventions. */
3b3c6a3f 170#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
8c2bf92a 171
2b589241 172/* Long double is 128bit instead of 96bit, even when only 80bits are used.
f5143c46 173 This mode wastes cache, but avoid misaligned data accesses and simplifies
2b589241
JH
174 address calculations. */
175#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
176
099800e3
RK
177/* Disable generation of FP sin, cos and sqrt operations for 387.
178 This is because FreeBSD lacks these in the math-emulator-code */
3b3c6a3f
MM
179#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
180
2f2fa5b1 181/* Don't create frame pointers for leaf functions */
e075ae69
RH
182#define TARGET_OMIT_LEAF_FRAME_POINTER \
183 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
f6f58ba3 184
3b3c6a3f 185/* Debug GO_IF_LEGITIMATE_ADDRESS */
c93e80a5 186#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
3b3c6a3f 187
b08de47e 188/* Debug FUNCTION_ARG macros */
c93e80a5 189#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
b08de47e 190
25f94bb5 191/* 64bit Sledgehammer mode */
0c2dc519 192#ifdef TARGET_BI_ARCH
25f94bb5 193#define TARGET_64BIT (target_flags & MASK_64BIT)
0c2dc519
JH
194#else
195#ifdef TARGET_64BIT_DEFAULT
196#define TARGET_64BIT 1
197#else
198#define TARGET_64BIT 0
199#endif
200#endif
25f94bb5 201
f7746310
SC
202#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
203#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
204#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
3a0433fd 205#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
a269a03c 206#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
309ada50 207#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
b4e89e2d 208#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
a269a03c
JC
209
210#define CPUMASK (1 << ix86_cpu)
211extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
212extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 213extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69
RH
214extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
215extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
216extern const int x86_use_cltd, x86_read_modify_write;
217extern const int x86_read_modify, x86_split_long_moves;
f90800f8 218extern const int x86_promote_QImode, x86_single_stringop;
d9f32422 219extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 220extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 221extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 222extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 223extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 224extern const int x86_epilogue_using_move, x86_decompose_lea;
30c99a84 225extern const int x86_arch_always_fancy_math_387;
f4365627 226extern int x86_prefetch_sse;
a269a03c
JC
227
228#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
229#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
230#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
231#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
232#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
0644b628
JH
233/* For sane SSE instruction set generation we need fcomi instruction. It is
234 safe to enable all CMOVE instructions. */
235#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
a269a03c 236#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
ef6257cd 237#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
a269a03c 238#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
0d7d98ee 239#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
e075ae69
RH
240#define TARGET_MOVX (x86_movx & CPUMASK)
241#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
242#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
243#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
244#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
245#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
246#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
247#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
248#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
e9e80858 249#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
f90800f8 250#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
d9f32422
JH
251#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
252#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
253#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
254#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
bdeb029c
JH
255#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
256#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
257#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
258#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
0b5107cf
JH
259#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
260#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
261#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
c6036a37
JH
262#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
263#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
b972dd02 264#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
f4365627 265#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
a269a03c 266
8c9be447 267#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
3b3c6a3f 268
79f05c19
JH
269#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
270#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
271
c93e80a5 272#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 273
446988df
JH
274#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
275#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
965f5423
JH
276#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
277#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
278 && (ix86_fpmath & FPMATH_387))
a7180f70 279#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
47f339cf
BS
280#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
281#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
a7180f70 282
8362f420
JH
283#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
284
f996902d
RH
285#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
286#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
287
a5d17ff3
PT
288/* WARNING: Do not mark empty strings for translation, as calling
289 gettext on an empty string does NOT return an empty
290 string. */
291
292
e075ae69 293#define TARGET_SWITCHES \
047142d3
PT
294{ { "80387", MASK_80387, N_("Use hardware fp") }, \
295 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
296 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
297 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
298 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
a5d17ff3
PT
299 { "386", 0, "" /*Deprecated.*/}, \
300 { "486", 0, "" /*Deprecated.*/}, \
301 { "pentium", 0, "" /*Deprecated.*/}, \
302 { "pentiumpro", 0, "" /*Deprecated.*/}, \
303 { "intel-syntax", 0, "" /*Deprecated.*/}, \
304 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
047142d3
PT
305 { "rtd", MASK_RTD, \
306 N_("Alternate calling convention") }, \
307 { "no-rtd", -MASK_RTD, \
308 N_("Use normal calling convention") }, \
e075ae69 309 { "align-double", MASK_ALIGN_DOUBLE, \
047142d3 310 N_("Align some doubles on dword boundary") }, \
e075ae69 311 { "no-align-double", -MASK_ALIGN_DOUBLE, \
047142d3 312 N_("Align doubles on word boundary") }, \
e075ae69 313 { "svr3-shlib", MASK_SVR3_SHLIB, \
047142d3 314 N_("Uninitialized locals in .bss") }, \
e075ae69 315 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
047142d3 316 N_("Uninitialized locals in .data") }, \
e075ae69 317 { "ieee-fp", MASK_IEEE_FP, \
047142d3 318 N_("Use IEEE math for fp comparisons") }, \
e075ae69 319 { "no-ieee-fp", -MASK_IEEE_FP, \
047142d3 320 N_("Do not use IEEE math for fp comparisons") }, \
e075ae69 321 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
047142d3 322 N_("Return values of functions in FPU registers") }, \
e075ae69 323 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
047142d3 324 N_("Do not return values of functions in FPU registers")}, \
e075ae69 325 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
047142d3 326 N_("Do not generate sin, cos, sqrt for FPU") }, \
e075ae69 327 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
047142d3 328 N_("Generate sin, cos, sqrt for FPU")}, \
e075ae69 329 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
047142d3 330 N_("Omit the frame pointer in leaf functions") }, \
e075ae69 331 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
047142d3
PT
332 { "stack-arg-probe", MASK_STACK_PROBE, \
333 N_("Enable stack probing") }, \
e075ae69
RH
334 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
335 { "windows", 0, 0 /* undocumented */ }, \
336 { "dll", 0, 0 /* undocumented */ }, \
79f05c19 337 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
047142d3 338 N_("Align destination of the string operations") }, \
79f05c19 339 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
047142d3 340 N_("Do not align destination of the string operations") }, \
4be2e5d9 341 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
047142d3 342 N_("Inline all known string operations") }, \
79f05c19 343 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
047142d3 344 N_("Do not inline all known string operations") }, \
f73ad30e 345 { "push-args", -MASK_NO_PUSH_ARGS, \
047142d3 346 N_("Use push instructions to save outgoing arguments") }, \
053f1126 347 { "no-push-args", MASK_NO_PUSH_ARGS, \
047142d3 348 N_("Do not use push instructions to save outgoing arguments") }, \
0dd0e980
JH
349 { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
350 | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
047142d3 351 N_("Use push instructions to save outgoing arguments") }, \
0dd0e980 352 { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
047142d3 353 N_("Do not use push instructions to save outgoing arguments") }, \
0dd0e980 354 { "mmx", MASK_MMX | MASK_MMX_SET, \
b0287a90 355 N_("Support MMX built-in functions") }, \
0dd0e980 356 { "no-mmx", -MASK_MMX, \
b0287a90 357 N_("Do not support MMX built-in functions") }, \
a5d17ff3 358 { "no-mmx", MASK_MMX_SET, "" }, \
0dd0e980 359 { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
b0287a90 360 N_("Support 3DNow! built-in functions") }, \
a5d17ff3 361 { "no-3dnow", -MASK_3DNOW, "" }, \
0dd0e980 362 { "no-3dnow", MASK_3DNOW_SET, \
b0287a90 363 N_("Do not support 3DNow! built-in functions") }, \
0dd0e980 364 { "sse", MASK_SSE | MASK_SSE_SET, \
b0287a90 365 N_("Support MMX and SSE built-in functions and code generation") }, \
a5d17ff3 366 { "no-sse", -MASK_SSE, "" }, \
0dd0e980 367 { "no-sse", MASK_SSE_SET, \
b0287a90 368 N_("Do not support MMX and SSE built-in functions and code generation") },\
0dd0e980 369 { "sse2", MASK_SSE2 | MASK_SSE2_SET, \
b0287a90 370 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
a5d17ff3 371 { "no-sse2", -MASK_SSE2, "" }, \
0dd0e980 372 { "no-sse2", MASK_SSE2_SET, \
b0287a90 373 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
2b589241 374 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
c725bd79 375 N_("sizeof(long double) is 16") }, \
2b589241 376 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
c725bd79 377 N_("sizeof(long double) is 12") }, \
25f94bb5
JH
378 { "64", MASK_64BIT, \
379 N_("Generate 64bit x86-64 code") }, \
380 { "32", -MASK_64BIT, \
381 N_("Generate 32bit i386 code") }, \
8362f420
JH
382 { "red-zone", -MASK_NO_RED_ZONE, \
383 N_("Use red-zone in the x86-64 code") }, \
384 { "no-red-zone", MASK_NO_RED_ZONE, \
4cba3b67 385 N_("Do not use red-zone in the x86-64 code") }, \
e075ae69
RH
386 SUBTARGET_SWITCHES \
387 { "", TARGET_DEFAULT, 0 }}
241e1a89 388
25f94bb5
JH
389#ifdef TARGET_64BIT_DEFAULT
390#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
391#else
392#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
393#endif
394
f5316dfe
MM
395/* This macro is similar to `TARGET_SWITCHES' but defines names of
396 command options that have values. Its definition is an
397 initializer with a subgrouping for each command option.
398
399 Each subgrouping contains a string constant, that defines the
400 fixed part of the option name, and the address of a variable. The
401 variable, type `char *', is set to the variable part of the given
402 option if the fixed part matches. The actual option name is made
403 by appending `-m' to the specified name. */
e075ae69
RH
404#define TARGET_OPTIONS \
405{ { "cpu=", &ix86_cpu_string, \
047142d3 406 N_("Schedule code for given CPU")}, \
965f5423
JH
407 { "fpmath=", &ix86_fpmath_string, \
408 N_("Generate floating point mathematics using given instruction set")},\
e075ae69 409 { "arch=", &ix86_arch_string, \
047142d3 410 N_("Generate code for given CPU")}, \
e075ae69 411 { "regparm=", &ix86_regparm_string, \
047142d3 412 N_("Number of registers used to pass integer arguments") }, \
e075ae69 413 { "align-loops=", &ix86_align_loops_string, \
047142d3 414 N_("Loop code aligned to this power of 2") }, \
e075ae69 415 { "align-jumps=", &ix86_align_jumps_string, \
047142d3 416 N_("Jump targets are aligned to this power of 2") }, \
e075ae69 417 { "align-functions=", &ix86_align_funcs_string, \
047142d3 418 N_("Function starts are aligned to this power of 2") }, \
e075ae69
RH
419 { "preferred-stack-boundary=", \
420 &ix86_preferred_stack_boundary_string, \
047142d3 421 N_("Attempt to keep stack aligned to this power of 2") }, \
e075ae69 422 { "branch-cost=", &ix86_branch_cost_string, \
047142d3 423 N_("Branches are this expensive (1-5, arbitrary units)") }, \
6189a572
JH
424 { "cmodel=", &ix86_cmodel_string, \
425 N_("Use given x86-64 code model") }, \
c93e80a5 426 { "debug-arg", &ix86_debug_arg_string, \
a5d17ff3 427 "" /* Undocumented. */ }, \
c93e80a5 428 { "debug-addr", &ix86_debug_addr_string, \
a5d17ff3 429 "" /* Undocumented. */ }, \
c93e80a5
JH
430 { "asm=", &ix86_asm_string, \
431 N_("Use given assembler dialect") }, \
f996902d
RH
432 { "tls-dialect=", &ix86_tls_dialect_string, \
433 N_("Use given thread-local storage dialect") }, \
e075ae69 434 SUBTARGET_OPTIONS \
b08de47e 435}
f5316dfe
MM
436
437/* Sometimes certain combinations of command options do not make
438 sense on a particular target machine. You can define a macro
439 `OVERRIDE_OPTIONS' to take account of this. This macro, if
440 defined, is executed once just after all the command options have
441 been parsed.
442
443 Don't use this macro to turn on various extra optimizations for
444 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
445
446#define OVERRIDE_OPTIONS override_options ()
447
448/* These are meant to be redefined in the host dependent files */
95393dfd 449#define SUBTARGET_SWITCHES
f5316dfe 450#define SUBTARGET_OPTIONS
95393dfd 451
d4ba09c0 452/* Define this to change the optimizations performed by default. */
d9a5f180
GS
453#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
454 optimization_options ((LEVEL), (SIZE))
d4ba09c0 455
241e1a89
SC
456/* Specs for the compiler proper */
457
628714d8
RK
458#ifndef CC1_CPU_SPEC
459#define CC1_CPU_SPEC "\
241e1a89 460%{!mcpu*: \
4a88a060 461%{m386:-mcpu=i386 \
3f0e0fa2 462%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
4a88a060 463%{m486:-mcpu=i486 \
3f0e0fa2 464%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
4a88a060 465%{mpentium:-mcpu=pentium \
3f0e0fa2 466%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
4a88a060 467%{mpentiumpro:-mcpu=pentiumpro \
c93e80a5
JH
468%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
469%{mintel-syntax:-masm=intel \
470%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
471%{mno-intel-syntax:-masm=att \
472%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
241e1a89 473#endif
c98f8742 474\f
f4365627
JH
475#define TARGET_CPU_DEFAULT_i386 0
476#define TARGET_CPU_DEFAULT_i486 1
477#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
478#define TARGET_CPU_DEFAULT_pentium_mmx 3
479#define TARGET_CPU_DEFAULT_pentiumpro 4
480#define TARGET_CPU_DEFAULT_pentium2 5
481#define TARGET_CPU_DEFAULT_pentium3 6
482#define TARGET_CPU_DEFAULT_pentium4 7
483#define TARGET_CPU_DEFAULT_k6 8
484#define TARGET_CPU_DEFAULT_k6_2 9
485#define TARGET_CPU_DEFAULT_k6_3 10
486#define TARGET_CPU_DEFAULT_athlon 11
487#define TARGET_CPU_DEFAULT_athlon_sse 12
f4365627
JH
488
489#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
490 "pentiumpro", "pentium2", "pentium3", \
491 "pentium4", "k6", "k6-2", "k6-3",\
492 "athlon", "athlon-4"}
84b77fba 493#ifndef CPP_CPU_DEFAULT_SPEC
f4365627 494#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
5a6ee819
RH
495#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
496#endif
f4365627 497#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
0d97fd9e 498#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
5a6ee819 499#endif
f4365627
JH
500#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
501#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
502#endif
503#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
0d97fd9e 504#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
da594c94 505#endif
f4365627
JH
506#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
507#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
508-D__tune_pentium2__"
509#endif
510#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
511#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
512-D__tune_pentium2__ -D__tune_pentium3__"
513#endif
514#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
515#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
516#endif
517#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
5a6ee819 518#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
da594c94 519#endif
f4365627
JH
520#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
521#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
522#endif
523#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
524#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
525#endif
526#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
309ada50
JH
527#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
528#endif
f4365627
JH
529#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
530#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
b4e89e2d 531#endif
5a6ee819
RH
532#ifndef CPP_CPU_DEFAULT_SPEC
533#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
84b77fba
JW
534#endif
535#endif /* CPP_CPU_DEFAULT_SPEC */
33c1d53a 536
0c2dc519
JH
537#define CPP_CPU32_SPEC \
538 "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
a11eba95 539-D__i386__"
0c2dc519
JH
540
541#define CPP_CPU64_SPEC \
a11eba95 542 "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__"
0c2dc519
JH
543
544#define CPP_CPUCOMMON_SPEC "\
5a6ee819
RH
545%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
546%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
0d97fd9e
RH
547%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
548 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
f4365627
JH
549%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
550 -D__pentium__mmx__ \
551 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
0d97fd9e
RH
552%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
553 -D__pentiumpro -D__pentiumpro__ \
554 %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
5a6ee819 555%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
f4365627
JH
556%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
557 %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
558%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
559 %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
560%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
561 %{!mcpu*:-D__tune_athlon__ }}\
562%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
563 -D__athlon_sse__ \
564 %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
0c2dc519 565%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
5a6ee819
RH
566%{m386|mcpu=i386:-D__tune_i386__ }\
567%{m486|mcpu=i486:-D__tune_i486__ }\
0dd0e980 568%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
f4365627 569%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
0dd0e980
JH
570-D__tune_pentiumpro__ }\
571%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
572%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
573-D__tune_athlon__ }\
f4365627
JH
574%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
575-D__tune_athlon_sse__ }\
b4e89e2d 576%{mcpu=pentium4:-D__tune_pentium4__ }\
4daeab16 577%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
0dd0e980
JH
578-D__SSE__ }\
579%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
4a23409e 580|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
0dd0e980 581|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
f4365627 582%{march=k6-2|march=k6-3\
4a23409e 583|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
0dd0e980 584|march=athlon-mp: -D__3dNOW__ }\
f4365627
JH
585%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
586|march=athlon-mp: -D__3dNOW_A__ }\
95d075ff 587%{msse2: -D__SSE2__ }\
9b780582 588%{march=pentium4: -D__SSE2__ }\
5a6ee819 589%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
0c2dc519
JH
590
591#ifndef CPP_CPU_SPEC
592#ifdef TARGET_BI_ARCH
593#ifdef TARGET_64BIT_DEFAULT
594#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
595#else
596#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
597#endif
598#else
599#ifdef TARGET_64BIT_DEFAULT
600#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
601#else
602#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
603#endif
604#endif
84b77fba 605#endif
bcd86433 606
628714d8 607#ifndef CC1_SPEC
8015b78d 608#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
609#endif
610
611/* This macro defines names of additional specifications to put in the
612 specs that can be used in various specifications like CC1_SPEC. Its
613 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
614
615 Each subgrouping contains a string constant, that defines the
616 specification name, and a string constant that used by the GNU CC driver
617 program.
618
619 Do not define this macro if it does not need to do anything. */
620
621#ifndef SUBTARGET_EXTRA_SPECS
622#define SUBTARGET_EXTRA_SPECS
623#endif
624
625#define EXTRA_SPECS \
84b77fba 626 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
bcd86433 627 { "cpp_cpu", CPP_CPU_SPEC }, \
0c2dc519
JH
628 { "cpp_cpu32", CPP_CPU32_SPEC }, \
629 { "cpp_cpu64", CPP_CPU64_SPEC }, \
0c2dc519 630 { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
628714d8 631 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
632 SUBTARGET_EXTRA_SPECS
633\f
c98f8742
JVA
634/* target machine storage layout */
635
2b589241 636/* Define for XFmode or TFmode extended real floating point support.
2b589241
JH
637 The XFmode is specified by i386 ABI, while TFmode may be faster
638 due to alignment and simplifications in the address calculations.
639 */
640#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
641#define MAX_LONG_DOUBLE_TYPE_SIZE 128
65d9c0ab
JH
642#ifdef __x86_64__
643#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
644#else
645#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
646#endif
2b589241
JH
647/* Tell real.c that this is the 80-bit Intel extended float format
648 packaged in a 128-bit or 96bit entity. */
23c108af 649#define INTEL_EXTENDED_IEEE_FORMAT 1
2b589241 650
0038aea6 651
65d9c0ab
JH
652#define SHORT_TYPE_SIZE 16
653#define INT_TYPE_SIZE 32
654#define FLOAT_TYPE_SIZE 32
655#define LONG_TYPE_SIZE BITS_PER_WORD
2faf6b96 656#define MAX_WCHAR_TYPE_SIZE 32
65d9c0ab
JH
657#define DOUBLE_TYPE_SIZE 64
658#define LONG_LONG_TYPE_SIZE 64
659
0c2dc519
JH
660#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
661#define MAX_BITS_PER_WORD 64
662#define MAX_LONG_TYPE_SIZE 64
663#else
664#define MAX_BITS_PER_WORD 32
665#define MAX_LONG_TYPE_SIZE 32
666#endif
667
c98f8742
JVA
668/* Define this if most significant byte of a word is the lowest numbered. */
669/* That is true on the 80386. */
670
671#define BITS_BIG_ENDIAN 0
672
673/* Define this if most significant byte of a word is the lowest numbered. */
674/* That is not true on the 80386. */
675#define BYTES_BIG_ENDIAN 0
676
677/* Define this if most significant word of a multiword number is the lowest
678 numbered. */
679/* Not true for 80386 */
680#define WORDS_BIG_ENDIAN 0
681
c98f8742 682/* Width of a word, in units (bytes). */
65d9c0ab
JH
683#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
684#define MIN_UNITS_PER_WORD 4
c98f8742 685
c98f8742 686/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 687#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 688
e075ae69 689/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 690#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 691
3af4bd89
JH
692/* Boundary (in *bits*) on which the stack pointer preferrs to be
693 aligned; the compiler cannot rely on having this alignment. */
e075ae69 694#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 695
1d482056
RH
696/* As of July 2001, many runtimes to not align the stack properly when
697 entering main. This causes expand_main_function to forcably align
698 the stack, which results in aligned frames for functions called from
699 main, though it does nothing for the alignment of main itself. */
700#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 701 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 702
892a2d68 703/* Allocation boundary for the code of a function. */
3e18fdf6 704#define FUNCTION_BOUNDARY 16
c98f8742 705
892a2d68 706/* Alignment of field after `int : 0' in a structure. */
c98f8742 707
65d9c0ab 708#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
709
710/* Minimum size in bits of the largest boundary to which any
711 and all fundamental data types supported by the hardware
712 might need to be aligned. No data type wants to be aligned
17f24ff0
JH
713 rounder than this.
714
3e18fdf6 715 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
716 and Pentium Pro XFmode values at 128 bit boundaries. */
717
718#define BIGGEST_ALIGNMENT 128
719
a7180f70
BS
720/* Decide whether a variable of mode MODE must be 128 bit aligned. */
721#define ALIGN_MODE_128(MODE) \
2b589241
JH
722 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
723 || (MODE) == V4SFmode || (MODE) == V4SImode)
a7180f70 724
17f24ff0 725/* The published ABIs say that doubles should be aligned on word
6fc605d8
ZW
726 boundaries, so lower the aligment for structure fields unless
727 -malign-double is set. */
728/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
729 constant. Use the smaller value in that context. */
730#ifndef IN_TARGET_LIBS
65d9c0ab 731#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
6fc605d8
ZW
732#else
733#define BIGGEST_FIELD_ALIGNMENT 32
734#endif
c98f8742 735
e5e8a8bf 736/* If defined, a C expression to compute the alignment given to a
a7180f70 737 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
738 and ALIGN is the alignment that the object would ordinarily have.
739 The value of this macro is used instead of that alignment to align
740 the object.
741
742 If this macro is not defined, then ALIGN is used.
743
744 The typical use of this macro is to increase alignment for string
745 constants to be word aligned so that `strcpy' calls that copy
746 constants can be done inline. */
747
d9a5f180 748#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 749
8a022443
JW
750/* If defined, a C expression to compute the alignment for a static
751 variable. TYPE is the data type, and ALIGN is the alignment that
752 the object would ordinarily have. The value of this macro is used
753 instead of that alignment to align the object.
754
755 If this macro is not defined, then ALIGN is used.
756
757 One use of this macro is to increase alignment of medium-size
758 data to make it all fit in fewer cache lines. Another is to
759 cause character arrays to be word-aligned so that `strcpy' calls
760 that copy constants to character arrays can be done inline. */
761
d9a5f180 762#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
763
764/* If defined, a C expression to compute the alignment for a local
765 variable. TYPE is the data type, and ALIGN is the alignment that
766 the object would ordinarily have. The value of this macro is used
767 instead of that alignment to align the object.
768
769 If this macro is not defined, then ALIGN is used.
770
771 One use of this macro is to increase alignment of medium-size
772 data to make it all fit in fewer cache lines. */
773
d9a5f180 774#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 775
53c17031
JH
776/* If defined, a C expression that gives the alignment boundary, in
777 bits, of an argument with the specified mode and type. If it is
778 not defined, `PARM_BOUNDARY' is used for all arguments. */
779
d9a5f180
GS
780#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
781 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 782
b4ac57ab 783/* Set this non-zero if move instructions will actually fail to work
c98f8742 784 when given unaligned data. */
b4ac57ab 785#define STRICT_ALIGNMENT 0
c98f8742
JVA
786
787/* If bit field type is int, don't let it cross an int,
788 and give entire struct the alignment of an int. */
789/* Required on the 386 since it doesn't have bitfield insns. */
790#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
791\f
792/* Standard register usage. */
793
794/* This processor has special stack-like registers. See reg-stack.c
892a2d68 795 for details. */
c98f8742
JVA
796
797#define STACK_REGS
d9a5f180
GS
798#define IS_STACK_MODE(MODE) \
799 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
800 || (MODE) == TFmode)
c98f8742
JVA
801
802/* Number of actual hardware registers.
803 The hardware registers are assigned numbers for the compiler
804 from 0 to just below FIRST_PSEUDO_REGISTER.
805 All registers that the compiler knows about must be given numbers,
806 even those that are not normally considered general registers.
807
808 In the 80386 we give the 8 general purpose registers the numbers 0-7.
809 We number the floating point registers 8-15.
810 Note that registers 0-7 can be accessed as a short or int,
811 while only 0-3 may be used with byte `mov' instructions.
812
813 Reg 16 does not correspond to any hardware register, but instead
814 appears in the RTL as an argument pointer prior to reload, and is
815 eliminated during reloading in favor of either the stack or frame
892a2d68 816 pointer. */
c98f8742 817
3f3f2124 818#define FIRST_PSEUDO_REGISTER 53
c98f8742 819
3073d01c
ML
820/* Number of hardware registers that go into the DWARF-2 unwind info.
821 If not defined, equals FIRST_PSEUDO_REGISTER. */
822
823#define DWARF_FRAME_REGISTERS 17
824
c98f8742
JVA
825/* 1 for registers that have pervasive standard uses
826 and are not available for the register allocator.
3f3f2124
JH
827 On the 80386, the stack pointer is such, as is the arg pointer.
828
829 The value is an mask - bit 1 is set for fixed registers
830 for 32bit target, while 2 is set for fixed registers for 64bit.
831 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
832 */
a7180f70
BS
833#define FIXED_REGISTERS \
834/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 835{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
a7180f70 836/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 837 3, 3, 3, 3, 3, \
a7180f70
BS
838/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
839 0, 0, 0, 0, 0, 0, 0, 0, \
840/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
841 0, 0, 0, 0, 0, 0, 0, 0, \
842/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
843 1, 1, 1, 1, 1, 1, 1, 1, \
844/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
845 1, 1, 1, 1, 1, 1, 1, 1}
846
c98f8742
JVA
847
848/* 1 for registers not available across function calls.
849 These must include the FIXED_REGISTERS and also any
850 registers that can be used without being saved.
851 The latter must include the registers where values are returned
852 and the register where structure-value addresses are passed.
3f3f2124
JH
853 Aside from that, you can include as many other registers as you like.
854
855 The value is an mask - bit 1 is set for call used
856 for 32bit target, while 2 is set for call used for 64bit.
857 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
858*/
a7180f70
BS
859#define CALL_USED_REGISTERS \
860/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3f3f2124 861{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 862/*arg,flags,fpsr,dir,frame*/ \
3f3f2124 863 3, 3, 3, 3, 3, \
a7180f70 864/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3f3f2124 865 3, 3, 3, 3, 3, 3, 3, 3, \
a7180f70 866/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
867 3, 3, 3, 3, 3, 3, 3, 3, \
868/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
869 3, 3, 3, 3, 1, 1, 1, 1, \
870/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
871 3, 3, 3, 3, 3, 3, 3, 3} \
c98f8742 872
3b3c6a3f
MM
873/* Order in which to allocate registers. Each register must be
874 listed once, even those in FIXED_REGISTERS. List frame pointer
875 late and fixed registers last. Note that, in general, we prefer
876 registers listed in CALL_USED_REGISTERS, keeping the others
877 available for storage of persistent values.
878
162f023b
JH
879 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
880 so this is just empty initializer for array. */
3b3c6a3f 881
162f023b
JH
882#define REG_ALLOC_ORDER \
883{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
884 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
885 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
886 48, 49, 50, 51, 52 }
3b3c6a3f 887
162f023b
JH
888/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
889 to be rearranged based on a particular function. When using sse math,
890 we want to allocase SSE before x87 registers and vice vera. */
3b3c6a3f 891
162f023b 892#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 893
f5316dfe 894
c98f8742 895/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 896#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 897do { \
3f3f2124
JH
898 int i; \
899 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
900 { \
901 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
902 call_used_regs[i] = (call_used_regs[i] \
903 & (TARGET_64BIT ? 2 : 1)) != 0; \
904 } \
5b43fed1 905 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
906 { \
907 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
908 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
909 } \
910 if (! TARGET_MMX) \
911 { \
912 int i; \
913 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
914 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
915 fixed_regs[i] = call_used_regs[i] = 1; \
916 } \
917 if (! TARGET_SSE) \
918 { \
919 int i; \
920 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
921 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
922 fixed_regs[i] = call_used_regs[i] = 1; \
923 } \
924 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
925 { \
926 int i; \
927 HARD_REG_SET x; \
928 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
929 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
930 if (TEST_HARD_REG_BIT (x, i)) \
931 fixed_regs[i] = call_used_regs[i] = 1; \
932 } \
d9a5f180 933 } while (0)
c98f8742
JVA
934
935/* Return number of consecutive hard regs needed starting at reg REGNO
936 to hold something of mode MODE.
937 This is ordinarily the length in words of a value of mode MODE
938 but can be less for certain modes in special long registers.
939
940 Actually there are no two word move instructions for consecutive
941 registers. And only registers 0-3 may have mov byte instructions
942 applied to them.
943 */
944
945#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
946 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
947 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
d9a5f180 948 : ((MODE) == TFmode \
92d0fb09 949 ? (TARGET_64BIT ? 2 : 3) \
d9a5f180 950 : (MODE) == TCmode \
92d0fb09 951 ? (TARGET_64BIT ? 4 : 6) \
2b589241 952 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 953
fbe5eb6d
BS
954#define VALID_SSE2_REG_MODE(MODE) \
955 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
956 || (MODE) == V2DImode)
957
d9a5f180
GS
958#define VALID_SSE_REG_MODE(MODE) \
959 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
960 || (MODE) == SFmode \
fbe5eb6d
BS
961 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
962 || VALID_SSE2_REG_MODE (MODE) \
141e454b 963 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
a7180f70 964
47f339cf
BS
965#define VALID_MMX_REG_MODE_3DNOW(MODE) \
966 ((MODE) == V2SFmode || (MODE) == SFmode)
967
d9a5f180
GS
968#define VALID_MMX_REG_MODE(MODE) \
969 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
970 || (MODE) == V2SImode || (MODE) == SImode)
971
972#define VECTOR_MODE_SUPPORTED_P(MODE) \
973 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
47f339cf
BS
974 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
975 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
a7180f70 976
d9a5f180
GS
977#define VALID_FP_MODE_P(MODE) \
978 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
979 || (!TARGET_64BIT && (MODE) == XFmode) \
980 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
981 || (!TARGET_64BIT && (MODE) == XCmode))
a946dd00 982
d9a5f180
GS
983#define VALID_INT_MODE_P(MODE) \
984 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
985 || (MODE) == DImode \
986 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
987 || (MODE) == CDImode \
988 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
a946dd00 989
e075ae69 990/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 991
a946dd00 992#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 993 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
994
995/* Value is 1 if it is a good idea to tie two pseudo registers
996 when one has mode MODE1 and one has mode MODE2.
997 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
998 for any hard reg, then this must be 0 for correct output. */
999
95912252
RH
1000#define MODES_TIEABLE_P(MODE1, MODE2) \
1001 ((MODE1) == (MODE2) \
d2836273
JH
1002 || (((MODE1) == HImode || (MODE1) == SImode \
1003 || ((MODE1) == QImode \
1004 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1005 || ((MODE1) == DImode && TARGET_64BIT)) \
1006 && ((MODE2) == HImode || (MODE2) == SImode \
1007 || ((MODE1) == QImode \
1008 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1009 || ((MODE2) == DImode && TARGET_64BIT))))
1010
c98f8742 1011
e075ae69 1012/* Specify the modes required to caller save a given hard regno.
787dc842 1013 We do this on i386 to prevent flags from being saved at all.
e075ae69 1014
787dc842
JH
1015 Kill any attempts to combine saving of modes. */
1016
d9a5f180
GS
1017#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1018 (CC_REGNO_P (REGNO) ? VOIDmode \
1019 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1020 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1021 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1022 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1023 : (MODE))
c98f8742
JVA
1024/* Specify the registers used for certain standard purposes.
1025 The values of these macros are register numbers. */
1026
1027/* on the 386 the pc register is %eip, and is not usable as a general
1028 register. The ordinary mov instructions won't work */
1029/* #define PC_REGNUM */
1030
1031/* Register to use for pushing function arguments. */
1032#define STACK_POINTER_REGNUM 7
1033
1034/* Base register for access to local variables of the function. */
564d80f4
JH
1035#define HARD_FRAME_POINTER_REGNUM 6
1036
1037/* Base register for access to local variables of the function. */
1038#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1039
1040/* First floating point reg */
1041#define FIRST_FLOAT_REG 8
1042
1043/* First & last stack-like regs */
1044#define FIRST_STACK_REG FIRST_FLOAT_REG
1045#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1046
e075ae69
RH
1047#define FLAGS_REG 17
1048#define FPSR_REG 18
7c7ef435 1049#define DIRFLAG_REG 19
e075ae69 1050
a7180f70
BS
1051#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1052#define LAST_SSE_REG (FIRST_SSE_REG + 7)
1053
1054#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1055#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1056
3f3f2124
JH
1057#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1058#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1059
1060#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1061#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1062
c98f8742
JVA
1063/* Value should be nonzero if functions must have frame pointers.
1064 Zero means the frame pointer need not be set up (and parms
1065 may be accessed via the stack pointer) in functions that seem suitable.
1066 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1067#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1068
1069/* Override this in other tm.h files to cope with various OS losage
1070 requiring a frame pointer. */
1071#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1072#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1073#endif
1074
1075/* Make sure we can access arbitrary call frames. */
1076#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1077
1078/* Base register for access to arguments of the function. */
1079#define ARG_POINTER_REGNUM 16
1080
d2836273
JH
1081/* Register in which static-chain is passed to a function.
1082 We do use ECX as static chain register for 32 bit ABI. On the
1083 64bit ABI, ECX is an argument register, so we use R10 instead. */
1084#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1085
1086/* Register to hold the addressing base for position independent
5b43fed1
RH
1087 code access to data items. We don't use PIC pointer for 64bit
1088 mode. Define the regnum to dummy value to prevent gcc from
1089 pessimizing code dealing with EBX. */
1090#define PIC_OFFSET_TABLE_REGNUM \
1091 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
c98f8742
JVA
1092
1093/* Register in which address to store a structure value
1094 arrives in the function. On the 386, the prologue
1095 copies this from the stack to register %eax. */
1096#define STRUCT_VALUE_INCOMING 0
1097
1098/* Place in which caller passes the structure value address.
1099 0 means push the value on the stack like an argument. */
1100#define STRUCT_VALUE 0
713225d4
MM
1101
1102/* A C expression which can inhibit the returning of certain function
1103 values in registers, based on the type of value. A nonzero value
1104 says to return the function value in memory, just as large
1105 structures are always returned. Here TYPE will be a C expression
1106 of type `tree', representing the data type of the value.
1107
1108 Note that values of mode `BLKmode' must be explicitly handled by
1109 this macro. Also, the option `-fpcc-struct-return' takes effect
1110 regardless of this macro. On most systems, it is possible to
1111 leave the macro undefined; this causes a default definition to be
1112 used, whose value is the constant 1 for `BLKmode' values, and 0
1113 otherwise.
1114
1115 Do not use this macro to indicate that structures and unions
1116 should always be returned in memory. You should instead use
1117 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1118
d9a5f180 1119#define RETURN_IN_MEMORY(TYPE) \
53c17031 1120 ix86_return_in_memory (TYPE)
713225d4 1121
c98f8742
JVA
1122\f
1123/* Define the classes of registers for register constraints in the
1124 machine description. Also define ranges of constants.
1125
1126 One of the classes must always be named ALL_REGS and include all hard regs.
1127 If there is more than one class, another class must be named NO_REGS
1128 and contain no registers.
1129
1130 The name GENERAL_REGS must be the name of a class (or an alias for
1131 another name such as ALL_REGS). This is the class of registers
1132 that is allowed by "g" or "r" in a register constraint.
1133 Also, registers outside this class are allocated only when
1134 instructions express preferences for them.
1135
1136 The classes must be numbered in nondecreasing order; that is,
1137 a larger-numbered class must never be contained completely
1138 in a smaller-numbered class.
1139
1140 For any two classes, it is very desirable that there be another
ab408a86
JVA
1141 class that represents their union.
1142
1143 It might seem that class BREG is unnecessary, since no useful 386
1144 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1145 and the "b" register constraint is useful in asms for syscalls.
1146
1147 The flags and fpsr registers are in no class. */
c98f8742
JVA
1148
1149enum reg_class
1150{
1151 NO_REGS,
e075ae69 1152 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1153 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1154 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1155 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1156 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1157 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1158 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1159 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1160 FLOAT_REGS,
a7180f70
BS
1161 SSE_REGS,
1162 MMX_REGS,
446988df
JH
1163 FP_TOP_SSE_REGS,
1164 FP_SECOND_SSE_REGS,
1165 FLOAT_SSE_REGS,
1166 FLOAT_INT_REGS,
1167 INT_SSE_REGS,
1168 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1169 ALL_REGS, LIM_REG_CLASSES
1170};
1171
d9a5f180
GS
1172#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1173
1174#define INTEGER_CLASS_P(CLASS) \
1175 reg_class_subset_p ((CLASS), GENERAL_REGS)
1176#define FLOAT_CLASS_P(CLASS) \
1177 reg_class_subset_p ((CLASS), FLOAT_REGS)
1178#define SSE_CLASS_P(CLASS) \
1179 reg_class_subset_p ((CLASS), SSE_REGS)
1180#define MMX_CLASS_P(CLASS) \
1181 reg_class_subset_p ((CLASS), MMX_REGS)
1182#define MAYBE_INTEGER_CLASS_P(CLASS) \
1183 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1184#define MAYBE_FLOAT_CLASS_P(CLASS) \
1185 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1186#define MAYBE_SSE_CLASS_P(CLASS) \
1187 reg_classes_intersect_p (SSE_REGS, (CLASS))
1188#define MAYBE_MMX_CLASS_P(CLASS) \
1189 reg_classes_intersect_p (MMX_REGS, (CLASS))
1190
1191#define Q_CLASS_P(CLASS) \
1192 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1193
c98f8742
JVA
1194/* Give names of register classes as strings for dump file. */
1195
1196#define REG_CLASS_NAMES \
1197{ "NO_REGS", \
ab408a86 1198 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1199 "SIREG", "DIREG", \
e075ae69
RH
1200 "AD_REGS", \
1201 "Q_REGS", "NON_Q_REGS", \
c98f8742 1202 "INDEX_REGS", \
3f3f2124 1203 "LEGACY_REGS", \
c98f8742
JVA
1204 "GENERAL_REGS", \
1205 "FP_TOP_REG", "FP_SECOND_REG", \
1206 "FLOAT_REGS", \
a7180f70
BS
1207 "SSE_REGS", \
1208 "MMX_REGS", \
446988df
JH
1209 "FP_TOP_SSE_REGS", \
1210 "FP_SECOND_SSE_REGS", \
1211 "FLOAT_SSE_REGS", \
8fcaaa80 1212 "FLOAT_INT_REGS", \
446988df
JH
1213 "INT_SSE_REGS", \
1214 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1215 "ALL_REGS" }
1216
1217/* Define which registers fit in which classes.
1218 This is an initializer for a vector of HARD_REG_SET
1219 of length N_REG_CLASSES. */
1220
a7180f70 1221#define REG_CLASS_CONTENTS \
3f3f2124
JH
1222{ { 0x00, 0x0 }, \
1223 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1224 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1225 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1226 { 0x03, 0x0 }, /* AD_REGS */ \
1227 { 0x0f, 0x0 }, /* Q_REGS */ \
1228 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1229 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1230 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1231 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1232 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1233 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1234{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1235{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1236{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1237{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1238{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1239 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1240{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1241{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1242{ 0xffffffff,0x1fffff } \
e075ae69 1243}
c98f8742
JVA
1244
1245/* The same information, inverted:
1246 Return the class number of the smallest class containing
1247 reg number REGNO. This could be a conditional expression
1248 or could index an array. */
1249
c98f8742
JVA
1250#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1251
1252/* When defined, the compiler allows registers explicitly used in the
1253 rtl to be used as spill registers but prevents the compiler from
892a2d68 1254 extending the lifetime of these registers. */
c98f8742 1255
2922fe9e 1256#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1257
1258#define QI_REG_P(X) \
1259 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1260
d9a5f180
GS
1261#define GENERAL_REGNO_P(N) \
1262 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1263
1264#define GENERAL_REG_P(X) \
6189a572 1265 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1266
1267#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1268
c98f8742
JVA
1269#define NON_QI_REG_P(X) \
1270 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1271
d9a5f180 1272#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1273#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1274
c98f8742 1275#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1276#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1277#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1278#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1279
d9a5f180
GS
1280#define SSE_REGNO_P(N) \
1281 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1282 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1283
d9a5f180
GS
1284#define SSE_REGNO(N) \
1285 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1286#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1287
d9a5f180 1288#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1289 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1290
d9a5f180
GS
1291#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1292#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
c98f8742 1293
d9a5f180
GS
1294#define STACK_REG_P(XOP) \
1295 (REG_P (XOP) && \
1296 REGNO (XOP) >= FIRST_STACK_REG && \
1297 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1298
d9a5f180 1299#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1300
d9a5f180 1301#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1302
e075ae69
RH
1303#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1304#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1305
cdbca172
JO
1306/* Indicate whether hard register numbered REG_NO should be converted
1307 to SSA form. */
1308#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
d9a5f180 1309 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
cdbca172 1310
c98f8742
JVA
1311/* The class value for index registers, and the one for base regs. */
1312
1313#define INDEX_REG_CLASS INDEX_REGS
1314#define BASE_REG_CLASS GENERAL_REGS
1315
1316/* Get reg_class from a letter such as appears in the machine description. */
1317
1318#define REG_CLASS_FROM_LETTER(C) \
8c2bf92a 1319 ((C) == 'r' ? GENERAL_REGS : \
3f3f2124
JH
1320 (C) == 'R' ? LEGACY_REGS : \
1321 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1322 (C) == 'Q' ? Q_REGS : \
8c2bf92a
JVA
1323 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1324 ? FLOAT_REGS \
1325 : NO_REGS) : \
1326 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1327 ? FP_TOP_REG \
1328 : NO_REGS) : \
1329 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1330 ? FP_SECOND_REG \
1331 : NO_REGS) : \
1332 (C) == 'a' ? AREG : \
1333 (C) == 'b' ? BREG : \
1334 (C) == 'c' ? CREG : \
1335 (C) == 'd' ? DREG : \
446988df
JH
1336 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1337 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1338 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
4b71cd6e 1339 (C) == 'A' ? AD_REGS : \
8c2bf92a 1340 (C) == 'D' ? DIREG : \
c98f8742
JVA
1341 (C) == 'S' ? SIREG : NO_REGS)
1342
1343/* The letters I, J, K, L and M in a register constraint string
1344 can be used to stand for particular ranges of immediate operands.
1345 This macro defines what the ranges are.
1346 C is the letter, and VALUE is a constant value.
1347 Return 1 if VALUE is in the range specified by C.
1348
1349 I is for non-DImode shifts.
1350 J is for DImode shifts.
e075ae69
RH
1351 K is for signed imm8 operands.
1352 L is for andsi as zero-extending move.
c98f8742 1353 M is for shifts that can be executed by the "lea" opcode.
1aa9fd24 1354 N is for immedaite operands for out/in instructions (0-255)
c98f8742
JVA
1355 */
1356
e075ae69
RH
1357#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1358 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1359 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1360 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1361 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1362 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1aa9fd24 1363 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
e075ae69 1364 : 0)
c98f8742
JVA
1365
1366/* Similar, but for floating constants, and defining letters G and H.
b4ac57ab
RS
1367 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1368 TARGET_387 isn't set, because the stack register converter may need to
c47f5ea5 1369 load 0.0 into the function value register. */
c98f8742
JVA
1370
1371#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2b04e52b
JH
1372 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1373 : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
c98f8742 1374
6189a572
JH
1375/* A C expression that defines the optional machine-dependent
1376 constraint letters that can be used to segregate specific types of
1377 operands, usually memory references, for the target machine. Any
1378 letter that is not elsewhere defined and not matched by
1379 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1380 be defined.
1381
1382 If it is required for a particular target machine, it should
1383 return 1 if VALUE corresponds to the operand type represented by
1384 the constraint letter C. If C is not defined as an extra
1385 constraint, the value returned should be 0 regardless of VALUE. */
1386
1387#define EXTRA_CONSTRAINT(VALUE, C) \
1388 ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
1389 : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1390 : 0)
1391
c98f8742 1392/* Place additional restrictions on the register class to use when it
4cbb525c 1393 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1394 register for which class CLASS would ordinarily be used. */
c98f8742 1395
d2836273
JH
1396#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1397 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1398 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1399 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1400 ? Q_REGS : (CLASS))
1401
1402/* Given an rtx X being reloaded into a reg required to be
1403 in class CLASS, return the class of reg to actually use.
1404 In general this is just CLASS; but on some machines
1405 in some cases it is preferable to use a more restrictive class.
1406 On the 80386 series, we prevent floating constants from being
1407 reloaded into floating registers (since no move-insn can do that)
1408 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1409
d398b3b1 1410/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1411 QImode must go into class Q_REGS.
d398b3b1 1412 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1413 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1414
d9a5f180
GS
1415#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1416 ix86_preferred_reload_class ((X), (CLASS))
85ff473e
JVA
1417
1418/* If we are copying between general and FP registers, we need a memory
f84aa48a 1419 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1420#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1421 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1422
1423/* QImode spills from non-QI registers need a scratch. This does not
1424 happen often -- the only example so far requires an uninitialized
1425 pseudo. */
1426
d9a5f180 1427#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1428 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1429 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1430 ? Q_REGS : NO_REGS)
c98f8742
JVA
1431
1432/* Return the maximum number of consecutive registers
1433 needed to represent mode MODE in a register of class CLASS. */
1434/* On the 80386, this is the size of MODE in words,
92d0fb09
JH
1435 except in the FP regs, where a single reg is always enough.
1436 The TFmodes are really just 80bit values, so we use only 3 registers
1437 to hold them, instead of 4, as the size would suggest.
1438 */
a7180f70 1439#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1440 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1441 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1442 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1443 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1444
1445/* A C expression whose value is nonzero if pseudos that have been
1446 assigned to registers of class CLASS would likely be spilled
1447 because registers of CLASS are needed for spill registers.
1448
1449 The default value of this macro returns 1 if CLASS has exactly one
1450 register and zero otherwise. On most machines, this default
1451 should be used. Only define this macro to some other expression
1452 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1453 their hard registers were needed for spill registers. If this
f5316dfe
MM
1454 macro returns nonzero for those classes, those pseudos will only
1455 be allocated by `global.c', which knows how to reallocate the
1456 pseudo to another register. If there would not be another
1457 register available for reallocation, you should not change the
1458 definition of this macro since the only effect of such a
1459 definition would be to slow down register allocation. */
1460
1461#define CLASS_LIKELY_SPILLED_P(CLASS) \
1462 (((CLASS) == AREG) \
1463 || ((CLASS) == DREG) \
1464 || ((CLASS) == CREG) \
1465 || ((CLASS) == BREG) \
1466 || ((CLASS) == AD_REGS) \
1467 || ((CLASS) == SIREG) \
1468 || ((CLASS) == DIREG))
1469
e075ae69
RH
1470/* A C statement that adds to CLOBBERS any hard regs the port wishes
1471 to automatically clobber for all asms.
1472
1473 We do this in the new i386 backend to maintain source compatibility
1474 with the old cc0-based compiler. */
1475
d9a5f180
GS
1476#define MD_ASM_CLOBBERS(CLOBBERS) \
1477 do { \
1478 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1479 (CLOBBERS)); \
1480 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1481 (CLOBBERS)); \
1482 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1483 (CLOBBERS)); \
e075ae69 1484 } while (0)
c98f8742
JVA
1485\f
1486/* Stack layout; function entry, exit and calling. */
1487
1488/* Define this if pushing a word on the stack
1489 makes the stack pointer a smaller address. */
1490#define STACK_GROWS_DOWNWARD
1491
1492/* Define this if the nominal address of the stack frame
1493 is at the high-address end of the local variables;
1494 that is, each additional local variable allocated
1495 goes at a more negative offset in the frame. */
1496#define FRAME_GROWS_DOWNWARD
1497
1498/* Offset within stack frame to start allocating local variables at.
1499 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1500 first local allocated. Otherwise, it is the offset to the BEGINNING
1501 of the first local allocated. */
1502#define STARTING_FRAME_OFFSET 0
1503
1504/* If we generate an insn to push BYTES bytes,
1505 this says how many the stack pointer really advances by.
1506 On 386 pushw decrements by exactly 2 no matter what the position was.
1507 On the 386 there is no pushb; we use pushw instead, and this
d2836273
JH
1508 has the effect of rounding up to 2.
1509
1510 For 64bit ABI we round up to 8 bytes.
1511 */
c98f8742 1512
d2836273
JH
1513#define PUSH_ROUNDING(BYTES) \
1514 (TARGET_64BIT \
1515 ? (((BYTES) + 7) & (-8)) \
1516 : (((BYTES) + 1) & (-2)))
c98f8742 1517
f73ad30e
JH
1518/* If defined, the maximum amount of space required for outgoing arguments will
1519 be computed and placed into the variable
1520 `current_function_outgoing_args_size'. No space will be pushed onto the
1521 stack for each call; instead, the function prologue should increase the stack
1522 frame size by this amount. */
1523
1524#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1525
1526/* If defined, a C expression whose value is nonzero when we want to use PUSH
1527 instructions to pass outgoing arguments. */
1528
1529#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1530
c98f8742
JVA
1531/* Offset of first parameter from the argument pointer register value. */
1532#define FIRST_PARM_OFFSET(FNDECL) 0
1533
a7180f70
BS
1534/* Define this macro if functions should assume that stack space has been
1535 allocated for arguments even when their values are passed in registers.
1536
1537 The value of this macro is the size, in bytes, of the area reserved for
1538 arguments passed in registers for the function represented by FNDECL.
1539
1540 This space can be allocated by the caller, or be a part of the
1541 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1542 which. */
1543#define REG_PARM_STACK_SPACE(FNDECL) 0
1544
1545/* Define as a C expression that evaluates to nonzero if we do not know how
1546 to pass TYPE solely in registers. The file expr.h defines a
1547 definition that is usually appropriate, refer to expr.h for additional
1548 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1549 computed in the stack and then loaded into a register. */
d9a5f180
GS
1550#define MUST_PASS_IN_STACK(MODE, TYPE) \
1551 ((TYPE) != 0 \
1552 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1553 || TREE_ADDRESSABLE (TYPE) \
1554 || ((MODE) == TImode) \
1555 || ((MODE) == BLKmode \
1556 && ! ((TYPE) != 0 \
1557 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1558 && 0 == (int_size_in_bytes (TYPE) \
1559 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1560 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
a7180f70
BS
1561 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1562
c98f8742
JVA
1563/* Value is the number of bytes of arguments automatically
1564 popped when returning from a subroutine call.
8b109b37 1565 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1566 FUNTYPE is the data type of the function (as a tree),
1567 or for a library call it is an identifier node for the subroutine name.
1568 SIZE is the number of bytes of arguments passed on the stack.
1569
1570 On the 80386, the RTD insn may be used to pop them if the number
1571 of args is fixed, but if the number is variable then the caller
1572 must pop them all. RTD can't be used for library calls now
1573 because the library is compiled with the Unix compiler.
1574 Use of RTD is a selectable option, since it is incompatible with
1575 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1576 the caller must always pop the args.
1577
1578 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1579
d9a5f180
GS
1580#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1581 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1582
8c2bf92a
JVA
1583/* Define how to find the value returned by a function.
1584 VALTYPE is the data type of the value (as a tree).
1585 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1586 otherwise, FUNC is 0. */
c98f8742 1587#define FUNCTION_VALUE(VALTYPE, FUNC) \
53c17031
JH
1588 ix86_function_value (VALTYPE)
1589
1590#define FUNCTION_VALUE_REGNO_P(N) \
1591 ix86_function_value_regno_p (N)
c98f8742
JVA
1592
1593/* Define how to find the value returned by a library function
1594 assuming the value has mode MODE. */
1595
1596#define LIBCALL_VALUE(MODE) \
53c17031 1597 ix86_libcall_value (MODE)
c98f8742 1598
e9125c09
TW
1599/* Define the size of the result block used for communication between
1600 untyped_call and untyped_return. The block contains a DImode value
1601 followed by the block used by fnsave and frstor. */
1602
1603#define APPLY_RESULT_SIZE (8+108)
1604
b08de47e 1605/* 1 if N is a possible register number for function argument passing. */
53c17031 1606#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1607
1608/* Define a data type for recording info about an argument list
1609 during the scan of that argument list. This data type should
1610 hold all necessary information about the function itself
1611 and about the args processed so far, enough to enable macros
b08de47e 1612 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1613
e075ae69 1614typedef struct ix86_args {
b08de47e
MM
1615 int words; /* # words passed so far */
1616 int nregs; /* # registers available for passing */
1617 int regno; /* next available register number */
a7180f70
BS
1618 int sse_words; /* # sse words passed so far */
1619 int sse_nregs; /* # sse registers available for passing */
1620 int sse_regno; /* next available sse register number */
892a2d68 1621 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
b08de47e 1622} CUMULATIVE_ARGS;
c98f8742
JVA
1623
1624/* Initialize a variable CUM of type CUMULATIVE_ARGS
1625 for a call to a function whose data type is FNTYPE.
b08de47e 1626 For a library call, FNTYPE is 0. */
c98f8742 1627
d9a5f180
GS
1628#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1629 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
c98f8742
JVA
1630
1631/* Update the data in CUM to advance over an argument
1632 of mode MODE and data type TYPE.
1633 (TYPE is null for libcalls where that information may not be available.) */
1634
d9a5f180
GS
1635#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1636 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1637
1638/* Define where to put the arguments to a function.
1639 Value is zero to push the argument on the stack,
1640 or a hard register in which to store the argument.
1641
1642 MODE is the argument's machine mode.
1643 TYPE is the data type of the argument (as a tree).
1644 This is null for libcalls where that information may
1645 not be available.
1646 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1647 the preceding args and about the function being called.
1648 NAMED is nonzero if this argument is a named parameter
1649 (otherwise it is an extra parameter matching an ellipsis). */
1650
c98f8742 1651#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1652 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1653
1654/* For an arg passed partly in registers and partly in memory,
1655 this is the number of registers used.
1656 For args passed entirely in registers or entirely in memory, zero. */
1657
e075ae69 1658#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
c98f8742 1659
26f2c02a
ZW
1660/* If PIC, we cannot make sibling calls to global functions
1661 because the PLT requires %ebx live.
1662 If we are returning floats on the register stack, we cannot make
1663 sibling calls to functions that return floats. (The stack adjust
1664 instruction will wind up after the sibcall jump, and not be executed.) */
d9a5f180
GS
1665#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1666 ((DECL) \
1667 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1668 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1669 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
26f2c02a 1670 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
cbbf65e0 1671
ad919812
JH
1672/* Perform any needed actions needed for a function that is receiving a
1673 variable number of arguments.
1674
1675 CUM is as above.
1676
1677 MODE and TYPE are the mode and type of the current parameter.
1678
1679 PRETEND_SIZE is a variable that should be set to the amount of stack
1680 that must be pushed by the prolog to pretend that our caller pushed
1681 it.
1682
1683 Normally, this macro will push all remaining incoming registers on the
1684 stack and set PRETEND_SIZE to the length of the registers pushed. */
1685
d9a5f180
GS
1686#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1687 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1688 (NO_RTL))
ad919812
JH
1689
1690/* Define the `__builtin_va_list' type for the ABI. */
1691#define BUILD_VA_LIST_TYPE(VALIST) \
d9a5f180 1692 ((VALIST) = ix86_build_va_list ())
ad919812
JH
1693
1694/* Implement `va_start' for varargs and stdarg. */
d9a5f180
GS
1695#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1696 ix86_va_start ((STDARG), (VALIST), (NEXTARG))
ad919812
JH
1697
1698/* Implement `va_arg'. */
d9a5f180
GS
1699#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1700 ix86_va_arg ((VALIST), (TYPE))
ad919812 1701
4cf12e7e
RH
1702/* This macro is invoked at the end of compilation. It is used here to
1703 output code for -fpic that will load the return address into %ebx. */
3a0433fd 1704
4cf12e7e
RH
1705#undef ASM_FILE_END
1706#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
3a0433fd 1707
c98f8742
JVA
1708/* Output assembler code to FILE to increment profiler label # LABELNO
1709 for profiling a function entry. */
1710
d9a5f180
GS
1711#define FUNCTION_PROFILER(FILE, LABELNO) \
1712do { \
c98f8742
JVA
1713 if (flag_pic) \
1714 { \
d9a5f180 1715 fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
c98f8742 1716 LPREFIX, (LABELNO)); \
d9a5f180 1717 fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
c98f8742
JVA
1718 } \
1719 else \
1720 { \
d9a5f180
GS
1721 fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1722 fprintf ((FILE), "\tcall\t_mcount\n"); \
c98f8742 1723 } \
d9a5f180 1724} while (0)
c98f8742
JVA
1725
1726/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1727 the stack pointer does not matter. The value is tested only in
1728 functions that have frame pointers.
1729 No definition is equivalent to always zero. */
1730/* Note on the 386 it might be more efficient not to define this since
1731 we have to restore it ourselves from the frame pointer, in order to
1732 use pop */
1733
1734#define EXIT_IGNORE_STACK 1
1735
c98f8742
JVA
1736/* Output assembler code for a block containing the constant parts
1737 of a trampoline, leaving space for the variable parts. */
1738
a269a03c 1739/* On the 386, the trampoline contains two instructions:
c98f8742 1740 mov #STATIC,ecx
a269a03c
JC
1741 jmp FUNCTION
1742 The trampoline is generated entirely at runtime. The operand of JMP
1743 is the address of FUNCTION relative to the instruction following the
1744 JMP (which is 5 bytes long). */
c98f8742
JVA
1745
1746/* Length in units of the trampoline for entering a nested function. */
1747
39d04363 1748#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1749
1750/* Emit RTL insns to initialize the variable parts of a trampoline.
1751 FNADDR is an RTX for the address of the function's pure code.
1752 CXT is an RTX for the static chain value for the function. */
1753
d9a5f180
GS
1754#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1755 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1756\f
1757/* Definitions for register eliminations.
1758
1759 This is an array of structures. Each structure initializes one pair
1760 of eliminable registers. The "from" register number is given first,
1761 followed by "to". Eliminations of the same "from" register are listed
1762 in order of preference.
1763
afc2cd05
NC
1764 There are two registers that can always be eliminated on the i386.
1765 The frame pointer and the arg pointer can be replaced by either the
1766 hard frame pointer or to the stack pointer, depending upon the
1767 circumstances. The hard frame pointer is not used before reload and
1768 so it is not eligible for elimination. */
c98f8742 1769
564d80f4
JH
1770#define ELIMINABLE_REGS \
1771{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1772 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1773 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1774 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1775
2c5a510c
RH
1776/* Given FROM and TO register numbers, say whether this elimination is
1777 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1778
1779 All other eliminations are valid. */
1780
2c5a510c
RH
1781#define CAN_ELIMINATE(FROM, TO) \
1782 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1783
1784/* Define the offset between two registers, one to be eliminated, and the other
1785 its replacement, at the start of a routine. */
1786
d9a5f180
GS
1787#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1788 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1789\f
1790/* Addressing modes, and classification of registers for them. */
1791
940da324
JL
1792/* #define HAVE_POST_INCREMENT 0 */
1793/* #define HAVE_POST_DECREMENT 0 */
c98f8742 1794
940da324
JL
1795/* #define HAVE_PRE_DECREMENT 0 */
1796/* #define HAVE_PRE_INCREMENT 0 */
c98f8742
JVA
1797
1798/* Macros to check register numbers against specific register classes. */
1799
1800/* These assume that REGNO is a hard or pseudo reg number.
1801 They give nonzero only if REGNO is a hard reg of the suitable class
1802 or a pseudo reg currently allocated to a suitable hard reg.
1803 Since they use reg_renumber, they are safe only once reg_renumber
1804 has been allocated, which happens in local-alloc.c. */
1805
3f3f2124
JH
1806#define REGNO_OK_FOR_INDEX_P(REGNO) \
1807 ((REGNO) < STACK_POINTER_REGNUM \
1808 || (REGNO >= FIRST_REX_INT_REG \
1809 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1810 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1811 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1812 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1813
3f3f2124
JH
1814#define REGNO_OK_FOR_BASE_P(REGNO) \
1815 ((REGNO) <= STACK_POINTER_REGNUM \
1816 || (REGNO) == ARG_POINTER_REGNUM \
1817 || (REGNO) == FRAME_POINTER_REGNUM \
1818 || (REGNO >= FIRST_REX_INT_REG \
1819 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1820 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1821 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1822 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1823
d9a5f180
GS
1824#define REGNO_OK_FOR_SIREG_P(REGNO) \
1825 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1826#define REGNO_OK_FOR_DIREG_P(REGNO) \
1827 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1828
1829/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1830 and check its validity for a certain class.
1831 We have two alternate definitions for each of them.
1832 The usual definition accepts all pseudo regs; the other rejects
1833 them unless they have been allocated suitable hard regs.
1834 The symbol REG_OK_STRICT causes the latter definition to be used.
1835
1836 Most source files want to accept pseudo regs in the hope that
1837 they will get allocated to the class that the insn wants them to be in.
1838 Source files for reload pass need to be strict.
1839 After reload, it makes no difference, since pseudo regs have
1840 been eliminated by then. */
1841
c98f8742 1842
3b3c6a3f
MM
1843/* Non strict versions, pseudos are ok */
1844#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1845 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1846 || (REGNO (X) >= FIRST_REX_INT_REG \
1847 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1848 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1849
3b3c6a3f
MM
1850#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1851 (REGNO (X) <= STACK_POINTER_REGNUM \
1852 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1853 || REGNO (X) == FRAME_POINTER_REGNUM \
1854 || (REGNO (X) >= FIRST_REX_INT_REG \
1855 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1856 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1857
3b3c6a3f
MM
1858/* Strict versions, hard registers only */
1859#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1860#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1861
3b3c6a3f 1862#ifndef REG_OK_STRICT
d9a5f180
GS
1863#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1864#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1865
1866#else
d9a5f180
GS
1867#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1868#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1869#endif
1870
1871/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1872 that is a valid memory address for an instruction.
1873 The MODE argument is the machine mode for the MEM expression
1874 that wants to use this address.
1875
1876 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1877 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1878
1879 See legitimize_pic_address in i386.c for details as to what
1880 constitutes a legitimate address when -fpic is used. */
1881
1882#define MAX_REGS_PER_ADDRESS 2
1883
f996902d 1884#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1885
1886/* Nonzero if the constant value X is a legitimate general operand.
1887 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1888
f996902d 1889#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1890
3b3c6a3f
MM
1891#ifdef REG_OK_STRICT
1892#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1893do { \
1894 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1895 goto ADDR; \
d9a5f180 1896} while (0)
c98f8742 1897
3b3c6a3f
MM
1898#else
1899#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1900do { \
1901 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1902 goto ADDR; \
d9a5f180 1903} while (0)
c98f8742 1904
3b3c6a3f
MM
1905#endif
1906
b949ea8b
JW
1907/* If defined, a C expression to determine the base term of address X.
1908 This macro is used in only one place: `find_base_term' in alias.c.
1909
1910 It is always safe for this macro to not be defined. It exists so
1911 that alias analysis can understand machine-dependent addresses.
1912
1913 The typical use of this macro is to handle addresses containing
1914 a label_ref or symbol_ref within an UNSPEC. */
1915
d9a5f180 1916#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1917
c98f8742
JVA
1918/* Try machine-dependent ways of modifying an illegitimate address
1919 to be legitimate. If we find one, return the new, valid address.
1920 This macro is used in only one place: `memory_address' in explow.c.
1921
1922 OLDX is the address as it was before break_out_memory_refs was called.
1923 In some cases it is useful to look at this to decide what needs to be done.
1924
1925 MODE and WIN are passed so that this macro can use
1926 GO_IF_LEGITIMATE_ADDRESS.
1927
1928 It is always safe for this macro to do nothing. It exists to recognize
1929 opportunities to optimize the output.
1930
1931 For the 80386, we handle X+REG by loading X into a register R and
1932 using R+REG. R will go in a general reg and indexing will be used.
1933 However, if REG is a broken-out memory address or multiplication,
1934 nothing needs to be done because REG can certainly go in a general reg.
1935
1936 When -fpic is used, special handling is needed for symbolic references.
1937 See comments by legitimize_pic_address in i386.c for details. */
1938
3b3c6a3f 1939#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1940do { \
1941 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1942 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1943 goto WIN; \
d9a5f180 1944} while (0)
c98f8742 1945
d9a5f180 1946#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1947
c98f8742
JVA
1948/* Nonzero if the constant value X is a legitimate general operand
1949 when generating PIC code. It is given that flag_pic is on and
1950 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1951
f996902d 1952#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1953
1954#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1955 (GET_CODE (X) == SYMBOL_REF \
1956 || GET_CODE (X) == LABEL_REF \
1957 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1958
1959/* Go to LABEL if ADDR (a legitimate address expression)
1960 has an effect that depends on the machine mode it is used for.
1961 On the 80386, only postdecrement and postincrement address depend thus
1962 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
1963#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1964do { \
1965 if (GET_CODE (ADDR) == POST_INC \
1966 || GET_CODE (ADDR) == POST_DEC) \
1967 goto LABEL; \
1968} while (0)
c98f8742 1969\f
bd793c65
BS
1970/* Codes for all the SSE/MMX builtins. */
1971enum ix86_builtins
1972{
1973 IX86_BUILTIN_ADDPS,
1974 IX86_BUILTIN_ADDSS,
1975 IX86_BUILTIN_DIVPS,
1976 IX86_BUILTIN_DIVSS,
1977 IX86_BUILTIN_MULPS,
1978 IX86_BUILTIN_MULSS,
1979 IX86_BUILTIN_SUBPS,
1980 IX86_BUILTIN_SUBSS,
1981
1982 IX86_BUILTIN_CMPEQPS,
1983 IX86_BUILTIN_CMPLTPS,
1984 IX86_BUILTIN_CMPLEPS,
1985 IX86_BUILTIN_CMPGTPS,
1986 IX86_BUILTIN_CMPGEPS,
1987 IX86_BUILTIN_CMPNEQPS,
1988 IX86_BUILTIN_CMPNLTPS,
1989 IX86_BUILTIN_CMPNLEPS,
1990 IX86_BUILTIN_CMPNGTPS,
1991 IX86_BUILTIN_CMPNGEPS,
1992 IX86_BUILTIN_CMPORDPS,
1993 IX86_BUILTIN_CMPUNORDPS,
1994 IX86_BUILTIN_CMPNEPS,
1995 IX86_BUILTIN_CMPEQSS,
1996 IX86_BUILTIN_CMPLTSS,
1997 IX86_BUILTIN_CMPLESS,
1998 IX86_BUILTIN_CMPGTSS,
1999 IX86_BUILTIN_CMPGESS,
2000 IX86_BUILTIN_CMPNEQSS,
2001 IX86_BUILTIN_CMPNLTSS,
2002 IX86_BUILTIN_CMPNLESS,
2003 IX86_BUILTIN_CMPNGTSS,
2004 IX86_BUILTIN_CMPNGESS,
2005 IX86_BUILTIN_CMPORDSS,
2006 IX86_BUILTIN_CMPUNORDSS,
2007 IX86_BUILTIN_CMPNESS,
2008
2009 IX86_BUILTIN_COMIEQSS,
2010 IX86_BUILTIN_COMILTSS,
2011 IX86_BUILTIN_COMILESS,
2012 IX86_BUILTIN_COMIGTSS,
2013 IX86_BUILTIN_COMIGESS,
2014 IX86_BUILTIN_COMINEQSS,
2015 IX86_BUILTIN_UCOMIEQSS,
2016 IX86_BUILTIN_UCOMILTSS,
2017 IX86_BUILTIN_UCOMILESS,
2018 IX86_BUILTIN_UCOMIGTSS,
2019 IX86_BUILTIN_UCOMIGESS,
2020 IX86_BUILTIN_UCOMINEQSS,
2021
2022 IX86_BUILTIN_CVTPI2PS,
2023 IX86_BUILTIN_CVTPS2PI,
2024 IX86_BUILTIN_CVTSI2SS,
2025 IX86_BUILTIN_CVTSS2SI,
2026 IX86_BUILTIN_CVTTPS2PI,
2027 IX86_BUILTIN_CVTTSS2SI,
bd793c65
BS
2028
2029 IX86_BUILTIN_MAXPS,
2030 IX86_BUILTIN_MAXSS,
2031 IX86_BUILTIN_MINPS,
2032 IX86_BUILTIN_MINSS,
2033
2034 IX86_BUILTIN_LOADAPS,
2035 IX86_BUILTIN_LOADUPS,
2036 IX86_BUILTIN_STOREAPS,
2037 IX86_BUILTIN_STOREUPS,
2038 IX86_BUILTIN_LOADSS,
2039 IX86_BUILTIN_STORESS,
2040 IX86_BUILTIN_MOVSS,
2041
2042 IX86_BUILTIN_MOVHLPS,
2043 IX86_BUILTIN_MOVLHPS,
2044 IX86_BUILTIN_LOADHPS,
2045 IX86_BUILTIN_LOADLPS,
2046 IX86_BUILTIN_STOREHPS,
2047 IX86_BUILTIN_STORELPS,
2048
2049 IX86_BUILTIN_MASKMOVQ,
2050 IX86_BUILTIN_MOVMSKPS,
2051 IX86_BUILTIN_PMOVMSKB,
2052
2053 IX86_BUILTIN_MOVNTPS,
2054 IX86_BUILTIN_MOVNTQ,
2055
2056 IX86_BUILTIN_PACKSSWB,
2057 IX86_BUILTIN_PACKSSDW,
2058 IX86_BUILTIN_PACKUSWB,
2059
2060 IX86_BUILTIN_PADDB,
2061 IX86_BUILTIN_PADDW,
2062 IX86_BUILTIN_PADDD,
2063 IX86_BUILTIN_PADDSB,
2064 IX86_BUILTIN_PADDSW,
2065 IX86_BUILTIN_PADDUSB,
2066 IX86_BUILTIN_PADDUSW,
2067 IX86_BUILTIN_PSUBB,
2068 IX86_BUILTIN_PSUBW,
2069 IX86_BUILTIN_PSUBD,
2070 IX86_BUILTIN_PSUBSB,
2071 IX86_BUILTIN_PSUBSW,
2072 IX86_BUILTIN_PSUBUSB,
2073 IX86_BUILTIN_PSUBUSW,
2074
2075 IX86_BUILTIN_PAND,
2076 IX86_BUILTIN_PANDN,
2077 IX86_BUILTIN_POR,
2078 IX86_BUILTIN_PXOR,
2079
2080 IX86_BUILTIN_PAVGB,
2081 IX86_BUILTIN_PAVGW,
2082
2083 IX86_BUILTIN_PCMPEQB,
2084 IX86_BUILTIN_PCMPEQW,
2085 IX86_BUILTIN_PCMPEQD,
2086 IX86_BUILTIN_PCMPGTB,
2087 IX86_BUILTIN_PCMPGTW,
2088 IX86_BUILTIN_PCMPGTD,
2089
2090 IX86_BUILTIN_PEXTRW,
2091 IX86_BUILTIN_PINSRW,
2092
2093 IX86_BUILTIN_PMADDWD,
2094
2095 IX86_BUILTIN_PMAXSW,
2096 IX86_BUILTIN_PMAXUB,
2097 IX86_BUILTIN_PMINSW,
2098 IX86_BUILTIN_PMINUB,
2099
2100 IX86_BUILTIN_PMULHUW,
2101 IX86_BUILTIN_PMULHW,
2102 IX86_BUILTIN_PMULLW,
2103
2104 IX86_BUILTIN_PSADBW,
2105 IX86_BUILTIN_PSHUFW,
2106
2107 IX86_BUILTIN_PSLLW,
2108 IX86_BUILTIN_PSLLD,
2109 IX86_BUILTIN_PSLLQ,
2110 IX86_BUILTIN_PSRAW,
2111 IX86_BUILTIN_PSRAD,
2112 IX86_BUILTIN_PSRLW,
2113 IX86_BUILTIN_PSRLD,
2114 IX86_BUILTIN_PSRLQ,
2115 IX86_BUILTIN_PSLLWI,
2116 IX86_BUILTIN_PSLLDI,
2117 IX86_BUILTIN_PSLLQI,
2118 IX86_BUILTIN_PSRAWI,
2119 IX86_BUILTIN_PSRADI,
2120 IX86_BUILTIN_PSRLWI,
2121 IX86_BUILTIN_PSRLDI,
2122 IX86_BUILTIN_PSRLQI,
2123
2124 IX86_BUILTIN_PUNPCKHBW,
2125 IX86_BUILTIN_PUNPCKHWD,
2126 IX86_BUILTIN_PUNPCKHDQ,
2127 IX86_BUILTIN_PUNPCKLBW,
2128 IX86_BUILTIN_PUNPCKLWD,
2129 IX86_BUILTIN_PUNPCKLDQ,
2130
2131 IX86_BUILTIN_SHUFPS,
2132
2133 IX86_BUILTIN_RCPPS,
2134 IX86_BUILTIN_RCPSS,
2135 IX86_BUILTIN_RSQRTPS,
2136 IX86_BUILTIN_RSQRTSS,
2137 IX86_BUILTIN_SQRTPS,
2138 IX86_BUILTIN_SQRTSS,
2139
2140 IX86_BUILTIN_UNPCKHPS,
2141 IX86_BUILTIN_UNPCKLPS,
2142
2143 IX86_BUILTIN_ANDPS,
2144 IX86_BUILTIN_ANDNPS,
2145 IX86_BUILTIN_ORPS,
2146 IX86_BUILTIN_XORPS,
2147
2148 IX86_BUILTIN_EMMS,
2149 IX86_BUILTIN_LDMXCSR,
2150 IX86_BUILTIN_STMXCSR,
2151 IX86_BUILTIN_SFENCE,
bd793c65 2152
47f339cf
BS
2153 /* 3DNow! Original */
2154 IX86_BUILTIN_FEMMS,
2155 IX86_BUILTIN_PAVGUSB,
2156 IX86_BUILTIN_PF2ID,
2157 IX86_BUILTIN_PFACC,
2158 IX86_BUILTIN_PFADD,
2159 IX86_BUILTIN_PFCMPEQ,
2160 IX86_BUILTIN_PFCMPGE,
2161 IX86_BUILTIN_PFCMPGT,
2162 IX86_BUILTIN_PFMAX,
2163 IX86_BUILTIN_PFMIN,
2164 IX86_BUILTIN_PFMUL,
2165 IX86_BUILTIN_PFRCP,
2166 IX86_BUILTIN_PFRCPIT1,
2167 IX86_BUILTIN_PFRCPIT2,
2168 IX86_BUILTIN_PFRSQIT1,
2169 IX86_BUILTIN_PFRSQRT,
2170 IX86_BUILTIN_PFSUB,
2171 IX86_BUILTIN_PFSUBR,
2172 IX86_BUILTIN_PI2FD,
2173 IX86_BUILTIN_PMULHRW,
47f339cf
BS
2174
2175 /* 3DNow! Athlon Extensions */
2176 IX86_BUILTIN_PF2IW,
2177 IX86_BUILTIN_PFNACC,
2178 IX86_BUILTIN_PFPNACC,
2179 IX86_BUILTIN_PI2FW,
2180 IX86_BUILTIN_PSWAPDSI,
2181 IX86_BUILTIN_PSWAPDSF,
2182
e37af218 2183 IX86_BUILTIN_SSE_ZERO,
bd793c65
BS
2184 IX86_BUILTIN_MMX_ZERO,
2185
fbe5eb6d
BS
2186 /* SSE2 */
2187 IX86_BUILTIN_ADDPD,
2188 IX86_BUILTIN_ADDSD,
2189 IX86_BUILTIN_DIVPD,
2190 IX86_BUILTIN_DIVSD,
2191 IX86_BUILTIN_MULPD,
2192 IX86_BUILTIN_MULSD,
2193 IX86_BUILTIN_SUBPD,
2194 IX86_BUILTIN_SUBSD,
2195
2196 IX86_BUILTIN_CMPEQPD,
2197 IX86_BUILTIN_CMPLTPD,
2198 IX86_BUILTIN_CMPLEPD,
2199 IX86_BUILTIN_CMPGTPD,
2200 IX86_BUILTIN_CMPGEPD,
2201 IX86_BUILTIN_CMPNEQPD,
2202 IX86_BUILTIN_CMPNLTPD,
2203 IX86_BUILTIN_CMPNLEPD,
2204 IX86_BUILTIN_CMPNGTPD,
2205 IX86_BUILTIN_CMPNGEPD,
2206 IX86_BUILTIN_CMPORDPD,
2207 IX86_BUILTIN_CMPUNORDPD,
2208 IX86_BUILTIN_CMPNEPD,
2209 IX86_BUILTIN_CMPEQSD,
2210 IX86_BUILTIN_CMPLTSD,
2211 IX86_BUILTIN_CMPLESD,
2212 IX86_BUILTIN_CMPGTSD,
2213 IX86_BUILTIN_CMPGESD,
2214 IX86_BUILTIN_CMPNEQSD,
2215 IX86_BUILTIN_CMPNLTSD,
2216 IX86_BUILTIN_CMPNLESD,
2217 IX86_BUILTIN_CMPNGTSD,
2218 IX86_BUILTIN_CMPNGESD,
2219 IX86_BUILTIN_CMPORDSD,
2220 IX86_BUILTIN_CMPUNORDSD,
2221 IX86_BUILTIN_CMPNESD,
2222
2223 IX86_BUILTIN_COMIEQSD,
2224 IX86_BUILTIN_COMILTSD,
2225 IX86_BUILTIN_COMILESD,
2226 IX86_BUILTIN_COMIGTSD,
2227 IX86_BUILTIN_COMIGESD,
2228 IX86_BUILTIN_COMINEQSD,
2229 IX86_BUILTIN_UCOMIEQSD,
2230 IX86_BUILTIN_UCOMILTSD,
2231 IX86_BUILTIN_UCOMILESD,
2232 IX86_BUILTIN_UCOMIGTSD,
2233 IX86_BUILTIN_UCOMIGESD,
2234 IX86_BUILTIN_UCOMINEQSD,
2235
2236 IX86_BUILTIN_MAXPD,
2237 IX86_BUILTIN_MAXSD,
2238 IX86_BUILTIN_MINPD,
2239 IX86_BUILTIN_MINSD,
2240
2241 IX86_BUILTIN_ANDPD,
2242 IX86_BUILTIN_ANDNPD,
2243 IX86_BUILTIN_ORPD,
2244 IX86_BUILTIN_XORPD,
2245
2246 IX86_BUILTIN_SQRTPD,
2247 IX86_BUILTIN_SQRTSD,
2248
2249 IX86_BUILTIN_UNPCKHPD,
2250 IX86_BUILTIN_UNPCKLPD,
2251
2252 IX86_BUILTIN_SHUFPD,
2253
2254 IX86_BUILTIN_LOADAPD,
2255 IX86_BUILTIN_LOADUPD,
2256 IX86_BUILTIN_STOREAPD,
2257 IX86_BUILTIN_STOREUPD,
2258 IX86_BUILTIN_LOADSD,
2259 IX86_BUILTIN_STORESD,
2260 IX86_BUILTIN_MOVSD,
2261
2262 IX86_BUILTIN_LOADHPD,
2263 IX86_BUILTIN_LOADLPD,
2264 IX86_BUILTIN_STOREHPD,
2265 IX86_BUILTIN_STORELPD,
2266
2267 IX86_BUILTIN_CVTDQ2PD,
2268 IX86_BUILTIN_CVTDQ2PS,
2269
2270 IX86_BUILTIN_CVTPD2DQ,
2271 IX86_BUILTIN_CVTPD2PI,
2272 IX86_BUILTIN_CVTPD2PS,
2273 IX86_BUILTIN_CVTTPD2DQ,
2274 IX86_BUILTIN_CVTTPD2PI,
2275
2276 IX86_BUILTIN_CVTPI2PD,
2277 IX86_BUILTIN_CVTSI2SD,
2278
2279 IX86_BUILTIN_CVTSD2SI,
2280 IX86_BUILTIN_CVTSD2SS,
2281 IX86_BUILTIN_CVTSS2SD,
2282 IX86_BUILTIN_CVTTSD2SI,
2283
2284 IX86_BUILTIN_CVTPS2DQ,
2285 IX86_BUILTIN_CVTPS2PD,
2286 IX86_BUILTIN_CVTTPS2DQ,
2287
2288 IX86_BUILTIN_MOVNTI,
2289 IX86_BUILTIN_MOVNTPD,
2290 IX86_BUILTIN_MOVNTDQ,
2291
2292 IX86_BUILTIN_SETPD1,
2293 IX86_BUILTIN_SETPD,
2294 IX86_BUILTIN_CLRPD,
2295 IX86_BUILTIN_SETRPD,
2296 IX86_BUILTIN_LOADPD1,
2297 IX86_BUILTIN_LOADRPD,
2298 IX86_BUILTIN_STOREPD1,
2299 IX86_BUILTIN_STORERPD,
2300
2301 /* SSE2 MMX */
2302 IX86_BUILTIN_MASKMOVDQU,
2303 IX86_BUILTIN_MOVMSKPD,
2304 IX86_BUILTIN_PMOVMSKB128,
2305 IX86_BUILTIN_MOVQ2DQ,
2306
2307 IX86_BUILTIN_PACKSSWB128,
2308 IX86_BUILTIN_PACKSSDW128,
2309 IX86_BUILTIN_PACKUSWB128,
2310
2311 IX86_BUILTIN_PADDB128,
2312 IX86_BUILTIN_PADDW128,
2313 IX86_BUILTIN_PADDD128,
2314 IX86_BUILTIN_PADDQ128,
2315 IX86_BUILTIN_PADDSB128,
2316 IX86_BUILTIN_PADDSW128,
2317 IX86_BUILTIN_PADDUSB128,
2318 IX86_BUILTIN_PADDUSW128,
2319 IX86_BUILTIN_PSUBB128,
2320 IX86_BUILTIN_PSUBW128,
2321 IX86_BUILTIN_PSUBD128,
2322 IX86_BUILTIN_PSUBQ128,
2323 IX86_BUILTIN_PSUBSB128,
2324 IX86_BUILTIN_PSUBSW128,
2325 IX86_BUILTIN_PSUBUSB128,
2326 IX86_BUILTIN_PSUBUSW128,
2327
2328 IX86_BUILTIN_PAND128,
2329 IX86_BUILTIN_PANDN128,
2330 IX86_BUILTIN_POR128,
2331 IX86_BUILTIN_PXOR128,
2332
2333 IX86_BUILTIN_PAVGB128,
2334 IX86_BUILTIN_PAVGW128,
2335
2336 IX86_BUILTIN_PCMPEQB128,
2337 IX86_BUILTIN_PCMPEQW128,
2338 IX86_BUILTIN_PCMPEQD128,
2339 IX86_BUILTIN_PCMPGTB128,
2340 IX86_BUILTIN_PCMPGTW128,
2341 IX86_BUILTIN_PCMPGTD128,
2342
2343 IX86_BUILTIN_PEXTRW128,
2344 IX86_BUILTIN_PINSRW128,
2345
2346 IX86_BUILTIN_PMADDWD128,
2347
2348 IX86_BUILTIN_PMAXSW128,
2349 IX86_BUILTIN_PMAXUB128,
2350 IX86_BUILTIN_PMINSW128,
2351 IX86_BUILTIN_PMINUB128,
2352
2353 IX86_BUILTIN_PMULUDQ,
2354 IX86_BUILTIN_PMULUDQ128,
2355 IX86_BUILTIN_PMULHUW128,
2356 IX86_BUILTIN_PMULHW128,
2357 IX86_BUILTIN_PMULLW128,
2358
2359 IX86_BUILTIN_PSADBW128,
2360 IX86_BUILTIN_PSHUFHW,
2361 IX86_BUILTIN_PSHUFLW,
2362 IX86_BUILTIN_PSHUFD,
2363
2364 IX86_BUILTIN_PSLLW128,
2365 IX86_BUILTIN_PSLLD128,
2366 IX86_BUILTIN_PSLLQ128,
2367 IX86_BUILTIN_PSRAW128,
2368 IX86_BUILTIN_PSRAD128,
2369 IX86_BUILTIN_PSRLW128,
2370 IX86_BUILTIN_PSRLD128,
2371 IX86_BUILTIN_PSRLQ128,
2372 IX86_BUILTIN_PSLLWI128,
2373 IX86_BUILTIN_PSLLDI128,
2374 IX86_BUILTIN_PSLLQI128,
2375 IX86_BUILTIN_PSRAWI128,
2376 IX86_BUILTIN_PSRADI128,
2377 IX86_BUILTIN_PSRLWI128,
2378 IX86_BUILTIN_PSRLDI128,
2379 IX86_BUILTIN_PSRLQI128,
2380
2381 IX86_BUILTIN_PUNPCKHBW128,
2382 IX86_BUILTIN_PUNPCKHWD128,
2383 IX86_BUILTIN_PUNPCKHDQ128,
2384 IX86_BUILTIN_PUNPCKLBW128,
2385 IX86_BUILTIN_PUNPCKLWD128,
2386 IX86_BUILTIN_PUNPCKLDQ128,
2387
2388 IX86_BUILTIN_CLFLUSH,
2389 IX86_BUILTIN_MFENCE,
2390 IX86_BUILTIN_LFENCE,
2391
bd793c65
BS
2392 IX86_BUILTIN_MAX
2393};
bd793c65 2394\f
f996902d
RH
2395#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2396#define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2397
2398#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2399 do { \
2400 const char *xname = (NAME); \
2401 if (xname[0] == '%') \
2402 xname += 2; \
2403 if (xname[0] == '*') \
2404 xname += 1; \
2405 else \
2406 fputs (user_label_prefix, FILE); \
2407 fputs (xname, FILE); \
2408 } while (0)
d398b3b1 2409
638b724c
MM
2410/* The `FINALIZE_PIC' macro serves as a hook to emit these special
2411 codes once the function is being compiled into assembly code, but
2412 not before. (It is not done before, because in the case of
2413 compiling an inline function, it would lead to multiple PIC
2414 prologues being included in functions which used inline functions
2415 and were compiled to assembly language.) */
2416
d9a5f180
GS
2417#define FINALIZE_PIC \
2418 (current_function_uses_pic_offset_table |= current_function_profile)
638b724c 2419
b08de47e 2420\f
b08de47e
MM
2421/* Max number of args passed in registers. If this is more than 3, we will
2422 have problems with ebx (register #4), since it is a caller save register and
2423 is also used as the pic register in ELF. So for now, don't allow more than
2424 3 registers to be passed in registers. */
2425
d2836273
JH
2426#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2427
df4e780e 2428#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
b08de47e 2429
c98f8742
JVA
2430\f
2431/* Specify the machine mode that this machine uses
2432 for the index in the tablejump instruction. */
6eb791fc 2433#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 2434
18543a22
ILT
2435/* Define as C expression which evaluates to nonzero if the tablejump
2436 instruction expects the table to contain offsets from the address of the
2437 table.
892a2d68 2438 Do not define this if the table should contain absolute addresses. */
18543a22 2439/* #define CASE_VECTOR_PC_RELATIVE 1 */
c98f8742 2440
c98f8742
JVA
2441/* Define this as 1 if `char' should by default be signed; else as 0. */
2442#define DEFAULT_SIGNED_CHAR 1
2443
f4365627
JH
2444/* Number of bytes moved into a data cache for a single prefetch operation. */
2445#define PREFETCH_BLOCK ix86_cost->prefetch_block
2446
2447/* Number of prefetch operations that can be done in parallel. */
2448#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2449
c98f8742
JVA
2450/* Max number of bytes we can move from memory to memory
2451 in one reasonably fast instruction. */
65d9c0ab
JH
2452#define MOVE_MAX 16
2453
2454/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2455 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 2456 number of bytes we can move with a single instruction. */
65d9c0ab 2457#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 2458
7e24ffc9
HPN
2459/* If a memory-to-memory move would take MOVE_RATIO or more simple
2460 move-instruction pairs, we will do a movstr or libcall instead.
2461 Increasing the value will always make code faster, but eventually
2462 incurs high cost in increased code size.
c98f8742 2463
e2e52e1b 2464 If you don't define this, a reasonable default is used. */
c98f8742 2465
e2e52e1b 2466#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742
JVA
2467
2468/* Define if shifts truncate the shift count
2469 which implies one can omit a sign-extension or zero-extension
2470 of a shift count. */
892a2d68 2471/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
2472
2473/* #define SHIFT_COUNT_TRUNCATED */
2474
2475/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2476 is done just by pretending it is already truncated. */
2477#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2478
2479/* We assume that the store-condition-codes instructions store 0 for false
2480 and some other value for true. This is the value stored for true. */
2481
2482#define STORE_FLAG_VALUE 1
2483
2484/* When a prototype says `char' or `short', really pass an `int'.
2485 (The 386 can't easily push less than an int.) */
2486
cb560352 2487#define PROMOTE_PROTOTYPES 1
c98f8742 2488
d9f32422
JH
2489/* A macro to update M and UNSIGNEDP when an object whose type is
2490 TYPE and which has the specified mode and signedness is to be
2491 stored in a register. This macro is only called when TYPE is a
2492 scalar type.
2493
f710504c 2494 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2495 quantities to SImode. The choice depends on target type. */
2496
2497#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2498do { \
d9f32422
JH
2499 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2500 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2501 (MODE) = SImode; \
2502} while (0)
d9f32422 2503
c98f8742
JVA
2504/* Specify the machine mode that pointers have.
2505 After generation of rtl, the compiler makes no further distinction
2506 between pointers and any other objects of this machine mode. */
65d9c0ab 2507#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2508
2509/* A function address in a call instruction
2510 is a byte address (for indexing purposes)
2511 so give the MEM rtx a byte's mode. */
2512#define FUNCTION_MODE QImode
d4ba09c0
SC
2513\f
2514/* A part of a C `switch' statement that describes the relative costs
2515 of constant RTL expressions. It must contain `case' labels for
2516 expression codes `const_int', `const', `symbol_ref', `label_ref'
2517 and `const_double'. Each case must ultimately reach a `return'
2518 statement to return the relative cost of the use of that kind of
2519 constant value in an expression. The cost may depend on the
2520 precise value of the constant, which is available for examination
2521 in X, and the rtx code of the expression in which it is contained,
2522 found in OUTER_CODE.
2523
2524 CODE is the expression code--redundant, since it can be obtained
2525 with `GET_CODE (X)'. */
c98f8742 2526
d9a5f180 2527#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
c98f8742
JVA
2528 case CONST_INT: \
2529 case CONST: \
2530 case LABEL_REF: \
2531 case SYMBOL_REF: \
44cf5b6a
JH
2532 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
2533 return 3; \
2534 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2535 return 2; \
1acc845e 2536 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
d4ba09c0 2537 \
c98f8742 2538 case CONST_DOUBLE: \
51286de6
RH
2539 if (GET_MODE (RTX) == VOIDmode) \
2540 return 0; \
2541 switch (standard_80387_constant_p (RTX)) \
2542 { \
2543 case 1: /* 0.0 */ \
2544 return 1; \
2545 case 2: /* 1.0 */ \
2546 return 2; \
2547 default: \
2548 /* Start with (MEM (SYMBOL_REF)), since that's where \
2549 it'll probably end up. Add a penalty for size. */ \
2550 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2551 + (GET_MODE (RTX) == SFmode ? 0 \
2552 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2553 }
c98f8742 2554
76565a24 2555/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
e075ae69
RH
2556#define TOPLEVEL_COSTS_N_INSNS(N) \
2557 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
76565a24 2558
d4ba09c0
SC
2559/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2560 This can be used, for example, to indicate how costly a multiply
2561 instruction is. In writing this macro, you can use the construct
2562 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2563 instructions. OUTER_CODE is the code of the expression in which X
2564 is contained.
2565
2566 This macro is optional; do not define it if the default cost
2567 assumptions are adequate for the target machine. */
2568
d9a5f180 2569#define RTX_COSTS(X, CODE, OUTER_CODE) \
44cf5b6a
JH
2570 case ZERO_EXTEND: \
2571 /* The zero extensions is often completely free on x86_64, so make \
2572 it as cheap as possible. */ \
2573 if (TARGET_64BIT && GET_MODE (X) == DImode \
2574 && GET_MODE (XEXP (X, 0)) == SImode) \
2575 { \
2576 total = 1; goto egress_rtx_costs; \
2577 } \
2578 else \
2579 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2580 ix86_cost->add : ix86_cost->movzx); \
2581 break; \
2582 case SIGN_EXTEND: \
2583 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2584 break; \
d4ba09c0
SC
2585 case ASHIFT: \
2586 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
44cf5b6a 2587 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
d4ba09c0
SC
2588 { \
2589 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
d4ba09c0 2590 if (value == 1) \
e075ae69 2591 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
b972dd02
JH
2592 if ((value == 2 || value == 3) \
2593 && !TARGET_DECOMPOSE_LEA \
2594 && ix86_cost->lea <= ix86_cost->shift_const) \
e075ae69 2595 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
d4ba09c0
SC
2596 } \
2597 /* fall through */ \
2598 \
2599 case ROTATE: \
2600 case ASHIFTRT: \
2601 case LSHIFTRT: \
2602 case ROTATERT: \
44cf5b6a 2603 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
76565a24
SC
2604 { \
2605 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
54d26233
MH
2606 { \
2607 if (INTVAL (XEXP (X, 1)) > 32) \
e075ae69
RH
2608 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2609 else \
2610 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2611 } \
2612 else \
2613 { \
2614 if (GET_CODE (XEXP (X, 1)) == AND) \
2615 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2616 else \
2617 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
54d26233 2618 } \
76565a24 2619 } \
e075ae69
RH
2620 else \
2621 { \
2622 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2623 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2624 else \
2625 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2626 } \
2627 break; \
d4ba09c0
SC
2628 \
2629 case MULT: \
2630 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2631 { \
2632 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2633 int nbits = 0; \
2634 \
2635 while (value != 0) \
2636 { \
2637 nbits++; \
2638 value >>= 1; \
2639 } \
2640 \
630c79be
BS
2641 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2642 + nbits * ix86_cost->mult_bit); \
d4ba09c0 2643 } \
d4ba09c0 2644 else /* This is arbitrary */ \
76565a24
SC
2645 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2646 + 7 * ix86_cost->mult_bit); \
d4ba09c0
SC
2647 \
2648 case DIV: \
2649 case UDIV: \
2650 case MOD: \
2651 case UMOD: \
76565a24 2652 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
d4ba09c0
SC
2653 \
2654 case PLUS: \
b972dd02
JH
2655 if (!TARGET_DECOMPOSE_LEA \
2656 && INTEGRAL_MODE_P (GET_MODE (X)) \
2657 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
e075ae69 2658 { \
b972dd02
JH
2659 if (GET_CODE (XEXP (X, 0)) == PLUS \
2660 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2661 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2662 && CONSTANT_P (XEXP (X, 1))) \
e075ae69 2663 { \
b972dd02
JH
2664 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2665 if (val == 2 || val == 4 || val == 8) \
2666 { \
2667 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2668 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2669 (OUTER_CODE)) \
2670 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2671 (OUTER_CODE)) \
2672 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02 2673 } \
e075ae69 2674 } \
b972dd02
JH
2675 else if (GET_CODE (XEXP (X, 0)) == MULT \
2676 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2677 { \
2678 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2679 if (val == 2 || val == 4 || val == 8) \
2680 { \
2681 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2682 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2683 (OUTER_CODE)) \
2684 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
b972dd02
JH
2685 } \
2686 } \
2687 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
e075ae69
RH
2688 { \
2689 return (COSTS_N_INSNS (ix86_cost->lea) \
d9a5f180
GS
2690 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2691 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2692 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
e075ae69 2693 } \
e075ae69 2694 } \
d4ba09c0
SC
2695 \
2696 /* fall through */ \
2697 case AND: \
2698 case IOR: \
2699 case XOR: \
2700 case MINUS: \
44cf5b6a 2701 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69 2702 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
d9a5f180 2703 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
e075ae69 2704 << (GET_MODE (XEXP (X, 0)) != DImode)) \
d9a5f180 2705 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
e075ae69
RH
2706 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2707 \
2708 /* fall through */ \
d4ba09c0
SC
2709 case NEG: \
2710 case NOT: \
44cf5b6a 2711 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
e075ae69
RH
2712 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2713 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2714 \
51286de6
RH
2715 case FLOAT_EXTEND: \
2716 TOPLEVEL_COSTS_N_INSNS (0); \
2717 \
e075ae69
RH
2718 egress_rtx_costs: \
2719 break;
d4ba09c0
SC
2720
2721
2722/* An expression giving the cost of an addressing mode that contains
2723 ADDRESS. If not defined, the cost is computed from the ADDRESS
2724 expression and the `CONST_COSTS' values.
2725
2726 For most CISC machines, the default cost is a good approximation
2727 of the true cost of the addressing mode. However, on RISC
2728 machines, all instructions normally have the same length and
2729 execution time. Hence all addresses will have equal costs.
2730
2731 In cases where more than one form of an address is known, the form
2732 with the lowest cost will be used. If multiple forms have the
2733 same, lowest, cost, the one that is the most complex will be used.
2734
2735 For example, suppose an address that is equal to the sum of a
2736 register and a constant is used twice in the same basic block.
2737 When this macro is not defined, the address will be computed in a
2738 register and memory references will be indirect through that
2739 register. On machines where the cost of the addressing mode
2740 containing the sum is no higher than that of a simple indirect
2741 reference, this will produce an additional instruction and
2742 possibly require an additional register. Proper specification of
2743 this macro eliminates this overhead for such machines.
2744
2745 Similar use of this macro is made in strength reduction of loops.
2746
2747 ADDRESS need not be valid as an address. In such a case, the cost
2748 is not relevant and can be any value; invalid addresses need not be
2749 assigned a different cost.
2750
2751 On machines where an address involving more than one register is as
2752 cheap as an address computation involving only one register,
2753 defining `ADDRESS_COST' to reflect this can cause two registers to
2754 be live over a region of code where only one would have been if
2755 `ADDRESS_COST' were not defined in that manner. This effect should
2756 be considered in the definition of this macro. Equivalent costs
2757 should probably only be given to addresses with different numbers
2758 of registers on machines with lots of registers.
2759
2760 This macro will normally either not be defined or be defined as a
2761 constant.
c98f8742
JVA
2762
2763 For i386, it is better to use a complex address than let gcc copy
2764 the address into a reg and make a new pseudo. But not if the address
2765 requires to two regs - that would mean more pseudos with longer
2766 lifetimes. */
2767
2768#define ADDRESS_COST(RTX) \
0806f95f 2769 ix86_address_cost (RTX)
d4ba09c0 2770
96e7ae40
JH
2771/* A C expression for the cost of moving data from a register in class FROM to
2772 one in class TO. The classes are expressed using the enumeration values
2773 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2774 interpreted relative to that.
d4ba09c0 2775
96e7ae40
JH
2776 It is not required that the cost always equal 2 when FROM is the same as TO;
2777 on some machines it is expensive to move between registers if they are not
f84aa48a 2778 general registers. */
d4ba09c0 2779
f84aa48a 2780#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2781 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2782
2783/* A C expression for the cost of moving data of mode M between a
2784 register and memory. A value of 2 is the default; this cost is
2785 relative to those in `REGISTER_MOVE_COST'.
2786
2787 If moving between registers and memory is more expensive than
2788 between two registers, you should define this macro to express the
fa79946e 2789 relative cost. */
d4ba09c0 2790
d9a5f180
GS
2791#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2792 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2793
2794/* A C expression for the cost of a branch instruction. A value of 1
2795 is the default; other values are interpreted relative to that. */
2796
e075ae69 2797#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2798
2799/* Define this macro as a C expression which is nonzero if accessing
2800 less than a word of memory (i.e. a `char' or a `short') is no
2801 faster than accessing a word of memory, i.e., if such access
2802 require more than one instruction or if there is no difference in
2803 cost between byte and (aligned) word loads.
2804
2805 When this macro is not defined, the compiler will access a field by
2806 finding the smallest containing object; when it is defined, a
2807 fullword load will be used if alignment permits. Unless bytes
2808 accesses are faster than word accesses, using word accesses is
2809 preferable since it may eliminate subsequent memory access if
2810 subsequent accesses occur to other fields in the same word of the
2811 structure, but to different bytes. */
2812
2813#define SLOW_BYTE_ACCESS 0
2814
2815/* Nonzero if access to memory by shorts is slow and undesirable. */
2816#define SLOW_SHORT_ACCESS 0
2817
d4ba09c0
SC
2818/* Define this macro to be the value 1 if unaligned accesses have a
2819 cost many times greater than aligned accesses, for example if they
2820 are emulated in a trap handler.
2821
2822 When this macro is non-zero, the compiler will act as if
2823 `STRICT_ALIGNMENT' were non-zero when generating code for block
2824 moves. This can cause significantly more instructions to be
2825 produced. Therefore, do not set this macro non-zero if unaligned
2826 accesses only add a cycle or two to the time for a memory access.
2827
2828 If the value of this macro is always zero, it need not be defined. */
2829
e1565e65 2830/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0
SC
2831
2832/* Define this macro to inhibit strength reduction of memory
2833 addresses. (On some machines, such strength reduction seems to do
2834 harm rather than good.) */
2835
2836/* #define DONT_REDUCE_ADDR */
2837
2838/* Define this macro if it is as good or better to call a constant
2839 function address than to call an address kept in a register.
2840
2841 Desirable on the 386 because a CALL with a constant address is
2842 faster than one with a register address. */
2843
2844#define NO_FUNCTION_CSE
2845
2846/* Define this macro if it is as good or better for a function to call
2847 itself with an explicit address than to call an address kept in a
2848 register. */
2849
2850#define NO_RECURSIVE_FUNCTION_CSE
c98f8742 2851\f
c572e5ba
JVA
2852/* Add any extra modes needed to represent the condition code.
2853
e075ae69
RH
2854 For the i386, we need separate modes when floating-point
2855 equality comparisons are being done.
9076b9c1
JH
2856
2857 Add CCNO to indicate comparisons against zero that requires
7e08e190
JH
2858 Overflow flag to be unset. Sign bit test is used instead and
2859 thus can be used to form "a&b>0" type of tests.
9076b9c1
JH
2860
2861 Add CCGC to indicate comparisons agains zero that allows
2862 unspecified garbage in the Carry flag. This mode is used
2863 by inc/dec instructions.
e075ae69 2864
2c873473 2865 Add CCGOC to indicate comparisons agains zero that allows
9076b9c1
JH
2866 unspecified garbage in the Carry and Overflow flag. This
2867 mode is used to simulate comparisons of (a-b) and (a+b)
2868 against zero using sub/cmp/add operations.
16189740 2869
7e08e190 2870 Add CCZ to indicate that only the Zero flag is valid. */
c572e5ba 2871
d9a5f180
GS
2872#define EXTRA_CC_MODES \
2873 CC (CCGCmode, "CCGC") \
2874 CC (CCGOCmode, "CCGOC") \
2875 CC (CCNOmode, "CCNO") \
2876 CC (CCZmode, "CCZ") \
2877 CC (CCFPmode, "CCFP") \
2878 CC (CCFPUmode, "CCFPU")
c572e5ba
JVA
2879
2880/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2881 return the mode to be used for the comparison.
2882
2883 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2884 VOIDmode should be used in all other cases.
c572e5ba 2885
16189740 2886 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2887 possible, to allow for more combinations. */
c98f8742 2888
d9a5f180 2889#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3
JH
2890
2891/* Return non-zero if MODE implies a floating point inequality can be
2892 reversed. */
2893
2894#define REVERSIBLE_CC_MODE(MODE) 1
2895
2896/* A C expression whose value is reversed condition code of the CODE for
2897 comparison done in CC_MODE mode. */
2898#define REVERSE_CONDITION(CODE, MODE) \
2899 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2900 : reverse_condition_maybe_unordered (CODE))
2901
c98f8742
JVA
2902\f
2903/* Control the assembler format that we output, to the extent
2904 this does not vary between assemblers. */
2905
2906/* How to refer to registers in assembler output.
892a2d68 2907 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742
JVA
2908
2909/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2910 For non floating point regs, the following are the HImode names.
2911
2912 For float regs, the stack top is sometimes referred to as "%st(0)"
9e06e321 2913 instead of just "%st". PRINT_REG handles this with the "y" code. */
c98f8742 2914
a7180f70
BS
2915#undef HI_REGISTER_NAMES
2916#define HI_REGISTER_NAMES \
2917{"ax","dx","cx","bx","si","di","bp","sp", \
2918 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2919 "flags","fpsr", "dirflag", "frame", \
2920 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
3f3f2124
JH
2921 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2922 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2923 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2924
c98f8742
JVA
2925#define REGISTER_NAMES HI_REGISTER_NAMES
2926
2927/* Table of additional register names to use in user input. */
2928
2929#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2930{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2931 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2932 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2933 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2934 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
a7180f70
BS
2935 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2936 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2937 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
c98f8742
JVA
2938
2939/* Note we are omitting these since currently I don't know how
2940to get gcc to use these, since they want the same but different
2941number as al, and ax.
2942*/
2943
c98f8742 2944#define QI_REGISTER_NAMES \
3f3f2124 2945{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2946
2947/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2948 of regs 0 through 3. */
c98f8742
JVA
2949
2950#define QI_HIGH_REGISTER_NAMES \
2951{"ah", "dh", "ch", "bh", }
2952
2953/* How to renumber registers for dbx and gdb. */
2954
d9a5f180
GS
2955#define DBX_REGISTER_NUMBER(N) \
2956 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849
RH
2957
2958extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
0f7fa3d0 2959extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
83774849 2960extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2961
469ac993
JM
2962/* Before the prologue, RA is at 0(%esp). */
2963#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2964 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
c5c76735 2965
e414ab29 2966/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2967#define RETURN_ADDR_RTX(COUNT, FRAME) \
2968 ((COUNT) == 0 \
2969 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2970 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2971
892a2d68 2972/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2973#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2974
a6ab3aad 2975/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2976#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2977
1020a5ab
RH
2978/* Describe how we implement __builtin_eh_return. */
2979#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2980#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2981
ad919812 2982
e4c4ebeb
RH
2983/* Select a format to encode pointers in exception handling data. CODE
2984 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2985 true if the symbol may be affected by dynamic relocations.
2986
2987 ??? All x86 object file formats are capable of representing this.
2988 After all, the relocation needed is the same as for the call insn.
2989 Whether or not a particular assembler allows us to enter such, I
2990 guess we'll have to see. */
d9a5f180 2991#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
b932f770 2992 (flag_pic \
d9a5f180 2993 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
e4c4ebeb
RH
2994 : DW_EH_PE_absptr)
2995
c98f8742
JVA
2996/* This is how to output the definition of a user-level label named NAME,
2997 such as the label on a static function or variable NAME. */
2998
d9a5f180
GS
2999#define ASM_OUTPUT_LABEL(FILE, NAME) \
3000 (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
c98f8742 3001
c98f8742
JVA
3002/* Store in OUTPUT a string (made with alloca) containing
3003 an assembler-name for a local static variable named NAME.
3004 LABELNO is an integer which is different for each call. */
3005
3006#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3007( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3008 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3009
c98f8742
JVA
3010/* This is how to output an insn to push a register on the stack.
3011 It need not be very fast code. */
3012
d9a5f180
GS
3013#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
3014 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
c98f8742
JVA
3015
3016/* This is how to output an insn to pop a register from the stack.
3017 It need not be very fast code. */
3018
d9a5f180
GS
3019#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
3020 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
c98f8742 3021
f88c65f7 3022/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
3023
3024#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 3025 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 3026
f88c65f7 3027/* This is how to output an element of a case-vector that is relative. */
c98f8742 3028
33f7f353 3029#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 3030 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7
RH
3031
3032/* Under some conditions we need jump tables in the text section, because
3033 the assembler cannot handle label differences between sections. */
3034
3035#define JUMP_TABLES_IN_TEXT_SECTION \
3036 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
c98f8742 3037
1865dbb5
JM
3038/* A C statement that outputs an address constant appropriate to
3039 for DWARF debugging. */
3040
d9a5f180
GS
3041#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3042 i386_dwarf_output_addr_const ((FILE), (X))
1865dbb5
JM
3043
3044/* Either simplify a location expression, or return the original. */
3045
3046#define ASM_SIMPLIFY_DWARF_ADDR(X) \
d9a5f180 3047 i386_simplify_dwarf_addr (X)
cea3bd3e
RH
3048
3049/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3050 and switch back. For x86 we do this only to save a few bytes that
3051 would otherwise be unused in the text section. */
3052#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3053 asm (SECTION_OP "\n\t" \
3054 "call " USER_LABEL_PREFIX #FUNC "\n" \
3055 TEXT_SECTION_ASM_OP);
74b42c8b 3056\f
c98f8742
JVA
3057/* Print operand X (an rtx) in assembler syntax to file FILE.
3058 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
3059 Effect of various CODE letters is described in i386.c near
3060 print_operand function. */
c98f8742 3061
d9a5f180 3062#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 3063 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742 3064
74b42c8b
RS
3065/* Print the name of a register based on its machine mode and number.
3066 If CODE is 'w', pretend the mode is HImode.
3067 If CODE is 'b', pretend the mode is QImode.
3068 If CODE is 'k', pretend the mode is SImode.
ef6257cd 3069 If CODE is 'q', pretend the mode is DImode.
74b42c8b 3070 If CODE is 'h', pretend the reg is the `high' byte register.
ef6257cd 3071 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
74b42c8b 3072
e075ae69 3073#define PRINT_REG(X, CODE, FILE) \
d9a5f180 3074 print_reg ((X), (CODE), (FILE))
74b42c8b 3075
c98f8742 3076#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 3077 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
3078
3079#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 3080 print_operand_address ((FILE), (ADDR))
c98f8742 3081
f996902d
RH
3082#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3083do { \
3084 if (! output_addr_const_extra (FILE, (X))) \
3085 goto FAIL; \
3086} while (0);
3087
aa3e8d2a
JVA
3088/* Print the name of a register for based on its machine mode and number.
3089 This macro is used to print debugging output.
3090 This macro is different from PRINT_REG in that it may be used in
3091 programs that are not linked with aux-output.o. */
3092
e075ae69 3093#define DEBUG_PRINT_REG(X, CODE, FILE) \
69ddee61
KG
3094 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3095 static const char * const qi_name[] = QI_REGISTER_NAMES; \
d9a5f180 3096 fprintf ((FILE), "%d ", REGNO (X)); \
e075ae69 3097 if (REGNO (X) == FLAGS_REG) \
d9a5f180 3098 { fputs ("flags", (FILE)); break; } \
7c7ef435 3099 if (REGNO (X) == DIRFLAG_REG) \
d9a5f180 3100 { fputs ("dirflag", (FILE)); break; } \
e075ae69 3101 if (REGNO (X) == FPSR_REG) \
d9a5f180 3102 { fputs ("fpsr", (FILE)); break; } \
aa3e8d2a 3103 if (REGNO (X) == ARG_POINTER_REGNUM) \
d9a5f180 3104 { fputs ("argp", (FILE)); break; } \
564d80f4 3105 if (REGNO (X) == FRAME_POINTER_REGNUM) \
d9a5f180 3106 { fputs ("frame", (FILE)); break; } \
aa3e8d2a 3107 if (STACK_TOP_P (X)) \
d9a5f180 3108 { fputs ("st(0)", (FILE)); break; } \
b0ceea8c 3109 if (FP_REG_P (X)) \
d9a5f180 3110 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3f3f2124
JH
3111 if (REX_INT_REG_P (X)) \
3112 { \
3113 switch (GET_MODE_SIZE (GET_MODE (X))) \
3114 { \
3115 default: \
3116 case 8: \
d9a5f180 3117 fprintf ((FILE), "r%i", REGNO (X) \
3f3f2124
JH
3118 - FIRST_REX_INT_REG + 8); \
3119 break; \
3120 case 4: \
d9a5f180 3121 fprintf ((FILE), "r%id", REGNO (X) \
3f3f2124
JH
3122 - FIRST_REX_INT_REG + 8); \
3123 break; \
3124 case 2: \
d9a5f180 3125 fprintf ((FILE), "r%iw", REGNO (X) \
3f3f2124
JH
3126 - FIRST_REX_INT_REG + 8); \
3127 break; \
3128 case 1: \
d9a5f180 3129 fprintf ((FILE), "r%ib", REGNO (X) \
3f3f2124
JH
3130 - FIRST_REX_INT_REG + 8); \
3131 break; \
3132 } \
3133 break; \
3134 } \
aa3e8d2a
JVA
3135 switch (GET_MODE_SIZE (GET_MODE (X))) \
3136 { \
3f3f2124 3137 case 8: \
d9a5f180
GS
3138 fputs ("r", (FILE)); \
3139 fputs (hi_name[REGNO (X)], (FILE)); \
3f3f2124 3140 break; \
b0ceea8c 3141 default: \
d9a5f180 3142 fputs ("e", (FILE)); \
aa3e8d2a 3143 case 2: \
d9a5f180 3144 fputs (hi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3145 break; \
3146 case 1: \
d9a5f180 3147 fputs (qi_name[REGNO (X)], (FILE)); \
aa3e8d2a
JVA
3148 break; \
3149 } \
3150 } while (0)
3151
c98f8742
JVA
3152/* a letter which is not needed by the normal asm syntax, which
3153 we can use for operand syntax in the extended asm */
3154
3155#define ASM_OPERAND_LETTER '#'
c98f8742 3156#define RET return ""
d9a5f180 3157#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 3158\f
e075ae69
RH
3159/* Define the codes that are matched by predicates in i386.c. */
3160
3161#define PREDICATE_CODES \
7dd4b4a3
JH
3162 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3163 SYMBOL_REF, LABEL_REF, CONST}}, \
3164 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3165 SYMBOL_REF, LABEL_REF, CONST}}, \
3166 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3167 SYMBOL_REF, LABEL_REF, CONST}}, \
3168 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3169 SYMBOL_REF, LABEL_REF, CONST}}, \
3170 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3171 SYMBOL_REF, LABEL_REF, CONST}}, \
3172 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3173 SYMBOL_REF, LABEL_REF, CONST}}, \
3174 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3175 SYMBOL_REF, LABEL_REF}}, \
371bc54b 3176 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
8bad7136 3177 {"const_int_1_operand", {CONST_INT}}, \
e075ae69 3178 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2247f6ed
JH
3179 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3180 LABEL_REF, SUBREG, REG, MEM}}, \
e075ae69 3181 {"pic_symbolic_operand", {CONST}}, \
e1ff012c 3182 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
eaf19aba 3183 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
e075ae69
RH
3184 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3185 {"const1_operand", {CONST_INT}}, \
3186 {"const248_operand", {CONST_INT}}, \
3187 {"incdec_operand", {CONST_INT}}, \
915119a5 3188 {"mmx_reg_operand", {REG}}, \
e075ae69 3189 {"reg_no_sp_operand", {SUBREG, REG}}, \
2c5a510c
RH
3190 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3191 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3192 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
e075ae69
RH
3193 {"q_regs_operand", {SUBREG, REG}}, \
3194 {"non_q_regs_operand", {SUBREG, REG}}, \
9e7adcb3
JH
3195 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3196 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3197 GE, UNGE, LTGT, UNEQ}}, \
bf71a4f8
JH
3198 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3199 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3200 }}, \
9076b9c1 3201 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
9e7adcb3
JH
3202 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3203 UNGE, UNGT, LTGT, UNEQ }}, \
e075ae69
RH
3204 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3205 {"ext_register_operand", {SUBREG, REG}}, \
3206 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3207 {"mult_operator", {MULT}}, \
3208 {"div_operator", {DIV}}, \
3209 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3210 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3211 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3212 LSHIFTRT, ROTATERT}}, \
e9e80858 3213 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
e075ae69
RH
3214 {"memory_displacement_operand", {MEM}}, \
3215 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
6343a50e 3216 LABEL_REF, SUBREG, REG, MEM, AND}}, \
f996902d
RH
3217 {"long_memory_operand", {MEM}}, \
3218 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3219 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3220 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3221 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3222 {"local_exec_symbolic_operand", {SYMBOL_REF}},
c76aab11
RH
3223
3224/* A list of predicates that do special things with modes, and so
3225 should not elicit warnings for VOIDmode match_operand. */
3226
3227#define SPECIAL_MODE_PREDICATES \
3228 "ext_register_operand",
c98f8742 3229\f
5bf0ebab
RH
3230/* Which processor to schedule for. The cpu attribute defines a list that
3231 mirrors this list, so changes to i386.md must be made at the same time. */
3232
3233enum processor_type
3234{
3235 PROCESSOR_I386, /* 80386 */
3236 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3237 PROCESSOR_PENTIUM,
3238 PROCESSOR_PENTIUMPRO,
3239 PROCESSOR_K6,
3240 PROCESSOR_ATHLON,
3241 PROCESSOR_PENTIUM4,
3242 PROCESSOR_max
3243};
3244
3245extern enum processor_type ix86_cpu;
3246extern const char *ix86_cpu_string;
3247
3248extern enum processor_type ix86_arch;
3249extern const char *ix86_arch_string;
3250
3251enum fpmath_unit
3252{
3253 FPMATH_387 = 1,
3254 FPMATH_SSE = 2
3255};
3256
3257extern enum fpmath_unit ix86_fpmath;
3258extern const char *ix86_fpmath_string;
3259
f996902d
RH
3260enum tls_dialect
3261{
3262 TLS_DIALECT_GNU,
3263 TLS_DIALECT_SUN
3264};
3265
3266extern enum tls_dialect ix86_tls_dialect;
3267extern const char *ix86_tls_dialect_string;
3268
6189a572 3269enum cmodel {
5bf0ebab
RH
3270 CM_32, /* The traditional 32-bit ABI. */
3271 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3272 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3273 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3274 CM_LARGE, /* No assumptions. */
3275 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
6189a572
JH
3276};
3277
5bf0ebab
RH
3278extern enum cmodel ix86_cmodel;
3279extern const char *ix86_cmodel_string;
3280
8362f420
JH
3281/* Size of the RED_ZONE area. */
3282#define RED_ZONE_SIZE 128
3283/* Reserved area of the red zone for temporaries. */
3284#define RED_ZONE_RESERVE 8
c93e80a5
JH
3285
3286enum asm_dialect {
3287 ASM_ATT,
3288 ASM_INTEL
3289};
5bf0ebab 3290
c93e80a5 3291extern const char *ix86_asm_string;
80f33d06 3292extern enum asm_dialect ix86_asm_dialect;
5bf0ebab
RH
3293
3294extern int ix86_regparm;
3295extern const char *ix86_regparm_string;
3296
3297extern int ix86_preferred_stack_boundary;
3298extern const char *ix86_preferred_stack_boundary_string;
3299
3300extern int ix86_branch_cost;
3301extern const char *ix86_branch_cost_string;
3302
3303extern const char *ix86_debug_arg_string;
3304extern const char *ix86_debug_addr_string;
3305
3306/* Obsoleted by -f options. Remove before 3.2 ships. */
3307extern const char *ix86_align_loops_string;
3308extern const char *ix86_align_jumps_string;
3309extern const char *ix86_align_funcs_string;
3310
3311/* Smallest class containing REGNO. */
3312extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3313
d9a5f180
GS
3314extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3315extern rtx ix86_compare_op1; /* operand 1 for comparisons */
22fb740d
JH
3316\f
3317/* To properly truncate FP values into integers, we need to set i387 control
3318 word. We can't emit proper mode switching code before reload, as spills
3319 generated by reload may truncate values incorrectly, but we still can avoid
3320 redundant computation of new control word by the mode switching pass.
3321 The fldcw instructions are still emitted redundantly, but this is probably
3322 not going to be noticeable problem, as most CPUs do have fast path for
3323 the sequence.
3324
3325 The machinery is to emit simple truncation instructions and split them
3326 before reload to instructions having USEs of two memory locations that
3327 are filled by this code to old and new control word.
3328
3329 Post-reload pass may be later used to eliminate the redundant fildcw if
3330 needed. */
3331
3332enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3333
3334/* Define this macro if the port needs extra instructions inserted
3335 for mode switching in an optimizing compilation. */
3336
3337#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3338
3339/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3340 initializer for an array of integers. Each initializer element N
3341 refers to an entity that needs mode switching, and specifies the
3342 number of different modes that might need to be set for this
3343 entity. The position of the initializer in the initializer -
3344 starting counting at zero - determines the integer that is used to
3345 refer to the mode-switched entity in question. */
3346
3347#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3348
3349/* ENTITY is an integer specifying a mode-switched entity. If
3350 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3351 return an integer value not larger than the corresponding element
3352 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3353 must be switched into prior to the execution of INSN. */
3354
3355#define MODE_NEEDED(ENTITY, I) \
3356 (GET_CODE (I) == CALL_INSN \
3357 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3358 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3359 ? FP_CW_UNINITIALIZED \
3360 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3361 ? FP_CW_ANY \
3362 : FP_CW_STORED)
3363
3364/* This macro specifies the order in which modes for ENTITY are
3365 processed. 0 is the highest priority. */
3366
d9a5f180 3367#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
3368
3369/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3370 is the set of hard registers live at the point where the insn(s)
3371 are to be inserted. */
3372
3373#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
d9a5f180 3374 ((MODE) == FP_CW_STORED \
22fb740d
JH
3375 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3376 assign_386_stack_local (HImode, 2)), 0\
3377 : 0)
0f0138b6
JH
3378\f
3379/* Avoid renaming of stack registers, as doing so in combination with
3380 scheduling just increases amount of live registers at time and in
3381 the turn amount of fxch instructions needed.
3382
3383 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3384
d9a5f180
GS
3385#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3386 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 3387
3b3c6a3f 3388\f
c98f8742
JVA
3389/*
3390Local variables:
3391version-control: t
3392End:
3393*/