]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/ia64/ia64.h
alpha.h, [...]: Remove commented out target macro definitions and non-target-specific...
[thirdparty/gcc.git] / gcc / config / ia64 / ia64.h
CommitLineData
e65271be 1/* Definitions of target machine GNU compiler. IA-64 version.
16c484c7 2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c65ebc55
JW
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
c65ebc55
JW
23/* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26/* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
c65ebc55
JW
29/* ??? Add support for short data/bss sections. */
30
31\f
32/* Run-time target specifications */
33
243a7070
DB
34#define CPP_CPU_SPEC "\
35 -Acpu=ia64 -Amachine=ia64 \
36 %{!ansi:%{!std=c*:%{!std=i*:-Dia64}}} -D__ia64 -D__ia64__"
37
38#define CC1_SPEC "%(cc1_cpu) "
c65ebc55
JW
39
40/* This declaration should be present. */
41extern int target_flags;
42
43/* This series of macros is to allow compiler command arguments to enable or
44 disable the use of optional features of the target machine. */
45
46#define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
47
48#define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
49
50#define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
51
52#define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
53
54#define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
55
ed168e45 56#define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
c65ebc55 57
099dde21 58#define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
c65ebc55 59
099dde21 60#define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
c65ebc55 61
099dde21 62#define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
59da9a7d 63
099dde21
BS
64#define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
65
66#define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
59da9a7d 67
35d9f39d 68#define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
655f2eb9 69
35d9f39d 70#define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
655f2eb9 71
c65ebc55
JW
72#define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
73
74#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
75
76#define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
77
78#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
79
80#define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
81
82#define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
83
6dd12198
SE
84#define TARGET_ILP32 (target_flags & MASK_ILP32)
85
099dde21
BS
86#define TARGET_B_STEP (target_flags & MASK_B_STEP)
87
c65ebc55
JW
88#define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
89
90#define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
91
59da9a7d
JW
92#define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
93
94#define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
95
655f2eb9
RH
96#define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
97
98#define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
99
100#define TARGET_INLINE_DIV \
101 (target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
102
c65ebc55
JW
103#define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
104
105/* This macro defines names of command options to set and clear bits in
106 `target_flags'. Its definition is an initializer with a subgrouping for
107 each command option. */
108
59da9a7d 109#define TARGET_SWITCHES \
c65ebc55
JW
110{ \
111 { "big-endian", MASK_BIG_ENDIAN, \
047142d3 112 N_("Generate big endian code") }, \
c65ebc55 113 { "little-endian", -MASK_BIG_ENDIAN, \
047142d3 114 N_("Generate little endian code") }, \
c65ebc55 115 { "gnu-as", MASK_GNU_AS, \
047142d3 116 N_("Generate code for GNU as") }, \
c65ebc55 117 { "no-gnu-as", -MASK_GNU_AS, \
047142d3 118 N_("Generate code for Intel as") }, \
c65ebc55 119 { "gnu-ld", MASK_GNU_LD, \
047142d3 120 N_("Generate code for GNU ld") }, \
c65ebc55 121 { "no-gnu-ld", -MASK_GNU_LD, \
047142d3 122 N_("Generate code for Intel ld") }, \
c65ebc55 123 { "no-pic", MASK_NO_PIC, \
047142d3 124 N_("Generate code without GP reg") }, \
c65ebc55 125 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
047142d3 126 N_("Emit stop bits before and after volatile extended asms") }, \
c65ebc55 127 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
047142d3 128 N_("Don't emit stop bits before and after volatile extended asms") }, \
099dde21
BS
129 { "b-step", MASK_B_STEP, \
130 N_("Emit code for Itanium (TM) processor B step")}, \
c65ebc55 131 { "register-names", MASK_REG_NAMES, \
047142d3 132 N_("Use in/loc/out register names")}, \
c65ebc55 133 { "no-sdata", MASK_NO_SDATA, \
047142d3 134 N_("Disable use of sdata/scommon/sbss")}, \
c65ebc55 135 { "sdata", -MASK_NO_SDATA, \
047142d3 136 N_("Enable use of sdata/scommon/sbss")}, \
59da9a7d 137 { "constant-gp", MASK_CONST_GP, \
047142d3 138 N_("gp is constant (but save/restore gp on indirect calls)") }, \
59da9a7d 139 { "auto-pic", MASK_AUTO_PIC, \
047142d3 140 N_("Generate self-relocatable code") }, \
655f2eb9
RH
141 { "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
142 N_("Generate inline division, optimize for latency") }, \
143 { "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
144 N_("Generate inline division, optimize for throughput") }, \
c65ebc55 145 { "dwarf2-asm", MASK_DWARF2_ASM, \
047142d3 146 N_("Enable Dwarf 2 line debug info via GNU as")}, \
c65ebc55 147 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
047142d3 148 N_("Disable Dwarf 2 line debug info via GNU as")}, \
6dd12198 149 SUBTARGET_SWITCHES \
c65ebc55
JW
150 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
151 NULL } \
152}
153
154/* Default target_flags if no switches are specified */
155
156#ifndef TARGET_DEFAULT
157#define TARGET_DEFAULT MASK_DWARF2_ASM
158#endif
159
160#ifndef TARGET_CPU_DEFAULT
161#define TARGET_CPU_DEFAULT 0
162#endif
163
6dd12198
SE
164#ifndef SUBTARGET_SWITCHES
165#define SUBTARGET_SWITCHES
166#endif
167
c65ebc55
JW
168/* This macro is similar to `TARGET_SWITCHES' but defines names of command
169 options that have values. Its definition is an initializer with a
170 subgrouping for each command option. */
171
172extern const char *ia64_fixed_range_string;
173#define TARGET_OPTIONS \
174{ \
175 { "fixed-range=", &ia64_fixed_range_string, \
c725bd79 176 N_("Specify range of registers to make fixed")}, \
c65ebc55
JW
177}
178
c65ebc55
JW
179/* Sometimes certain combinations of command options do not make sense on a
180 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
181 take account of this. This macro, if defined, is executed once just after
182 all the command options have been parsed. */
183
184#define OVERRIDE_OPTIONS ia64_override_options ()
185
186/* Some machines may desire to change what optimizations are performed for
187 various optimization levels. This macro, if defined, is executed once just
188 after the optimization level is determined and before the remainder of the
189 command options have been parsed. Values set in this macro are used as the
190 default values for the other command line options. */
191
192/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
c65ebc55
JW
193\f
194/* Driver configuration */
195
196/* A C string constant that tells the GNU CC driver program options to pass to
197 CPP. It can also specify how to translate options you give to GNU CC into
198 options for GNU CC to pass to the CPP. */
199
200/* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
201/* ??? An alternative is to modify glimits.h to check for __LP64__ instead
202 of checked for CPU specific defines. We could also get rid of all LONG_MAX
203 defines in other tm.h files. */
204#define CPP_SPEC \
205 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
206 -D__LONG_MAX__=9223372036854775807L"
207
6dd12198 208/* This is always "long" so it doesn't "change" in ILP32 vs. LP64. */
c65ebc55
JW
209/* #define NO_BUILTIN_SIZE_TYPE */
210
6dd12198 211/* This is always "long" so it doesn't "change" in ILP32 vs. LP64. */
c65ebc55
JW
212/* #define NO_BUILTIN_PTRDIFF_TYPE */
213
214/* A C string constant that tells the GNU CC driver program options to pass to
215 `cc1'. It can also specify how to translate options you give to GNU CC into
216 options for GNU CC to pass to the `cc1'. */
217
ad5042df
JJ
218#undef CC1_SPEC
219#define CC1_SPEC "%{G*}"
c65ebc55
JW
220
221/* A C string constant that tells the GNU CC driver program options to pass to
222 `cc1plus'. It can also specify how to translate options you give to GNU CC
223 into options for GNU CC to pass to the `cc1plus'. */
224
225/* #define CC1PLUS_SPEC "" */
c65ebc55
JW
226\f
227/* Storage Layout */
228
229/* Define this macro to have the value 1 if the most significant bit in a byte
230 has the lowest number; otherwise define it to have the value zero. */
231
232#define BITS_BIG_ENDIAN 0
233
c65ebc55
JW
234#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
235
236/* Define this macro to have the value 1 if, in a multiword object, the most
237 significant word has the lowest number. */
238
239#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
240
c65ebc55
JW
241#if defined(__BIG_ENDIAN__)
242#define LIBGCC2_WORDS_BIG_ENDIAN 1
243#else
244#define LIBGCC2_WORDS_BIG_ENDIAN 0
245#endif
246
c65ebc55
JW
247#define BITS_PER_UNIT 8
248
c65ebc55
JW
249#define BITS_PER_WORD 64
250
c65ebc55
JW
251#define UNITS_PER_WORD 8
252
6dd12198 253#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
c65ebc55 254
6dd12198
SE
255/* A C expression whose value is zero if pointers that need to be extended
256 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
257 they are zero-extended and negative one if there is an ptr_extend operation.
c65ebc55
JW
258
259 You need not define this macro if the `POINTER_SIZE' is equal to the width
260 of `Pmode'. */
6dd12198 261/* Need this for 32 bit pointers, see hpux.h for setting it. */
c65ebc55
JW
262/* #define POINTERS_EXTEND_UNSIGNED */
263
264/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
265 which has the specified mode and signedness is to be stored in a register.
266 This macro is only called when TYPE is a scalar type. */
c65ebc55
JW
267#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
268do \
269 { \
270 if (GET_MODE_CLASS (MODE) == MODE_INT \
dcf6e674
RH
271 && GET_MODE_SIZE (MODE) < 4) \
272 (MODE) = SImode; \
c65ebc55
JW
273 } \
274while (0)
275
c65ebc55
JW
276/* ??? ABI doesn't allow us to define this. */
277/* #define PROMOTE_FUNCTION_ARGS */
278
c65ebc55
JW
279/* ??? ABI doesn't allow us to define this. */
280/* #define PROMOTE_FUNCTION_RETURN */
281
c65ebc55
JW
282#define PARM_BOUNDARY 64
283
284/* Define this macro if you wish to preserve a certain alignment for the stack
285 pointer. The definition is a C expression for the desired alignment
286 (measured in bits). */
287
288#define STACK_BOUNDARY 128
289
290/* Align frames on double word boundaries */
291#ifndef IA64_STACK_ALIGN
292#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
293#endif
294
c65ebc55
JW
295#define FUNCTION_BOUNDARY 128
296
c65ebc55
JW
297/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
298 128 bit integers all require 128 bit alignment. */
299#define BIGGEST_ALIGNMENT 128
300
301/* If defined, a C expression to compute the alignment for a static variable.
302 TYPE is the data type, and ALIGN is the alignment that the object
303 would ordinarily have. The value of this macro is used instead of that
304 alignment to align the object. */
305
306#define DATA_ALIGNMENT(TYPE, ALIGN) \
307 (TREE_CODE (TYPE) == ARRAY_TYPE \
308 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
309 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
310
311/* If defined, a C expression to compute the alignment given to a constant that
312 is being placed in memory. CONSTANT is the constant and ALIGN is the
313 alignment that the object would ordinarily have. The value of this macro is
314 used instead of that alignment to align the object. */
315
316#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
317 (TREE_CODE (EXP) == STRING_CST \
318 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
319
c65ebc55
JW
320#define STRICT_ALIGNMENT 1
321
322/* Define this if you wish to imitate the way many other C compilers handle
323 alignment of bitfields and the structures that contain them.
324 The behavior is that the type written for a bitfield (`int', `short', or
325 other integer type) imposes an alignment for the entire structure, as if the
326 structure really did contain an ordinary field of that type. In addition,
327 the bitfield is placed within the structure so that it would fit within such
328 a field, not crossing a boundary for it. */
329#define PCC_BITFIELD_TYPE_MATTERS 1
330
c65ebc55
JW
331/* An integer expression for the size in bits of the largest integer machine
332 mode that should actually be used. */
333
334/* Allow pairs of registers to be used, which is the intent of the default. */
335#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
336
337/* A code distinguishing the floating point format of the target machine. */
338#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
339
67231816
RH
340/* By default, the C++ compiler will use function addresses in the
341 vtable entries. Setting this non-zero tells the compiler to use
342 function descriptors instead. The value of this macro says how
343 many words wide the descriptor is (normally 2). It is assumed
344 that the address of a function descriptor may be treated as a
345 pointer to a function. */
346#define TARGET_VTABLE_USES_DESCRIPTORS 2
c65ebc55
JW
347\f
348/* Layout of Source Language Data Types */
349
c65ebc55
JW
350#define INT_TYPE_SIZE 32
351
c65ebc55
JW
352#define SHORT_TYPE_SIZE 16
353
6dd12198 354#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
c65ebc55 355
6dd12198 356#define MAX_LONG_TYPE_SIZE 64
c65ebc55 357
c65ebc55
JW
358#define LONG_LONG_TYPE_SIZE 64
359
c65ebc55
JW
360#define CHAR_TYPE_SIZE 8
361
c65ebc55
JW
362#define FLOAT_TYPE_SIZE 32
363
c65ebc55
JW
364#define DOUBLE_TYPE_SIZE 64
365
3f622353
RH
366#define LONG_DOUBLE_TYPE_SIZE 128
367
368/* Tell real.c that this is the 80-bit Intel extended float format
369 packaged in a 128-bit entity. */
23c108af
SE
370
371#define INTEL_EXTENDED_IEEE_FORMAT 1
c65ebc55 372
c65ebc55
JW
373#define DEFAULT_SIGNED_CHAR 1
374
375/* A C expression for a string describing the name of the data type to use for
376 size values. The typedef name `size_t' is defined using the contents of the
377 string. */
378/* ??? Needs to be defined for P64 code. */
379/* #define SIZE_TYPE */
380
381/* A C expression for a string describing the name of the data type to use for
382 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
383 defined using the contents of the string. See `SIZE_TYPE' above for more
384 information. */
385/* ??? Needs to be defined for P64 code. */
386/* #define PTRDIFF_TYPE */
387
388/* A C expression for a string describing the name of the data type to use for
389 wide characters. The typedef name `wchar_t' is defined using the contents
390 of the string. See `SIZE_TYPE' above for more information. */
391/* #define WCHAR_TYPE */
392
393/* A C expression for the size in bits of the data type for wide characters.
394 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
395/* #define WCHAR_TYPE_SIZE */
396
c65ebc55
JW
397\f
398/* Register Basics */
399
400/* Number of hardware registers known to the compiler.
5527bf14
RH
401 We have 128 general registers, 128 floating point registers,
402 64 predicate registers, 8 branch registers, one frame pointer,
403 and several "application" registers. */
c65ebc55 404
97e242b0 405#define FIRST_PSEUDO_REGISTER 335
c65ebc55
JW
406
407/* Ranges for the various kinds of registers. */
3b572406
RH
408#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
409#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
c65ebc55
JW
410#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
411#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
412#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
413#define GENERAL_REGNO_P(REGNO) \
414 (GR_REGNO_P (REGNO) \
415 || (REGNO) == FRAME_POINTER_REGNUM \
46327bc5 416 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
c65ebc55
JW
417
418#define GR_REG(REGNO) ((REGNO) + 0)
419#define FR_REG(REGNO) ((REGNO) + 128)
420#define PR_REG(REGNO) ((REGNO) + 256)
421#define BR_REG(REGNO) ((REGNO) + 320)
422#define OUT_REG(REGNO) ((REGNO) + 120)
423#define IN_REG(REGNO) ((REGNO) + 112)
424#define LOC_REG(REGNO) ((REGNO) + 32)
425
5527bf14 426#define AR_CCV_REGNUM 330
97e242b0
RH
427#define AR_UNAT_REGNUM 331
428#define AR_PFS_REGNUM 332
429#define AR_LC_REGNUM 333
430#define AR_EC_REGNUM 334
5527bf14 431
c65ebc55
JW
432#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
433#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
434#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
435
97e242b0
RH
436#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
437 || (REGNO) == AR_UNAT_REGNUM)
438#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
5527bf14
RH
439 && (REGNO) < FIRST_PSEUDO_REGISTER)
440#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
441 && (REGNO) < FIRST_PSEUDO_REGISTER)
442
443
c65ebc55
JW
444/* ??? Don't really need two sets of macros. I like this one better because
445 it is less typing. */
446#define R_GR(REGNO) GR_REG (REGNO)
447#define R_FR(REGNO) FR_REG (REGNO)
448#define R_PR(REGNO) PR_REG (REGNO)
449#define R_BR(REGNO) BR_REG (REGNO)
450
451/* An initializer that says which registers are used for fixed purposes all
452 throughout the compiled code and are therefore not available for general
453 allocation.
454
455 r0: constant 0
456 r1: global pointer (gp)
457 r12: stack pointer (sp)
458 r13: thread pointer (tp)
459 f0: constant 0.0
460 f1: constant 1.0
461 p0: constant true
462 fp: eliminable frame pointer */
463
1ff5b671
JW
464/* The last 16 stacked regs are reserved for the 8 input and 8 output
465 registers. */
c65ebc55 466
c65ebc55
JW
467#define FIXED_REGISTERS \
468{ /* General registers. */ \
469 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
470 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
471 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
472 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
473 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
474 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 475 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 476 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c65ebc55
JW
477 /* Floating-point registers. */ \
478 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
479 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
480 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
481 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
482 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
483 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
484 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
485 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
486 /* Predicate registers. */ \
487 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
488 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
489 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
490 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
491 /* Branch registers. */ \
492 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0
RH
493 /*FP RA CCV UNAT PFS LC EC */ \
494 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
495 }
496
5527bf14
RH
497/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
498 (in general) by function calls as well as for fixed registers. This
499 macro therefore identifies the registers that are not available for
500 general allocation of values that must live across function calls. */
c65ebc55 501
c65ebc55
JW
502#define CALL_USED_REGISTERS \
503{ /* General registers. */ \
504 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
505 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
506 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
507 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
508 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
509 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 510 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 511 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
c65ebc55
JW
512 /* Floating-point registers. */ \
513 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
514 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
515 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
516 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
517 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
518 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
519 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
520 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
521 /* Predicate registers. */ \
522 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
523 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
526 /* Branch registers. */ \
527 1, 0, 0, 0, 0, 0, 1, 1, \
97e242b0
RH
528 /*FP RA CCV UNAT PFS LC EC */ \
529 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
530}
531
fc1296b7
AM
532/* Like `CALL_USED_REGISTERS' but used to overcome a historical
533 problem which makes CALL_USED_REGISTERS *always* include
6ca3c22f 534 all the FIXED_REGISTERS. Until this problem has been
fc1296b7
AM
535 resolved this macro can be used to overcome this situation.
536 In particular, block_propagate() requires this list
537 be acurate, or we can remove registers which should be live.
6ca3c22f 538 This macro is used in regs_invalidated_by_call. */
fc1296b7
AM
539
540#define CALL_REALLY_USED_REGISTERS \
541{ /* General registers. */ \
542 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
543 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
544 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
545 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
546 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
547 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
548 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
549 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
550 /* Floating-point registers. */ \
551 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
552 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
553 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
554 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
555 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
556 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
557 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
559 /* Predicate registers. */ \
560 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
561 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
564 /* Branch registers. */ \
565 1, 0, 0, 0, 0, 0, 1, 1, \
566 /*FP RA CCV UNAT PFS LC EC */ \
6ca3c22f 567 0, 0, 1, 0, 1, 0, 0 \
fc1296b7
AM
568}
569
570
c65ebc55
JW
571/* Define this macro if the target machine has register windows. This C
572 expression returns the register number as seen by the called function
573 corresponding to the register number OUT as seen by the calling function.
574 Return OUT if register number OUT is not an outbound register. */
575
576#define INCOMING_REGNO(OUT) \
577 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
578
579/* Define this macro if the target machine has register windows. This C
580 expression returns the register number as seen by the calling function
581 corresponding to the register number IN as seen by the called function.
582 Return IN if register number IN is not an inbound register. */
583
584#define OUTGOING_REGNO(IN) \
585 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
586
2a3e384f
RH
587/* Define this macro if the target machine has register windows. This
588 C expression returns true if the register is call-saved but is in the
589 register window. */
590
591#define LOCAL_REGNO(REGNO) \
592 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
97e242b0
RH
593
594/* Add any extra modes needed to represent the condition code.
595
596 CCImode is used to mark a single predicate register instead
597 of a register pair. This is currently only used in reg_raw_mode
598 so that flow doesn't do something stupid. */
599
600#define EXTRA_CC_MODES CC(CCImode, "CCI")
601
602/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
603 return the mode to be used for the comparison. Must be defined if
604 EXTRA_CC_MODES is defined. */
605
606#define SELECT_CC_MODE(OP,X,Y) CCmode
c65ebc55
JW
607\f
608/* Order of allocation of registers */
609
610/* If defined, an initializer for a vector of integers, containing the numbers
611 of hard registers in the order in which GNU CC should prefer to use them
612 (from most preferred to least).
613
614 If this macro is not defined, registers are used lowest numbered first (all
615 else being equal).
616
617 One use of this macro is on machines where the highest numbered registers
618 must always be saved and the save-multiple-registers instruction supports
619 only sequences of consecutive registers. On such machines, define
620 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
621 allocatable register first. */
622
623/* ??? Should the GR return value registers come before or after the rest
624 of the caller-save GRs? */
625
97e242b0 626#define REG_ALLOC_ORDER \
c65ebc55
JW
627{ \
628 /* Caller-saved general registers. */ \
97e242b0
RH
629 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
630 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
631 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
c65ebc55 632 R_GR (30), R_GR (31), \
1ff5b671
JW
633 /* Output registers. */ \
634 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
97e242b0 635 R_GR (126), R_GR (127), \
c65ebc55 636 /* Caller-saved general registers, also used for return values. */ \
97e242b0 637 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
c65ebc55
JW
638 /* addl caller-saved general registers. */ \
639 R_GR (2), R_GR (3), \
640 /* Caller-saved FP registers. */ \
641 R_FR (6), R_FR (7), \
642 /* Caller-saved FP registers, used for parameters and return values. */ \
97e242b0
RH
643 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
644 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
c65ebc55 645 /* Rotating caller-saved FP registers. */ \
97e242b0
RH
646 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
647 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
648 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
649 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
650 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
651 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
652 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
653 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
654 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
655 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
656 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
657 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
c65ebc55
JW
658 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
659 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
660 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
661 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
97e242b0 662 R_FR (126), R_FR (127), \
c65ebc55 663 /* Caller-saved predicate registers. */ \
97e242b0 664 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
c65ebc55
JW
665 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
666 /* Rotating caller-saved predicate registers. */ \
97e242b0
RH
667 R_PR (16), R_PR (17), \
668 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
669 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
670 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
671 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
672 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
673 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
674 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
675 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
c65ebc55
JW
676 /* Caller-saved branch registers. */ \
677 R_BR (6), R_BR (7), \
678 \
679 /* Stacked callee-saved general registers. */ \
97e242b0
RH
680 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
681 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
682 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
683 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
684 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
685 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
686 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
687 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
688 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
689 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
690 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
691 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
c65ebc55
JW
692 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
693 R_GR (108), \
1ff5b671
JW
694 /* Input registers. */ \
695 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
696 R_GR (118), R_GR (119), \
c65ebc55
JW
697 /* Callee-saved general registers. */ \
698 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
699 /* Callee-saved FP registers. */ \
97e242b0
RH
700 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
701 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
702 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
c65ebc55
JW
703 R_FR (30), R_FR (31), \
704 /* Callee-saved predicate registers. */ \
97e242b0 705 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
c65ebc55
JW
706 /* Callee-saved branch registers. */ \
707 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
708 \
709 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
710 R_GR (109), R_GR (110), R_GR (111), \
c65ebc55
JW
711 \
712 /* Special general registers. */ \
97e242b0 713 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
c65ebc55
JW
714 /* Special FP registers. */ \
715 R_FR (0), R_FR (1), \
716 /* Special predicate registers. */ \
717 R_PR (0), \
718 /* Special branch registers. */ \
719 R_BR (0), \
5527bf14 720 /* Other fixed registers. */ \
46327bc5 721 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
97e242b0
RH
722 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
723 AR_EC_REGNUM \
c65ebc55 724}
c65ebc55
JW
725\f
726/* How Values Fit in Registers */
727
728/* A C expression for the number of consecutive hard registers, starting at
729 register number REGNO, required to hold a value of mode MODE. */
730
f2f90c63 731/* ??? We say that BImode PR values require two registers. This allows us to
97e242b0
RH
732 easily store the normal and inverted values. We use CCImode to indicate
733 a single predicate register. */
c65ebc55 734
97e242b0
RH
735#define HARD_REGNO_NREGS(REGNO, MODE) \
736 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
f2f90c63 737 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
97e242b0 738 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
23c108af 739 : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
c65ebc55
JW
740 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
741
742/* A C expression that is nonzero if it is permissible to store a value of mode
743 MODE in hard register number REGNO (or in several registers starting with
744 that one). */
0ea1e106 745
f2f90c63
RH
746#define HARD_REGNO_MODE_OK(REGNO, MODE) \
747 (FR_REGNO_P (REGNO) ? \
23c108af
SE
748 GET_MODE_CLASS (MODE) != MODE_CC && \
749 (MODE) != TImode && \
750 (MODE) != BImode && \
751 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
f2f90c63
RH
752 : PR_REGNO_P (REGNO) ? \
753 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
754 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
755 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
756 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
3f622353 757 : 0)
c65ebc55
JW
758
759/* A C expression that is nonzero if it is desirable to choose register
760 allocation so as to avoid move instructions between a value of mode MODE1
761 and a value of mode MODE2.
762
763 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
764 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
765 zero. */
ad06f2e3 766/* Don't tie integer and FP modes, as that causes us to get integer registers
3f622353
RH
767 allocated for FP instructions. TFmode only supported in FP registers so
768 we can't tie it with any other modes. */
f2f90c63
RH
769#define MODES_TIEABLE_P(MODE1, MODE2) \
770 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
771 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
772 && (((MODE1) == BImode) == ((MODE2) == BImode)))
c65ebc55
JW
773\f
774/* Handling Leaf Functions */
775
776/* A C initializer for a vector, indexed by hard register number, which
777 contains 1 for a register that is allowable in a candidate for leaf function
778 treatment. */
779/* ??? This might be useful. */
780/* #define LEAF_REGISTERS */
781
782/* A C expression whose value is the register number to which REGNO should be
783 renumbered, when a function is treated as a leaf function. */
784/* ??? This might be useful. */
785/* #define LEAF_REG_REMAP(REGNO) */
786
787\f
788/* Register Classes */
789
790/* An enumeral type that must be defined with all the register class names as
791 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
792 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
793 which is not a register class but rather tells how many classes there
794 are. */
c65ebc55
JW
795/* ??? When compiling without optimization, it is possible for the only use of
796 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
797 Regclass handles this case specially and does not assign any costs to the
798 pseudo. The pseudo then ends up using the last class before ALL_REGS.
799 Thus we must not let either PR_REGS or BR_REGS be the last class. The
800 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
801enum reg_class
802{
803 NO_REGS,
804 PR_REGS,
805 BR_REGS,
7109d286
RH
806 AR_M_REGS,
807 AR_I_REGS,
c65ebc55
JW
808 ADDL_REGS,
809 GR_REGS,
c65ebc55 810 FR_REGS,
7109d286 811 GR_AND_BR_REGS,
c65ebc55
JW
812 GR_AND_FR_REGS,
813 ALL_REGS,
814 LIM_REG_CLASSES
815};
816
817#define GENERAL_REGS GR_REGS
818
819/* The number of distinct register classes. */
820#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
821
822/* An initializer containing the names of the register classes as C string
823 constants. These names are used in writing some of the debugging dumps. */
824#define REG_CLASS_NAMES \
7109d286
RH
825{ "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
826 "ADDL_REGS", "GR_REGS", "FR_REGS", \
827 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
c65ebc55
JW
828
829/* An initializer containing the contents of the register classes, as integers
830 which are bit masks. The Nth integer specifies the contents of class N.
831 The way the integer MASK is interpreted is that register R is in the class
832 if `MASK & (1 << R)' is 1. */
833#define REG_CLASS_CONTENTS \
834{ \
835 /* NO_REGS. */ \
836 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
837 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 838 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
839 /* PR_REGS. */ \
840 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
841 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 842 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
c65ebc55
JW
843 /* BR_REGS. */ \
844 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
845 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 846 0x00000000, 0x00000000, 0x00FF }, \
7109d286
RH
847 /* AR_M_REGS. */ \
848 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
849 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
850 0x00000000, 0x00000000, 0x0C00 }, \
851 /* AR_I_REGS. */ \
852 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
853 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
854 0x00000000, 0x00000000, 0x7000 }, \
c65ebc55
JW
855 /* ADDL_REGS. */ \
856 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
857 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 858 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
859 /* GR_REGS. */ \
860 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
861 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 862 0x00000000, 0x00000000, 0x0300 }, \
c65ebc55
JW
863 /* FR_REGS. */ \
864 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
865 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14 866 0x00000000, 0x00000000, 0x0000 }, \
7109d286
RH
867 /* GR_AND_BR_REGS. */ \
868 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
869 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
870 0x00000000, 0x00000000, 0x03FF }, \
c65ebc55
JW
871 /* GR_AND_FR_REGS. */ \
872 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
873 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14 874 0x00000000, 0x00000000, 0x0300 }, \
c65ebc55
JW
875 /* ALL_REGS. */ \
876 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
877 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
97e242b0 878 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
c65ebc55
JW
879}
880
881/* A C expression whose value is a register class containing hard register
882 REGNO. In general there is more than one such class; choose a class which
883 is "minimal", meaning that no smaller class also contains the register. */
884/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
885 may call here with private (invalid) register numbers, such as
886 REG_VOLATILE. */
887#define REGNO_REG_CLASS(REGNO) \
888(ADDL_REGNO_P (REGNO) ? ADDL_REGS \
889 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
13da91fd 890 : FR_REGNO_P (REGNO) ? FR_REGS \
c65ebc55
JW
891 : PR_REGNO_P (REGNO) ? PR_REGS \
892 : BR_REGNO_P (REGNO) ? BR_REGS \
97e242b0
RH
893 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
894 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
c65ebc55
JW
895 : NO_REGS)
896
897/* A macro whose definition is the name of the class to which a valid base
898 register must belong. A base register is one used in an address which is
899 the register value plus a displacement. */
900#define BASE_REG_CLASS GENERAL_REGS
901
902/* A macro whose definition is the name of the class to which a valid index
903 register must belong. An index register is one used in an address where its
904 value is either multiplied by a scale factor or added to another register
cf606f45
JW
905 (as well as added to a displacement). This is needed for POST_MODIFY. */
906#define INDEX_REG_CLASS GENERAL_REGS
c65ebc55
JW
907
908/* A C expression which defines the machine-dependent operand constraint
909 letters for register classes. If CHAR is such a letter, the value should be
910 the register class corresponding to it. Otherwise, the value should be
911 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
912 will not be passed to this macro; you do not need to handle it. */
913
914#define REG_CLASS_FROM_LETTER(CHAR) \
13da91fd 915((CHAR) == 'f' ? FR_REGS \
c65ebc55
JW
916 : (CHAR) == 'a' ? ADDL_REGS \
917 : (CHAR) == 'b' ? BR_REGS \
918 : (CHAR) == 'c' ? PR_REGS \
5527bf14
RH
919 : (CHAR) == 'd' ? AR_M_REGS \
920 : (CHAR) == 'e' ? AR_I_REGS \
c65ebc55
JW
921 : NO_REGS)
922
923/* A C expression which is nonzero if register number NUM is suitable for use
924 as a base register in operand addresses. It may be either a suitable hard
925 register or a pseudo register that has been allocated such a hard reg. */
926#define REGNO_OK_FOR_BASE_P(REGNO) \
927 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
928
929/* A C expression which is nonzero if register number NUM is suitable for use
930 as an index register in operand addresses. It may be either a suitable hard
cf606f45
JW
931 register or a pseudo register that has been allocated such a hard reg.
932 This is needed for POST_MODIFY. */
933#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
c65ebc55
JW
934
935/* A C expression that places additional restrictions on the register class to
936 use when it is necessary to copy value X into a register in class CLASS.
937 The value is a register class; perhaps CLASS, or perhaps another, smaller
938 class. */
939
ffaff414
JW
940/* Don't allow volatile mem reloads into floating point registers. This
941 is defined to force reload to choose the r/m case instead of the f/f case
f2f90c63
RH
942 when reloading (set (reg fX) (mem/v)).
943
944 Do not reload expressions into AR regs. */
ffaff414
JW
945
946#define PREFERRED_RELOAD_CLASS(X, CLASS) \
f2f90c63 947 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
036099eb 948 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
7109d286
RH
949 : GET_RTX_CLASS (GET_CODE (X)) != 'o' \
950 && (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS \
ffaff414 951 : CLASS)
c65ebc55
JW
952
953/* You should define this macro to indicate to the reload phase that it may
954 need to allocate at least one register for a reload in addition to the
955 register to contain the data. Specifically, if copying X to a register
956 CLASS in MODE requires an intermediate register, you should define this
957 to return the largest register class all of whose registers can be used
958 as intermediate registers or scratch registers. */
959
960#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
961 ia64_secondary_reload_class (CLASS, MODE, X)
962
963/* Certain machines have the property that some registers cannot be copied to
964 some other registers without using memory. Define this macro on those
965 machines to be a C expression that is non-zero if objects of mode M in
966 registers of CLASS1 can only be copied to registers of class CLASS2 by
967 storing a register of CLASS1 into memory and loading that memory location
968 into a register of CLASS2. */
3f622353
RH
969
970#if 0
971/* ??? May need this, but since we've disallowed TFmode in GR_REGS,
972 I'm not quite sure how it could be invoked. The normal problems
973 with unions should be solved with the addressof fiddling done by
974 movtf and friends. */
975#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
976 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
977 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
978#endif
c65ebc55
JW
979
980/* A C expression for the maximum number of consecutive registers of
981 class CLASS needed to hold a value of mode MODE.
982 This is closely related to the macro `HARD_REGNO_NREGS'. */
983
984#define CLASS_MAX_NREGS(CLASS, MODE) \
f2f90c63 985 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
3f622353 986 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
c65ebc55
JW
987 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
988
02188693
RH
989/* If defined, gives a class of registers that cannot be used as the
990 operand of a SUBREG that changes the mode of the object illegally. */
991
992#define CLASS_CANNOT_CHANGE_MODE FR_REGS
993
46146529
JW
994/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
995 In FP regs, we can't change FP values to integer values and vice
996 versa, but we can change e.g. DImode to SImode. */
02188693 997
46146529
JW
998#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
999 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
02188693 1000
97e242b0
RH
1001/* A C expression that defines the machine-dependent operand constraint
1002 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1003 integer values. */
c65ebc55
JW
1004
1005/* 14 bit signed immediate for arithmetic instructions. */
1006#define CONST_OK_FOR_I(VALUE) \
1007 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1008/* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1009#define CONST_OK_FOR_J(VALUE) \
1010 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1011/* 8 bit signed immediate for logical instructions. */
1012#define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1013/* 8 bit adjusted signed immediate for compare pseudo-ops. */
1014#define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1015/* 6 bit unsigned immediate for shift counts. */
1016#define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1017/* 9 bit signed immediate for load/store post-increments. */
c65ebc55
JW
1018#define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1019/* 0 for r0. Used by Linux kernel, do not change. */
1020#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1021/* 0 or -1 for dep instruction. */
1022#define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1023
1024#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1025((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1026 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1027 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1028 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1029 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1030 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1031 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1032 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1033 : 0)
1034
1035/* A C expression that defines the machine-dependent operand constraint letters
1036 (`G', `H') that specify particular ranges of `const_double' values. */
1037
1038/* 0.0 and 1.0 for fr0 and fr1. */
1039#define CONST_DOUBLE_OK_FOR_G(VALUE) \
1040 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1041 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1042
1043#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1044 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1045
1046/* A C expression that defines the optional machine-dependent constraint
1047 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1048 types of operands, usually memory references, for the target machine. */
3b572406 1049
041f25e6 1050/* Non-volatile memory for FP_REG loads/stores. */
3b572406
RH
1051#define CONSTRAINT_OK_FOR_Q(VALUE) \
1052 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
041f25e6
RH
1053/* 1..4 for shladd arguments. */
1054#define CONSTRAINT_OK_FOR_R(VALUE) \
1055 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
0551c32d
RH
1056/* Non-post-inc memory for asms and other unsavory creatures. */
1057#define CONSTRAINT_OK_FOR_S(VALUE) \
1058 (GET_CODE (VALUE) == MEM \
1059 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1060 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
3b572406
RH
1061
1062#define EXTRA_CONSTRAINT(VALUE, C) \
041f25e6
RH
1063 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1064 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
0551c32d 1065 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
041f25e6 1066 : 0)
c65ebc55
JW
1067\f
1068/* Basic Stack Layout */
1069
1070/* Define this macro if pushing a word onto the stack moves the stack pointer
1071 to a smaller address. */
1072#define STACK_GROWS_DOWNWARD 1
1073
1074/* Define this macro if the addresses of local variable slots are at negative
1075 offsets from the frame pointer. */
97e242b0
RH
1076/* #define FRAME_GROWS_DOWNWARD */
1077
1078/* Offset from the frame pointer to the first local variable slot to
1079 be allocated. */
1080#define STARTING_FRAME_OFFSET 0
c65ebc55
JW
1081
1082/* Offset from the stack pointer register to the first location at which
1083 outgoing arguments are placed. If not specified, the default value of zero
1084 is used. This is the proper value for most machines. */
1085/* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1086#define STACK_POINTER_OFFSET 16
1087
1088/* Offset from the argument pointer register to the first argument's address.
1089 On some machines it may depend on the data type of the function. */
1090#define FIRST_PARM_OFFSET(FUNDECL) 0
1091
1092/* A C expression whose value is RTL representing the value of the return
1093 address for the frame COUNT steps up from the current frame, after the
1094 prologue. */
1095
1096/* ??? Frames other than zero would likely require interpreting the frame
1097 unwind info, so we don't try to support them. We would also need to define
1098 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1099
46327bc5
RH
1100#define RETURN_ADDR_RTX(COUNT, FRAME) \
1101 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
c65ebc55
JW
1102
1103/* A C expression whose value is RTL representing the location of the incoming
1104 return address at the beginning of any function, before the prologue. This
1105 RTL is either a `REG', indicating that the return value is saved in `REG',
1106 or a `MEM' representing a location in the stack. This enables DWARF2
1107 unwind info for C++ EH. */
1108#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
13da91fd 1109
c65ebc55
JW
1110/* ??? This is not defined because of three problems.
1111 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1112 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1113 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1114 unused register number.
1115 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1116 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1117 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1118 to zero, despite what the documentation implies, because it is tested in
1119 a few places with #ifdef instead of #if. */
1120#undef INCOMING_RETURN_ADDR_RTX
1121
1122/* A C expression whose value is an integer giving the offset, in bytes, from
1123 the value of the stack pointer register to the top of the stack frame at the
1124 beginning of any function, before the prologue. The top of the frame is
1125 defined to be the value of the stack pointer in the previous frame, just
1126 before the call instruction. */
1127#define INCOMING_FRAME_SP_OFFSET 0
1128
1129\f
1130/* Register That Address the Stack Frame. */
1131
1132/* The register number of the stack pointer register, which must also be a
1133 fixed register according to `FIXED_REGISTERS'. On most machines, the
1134 hardware determines which register this is. */
1135
1136#define STACK_POINTER_REGNUM 12
1137
1138/* The register number of the frame pointer register, which is used to access
1139 automatic variables in the stack frame. On some machines, the hardware
1140 determines which register this is. On other machines, you can choose any
1141 register you wish for this purpose. */
1142
1143#define FRAME_POINTER_REGNUM 328
1144
97e242b0
RH
1145/* Base register for access to local variables of the function. */
1146#define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
c65ebc55
JW
1147
1148/* The register number of the arg pointer register, which is used to access the
1149 function's argument list. */
1150/* r0 won't otherwise be used, so put the always eliminated argument pointer
1151 in it. */
1152#define ARG_POINTER_REGNUM R_GR(0)
1153
97e242b0
RH
1154/* The register number for the return address register. For IA-64, this
1155 is not actually a pointer as the name suggests, but that's a name that
1156 gen_rtx_REG already takes care to keep unique. We modify
1157 return_address_pointer_rtx in ia64_expand_prologue to reference the
1158 final output regnum. */
46327bc5 1159#define RETURN_ADDRESS_POINTER_REGNUM 329
c65ebc55
JW
1160
1161/* Register numbers used for passing a function's static chain pointer. */
97e242b0 1162/* ??? The ABI sez the static chain should be passed as a normal parameter. */
c65ebc55 1163#define STATIC_CHAIN_REGNUM 15
c65ebc55
JW
1164\f
1165/* Eliminating the Frame Pointer and the Arg Pointer */
1166
1167/* A C expression which is nonzero if a function must have and use a frame
1168 pointer. This expression is evaluated in the reload pass. If its value is
1169 nonzero the function will have a frame pointer. */
c65ebc55
JW
1170#define FRAME_POINTER_REQUIRED 0
1171
97e242b0
RH
1172/* Show we can debug even without a frame pointer. */
1173#define CAN_DEBUG_WITHOUT_FP
1174
c65ebc55
JW
1175/* If defined, this macro specifies a table of register pairs used to eliminate
1176 unneeded registers that point into the stack frame. */
1177
1178#define ELIMINABLE_REGS \
1179{ \
1180 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0 1181 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
46327bc5 1182 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0
RH
1183 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1184 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
c65ebc55
JW
1185}
1186
1187/* A C expression that returns non-zero if the compiler is allowed to try to
97e242b0
RH
1188 replace register number FROM with register number TO. The frame pointer
1189 is automatically handled. */
c65ebc55 1190
46327bc5
RH
1191#define CAN_ELIMINATE(FROM, TO) \
1192 (TO == BR_REG (0) ? current_function_is_leaf : 1)
c65ebc55 1193
97e242b0
RH
1194/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1195 specifies the initial difference between the specified pair of
1196 registers. This macro must be defined if `ELIMINABLE_REGS' is
1197 defined. */
1198#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1199 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
c65ebc55
JW
1200\f
1201/* Passing Function Arguments on the Stack */
1202
1203/* Define this macro if an argument declared in a prototype as an integral type
1204 smaller than `int' should actually be passed as an `int'. In addition to
1205 avoiding errors in certain cases of mismatch, it also makes for better code
1206 on certain machines. */
1207/* ??? Investigate. */
1208/* #define PROMOTE_PROTOTYPES */
1209
1210/* If defined, the maximum amount of space required for outgoing arguments will
1211 be computed and placed into the variable
1212 `current_function_outgoing_args_size'. */
1213
f73ad30e 1214#define ACCUMULATE_OUTGOING_ARGS 1
c65ebc55
JW
1215
1216/* A C expression that should indicate the number of bytes of its own arguments
1217 that a function pops on returning, or 0 if the function pops no arguments
1218 and the caller must therefore pop them all after the function returns. */
1219
1220#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1221
1222\f
1223/* Function Arguments in Registers */
1224
1225#define MAX_ARGUMENT_SLOTS 8
1226#define MAX_INT_RETURN_SLOTS 4
1227#define GR_ARG_FIRST IN_REG (0)
1228#define GR_RET_FIRST GR_REG (8)
1229#define GR_RET_LAST GR_REG (11)
1230#define FR_ARG_FIRST FR_REG (8)
1231#define FR_RET_FIRST FR_REG (8)
1232#define FR_RET_LAST FR_REG (15)
1233#define AR_ARG_FIRST OUT_REG (0)
1234
1235/* A C expression that controls whether a function argument is passed in a
1236 register, and which register. */
1237
1238#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1239 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1240
1241/* Define this macro if the target machine has "register windows", so that the
1242 register in which a function sees an arguments is not necessarily the same
1243 as the one in which the caller passed the argument. */
1244
1245#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1246 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1247
1248/* A C expression for the number of words, at the beginning of an argument,
1249 must be put in registers. The value must be zero for arguments that are
1250 passed entirely in registers or that are entirely pushed on the stack. */
1251
1252#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1253 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1254
1255/* A C expression that indicates when an argument must be passed by reference.
1256 If nonzero for an argument, a copy of that argument is made in memory and a
1257 pointer to the argument is passed instead of the argument itself. The
1258 pointer is passed in whatever way is appropriate for passing a pointer to
1259 that type. */
1260
1261#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1262
1263/* A C type for declaring a variable that is used as the first argument of
1264 `FUNCTION_ARG' and other related values. For some target machines, the type
1265 `int' suffices and can hold the number of bytes of argument so far. */
1266
1267typedef struct ia64_args
1268{
1269 int words; /* # words of arguments so far */
1270 int fp_regs; /* # FR registers used so far */
1271 int prototype; /* whether function prototyped */
1272} CUMULATIVE_ARGS;
1273
1274/* A C statement (sans semicolon) for initializing the variable CUM for the
1275 state at the beginning of the argument list. */
1276
1277#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1278do { \
1279 (CUM).words = 0; \
1280 (CUM).fp_regs = 0; \
1281 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1282} while (0)
1283
1284/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1285 arguments for the function being compiled. If this macro is undefined,
1286 `INIT_CUMULATIVE_ARGS' is used instead. */
1287
1288/* We set prototype to true so that we never try to return a PARALLEL from
1289 function_arg. */
1290#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1291do { \
1292 (CUM).words = 0; \
1293 (CUM).fp_regs = 0; \
1294 (CUM).prototype = 1; \
1295} while (0)
1296
1297/* A C statement (sans semicolon) to update the summarizer variable CUM to
1298 advance past an argument in the argument list. The values MODE, TYPE and
1299 NAMED describe that argument. Once this is done, the variable CUM is
1300 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1301
1302#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1303 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1304
1305/* If defined, a C expression that gives the alignment boundary, in bits, of an
1306 argument with the specified mode and type. */
1307
93dd6255
JW
1308/* Arguments with alignment larger than 8 bytes start at the next even
1309 boundary. See ia64_function_arg. */
c65ebc55
JW
1310
1311#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
93dd6255
JW
1312 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1313 : (((((MODE) == BLKmode \
1314 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1315 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1316 ? 128 : PARM_BOUNDARY)
c65ebc55
JW
1317
1318/* A C expression that is nonzero if REGNO is the number of a hard register in
1319 which function arguments are sometimes passed. This does *not* include
1320 implicit arguments such as the static chain and the structure-value address.
1321 On many machines, no registers can be used for this purpose since all
1322 function arguments are pushed on the stack. */
1323#define FUNCTION_ARG_REGNO_P(REGNO) \
1324(((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1325 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1326\f
1327/* Implement `va_start' for varargs and stdarg. */
1328#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1329 ia64_va_start (stdarg, valist, nextarg)
1330
1331/* Implement `va_arg'. */
1332#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1333 ia64_va_arg (valist, type)
1334\f
1335/* How Scalar Function Values are Returned */
1336
1337/* A C expression to create an RTX representing the place where a function
1338 returns a value of data type VALTYPE. */
1339
1340#define FUNCTION_VALUE(VALTYPE, FUNC) \
1341 ia64_function_value (VALTYPE, FUNC)
1342
1343/* A C expression to create an RTX representing the place where a library
1344 function returns a value of mode MODE. */
1345
1346#define LIBCALL_VALUE(MODE) \
1347 gen_rtx_REG (MODE, \
23c108af
SE
1348 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1349 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1350 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
c65ebc55
JW
1351 ? FR_RET_FIRST : GR_RET_FIRST))
1352
1353/* A C expression that is nonzero if REGNO is the number of a hard register in
1354 which the values of called function may come back. */
1355
1356#define FUNCTION_VALUE_REGNO_P(REGNO) \
1357 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1358 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1359
1360\f
1361/* How Large Values are Returned */
1362
1363/* A nonzero value says to return the function value in memory, just as large
1364 structures are always returned. */
1365
1366#define RETURN_IN_MEMORY(TYPE) \
1367 ia64_return_in_memory (TYPE)
1368
1369/* If you define this macro to be 0, then the conventions used for structure
1370 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1371
1372#define DEFAULT_PCC_STRUCT_RETURN 0
1373
1374/* If the structure value address is passed in a register, then
1375 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1376
1377#define STRUCT_VALUE_REGNUM GR_REG (8)
1378
1379\f
1380/* Caller-Saves Register Allocation */
1381
1382/* A C expression to determine whether it is worthwhile to consider placing a
1383 pseudo-register in a call-clobbered hard register and saving and restoring
1384 it around each function call. The expression should be 1 when this is worth
1385 doing, and 0 otherwise.
1386
1387 If you don't define this macro, a default is used which is good on most
1388 machines: `4 * CALLS < REFS'. */
1389/* ??? Investigate. */
1390/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1391
1392\f
1393/* Function Entry and Exit */
1394
c65ebc55
JW
1395/* Define this macro as a C expression that is nonzero if the return
1396 instruction or the function epilogue ignores the value of the stack pointer;
1397 in other words, if it is safe to delete an instruction to adjust the stack
1398 pointer before a return from the function. */
1399
1400#define EXIT_IGNORE_STACK 1
1401
1402/* Define this macro as a C expression that is nonzero for registers
1403 used by the epilogue or the `return' pattern. */
1404
1405#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1406
3b572406
RH
1407/* Output at beginning of assembler file. */
1408
1409#define ASM_FILE_START(FILE) \
ca3920ad 1410 emit_safe_across_calls (FILE)
3b572406 1411
c65ebc55
JW
1412/* A C compound statement that outputs the assembler code for a thunk function,
1413 used to implement C++ virtual function calls with multiple inheritance. */
1414
c65ebc55
JW
1415#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1416do { \
591eb4ba 1417 if (CONST_OK_FOR_I (DELTA)) \
55710451
KG
1418 { \
1419 fprintf (FILE, "\tadds r32 = "); \
1420 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
1421 fprintf (FILE, ", r32\n"); \
1422 } \
591eb4ba
JW
1423 else \
1424 { \
1425 if (CONST_OK_FOR_J (DELTA)) \
55710451
KG
1426 { \
1427 fprintf (FILE, "\taddl r2 = "); \
1428 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
1429 fprintf (FILE, ", r0\n"); \
1430 } \
591eb4ba 1431 else \
55710451
KG
1432 { \
1433 fprintf (FILE, "\tmovl r2 = "); \
1434 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
1435 fprintf (FILE, "\n"); \
1436 } \
591eb4ba
JW
1437 fprintf (FILE, "\t;;\n"); \
1438 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1439 } \
c65ebc55
JW
1440 fprintf (FILE, "\tbr "); \
1441 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1442 fprintf (FILE, "\n"); \
1443} while (0)
1444
67231816
RH
1445/* Output part N of a function descriptor for DECL. For ia64, both
1446 words are emitted with a single relocation, so ignore N > 0. */
1447#define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1448do { \
1449 if ((PART) == 0) \
1450 { \
1451 fputs ("\tdata16.ua @iplt(", FILE); \
1452 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1453 fputs (")\n", FILE); \
1454 } \
1455} while (0)
c65ebc55
JW
1456\f
1457/* Generating Code for Profiling. */
1458
1459/* A C statement or compound statement to output to FILE some assembler code to
1460 call the profiling subroutine `mcount'. */
1461
243a7070
DB
1462#undef FUNCTION_PROFILER
1463#define FUNCTION_PROFILER(FILE, LABELNO) \
c65ebc55
JW
1464do { \
1465 char buf[20]; \
1466 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
243a7070
DB
1467 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE); \
1468 if (TARGET_AUTO_PIC) \
1469 fputs ("\tmovl out3 = @gprel(", FILE); \
1470 else \
1471 fputs ("\taddl out3 = @ltoff(", FILE); \
c65ebc55 1472 assemble_name (FILE, buf); \
243a7070
DB
1473 if (TARGET_AUTO_PIC) \
1474 fputs (");;\n", FILE); \
1475 else \
1476 fputs ("), r1;;\n", FILE); \
1477 fputs ("\tmov out1 = r1\n", FILE); \
1478 fputs ("\tmov out2 = b0\n", FILE); \
1479 fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE); \
c65ebc55 1480} while (0)
c65ebc55
JW
1481\f
1482/* Implementing the Varargs Macros. */
1483
1484/* Define this macro to store the anonymous register arguments into the stack
1485 so that all the arguments appear to have been passed consecutively on the
1486 stack. */
1487
1488#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1489 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1490
1491/* Define this macro if the location where a function argument is passed
1492 depends on whether or not it is a named argument. */
1493
1494#define STRICT_ARGUMENT_NAMING 1
1495
1496\f
1497/* Trampolines for Nested Functions. */
1498
1499/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1500 the function containing a non-local goto target. */
1501
1502#define STACK_SAVEAREA_MODE(LEVEL) \
1503 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1504
1505/* Output assembler code for a block containing the constant parts of
1506 a trampoline, leaving space for the variable parts.
1507
1508 The trampoline should set the static chain pointer to value placed
97e242b0
RH
1509 into the trampoline and should branch to the specified routine.
1510 To make the normal indirect-subroutine calling convention work,
1511 the trampoline must look like a function descriptor; the first
1512 word being the target address and the second being the target's
1513 global pointer.
1514
1515 We abuse the concept of a global pointer by arranging for it
1516 to point to the data we need to load. The complete trampoline
c65ebc55
JW
1517 has the following form:
1518
97e242b0
RH
1519 +-------------------+ \
1520 TRAMP: | __ia64_trampoline | |
1521 +-------------------+ > fake function descriptor
1522 | TRAMP+16 | |
1523 +-------------------+ /
1524 | target descriptor |
1525 +-------------------+
1526 | static link |
1527 +-------------------+
c65ebc55
JW
1528*/
1529
c65ebc55
JW
1530/* A C expression for the size in bytes of the trampoline, as an integer. */
1531
97e242b0 1532#define TRAMPOLINE_SIZE 32
c65ebc55
JW
1533
1534/* Alignment required for trampolines, in bits. */
1535
97e242b0 1536#define TRAMPOLINE_ALIGNMENT 64
c65ebc55
JW
1537
1538/* A C statement to initialize the variable parts of a trampoline. */
1539
1540#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
97e242b0 1541 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
c65ebc55
JW
1542\f
1543/* Implicit Calls to Library Routines */
1544
c65ebc55
JW
1545/* Define this macro if GNU CC should generate calls to the System V (and ANSI
1546 C) library functions `memcpy' and `memset' rather than the BSD functions
1547 `bcopy' and `bzero'. */
1548
1549#define TARGET_MEM_FUNCTIONS
1550
1551\f
1552/* Addressing Modes */
1553
1554/* Define this macro if the machine supports post-increment addressing. */
1555
1556#define HAVE_POST_INCREMENT 1
1557#define HAVE_POST_DECREMENT 1
4b983fdc
RH
1558#define HAVE_POST_MODIFY_DISP 1
1559#define HAVE_POST_MODIFY_REG 1
c65ebc55
JW
1560
1561/* A C expression that is 1 if the RTX X is a constant which is a valid
1562 address. */
1563
1564#define CONSTANT_ADDRESS_P(X) 0
1565
1566/* The max number of registers that can appear in a valid memory address. */
1567
4b983fdc 1568#define MAX_REGS_PER_ADDRESS 2
c65ebc55
JW
1569
1570/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1571 RTX) is a legitimate memory address on the target machine for a memory
1572 operand of mode MODE. */
1573
4b983fdc
RH
1574#define LEGITIMATE_ADDRESS_REG(X) \
1575 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1576 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1577 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1578
1579#define LEGITIMATE_ADDRESS_DISP(R, X) \
1580 (GET_CODE (X) == PLUS \
1581 && rtx_equal_p (R, XEXP (X, 0)) \
cf606f45 1582 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
4b983fdc 1583 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
5527bf14
RH
1584 && INTVAL (XEXP (X, 1)) >= -256 \
1585 && INTVAL (XEXP (X, 1)) < 256)))
c65ebc55
JW
1586
1587#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1588do { \
4b983fdc 1589 if (LEGITIMATE_ADDRESS_REG (X)) \
c65ebc55 1590 goto LABEL; \
4b983fdc
RH
1591 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1592 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1593 && XEXP (X, 0) != arg_pointer_rtx) \
1594 goto LABEL; \
1595 else if (GET_CODE (X) == POST_MODIFY \
1596 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1597 && XEXP (X, 0) != arg_pointer_rtx \
1598 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
c65ebc55 1599 goto LABEL; \
c65ebc55
JW
1600} while (0)
1601
1602/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1603 use as a base register. */
1604
1605#ifdef REG_OK_STRICT
1606#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1607#else
1608#define REG_OK_FOR_BASE_P(X) \
1609 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1610#endif
1611
1612/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
cf606f45 1613 use as an index register. This is needed for POST_MODIFY. */
c65ebc55 1614
cf606f45 1615#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
c65ebc55
JW
1616
1617/* A C compound statement that attempts to replace X with a valid memory
1618 address for an operand of mode MODE.
1619
1620 This must be present, but there is nothing useful to be done here. */
1621
1622#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1623
1624/* A C statement or compound statement with a conditional `goto LABEL;'
1625 executed if memory address X (an RTX) can have different meanings depending
1626 on the machine mode of the memory reference it is used for or if the address
1627 is valid for some modes but not others. */
1628
3f622353 1629#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
c65ebc55
JW
1630 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1631 goto LABEL;
1632
1633/* A C expression that is nonzero if X is a legitimate constant for an
1634 immediate operand on the target machine. */
1635
1636#define LEGITIMATE_CONSTANT_P(X) \
1637 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1638 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1639
1640\f
1641/* Condition Code Status */
1642
1643/* One some machines not all possible comparisons are defined, but you can
1644 convert an invalid comparison into a valid one. */
1645/* ??? Investigate. See the alpha definition. */
1646/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1647
1648\f
1649/* Describing Relative Costs of Operations */
1650
1651/* A part of a C `switch' statement that describes the relative costs of
1652 constant RTL expressions. */
1653
1654/* ??? This is incomplete. */
1655
f2f90c63 1656#define CONST_COSTS(X, CODE, OUTER_CODE) \
c65ebc55
JW
1657 case CONST_INT: \
1658 if ((X) == const0_rtx) \
1659 return 0; \
f2f90c63
RH
1660 switch (OUTER_CODE) \
1661 { \
1662 case SET: \
1663 return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
1664 case PLUS: \
1665 if (CONST_OK_FOR_I (INTVAL (X))) \
1666 return 0; \
1667 if (CONST_OK_FOR_J (INTVAL (X))) \
1668 return 1; \
1669 return COSTS_N_INSNS (1); \
1670 default: \
1671 if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
1672 return 0; \
1673 return COSTS_N_INSNS (1); \
1674 } \
c65ebc55 1675 case CONST_DOUBLE: \
f2f90c63 1676 return COSTS_N_INSNS (1); \
c65ebc55
JW
1677 case CONST: \
1678 case SYMBOL_REF: \
1679 case LABEL_REF: \
2130b7fb 1680 return COSTS_N_INSNS (3);
c65ebc55
JW
1681
1682/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1683
f2f90c63
RH
1684#define RTX_COSTS(X, CODE, OUTER_CODE) \
1685 case MULT: \
1686 /* For multiplies wider than HImode, we have to go to the FPU, \
1687 which normally involves copies. Plus there's the latency \
005f39ce
BS
1688 of the multiply itself, and the latency of the instructions to \
1689 transfer integer regs to FP regs. */ \
f2f90c63 1690 if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
005f39ce
BS
1691 return COSTS_N_INSNS (10); \
1692 return COSTS_N_INSNS (2); \
1693 case PLUS: \
1694 case MINUS: \
1695 case ASHIFT: \
1696 case ASHIFTRT: \
1697 case LSHIFTRT: \
f2f90c63 1698 return COSTS_N_INSNS (1); \
c65ebc55
JW
1699 case DIV: \
1700 case UDIV: \
1701 case MOD: \
1702 case UMOD: \
f2f90c63
RH
1703 /* We make divide expensive, so that divide-by-constant will be \
1704 optimized to a multiply. */ \
1705 return COSTS_N_INSNS (60);
c65ebc55
JW
1706
1707/* An expression giving the cost of an addressing mode that contains ADDRESS.
1708 If not defined, the cost is computed from the ADDRESS expression and the
1709 `CONST_COSTS' values. */
1710
1711#define ADDRESS_COST(ADDRESS) 0
1712
1713/* A C expression for the cost of moving data from a register in class FROM to
7109d286 1714 one in class TO, using MODE. */
c65ebc55 1715
7109d286 1716#define REGISTER_MOVE_COST ia64_register_move_cost
c65ebc55 1717
f2f90c63
RH
1718/* A C expression for the cost of moving data of mode M between a
1719 register and memory. */
1720#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
7109d286
RH
1721 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1722 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
c65ebc55
JW
1723
1724/* A C expression for the cost of a branch instruction. A value of 1 is the
e5bde68a
RH
1725 default; other values are interpreted relative to that. Used by the
1726 if-conversion code as max instruction count. */
1727/* ??? This requires investigation. The primary effect might be how
1728 many additional insn groups we run into, vs how good the dynamic
1729 branch predictor is. */
1730
1731#define BRANCH_COST 6
c65ebc55
JW
1732
1733/* Define this macro as a C expression which is nonzero if accessing less than
1734 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1735 word of memory. */
1736
1737#define SLOW_BYTE_ACCESS 1
1738
1739/* Define this macro if it is as good or better to call a constant function
1740 address than to call an address kept in a register.
1741
1742 Indirect function calls are more expensive that direct function calls, so
1743 don't cse function addresses. */
1744
1745#define NO_FUNCTION_CSE
1746
c65ebc55
JW
1747\f
1748/* Dividing the output into sections. */
1749
1750/* A C expression whose value is a string containing the assembler operation
1751 that should precede instructions and read-only data. */
1752
de323aa1 1753#define TEXT_SECTION_ASM_OP "\t.text"
c65ebc55
JW
1754
1755/* A C expression whose value is a string containing the assembler operation to
1756 identify the following data as writable initialized data. */
1757
de323aa1 1758#define DATA_SECTION_ASM_OP "\t.data"
c65ebc55
JW
1759
1760/* If defined, a C expression whose value is a string containing the assembler
1761 operation to identify the following data as uninitialized global data. */
1762
de323aa1 1763#define BSS_SECTION_ASM_OP "\t.bss"
c65ebc55 1764
c65ebc55
JW
1765/* Define this macro if references to a symbol must be treated differently
1766 depending on something about the variable or function named by the symbol
1767 (such as what section it is in). */
1768
1769#define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
1770
32adf8e6
AH
1771/* If a variable is weakened, made one only or moved into a different
1772 section, it may be necessary to redo the section info to move the
ed168e45 1773 variable out of sdata. */
32adf8e6
AH
1774
1775#define REDO_SECTION_INFO_P(DECL) \
1776 ((TREE_CODE (DECL) == VAR_DECL) \
94c21c17
GS
1777 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1778 || DECL_SECTION_NAME (DECL) != 0))
32adf8e6 1779
c65ebc55
JW
1780#define SDATA_NAME_FLAG_CHAR '@'
1781
1782#define IA64_DEFAULT_GVALUE 8
1783
1784/* Decode SYM_NAME and store the real name part in VAR, sans the characters
1785 that encode section info. */
1786
c45632b7
RH
1787#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1788do { \
1789 (VAR) = (SYMBOL_NAME); \
1790 if ((VAR)[0] == SDATA_NAME_FLAG_CHAR) \
1791 (VAR)++; \
1792 if ((VAR)[0] == '*') \
1793 (VAR)++; \
1794} while (0)
c65ebc55
JW
1795\f
1796/* Position Independent Code. */
1797
1798/* The register number of the register used to address a table of static data
1799 addresses in memory. */
1800
1801/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1802 gen_rtx_REG (DImode, 1). */
1803
1804/* ??? Should we set flag_pic? Probably need to define
1805 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1806
1807#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1808
1809/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1810 clobbered by calls. */
1811
1812#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1813
1814\f
1815/* The Overall Framework of an Assembler File. */
1816
1817/* A C string constant describing how to begin a comment in the target
1818 assembler language. The compiler assumes that the comment will end at the
1819 end of the line. */
1820
1821#define ASM_COMMENT_START "//"
1822
1823/* A C string constant for text to be output before each `asm' statement or
1824 group of consecutive ones. */
1825
1826/* ??? This won't work with the Intel assembler, because it does not accept
1827 # as a comment start character. However, //APP does not work in gas, so we
1828 can't use that either. Same problem for ASM_APP_OFF below. */
1829
1830#define ASM_APP_ON "#APP\n"
1831
1832/* A C string constant for text to be output after each `asm' statement or
1833 group of consecutive ones. */
1834
1835#define ASM_APP_OFF "#NO_APP\n"
1836
1837\f
1838/* Output of Data. */
1839
0c96007e
AM
1840/* This is how to output an assembler line defining a `char' constant
1841 to an xdata segment. */
1842
1843#define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
1844do { \
1845 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
1846 output_addr_const (FILE, (VALUE)); \
1847 fprintf (FILE, "\n"); \
1848} while (0)
1849
1850/* This is how to output an assembler line defining a `short' constant
1851 to an xdata segment. */
1852
1853#define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
1854do { \
1855 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
1856 output_addr_const (FILE, (VALUE)); \
1857 fprintf (FILE, "\n"); \
1858} while (0)
1859
1860/* This is how to output an assembler line defining an `int' constant
1861 to an xdata segment. We also handle symbol output here. */
1862
1863/* ??? For ILP32, also need to handle function addresses here. */
1864
1865#define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
1866do { \
1867 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
1868 output_addr_const (FILE, (VALUE)); \
1869 fprintf (FILE, "\n"); \
1870} while (0)
1871
1872/* This is how to output an assembler line defining a `long' constant
1873 to an xdata segment. We also handle symbol output here. */
1874
1875#define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
1876do { \
59da9a7d 1877 int need_closing_paren = 0; \
0c96007e 1878 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
59da9a7d
JW
1879 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
1880 && GET_CODE (VALUE) == SYMBOL_REF) \
0c96007e 1881 { \
59da9a7d
JW
1882 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
1883 need_closing_paren = 1; \
0c96007e 1884 } \
59da9a7d
JW
1885 output_addr_const (FILE, VALUE); \
1886 if (need_closing_paren) \
0c96007e
AM
1887 fprintf (FILE, ")"); \
1888 fprintf (FILE, "\n"); \
1889} while (0)
1890
1891
c65ebc55
JW
1892\f
1893/* Output of Uninitialized Variables. */
1894
1895/* This is all handled by svr4.h. */
1896
1897\f
1898/* Output and Generation of Labels. */
1899
1900/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1901 assembler definition of a label named NAME. */
1902
1903/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1904 why ia64_asm_output_label exists. */
1905
1906extern int ia64_asm_output_label;
1907#define ASM_OUTPUT_LABEL(STREAM, NAME) \
1908do { \
1909 ia64_asm_output_label = 1; \
1910 assemble_name (STREAM, NAME); \
1911 fputs (":\n", STREAM); \
1912 ia64_asm_output_label = 0; \
1913} while (0)
1914
1915/* A C statement (sans semicolon) to output to the stdio stream STREAM some
1916 commands that will make the label NAME global; that is, available for
1917 reference from other files. */
1918
1919#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1920do { \
1921 fputs ("\t.global ", STREAM); \
1922 assemble_name (STREAM, NAME); \
1923 fputs ("\n", STREAM); \
1924} while (0)
1925
1926/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1927 necessary for declaring the name of an external symbol named NAME which is
1928 referenced in this compilation but not defined. */
1929
1930#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1931 ia64_asm_output_external (FILE, DECL, NAME)
1932
1933/* A C statement to store into the string STRING a label whose name is made
1934 from the string PREFIX and the number NUM. */
1935
1936#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1937do { \
1938 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1939} while (0)
1940
1941/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
1942 newly allocated string made from the string NAME and the number NUMBER, with
1943 some suitable punctuation added. */
1944
1945/* ??? Not sure if using a ? in the name for Intel as is safe. */
1946
1947#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
1948do { \
1949 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
1950 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
1951 (long)(NUMBER)); \
1952} while (0)
1953
1954/* A C statement to output to the stdio stream STREAM assembler code which
1955 defines (equates) the symbol NAME to have the value VALUE. */
1956
1957#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1958do { \
1959 assemble_name (STREAM, NAME); \
1960 fputs (" = ", STREAM); \
1961 assemble_name (STREAM, VALUE); \
1962 fputc ('\n', STREAM); \
1963} while (0)
1964
1965\f
1966/* Macros Controlling Initialization Routines. */
1967
1968/* This is handled by svr4.h and sysv4.h. */
1969
1970\f
1971/* Output of Assembler Instructions. */
1972
1973/* A C initializer containing the assembler's names for the machine registers,
1974 each one as a C string constant. */
1975
1976#define REGISTER_NAMES \
1977{ \
1978 /* General registers. */ \
1979 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1980 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1981 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1982 "r30", "r31", \
1983 /* Local registers. */ \
1984 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1985 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1986 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1987 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1988 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1989 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1990 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1991 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1992 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1993 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1994 /* Input registers. */ \
1995 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1996 /* Output registers. */ \
1997 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1998 /* Floating-point registers. */ \
1999 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
2000 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
2001 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
2002 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
2003 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
2004 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
2005 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
2006 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2007 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2008 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2009 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2010 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2011 "f120","f121","f122","f123","f124","f125","f126","f127", \
2012 /* Predicate registers. */ \
2013 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2014 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2015 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2016 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2017 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2018 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2019 "p60", "p61", "p62", "p63", \
2020 /* Branch registers. */ \
2021 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2022 /* Frame pointer. Return address. */ \
97e242b0 2023 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
c65ebc55
JW
2024}
2025
2026/* If defined, a C initializer for an array of structures containing a name and
2027 a register number. This macro defines additional names for hard registers,
2028 thus allowing the `asm' option in declarations to refer to registers using
2029 alternate names. */
2030
2031#define ADDITIONAL_REGISTER_NAMES \
2032{ \
2033 { "gp", R_GR (1) }, \
2034 { "sp", R_GR (12) }, \
2035 { "in0", IN_REG (0) }, \
2036 { "in1", IN_REG (1) }, \
2037 { "in2", IN_REG (2) }, \
2038 { "in3", IN_REG (3) }, \
2039 { "in4", IN_REG (4) }, \
2040 { "in5", IN_REG (5) }, \
2041 { "in6", IN_REG (6) }, \
2042 { "in7", IN_REG (7) }, \
2043 { "out0", OUT_REG (0) }, \
2044 { "out1", OUT_REG (1) }, \
2045 { "out2", OUT_REG (2) }, \
2046 { "out3", OUT_REG (3) }, \
2047 { "out4", OUT_REG (4) }, \
2048 { "out5", OUT_REG (5) }, \
2049 { "out6", OUT_REG (6) }, \
2050 { "out7", OUT_REG (7) }, \
2051 { "loc0", LOC_REG (0) }, \
2052 { "loc1", LOC_REG (1) }, \
2053 { "loc2", LOC_REG (2) }, \
2054 { "loc3", LOC_REG (3) }, \
2055 { "loc4", LOC_REG (4) }, \
2056 { "loc5", LOC_REG (5) }, \
2057 { "loc6", LOC_REG (6) }, \
2058 { "loc7", LOC_REG (7) }, \
2059 { "loc8", LOC_REG (8) }, \
2060 { "loc9", LOC_REG (9) }, \
2061 { "loc10", LOC_REG (10) }, \
2062 { "loc11", LOC_REG (11) }, \
2063 { "loc12", LOC_REG (12) }, \
2064 { "loc13", LOC_REG (13) }, \
2065 { "loc14", LOC_REG (14) }, \
2066 { "loc15", LOC_REG (15) }, \
2067 { "loc16", LOC_REG (16) }, \
2068 { "loc17", LOC_REG (17) }, \
2069 { "loc18", LOC_REG (18) }, \
2070 { "loc19", LOC_REG (19) }, \
2071 { "loc20", LOC_REG (20) }, \
2072 { "loc21", LOC_REG (21) }, \
2073 { "loc22", LOC_REG (22) }, \
2074 { "loc23", LOC_REG (23) }, \
2075 { "loc24", LOC_REG (24) }, \
2076 { "loc25", LOC_REG (25) }, \
2077 { "loc26", LOC_REG (26) }, \
2078 { "loc27", LOC_REG (27) }, \
2079 { "loc28", LOC_REG (28) }, \
2080 { "loc29", LOC_REG (29) }, \
2081 { "loc30", LOC_REG (30) }, \
2082 { "loc31", LOC_REG (31) }, \
2083 { "loc32", LOC_REG (32) }, \
2084 { "loc33", LOC_REG (33) }, \
2085 { "loc34", LOC_REG (34) }, \
2086 { "loc35", LOC_REG (35) }, \
2087 { "loc36", LOC_REG (36) }, \
2088 { "loc37", LOC_REG (37) }, \
2089 { "loc38", LOC_REG (38) }, \
2090 { "loc39", LOC_REG (39) }, \
2091 { "loc40", LOC_REG (40) }, \
2092 { "loc41", LOC_REG (41) }, \
2093 { "loc42", LOC_REG (42) }, \
2094 { "loc43", LOC_REG (43) }, \
2095 { "loc44", LOC_REG (44) }, \
2096 { "loc45", LOC_REG (45) }, \
2097 { "loc46", LOC_REG (46) }, \
2098 { "loc47", LOC_REG (47) }, \
2099 { "loc48", LOC_REG (48) }, \
2100 { "loc49", LOC_REG (49) }, \
2101 { "loc50", LOC_REG (50) }, \
2102 { "loc51", LOC_REG (51) }, \
2103 { "loc52", LOC_REG (52) }, \
2104 { "loc53", LOC_REG (53) }, \
2105 { "loc54", LOC_REG (54) }, \
2106 { "loc55", LOC_REG (55) }, \
2107 { "loc56", LOC_REG (56) }, \
2108 { "loc57", LOC_REG (57) }, \
2109 { "loc58", LOC_REG (58) }, \
2110 { "loc59", LOC_REG (59) }, \
2111 { "loc60", LOC_REG (60) }, \
2112 { "loc61", LOC_REG (61) }, \
2113 { "loc62", LOC_REG (62) }, \
2114 { "loc63", LOC_REG (63) }, \
2115 { "loc64", LOC_REG (64) }, \
2116 { "loc65", LOC_REG (65) }, \
2117 { "loc66", LOC_REG (66) }, \
2118 { "loc67", LOC_REG (67) }, \
2119 { "loc68", LOC_REG (68) }, \
2120 { "loc69", LOC_REG (69) }, \
2121 { "loc70", LOC_REG (70) }, \
2122 { "loc71", LOC_REG (71) }, \
2123 { "loc72", LOC_REG (72) }, \
2124 { "loc73", LOC_REG (73) }, \
2125 { "loc74", LOC_REG (74) }, \
2126 { "loc75", LOC_REG (75) }, \
2127 { "loc76", LOC_REG (76) }, \
2128 { "loc77", LOC_REG (77) }, \
2129 { "loc78", LOC_REG (78) }, \
794eefd9 2130 { "loc79", LOC_REG (79) }, \
c65ebc55
JW
2131}
2132
2133/* A C compound statement to output to stdio stream STREAM the assembler syntax
2134 for an instruction operand X. X is an RTL expression. */
2135
2136#define PRINT_OPERAND(STREAM, X, CODE) \
2137 ia64_print_operand (STREAM, X, CODE)
2138
2139/* A C expression which evaluates to true if CODE is a valid punctuation
2140 character for use in the `PRINT_OPERAND' macro. */
2141
2142/* ??? Keep this around for now, as we might need it later. */
2143
6f8aa100
RH
2144#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2145 ((CODE) == '+' || (CODE) == ',')
c65ebc55
JW
2146
2147/* A C compound statement to output to stdio stream STREAM the assembler syntax
2148 for an instruction operand that is a memory reference whose address is X. X
2149 is an RTL expression. */
2150
2151#define PRINT_OPERAND_ADDRESS(STREAM, X) \
2152 ia64_print_operand_address (STREAM, X)
2153
2154/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2155 `%I' options of `asm_fprintf' (see `final.c'). */
2156
2157#define REGISTER_PREFIX ""
2158#define LOCAL_LABEL_PREFIX "."
2159#define USER_LABEL_PREFIX ""
2160#define IMMEDIATE_PREFIX ""
2161
2162\f
2163/* Output of dispatch tables. */
2164
2165/* This macro should be provided on machines where the addresses in a dispatch
2166 table are relative to the table's own address. */
2167
2168/* ??? Depends on the pointer size. */
2169
2170#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
340f7e7c 2171 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE)
c65ebc55
JW
2172
2173/* This is how to output an element of a case-vector that is absolute.
2174 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2175
2176#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2177
c65ebc55
JW
2178/* Jump tables only need 8 byte alignment. */
2179
2180#define ADDR_VEC_ALIGN(ADDR_VEC) 3
2181
2182\f
2183/* Assembler Commands for Exception Regions. */
2184
2a1ee410
RH
2185/* Select a format to encode pointers in exception handling data. CODE
2186 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2187 true if the symbol may be affected by dynamic relocations. */
2188#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2189 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2190 | ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_udata8)
2191
2192/* Handle special EH pointer encodings. Absolute, pc-relative, and
2193 indirect are handled automatically. */
2194#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2195 do { \
2196 const char *reltag = NULL; \
2197 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2198 reltag = "@segrel("; \
2199 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2200 reltag = "@gprel("; \
2201 if (reltag) \
2202 { \
301d03af 2203 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2a1ee410
RH
2204 fputs (reltag, FILE); \
2205 assemble_name (FILE, XSTR (ADDR, 0)); \
2206 fputc (')', FILE); \
2207 goto DONE; \
2208 } \
2209 } while (0)
c65ebc55 2210
c65ebc55
JW
2211\f
2212/* Assembler Commands for Alignment. */
2213
c65ebc55
JW
2214/* ??? Investigate. */
2215
340f7e7c
RH
2216/* The alignment (log base 2) to put in front of LABEL, which follows
2217 a BARRIER. */
c65ebc55
JW
2218
2219/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2220
2221/* The desired alignment for the location counter at the beginning
2222 of a loop. */
2223
c65ebc55
JW
2224/* #define LOOP_ALIGN(LABEL) */
2225
2226/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2227 section because it fails put zeros in the bytes that are skipped. */
2228
2229#define ASM_NO_SKIP_IN_TEXT 1
2230
2231/* A C statement to output to the stdio stream STREAM an assembler command to
2232 advance the location counter to a multiple of 2 to the POWER bytes. */
2233
2234#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2235 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2236
2237\f
2238/* Macros Affecting all Debug Formats. */
2239
2240/* This is handled in svr4.h and sysv4.h. */
2241
2242\f
2243/* Specific Options for DBX Output. */
2244
2245/* This is handled by dbxelf.h which is included by svr4.h. */
2246
2247\f
2248/* Open ended Hooks for DBX Output. */
2249
2250/* Likewise. */
2251
2252\f
2253/* File names in DBX format. */
2254
2255/* Likewise. */
2256
2257\f
2258/* Macros for SDB and Dwarf Output. */
2259
2260/* Define this macro if GNU CC should produce dwarf version 2 format debugging
2261 output in response to the `-g' option. */
2262
2263#define DWARF2_DEBUGGING_INFO
2264
c65ebc55
JW
2265#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2266
8215347e
JW
2267/* Use tags for debug info labels, so that they don't break instruction
2268 bundles. This also avoids getting spurious DV warnings from the
2269 assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2270 add brackets around the label. */
2271
2272#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
7426e9a2 2273 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
8215347e 2274
7426e9a2
RH
2275/* Use section-relative relocations for debugging offsets. Unlike other
2276 targets that fake this by putting the section VMA at 0, IA-64 has
2277 proper relocations for them. */
2278#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2279 do { \
301d03af 2280 fputs (integer_asm_op (SIZE, FALSE), FILE); \
7426e9a2
RH
2281 fputs ("@secrel(", FILE); \
2282 assemble_name (FILE, LABEL); \
2283 fputc (')', FILE); \
2284 } while (0)
2285
2286/* Emit a PC-relative relocation. */
2287#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2288 do { \
301d03af 2289 fputs (integer_asm_op (SIZE, FALSE), FILE); \
7426e9a2
RH
2290 fputs ("@pcrel(", FILE); \
2291 assemble_name (FILE, LABEL); \
2292 fputc (')', FILE); \
2293 } while (0)
c65ebc55
JW
2294\f
2295/* Cross Compilation and Floating Point. */
2296
ed168e45 2297/* Define to enable software floating point emulation. */
c65ebc55
JW
2298#define REAL_ARITHMETIC
2299
7b82b5da
SC
2300\f
2301/* Register Renaming Parameters. */
2302
2303/* A C expression that is nonzero if hard register number REGNO2 can be
2304 considered for use as a rename register for REGNO1 */
2305
2306#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
10c9f189 2307 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
7b82b5da 2308
c65ebc55
JW
2309\f
2310/* Miscellaneous Parameters. */
2311
2312/* Define this if you have defined special-purpose predicates in the file
2313 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2314 expressions matched by the predicate. */
2315
2316#define PREDICATE_CODES \
2317{ "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
ec039e3c 2318{ "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
c65ebc55
JW
2319{ "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2320{ "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2321{ "function_operand", {SYMBOL_REF}}, \
2322{ "setjmp_operand", {SYMBOL_REF}}, \
4b983fdc 2323{ "destination_operand", {SUBREG, REG, MEM}}, \
0551c32d 2324{ "not_postinc_memory_operand", {MEM}}, \
c65ebc55
JW
2325{ "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2326 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
0551c32d
RH
2327{ "gr_register_operand", {SUBREG, REG}}, \
2328{ "fr_register_operand", {SUBREG, REG}}, \
2329{ "grfr_register_operand", {SUBREG, REG}}, \
2330{ "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
655f2eb9 2331{ "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
0551c32d
RH
2332{ "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2333{ "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2334{ "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2335{ "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2336{ "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2337{ "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2338{ "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2339 CONSTANT_P_RTX}}, \
0551c32d 2340{ "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2341 CONSTANT_P_RTX}}, \
0551c32d
RH
2342{ "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2343{ "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
c65ebc55
JW
2344{ "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2345{ "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2346 CONSTANT_P_RTX}}, \
2347{ "shladd_operand", {CONST_INT}}, \
2348{ "fetchadd_operand", {CONST_INT}}, \
0551c32d 2349{ "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
c65ebc55
JW
2350{ "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2351{ "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
f2f90c63 2352{ "signed_inequality_operator", {GE, GT, LE, LT}}, \
5527bf14 2353{ "predicate_operator", {NE, EQ}}, \
acb0638d 2354{ "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
97e242b0 2355{ "ar_lc_reg_operand", {REG}}, \
3f622353 2356{ "ar_ccv_reg_operand", {REG}}, \
6ca3c22f 2357{ "ar_pfs_reg_operand", {REG}}, \
3f622353
RH
2358{ "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2359{ "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2360{ "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
c65ebc55
JW
2361
2362/* An alias for a machine mode name. This is the machine mode that elements of
2363 a jump-table should have. */
2364
2365#define CASE_VECTOR_MODE Pmode
2366
2367/* Define as C expression which evaluates to nonzero if the tablejump
2368 instruction expects the table to contain offsets from the address of the
2369 table. */
2370
2371#define CASE_VECTOR_PC_RELATIVE 1
2372
2373/* Define this macro if operations between registers with integral mode smaller
2374 than a word are always performed on the entire register. */
2375
2376#define WORD_REGISTER_OPERATIONS
2377
2378/* Define this macro to be a C expression indicating when insns that read
2379 memory in MODE, an integral mode narrower than a word, set the bits outside
2380 of MODE to be either the sign-extension or the zero-extension of the data
2381 read. */
2382
2383#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2384
c65ebc55
JW
2385/* The maximum number of bytes that a single instruction can move quickly from
2386 memory to memory. */
2387#define MOVE_MAX 8
2388
2389/* A C expression which is nonzero if on this machine it is safe to "convert"
2390 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2391 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2392
2393#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2394
2395/* A C expression describing the value returned by a comparison operator with
2396 an integral mode and stored by a store-flag instruction (`sCOND') when the
2397 condition is true. */
2398
2399/* ??? Investigate using -1 instead of 1. */
2400
2401#define STORE_FLAG_VALUE 1
2402
2403/* An alias for the machine mode for pointers. */
2404
2405/* ??? This would change if we had ILP32 support. */
2406
2407#define Pmode DImode
2408
2409/* An alias for the machine mode used for memory references to functions being
2410 called, in `call' RTL expressions. */
2411
2412#define FUNCTION_MODE Pmode
2413
2414/* Define this macro to handle System V style pragmas: #pragma pack and
2415 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2416 defined. */
2417
8527852a
JJ
2418/* If this architecture supports prefetch, define this to be the number of
2419 prefetch commands that can be executed in parallel.
2420
2421 ??? This number is bogus and needs to be replaced before the value is
2422 actually used in optimizations. */
2423
2424#define SIMULTANEOUS_PREFETCHES 6
2425
2426/* If this architecture supports prefetch, define this to be the size of
2427 the cache line that is prefetched. */
2428
2429#define PREFETCH_BLOCK 32
2430
c65ebc55
JW
2431#define HANDLE_SYSV_PRAGMA
2432
c65ebc55
JW
2433/* In rare cases, correct code generation requires extra machine dependent
2434 processing between the second jump optimization pass and delayed branch
2435 scheduling. On those machines, define this macro as a C statement to act on
2436 the code starting at INSN. */
2437
2438#define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2439
2440/* A C expression for the maximum number of instructions to execute via
2441 conditional execution instructions instead of a branch. A value of
2442 BRANCH_COST+1 is the default if the machine does not use
2443 cc0, and 1 if it does use cc0. */
2444/* ??? Investigate. */
2130b7fb
BS
2445#define MAX_CONDITIONAL_EXECUTE 12
2446
2130b7fb 2447extern int ia64_final_schedule;
c65ebc55 2448
0c96007e 2449#define IA64_UNWIND_INFO 1
0c96007e
AM
2450#define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2451
2a1ee410
RH
2452#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2453
0c96007e
AM
2454/* This function contains machine specific function data. */
2455struct machine_function
2456{
2457 /* The new stack pointer when unwinding from EH. */
2458 struct rtx_def* ia64_eh_epilogue_sp;
2459
ed168e45 2460 /* The new bsp value when unwinding from EH. */
0c96007e 2461 struct rtx_def* ia64_eh_epilogue_bsp;
97e242b0
RH
2462
2463 /* The GP value save register. */
2464 struct rtx_def* ia64_gp_save;
26a110f5
RH
2465
2466 /* The number of varargs registers to save. */
2467 int n_varargs;
0c96007e
AM
2468};
2469
2470
c65ebc55
JW
2471enum ia64_builtins
2472{
2473 IA64_BUILTIN_SYNCHRONIZE,
2474
2475 IA64_BUILTIN_FETCH_AND_ADD_SI,
2476 IA64_BUILTIN_FETCH_AND_SUB_SI,
2477 IA64_BUILTIN_FETCH_AND_OR_SI,
2478 IA64_BUILTIN_FETCH_AND_AND_SI,
2479 IA64_BUILTIN_FETCH_AND_XOR_SI,
2480 IA64_BUILTIN_FETCH_AND_NAND_SI,
2481
2482 IA64_BUILTIN_ADD_AND_FETCH_SI,
2483 IA64_BUILTIN_SUB_AND_FETCH_SI,
2484 IA64_BUILTIN_OR_AND_FETCH_SI,
2485 IA64_BUILTIN_AND_AND_FETCH_SI,
2486 IA64_BUILTIN_XOR_AND_FETCH_SI,
2487 IA64_BUILTIN_NAND_AND_FETCH_SI,
2488
2489 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2490 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2491
2492 IA64_BUILTIN_SYNCHRONIZE_SI,
2493
2494 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2495
2496 IA64_BUILTIN_LOCK_RELEASE_SI,
2497
2498 IA64_BUILTIN_FETCH_AND_ADD_DI,
2499 IA64_BUILTIN_FETCH_AND_SUB_DI,
2500 IA64_BUILTIN_FETCH_AND_OR_DI,
2501 IA64_BUILTIN_FETCH_AND_AND_DI,
2502 IA64_BUILTIN_FETCH_AND_XOR_DI,
2503 IA64_BUILTIN_FETCH_AND_NAND_DI,
2504
2505 IA64_BUILTIN_ADD_AND_FETCH_DI,
2506 IA64_BUILTIN_SUB_AND_FETCH_DI,
2507 IA64_BUILTIN_OR_AND_FETCH_DI,
2508 IA64_BUILTIN_AND_AND_FETCH_DI,
2509 IA64_BUILTIN_XOR_AND_FETCH_DI,
2510 IA64_BUILTIN_NAND_AND_FETCH_DI,
2511
2512 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2513 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2514
2515 IA64_BUILTIN_SYNCHRONIZE_DI,
2516
2517 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2518
ce152ef8
AM
2519 IA64_BUILTIN_LOCK_RELEASE_DI,
2520
2521 IA64_BUILTIN_BSP,
2522 IA64_BUILTIN_FLUSHRS
c65ebc55
JW
2523};
2524
ed168e45 2525/* Codes for expand_compare_and_swap and expand_swap_and_compare. */
c65ebc55
JW
2526enum fetchop_code {
2527 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2528};
2529
c65ebc55 2530/* End of ia64.h */