]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/m68k/m68k.c
.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
CommitLineData
5243fbff 1/* Subroutines for insn-output.c for Motorola 68000 family.
aad93da1 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
5243fbff 3
187b36cf 4This file is part of GCC.
5243fbff 5
187b36cf 6GCC is free software; you can redistribute it and/or modify
5243fbff 7it under the terms of the GNU General Public License as published by
038d1e19 8the Free Software Foundation; either version 3, or (at your option)
5243fbff 9any later version.
10
187b36cf 11GCC is distributed in the hope that it will be useful,
5243fbff 12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
038d1e19 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
5243fbff 19
5243fbff 20#include "config.h"
6c82faf1 21#include "system.h"
805e22b2 22#include "coretypes.h"
9ef16211 23#include "backend.h"
d040a5b0 24#include "cfghooks.h"
7720c877 25#include "tree.h"
30a86690 26#include "stringpool.h"
27#include "attribs.h"
9ef16211 28#include "rtl.h"
29#include "df.h"
30#include "alias.h"
b20a8bb4 31#include "fold-const.h"
9ed99284 32#include "calls.h"
33#include "stor-layout.h"
34#include "varasm.h"
5243fbff 35#include "regs.h"
5243fbff 36#include "insn-config.h"
37#include "conditions.h"
5243fbff 38#include "output.h"
39#include "insn-attr.h"
e6b2f841 40#include "recog.h"
0b205f4c 41#include "diagnostic-core.h"
d53441c8 42#include "flags.h"
d53441c8 43#include "expmed.h"
44#include "dojump.h"
45#include "explow.h"
ad7b10a2 46#include "memmodel.h"
d53441c8 47#include "emit-rtl.h"
48#include "stmt.h"
9ce40aae 49#include "expr.h"
50#include "reload.h"
f2fa409d 51#include "tm_p.h"
a767736d 52#include "target.h"
01d15dc5 53#include "debug.h"
94ea8568 54#include "cfgrtl.h"
55#include "cfganal.h"
56#include "lcm.h"
57#include "cfgbuild.h"
58#include "cfgcleanup.h"
15b9ea10 59/* ??? Need to add a dependency between m68k.o and sched-int.h. */
60#include "sched-int.h"
61#include "insn-codes.h"
fba5dd52 62#include "opts.h"
5bb27b7c 63#include "optabs.h"
f7715905 64#include "builtins.h"
d8ca5b53 65#include "rtl-iter.h"
5243fbff 66
0c71fb4f 67/* This file should be included last. */
4b498588 68#include "target-def.h"
69
69d0a6ee 70enum reg_class regno_reg_class[] =
71{
72 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
73 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
74 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
75 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
76 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
77 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
78 ADDR_REGS
79};
80
81
9c47decb 82/* The minimum number of integer registers that we want to save with the
83 movem instruction. Using two movel instructions instead of a single
84 moveml is about 15% faster for the 68020 and 68030 at no expense in
85 code size. */
86#define MIN_MOVEM_REGS 3
87
88/* The minimum number of floating point registers that we want to save
89 with the fmovem instruction. */
90#define MIN_FMOVEM_REGS 1
91
1d60d981 92/* Structure describing stack frame layout. */
d02588f4 93struct m68k_frame
94{
95 /* Stack pointer to frame pointer offset. */
7366b851 96 HOST_WIDE_INT offset;
d02588f4 97
98 /* Offset of FPU registers. */
99 HOST_WIDE_INT foffset;
100
101 /* Frame size in bytes (rounded up). */
7366b851 102 HOST_WIDE_INT size;
d02588f4 103
104 /* Data and address register. */
7366b851 105 int reg_no;
106 unsigned int reg_mask;
d02588f4 107
108 /* FPU registers. */
7366b851 109 int fpu_no;
110 unsigned int fpu_mask;
d02588f4 111
112 /* Offsets relative to ARG_POINTER. */
7366b851 113 HOST_WIDE_INT frame_pointer_offset;
114 HOST_WIDE_INT stack_pointer_offset;
d02588f4 115
116 /* Function which the above information refers to. */
117 int funcdef_no;
7366b851 118};
119
d02588f4 120/* Current frame information calculated by m68k_compute_frame_layout(). */
121static struct m68k_frame current_frame;
122
b97b0687 123/* Structure describing an m68k address.
124
125 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
126 with null fields evaluating to 0. Here:
127
128 - BASE satisfies m68k_legitimate_base_reg_p
129 - INDEX satisfies m68k_legitimate_index_reg_p
130 - OFFSET satisfies m68k_legitimate_constant_address_p
131
132 INDEX is either HImode or SImode. The other fields are SImode.
133
134 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
135 the address is (BASE)+. */
136struct m68k_address {
137 enum rtx_code code;
138 rtx base;
139 rtx index;
140 rtx offset;
141 int scale;
142};
143
99f52c2b 144static int m68k_sched_adjust_cost (rtx_insn *, int, rtx_insn *, int,
145 unsigned int);
3c904dda 146static int m68k_sched_issue_rate (void);
18282db0 147static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
15b9ea10 148static void m68k_sched_md_init_global (FILE *, int, int);
149static void m68k_sched_md_finish_global (FILE *, int);
150static void m68k_sched_md_init (FILE *, int, int);
151static void m68k_sched_dfa_pre_advance_cycle (void);
152static void m68k_sched_dfa_post_advance_cycle (void);
3c904dda 153static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
15b9ea10 154
cd90919d 155static bool m68k_can_eliminate (const int, const int);
b2d7ede1 156static void m68k_conditional_register_usage (void);
3754d046 157static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
4c834714 158static void m68k_option_override (void);
c2e7013d 159static void m68k_override_options_after_change (void);
821960c7 160static rtx find_addr_reg (rtx);
161static const char *singlemove_string (rtx *);
821960c7 162static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
163 HOST_WIDE_INT, tree);
c8c47ddf 164static rtx m68k_struct_value_rtx (tree, int);
7366b851 165static tree m68k_handle_fndecl_attribute (tree *node, tree name,
166 tree args, int flags,
167 bool *no_add_attrs);
d02588f4 168static void m68k_compute_frame_layout (void);
7366b851 169static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
33fb08b8 170static bool m68k_ok_for_sibcall_p (tree, tree);
869bde6b 171static bool m68k_tls_symbol_p (rtx);
3754d046 172static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
5ae4887d 173static bool m68k_rtx_costs (rtx, machine_mode, int, int, int *, bool);
159cec75 174#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
33be53f9 175static bool m68k_return_in_memory (const_tree, const_tree);
159cec75 176#endif
869bde6b 177static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
61fafd77 178static void m68k_trampoline_init (rtx, tree, rtx);
f5bc28da 179static int m68k_return_pops_args (tree, tree, int);
1a1a6f69 180static rtx m68k_delegitimize_address (rtx);
3754d046 181static void m68k_function_arg_advance (cumulative_args_t, machine_mode,
385c19d1 182 const_tree, bool);
3754d046 183static rtx m68k_function_arg (cumulative_args_t, machine_mode,
385c19d1 184 const_tree, bool);
3754d046 185static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
27f5e69f 186static bool m68k_output_addr_const_extra (FILE *, rtx);
5bb27b7c 187static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
41af789c 188static enum flt_eval_method
189m68k_excess_precision (enum excess_precision_type);
5243fbff 190\f
a767736d 191/* Initialize the GCC target structure. */
58356836 192
193#if INT_OP_GROUP == INT_OP_DOT_WORD
194#undef TARGET_ASM_ALIGNED_HI_OP
195#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
196#endif
197
198#if INT_OP_GROUP == INT_OP_NO_DOT
199#undef TARGET_ASM_BYTE_OP
200#define TARGET_ASM_BYTE_OP "\tbyte\t"
201#undef TARGET_ASM_ALIGNED_HI_OP
202#define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
203#undef TARGET_ASM_ALIGNED_SI_OP
204#define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
205#endif
206
207#if INT_OP_GROUP == INT_OP_DC
208#undef TARGET_ASM_BYTE_OP
209#define TARGET_ASM_BYTE_OP "\tdc.b\t"
210#undef TARGET_ASM_ALIGNED_HI_OP
211#define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
212#undef TARGET_ASM_ALIGNED_SI_OP
213#define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
214#endif
215
216#undef TARGET_ASM_UNALIGNED_HI_OP
217#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
218#undef TARGET_ASM_UNALIGNED_SI_OP
219#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
220
6988553d 221#undef TARGET_ASM_OUTPUT_MI_THUNK
222#define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
b712bf34 223#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
a9f1838b 224#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
6988553d 225
92c473b8 226#undef TARGET_ASM_FILE_START_APP_OFF
227#define TARGET_ASM_FILE_START_APP_OFF true
228
41e3a0c7 229#undef TARGET_LEGITIMIZE_ADDRESS
230#define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
231
15b9ea10 232#undef TARGET_SCHED_ADJUST_COST
233#define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
234
3c904dda 235#undef TARGET_SCHED_ISSUE_RATE
236#define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
237
15b9ea10 238#undef TARGET_SCHED_VARIABLE_ISSUE
239#define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
240
241#undef TARGET_SCHED_INIT_GLOBAL
242#define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
243
244#undef TARGET_SCHED_FINISH_GLOBAL
245#define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
246
247#undef TARGET_SCHED_INIT
248#define TARGET_SCHED_INIT m68k_sched_md_init
249
250#undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
251#define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
252
253#undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
254#define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
255
3c904dda 256#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
257#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
258 m68k_sched_first_cycle_multipass_dfa_lookahead
259
4c834714 260#undef TARGET_OPTION_OVERRIDE
261#define TARGET_OPTION_OVERRIDE m68k_option_override
262
c2e7013d 263#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
264#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
265
fab7adbf 266#undef TARGET_RTX_COSTS
267#define TARGET_RTX_COSTS m68k_rtx_costs
268
7366b851 269#undef TARGET_ATTRIBUTE_TABLE
270#define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
271
c8c47ddf 272#undef TARGET_PROMOTE_PROTOTYPES
fb80456a 273#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
c8c47ddf 274
275#undef TARGET_STRUCT_VALUE_RTX
276#define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
277
e0ab7256 278#undef TARGET_CANNOT_FORCE_CONST_MEM
7d7d7bd2 279#define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
e0ab7256 280
33fb08b8 281#undef TARGET_FUNCTION_OK_FOR_SIBCALL
282#define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
283
159cec75 284#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
285#undef TARGET_RETURN_IN_MEMORY
286#define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
287#endif
288
869bde6b 289#ifdef HAVE_AS_TLS
290#undef TARGET_HAVE_TLS
291#define TARGET_HAVE_TLS (true)
292
293#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
294#define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
295#endif
296
e46fbef5 297#undef TARGET_LRA_P
298#define TARGET_LRA_P hook_bool_void_false
299
fd50b071 300#undef TARGET_LEGITIMATE_ADDRESS_P
301#define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
302
cd90919d 303#undef TARGET_CAN_ELIMINATE
304#define TARGET_CAN_ELIMINATE m68k_can_eliminate
305
b2d7ede1 306#undef TARGET_CONDITIONAL_REGISTER_USAGE
307#define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
308
61fafd77 309#undef TARGET_TRAMPOLINE_INIT
310#define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
311
f5bc28da 312#undef TARGET_RETURN_POPS_ARGS
313#define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
314
1a1a6f69 315#undef TARGET_DELEGITIMIZE_ADDRESS
316#define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
317
385c19d1 318#undef TARGET_FUNCTION_ARG
319#define TARGET_FUNCTION_ARG m68k_function_arg
320
321#undef TARGET_FUNCTION_ARG_ADVANCE
322#define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
323
ca316360 324#undef TARGET_LEGITIMATE_CONSTANT_P
325#define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
326
27f5e69f 327#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
328#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
329
41af789c 330#undef TARGET_C_EXCESS_PRECISION
331#define TARGET_C_EXCESS_PRECISION m68k_excess_precision
332
2a967206 333/* The value stored by TAS. */
334#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
335#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
336
7366b851 337static const struct attribute_spec m68k_attribute_table[] =
338{
ac86af5d 339 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
340 affects_type_identity } */
341 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
342 false },
343 { "interrupt_handler", 0, 0, true, false, false,
344 m68k_handle_fndecl_attribute, false },
345 { "interrupt_thread", 0, 0, true, false, false,
346 m68k_handle_fndecl_attribute, false },
347 { NULL, 0, 0, false, false, false, NULL, false }
7366b851 348};
349
57e4bbfb 350struct gcc_target targetm = TARGET_INITIALIZER;
a767736d 351\f
8aed3cb3 352/* Base flags for 68k ISAs. */
353#define FL_FOR_isa_00 FL_ISA_68000
354#define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
355/* FL_68881 controls the default setting of -m68881. gcc has traditionally
356 generated 68881 code for 68020 and 68030 targets unless explicitly told
357 not to. */
358#define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
5980279a 359 | FL_BITFIELD | FL_68881 | FL_CAS)
8aed3cb3 360#define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
361#define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
362
363/* Base flags for ColdFire ISAs. */
364#define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
365#define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
366/* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
367#define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
7f2330d5 368/* ISA_C is not upwardly compatible with ISA_B. */
12877e83 369#define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
8aed3cb3 370
371enum m68k_isa
372{
373 /* Traditional 68000 instruction sets. */
374 isa_00,
375 isa_10,
376 isa_20,
377 isa_40,
378 isa_cpu32,
379 /* ColdFire instruction set variants. */
380 isa_a,
381 isa_aplus,
382 isa_b,
383 isa_c,
384 isa_max
385};
386
387/* Information about one of the -march, -mcpu or -mtune arguments. */
388struct m68k_target_selection
389{
390 /* The argument being described. */
391 const char *name;
392
393 /* For -mcpu, this is the device selected by the option.
394 For -mtune and -march, it is a representative device
395 for the microarchitecture or ISA respectively. */
396 enum target_device device;
397
398 /* The M68K_DEVICE fields associated with DEVICE. See the comment
399 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
400 const char *family;
401 enum uarch_type microarch;
402 enum m68k_isa isa;
403 unsigned long flags;
404};
405
406/* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
407static const struct m68k_target_selection all_devices[] =
408{
409#define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
410 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
411#include "m68k-devices.def"
412#undef M68K_DEVICE
413 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
414};
415
416/* A list of all ISAs, mapping each one to a representative device.
417 Used for -march selection. */
418static const struct m68k_target_selection all_isas[] =
419{
d078aadd 420#define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
421 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
422#include "m68k-isas.def"
423#undef M68K_ISA
8aed3cb3 424 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
425};
426
427/* A list of all microarchitectures, mapping each one to a representative
428 device. Used for -mtune selection. */
429static const struct m68k_target_selection all_microarchs[] =
430{
d078aadd 431#define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
432 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
433#include "m68k-microarchs.def"
434#undef M68K_MICROARCH
8aed3cb3 435 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
436};
437\f
438/* The entries associated with the -mcpu, -march and -mtune settings,
439 or null for options that have not been used. */
440const struct m68k_target_selection *m68k_cpu_entry;
441const struct m68k_target_selection *m68k_arch_entry;
442const struct m68k_target_selection *m68k_tune_entry;
443
444/* Which CPU we are generating code for. */
445enum target_device m68k_cpu;
446
447/* Which microarchitecture to tune for. */
448enum uarch_type m68k_tune;
449
450/* Which FPU to use. */
451enum fpu_type m68k_fpu;
fbdd0521 452
8aed3cb3 453/* The set of FL_* flags that apply to the target processor. */
454unsigned int m68k_cpu_flags;
dd7218bb 455
53457e36 456/* The set of FL_* flags that apply to the processor to be tuned for. */
457unsigned int m68k_tune_flags;
458
dd7218bb 459/* Asm templates for calling or jumping to an arbitrary symbolic address,
460 or NULL if such calls or jumps are not supported. The address is held
461 in operand 0. */
462const char *m68k_symbolic_call;
463const char *m68k_symbolic_jump;
1d86aeab 464
465/* Enum variable that corresponds to m68k_symbolic_call values. */
466enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
467
8aed3cb3 468\f
4c834714 469/* Implement TARGET_OPTION_OVERRIDE. */
d0c0c9ac 470
4c834714 471static void
472m68k_option_override (void)
d0c0c9ac 473{
8aed3cb3 474 const struct m68k_target_selection *entry;
475 unsigned long target_mask;
476
d078aadd 477 if (global_options_set.x_m68k_arch_option)
478 m68k_arch_entry = &all_isas[m68k_arch_option];
479
480 if (global_options_set.x_m68k_cpu_option)
481 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
482
483 if (global_options_set.x_m68k_tune_option)
484 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
485
8aed3cb3 486 /* User can choose:
487
488 -mcpu=
489 -march=
490 -mtune=
491
492 -march=ARCH should generate code that runs any processor
493 implementing architecture ARCH. -mcpu=CPU should override -march
494 and should generate code that runs on processor CPU, making free
495 use of any instructions that CPU understands. -mtune=UARCH applies
f2b32076 496 on top of -mcpu or -march and optimizes the code for UARCH. It does
8aed3cb3 497 not change the target architecture. */
498 if (m68k_cpu_entry)
499 {
500 /* Complain if the -march setting is for a different microarchitecture,
501 or includes flags that the -mcpu setting doesn't. */
502 if (m68k_arch_entry
503 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
504 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
505 warning (0, "-mcpu=%s conflicts with -march=%s",
506 m68k_cpu_entry->name, m68k_arch_entry->name);
507
508 entry = m68k_cpu_entry;
509 }
510 else
511 entry = m68k_arch_entry;
512
513 if (!entry)
514 entry = all_devices + TARGET_CPU_DEFAULT;
515
516 m68k_cpu_flags = entry->flags;
517
518 /* Use the architecture setting to derive default values for
519 certain flags. */
520 target_mask = 0;
bf849667 521
522 /* ColdFire is lenient about alignment. */
523 if (!TARGET_COLDFIRE)
524 target_mask |= MASK_STRICT_ALIGNMENT;
525
8aed3cb3 526 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
527 target_mask |= MASK_BITFIELD;
528 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
529 target_mask |= MASK_CF_HWDIV;
530 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
531 target_mask |= MASK_HARD_FLOAT;
532 target_flags |= target_mask & ~target_flags_explicit;
533
534 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
535 m68k_cpu = entry->device;
536 if (m68k_tune_entry)
53457e36 537 {
538 m68k_tune = m68k_tune_entry->microarch;
539 m68k_tune_flags = m68k_tune_entry->flags;
540 }
8aed3cb3 541#ifdef M68K_DEFAULT_TUNE
542 else if (!m68k_cpu_entry && !m68k_arch_entry)
53457e36 543 {
544 enum target_device dev;
545 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
aafc6adb 546 m68k_tune_flags = all_devices[dev].flags;
53457e36 547 }
8aed3cb3 548#endif
549 else
53457e36 550 {
551 m68k_tune = entry->microarch;
552 m68k_tune_flags = entry->flags;
553 }
8aed3cb3 554
555 /* Set the type of FPU. */
556 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
557 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
558 : FPUTYPE_68881);
559
b09faf5c 560 /* Sanity check to ensure that msep-data and mid-sahred-library are not
561 * both specified together. Doing so simply doesn't make sense.
562 */
563 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
564 error ("cannot specify both -msep-data and -mid-shared-library");
565
566 /* If we're generating code for a separate A5 relative data segment,
567 * we've got to enable -fPIC as well. This might be relaxable to
568 * -fpic but it hasn't been tested properly.
569 */
570 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
571 flag_pic = 2;
572
f8200b2a 573 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
574 error if the target does not support them. */
575 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
576 error ("-mpcrel -fPIC is not currently supported on selected cpu");
18fce2f0 577
578 /* ??? A historic way of turning on pic, or is this intended to
579 be an embedded thing that doesn't have the same name binding
580 significance that it does on hosted ELF systems? */
581 if (TARGET_PCREL && flag_pic == 0)
582 flag_pic = 1;
583
dd7218bb 584 if (!flag_pic)
585 {
1d86aeab 586 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
587
dd7218bb 588 m68k_symbolic_jump = "jra %a0";
dd7218bb 589 }
590 else if (TARGET_ID_SHARED_LIBRARY)
591 /* All addresses must be loaded from the GOT. */
592 ;
7f2330d5 593 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
dd7218bb 594 {
595 if (TARGET_PCREL)
1d86aeab 596 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
7f2330d5 597 else
1d86aeab 598 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
599
7f2330d5 600 if (TARGET_ISAC)
601 /* No unconditional long branch */;
602 else if (TARGET_PCREL)
a1f3c748 603 m68k_symbolic_jump = "bra%.l %c0";
dd7218bb 604 else
a1f3c748 605 m68k_symbolic_jump = "bra%.l %p0";
dd7218bb 606 /* Turn off function cse if we are doing PIC. We always want
607 function call to be done as `bsr foo@PLTPC'. */
608 /* ??? It's traditional to do this for -mpcrel too, but it isn't
609 clear how intentional that is. */
610 flag_no_function_cse = 1;
611 }
18fce2f0 612
1d86aeab 613 switch (m68k_symbolic_call_var)
614 {
615 case M68K_SYMBOLIC_CALL_JSR:
1d86aeab 616 m68k_symbolic_call = "jsr %a0";
1d86aeab 617 break;
618
619 case M68K_SYMBOLIC_CALL_BSR_C:
a1f3c748 620 m68k_symbolic_call = "bsr%.l %c0";
1d86aeab 621 break;
622
623 case M68K_SYMBOLIC_CALL_BSR_P:
a1f3c748 624 m68k_symbolic_call = "bsr%.l %p0";
1d86aeab 625 break;
626
627 case M68K_SYMBOLIC_CALL_NONE:
628 gcc_assert (m68k_symbolic_call == NULL);
629 break;
630
631 default:
632 gcc_unreachable ();
633 }
634
2e75116d 635#ifndef ASM_OUTPUT_ALIGN_WITH_NOP
636 if (align_labels > 2)
637 {
638 warning (0, "-falign-labels=%d is not supported", align_labels);
639 align_labels = 0;
640 }
641 if (align_loops > 2)
642 {
643 warning (0, "-falign-loops=%d is not supported", align_loops);
644 align_loops = 0;
645 }
646#endif
647
7a8fd205 648 if ((opt_fstack_limit_symbol_arg != NULL || opt_fstack_limit_register_no >= 0)
649 && !TARGET_68020)
d229c219 650 {
651 warning (0, "-fstack-limit- options are not supported on this cpu");
7a8fd205 652 opt_fstack_limit_symbol_arg = NULL;
653 opt_fstack_limit_register_no = -1;
d229c219 654 }
655
18fce2f0 656 SUBTARGET_OVERRIDE_OPTIONS;
1d86aeab 657
658 /* Setup scheduling options. */
2ccdedfd 659 if (TUNE_CFV1)
660 m68k_sched_cpu = CPU_CFV1;
661 else if (TUNE_CFV2)
662 m68k_sched_cpu = CPU_CFV2;
663 else if (TUNE_CFV3)
664 m68k_sched_cpu = CPU_CFV3;
3c904dda 665 else if (TUNE_CFV4)
666 m68k_sched_cpu = CPU_CFV4;
1d86aeab 667 else
668 {
669 m68k_sched_cpu = CPU_UNKNOWN;
670 flag_schedule_insns = 0;
671 flag_schedule_insns_after_reload = 0;
672 flag_modulo_sched = 0;
2bf2188d 673 flag_live_range_shrinkage = 0;
1d86aeab 674 }
2ccdedfd 675
676 if (m68k_sched_cpu != CPU_UNKNOWN)
677 {
678 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
679 m68k_sched_mac = MAC_CF_EMAC;
680 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
681 m68k_sched_mac = MAC_CF_MAC;
682 else
683 m68k_sched_mac = MAC_NO;
684 }
d0c0c9ac 685}
46e5dde5 686
c2e7013d 687/* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
688
689static void
690m68k_override_options_after_change (void)
691{
692 if (m68k_sched_cpu == CPU_UNKNOWN)
693 {
694 flag_schedule_insns = 0;
695 flag_schedule_insns_after_reload = 0;
696 flag_modulo_sched = 0;
2bf2188d 697 flag_live_range_shrinkage = 0;
c2e7013d 698 }
699}
700
46e5dde5 701/* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
702 given argument and NAME is the argument passed to -mcpu. Return NULL
703 if -mcpu was not passed. */
704
705const char *
706m68k_cpp_cpu_ident (const char *prefix)
707{
708 if (!m68k_cpu_entry)
709 return NULL;
710 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
711}
712
713/* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
714 given argument and NAME is the name of the representative device for
715 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
716
717const char *
718m68k_cpp_cpu_family (const char *prefix)
719{
720 if (!m68k_cpu_entry)
721 return NULL;
722 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
723}
5243fbff 724\f
29968436 725/* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
726 "interrupt_handler" attribute and interrupt_thread if FUNC has an
727 "interrupt_thread" attribute. Otherwise, return
728 m68k_fk_normal_function. */
f9a44575 729
730enum m68k_function_kind
731m68k_get_function_kind (tree func)
7366b851 732{
733 tree a;
734
e2809c90 735 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
736
29968436 737 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
738 if (a != NULL_TREE)
739 return m68k_fk_interrupt_handler;
740
7366b851 741 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
f9a44575 742 if (a != NULL_TREE)
743 return m68k_fk_interrupt_handler;
744
745 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
746 if (a != NULL_TREE)
747 return m68k_fk_interrupt_thread;
748
749 return m68k_fk_normal_function;
7366b851 750}
751
752/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
753 struct attribute_spec.handler. */
754static tree
755m68k_handle_fndecl_attribute (tree *node, tree name,
756 tree args ATTRIBUTE_UNUSED,
757 int flags ATTRIBUTE_UNUSED,
758 bool *no_add_attrs)
759{
760 if (TREE_CODE (*node) != FUNCTION_DECL)
761 {
67a779df 762 warning (OPT_Wattributes, "%qE attribute only applies to functions",
763 name);
7366b851 764 *no_add_attrs = true;
765 }
766
f9a44575 767 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
768 {
769 error ("multiple interrupt attributes not allowed");
770 *no_add_attrs = true;
771 }
772
773 if (!TARGET_FIDOA
774 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
775 {
776 error ("interrupt_thread is available only on fido");
777 *no_add_attrs = true;
778 }
779
7366b851 780 return NULL_TREE;
781}
2398df48 782
783static void
d02588f4 784m68k_compute_frame_layout (void)
2398df48 785{
786 int regno, saved;
9c47decb 787 unsigned int mask;
f9a44575 788 enum m68k_function_kind func_kind =
789 m68k_get_function_kind (current_function_decl);
790 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
791 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
2398df48 792
d02588f4 793 /* Only compute the frame once per function.
794 Don't cache information until reload has been completed. */
795 if (current_frame.funcdef_no == current_function_funcdef_no
796 && reload_completed)
797 return;
798
799 current_frame.size = (get_frame_size () + 3) & -4;
2398df48 800
9c47decb 801 mask = saved = 0;
f9a44575 802
803 /* Interrupt thread does not need to save any register. */
804 if (!interrupt_thread)
805 for (regno = 0; regno < 16; regno++)
806 if (m68k_save_reg (regno, interrupt_handler))
807 {
808 mask |= 1 << (regno - D0_REG);
809 saved++;
810 }
d02588f4 811 current_frame.offset = saved * 4;
812 current_frame.reg_no = saved;
813 current_frame.reg_mask = mask;
2398df48 814
7a3ffbb5 815 current_frame.foffset = 0;
9c47decb 816 mask = saved = 0;
58c23110 817 if (TARGET_HARD_FLOAT)
2398df48 818 {
f9a44575 819 /* Interrupt thread does not need to save any register. */
820 if (!interrupt_thread)
821 for (regno = 16; regno < 24; regno++)
822 if (m68k_save_reg (regno, interrupt_handler))
823 {
824 mask |= 1 << (regno - FP0_REG);
825 saved++;
826 }
58c23110 827 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
d02588f4 828 current_frame.offset += current_frame.foffset;
2398df48 829 }
7a3ffbb5 830 current_frame.fpu_no = saved;
831 current_frame.fpu_mask = mask;
d02588f4 832
833 /* Remember what function this frame refers to. */
834 current_frame.funcdef_no = current_function_funcdef_no;
2398df48 835}
836
cd90919d 837/* Worker function for TARGET_CAN_ELIMINATE. */
838
839bool
840m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
841{
842 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
843}
844
2398df48 845HOST_WIDE_INT
846m68k_initial_elimination_offset (int from, int to)
847{
e905c658 848 int argptr_offset;
849 /* The arg pointer points 8 bytes before the start of the arguments,
850 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
851 frame pointer in most frames. */
852 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
2398df48 853 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
e905c658 854 return argptr_offset;
2398df48 855
d02588f4 856 m68k_compute_frame_layout ();
2398df48 857
84653e0f 858 gcc_assert (to == STACK_POINTER_REGNUM);
859 switch (from)
860 {
065b42aa 861 case ARG_POINTER_REGNUM:
e905c658 862 return current_frame.offset + current_frame.size - argptr_offset;
84653e0f 863 case FRAME_POINTER_REGNUM:
864 return current_frame.offset + current_frame.size;
865 default:
866 gcc_unreachable ();
867 }
2398df48 868}
869
274d52cf 870/* Refer to the array `regs_ever_live' to determine which registers
871 to save; `regs_ever_live[I]' is nonzero if register number I
872 is ever used in the function. This function is responsible for
873 knowing which registers should not be saved even if used.
874 Return true if we need to save REGNO. */
875
7366b851 876static bool
877m68k_save_reg (unsigned int regno, bool interrupt_handler)
0056d78e 878{
e2182937 879 if (flag_pic && regno == PIC_REG)
7284415e 880 {
18d50ae6 881 if (crtl->saves_all_registers)
5e19f315 882 return true;
18d50ae6 883 if (crtl->uses_pic_offset_table)
7284415e 884 return true;
d68ee78f 885 /* Reload may introduce constant pool references into a function
886 that thitherto didn't need a PIC register. Note that the test
887 above will not catch that case because we will only set
18d50ae6 888 crtl->uses_pic_offset_table when emitting
d68ee78f 889 the address reloads. */
18d50ae6 890 if (crtl->uses_const_pool)
d68ee78f 891 return true;
7284415e 892 }
0056d78e 893
18d50ae6 894 if (crtl->calls_eh_return)
0056d78e 895 {
896 unsigned int i;
897 for (i = 0; ; i++)
898 {
899 unsigned int test = EH_RETURN_DATA_REGNO (i);
900 if (test == INVALID_REGNUM)
901 break;
902 if (test == regno)
7366b851 903 return true;
0056d78e 904 }
905 }
906
7366b851 907 /* Fixed regs we never touch. */
908 if (fixed_regs[regno])
909 return false;
910
911 /* The frame pointer (if it is such) is handled specially. */
912 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
913 return false;
914
915 /* Interrupt handlers must also save call_used_regs
916 if they are live or when calling nested functions. */
917 if (interrupt_handler)
065b42aa 918 {
3072d30e 919 if (df_regs_ever_live_p (regno))
065b42aa 920 return true;
7366b851 921
d5bf7b64 922 if (!crtl->is_leaf && call_used_regs[regno])
065b42aa 923 return true;
924 }
7366b851 925
926 /* Never need to save registers that aren't touched. */
3072d30e 927 if (!df_regs_ever_live_p (regno))
7366b851 928 return false;
929
a58c6df6 930 /* Otherwise save everything that isn't call-clobbered. */
7366b851 931 return !call_used_regs[regno];
0056d78e 932}
933
9c47decb 934/* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
935 the lowest memory address. COUNT is the number of registers to be
936 moved, with register REGNO + I being moved if bit I of MASK is set.
937 STORE_P specifies the direction of the move and ADJUST_STACK_P says
938 whether or not this is pre-decrement (if STORE_P) or post-increment
939 (if !STORE_P) operation. */
940
9e9d6337 941static rtx_insn *
9c47decb 942m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
943 unsigned int count, unsigned int regno,
944 unsigned int mask, bool store_p, bool adjust_stack_p)
945{
946 int i;
947 rtx body, addr, src, operands[2];
3754d046 948 machine_mode mode;
9c47decb 949
950 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
951 mode = reg_raw_mode[regno];
952 i = 0;
953
954 if (adjust_stack_p)
955 {
29c05e22 956 src = plus_constant (Pmode, base,
957 (count
958 * GET_MODE_SIZE (mode)
959 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
d1f9b275 960 XVECEXP (body, 0, i++) = gen_rtx_SET (base, src);
9c47decb 961 }
962
963 for (; mask != 0; mask >>= 1, regno++)
964 if (mask & 1)
965 {
29c05e22 966 addr = plus_constant (Pmode, base, offset);
9c47decb 967 operands[!store_p] = gen_frame_mem (mode, addr);
968 operands[store_p] = gen_rtx_REG (mode, regno);
969 XVECEXP (body, 0, i++)
d1f9b275 970 = gen_rtx_SET (operands[0], operands[1]);
9c47decb 971 offset += GET_MODE_SIZE (mode);
972 }
973 gcc_assert (i == XVECLEN (body, 0));
974
975 return emit_insn (body);
976}
977
978/* Make INSN a frame-related instruction. */
5243fbff 979
17d9b0c3 980static void
9e9d6337 981m68k_set_frame_related (rtx_insn *insn)
9c47decb 982{
983 rtx body;
984 int i;
985
986 RTX_FRAME_RELATED_P (insn) = 1;
987 body = PATTERN (insn);
988 if (GET_CODE (body) == PARALLEL)
989 for (i = 0; i < XVECLEN (body, 0); i++)
990 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
991}
992
993/* Emit RTL for the "prologue" define_expand. */
994
995void
996m68k_expand_prologue (void)
5243fbff 997{
2398df48 998 HOST_WIDE_INT fsize_with_regs;
e26cf4d4 999 rtx limit, src, dest;
d02588f4 1000
9c47decb 1001 m68k_compute_frame_layout ();
d02588f4 1002
8c0dd614 1003 if (flag_stack_usage_info)
611b3016 1004 current_function_static_stack_size
1005 = current_frame.size + current_frame.offset;
1006
8f8ac140 1007 /* If the stack limit is a symbol, we can check it here,
1008 before actually allocating the space. */
18d50ae6 1009 if (crtl->limit_stack
8f8ac140 1010 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
9c47decb 1011 {
29c05e22 1012 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
ca316360 1013 if (!m68k_legitimate_constant_p (Pmode, limit))
9c47decb 1014 {
1015 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1016 limit = gen_rtx_REG (Pmode, D0_REG);
1017 }
74f4459c 1018 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1019 stack_pointer_rtx, limit),
1020 stack_pointer_rtx, limit,
1021 const1_rtx));
9c47decb 1022 }
5243fbff 1023
09445e53 1024 fsize_with_regs = current_frame.size;
58c23110 1025 if (TARGET_COLDFIRE)
1026 {
9c47decb 1027 /* ColdFire's move multiple instructions do not allow pre-decrement
1028 addressing. Add the size of movem saves to the initial stack
1029 allocation instead. */
1030 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1031 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1032 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1033 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
58c23110 1034 }
2398df48 1035
5243fbff 1036 if (frame_pointer_needed)
1037 {
9c47decb 1038 if (fsize_with_regs == 0 && TUNE_68040)
5243fbff 1039 {
9c47decb 1040 /* On the 68040, two separate moves are faster than link.w 0. */
1041 dest = gen_frame_mem (Pmode,
1042 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1043 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1044 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1045 stack_pointer_rtx));
5243fbff 1046 }
9c47decb 1047 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1048 m68k_set_frame_related
1049 (emit_insn (gen_link (frame_pointer_rtx,
1050 GEN_INT (-4 - fsize_with_regs))));
54576bcb 1051 else
9c47decb 1052 {
1053 m68k_set_frame_related
1054 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1055 m68k_set_frame_related
1056 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1057 stack_pointer_rtx,
1058 GEN_INT (-fsize_with_regs))));
1059 }
3c904dda 1060
1061 /* If the frame pointer is needed, emit a special barrier that
1062 will prevent the scheduler from moving stores to the frame
1063 before the stack adjustment. */
1064 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
54576bcb 1065 }
9c47decb 1066 else if (fsize_with_regs != 0)
1067 m68k_set_frame_related
1068 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1069 stack_pointer_rtx,
1070 GEN_INT (-fsize_with_regs))));
2398df48 1071
7a3ffbb5 1072 if (current_frame.fpu_mask)
5243fbff 1073 {
9c47decb 1074 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
58c23110 1075 if (TARGET_68881)
9c47decb 1076 m68k_set_frame_related
1077 (m68k_emit_movem (stack_pointer_rtx,
1078 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1079 current_frame.fpu_no, FP0_REG,
1080 current_frame.fpu_mask, true, true));
58c23110 1081 else
1082 {
1083 int offset;
1084
9c47decb 1085 /* If we're using moveml to save the integer registers,
1086 the stack pointer will point to the bottom of the moveml
1087 save area. Find the stack offset of the first FP register. */
1088 if (current_frame.reg_no < MIN_MOVEM_REGS)
58c23110 1089 offset = 0;
1090 else
9c47decb 1091 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1092 m68k_set_frame_related
1093 (m68k_emit_movem (stack_pointer_rtx, offset,
1094 current_frame.fpu_no, FP0_REG,
1095 current_frame.fpu_mask, true, false));
7fcf3afe 1096 }
5243fbff 1097 }
376273c1 1098
16b4cb0d 1099 /* If the stack limit is not a symbol, check it here.
8f8ac140 1100 This has the disadvantage that it may be too late... */
18d50ae6 1101 if (crtl->limit_stack)
8f8ac140 1102 {
1103 if (REG_P (stack_limit_rtx))
74f4459c 1104 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1105 stack_limit_rtx),
1106 stack_pointer_rtx, stack_limit_rtx,
1107 const1_rtx));
1108
8f8ac140 1109 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
c3ceba8e 1110 warning (0, "stack limit expression is not supported");
8f8ac140 1111 }
16b4cb0d 1112
9c47decb 1113 if (current_frame.reg_no < MIN_MOVEM_REGS)
5243fbff 1114 {
9c47decb 1115 /* Store each register separately in the same order moveml does. */
5243fbff 1116 int i;
1117
9c47decb 1118 for (i = 16; i-- > 0; )
1119 if (current_frame.reg_mask & (1 << i))
357cfda2 1120 {
9c47decb 1121 src = gen_rtx_REG (SImode, D0_REG + i);
1122 dest = gen_frame_mem (SImode,
1123 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1124 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
357cfda2 1125 }
5243fbff 1126 }
9c47decb 1127 else
5243fbff 1128 {
960e6739 1129 if (TARGET_COLDFIRE)
9c47decb 1130 /* The required register save space has already been allocated.
1131 The first register should be stored at (%sp). */
1132 m68k_set_frame_related
1133 (m68k_emit_movem (stack_pointer_rtx, 0,
1134 current_frame.reg_no, D0_REG,
1135 current_frame.reg_mask, true, false));
3524a08d 1136 else
9c47decb 1137 m68k_set_frame_related
1138 (m68k_emit_movem (stack_pointer_rtx,
1139 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1140 current_frame.reg_no, D0_REG,
1141 current_frame.reg_mask, true, true));
5243fbff 1142 }
9c47decb 1143
869bde6b 1144 if (!TARGET_SEP_DATA
18d50ae6 1145 && crtl->uses_pic_offset_table)
e26cf4d4 1146 emit_insn (gen_load_got (pic_offset_table_rtx));
5243fbff 1147}
1148\f
6571ac6e 1149/* Return true if a simple (return) instruction is sufficient for this
1150 instruction (i.e. if no epilogue is needed). */
5243fbff 1151
d02588f4 1152bool
b38bcc54 1153m68k_use_return_insn (void)
5243fbff 1154{
5243fbff 1155 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
d02588f4 1156 return false;
1a2c33ec 1157
065b42aa 1158 m68k_compute_frame_layout ();
6571ac6e 1159 return current_frame.offset == 0;
5243fbff 1160}
1161
33fb08b8 1162/* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1163 SIBCALL_P says which.
5243fbff 1164
1165 The function epilogue should not depend on the current stack pointer!
1166 It should use the frame pointer only, if there is a frame pointer.
1167 This is mandatory because of alloca; we also take advantage of it to
1168 omit stack adjustments before returning. */
1169
9c47decb 1170void
33fb08b8 1171m68k_expand_epilogue (bool sibcall_p)
17d9b0c3 1172{
d02588f4 1173 HOST_WIDE_INT fsize, fsize_with_regs;
9c47decb 1174 bool big, restore_from_sp;
d02588f4 1175
065b42aa 1176 m68k_compute_frame_layout ();
d02588f4 1177
d02588f4 1178 fsize = current_frame.size;
9c47decb 1179 big = false;
1180 restore_from_sp = false;
d02588f4 1181
d5bf7b64 1182 /* FIXME : crtl->is_leaf below is too strong.
e4cbd171 1183 What we really need to know there is if there could be pending
0c0492c9 1184 stack adjustment needed at that point. */
9c47decb 1185 restore_from_sp = (!frame_pointer_needed
d5bf7b64 1186 || (!cfun->calls_alloca && crtl->is_leaf));
2398df48 1187
1188 /* fsize_with_regs is the size we need to adjust the sp when
274d52cf 1189 popping the frame. */
2398df48 1190 fsize_with_regs = fsize;
58c23110 1191 if (TARGET_COLDFIRE && restore_from_sp)
1192 {
9c47decb 1193 /* ColdFire's move multiple instructions do not allow post-increment
1194 addressing. Add the size of movem loads to the final deallocation
1195 instead. */
1196 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1197 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1198 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1199 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
58c23110 1200 }
2398df48 1201
d02588f4 1202 if (current_frame.offset + fsize >= 0x8000
9c47decb 1203 && !restore_from_sp
d02588f4 1204 && (current_frame.reg_mask || current_frame.fpu_mask))
5243fbff 1205 {
9c47decb 1206 if (TARGET_COLDFIRE
1207 && (current_frame.reg_no >= MIN_MOVEM_REGS
1208 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1209 {
1210 /* ColdFire's move multiple instructions do not support the
1211 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1212 stack-based restore. */
1213 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1214 GEN_INT (-(current_frame.offset + fsize)));
bf04fa3c 1215 emit_insn (gen_blockage ());
9c47decb 1216 emit_insn (gen_addsi3 (stack_pointer_rtx,
1217 gen_rtx_REG (Pmode, A1_REG),
1218 frame_pointer_rtx));
1219 restore_from_sp = true;
1220 }
1221 else
1222 {
1223 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1224 fsize = 0;
1225 big = true;
1226 }
5243fbff 1227 }
5243fbff 1228
9c47decb 1229 if (current_frame.reg_no < MIN_MOVEM_REGS)
1230 {
1231 /* Restore each register separately in the same order moveml does. */
5243fbff 1232 int i;
9c47decb 1233 HOST_WIDE_INT offset;
5243fbff 1234
9c47decb 1235 offset = current_frame.offset + fsize;
d02588f4 1236 for (i = 0; i < 16; i++)
1237 if (current_frame.reg_mask & (1 << i))
5243fbff 1238 {
9c47decb 1239 rtx addr;
1240
1241 if (big)
5243fbff 1242 {
9c47decb 1243 /* Generate the address -OFFSET(%fp,%a1.l). */
1244 addr = gen_rtx_REG (Pmode, A1_REG);
1245 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
29c05e22 1246 addr = plus_constant (Pmode, addr, -offset);
5243fbff 1247 }
9c47decb 1248 else if (restore_from_sp)
1249 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1250 else
29c05e22 1251 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
9c47decb 1252 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1253 gen_frame_mem (SImode, addr));
1254 offset -= GET_MODE_SIZE (SImode);
1255 }
5243fbff 1256 }
d02588f4 1257 else if (current_frame.reg_mask)
5243fbff 1258 {
9c47decb 1259 if (big)
1260 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1261 gen_rtx_REG (Pmode, A1_REG),
1262 frame_pointer_rtx),
1263 -(current_frame.offset + fsize),
1264 current_frame.reg_no, D0_REG,
1265 current_frame.reg_mask, false, false);
1266 else if (restore_from_sp)
1267 m68k_emit_movem (stack_pointer_rtx, 0,
1268 current_frame.reg_no, D0_REG,
1269 current_frame.reg_mask, false,
1270 !TARGET_COLDFIRE);
1271 else
1272 m68k_emit_movem (frame_pointer_rtx,
1273 -(current_frame.offset + fsize),
1274 current_frame.reg_no, D0_REG,
1275 current_frame.reg_mask, false, false);
5243fbff 1276 }
9c47decb 1277
1278 if (current_frame.fpu_no > 0)
5243fbff 1279 {
1280 if (big)
9c47decb 1281 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1282 gen_rtx_REG (Pmode, A1_REG),
1283 frame_pointer_rtx),
1284 -(current_frame.foffset + fsize),
1285 current_frame.fpu_no, FP0_REG,
1286 current_frame.fpu_mask, false, false);
e4cd7d76 1287 else if (restore_from_sp)
5243fbff 1288 {
58c23110 1289 if (TARGET_COLDFIRE)
1290 {
1291 int offset;
1292
9c47decb 1293 /* If we used moveml to restore the integer registers, the
1294 stack pointer will still point to the bottom of the moveml
1295 save area. Find the stack offset of the first FP
1296 register. */
1297 if (current_frame.reg_no < MIN_MOVEM_REGS)
58c23110 1298 offset = 0;
1299 else
9c47decb 1300 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1301 m68k_emit_movem (stack_pointer_rtx, offset,
1302 current_frame.fpu_no, FP0_REG,
1303 current_frame.fpu_mask, false, false);
58c23110 1304 }
ef2ee7d3 1305 else
9c47decb 1306 m68k_emit_movem (stack_pointer_rtx, 0,
1307 current_frame.fpu_no, FP0_REG,
1308 current_frame.fpu_mask, false, true);
5243fbff 1309 }
1310 else
9c47decb 1311 m68k_emit_movem (frame_pointer_rtx,
1312 -(current_frame.foffset + fsize),
1313 current_frame.fpu_no, FP0_REG,
1314 current_frame.fpu_mask, false, false);
5243fbff 1315 }
9c47decb 1316
bf04fa3c 1317 emit_insn (gen_blockage ());
5243fbff 1318 if (frame_pointer_needed)
9c47decb 1319 emit_insn (gen_unlink (frame_pointer_rtx));
2398df48 1320 else if (fsize_with_regs)
9c47decb 1321 emit_insn (gen_addsi3 (stack_pointer_rtx,
1322 stack_pointer_rtx,
1323 GEN_INT (fsize_with_regs)));
1324
18d50ae6 1325 if (crtl->calls_eh_return)
9c47decb 1326 emit_insn (gen_addsi3 (stack_pointer_rtx,
1327 stack_pointer_rtx,
1328 EH_RETURN_STACKADJ_RTX));
1329
33fb08b8 1330 if (!sibcall_p)
1a860023 1331 emit_jump_insn (ret_rtx);
5243fbff 1332}
1333\f
821960c7 1334/* Return true if X is a valid comparison operator for the dbcc
61405c07 1335 instruction.
1336
1337 Note it rejects floating point comparison operators.
1338 (In the future we could use Fdbcc).
1339
1340 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1341
1342int
3754d046 1343valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
61405c07 1344{
61405c07 1345 switch (GET_CODE (x))
1346 {
61405c07 1347 case EQ: case NE: case GTU: case LTU:
1348 case GEU: case LEU:
1349 return 1;
1350
1351 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1352 conservative */
1353 case GT: case LT: case GE: case LE:
1354 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1355 default:
1356 return 0;
1357 }
1358}
1359
e911aedf 1360/* Return nonzero if flags are currently in the 68881 flag register. */
07bd8c0d 1361int
821960c7 1362flags_in_68881 (void)
07bd8c0d 1363{
1364 /* We could add support for these in the future */
1365 return cc_status.flags & CC_IN_68881;
1366}
1367
d09fd72c 1368/* Return true if PARALLEL contains register REGNO. */
1369static bool
1370m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1371{
1372 int i;
1373
1374 if (REG_P (parallel) && REGNO (parallel) == regno)
1375 return true;
1376
1377 if (GET_CODE (parallel) != PARALLEL)
1378 return false;
1379
1380 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1381 {
1382 const_rtx x;
1383
1384 x = XEXP (XVECEXP (parallel, 0, i), 0);
1385 if (REG_P (x) && REGNO (x) == regno)
1386 return true;
1387 }
1388
1389 return false;
1390}
1391
e2809c90 1392/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
33fb08b8 1393
1394static bool
e2809c90 1395m68k_ok_for_sibcall_p (tree decl, tree exp)
33fb08b8 1396{
e2809c90 1397 enum m68k_function_kind kind;
1398
1399 /* We cannot use sibcalls for nested functions because we use the
1400 static chain register for indirect calls. */
1401 if (CALL_EXPR_STATIC_CHAIN (exp))
1402 return false;
1403
d09fd72c 1404 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1405 {
1406 /* Check that the return value locations are the same. For
1407 example that we aren't returning a value from the sibling in
1408 a D0 register but then need to transfer it to a A0 register. */
1409 rtx cfun_value;
1410 rtx call_value;
1411
1412 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1413 cfun->decl);
1414 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1415
1416 /* Check that the values are equal or that the result the callee
1417 function returns is superset of what the current function returns. */
1418 if (!(rtx_equal_p (cfun_value, call_value)
1419 || (REG_P (cfun_value)
1420 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1421 return false;
1422 }
1423
e2809c90 1424 kind = m68k_get_function_kind (current_function_decl);
1425 if (kind == m68k_fk_normal_function)
1426 /* We can always sibcall from a normal function, because it's
1427 undefined if it is calling an interrupt function. */
1428 return true;
1429
1430 /* Otherwise we can only sibcall if the function kind is known to be
1431 the same. */
1432 if (decl && m68k_get_function_kind (decl) == kind)
1433 return true;
1434
1435 return false;
33fb08b8 1436}
1437
385c19d1 1438/* On the m68k all args are always pushed. */
1439
1440static rtx
39cba157 1441m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
3754d046 1442 machine_mode mode ATTRIBUTE_UNUSED,
385c19d1 1443 const_tree type ATTRIBUTE_UNUSED,
1444 bool named ATTRIBUTE_UNUSED)
1445{
1446 return NULL_RTX;
1447}
1448
1449static void
3754d046 1450m68k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
385c19d1 1451 const_tree type, bool named ATTRIBUTE_UNUSED)
1452{
39cba157 1453 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1454
385c19d1 1455 *cum += (mode != BLKmode
1456 ? (GET_MODE_SIZE (mode) + 3) & ~3
1457 : (int_size_in_bytes (type) + 3) & ~3);
1458}
1459
dd7218bb 1460/* Convert X to a legitimate function call memory reference and return the
1461 result. */
b09faf5c 1462
dd7218bb 1463rtx
1464m68k_legitimize_call_address (rtx x)
1465{
1466 gcc_assert (MEM_P (x));
1467 if (call_operand (XEXP (x, 0), VOIDmode))
1468 return x;
1469 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
b09faf5c 1470}
1471
33fb08b8 1472/* Likewise for sibling calls. */
1473
1474rtx
1475m68k_legitimize_sibcall_address (rtx x)
1476{
1477 gcc_assert (MEM_P (x));
1478 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1479 return x;
1480
1481 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1482 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1483}
1484
41e3a0c7 1485/* Convert X to a legitimate address and return it if successful. Otherwise
1486 return X.
1487
1488 For the 68000, we handle X+REG by loading X into a register R and
1489 using R+REG. R will go in an address reg and indexing will be used.
1490 However, if REG is a broken-out memory address or multiplication,
1491 nothing needs to be done because REG can certainly go in an address reg. */
1492
2a381450 1493static rtx
3754d046 1494m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
41e3a0c7 1495{
869bde6b 1496 if (m68k_tls_symbol_p (x))
1497 return m68k_legitimize_tls_address (x);
1498
41e3a0c7 1499 if (GET_CODE (x) == PLUS)
1500 {
1501 int ch = (x) != (oldx);
1502 int copied = 0;
1503
1504#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1505
1506 if (GET_CODE (XEXP (x, 0)) == MULT)
1507 {
1508 COPY_ONCE (x);
1509 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1510 }
1511 if (GET_CODE (XEXP (x, 1)) == MULT)
1512 {
1513 COPY_ONCE (x);
1514 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1515 }
1516 if (ch)
1517 {
1518 if (GET_CODE (XEXP (x, 1)) == REG
1519 && GET_CODE (XEXP (x, 0)) == REG)
1520 {
1521 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1522 {
1523 COPY_ONCE (x);
1524 x = force_operand (x, 0);
1525 }
1526 return x;
1527 }
1528 if (memory_address_p (mode, x))
1529 return x;
1530 }
1531 if (GET_CODE (XEXP (x, 0)) == REG
1532 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1533 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1534 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1535 {
1536 rtx temp = gen_reg_rtx (Pmode);
1537 rtx val = force_operand (XEXP (x, 1), 0);
1538 emit_move_insn (temp, val);
1539 COPY_ONCE (x);
1540 XEXP (x, 1) = temp;
1541 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1542 && GET_CODE (XEXP (x, 0)) == REG)
1543 x = force_operand (x, 0);
1544 }
1545 else if (GET_CODE (XEXP (x, 1)) == REG
1546 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1547 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1548 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1549 {
1550 rtx temp = gen_reg_rtx (Pmode);
1551 rtx val = force_operand (XEXP (x, 0), 0);
1552 emit_move_insn (temp, val);
1553 COPY_ONCE (x);
1554 XEXP (x, 0) = temp;
1555 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1556 && GET_CODE (XEXP (x, 1)) == REG)
1557 x = force_operand (x, 0);
1558 }
1559 }
1560
1561 return x;
1562}
1563
1564
61405c07 1565/* Output a dbCC; jCC sequence. Note we do not handle the
1566 floating point version of this sequence (Fdbcc). We also
1567 do not handle alternative conditions when CC_NO_OVERFLOW is
07bd8c0d 1568 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1569 kick those out before we get here. */
61405c07 1570
e6b2f841 1571void
821960c7 1572output_dbcc_and_branch (rtx *operands)
61405c07 1573{
61405c07 1574 switch (GET_CODE (operands[3]))
1575 {
1576 case EQ:
a1f3c748 1577 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
9cbcee62 1578 break;
61405c07 1579
1580 case NE:
a1f3c748 1581 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
9cbcee62 1582 break;
61405c07 1583
1584 case GT:
a1f3c748 1585 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
9cbcee62 1586 break;
61405c07 1587
1588 case GTU:
a1f3c748 1589 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
9cbcee62 1590 break;
61405c07 1591
1592 case LT:
a1f3c748 1593 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
9cbcee62 1594 break;
61405c07 1595
1596 case LTU:
a1f3c748 1597 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
9cbcee62 1598 break;
61405c07 1599
1600 case GE:
a1f3c748 1601 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
9cbcee62 1602 break;
61405c07 1603
1604 case GEU:
a1f3c748 1605 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
9cbcee62 1606 break;
61405c07 1607
1608 case LE:
a1f3c748 1609 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
9cbcee62 1610 break;
61405c07 1611
1612 case LEU:
a1f3c748 1613 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
9cbcee62 1614 break;
61405c07 1615
1616 default:
84653e0f 1617 gcc_unreachable ();
61405c07 1618 }
1619
1620 /* If the decrement is to be done in SImode, then we have
0c0492c9 1621 to compensate for the fact that dbcc decrements in HImode. */
61405c07 1622 switch (GET_MODE (operands[0]))
1623 {
1624 case SImode:
a1f3c748 1625 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
61405c07 1626 break;
1627
1628 case HImode:
1629 break;
1630
1631 default:
84653e0f 1632 gcc_unreachable ();
61405c07 1633 }
1634}
1635
f2fa409d 1636const char *
84653e0f 1637output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
3b8c85f3 1638{
1639 rtx loperands[7];
c46628b1 1640 enum rtx_code op_code = GET_CODE (op);
3b8c85f3 1641
8ef587dc 1642 /* This does not produce a useful cc. */
acef5d85 1643 CC_STATUS_INIT;
1644
c46628b1 1645 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1646 below. Swap the operands and change the op if these requirements
1647 are not fulfilled. */
1648 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1649 {
1650 rtx tmp = operand1;
1651
1652 operand1 = operand2;
1653 operand2 = tmp;
1654 op_code = swap_condition (op_code);
1655 }
3b8c85f3 1656 loperands[0] = operand1;
1657 if (GET_CODE (operand1) == REG)
e6b2f841 1658 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
3b8c85f3 1659 else
eafc6604 1660 loperands[1] = adjust_address (operand1, SImode, 4);
3b8c85f3 1661 if (operand2 != const0_rtx)
1662 {
1663 loperands[2] = operand2;
1664 if (GET_CODE (operand2) == REG)
e6b2f841 1665 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
3b8c85f3 1666 else
eafc6604 1667 loperands[3] = adjust_address (operand2, SImode, 4);
3b8c85f3 1668 }
f5f2db69 1669 loperands[4] = gen_label_rtx ();
3b8c85f3 1670 if (operand2 != const0_rtx)
a1f3c748 1671 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
f28a9fad 1672 else
8ae4b10a 1673 {
960e6739 1674 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
8ae4b10a 1675 output_asm_insn ("tst%.l %0", loperands);
1676 else
065b42aa 1677 output_asm_insn ("cmp%.w #0,%0", loperands);
8ae4b10a 1678
a1f3c748 1679 output_asm_insn ("jne %l4", loperands);
8ae4b10a 1680
960e6739 1681 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
8ae4b10a 1682 output_asm_insn ("tst%.l %1", loperands);
1683 else
3acc77d9 1684 output_asm_insn ("cmp%.w #0,%1", loperands);
8ae4b10a 1685 }
1686
3b8c85f3 1687 loperands[5] = dest;
3acc77d9 1688
c46628b1 1689 switch (op_code)
3b8c85f3 1690 {
1691 case EQ:
805e22b2 1692 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1693 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1694 output_asm_insn ("seq %5", loperands);
1695 break;
1696
1697 case NE:
805e22b2 1698 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1699 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1700 output_asm_insn ("sne %5", loperands);
1701 break;
1702
1703 case GT:
f5f2db69 1704 loperands[6] = gen_label_rtx ();
a1f3c748 1705 output_asm_insn ("shi %5\n\tjra %l6", loperands);
805e22b2 1706 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1707 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1708 output_asm_insn ("sgt %5", loperands);
805e22b2 1709 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1710 CODE_LABEL_NUMBER (loperands[6]));
3b8c85f3 1711 break;
1712
1713 case GTU:
805e22b2 1714 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1715 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1716 output_asm_insn ("shi %5", loperands);
1717 break;
1718
1719 case LT:
f5f2db69 1720 loperands[6] = gen_label_rtx ();
a1f3c748 1721 output_asm_insn ("scs %5\n\tjra %l6", loperands);
805e22b2 1722 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1723 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1724 output_asm_insn ("slt %5", loperands);
805e22b2 1725 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1726 CODE_LABEL_NUMBER (loperands[6]));
3b8c85f3 1727 break;
1728
1729 case LTU:
805e22b2 1730 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1731 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1732 output_asm_insn ("scs %5", loperands);
1733 break;
1734
1735 case GE:
f5f2db69 1736 loperands[6] = gen_label_rtx ();
a1f3c748 1737 output_asm_insn ("scc %5\n\tjra %l6", loperands);
805e22b2 1738 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1739 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1740 output_asm_insn ("sge %5", loperands);
805e22b2 1741 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1742 CODE_LABEL_NUMBER (loperands[6]));
3b8c85f3 1743 break;
1744
1745 case GEU:
805e22b2 1746 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1747 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1748 output_asm_insn ("scc %5", loperands);
1749 break;
1750
1751 case LE:
f5f2db69 1752 loperands[6] = gen_label_rtx ();
a1f3c748 1753 output_asm_insn ("sls %5\n\tjra %l6", loperands);
805e22b2 1754 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1755 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1756 output_asm_insn ("sle %5", loperands);
805e22b2 1757 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1758 CODE_LABEL_NUMBER (loperands[6]));
3b8c85f3 1759 break;
1760
1761 case LEU:
805e22b2 1762 (*targetm.asm_out.internal_label) (asm_out_file, "L",
065b42aa 1763 CODE_LABEL_NUMBER (loperands[4]));
3b8c85f3 1764 output_asm_insn ("sls %5", loperands);
1765 break;
1766
1767 default:
84653e0f 1768 gcc_unreachable ();
3b8c85f3 1769 }
1770 return "";
1771}
1772
f2fa409d 1773const char *
9e9d6337 1774output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
5243fbff 1775{
1776 operands[0] = countop;
1777 operands[1] = dataop;
1778
1779 if (GET_CODE (countop) == CONST_INT)
1780 {
1781 register int count = INTVAL (countop);
1782 /* If COUNT is bigger than size of storage unit in use,
1783 advance to the containing unit of same size. */
1784 if (count > signpos)
1785 {
1786 int offset = (count & ~signpos) / 8;
1787 count = count & signpos;
eafc6604 1788 operands[1] = dataop = adjust_address (dataop, QImode, offset);
5243fbff 1789 }
1790 if (count == signpos)
1791 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1792 else
1793 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1794
1795 /* These three statements used to use next_insns_test_no...
1796 but it appears that this should do the same job. */
1797 if (count == 31
1798 && next_insn_tests_no_inequality (insn))
1799 return "tst%.l %1";
1800 if (count == 15
1801 && next_insn_tests_no_inequality (insn))
1802 return "tst%.w %1";
1803 if (count == 7
1804 && next_insn_tests_no_inequality (insn))
1805 return "tst%.b %1";
572d7bec 1806 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1807 On some m68k variants unfortunately that's slower than btst.
1808 On 68000 and higher, that should also work for all HImode operands. */
1809 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1810 {
1811 if (count == 3 && DATA_REG_P (operands[1])
1812 && next_insn_tests_no_inequality (insn))
1813 {
1814 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1815 return "move%.w %1,%%ccr";
1816 }
1817 if (count == 2 && DATA_REG_P (operands[1])
1818 && next_insn_tests_no_inequality (insn))
1819 {
1820 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1821 return "move%.w %1,%%ccr";
1822 }
1823 /* count == 1 followed by bvc/bvs and
1824 count == 0 followed by bcc/bcs are also possible, but need
1825 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1826 }
5243fbff 1827
1828 cc_status.flags = CC_NOT_NEGATIVE;
1829 }
1830 return "btst %0,%1";
1831}
5243fbff 1832\f
b97b0687 1833/* Return true if X is a legitimate base register. STRICT_P says
1834 whether we need strict checking. */
1835
1836bool
1837m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1838{
1839 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1840 if (!strict_p && GET_CODE (x) == SUBREG)
1841 x = SUBREG_REG (x);
1842
1843 return (REG_P (x)
1844 && (strict_p
1845 ? REGNO_OK_FOR_BASE_P (REGNO (x))
979e5a71 1846 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
b97b0687 1847}
1848
1849/* Return true if X is a legitimate index register. STRICT_P says
1850 whether we need strict checking. */
1851
1852bool
1853m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1854{
1855 if (!strict_p && GET_CODE (x) == SUBREG)
1856 x = SUBREG_REG (x);
1857
1858 return (REG_P (x)
1859 && (strict_p
1860 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
979e5a71 1861 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
b97b0687 1862}
1863
1864/* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1865 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1866 ADDRESS if so. STRICT_P says whether we need strict checking. */
1867
1868static bool
1869m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1870{
1871 int scale;
1872
1873 /* Check for a scale factor. */
1874 scale = 1;
1875 if ((TARGET_68020 || TARGET_COLDFIRE)
1876 && GET_CODE (x) == MULT
1877 && GET_CODE (XEXP (x, 1)) == CONST_INT
1878 && (INTVAL (XEXP (x, 1)) == 2
1879 || INTVAL (XEXP (x, 1)) == 4
1880 || (INTVAL (XEXP (x, 1)) == 8
1881 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1882 {
1883 scale = INTVAL (XEXP (x, 1));
1884 x = XEXP (x, 0);
1885 }
1886
1887 /* Check for a word extension. */
1888 if (!TARGET_COLDFIRE
1889 && GET_CODE (x) == SIGN_EXTEND
1890 && GET_MODE (XEXP (x, 0)) == HImode)
1891 x = XEXP (x, 0);
1892
1893 if (m68k_legitimate_index_reg_p (x, strict_p))
1894 {
1895 address->scale = scale;
1896 address->index = x;
1897 return true;
1898 }
1899
1900 return false;
1901}
1902
e0ab7256 1903/* Return true if X is an illegitimate symbolic constant. */
1904
1905bool
1906m68k_illegitimate_symbolic_constant_p (rtx x)
1907{
1908 rtx base, offset;
1909
1910 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1911 {
1912 split_const (x, &base, &offset);
1913 if (GET_CODE (base) == SYMBOL_REF
1914 && !offset_within_block_p (base, INTVAL (offset)))
1915 return true;
1916 }
869bde6b 1917 return m68k_tls_reference_p (x, false);
e0ab7256 1918}
1919
7d7d7bd2 1920/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1921
1922static bool
3754d046 1923m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
7d7d7bd2 1924{
1925 return m68k_illegitimate_symbolic_constant_p (x);
1926}
1927
b97b0687 1928/* Return true if X is a legitimate constant address that can reach
1929 bytes in the range [X, X + REACH). STRICT_P says whether we need
1930 strict checking. */
1931
1932static bool
1933m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1934{
1935 rtx base, offset;
1936
1937 if (!CONSTANT_ADDRESS_P (x))
1938 return false;
1939
1940 if (flag_pic
1941 && !(strict_p && TARGET_PCREL)
1942 && symbolic_operand (x, VOIDmode))
1943 return false;
1944
1945 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1946 {
1947 split_const (x, &base, &offset);
1948 if (GET_CODE (base) == SYMBOL_REF
1949 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1950 return false;
1951 }
1952
869bde6b 1953 return !m68k_tls_reference_p (x, false);
b97b0687 1954}
1955
1956/* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1957 labels will become jump tables. */
1958
1959static bool
1960m68k_jump_table_ref_p (rtx x)
1961{
1962 if (GET_CODE (x) != LABEL_REF)
1963 return false;
1964
91a55c11 1965 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1966 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
b97b0687 1967 return true;
1968
91a55c11 1969 insn = next_nonnote_insn (insn);
1970 return insn && JUMP_TABLE_DATA_P (insn);
b97b0687 1971}
1972
1973/* Return true if X is a legitimate address for values of mode MODE.
1974 STRICT_P says whether strict checking is needed. If the address
1975 is valid, describe its components in *ADDRESS. */
1976
1977static bool
3754d046 1978m68k_decompose_address (machine_mode mode, rtx x,
b97b0687 1979 bool strict_p, struct m68k_address *address)
1980{
1981 unsigned int reach;
1982
1983 memset (address, 0, sizeof (*address));
1984
1985 if (mode == BLKmode)
1986 reach = 1;
1987 else
1988 reach = GET_MODE_SIZE (mode);
1989
1990 /* Check for (An) (mode 2). */
1991 if (m68k_legitimate_base_reg_p (x, strict_p))
1992 {
1993 address->base = x;
1994 return true;
1995 }
1996
1997 /* Check for -(An) and (An)+ (modes 3 and 4). */
1998 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1999 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2000 {
2001 address->code = GET_CODE (x);
2002 address->base = XEXP (x, 0);
2003 return true;
2004 }
2005
2006 /* Check for (d16,An) (mode 5). */
2007 if (GET_CODE (x) == PLUS
2008 && GET_CODE (XEXP (x, 1)) == CONST_INT
2009 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2010 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2011 {
2012 address->base = XEXP (x, 0);
2013 address->offset = XEXP (x, 1);
2014 return true;
2015 }
2016
2017 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2018 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2019 addresses. */
869bde6b 2020 if (GET_CODE (x) == PLUS
2021 && XEXP (x, 0) == pic_offset_table_rtx)
b97b0687 2022 {
869bde6b 2023 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2024 they are invalid in this context. */
2025 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2026 {
2027 address->base = XEXP (x, 0);
2028 address->offset = XEXP (x, 1);
2029 return true;
2030 }
b97b0687 2031 }
2032
2033 /* The ColdFire FPU only accepts addressing modes 2-5. */
2034 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2035 return false;
2036
2037 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2038 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2039 All these modes are variations of mode 7. */
2040 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2041 {
2042 address->offset = x;
2043 return true;
2044 }
2045
2046 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2047 tablejumps.
2048
2049 ??? do_tablejump creates these addresses before placing the target
2050 label, so we have to assume that unplaced labels are jump table
2051 references. It seems unlikely that we would ever generate indexed
2052 accesses to unplaced labels in other cases. */
2053 if (GET_CODE (x) == PLUS
2054 && m68k_jump_table_ref_p (XEXP (x, 1))
2055 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2056 {
2057 address->offset = XEXP (x, 1);
2058 return true;
2059 }
2060
2061 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2062 (bd,An,Xn.SIZE*SCALE) addresses. */
2063
2064 if (TARGET_68020)
2065 {
2066 /* Check for a nonzero base displacement. */
2067 if (GET_CODE (x) == PLUS
2068 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2069 {
2070 address->offset = XEXP (x, 1);
2071 x = XEXP (x, 0);
2072 }
2073
2074 /* Check for a suppressed index register. */
2075 if (m68k_legitimate_base_reg_p (x, strict_p))
2076 {
2077 address->base = x;
2078 return true;
2079 }
2080
2081 /* Check for a suppressed base register. Do not allow this case
2082 for non-symbolic offsets as it effectively gives gcc freedom
2083 to treat data registers as base registers, which can generate
2084 worse code. */
2085 if (address->offset
2086 && symbolic_operand (address->offset, VOIDmode)
2087 && m68k_decompose_index (x, strict_p, address))
2088 return true;
2089 }
2090 else
2091 {
2092 /* Check for a nonzero base displacement. */
2093 if (GET_CODE (x) == PLUS
2094 && GET_CODE (XEXP (x, 1)) == CONST_INT
2095 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2096 {
2097 address->offset = XEXP (x, 1);
2098 x = XEXP (x, 0);
2099 }
2100 }
2101
2102 /* We now expect the sum of a base and an index. */
2103 if (GET_CODE (x) == PLUS)
2104 {
2105 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2106 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2107 {
2108 address->base = XEXP (x, 0);
2109 return true;
2110 }
2111
2112 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2113 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2114 {
2115 address->base = XEXP (x, 1);
2116 return true;
2117 }
2118 }
2119 return false;
2120}
2121
2122/* Return true if X is a legitimate address for values of mode MODE.
2123 STRICT_P says whether strict checking is needed. */
2124
2125bool
3754d046 2126m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
b97b0687 2127{
2128 struct m68k_address address;
2129
2130 return m68k_decompose_address (mode, x, strict_p, &address);
2131}
2132
2133/* Return true if X is a memory, describing its address in ADDRESS if so.
2134 Apply strict checking if called during or after reload. */
2135
2136static bool
2137m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2138{
2139 return (MEM_P (x)
2140 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2141 reload_in_progress || reload_completed,
2142 address));
2143}
2144
ca316360 2145/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2146
2147bool
3754d046 2148m68k_legitimate_constant_p (machine_mode mode, rtx x)
ca316360 2149{
2150 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2151}
2152
b97b0687 2153/* Return true if X matches the 'Q' constraint. It must be a memory
2154 with a base address and no constant offset or index. */
2155
2156bool
2157m68k_matches_q_p (rtx x)
2158{
2159 struct m68k_address address;
2160
2161 return (m68k_legitimate_mem_p (x, &address)
2162 && address.code == UNKNOWN
2163 && address.base
2164 && !address.offset
2165 && !address.index);
2166}
2167
2168/* Return true if X matches the 'U' constraint. It must be a base address
2169 with a constant offset and no index. */
2170
2171bool
2172m68k_matches_u_p (rtx x)
2173{
2174 struct m68k_address address;
2175
2176 return (m68k_legitimate_mem_p (x, &address)
2177 && address.code == UNKNOWN
2178 && address.base
2179 && address.offset
2180 && !address.index);
2181}
2182
869bde6b 2183/* Return GOT pointer. */
2184
2185static rtx
2186m68k_get_gp (void)
2187{
2188 if (pic_offset_table_rtx == NULL_RTX)
2189 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2190
2191 crtl->uses_pic_offset_table = 1;
2192
2193 return pic_offset_table_rtx;
2194}
2195
2196/* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2197 wrappers. */
2198enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2199 RELOC_TLSIE, RELOC_TLSLE };
2200
2201#define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2202
2203/* Wrap symbol X into unspec representing relocation RELOC.
2204 BASE_REG - register that should be added to the result.
2205 TEMP_REG - if non-null, temporary register. */
2206
2207static rtx
2208m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2209{
2210 bool use_x_p;
2211
2212 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2213
2214 if (TARGET_COLDFIRE && use_x_p)
2215 /* When compiling with -mx{got, tls} switch the code will look like this:
2216
2217 move.l <X>@<RELOC>,<TEMP_REG>
2218 add.l <BASE_REG>,<TEMP_REG> */
2219 {
2220 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2221 to put @RELOC after reference. */
2222 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2223 UNSPEC_RELOC32);
2224 x = gen_rtx_CONST (Pmode, x);
2225
2226 if (temp_reg == NULL)
2227 {
2228 gcc_assert (can_create_pseudo_p ());
2229 temp_reg = gen_reg_rtx (Pmode);
2230 }
2231
2232 emit_move_insn (temp_reg, x);
2233 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2234 x = temp_reg;
2235 }
2236 else
2237 {
2238 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2239 UNSPEC_RELOC16);
2240 x = gen_rtx_CONST (Pmode, x);
2241
2242 x = gen_rtx_PLUS (Pmode, base_reg, x);
2243 }
2244
2245 return x;
2246}
2247
2248/* Helper for m68k_unwrap_symbol.
2249 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2250 sets *RELOC_PTR to relocation type for the symbol. */
2251
2252static rtx
2253m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2254 enum m68k_reloc *reloc_ptr)
2255{
2256 if (GET_CODE (orig) == CONST)
2257 {
2258 rtx x;
2259 enum m68k_reloc dummy;
2260
2261 x = XEXP (orig, 0);
2262
2263 if (reloc_ptr == NULL)
2264 reloc_ptr = &dummy;
2265
2266 /* Handle an addend. */
2267 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2268 && CONST_INT_P (XEXP (x, 1)))
2269 x = XEXP (x, 0);
2270
2271 if (GET_CODE (x) == UNSPEC)
2272 {
2273 switch (XINT (x, 1))
2274 {
2275 case UNSPEC_RELOC16:
2276 orig = XVECEXP (x, 0, 0);
2277 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2278 break;
2279
2280 case UNSPEC_RELOC32:
2281 if (unwrap_reloc32_p)
2282 {
2283 orig = XVECEXP (x, 0, 0);
2284 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2285 }
2286 break;
2287
2288 default:
2289 break;
2290 }
2291 }
2292 }
2293
2294 return orig;
2295}
2296
2297/* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2298 UNSPEC_RELOC32 wrappers. */
2299
2300rtx
2301m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2302{
2303 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2304}
2305
869bde6b 2306/* Prescan insn before outputing assembler for it. */
2307
2308void
9e9d6337 2309m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
869bde6b 2310 rtx *operands, int n_operands)
2311{
2312 int i;
2313
2314 /* Combine and, possibly, other optimizations may do good job
2315 converting
2316 (const (unspec [(symbol)]))
2317 into
2318 (const (plus (unspec [(symbol)])
2319 (const_int N))).
2320 The problem with this is emitting @TLS or @GOT decorations.
2321 The decoration is emitted when processing (unspec), so the
2322 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2323
2324 It seems that the easiest solution to this is to convert such
2325 operands to
2326 (const (unspec [(plus (symbol)
2327 (const_int N))])).
2328 Note, that the top level of operand remains intact, so we don't have
2329 to patch up anything outside of the operand. */
2330
d8ca5b53 2331 subrtx_var_iterator::array_type array;
869bde6b 2332 for (i = 0; i < n_operands; ++i)
2333 {
2334 rtx op;
2335
2336 op = operands[i];
2337
d8ca5b53 2338 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2339 {
2340 rtx x = *iter;
2341 if (m68k_unwrap_symbol (x, true) != x)
2342 {
2343 rtx plus;
2344
2345 gcc_assert (GET_CODE (x) == CONST);
2346 plus = XEXP (x, 0);
2347
2348 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2349 {
2350 rtx unspec;
2351 rtx addend;
2352
2353 unspec = XEXP (plus, 0);
2354 gcc_assert (GET_CODE (unspec) == UNSPEC);
2355 addend = XEXP (plus, 1);
2356 gcc_assert (CONST_INT_P (addend));
2357
2358 /* We now have all the pieces, rearrange them. */
2359
2360 /* Move symbol to plus. */
2361 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2362
2363 /* Move plus inside unspec. */
2364 XVECEXP (unspec, 0, 0) = plus;
2365
2366 /* Move unspec to top level of const. */
2367 XEXP (x, 0) = unspec;
2368 }
2369 iter.skip_subrtxes ();
2370 }
2371 }
869bde6b 2372 }
2373}
2374
2375/* Move X to a register and add REG_EQUAL note pointing to ORIG.
2376 If REG is non-null, use it; generate new pseudo otherwise. */
2377
2378static rtx
2379m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2380{
9e9d6337 2381 rtx_insn *insn;
869bde6b 2382
2383 if (reg == NULL_RTX)
2384 {
2385 gcc_assert (can_create_pseudo_p ());
2386 reg = gen_reg_rtx (Pmode);
2387 }
2388
2389 insn = emit_move_insn (reg, x);
2390 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2391 by loop. */
2392 set_unique_reg_note (insn, REG_EQUAL, orig);
2393
2394 return reg;
2395}
2396
2397/* Does the same as m68k_wrap_symbol, but returns a memory reference to
2398 GOT slot. */
2399
2400static rtx
2401m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2402{
2403 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2404
2405 x = gen_rtx_MEM (Pmode, x);
2406 MEM_READONLY_P (x) = 1;
2407
2408 return x;
2409}
2410
5243fbff 2411/* Legitimize PIC addresses. If the address is already
2412 position-independent, we return ORIG. Newly generated
2413 position-independent addresses go to REG. If we need more
2414 than one register, we lose.
2415
2416 An address is legitimized by making an indirect reference
2417 through the Global Offset Table with the name of the symbol
2418 used as an offset.
2419
2420 The assembler and linker are responsible for placing the
2421 address of the symbol in the GOT. The function prologue
2422 is responsible for initializing a5 to the starting address
2423 of the GOT.
2424
2425 The assembler is also responsible for translating a symbol name
2426 into a constant displacement from the start of the GOT.
2427
2428 A quick example may make things a little clearer:
2429
2430 When not generating PIC code to store the value 12345 into _foo
2431 we would generate the following code:
2432
2433 movel #12345, _foo
2434
2435 When generating PIC two transformations are made. First, the compiler
2436 loads the address of foo into a register. So the first transformation makes:
2437
2438 lea _foo, a0
2439 movel #12345, a0@
2440
2441 The code in movsi will intercept the lea instruction and call this
2442 routine which will transform the instructions into:
2443
2444 movel a5@(_foo:w), a0
2445 movel #12345, a0@
2446
2447
2448 That (in a nutshell) is how *all* symbol and label references are
2449 handled. */
2450
2451rtx
3754d046 2452legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
821960c7 2453 rtx reg)
5243fbff 2454{
2455 rtx pic_ref = orig;
2456
2457 /* First handle a simple SYMBOL_REF or LABEL_REF */
2458 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2459 {
84653e0f 2460 gcc_assert (reg);
5243fbff 2461
869bde6b 2462 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2463 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
5243fbff 2464 }
2465 else if (GET_CODE (orig) == CONST)
2466 {
e6b2f841 2467 rtx base;
5243fbff 2468
a58c6df6 2469 /* Make sure this has not already been legitimized. */
869bde6b 2470 if (m68k_unwrap_symbol (orig, true) != orig)
5243fbff 2471 return orig;
2472
84653e0f 2473 gcc_assert (reg);
5243fbff 2474
2475 /* legitimize both operands of the PLUS */
84653e0f 2476 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2477
2478 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2479 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2480 base == reg ? 0 : reg);
5243fbff 2481
2482 if (GET_CODE (orig) == CONST_INT)
29c05e22 2483 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
869bde6b 2484 else
2485 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
5243fbff 2486 }
869bde6b 2487
5243fbff 2488 return pic_ref;
2489}
2490
869bde6b 2491/* The __tls_get_addr symbol. */
2492static GTY(()) rtx m68k_tls_get_addr;
2493
2494/* Return SYMBOL_REF for __tls_get_addr. */
2495
2496static rtx
2497m68k_get_tls_get_addr (void)
2498{
2499 if (m68k_tls_get_addr == NULL_RTX)
2500 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2501
2502 return m68k_tls_get_addr;
2503}
2504
2505/* Return libcall result in A0 instead of usual D0. */
2506static bool m68k_libcall_value_in_a0_p = false;
2507
2508/* Emit instruction sequence that calls __tls_get_addr. X is
2509 the TLS symbol we are referencing and RELOC is the symbol type to use
2510 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2511 emitted. A pseudo register with result of __tls_get_addr call is
2512 returned. */
2513
2514static rtx
2515m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2516{
2517 rtx a0;
9e9d6337 2518 rtx_insn *insns;
869bde6b 2519 rtx dest;
2520
2521 /* Emit the call sequence. */
2522 start_sequence ();
2523
2524 /* FIXME: Unfortunately, emit_library_call_value does not
2525 consider (plus (%a5) (const (unspec))) to be a good enough
2526 operand for push, so it forces it into a register. The bad
2527 thing about this is that combiner, due to copy propagation and other
2528 optimizations, sometimes can not later fix this. As a consequence,
2529 additional register may be allocated resulting in a spill.
2530 For reference, see args processing loops in
2531 calls.c:emit_library_call_value_1.
2532 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2533 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2534
2535 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2536 is the simpliest way of generating a call. The difference between
2537 __tls_get_addr() and libcall is that the result is returned in D0
2538 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2539 which temporarily switches returning the result to A0. */
2540
2541 m68k_libcall_value_in_a0_p = true;
2542 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2543 Pmode, 1, x, Pmode);
2544 m68k_libcall_value_in_a0_p = false;
2545
2546 insns = get_insns ();
2547 end_sequence ();
2548
2549 gcc_assert (can_create_pseudo_p ());
2550 dest = gen_reg_rtx (Pmode);
2551 emit_libcall_block (insns, dest, a0, eqv);
2552
2553 return dest;
2554}
2555
2556/* The __tls_get_addr symbol. */
2557static GTY(()) rtx m68k_read_tp;
2558
2559/* Return SYMBOL_REF for __m68k_read_tp. */
2560
2561static rtx
2562m68k_get_m68k_read_tp (void)
2563{
2564 if (m68k_read_tp == NULL_RTX)
2565 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2566
2567 return m68k_read_tp;
2568}
2569
2570/* Emit instruction sequence that calls __m68k_read_tp.
2571 A pseudo register with result of __m68k_read_tp call is returned. */
2572
2573static rtx
2574m68k_call_m68k_read_tp (void)
2575{
2576 rtx a0;
2577 rtx eqv;
9e9d6337 2578 rtx_insn *insns;
869bde6b 2579 rtx dest;
2580
2581 start_sequence ();
2582
2583 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2584 is the simpliest way of generating a call. The difference between
2585 __m68k_read_tp() and libcall is that the result is returned in D0
2586 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2587 which temporarily switches returning the result to A0. */
2588
2589 /* Emit the call sequence. */
2590 m68k_libcall_value_in_a0_p = true;
2591 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2592 Pmode, 0);
2593 m68k_libcall_value_in_a0_p = false;
2594 insns = get_insns ();
2595 end_sequence ();
2596
2597 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2598 share the m68k_read_tp result with other IE/LE model accesses. */
2599 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2600
2601 gcc_assert (can_create_pseudo_p ());
2602 dest = gen_reg_rtx (Pmode);
2603 emit_libcall_block (insns, dest, a0, eqv);
2604
2605 return dest;
2606}
2607
2608/* Return a legitimized address for accessing TLS SYMBOL_REF X.
2609 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2610 ColdFire. */
2611
2612rtx
2613m68k_legitimize_tls_address (rtx orig)
2614{
2615 switch (SYMBOL_REF_TLS_MODEL (orig))
2616 {
2617 case TLS_MODEL_GLOBAL_DYNAMIC:
2618 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2619 break;
2620
2621 case TLS_MODEL_LOCAL_DYNAMIC:
2622 {
2623 rtx eqv;
2624 rtx a0;
2625 rtx x;
2626
2627 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2628 share the LDM result with other LD model accesses. */
2629 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2630 UNSPEC_RELOC32);
2631
2632 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2633
2634 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2635
2636 if (can_create_pseudo_p ())
2637 x = m68k_move_to_reg (x, orig, NULL_RTX);
2638
2639 orig = x;
2640 break;
2641 }
2642
2643 case TLS_MODEL_INITIAL_EXEC:
2644 {
2645 rtx a0;
2646 rtx x;
2647
2648 a0 = m68k_call_m68k_read_tp ();
2649
2650 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2651 x = gen_rtx_PLUS (Pmode, x, a0);
2652
2653 if (can_create_pseudo_p ())
2654 x = m68k_move_to_reg (x, orig, NULL_RTX);
2655
2656 orig = x;
2657 break;
2658 }
2659
2660 case TLS_MODEL_LOCAL_EXEC:
2661 {
2662 rtx a0;
2663 rtx x;
2664
2665 a0 = m68k_call_m68k_read_tp ();
2666
2667 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2668
2669 if (can_create_pseudo_p ())
2670 x = m68k_move_to_reg (x, orig, NULL_RTX);
2671
2672 orig = x;
2673 break;
2674 }
2675
2676 default:
2677 gcc_unreachable ();
2678 }
2679
2680 return orig;
2681}
2682
2683/* Return true if X is a TLS symbol. */
2684
2685static bool
2686m68k_tls_symbol_p (rtx x)
2687{
2688 if (!TARGET_HAVE_TLS)
2689 return false;
2690
2691 if (GET_CODE (x) != SYMBOL_REF)
2692 return false;
2693
2694 return SYMBOL_REF_TLS_MODEL (x) != 0;
2695}
2696
869bde6b 2697/* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2698 though illegitimate one.
2699 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2700
2701bool
2702m68k_tls_reference_p (rtx x, bool legitimate_p)
2703{
2704 if (!TARGET_HAVE_TLS)
2705 return false;
2706
2707 if (!legitimate_p)
bcf1a9e0 2708 {
2709 subrtx_var_iterator::array_type array;
2710 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
2711 {
2712 rtx x = *iter;
2713
2714 /* Note: this is not the same as m68k_tls_symbol_p. */
2715 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
2716 return true;
2717
2718 /* Don't recurse into legitimate TLS references. */
2719 if (m68k_tls_reference_p (x, true))
2720 iter.skip_subrtxes ();
2721 }
2722 return false;
2723 }
869bde6b 2724 else
2725 {
2726 enum m68k_reloc reloc = RELOC_GOT;
2727
2728 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2729 && TLS_RELOC_P (reloc));
2730 }
2731}
2732
5243fbff 2733\f
1286b2d4 2734
065b42aa 2735#define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
1286b2d4 2736
92b2fb42 2737/* Return the type of move that should be used for integer I. */
2738
1d86aeab 2739M68K_CONST_METHOD
2740m68k_const_method (HOST_WIDE_INT i)
1286b2d4 2741{
1286b2d4 2742 unsigned u;
2743
e4cd7d76 2744 if (USE_MOVQ (i))
1286b2d4 2745 return MOVQ;
1f09b395 2746
b14b4511 2747 /* The ColdFire doesn't have byte or word operations. */
274d52cf 2748 /* FIXME: This may not be useful for the m68060 either. */
d2a91c7e 2749 if (!TARGET_COLDFIRE)
1f09b395 2750 {
2751 /* if -256 < N < 256 but N is not in range for a moveq
0c0492c9 2752 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1f09b395 2753 if (USE_MOVQ (i ^ 0xff))
2754 return NOTB;
2755 /* Likewise, try with not.w */
2756 if (USE_MOVQ (i ^ 0xffff))
2757 return NOTW;
2758 /* This is the only value where neg.w is useful */
2759 if (i == -65408)
2760 return NEGW;
1f09b395 2761 }
c3f7507d 2762
0c4bc85a 2763 /* Try also with swap. */
2764 u = i;
2765 if (USE_MOVQ ((u >> 16) | (u << 16)))
2766 return SWAP;
2767
42af5438 2768 if (TARGET_ISAB)
c3f7507d 2769 {
fb4883de 2770 /* Try using MVZ/MVS with an immediate value to load constants. */
c3f7507d 2771 if (i >= 0 && i <= 65535)
2772 return MVZ;
2773 if (i >= -32768 && i <= 32767)
2774 return MVS;
2775 }
2776
1286b2d4 2777 /* Otherwise, use move.l */
2778 return MOVL;
2779}
2780
92b2fb42 2781/* Return the cost of moving constant I into a data register. */
2782
fab7adbf 2783static int
92b2fb42 2784const_int_cost (HOST_WIDE_INT i)
1286b2d4 2785{
1d86aeab 2786 switch (m68k_const_method (i))
1286b2d4 2787 {
065b42aa 2788 case MOVQ:
2789 /* Constants between -128 and 127 are cheap due to moveq. */
2790 return 0;
2791 case MVZ:
2792 case MVS:
2793 case NOTB:
2794 case NOTW:
2795 case NEGW:
2796 case SWAP:
2797 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2798 return 1;
2799 case MOVL:
2800 return 2;
2801 default:
2802 gcc_unreachable ();
1286b2d4 2803 }
2804}
2805
fab7adbf 2806static bool
5ae4887d 2807m68k_rtx_costs (rtx x, machine_mode mode, int outer_code,
2808 int opno ATTRIBUTE_UNUSED,
20d892d1 2809 int *total, bool speed ATTRIBUTE_UNUSED)
fab7adbf 2810{
5ae4887d 2811 int code = GET_CODE (x);
2812
fab7adbf 2813 switch (code)
2814 {
2815 case CONST_INT:
2816 /* Constant zero is super cheap due to clr instruction. */
2817 if (x == const0_rtx)
2818 *total = 0;
2819 else
92b2fb42 2820 *total = const_int_cost (INTVAL (x));
fab7adbf 2821 return true;
2822
2823 case CONST:
2824 case LABEL_REF:
2825 case SYMBOL_REF:
2826 *total = 3;
2827 return true;
2828
2829 case CONST_DOUBLE:
2830 /* Make 0.0 cheaper than other floating constants to
2831 encourage creating tstsf and tstdf insns. */
2832 if (outer_code == COMPARE
2833 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2834 *total = 4;
2835 else
2836 *total = 5;
2837 return true;
2838
2839 /* These are vaguely right for a 68020. */
2840 /* The costs for long multiply have been adjusted to work properly
2841 in synth_mult on the 68020, relative to an average of the time
2842 for add and the time for shift, taking away a little more because
2843 sometimes move insns are needed. */
065b42aa 2844 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2845 terms. */
bd40163f 2846#define MULL_COST \
2847 (TUNE_68060 ? 2 \
2848 : TUNE_68040 ? 5 \
53457e36 2849 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2850 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2851 : TUNE_CFV2 ? 8 \
bd40163f 2852 : TARGET_COLDFIRE ? 3 : 13)
2853
2854#define MULW_COST \
2855 (TUNE_68060 ? 2 \
2856 : TUNE_68040 ? 3 \
53457e36 2857 : TUNE_68000_10 ? 5 \
2858 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2859 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2860 : TUNE_CFV2 ? 8 \
bd40163f 2861 : TARGET_COLDFIRE ? 2 : 8)
2862
2863#define DIVW_COST \
2864 (TARGET_CF_HWDIV ? 11 \
2865 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
fab7adbf 2866
2867 case PLUS:
2868 /* An lea costs about three times as much as a simple add. */
5ae4887d 2869 if (mode == SImode
fab7adbf 2870 && GET_CODE (XEXP (x, 1)) == REG
2871 && GET_CODE (XEXP (x, 0)) == MULT
2872 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2873 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2874 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2875 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2876 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
13ab0298 2877 {
2878 /* lea an@(dx:l:i),am */
2879 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2880 return true;
2881 }
fab7adbf 2882 return false;
2883
2884 case ASHIFT:
2885 case ASHIFTRT:
2886 case LSHIFTRT:
bd40163f 2887 if (TUNE_68060)
fab7adbf 2888 {
2889 *total = COSTS_N_INSNS(1);
2890 return true;
2891 }
bd40163f 2892 if (TUNE_68000_10)
fab7adbf 2893 {
2894 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2895 {
2896 if (INTVAL (XEXP (x, 1)) < 16)
2897 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2898 else
2899 /* We're using clrw + swap for these cases. */
2900 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2901 }
2902 else
065b42aa 2903 *total = COSTS_N_INSNS (10); /* Worst case. */
fab7adbf 2904 return true;
2905 }
2906 /* A shift by a big integer takes an extra instruction. */
2907 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2908 && (INTVAL (XEXP (x, 1)) == 16))
2909 {
2910 *total = COSTS_N_INSNS (2); /* clrw;swap */
2911 return true;
2912 }
2913 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2914 && !(INTVAL (XEXP (x, 1)) > 0
2915 && INTVAL (XEXP (x, 1)) <= 8))
2916 {
13ab0298 2917 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
fab7adbf 2918 return true;
2919 }
2920 return false;
2921
2922 case MULT:
2923 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2924 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5ae4887d 2925 && mode == SImode)
fab7adbf 2926 *total = COSTS_N_INSNS (MULW_COST);
5ae4887d 2927 else if (mode == QImode || mode == HImode)
fab7adbf 2928 *total = COSTS_N_INSNS (MULW_COST);
2929 else
2930 *total = COSTS_N_INSNS (MULL_COST);
2931 return true;
2932
2933 case DIV:
2934 case UDIV:
2935 case MOD:
2936 case UMOD:
5ae4887d 2937 if (mode == QImode || mode == HImode)
fab7adbf 2938 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
13ab0298 2939 else if (TARGET_CF_HWDIV)
2940 *total = COSTS_N_INSNS (18);
fab7adbf 2941 else
2942 *total = COSTS_N_INSNS (43); /* div.l */
2943 return true;
2944
74f4459c 2945 case ZERO_EXTRACT:
2946 if (outer_code == COMPARE)
2947 *total = 0;
2948 return false;
2949
fab7adbf 2950 default:
2951 return false;
2952 }
2953}
2954
0d424440 2955/* Return an instruction to move CONST_INT OPERANDS[1] into data register
92b2fb42 2956 OPERANDS[0]. */
2957
2958static const char *
821960c7 2959output_move_const_into_data_reg (rtx *operands)
1286b2d4 2960{
92b2fb42 2961 HOST_WIDE_INT i;
1286b2d4 2962
2963 i = INTVAL (operands[1]);
1d86aeab 2964 switch (m68k_const_method (i))
1286b2d4 2965 {
c3f7507d 2966 case MVZ:
c3f7507d 2967 return "mvzw %1,%0";
176f6408 2968 case MVS:
2969 return "mvsw %1,%0";
065b42aa 2970 case MOVQ:
1286b2d4 2971 return "moveq %1,%0";
065b42aa 2972 case NOTB:
1f24a83f 2973 CC_STATUS_INIT;
e6b2f841 2974 operands[1] = GEN_INT (i ^ 0xff);
1286b2d4 2975 return "moveq %1,%0\n\tnot%.b %0";
065b42aa 2976 case NOTW:
1f24a83f 2977 CC_STATUS_INIT;
e6b2f841 2978 operands[1] = GEN_INT (i ^ 0xffff);
1286b2d4 2979 return "moveq %1,%0\n\tnot%.w %0";
065b42aa 2980 case NEGW:
1f24a83f 2981 CC_STATUS_INIT;
3acc77d9 2982 return "moveq #-128,%0\n\tneg%.w %0";
065b42aa 2983 case SWAP:
1286b2d4 2984 {
2985 unsigned u = i;
2986
e6b2f841 2987 operands[1] = GEN_INT ((u << 16) | (u >> 16));
1286b2d4 2988 return "moveq %1,%0\n\tswap %0";
1286b2d4 2989 }
065b42aa 2990 case MOVL:
92b2fb42 2991 return "move%.l %1,%0";
065b42aa 2992 default:
92b2fb42 2993 gcc_unreachable ();
1286b2d4 2994 }
2995}
2996
92b2fb42 2997/* Return true if I can be handled by ISA B's mov3q instruction. */
0c4bc85a 2998
92b2fb42 2999bool
3000valid_mov3q_const (HOST_WIDE_INT i)
3001{
3002 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
0c4bc85a 3003}
3004
92b2fb42 3005/* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3006 I is the value of OPERANDS[1]. */
0c4bc85a 3007
92b2fb42 3008static const char *
821960c7 3009output_move_simode_const (rtx *operands)
24821a10 3010{
92b2fb42 3011 rtx dest;
3012 HOST_WIDE_INT src;
3013
3014 dest = operands[0];
3015 src = INTVAL (operands[1]);
3016 if (src == 0
3017 && (DATA_REG_P (dest) || MEM_P (dest))
374e1815 3018 /* clr insns on 68000 read before writing. */
3019 && ((TARGET_68010 || TARGET_COLDFIRE)
92b2fb42 3020 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
24821a10 3021 return "clr%.l %0";
92b2fb42 3022 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
065b42aa 3023 return "mov3q%.l %1,%0";
92b2fb42 3024 else if (src == 0 && ADDRESS_REG_P (dest))
c96c8169 3025 return "sub%.l %0,%0";
92b2fb42 3026 else if (DATA_REG_P (dest))
24821a10 3027 return output_move_const_into_data_reg (operands);
92b2fb42 3028 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
0c4bc85a 3029 {
92b2fb42 3030 if (valid_mov3q_const (src))
0c4bc85a 3031 return "mov3q%.l %1,%0";
3032 return "move%.w %1,%0";
3033 }
92b2fb42 3034 else if (MEM_P (dest)
3035 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3036 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3037 && IN_RANGE (src, -0x8000, 0x7fff))
0c4bc85a 3038 {
92b2fb42 3039 if (valid_mov3q_const (src))
0c4bc85a 3040 return "mov3q%.l %1,%-";
3041 return "pea %a1";
3042 }
24821a10 3043 return "move%.l %1,%0";
3044}
3045
f2fa409d 3046const char *
821960c7 3047output_move_simode (rtx *operands)
a923bd2f 3048{
3049 if (GET_CODE (operands[1]) == CONST_INT)
3050 return output_move_simode_const (operands);
3051 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3052 || GET_CODE (operands[1]) == CONST)
3053 && push_operand (operands[0], SImode))
3054 return "pea %a1";
3055 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3056 || GET_CODE (operands[1]) == CONST)
3057 && ADDRESS_REG_P (operands[0]))
3058 return "lea %a1,%0";
3059 return "move%.l %1,%0";
3060}
3061
f2fa409d 3062const char *
821960c7 3063output_move_himode (rtx *operands)
a923bd2f 3064{
3065 if (GET_CODE (operands[1]) == CONST_INT)
3066 {
3067 if (operands[1] == const0_rtx
3068 && (DATA_REG_P (operands[0])
3069 || GET_CODE (operands[0]) == MEM)
374e1815 3070 /* clr insns on 68000 read before writing. */
3071 && ((TARGET_68010 || TARGET_COLDFIRE)
a923bd2f 3072 || !(GET_CODE (operands[0]) == MEM
3073 && MEM_VOLATILE_P (operands[0]))))
3074 return "clr%.w %0";
c96c8169 3075 else if (operands[1] == const0_rtx
3076 && ADDRESS_REG_P (operands[0]))
3077 return "sub%.l %0,%0";
a923bd2f 3078 else if (DATA_REG_P (operands[0])
3079 && INTVAL (operands[1]) < 128
3080 && INTVAL (operands[1]) >= -128)
065b42aa 3081 return "moveq %1,%0";
a923bd2f 3082 else if (INTVAL (operands[1]) < 0x8000
3083 && INTVAL (operands[1]) >= -0x8000)
3084 return "move%.w %1,%0";
3085 }
3086 else if (CONSTANT_P (operands[1]))
3087 return "move%.l %1,%0";
a923bd2f 3088 return "move%.w %1,%0";
3089}
3090
f2fa409d 3091const char *
821960c7 3092output_move_qimode (rtx *operands)
a923bd2f 3093{
2c806cfd 3094 /* 68k family always modifies the stack pointer by at least 2, even for
b14b4511 3095 byte pushes. The 5200 (ColdFire) does not do this. */
84653e0f 3096
065b42aa 3097 /* This case is generated by pushqi1 pattern now. */
84653e0f 3098 gcc_assert (!(GET_CODE (operands[0]) == MEM
3099 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3100 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3101 && ! ADDRESS_REG_P (operands[1])
3102 && ! TARGET_COLDFIRE));
a923bd2f 3103
374e1815 3104 /* clr and st insns on 68000 read before writing. */
a923bd2f 3105 if (!ADDRESS_REG_P (operands[0])
374e1815 3106 && ((TARGET_68010 || TARGET_COLDFIRE)
a923bd2f 3107 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3108 {
3109 if (operands[1] == const0_rtx)
3110 return "clr%.b %0";
960e6739 3111 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
a923bd2f 3112 && GET_CODE (operands[1]) == CONST_INT
3113 && (INTVAL (operands[1]) & 255) == 255)
3114 {
3115 CC_STATUS_INIT;
3116 return "st %0";
3117 }
3118 }
3119 if (GET_CODE (operands[1]) == CONST_INT
3120 && DATA_REG_P (operands[0])
3121 && INTVAL (operands[1]) < 128
3122 && INTVAL (operands[1]) >= -128)
065b42aa 3123 return "moveq %1,%0";
c96c8169 3124 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3125 return "sub%.l %0,%0";
a923bd2f 3126 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3127 return "move%.l %1,%0";
b14b4511 3128 /* 68k family (including the 5200 ColdFire) does not support byte moves to
a0a4c749 3129 from address registers. */
3130 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
a923bd2f 3131 return "move%.w %1,%0";
3132 return "move%.b %1,%0";
3133}
3134
f2fa409d 3135const char *
821960c7 3136output_move_stricthi (rtx *operands)
8797980e 3137{
3138 if (operands[1] == const0_rtx
374e1815 3139 /* clr insns on 68000 read before writing. */
3140 && ((TARGET_68010 || TARGET_COLDFIRE)
8797980e 3141 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3142 return "clr%.w %0";
3143 return "move%.w %1,%0";
3144}
3145
f2fa409d 3146const char *
821960c7 3147output_move_strictqi (rtx *operands)
8797980e 3148{
3149 if (operands[1] == const0_rtx
374e1815 3150 /* clr insns on 68000 read before writing. */
3151 && ((TARGET_68010 || TARGET_COLDFIRE)
8797980e 3152 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3153 return "clr%.b %0";
3154 return "move%.b %1,%0";
3155}
3156
5243fbff 3157/* Return the best assembler insn template
3158 for moving operands[1] into operands[0] as a fullword. */
3159
f2fa409d 3160static const char *
821960c7 3161singlemove_string (rtx *operands)
5243fbff 3162{
24821a10 3163 if (GET_CODE (operands[1]) == CONST_INT)
3164 return output_move_simode_const (operands);
3165 return "move%.l %1,%0";
5243fbff 3166}
3167
df86ba0c 3168
1d86aeab 3169/* Output assembler or rtl code to perform a doubleword move insn
3170 with operands OPERANDS.
3171 Pointers to 3 helper functions should be specified:
3172 HANDLE_REG_ADJUST to adjust a register by a small value,
3173 HANDLE_COMPADR to compute an address and
3174 HANDLE_MOVSI to move 4 bytes. */
5243fbff 3175
1d86aeab 3176static void
3177handle_move_double (rtx operands[2],
3178 void (*handle_reg_adjust) (rtx, int),
3179 void (*handle_compadr) (rtx [2]),
3180 void (*handle_movsi) (rtx [2]))
5243fbff 3181{
df86ba0c 3182 enum
3183 {
3184 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3185 } optype0, optype1;
5243fbff 3186 rtx latehalf[2];
df86ba0c 3187 rtx middlehalf[2];
94cfb7c6 3188 rtx xops[2];
5243fbff 3189 rtx addreg0 = 0, addreg1 = 0;
94cfb7c6 3190 int dest_overlapped_low = 0;
7b6f576a 3191 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
df86ba0c 3192
3193 middlehalf[0] = 0;
3194 middlehalf[1] = 0;
5243fbff 3195
3196 /* First classify both operands. */
3197
3198 if (REG_P (operands[0]))
3199 optype0 = REGOP;
3200 else if (offsettable_memref_p (operands[0]))
3201 optype0 = OFFSOP;
3202 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3203 optype0 = POPOP;
3204 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3205 optype0 = PUSHOP;
3206 else if (GET_CODE (operands[0]) == MEM)
3207 optype0 = MEMOP;
3208 else
3209 optype0 = RNDOP;
3210
3211 if (REG_P (operands[1]))
3212 optype1 = REGOP;
3213 else if (CONSTANT_P (operands[1]))
3214 optype1 = CNSTOP;
3215 else if (offsettable_memref_p (operands[1]))
3216 optype1 = OFFSOP;
3217 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3218 optype1 = POPOP;
3219 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3220 optype1 = PUSHOP;
3221 else if (GET_CODE (operands[1]) == MEM)
3222 optype1 = MEMOP;
3223 else
3224 optype1 = RNDOP;
3225
84653e0f 3226 /* Check for the cases that the operand constraints are not supposed
3227 to allow to happen. Generating code for these cases is
3228 painful. */
3229 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
5243fbff 3230
3231 /* If one operand is decrementing and one is incrementing
3232 decrement the former register explicitly
3233 and change that operand into ordinary indexing. */
3234
3235 if (optype0 == PUSHOP && optype1 == POPOP)
3236 {
3237 operands[0] = XEXP (XEXP (operands[0], 0), 0);
1d86aeab 3238
3239 handle_reg_adjust (operands[0], -size);
3240
df86ba0c 3241 if (GET_MODE (operands[1]) == XFmode)
e6b2f841 3242 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
df86ba0c 3243 else if (GET_MODE (operands[0]) == DFmode)
e6b2f841 3244 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
df86ba0c 3245 else
e6b2f841 3246 operands[0] = gen_rtx_MEM (DImode, operands[0]);
5243fbff 3247 optype0 = OFFSOP;
3248 }
3249 if (optype0 == POPOP && optype1 == PUSHOP)
3250 {
3251 operands[1] = XEXP (XEXP (operands[1], 0), 0);
1d86aeab 3252
3253 handle_reg_adjust (operands[1], -size);
3254
df86ba0c 3255 if (GET_MODE (operands[1]) == XFmode)
e6b2f841 3256 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
df86ba0c 3257 else if (GET_MODE (operands[1]) == DFmode)
e6b2f841 3258 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
df86ba0c 3259 else
e6b2f841 3260 operands[1] = gen_rtx_MEM (DImode, operands[1]);
5243fbff 3261 optype1 = OFFSOP;
3262 }
3263
3264 /* If an operand is an unoffsettable memory ref, find a register
3265 we can increment temporarily to make it refer to the second word. */
3266
3267 if (optype0 == MEMOP)
3268 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3269
3270 if (optype1 == MEMOP)
3271 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3272
3273 /* Ok, we can do one word at a time.
3274 Normally we do the low-numbered word first,
3275 but if either operand is autodecrementing then we
3276 do the high-numbered word first.
3277
3278 In either case, set up in LATEHALF the operands to use
3279 for the high-numbered word and in some cases alter the
3280 operands in OPERANDS to be suitable for the low-numbered word. */
3281
df86ba0c 3282 if (size == 12)
3283 {
3284 if (optype0 == REGOP)
3285 {
e6b2f841 3286 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3287 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
df86ba0c 3288 }
3289 else if (optype0 == OFFSOP)
3290 {
eafc6604 3291 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3292 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
df86ba0c 3293 }
3294 else
3295 {
1d86aeab 3296 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3297 latehalf[0] = adjust_address (operands[0], SImode, 0);
df86ba0c 3298 }
3299
3300 if (optype1 == REGOP)
3301 {
e6b2f841 3302 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3303 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
df86ba0c 3304 }
3305 else if (optype1 == OFFSOP)
3306 {
eafc6604 3307 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3308 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
df86ba0c 3309 }
3310 else if (optype1 == CNSTOP)
3311 {
3312 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3313 {
df86ba0c 3314 long l[3];
3315
945f7b03 3316 REAL_VALUE_TO_TARGET_LONG_DOUBLE
3317 (*CONST_DOUBLE_REAL_VALUE (operands[1]), l);
df86ba0c 3318 operands[1] = GEN_INT (l[0]);
3319 middlehalf[1] = GEN_INT (l[1]);
3320 latehalf[1] = GEN_INT (l[2]);
3321 }
84653e0f 3322 else
df86ba0c 3323 {
84653e0f 3324 /* No non-CONST_DOUBLE constant should ever appear
3325 here. */
3326 gcc_assert (!CONSTANT_P (operands[1]));
df86ba0c 3327 }
3328 }
3329 else
3330 {
1d86aeab 3331 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3332 latehalf[1] = adjust_address (operands[1], SImode, 0);
df86ba0c 3333 }
3334 }
5243fbff 3335 else
df86ba0c 3336 /* size is not 12: */
3337 {
3338 if (optype0 == REGOP)
e6b2f841 3339 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
df86ba0c 3340 else if (optype0 == OFFSOP)
eafc6604 3341 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
df86ba0c 3342 else
1d86aeab 3343 latehalf[0] = adjust_address (operands[0], SImode, 0);
df86ba0c 3344
3345 if (optype1 == REGOP)
e6b2f841 3346 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
df86ba0c 3347 else if (optype1 == OFFSOP)
eafc6604 3348 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
df86ba0c 3349 else if (optype1 == CNSTOP)
3350 split_double (operands[1], &operands[1], &latehalf[1]);
3351 else
1d86aeab 3352 latehalf[1] = adjust_address (operands[1], SImode, 0);
df86ba0c 3353 }
5243fbff 3354
7e862b4e 3355 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3356 word first. We should use the adjusted operand 1 (which is N+4(REG))
3357 for the low word as well, to compensate for the first decrement of
3358 REG. */
5243fbff 3359 if (optype0 == PUSHOP
7e862b4e 3360 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
2d2c2623 3361 operands[1] = middlehalf[1] = latehalf[1];
5243fbff 3362
94cfb7c6 3363 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3364 if the upper part of reg N does not appear in the MEM, arrange to
3365 emit the move late-half first. Otherwise, compute the MEM address
3366 into the upper part of N and use that as a pointer to the memory
3367 operand. */
3368 if (optype0 == REGOP
3369 && (optype1 == OFFSOP || optype1 == MEMOP))
3370 {
e6b2f841 3371 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
25de1190 3372
3373 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
8867c023 3374 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
94cfb7c6 3375 {
3376 /* If both halves of dest are used in the src memory address,
25de1190 3377 compute the address into latehalf of dest.
3378 Note that this can't happen if the dest is two data regs. */
84653e0f 3379 compadr:
94cfb7c6 3380 xops[0] = latehalf[0];
3381 xops[1] = XEXP (operands[1], 0);
1d86aeab 3382
3383 handle_compadr (xops);
3384 if (GET_MODE (operands[1]) == XFmode)
94cfb7c6 3385 {
e6b2f841 3386 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
eafc6604 3387 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3388 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
94cfb7c6 3389 }
3390 else
3391 {
e6b2f841 3392 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
eafc6604 3393 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
94cfb7c6 3394 }
3395 }
3396 else if (size == 12
8867c023 3397 && reg_overlap_mentioned_p (middlehalf[0],
3398 XEXP (operands[1], 0)))
94cfb7c6 3399 {
25de1190 3400 /* Check for two regs used by both source and dest.
3401 Note that this can't happen if the dest is all data regs.
3402 It can happen if the dest is d6, d7, a0.
3403 But in that case, latehalf is an addr reg, so
3404 the code at compadr does ok. */
3405
3406 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
8867c023 3407 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3408 goto compadr;
94cfb7c6 3409
3410 /* JRV says this can't happen: */
84653e0f 3411 gcc_assert (!addreg0 && !addreg1);
94cfb7c6 3412
0c0492c9 3413 /* Only the middle reg conflicts; simply put it last. */
1d86aeab 3414 handle_movsi (operands);
3415 handle_movsi (latehalf);
3416 handle_movsi (middlehalf);
3417
3418 return;
94cfb7c6 3419 }
f9ec812b 3420 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
94cfb7c6 3421 /* If the low half of dest is mentioned in the source memory
3422 address, the arrange to emit the move late half first. */
3423 dest_overlapped_low = 1;
3424 }
3425
5243fbff 3426 /* If one or both operands autodecrementing,
3427 do the two words, high-numbered first. */
3428
3429 /* Likewise, the first move would clobber the source of the second one,
3430 do them in the other order. This happens only for registers;
3431 such overlap can't happen in memory unless the user explicitly
3432 sets it up, and that is an undefined circumstance. */
3433
3434 if (optype0 == PUSHOP || optype1 == PUSHOP
3435 || (optype0 == REGOP && optype1 == REGOP
df86ba0c 3436 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
94cfb7c6 3437 || REGNO (operands[0]) == REGNO (latehalf[1])))
3438 || dest_overlapped_low)
5243fbff 3439 {
3440 /* Make any unoffsettable addresses point at high-numbered word. */
3441 if (addreg0)
1d86aeab 3442 handle_reg_adjust (addreg0, size - 4);
5243fbff 3443 if (addreg1)
1d86aeab 3444 handle_reg_adjust (addreg1, size - 4);
5243fbff 3445
3446 /* Do that word. */
1d86aeab 3447 handle_movsi (latehalf);
5243fbff 3448
3449 /* Undo the adds we just did. */
3450 if (addreg0)
1d86aeab 3451 handle_reg_adjust (addreg0, -4);
5243fbff 3452 if (addreg1)
1d86aeab 3453 handle_reg_adjust (addreg1, -4);
5243fbff 3454
df86ba0c 3455 if (size == 12)
3456 {
1d86aeab 3457 handle_movsi (middlehalf);
3458
df86ba0c 3459 if (addreg0)
1d86aeab 3460 handle_reg_adjust (addreg0, -4);
df86ba0c 3461 if (addreg1)
1d86aeab 3462 handle_reg_adjust (addreg1, -4);
df86ba0c 3463 }
3464
5243fbff 3465 /* Do low-numbered word. */
1d86aeab 3466
3467 handle_movsi (operands);
3468 return;
5243fbff 3469 }
3470
3471 /* Normal case: do the two words, low-numbered first. */
3472
5734a3c5 3473 m68k_final_prescan_insn (NULL, operands, 2);
1d86aeab 3474 handle_movsi (operands);
5243fbff 3475
df86ba0c 3476 /* Do the middle one of the three words for long double */
3477 if (size == 12)
3478 {
3479 if (addreg0)
1d86aeab 3480 handle_reg_adjust (addreg0, 4);
df86ba0c 3481 if (addreg1)
1d86aeab 3482 handle_reg_adjust (addreg1, 4);
df86ba0c 3483
5734a3c5 3484 m68k_final_prescan_insn (NULL, middlehalf, 2);
1d86aeab 3485 handle_movsi (middlehalf);
df86ba0c 3486 }
3487
5243fbff 3488 /* Make any unoffsettable addresses point at high-numbered word. */
3489 if (addreg0)
1d86aeab 3490 handle_reg_adjust (addreg0, 4);
5243fbff 3491 if (addreg1)
1d86aeab 3492 handle_reg_adjust (addreg1, 4);
5243fbff 3493
3494 /* Do that word. */
5734a3c5 3495 m68k_final_prescan_insn (NULL, latehalf, 2);
1d86aeab 3496 handle_movsi (latehalf);
5243fbff 3497
3498 /* Undo the adds we just did. */
3499 if (addreg0)
1d86aeab 3500 handle_reg_adjust (addreg0, -(size - 4));
3501 if (addreg1)
3502 handle_reg_adjust (addreg1, -(size - 4));
3503
3504 return;
3505}
3506
3507/* Output assembler code to adjust REG by N. */
3508static void
3509output_reg_adjust (rtx reg, int n)
3510{
3511 const char *s;
3512
3513 gcc_assert (GET_MODE (reg) == SImode
3514 && -12 <= n && n != 0 && n <= 12);
3515
3516 switch (n)
df86ba0c 3517 {
1d86aeab 3518 case 12:
3519 s = "add%.l #12,%0";
3520 break;
3521
3522 case 8:
3523 s = "addq%.l #8,%0";
3524 break;
3525
3526 case 4:
3527 s = "addq%.l #4,%0";
3528 break;
3529
3530 case -12:
3531 s = "sub%.l #12,%0";
3532 break;
3533
3534 case -8:
3535 s = "subq%.l #8,%0";
3536 break;
3537
3538 case -4:
3539 s = "subq%.l #4,%0";
3540 break;
3541
3542 default:
3543 gcc_unreachable ();
3544 s = NULL;
df86ba0c 3545 }
1d86aeab 3546
3547 output_asm_insn (s, &reg);
3548}
3549
3550/* Emit rtl code to adjust REG by N. */
3551static void
3552emit_reg_adjust (rtx reg1, int n)
3553{
3554 rtx reg2;
3555
3556 gcc_assert (GET_MODE (reg1) == SImode
3557 && -12 <= n && n != 0 && n <= 12);
3558
3559 reg1 = copy_rtx (reg1);
3560 reg2 = copy_rtx (reg1);
3561
3562 if (n < 0)
3563 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3564 else if (n > 0)
3565 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3566 else
3567 gcc_unreachable ();
3568}
3569
3570/* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3571static void
3572output_compadr (rtx operands[2])
3573{
3574 output_asm_insn ("lea %a1,%0", operands);
3575}
3576
3577/* Output the best assembler insn for moving operands[1] into operands[0]
3578 as a fullword. */
3579static void
3580output_movsi (rtx operands[2])
3581{
3582 output_asm_insn (singlemove_string (operands), operands);
3583}
3584
3585/* Copy OP and change its mode to MODE. */
3586static rtx
3754d046 3587copy_operand (rtx op, machine_mode mode)
1d86aeab 3588{
3589 /* ??? This looks really ugly. There must be a better way
3590 to change a mode on the operand. */
3591 if (GET_MODE (op) != VOIDmode)
df86ba0c 3592 {
1d86aeab 3593 if (REG_P (op))
3594 op = gen_rtx_REG (mode, REGNO (op));
df86ba0c 3595 else
1d86aeab 3596 {
3597 op = copy_rtx (op);
3598 PUT_MODE (op, mode);
3599 }
df86ba0c 3600 }
5243fbff 3601
1d86aeab 3602 return op;
3603}
3604
3605/* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3606static void
3607emit_movsi (rtx operands[2])
3608{
3609 operands[0] = copy_operand (operands[0], SImode);
3610 operands[1] = copy_operand (operands[1], SImode);
3611
3612 emit_insn (gen_movsi (operands[0], operands[1]));
3613}
3614
3615/* Output assembler code to perform a doubleword move insn
3616 with operands OPERANDS. */
3617const char *
3618output_move_double (rtx *operands)
3619{
3620 handle_move_double (operands,
3621 output_reg_adjust, output_compadr, output_movsi);
3622
5243fbff 3623 return "";
3624}
3625
1d86aeab 3626/* Output rtl code to perform a doubleword move insn
3627 with operands OPERANDS. */
3628void
3629m68k_emit_move_double (rtx operands[2])
3630{
3631 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3632}
58c23110 3633
3634/* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3635 new rtx with the correct mode. */
3636
3637static rtx
3754d046 3638force_mode (machine_mode mode, rtx orig)
58c23110 3639{
3640 if (mode == GET_MODE (orig))
3641 return orig;
3642
3643 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3644 abort ();
3645
3646 return gen_rtx_REG (mode, REGNO (orig));
3647}
3648
3649static int
3754d046 3650fp_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
58c23110 3651{
3652 return reg_renumber && FP_REG_P (op);
3653}
3654
3655/* Emit insns to move operands[1] into operands[0].
3656
3657 Return 1 if we have written out everything that needs to be done to
3658 do the move. Otherwise, return 0 and the caller will emit the move
3659 normally.
3660
3661 Note SCRATCH_REG may not be in the proper mode depending on how it
334ec2d8 3662 will be used. This routine is responsible for creating a new copy
58c23110 3663 of SCRATCH_REG in the proper mode. */
3664
3665int
3754d046 3666emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
58c23110 3667{
3668 register rtx operand0 = operands[0];
3669 register rtx operand1 = operands[1];
3670 register rtx tem;
3671
3672 if (scratch_reg
3673 && reload_in_progress && GET_CODE (operand0) == REG
3674 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
1c654ff1 3675 operand0 = reg_equiv_mem (REGNO (operand0));
58c23110 3676 else if (scratch_reg
3677 && reload_in_progress && GET_CODE (operand0) == SUBREG
3678 && GET_CODE (SUBREG_REG (operand0)) == REG
3679 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3680 {
3681 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3682 the code which tracks sets/uses for delete_output_reload. */
3683 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
1c654ff1 3684 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
58c23110 3685 SUBREG_BYTE (operand0));
c6a6cdaa 3686 operand0 = alter_subreg (&temp, true);
58c23110 3687 }
3688
3689 if (scratch_reg
3690 && reload_in_progress && GET_CODE (operand1) == REG
3691 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
1c654ff1 3692 operand1 = reg_equiv_mem (REGNO (operand1));
58c23110 3693 else if (scratch_reg
3694 && reload_in_progress && GET_CODE (operand1) == SUBREG
3695 && GET_CODE (SUBREG_REG (operand1)) == REG
3696 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3697 {
3698 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3699 the code which tracks sets/uses for delete_output_reload. */
3700 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
1c654ff1 3701 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
58c23110 3702 SUBREG_BYTE (operand1));
c6a6cdaa 3703 operand1 = alter_subreg (&temp, true);
58c23110 3704 }
3705
3706 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3707 && ((tem = find_replacement (&XEXP (operand0, 0)))
3708 != XEXP (operand0, 0)))
3709 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3710 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3711 && ((tem = find_replacement (&XEXP (operand1, 0)))
3712 != XEXP (operand1, 0)))
3713 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3714
3715 /* Handle secondary reloads for loads/stores of FP registers where
3716 the address is symbolic by using the scratch register */
3717 if (fp_reg_operand (operand0, mode)
3718 && ((GET_CODE (operand1) == MEM
3719 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3720 || ((GET_CODE (operand1) == SUBREG
3721 && GET_CODE (XEXP (operand1, 0)) == MEM
3722 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3723 && scratch_reg)
3724 {
3725 if (GET_CODE (operand1) == SUBREG)
3726 operand1 = XEXP (operand1, 0);
3727
3728 /* SCRATCH_REG will hold an address. We want
3729 it in SImode regardless of what mode it was originally given
3730 to us. */
3731 scratch_reg = force_mode (SImode, scratch_reg);
3732
3733 /* D might not fit in 14 bits either; for such cases load D into
3734 scratch reg. */
3735 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3736 {
3737 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3738 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3739 Pmode,
3740 XEXP (XEXP (operand1, 0), 0),
3741 scratch_reg));
3742 }
3743 else
3744 emit_move_insn (scratch_reg, XEXP (operand1, 0));
d1f9b275 3745 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
58c23110 3746 return 1;
3747 }
3748 else if (fp_reg_operand (operand1, mode)
3749 && ((GET_CODE (operand0) == MEM
3750 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3751 || ((GET_CODE (operand0) == SUBREG)
3752 && GET_CODE (XEXP (operand0, 0)) == MEM
3753 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3754 && scratch_reg)
3755 {
3756 if (GET_CODE (operand0) == SUBREG)
3757 operand0 = XEXP (operand0, 0);
3758
3759 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3760 it in SIMODE regardless of what mode it was originally given
3761 to us. */
3762 scratch_reg = force_mode (SImode, scratch_reg);
3763
3764 /* D might not fit in 14 bits either; for such cases load D into
3765 scratch reg. */
3766 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3767 {
3768 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3769 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3770 0)),
3771 Pmode,
3772 XEXP (XEXP (operand0, 0),
3773 0),
3774 scratch_reg));
3775 }
3776 else
3777 emit_move_insn (scratch_reg, XEXP (operand0, 0));
d1f9b275 3778 emit_insn (gen_rtx_SET (gen_rtx_MEM (mode, scratch_reg), operand1));
58c23110 3779 return 1;
3780 }
3781 /* Handle secondary reloads for loads of FP registers from constant
3782 expressions by forcing the constant into memory.
3783
3784 use scratch_reg to hold the address of the memory location.
3785
3786 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3787 NO_REGS when presented with a const_int and an register class
3788 containing only FP registers. Doing so unfortunately creates
3789 more problems than it solves. Fix this for 2.5. */
3790 else if (fp_reg_operand (operand0, mode)
3791 && CONSTANT_P (operand1)
3792 && scratch_reg)
3793 {
3794 rtx xoperands[2];
3795
3796 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3797 it in SIMODE regardless of what mode it was originally given
3798 to us. */
3799 scratch_reg = force_mode (SImode, scratch_reg);
3800
3801 /* Force the constant into memory and put the address of the
3802 memory location into scratch_reg. */
3803 xoperands[0] = scratch_reg;
3804 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
d1f9b275 3805 emit_insn (gen_rtx_SET (scratch_reg, xoperands[1]));
58c23110 3806
3807 /* Now load the destination register. */
d1f9b275 3808 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
58c23110 3809 return 1;
3810 }
3811
3812 /* Now have insn-emit do whatever it normally does. */
3813 return 0;
3814}
3815
8ec9650e 3816/* Split one or more DImode RTL references into pairs of SImode
3817 references. The RTL can be REG, offsettable MEM, integer constant, or
3818 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3819 split and "num" is its length. lo_half and hi_half are output arrays
3820 that parallel "operands". */
3821
3822void
3823split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3824{
3825 while (num--)
3826 {
3827 rtx op = operands[num];
3828
3829 /* simplify_subreg refuses to split volatile memory addresses,
3830 but we still have to handle it. */
3831 if (GET_CODE (op) == MEM)
3832 {
3833 lo_half[num] = adjust_address (op, SImode, 4);
3834 hi_half[num] = adjust_address (op, SImode, 0);
3835 }
3836 else
3837 {
3838 lo_half[num] = simplify_gen_subreg (SImode, op,
3839 GET_MODE (op) == VOIDmode
3840 ? DImode : GET_MODE (op), 4);
3841 hi_half[num] = simplify_gen_subreg (SImode, op,
3842 GET_MODE (op) == VOIDmode
3843 ? DImode : GET_MODE (op), 0);
3844 }
3845 }
3846}
3847
9c47decb 3848/* Split X into a base and a constant offset, storing them in *BASE
3849 and *OFFSET respectively. */
3850
3851static void
3852m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3853{
3854 *offset = 0;
3855 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3856 {
3857 *offset += INTVAL (XEXP (x, 1));
3858 x = XEXP (x, 0);
3859 }
3860 *base = x;
3861}
3862
3863/* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3864 instruction. STORE_P says whether the move is a load or store.
3865
3866 If the instruction uses post-increment or pre-decrement addressing,
3867 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3868 adjustment. This adjustment will be made by the first element of
3869 PARALLEL, with the loads or stores starting at element 1. If the
3870 instruction does not use post-increment or pre-decrement addressing,
3871 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3872 start at element 0. */
3873
3874bool
3875m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3876 HOST_WIDE_INT automod_offset, bool store_p)
3877{
3878 rtx base, mem_base, set, mem, reg, last_reg;
3879 HOST_WIDE_INT offset, mem_offset;
3880 int i, first, len;
3881 enum reg_class rclass;
3882
3883 len = XVECLEN (pattern, 0);
3884 first = (automod_base != NULL);
3885
3886 if (automod_base)
3887 {
3888 /* Stores must be pre-decrement and loads must be post-increment. */
3889 if (store_p != (automod_offset < 0))
3890 return false;
3891
3892 /* Work out the base and offset for lowest memory location. */
3893 base = automod_base;
3894 offset = (automod_offset < 0 ? automod_offset : 0);
3895 }
3896 else
3897 {
3898 /* Allow any valid base and offset in the first access. */
3899 base = NULL;
3900 offset = 0;
3901 }
3902
3903 last_reg = NULL;
3904 rclass = NO_REGS;
3905 for (i = first; i < len; i++)
3906 {
3907 /* We need a plain SET. */
3908 set = XVECEXP (pattern, 0, i);
3909 if (GET_CODE (set) != SET)
3910 return false;
3911
3912 /* Check that we have a memory location... */
3913 mem = XEXP (set, !store_p);
3914 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3915 return false;
3916
3917 /* ...with the right address. */
3918 if (base == NULL)
3919 {
3920 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3921 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3922 There are no mode restrictions for 680x0 besides the
3923 automodification rules enforced above. */
3924 if (TARGET_COLDFIRE
3925 && !m68k_legitimate_base_reg_p (base, reload_completed))
3926 return false;
3927 }
3928 else
3929 {
3930 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3931 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3932 return false;
3933 }
3934
3935 /* Check that we have a register of the required mode and class. */
3936 reg = XEXP (set, store_p);
3937 if (!REG_P (reg)
3938 || !HARD_REGISTER_P (reg)
3939 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3940 return false;
3941
3942 if (last_reg)
3943 {
3944 /* The register must belong to RCLASS and have a higher number
3945 than the register in the previous SET. */
3946 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3947 || REGNO (last_reg) >= REGNO (reg))
3948 return false;
3949 }
3950 else
3951 {
3952 /* Work out which register class we need. */
3953 if (INT_REGNO_P (REGNO (reg)))
3954 rclass = GENERAL_REGS;
3955 else if (FP_REGNO_P (REGNO (reg)))
3956 rclass = FP_REGS;
3957 else
3958 return false;
3959 }
3960
3961 last_reg = reg;
3962 offset += GET_MODE_SIZE (GET_MODE (reg));
3963 }
3964
3965 /* If we have an automodification, check whether the final offset is OK. */
3966 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3967 return false;
3968
3969 /* Reject unprofitable cases. */
3970 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3971 return false;
3972
3973 return true;
3974}
3975
3976/* Return the assembly code template for a movem or fmovem instruction
3977 whose pattern is given by PATTERN. Store the template's operands
3978 in OPERANDS.
3979
3980 If the instruction uses post-increment or pre-decrement addressing,
3981 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3982 is true if this is a store instruction. */
3983
3984const char *
3985m68k_output_movem (rtx *operands, rtx pattern,
3986 HOST_WIDE_INT automod_offset, bool store_p)
3987{
3988 unsigned int mask;
3989 int i, first;
3990
3991 gcc_assert (GET_CODE (pattern) == PARALLEL);
3992 mask = 0;
3993 first = (automod_offset != 0);
3994 for (i = first; i < XVECLEN (pattern, 0); i++)
3995 {
3996 /* When using movem with pre-decrement addressing, register X + D0_REG
3997 is controlled by bit 15 - X. For all other addressing modes,
3998 register X + D0_REG is controlled by bit X. Confusingly, the
3999 register mask for fmovem is in the opposite order to that for
4000 movem. */
4001 unsigned int regno;
4002
4003 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4004 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4005 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4006 if (automod_offset < 0)
4007 {
4008 if (FP_REGNO_P (regno))
4009 mask |= 1 << (regno - FP0_REG);
4010 else
4011 mask |= 1 << (15 - (regno - D0_REG));
4012 }
4013 else
4014 {
4015 if (FP_REGNO_P (regno))
4016 mask |= 1 << (7 - (regno - FP0_REG));
4017 else
4018 mask |= 1 << (regno - D0_REG);
4019 }
4020 }
4021 CC_STATUS_INIT;
4022
4023 if (automod_offset == 0)
4024 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4025 else if (automod_offset < 0)
4026 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4027 else
4028 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4029 operands[1] = GEN_INT (mask);
4030 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4031 {
4032 if (store_p)
97747e65 4033 return "fmovem %1,%a0";
9c47decb 4034 else
97747e65 4035 return "fmovem %a0,%1";
9c47decb 4036 }
4037 else
4038 {
4039 if (store_p)
97747e65 4040 return "movem%.l %1,%a0";
9c47decb 4041 else
97747e65 4042 return "movem%.l %a0,%1";
9c47decb 4043 }
4044}
4045
5243fbff 4046/* Return a REG that occurs in ADDR with coefficient 1.
4047 ADDR can be effectively incremented by incrementing REG. */
4048
4049static rtx
821960c7 4050find_addr_reg (rtx addr)
5243fbff 4051{
4052 while (GET_CODE (addr) == PLUS)
4053 {
4054 if (GET_CODE (XEXP (addr, 0)) == REG)
4055 addr = XEXP (addr, 0);
4056 else if (GET_CODE (XEXP (addr, 1)) == REG)
4057 addr = XEXP (addr, 1);
4058 else if (CONSTANT_P (XEXP (addr, 0)))
4059 addr = XEXP (addr, 1);
4060 else if (CONSTANT_P (XEXP (addr, 1)))
4061 addr = XEXP (addr, 0);
4062 else
84653e0f 4063 gcc_unreachable ();
5243fbff 4064 }
84653e0f 4065 gcc_assert (GET_CODE (addr) == REG);
4066 return addr;
5243fbff 4067}
ee808824 4068
b14b4511 4069/* Output assembler code to perform a 32-bit 3-operand add. */
ee808824 4070
f2fa409d 4071const char *
821960c7 4072output_addsi3 (rtx *operands)
ee808824 4073{
4074 if (! operands_match_p (operands[0], operands[1]))
4075 {
4076 if (!ADDRESS_REG_P (operands[1]))
4077 {
4078 rtx tmp = operands[1];
4079
4080 operands[1] = operands[2];
4081 operands[2] = tmp;
4082 }
4083
4084 /* These insns can result from reloads to access
4085 stack slots over 64k from the frame pointer. */
4086 if (GET_CODE (operands[2]) == CONST_INT
5a6901d6 4087 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
af6ca061 4088 return "move%.l %2,%0\n\tadd%.l %1,%0";
ee808824 4089 if (GET_CODE (operands[2]) == REG)
4ad53767 4090 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4091 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
ee808824 4092 }
4093 if (GET_CODE (operands[2]) == CONST_INT)
4094 {
ee808824 4095 if (INTVAL (operands[2]) > 0
4096 && INTVAL (operands[2]) <= 8)
4097 return "addq%.l %2,%0";
4098 if (INTVAL (operands[2]) < 0
4099 && INTVAL (operands[2]) >= -8)
4100 {
7014838c 4101 operands[2] = GEN_INT (- INTVAL (operands[2]));
ee808824 4102 return "subq%.l %2,%0";
4103 }
4104 /* On the CPU32 it is faster to use two addql instructions to
4105 add a small integer (8 < N <= 16) to a register.
0c0492c9 4106 Likewise for subql. */
bd40163f 4107 if (TUNE_CPU32 && REG_P (operands[0]))
ee808824 4108 {
4109 if (INTVAL (operands[2]) > 8
4110 && INTVAL (operands[2]) <= 16)
4111 {
e6b2f841 4112 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
3acc77d9 4113 return "addq%.l #8,%0\n\taddq%.l %2,%0";
ee808824 4114 }
4115 if (INTVAL (operands[2]) < -8
4116 && INTVAL (operands[2]) >= -16)
4117 {
7014838c 4118 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
3acc77d9 4119 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
ee808824 4120 }
4121 }
ee808824 4122 if (ADDRESS_REG_P (operands[0])
4123 && INTVAL (operands[2]) >= -0x8000
4124 && INTVAL (operands[2]) < 0x8000)
4125 {
bd40163f 4126 if (TUNE_68040)
ee808824 4127 return "add%.w %2,%0";
4128 else
4ad53767 4129 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
ee808824 4130 }
4131 }
4132 return "add%.l %2,%0";
4133}
5243fbff 4134\f
4135/* Store in cc_status the expressions that the condition codes will
4136 describe after execution of an instruction whose pattern is EXP.
4137 Do not alter them if the instruction would not alter the cc's. */
4138
4139/* On the 68000, all the insns to store in an address register fail to
4140 set the cc's. However, in some cases these instructions can make it
4141 possibly invalid to use the saved cc's. In those cases we clear out
4142 some or all of the saved cc's so they won't be used. */
4143
e6b2f841 4144void
821960c7 4145notice_update_cc (rtx exp, rtx insn)
5243fbff 4146{
d2e633d7 4147 if (GET_CODE (exp) == SET)
5243fbff 4148 {
4149 if (GET_CODE (SET_SRC (exp)) == CALL)
065b42aa 4150 CC_STATUS_INIT;
5243fbff 4151 else if (ADDRESS_REG_P (SET_DEST (exp)))
4152 {
c5aa1e92 4153 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
5243fbff 4154 cc_status.value1 = 0;
c5aa1e92 4155 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
5243fbff 4156 cc_status.value2 = 0;
4157 }
12e6817c 4158 /* fmoves to memory or data registers do not set the condition
4159 codes. Normal moves _do_ set the condition codes, but not in
4160 a way that is appropriate for comparison with 0, because -0.0
4161 would be treated as a negative nonzero number. Note that it
0d424440 4162 isn't appropriate to conditionalize this restriction on
12e6817c 4163 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4164 we care about the difference between -0.0 and +0.0. */
5243fbff 4165 else if (!FP_REG_P (SET_DEST (exp))
4166 && SET_DEST (exp) != cc0_rtx
4167 && (FP_REG_P (SET_SRC (exp))
4168 || GET_CODE (SET_SRC (exp)) == FIX
12e6817c 4169 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
065b42aa 4170 CC_STATUS_INIT;
5243fbff 4171 /* A pair of move insns doesn't produce a useful overall cc. */
4172 else if (!FP_REG_P (SET_DEST (exp))
4173 && !FP_REG_P (SET_SRC (exp))
4174 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4175 && (GET_CODE (SET_SRC (exp)) == REG
4176 || GET_CODE (SET_SRC (exp)) == MEM
4177 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
065b42aa 4178 CC_STATUS_INIT;
e16bddab 4179 else if (SET_DEST (exp) != pc_rtx)
5243fbff 4180 {
4181 cc_status.flags = 0;
e16bddab 4182 cc_status.value1 = SET_DEST (exp);
4183 cc_status.value2 = SET_SRC (exp);
5243fbff 4184 }
4185 }
4186 else if (GET_CODE (exp) == PARALLEL
4187 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4188 {
e16bddab 4189 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4190 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4191
4192 if (ADDRESS_REG_P (dest))
5243fbff 4193 CC_STATUS_INIT;
e16bddab 4194 else if (dest != pc_rtx)
5243fbff 4195 {
4196 cc_status.flags = 0;
e16bddab 4197 cc_status.value1 = dest;
4198 cc_status.value2 = src;
5243fbff 4199 }
4200 }
4201 else
4202 CC_STATUS_INIT;
4203 if (cc_status.value2 != 0
4204 && ADDRESS_REG_P (cc_status.value2)
4205 && GET_MODE (cc_status.value2) == QImode)
4206 CC_STATUS_INIT;
d2e633d7 4207 if (cc_status.value2 != 0)
5243fbff 4208 switch (GET_CODE (cc_status.value2))
4209 {
9c532fac 4210 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
5243fbff 4211 case ROTATE: case ROTATERT:
64b70d26 4212 /* These instructions always clear the overflow bit, and set
4213 the carry to the bit shifted out. */
bf7cf42a 4214 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
64b70d26 4215 break;
4216
4217 case PLUS: case MINUS: case MULT:
4218 case DIV: case UDIV: case MOD: case UMOD: case NEG:
5243fbff 4219 if (GET_MODE (cc_status.value2) != VOIDmode)
4220 cc_status.flags |= CC_NO_OVERFLOW;
4221 break;
4222 case ZERO_EXTEND:
4223 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4224 ends with a move insn moving r2 in r2's mode.
4225 Thus, the cc's are set for r2.
0c0492c9 4226 This can set N bit spuriously. */
5243fbff 4227 cc_status.flags |= CC_NOT_NEGATIVE;
e6b2f841 4228
4229 default:
4230 break;
5243fbff 4231 }
4232 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4233 && cc_status.value2
4234 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4235 cc_status.value2 = 0;
910f39df 4236 /* Check for PRE_DEC in dest modifying a register used in src. */
4237 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4238 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4239 && cc_status.value2
4240 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4241 cc_status.value2))
4242 cc_status.value2 = 0;
5243fbff 4243 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
d2e633d7 4244 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
5243fbff 4245 cc_status.flags = CC_IN_68881;
e680c1ac 4246 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4247 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4248 {
4249 cc_status.flags = CC_IN_68881;
c1aa8817 4250 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4251 && FP_REG_P (XEXP (cc_status.value2, 1)))
e680c1ac 4252 cc_status.flags |= CC_REVERSED;
4253 }
5243fbff 4254}
4255\f
f2fa409d 4256const char *
821960c7 4257output_move_const_double (rtx *operands)
5243fbff 4258{
d2e633d7 4259 int code = standard_68881_constant_p (operands[1]);
5243fbff 4260
d2e633d7 4261 if (code != 0)
5243fbff 4262 {
d2e633d7 4263 static char buf[40];
5243fbff 4264
3acc77d9 4265 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
d2e633d7 4266 return buf;
5243fbff 4267 }
d2e633d7 4268 return "fmove%.d %1,%0";
5243fbff 4269}
4270
f2fa409d 4271const char *
821960c7 4272output_move_const_single (rtx *operands)
5243fbff 4273{
d2e633d7 4274 int code = standard_68881_constant_p (operands[1]);
5243fbff 4275
d2e633d7 4276 if (code != 0)
5243fbff 4277 {
d2e633d7 4278 static char buf[40];
5243fbff 4279
3acc77d9 4280 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
d2e633d7 4281 return buf;
5243fbff 4282 }
d2e633d7 4283 return "fmove%.s %f1,%0";
5243fbff 4284}
4285
4286/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4287 from the "fmovecr" instruction.
4288 The value, anded with 0xff, gives the code to use in fmovecr
4289 to get the desired constant. */
4290
0c0492c9 4291/* This code has been fixed for cross-compilation. */
6205ab4b 4292
4293static int inited_68881_table = 0;
4294
f2fa409d 4295static const char *const strings_68881[7] = {
6205ab4b 4296 "0.0",
4297 "1.0",
4298 "10.0",
4299 "100.0",
4300 "10000.0",
4301 "1e8",
4302 "1e16"
065b42aa 4303};
6205ab4b 4304
e99c3a1d 4305static const int codes_68881[7] = {
6205ab4b 4306 0x0f,
4307 0x32,
4308 0x33,
4309 0x34,
4310 0x35,
4311 0x36,
4312 0x37
065b42aa 4313};
6205ab4b 4314
4315REAL_VALUE_TYPE values_68881[7];
4316
4317/* Set up values_68881 array by converting the decimal values
0c0492c9 4318 strings_68881 to binary. */
6205ab4b 4319
4320void
821960c7 4321init_68881_table (void)
6205ab4b 4322{
4323 int i;
4324 REAL_VALUE_TYPE r;
3754d046 4325 machine_mode mode;
6205ab4b 4326
6a4dac78 4327 mode = SFmode;
6205ab4b 4328 for (i = 0; i < 7; i++)
4329 {
4330 if (i == 6)
6a4dac78 4331 mode = DFmode;
6205ab4b 4332 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4333 values_68881[i] = r;
4334 }
4335 inited_68881_table = 1;
4336}
5243fbff 4337
4338int
821960c7 4339standard_68881_constant_p (rtx x)
5243fbff 4340{
945f7b03 4341 const REAL_VALUE_TYPE *r;
6205ab4b 4342 int i;
5243fbff 4343
50d9d0ec 4344 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
0c0492c9 4345 used at all on those chips. */
f716b74b 4346 if (TUNE_68040_60)
5243fbff 4347 return 0;
4348
6205ab4b 4349 if (! inited_68881_table)
4350 init_68881_table ();
4351
945f7b03 4352 r = CONST_DOUBLE_REAL_VALUE (x);
6205ab4b 4353
a417188d 4354 /* Use real_identical instead of real_equal so that -0.0 is rejected. */
6205ab4b 4355 for (i = 0; i < 6; i++)
4356 {
945f7b03 4357 if (real_identical (r, &values_68881[i]))
6205ab4b 4358 return (codes_68881[i]);
4359 }
4360
5243fbff 4361 if (GET_MODE (x) == SFmode)
4362 return 0;
6205ab4b 4363
945f7b03 4364 if (real_equal (r, &values_68881[6]))
6205ab4b 4365 return (codes_68881[6]);
4366
5243fbff 4367 /* larger powers of ten in the constants ram are not used
4368 because they are not equal to a `double' C constant. */
4369 return 0;
4370}
4371
4372/* If X is a floating-point constant, return the logarithm of X base 2,
4373 or 0 if X is not a power of 2. */
4374
4375int
821960c7 4376floating_exact_log2 (rtx x)
5243fbff 4377{
945f7b03 4378 const REAL_VALUE_TYPE *r;
4379 REAL_VALUE_TYPE r1;
bd58682f 4380 int exp;
5243fbff 4381
945f7b03 4382 r = CONST_DOUBLE_REAL_VALUE (x);
5243fbff 4383
945f7b03 4384 if (real_less (r, &dconst1))
5243fbff 4385 return 0;
4386
945f7b03 4387 exp = real_exponent (r);
4e6322c5 4388 real_2expN (&r1, exp, DFmode);
945f7b03 4389 if (real_equal (&r1, r))
bd58682f 4390 return exp;
4391
5243fbff 4392 return 0;
4393}
4394\f
5243fbff 4395/* A C compound statement to output to stdio stream STREAM the
4396 assembler syntax for an instruction operand X. X is an RTL
4397 expression.
4398
4399 CODE is a value that can be used to specify one of several ways
4400 of printing the operand. It is used when identical operands
4401 must be printed differently depending on the context. CODE
4402 comes from the `%' specification that was used to request
4403 printing of the operand. If the specification was just `%DIGIT'
4404 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4405 is the ASCII code for LTR.
4406
4407 If X is a register, this macro should print the register's name.
4408 The names can be found in an array `reg_names' whose type is
4409 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4410
4411 When the machine description has a specification `%PUNCT' (a `%'
4412 followed by a punctuation character), this macro is called with
4413 a null pointer for X and the punctuation character for CODE.
4414
4415 The m68k specific codes are:
4416
4417 '.' for dot needed in Motorola-style opcode names.
4418 '-' for an operand pushing on the stack:
4419 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4420 '+' for an operand pushing on the stack:
4421 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4422 '@' for a reference to the top word on the stack:
4423 sp@, (sp) or (%sp) depending on the style of syntax.
4424 '#' for an immediate operand prefix (# in MIT and Motorola syntax
2a458a3f 4425 but & in SGS syntax).
5243fbff 4426 '!' for the cc register (used in an `and to cc' insn).
4427 '$' for the letter `s' in an op code, but only on the 68040.
4428 '&' for the letter `d' in an op code, but only on the 68040.
f14f0b88 4429 '/' for register prefix needed by longlong.h.
9c47decb 4430 '?' for m68k_library_id_string
5243fbff 4431
4432 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4433 'd' to force memory addressing to be absolute, not relative.
4434 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
5243fbff 4435 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4436 or print pair of registers as rx:ry.
dd7218bb 4437 'p' print an address with @PLTPC attached, but only if the operand
4438 is not locally-bound. */
5243fbff 4439
4440void
821960c7 4441print_operand (FILE *file, rtx op, int letter)
5243fbff 4442{
5243fbff 4443 if (letter == '.')
4444 {
9cbcee62 4445 if (MOTOROLA)
4446 fprintf (file, ".");
5243fbff 4447 }
4448 else if (letter == '#')
9cbcee62 4449 asm_fprintf (file, "%I");
5243fbff 4450 else if (letter == '-')
4ad53767 4451 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
5243fbff 4452 else if (letter == '+')
4ad53767 4453 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
5243fbff 4454 else if (letter == '@')
4ad53767 4455 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
5243fbff 4456 else if (letter == '!')
9cbcee62 4457 asm_fprintf (file, "%Rfpcr");
5243fbff 4458 else if (letter == '$')
4459 {
6e6d2086 4460 if (TARGET_68040)
9cbcee62 4461 fprintf (file, "s");
5243fbff 4462 }
4463 else if (letter == '&')
4464 {
6e6d2086 4465 if (TARGET_68040)
9cbcee62 4466 fprintf (file, "d");
5243fbff 4467 }
f14f0b88 4468 else if (letter == '/')
9cbcee62 4469 asm_fprintf (file, "%R");
9c47decb 4470 else if (letter == '?')
4471 asm_fprintf (file, m68k_library_id_string);
dd7218bb 4472 else if (letter == 'p')
f0ecff58 4473 {
dd7218bb 4474 output_addr_const (file, op);
4475 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4476 fprintf (file, "@PLTPC");
f0ecff58 4477 }
5243fbff 4478 else if (GET_CODE (op) == REG)
4479 {
d2e633d7 4480 if (letter == 'R')
4481 /* Print out the second register name of a register pair.
4482 I.e., R (6) => 7. */
16b4cb0d 4483 fputs (M68K_REGNAME(REGNO (op) + 1), file);
5243fbff 4484 else
16b4cb0d 4485 fputs (M68K_REGNAME(REGNO (op)), file);
5243fbff 4486 }
4487 else if (GET_CODE (op) == MEM)
4488 {
3c047fe9 4489 output_address (GET_MODE (op), XEXP (op, 0));
5243fbff 4490 if (letter == 'd' && ! TARGET_68020
4491 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4492 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4493 && INTVAL (XEXP (op, 0)) < 0x8000
4494 && INTVAL (XEXP (op, 0)) >= -0x8000))
4ad53767 4495 fprintf (file, MOTOROLA ? ".l" : ":l");
5243fbff 4496 }
5243fbff 4497 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4498 {
d54128c3 4499 long l;
945f7b03 4500 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
62e8616a 4501 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
6205ab4b 4502 }
4503 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4504 {
d54128c3 4505 long l[3];
945f7b03 4506 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
62e8616a 4507 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4508 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
5243fbff 4509 }
bbc6fd5f 4510 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
5243fbff 4511 {
d54128c3 4512 long l[2];
945f7b03 4513 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
62e8616a 4514 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
5243fbff 4515 }
4516 else
4517 {
f0ecff58 4518 /* Use `print_operand_address' instead of `output_addr_const'
4519 to ensure that we print relevant PIC stuff. */
b91e0dcb 4520 asm_fprintf (file, "%I");
f0ecff58 4521 if (TARGET_PCREL
4522 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4523 print_operand_address (file, op);
4524 else
4525 output_addr_const (file, op);
5243fbff 4526 }
4527}
4528
869bde6b 4529/* Return string for TLS relocation RELOC. */
4530
4531static const char *
4532m68k_get_reloc_decoration (enum m68k_reloc reloc)
4533{
4534 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4535 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4536
4537 switch (reloc)
4538 {
4539 case RELOC_GOT:
4540 if (MOTOROLA)
4541 {
4542 if (flag_pic == 1 && TARGET_68020)
4543 return "@GOT.w";
4544 else
4545 return "@GOT";
4546 }
4547 else
4548 {
4549 if (TARGET_68020)
4550 {
4551 switch (flag_pic)
4552 {
4553 case 1:
4554 return ":w";
4555 case 2:
4556 return ":l";
4557 default:
4558 return "";
4559 }
4560 }
4561 }
1fddbaea 4562 gcc_unreachable ();
869bde6b 4563
4564 case RELOC_TLSGD:
4565 return "@TLSGD";
4566
4567 case RELOC_TLSLDM:
4568 return "@TLSLDM";
4569
4570 case RELOC_TLSLDO:
4571 return "@TLSLDO";
4572
4573 case RELOC_TLSIE:
4574 return "@TLSIE";
4575
4576 case RELOC_TLSLE:
4577 return "@TLSLE";
4578
4579 default:
4580 gcc_unreachable ();
4581 }
4582}
4583
27f5e69f 4584/* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
6c19bc3c 4585
27f5e69f 4586static bool
6c19bc3c 4587m68k_output_addr_const_extra (FILE *file, rtx x)
4588{
869bde6b 4589 if (GET_CODE (x) == UNSPEC)
4590 {
4591 switch (XINT (x, 1))
4592 {
4593 case UNSPEC_RELOC16:
4594 case UNSPEC_RELOC32:
4595 output_addr_const (file, XVECEXP (x, 0, 0));
2a9840b1 4596 fputs (m68k_get_reloc_decoration
4597 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
869bde6b 4598 return true;
6c19bc3c 4599
869bde6b 4600 default:
4601 break;
4602 }
4603 }
4604
4605 return false;
4606}
4607
4608/* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4609
4610static void
4611m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4612{
4613 gcc_assert (size == 4);
4614 fputs ("\t.long\t", file);
4615 output_addr_const (file, x);
4616 fputs ("@TLSLDO+0x8000", file);
6c19bc3c 4617}
4618
1a1a6f69 4619/* In the name of slightly smaller debug output, and to cater to
4620 general assembler lossage, recognize various UNSPEC sequences
4621 and turn them back into a direct symbol reference. */
4622
4623static rtx
d09e50a6 4624m68k_delegitimize_address (rtx orig_x)
1a1a6f69 4625{
d1741f8f 4626 rtx x;
4627 struct m68k_address addr;
4628 rtx unspec;
1a1a6f69 4629
d09e50a6 4630 orig_x = delegitimize_mem_from_attrs (orig_x);
d1741f8f 4631 x = orig_x;
4632 if (MEM_P (x))
4633 x = XEXP (x, 0);
4634
4635 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
d09e50a6 4636 return orig_x;
4637
d1741f8f 4638 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4639 || addr.offset == NULL_RTX
4640 || GET_CODE (addr.offset) != CONST)
4641 return orig_x;
1a1a6f69 4642
d1741f8f 4643 unspec = XEXP (addr.offset, 0);
4644 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4645 unspec = XEXP (unspec, 0);
4646 if (GET_CODE (unspec) != UNSPEC
4647 || (XINT (unspec, 1) != UNSPEC_RELOC16
4648 && XINT (unspec, 1) != UNSPEC_RELOC32))
4649 return orig_x;
4650 x = XVECEXP (unspec, 0, 0);
eceb989a 4651 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
d1741f8f 4652 if (unspec != XEXP (addr.offset, 0))
4653 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4654 if (addr.index)
1a1a6f69 4655 {
d1741f8f 4656 rtx idx = addr.index;
4657 if (addr.scale != 1)
4658 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4659 x = gen_rtx_PLUS (Pmode, idx, x);
1a1a6f69 4660 }
d1741f8f 4661 if (addr.base)
4662 x = gen_rtx_PLUS (Pmode, addr.base, x);
4663 if (MEM_P (orig_x))
4664 x = replace_equiv_address_nv (orig_x, x);
4665 return x;
1a1a6f69 4666}
4667
5243fbff 4668\f
4669/* A C compound statement to output to stdio stream STREAM the
4670 assembler syntax for an instruction operand that is a memory
4671 reference whose address is ADDR. ADDR is an RTL expression.
4672
4673 Note that this contains a kludge that knows that the only reason
4674 we have an address (plus (label_ref...) (reg...)) when not generating
4675 PIC code is in the insn before a tablejump, and we know that m68k.md
4676 generates a label LInnn: on such an insn.
4677
4678 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4679 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4680
5243fbff 4681 This routine is responsible for distinguishing between -fpic and -fPIC
4682 style relocations in an address. When generating -fpic code the
a361b456 4683 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4684 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
5243fbff 4685
4686void
821960c7 4687print_operand_address (FILE *file, rtx addr)
5243fbff 4688{
b97b0687 4689 struct m68k_address address;
4690
4691 if (!m68k_decompose_address (QImode, addr, true, &address))
4692 gcc_unreachable ();
4693
4694 if (address.code == PRE_DEC)
4ad53767 4695 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4696 M68K_REGNAME (REGNO (address.base)));
b97b0687 4697 else if (address.code == POST_INC)
4ad53767 4698 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4699 M68K_REGNAME (REGNO (address.base)));
b97b0687 4700 else if (!address.base && !address.index)
4701 {
4702 /* A constant address. */
4703 gcc_assert (address.offset == addr);
4704 if (GET_CODE (addr) == CONST_INT)
4705 {
4706 /* (xxx).w or (xxx).l. */
4707 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4ad53767 4708 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
065b42aa 4709 else
b97b0687 4710 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
065b42aa 4711 }
b97b0687 4712 else if (TARGET_PCREL)
065b42aa 4713 {
b97b0687 4714 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4715 fputc ('(', file);
4716 output_addr_const (file, addr);
4717 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
065b42aa 4718 }
b97b0687 4719 else
065b42aa 4720 {
b97b0687 4721 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4722 name ends in `.<letter>', as the last 2 characters can be
4723 mistaken as a size suffix. Put the name in parentheses. */
4724 if (GET_CODE (addr) == SYMBOL_REF
4725 && strlen (XSTR (addr, 0)) > 2
4726 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
065b42aa 4727 {
b97b0687 4728 putc ('(', file);
4729 output_addr_const (file, addr);
4730 putc (')', file);
065b42aa 4731 }
4732 else
b97b0687 4733 output_addr_const (file, addr);
065b42aa 4734 }
b97b0687 4735 }
4736 else
4737 {
4738 int labelno;
4739
4740 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
f6a0d06f 4741 label being accessed, otherwise it is -1. */
b97b0687 4742 labelno = (address.offset
4743 && !address.base
4744 && GET_CODE (address.offset) == LABEL_REF
4745 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4746 : -1);
4747 if (MOTOROLA)
065b42aa 4748 {
b97b0687 4749 /* Print the "offset(base" component. */
4750 if (labelno >= 0)
4bea814f 4751 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
b97b0687 4752 else
065b42aa 4753 {
b97b0687 4754 if (address.offset)
869bde6b 4755 output_addr_const (file, address.offset);
4756
b97b0687 4757 putc ('(', file);
4758 if (address.base)
4759 fputs (M68K_REGNAME (REGNO (address.base)), file);
065b42aa 4760 }
b97b0687 4761 /* Print the ",index" component, if any. */
4762 if (address.index)
065b42aa 4763 {
b97b0687 4764 if (address.base)
4765 putc (',', file);
4766 fprintf (file, "%s.%c",
4767 M68K_REGNAME (REGNO (address.index)),
4768 GET_MODE (address.index) == HImode ? 'w' : 'l');
4769 if (address.scale != 1)
4770 fprintf (file, "*%d", address.scale);
065b42aa 4771 }
065b42aa 4772 putc (')', file);
065b42aa 4773 }
b97b0687 4774 else /* !MOTOROLA */
065b42aa 4775 {
b97b0687 4776 if (!address.offset && !address.index)
4777 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
065b42aa 4778 else
065b42aa 4779 {
b97b0687 4780 /* Print the "base@(offset" component. */
4781 if (labelno >= 0)
4bea814f 4782 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
b97b0687 4783 else
4784 {
4785 if (address.base)
4786 fputs (M68K_REGNAME (REGNO (address.base)), file);
4787 fprintf (file, "@(");
4788 if (address.offset)
869bde6b 4789 output_addr_const (file, address.offset);
b97b0687 4790 }
4791 /* Print the ",index" component, if any. */
4792 if (address.index)
4793 {
4794 fprintf (file, ",%s:%c",
4795 M68K_REGNAME (REGNO (address.index)),
4796 GET_MODE (address.index) == HImode ? 'w' : 'l');
4797 if (address.scale != 1)
4798 fprintf (file, ":%d", address.scale);
4799 }
065b42aa 4800 putc (')', file);
4801 }
065b42aa 4802 }
5243fbff 4803 }
4804}
5b1c4249 4805\f
4806/* Check for cases where a clr insns can be omitted from code using
4807 strict_low_part sets. For example, the second clrl here is not needed:
4808 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4809
4810 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4811 insn we are checking for redundancy. TARGET is the register set by the
4812 clear insn. */
4813
821960c7 4814bool
3754d046 4815strict_low_part_peephole_ok (machine_mode mode, rtx_insn *first_insn,
821960c7 4816 rtx target)
5b1c4249 4817{
9e9d6337 4818 rtx_insn *p = first_insn;
5b1c4249 4819
e64adf14 4820 while ((p = PREV_INSN (p)))
5b1c4249 4821 {
e64adf14 4822 if (NOTE_INSN_BASIC_BLOCK_P (p))
4823 return false;
4824
4825 if (NOTE_P (p))
4826 continue;
4827
5b1c4249 4828 /* If it isn't an insn, then give up. */
e64adf14 4829 if (!INSN_P (p))
821960c7 4830 return false;
5b1c4249 4831
4832 if (reg_set_p (target, p))
4833 {
4834 rtx set = single_set (p);
4835 rtx dest;
4836
4837 /* If it isn't an easy to recognize insn, then give up. */
4838 if (! set)
821960c7 4839 return false;
5b1c4249 4840
4841 dest = SET_DEST (set);
4842
4843 /* If this sets the entire target register to zero, then our
4844 first_insn is redundant. */
4845 if (rtx_equal_p (dest, target)
4846 && SET_SRC (set) == const0_rtx)
821960c7 4847 return true;
5b1c4249 4848 else if (GET_CODE (dest) == STRICT_LOW_PART
4849 && GET_CODE (XEXP (dest, 0)) == REG
4850 && REGNO (XEXP (dest, 0)) == REGNO (target)
4851 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4852 <= GET_MODE_SIZE (mode)))
4853 /* This is a strict low part set which modifies less than
4854 we are using, so it is safe. */
4855 ;
4856 else
821960c7 4857 return false;
5b1c4249 4858 }
5b1c4249 4859 }
4860
821960c7 4861 return false;
5b1c4249 4862}
0c23ddd4 4863
f0ecff58 4864/* Operand predicates for implementing asymmetric pc-relative addressing
4865 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
dfd1079d 4866 when used as a source operand, but not as a destination operand.
f0ecff58 4867
4868 We model this by restricting the meaning of the basic predicates
4869 (general_operand, memory_operand, etc) to forbid the use of this
4870 addressing mode, and then define the following predicates that permit
4871 this addressing mode. These predicates can then be used for the
4872 source operands of the appropriate instructions.
4873
4874 n.b. While it is theoretically possible to change all machine patterns
4875 to use this addressing more where permitted by the architecture,
4876 it has only been implemented for "common" cases: SImode, HImode, and
4877 QImode operands, and only for the principle operations that would
4878 require this addressing mode: data movement and simple integer operations.
4879
4880 In parallel with these new predicates, two new constraint letters
4881 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4882 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4883 In the pcrel case 's' is only valid in combination with 'a' registers.
4884 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4885 of how these constraints are used.
4886
4887 The use of these predicates is strictly optional, though patterns that
4888 don't will cause an extra reload register to be allocated where one
4889 was not necessary:
4890
4891 lea (abc:w,%pc),%a0 ; need to reload address
4892 moveq &1,%d1 ; since write to pc-relative space
4893 movel %d1,%a0@ ; is not allowed
4894 ...
4895 lea (abc:w,%pc),%a1 ; no need to reload address here
4896 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4897
4898 For more info, consult tiemann@cygnus.com.
4899
4900
4901 All of the ugliness with predicates and constraints is due to the
4902 simple fact that the m68k does not allow a pc-relative addressing
4903 mode as a destination. gcc does not distinguish between source and
4904 destination addresses. Hence, if we claim that pc-relative address
bc409cb4 4905 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
f0ecff58 4906 end up with invalid code. To get around this problem, we left
4907 pc-relative modes as invalid addresses, and then added special
4908 predicates and constraints to accept them.
4909
4910 A cleaner way to handle this is to modify gcc to distinguish
4911 between source and destination addresses. We can then say that
4912 pc-relative is a valid source address but not a valid destination
4913 address, and hopefully avoid a lot of the predicate and constraint
4914 hackery. Unfortunately, this would be a pretty big change. It would
4915 be a useful change for a number of ports, but there aren't any current
4916 plans to undertake this.
4917
4918 ***************************************************************************/
4919
4920
f2fa409d 4921const char *
821960c7 4922output_andsi3 (rtx *operands)
128cf854 4923{
4924 int logval;
4925 if (GET_CODE (operands[2]) == CONST_INT
3e080e22 4926 && (INTVAL (operands[2]) | 0xffff) == -1
128cf854 4927 && (DATA_REG_P (operands[0])
4928 || offsettable_memref_p (operands[0]))
960e6739 4929 && !TARGET_COLDFIRE)
128cf854 4930 {
4931 if (GET_CODE (operands[0]) != REG)
eafc6604 4932 operands[0] = adjust_address (operands[0], HImode, 2);
e6b2f841 4933 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
128cf854 4934 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4935 CC_STATUS_INIT;
4936 if (operands[2] == const0_rtx)
4937 return "clr%.w %0";
4938 return "and%.w %2,%0";
4939 }
4940 if (GET_CODE (operands[2]) == CONST_INT
f422081b 4941 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
128cf854 4942 && (DATA_REG_P (operands[0])
4943 || offsettable_memref_p (operands[0])))
4944 {
4945 if (DATA_REG_P (operands[0]))
065b42aa 4946 operands[1] = GEN_INT (logval);
128cf854 4947 else
4948 {
eafc6604 4949 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
e6b2f841 4950 operands[1] = GEN_INT (logval % 8);
128cf854 4951 }
4952 /* This does not set condition codes in a standard way. */
4953 CC_STATUS_INIT;
4954 return "bclr %1,%0";
4955 }
4956 return "and%.l %2,%0";
4957}
4958
f2fa409d 4959const char *
821960c7 4960output_iorsi3 (rtx *operands)
128cf854 4961{
4962 register int logval;
4963 if (GET_CODE (operands[2]) == CONST_INT
4964 && INTVAL (operands[2]) >> 16 == 0
4965 && (DATA_REG_P (operands[0])
4966 || offsettable_memref_p (operands[0]))
960e6739 4967 && !TARGET_COLDFIRE)
128cf854 4968 {
4969 if (GET_CODE (operands[0]) != REG)
eafc6604 4970 operands[0] = adjust_address (operands[0], HImode, 2);
128cf854 4971 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4972 CC_STATUS_INIT;
4973 if (INTVAL (operands[2]) == 0xffff)
4974 return "mov%.w %2,%0";
4975 return "or%.w %2,%0";
4976 }
4977 if (GET_CODE (operands[2]) == CONST_INT
f422081b 4978 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
128cf854 4979 && (DATA_REG_P (operands[0])
4980 || offsettable_memref_p (operands[0])))
4981 {
4982 if (DATA_REG_P (operands[0]))
eafc6604 4983 operands[1] = GEN_INT (logval);
128cf854 4984 else
4985 {
eafc6604 4986 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
e6b2f841 4987 operands[1] = GEN_INT (logval % 8);
128cf854 4988 }
4989 CC_STATUS_INIT;
4990 return "bset %1,%0";
4991 }
4992 return "or%.l %2,%0";
4993}
4994
f2fa409d 4995const char *
821960c7 4996output_xorsi3 (rtx *operands)
128cf854 4997{
4998 register int logval;
4999 if (GET_CODE (operands[2]) == CONST_INT
5000 && INTVAL (operands[2]) >> 16 == 0
5001 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
960e6739 5002 && !TARGET_COLDFIRE)
128cf854 5003 {
5004 if (! DATA_REG_P (operands[0]))
eafc6604 5005 operands[0] = adjust_address (operands[0], HImode, 2);
128cf854 5006 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5007 CC_STATUS_INIT;
5008 if (INTVAL (operands[2]) == 0xffff)
5009 return "not%.w %0";
5010 return "eor%.w %2,%0";
5011 }
5012 if (GET_CODE (operands[2]) == CONST_INT
f422081b 5013 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
128cf854 5014 && (DATA_REG_P (operands[0])
5015 || offsettable_memref_p (operands[0])))
5016 {
5017 if (DATA_REG_P (operands[0]))
eafc6604 5018 operands[1] = GEN_INT (logval);
128cf854 5019 else
5020 {
eafc6604 5021 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
e6b2f841 5022 operands[1] = GEN_INT (logval % 8);
128cf854 5023 }
5024 CC_STATUS_INIT;
5025 return "bchg %1,%0";
5026 }
5027 return "eor%.l %2,%0";
5028}
2cb4ac60 5029
dd7218bb 5030/* Return the instruction that should be used for a call to address X,
5031 which is known to be in operand 0. */
5032
5033const char *
5034output_call (rtx x)
5035{
5036 if (symbolic_operand (x, VOIDmode))
5037 return m68k_symbolic_call;
5038 else
5039 return "jsr %a0";
5040}
5041
33fb08b8 5042/* Likewise sibling calls. */
5043
5044const char *
5045output_sibcall (rtx x)
5046{
5047 if (symbolic_operand (x, VOIDmode))
5048 return m68k_symbolic_jump;
5049 else
5050 return "jmp %a0";
5051}
5052
6988553d 5053static void
821960c7 5054m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
e2182937 5055 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
821960c7 5056 tree function)
c6933ba6 5057{
9e9d6337 5058 rtx this_slot, offset, addr, mem, tmp;
5059 rtx_insn *insn;
61fafd77 5060
5061 /* Avoid clobbering the struct value reg by using the
5062 static chain reg as a temporary. */
5063 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
e2182937 5064
5065 /* Pretend to be a post-reload pass while generating rtl. */
e2182937 5066 reload_completed = 1;
e2182937 5067
5068 /* The "this" pointer is stored at 4(%sp). */
29c05e22 5069 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5070 stack_pointer_rtx, 4));
e2182937 5071
5072 /* Add DELTA to THIS. */
5073 if (delta != 0)
5e0e9723 5074 {
e2182937 5075 /* Make the offset a legitimate operand for memory addition. */
5076 offset = GEN_INT (delta);
5077 if ((delta < -8 || delta > 8)
5078 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5079 {
5080 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5081 offset = gen_rtx_REG (Pmode, D0_REG);
5082 }
5083 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5084 copy_rtx (this_slot), offset));
5e0e9723 5085 }
6988553d 5086
e2182937 5087 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5088 if (vcall_offset != 0)
5089 {
5090 /* Set the static chain register to *THIS. */
61fafd77 5091 emit_move_insn (tmp, this_slot);
5092 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
e2182937 5093
5094 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
29c05e22 5095 addr = plus_constant (Pmode, tmp, vcall_offset);
e2182937 5096 if (!m68k_legitimate_address_p (Pmode, addr, true))
5097 {
d1f9b275 5098 emit_insn (gen_rtx_SET (tmp, addr));
61fafd77 5099 addr = tmp;
e2182937 5100 }
6988553d 5101
e2182937 5102 /* Load the offset into %d0 and add it to THIS. */
5103 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5104 gen_rtx_MEM (Pmode, addr));
5105 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5106 copy_rtx (this_slot),
5107 gen_rtx_REG (Pmode, D0_REG)));
5108 }
dd7218bb 5109
e2182937 5110 /* Jump to the target function. Use a sibcall if direct jumps are
5111 allowed, otherwise load the address into a register first. */
5112 mem = DECL_RTL (function);
5113 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5114 {
5115 gcc_assert (flag_pic);
6988553d 5116
e2182937 5117 if (!TARGET_SEP_DATA)
5118 {
5119 /* Use the static chain register as a temporary (call-clobbered)
5120 GOT pointer for this function. We can use the static chain
5121 register because it isn't live on entry to the thunk. */
3072d30e 5122 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
e2182937 5123 emit_insn (gen_load_got (pic_offset_table_rtx));
5124 }
61fafd77 5125 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5126 mem = replace_equiv_address (mem, tmp);
e2182937 5127 }
5128 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5129 SIBLING_CALL_P (insn) = 1;
5130
5131 /* Run just enough of rest_of_compilation. */
5132 insn = get_insns ();
5133 split_all_insns_noflow ();
5134 final_start_function (insn, file, 1);
5135 final (insn, file, 1);
5136 final_end_function ();
5137
5138 /* Clean up the vars set above. */
5139 reload_completed = 0;
e2182937 5140
5141 /* Restore the original PIC register. */
5142 if (flag_pic)
3072d30e 5143 SET_REGNO (pic_offset_table_rtx, PIC_REG);
c6933ba6 5144}
c8c47ddf 5145
5146/* Worker function for TARGET_STRUCT_VALUE_RTX. */
5147
5148static rtx
5149m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5150 int incoming ATTRIBUTE_UNUSED)
5151{
5152 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5153}
b09edf9a 5154
5155/* Return nonzero if register old_reg can be renamed to register new_reg. */
5156int
5157m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5158 unsigned int new_reg)
5159{
5160
5161 /* Interrupt functions can only use registers that have already been
5162 saved by the prologue, even if they would normally be
5163 call-clobbered. */
5164
f9a44575 5165 if ((m68k_get_function_kind (current_function_decl)
5166 == m68k_fk_interrupt_handler)
3072d30e 5167 && !df_regs_ever_live_p (new_reg))
b09edf9a 5168 return 0;
5169
5170 return 1;
5171}
77236994 5172
350e24f5 5173/* Value is true if hard register REGNO can hold a value of machine-mode
5174 MODE. On the 68000, we let the cpu registers can hold any mode, but
5175 restrict the 68881 registers to floating-point modes. */
5176
77236994 5177bool
3754d046 5178m68k_regno_mode_ok (int regno, machine_mode mode)
77236994 5179{
0b93d200 5180 if (DATA_REGNO_P (regno))
77236994 5181 {
065b42aa 5182 /* Data Registers, can hold aggregate if fits in. */
5183 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5184 return true;
77236994 5185 }
0b93d200 5186 else if (ADDRESS_REGNO_P (regno))
77236994 5187 {
065b42aa 5188 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5189 return true;
77236994 5190 }
0b93d200 5191 else if (FP_REGNO_P (regno))
77236994 5192 {
5193 /* FPU registers, hold float or complex float of long double or
065b42aa 5194 smaller. */
5195 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5196 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
58c23110 5197 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
065b42aa 5198 return true;
77236994 5199 }
5200 return false;
5201}
58c23110 5202
350e24f5 5203/* Implement SECONDARY_RELOAD_CLASS. */
5204
5205enum reg_class
5206m68k_secondary_reload_class (enum reg_class rclass,
3754d046 5207 machine_mode mode, rtx x)
350e24f5 5208{
5209 int regno;
5210
5211 regno = true_regnum (x);
5212
5213 /* If one operand of a movqi is an address register, the other
5214 operand must be a general register or constant. Other types
5215 of operand must be reloaded through a data register. */
5216 if (GET_MODE_SIZE (mode) == 1
5217 && reg_classes_intersect_p (rclass, ADDR_REGS)
5218 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5219 return DATA_REGS;
5220
5221 /* PC-relative addresses must be loaded into an address register first. */
5222 if (TARGET_PCREL
5223 && !reg_class_subset_p (rclass, ADDR_REGS)
5224 && symbolic_operand (x, VOIDmode))
5225 return ADDR_REGS;
5226
5227 return NO_REGS;
5228}
5229
5230/* Implement PREFERRED_RELOAD_CLASS. */
5231
5232enum reg_class
5233m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5234{
5235 enum reg_class secondary_class;
5236
5237 /* If RCLASS might need a secondary reload, try restricting it to
5238 a class that doesn't. */
5239 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5240 if (secondary_class != NO_REGS
5241 && reg_class_subset_p (secondary_class, rclass))
5242 return secondary_class;
5243
5244 /* Prefer to use moveq for in-range constants. */
5245 if (GET_CODE (x) == CONST_INT
5246 && reg_class_subset_p (DATA_REGS, rclass)
5247 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5248 return DATA_REGS;
5249
5250 /* ??? Do we really need this now? */
5251 if (GET_CODE (x) == CONST_DOUBLE
5252 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5253 {
5254 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5255 return FP_REGS;
5256
5257 return NO_REGS;
5258 }
5259
5260 return rclass;
5261}
5262
58c23110 5263/* Return floating point values in a 68881 register. This makes 68881 code
5264 a little bit faster. It also makes -msoft-float code incompatible with
5265 hard-float code, so people have to be careful not to mix the two.
334ec2d8 5266 For ColdFire it was decided the ABI incompatibility is undesirable.
58c23110 5267 If there is need for a hard-float ABI it is probably worth doing it
5268 properly and also passing function arguments in FP registers. */
5269rtx
3754d046 5270m68k_libcall_value (machine_mode mode)
58c23110 5271{
5272 switch (mode) {
5273 case SFmode:
5274 case DFmode:
5275 case XFmode:
5276 if (TARGET_68881)
dbaae14a 5277 return gen_rtx_REG (mode, FP0_REG);
58c23110 5278 break;
5279 default:
5280 break;
5281 }
869bde6b 5282
5283 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
58c23110 5284}
5285
d09fd72c 5286/* Location in which function value is returned.
5287 NOTE: Due to differences in ABIs, don't call this function directly,
5288 use FUNCTION_VALUE instead. */
58c23110 5289rtx
fb80456a 5290m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
58c23110 5291{
3754d046 5292 machine_mode mode;
58c23110 5293
5294 mode = TYPE_MODE (valtype);
5295 switch (mode) {
5296 case SFmode:
5297 case DFmode:
5298 case XFmode:
5299 if (TARGET_68881)
dbaae14a 5300 return gen_rtx_REG (mode, FP0_REG);
58c23110 5301 break;
5302 default:
5303 break;
5304 }
5305
2d329930 5306 /* If the function returns a pointer, push that into %a0. */
5307 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5308 /* For compatibility with the large body of existing code which
5309 does not always properly declare external functions returning
5310 pointer types, the m68k/SVR4 convention is to copy the value
5311 returned for pointer functions from a0 to d0 in the function
5312 epilogue, so that callers that have neglected to properly
5313 declare the callee can still find the correct return value in
5314 d0. */
5315 return gen_rtx_PARALLEL
5316 (mode,
5317 gen_rtvec (2,
5318 gen_rtx_EXPR_LIST (VOIDmode,
5319 gen_rtx_REG (mode, A0_REG),
5320 const0_rtx),
5321 gen_rtx_EXPR_LIST (VOIDmode,
5322 gen_rtx_REG (mode, D0_REG),
5323 const0_rtx)));
5324 else if (POINTER_TYPE_P (valtype))
5325 return gen_rtx_REG (mode, A0_REG);
58c23110 5326 else
2d329930 5327 return gen_rtx_REG (mode, D0_REG);
58c23110 5328}
159cec75 5329
5330/* Worker function for TARGET_RETURN_IN_MEMORY. */
5331#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5332static bool
33be53f9 5333m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
159cec75 5334{
3754d046 5335 machine_mode mode = TYPE_MODE (type);
159cec75 5336
5337 if (mode == BLKmode)
5338 return true;
5339
5340 /* If TYPE's known alignment is less than the alignment of MODE that
5341 would contain the structure, then return in memory. We need to
5342 do so to maintain the compatibility between code compiled with
5343 -mstrict-align and that compiled with -mno-strict-align. */
5344 if (AGGREGATE_TYPE_P (type)
5345 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5346 return true;
5347
5348 return false;
5349}
5350#endif
1d86aeab 5351
5352/* CPU to schedule the program for. */
5353enum attr_cpu m68k_sched_cpu;
5354
2ccdedfd 5355/* MAC to schedule the program for. */
5356enum attr_mac m68k_sched_mac;
5357
1d86aeab 5358/* Operand type. */
5359enum attr_op_type
5360 {
5361 /* No operand. */
5362 OP_TYPE_NONE,
5363
3c904dda 5364 /* Integer register. */
5365 OP_TYPE_RN,
5366
5367 /* FP register. */
5368 OP_TYPE_FPN,
1d86aeab 5369
5370 /* Implicit mem reference (e.g. stack). */
5371 OP_TYPE_MEM1,
5372
5373 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5374 OP_TYPE_MEM234,
5375
5376 /* Memory with offset but without indexing. EA mode 5. */
5377 OP_TYPE_MEM5,
5378
5379 /* Memory with indexing. EA mode 6. */
5380 OP_TYPE_MEM6,
5381
5382 /* Memory referenced by absolute address. EA mode 7. */
5383 OP_TYPE_MEM7,
5384
5385 /* Immediate operand that doesn't require extension word. */
5386 OP_TYPE_IMM_Q,
5387
5388 /* Immediate 16 bit operand. */
5389 OP_TYPE_IMM_W,
5390
5391 /* Immediate 32 bit operand. */
5392 OP_TYPE_IMM_L
5393 };
5394
1d86aeab 5395/* Return type of memory ADDR_RTX refers to. */
5396static enum attr_op_type
3754d046 5397sched_address_type (machine_mode mode, rtx addr_rtx)
1d86aeab 5398{
5399 struct m68k_address address;
5400
3c904dda 5401 if (symbolic_operand (addr_rtx, VOIDmode))
5402 return OP_TYPE_MEM7;
5403
1d86aeab 5404 if (!m68k_decompose_address (mode, addr_rtx,
5405 reload_completed, &address))
5406 {
3c904dda 5407 gcc_assert (!reload_completed);
1d86aeab 5408 /* Reload will likely fix the address to be in the register. */
5409 return OP_TYPE_MEM234;
5410 }
5411
5412 if (address.scale != 0)
5413 return OP_TYPE_MEM6;
5414
5415 if (address.base != NULL_RTX)
5416 {
5417 if (address.offset == NULL_RTX)
5418 return OP_TYPE_MEM234;
5419
5420 return OP_TYPE_MEM5;
5421 }
5422
5423 gcc_assert (address.offset != NULL_RTX);
5424
5425 return OP_TYPE_MEM7;
5426}
5427
3c904dda 5428/* Return X or Y (depending on OPX_P) operand of INSN. */
5429static rtx
ed3e6e5d 5430sched_get_operand (rtx_insn *insn, bool opx_p)
3c904dda 5431{
5432 int i;
5433
5434 if (recog_memoized (insn) < 0)
5435 gcc_unreachable ();
5436
5437 extract_constrain_insn_cached (insn);
5438
5439 if (opx_p)
5440 i = get_attr_opx (insn);
5441 else
5442 i = get_attr_opy (insn);
5443
5444 if (i >= recog_data.n_operands)
5445 return NULL;
5446
5447 return recog_data.operand[i];
5448}
5449
5450/* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5451 If ADDRESS_P is true, return type of memory location operand refers to. */
1d86aeab 5452static enum attr_op_type
ed3e6e5d 5453sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
1d86aeab 5454{
3c904dda 5455 rtx op;
5456
5457 op = sched_get_operand (insn, opx_p);
5458
5459 if (op == NULL)
5460 {
5461 gcc_assert (!reload_completed);
5462 return OP_TYPE_RN;
5463 }
1d86aeab 5464
5465 if (address_p)
5466 return sched_address_type (QImode, op);
5467
5468 if (memory_operand (op, VOIDmode))
5469 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5470
5471 if (register_operand (op, VOIDmode))
3c904dda 5472 {
5473 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5474 || (reload_completed && FP_REG_P (op)))
5475 return OP_TYPE_FPN;
5476
5477 return OP_TYPE_RN;
5478 }
1d86aeab 5479
5480 if (GET_CODE (op) == CONST_INT)
5481 {
3c904dda 5482 int ival;
5483
5484 ival = INTVAL (op);
5485
5486 /* Check for quick constants. */
5487 switch (get_attr_type (insn))
5488 {
5489 case TYPE_ALUQ_L:
5490 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5491 return OP_TYPE_IMM_Q;
5492
5493 gcc_assert (!reload_completed);
5494 break;
5495
5496 case TYPE_MOVEQ_L:
5497 if (USE_MOVQ (ival))
5498 return OP_TYPE_IMM_Q;
5499
5500 gcc_assert (!reload_completed);
5501 break;
5502
5503 case TYPE_MOV3Q_L:
5504 if (valid_mov3q_const (ival))
5505 return OP_TYPE_IMM_Q;
5506
5507 gcc_assert (!reload_completed);
5508 break;
5509
5510 default:
5511 break;
5512 }
5513
5514 if (IN_RANGE (ival, -0x8000, 0x7fff))
1d86aeab 5515 return OP_TYPE_IMM_W;
5516
5517 return OP_TYPE_IMM_L;
5518 }
5519
5520 if (GET_CODE (op) == CONST_DOUBLE)
5521 {
5522 switch (GET_MODE (op))
5523 {
5524 case SFmode:
5525 return OP_TYPE_IMM_W;
5526
5527 case VOIDmode:
5528 case DFmode:
5529 return OP_TYPE_IMM_L;
5530
5531 default:
5532 gcc_unreachable ();
5533 }
5534 }
5535
dc941c53 5536 if (GET_CODE (op) == CONST
5537 || symbolic_operand (op, VOIDmode)
1d86aeab 5538 || LABEL_P (op))
5539 {
5540 switch (GET_MODE (op))
5541 {
5542 case QImode:
5543 return OP_TYPE_IMM_Q;
5544
5545 case HImode:
5546 return OP_TYPE_IMM_W;
5547
5548 case SImode:
5549 return OP_TYPE_IMM_L;
5550
5551 default:
869bde6b 5552 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5553 /* Just a guess. */
1d86aeab 5554 return OP_TYPE_IMM_W;
5555
5556 return OP_TYPE_IMM_L;
5557 }
5558 }
5559
3c904dda 5560 gcc_assert (!reload_completed);
1d86aeab 5561
3c904dda 5562 if (FLOAT_MODE_P (GET_MODE (op)))
5563 return OP_TYPE_FPN;
1d86aeab 5564
3c904dda 5565 return OP_TYPE_RN;
1d86aeab 5566}
5567
5568/* Implement opx_type attribute.
5569 Return type of INSN's operand X.
5570 If ADDRESS_P is true, return type of memory location operand refers to. */
5571enum attr_opx_type
ed3e6e5d 5572m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
1d86aeab 5573{
1d86aeab 5574 switch (sched_attr_op_type (insn, true, address_p != 0))
5575 {
3c904dda 5576 case OP_TYPE_RN:
5577 return OPX_TYPE_RN;
5578
5579 case OP_TYPE_FPN:
5580 return OPX_TYPE_FPN;
1d86aeab 5581
5582 case OP_TYPE_MEM1:
5583 return OPX_TYPE_MEM1;
5584
5585 case OP_TYPE_MEM234:
5586 return OPX_TYPE_MEM234;
5587
5588 case OP_TYPE_MEM5:
5589 return OPX_TYPE_MEM5;
5590
5591 case OP_TYPE_MEM6:
5592 return OPX_TYPE_MEM6;
5593
5594 case OP_TYPE_MEM7:
5595 return OPX_TYPE_MEM7;
5596
5597 case OP_TYPE_IMM_Q:
5598 return OPX_TYPE_IMM_Q;
5599
5600 case OP_TYPE_IMM_W:
5601 return OPX_TYPE_IMM_W;
5602
5603 case OP_TYPE_IMM_L:
5604 return OPX_TYPE_IMM_L;
5605
5606 default:
5607 gcc_unreachable ();
1d86aeab 5608 }
5609}
5610
5611/* Implement opy_type attribute.
5612 Return type of INSN's operand Y.
5613 If ADDRESS_P is true, return type of memory location operand refers to. */
5614enum attr_opy_type
ed3e6e5d 5615m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
1d86aeab 5616{
1d86aeab 5617 switch (sched_attr_op_type (insn, false, address_p != 0))
5618 {
3c904dda 5619 case OP_TYPE_RN:
5620 return OPY_TYPE_RN;
5621
5622 case OP_TYPE_FPN:
5623 return OPY_TYPE_FPN;
1d86aeab 5624
5625 case OP_TYPE_MEM1:
5626 return OPY_TYPE_MEM1;
5627
5628 case OP_TYPE_MEM234:
5629 return OPY_TYPE_MEM234;
5630
5631 case OP_TYPE_MEM5:
5632 return OPY_TYPE_MEM5;
5633
5634 case OP_TYPE_MEM6:
5635 return OPY_TYPE_MEM6;
5636
5637 case OP_TYPE_MEM7:
5638 return OPY_TYPE_MEM7;
5639
5640 case OP_TYPE_IMM_Q:
5641 return OPY_TYPE_IMM_Q;
5642
5643 case OP_TYPE_IMM_W:
5644 return OPY_TYPE_IMM_W;
5645
5646 case OP_TYPE_IMM_L:
5647 return OPY_TYPE_IMM_L;
5648
5649 default:
5650 gcc_unreachable ();
1d86aeab 5651 }
5652}
5653
3c904dda 5654/* Return size of INSN as int. */
5655static int
d3ffa7b4 5656sched_get_attr_size_int (rtx_insn *insn)
1d86aeab 5657{
5658 int size;
5659
3c904dda 5660 switch (get_attr_type (insn))
1d86aeab 5661 {
3c904dda 5662 case TYPE_IGNORE:
5663 /* There should be no references to m68k_sched_attr_size for 'ignore'
5664 instructions. */
5665 gcc_unreachable ();
5666 return 0;
5667
5668 case TYPE_MUL_L:
1d86aeab 5669 size = 2;
5670 break;
5671
5672 default:
5673 size = 1;
5674 break;
5675 }
5676
5677 switch (get_attr_opx_type (insn))
5678 {
5679 case OPX_TYPE_NONE:
3c904dda 5680 case OPX_TYPE_RN:
5681 case OPX_TYPE_FPN:
1d86aeab 5682 case OPX_TYPE_MEM1:
5683 case OPX_TYPE_MEM234:
5684 case OPY_TYPE_IMM_Q:
5685 break;
5686
5687 case OPX_TYPE_MEM5:
5688 case OPX_TYPE_MEM6:
5689 /* Here we assume that most absolute references are short. */
5690 case OPX_TYPE_MEM7:
5691 case OPY_TYPE_IMM_W:
5692 ++size;
5693 break;
5694
5695 case OPY_TYPE_IMM_L:
5696 size += 2;
5697 break;
5698
5699 default:
5700 gcc_unreachable ();
5701 }
5702
5703 switch (get_attr_opy_type (insn))
5704 {
5705 case OPY_TYPE_NONE:
3c904dda 5706 case OPY_TYPE_RN:
5707 case OPY_TYPE_FPN:
1d86aeab 5708 case OPY_TYPE_MEM1:
5709 case OPY_TYPE_MEM234:
5710 case OPY_TYPE_IMM_Q:
5711 break;
5712
5713 case OPY_TYPE_MEM5:
5714 case OPY_TYPE_MEM6:
5715 /* Here we assume that most absolute references are short. */
5716 case OPY_TYPE_MEM7:
5717 case OPY_TYPE_IMM_W:
5718 ++size;
5719 break;
5720
5721 case OPY_TYPE_IMM_L:
5722 size += 2;
5723 break;
5724
5725 default:
5726 gcc_unreachable ();
5727 }
5728
5729 if (size > 3)
5730 {
3c904dda 5731 gcc_assert (!reload_completed);
1d86aeab 5732
5733 size = 3;
5734 }
5735
5736 return size;
5737}
5738
3c904dda 5739/* Return size of INSN as attribute enum value. */
5740enum attr_size
d3ffa7b4 5741m68k_sched_attr_size (rtx_insn *insn)
3c904dda 5742{
5743 switch (sched_get_attr_size_int (insn))
5744 {
5745 case 1:
5746 return SIZE_1;
5747
5748 case 2:
5749 return SIZE_2;
5750
5751 case 3:
5752 return SIZE_3;
5753
5754 default:
5755 gcc_unreachable ();
3c904dda 5756 }
5757}
5758
5759/* Return operand X or Y (depending on OPX_P) of INSN,
5760 if it is a MEM, or NULL overwise. */
5761static enum attr_op_type
d3ffa7b4 5762sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
3c904dda 5763{
5764 if (opx_p)
5765 {
5766 switch (get_attr_opx_type (insn))
5767 {
5768 case OPX_TYPE_NONE:
5769 case OPX_TYPE_RN:
5770 case OPX_TYPE_FPN:
5771 case OPX_TYPE_IMM_Q:
5772 case OPX_TYPE_IMM_W:
5773 case OPX_TYPE_IMM_L:
5774 return OP_TYPE_RN;
5775
5776 case OPX_TYPE_MEM1:
5777 case OPX_TYPE_MEM234:
5778 case OPX_TYPE_MEM5:
5779 case OPX_TYPE_MEM7:
5780 return OP_TYPE_MEM1;
5781
5782 case OPX_TYPE_MEM6:
5783 return OP_TYPE_MEM6;
5784
5785 default:
5786 gcc_unreachable ();
3c904dda 5787 }
5788 }
5789 else
5790 {
5791 switch (get_attr_opy_type (insn))
5792 {
5793 case OPY_TYPE_NONE:
5794 case OPY_TYPE_RN:
5795 case OPY_TYPE_FPN:
5796 case OPY_TYPE_IMM_Q:
5797 case OPY_TYPE_IMM_W:
5798 case OPY_TYPE_IMM_L:
5799 return OP_TYPE_RN;
5800
5801 case OPY_TYPE_MEM1:
5802 case OPY_TYPE_MEM234:
5803 case OPY_TYPE_MEM5:
5804 case OPY_TYPE_MEM7:
5805 return OP_TYPE_MEM1;
5806
5807 case OPY_TYPE_MEM6:
5808 return OP_TYPE_MEM6;
5809
5810 default:
5811 gcc_unreachable ();
3c904dda 5812 }
5813 }
5814}
5815
1d86aeab 5816/* Implement op_mem attribute. */
5817enum attr_op_mem
d3ffa7b4 5818m68k_sched_attr_op_mem (rtx_insn *insn)
1d86aeab 5819{
3c904dda 5820 enum attr_op_type opx;
5821 enum attr_op_type opy;
1d86aeab 5822
3c904dda 5823 opx = sched_get_opxy_mem_type (insn, true);
5824 opy = sched_get_opxy_mem_type (insn, false);
1d86aeab 5825
3c904dda 5826 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
1d86aeab 5827 return OP_MEM_00;
5828
3c904dda 5829 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
1d86aeab 5830 {
5831 switch (get_attr_opx_access (insn))
5832 {
5833 case OPX_ACCESS_R:
5834 return OP_MEM_10;
5835
5836 case OPX_ACCESS_W:
5837 return OP_MEM_01;
5838
5839 case OPX_ACCESS_RW:
5840 return OP_MEM_11;
5841
5842 default:
3c904dda 5843 gcc_unreachable ();
1d86aeab 5844 }
5845 }
5846
3c904dda 5847 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
1d86aeab 5848 {
5849 switch (get_attr_opx_access (insn))
5850 {
5851 case OPX_ACCESS_R:
5852 return OP_MEM_I0;
5853
5854 case OPX_ACCESS_W:
5855 return OP_MEM_0I;
5856
5857 case OPX_ACCESS_RW:
5858 return OP_MEM_I1;
5859
5860 default:
3c904dda 5861 gcc_unreachable ();
1d86aeab 5862 }
5863 }
5864
3c904dda 5865 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
1d86aeab 5866 return OP_MEM_10;
5867
3c904dda 5868 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
1d86aeab 5869 {
5870 switch (get_attr_opx_access (insn))
5871 {
5872 case OPX_ACCESS_W:
5873 return OP_MEM_11;
5874
5875 default:
3c904dda 5876 gcc_assert (!reload_completed);
5877 return OP_MEM_11;
1d86aeab 5878 }
5879 }
5880
3c904dda 5881 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
1d86aeab 5882 {
5883 switch (get_attr_opx_access (insn))
5884 {
5885 case OPX_ACCESS_W:
5886 return OP_MEM_1I;
5887
5888 default:
3c904dda 5889 gcc_assert (!reload_completed);
5890 return OP_MEM_1I;
1d86aeab 5891 }
5892 }
5893
3c904dda 5894 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
1d86aeab 5895 return OP_MEM_I0;
5896
3c904dda 5897 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
1d86aeab 5898 {
5899 switch (get_attr_opx_access (insn))
5900 {
5901 case OPX_ACCESS_W:
5902 return OP_MEM_I1;
5903
5904 default:
3c904dda 5905 gcc_assert (!reload_completed);
5906 return OP_MEM_I1;
1d86aeab 5907 }
5908 }
5909
3c904dda 5910 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5911 gcc_assert (!reload_completed);
5912 return OP_MEM_I1;
1d86aeab 5913}
5914
3c904dda 5915/* Data for ColdFire V4 index bypass.
5916 Producer modifies register that is used as index in consumer with
5917 specified scale. */
5918static struct
15b9ea10 5919{
3c904dda 5920 /* Producer instruction. */
5921 rtx pro;
2ccdedfd 5922
3c904dda 5923 /* Consumer instruction. */
5924 rtx con;
15b9ea10 5925
3c904dda 5926 /* Scale of indexed memory access within consumer.
5927 Or zero if bypass should not be effective at the moment. */
5928 int scale;
5929} sched_cfv4_bypass_data;
15b9ea10 5930
5931/* An empty state that is used in m68k_sched_adjust_cost. */
5932static state_t sched_adjust_cost_state;
5933
5934/* Implement adjust_cost scheduler hook.
5935 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5936static int
99f52c2b 5937m68k_sched_adjust_cost (rtx_insn *insn, int, rtx_insn *def_insn, int cost,
5938 unsigned int)
15b9ea10 5939{
5940 int delay;
5941
5942 if (recog_memoized (def_insn) < 0
5943 || recog_memoized (insn) < 0)
5944 return cost;
5945
3c904dda 5946 if (sched_cfv4_bypass_data.scale == 1)
5947 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5948 {
5949 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5950 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5951 that the data in sched_cfv4_bypass_data is up to date. */
5952 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5953 && sched_cfv4_bypass_data.con == insn);
5954
5955 if (cost < 3)
5956 cost = 3;
5957
5958 sched_cfv4_bypass_data.pro = NULL;
5959 sched_cfv4_bypass_data.con = NULL;
5960 sched_cfv4_bypass_data.scale = 0;
5961 }
5962 else
5963 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5964 && sched_cfv4_bypass_data.con == NULL
5965 && sched_cfv4_bypass_data.scale == 0);
5966
15b9ea10 5967 /* Don't try to issue INSN earlier than DFA permits.
5968 This is especially useful for instructions that write to memory,
5969 as their true dependence (default) latency is better to be set to 0
5970 to workaround alias analysis limitations.
5971 This is, in fact, a machine independent tweak, so, probably,
5972 it should be moved to haifa-sched.c: insn_cost (). */
15b9ea10 5973 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5974 if (delay > cost)
5975 cost = delay;
5976
5977 return cost;
5978}
5979
3c904dda 5980/* Return maximal number of insns that can be scheduled on a single cycle. */
5981static int
5982m68k_sched_issue_rate (void)
5983{
5984 switch (m68k_sched_cpu)
5985 {
5986 case CPU_CFV1:
5987 case CPU_CFV2:
5988 case CPU_CFV3:
5989 return 1;
5990
5991 case CPU_CFV4:
5992 return 2;
5993
5994 default:
5995 gcc_unreachable ();
5996 return 0;
5997 }
5998}
5999
2ccdedfd 6000/* Maximal length of instruction for current CPU.
6001 E.g. it is 3 for any ColdFire core. */
6002static int max_insn_size;
6003
6004/* Data to model instruction buffer of CPU. */
6005struct _sched_ib
6006{
3c904dda 6007 /* True if instruction buffer model is modeled for current CPU. */
6008 bool enabled_p;
6009
2ccdedfd 6010 /* Size of the instruction buffer in words. */
6011 int size;
6012
6013 /* Number of filled words in the instruction buffer. */
6014 int filled;
6015
6016 /* Additional information about instruction buffer for CPUs that have
6017 a buffer of instruction records, rather then a plain buffer
6018 of instruction words. */
6019 struct _sched_ib_records
6020 {
6021 /* Size of buffer in records. */
6022 int n_insns;
15b9ea10 6023
2fbe7a32 6024 /* Array to hold data on adjustments made to the size of the buffer. */
2ccdedfd 6025 int *adjust;
15b9ea10 6026
2ccdedfd 6027 /* Index of the above array. */
6028 int adjust_index;
6029 } records;
6030
6031 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6032 rtx insn;
6033};
6034
6035static struct _sched_ib sched_ib;
15b9ea10 6036
6037/* ID of memory unit. */
6038static int sched_mem_unit_code;
6039
6040/* Implementation of the targetm.sched.variable_issue () hook.
6041 It is called after INSN was issued. It returns the number of insns
6042 that can possibly get scheduled on the current cycle.
6043 It is used here to determine the effect of INSN on the instruction
6044 buffer. */
6045static int
6046m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6047 int sched_verbose ATTRIBUTE_UNUSED,
18282db0 6048 rtx_insn *insn, int can_issue_more)
15b9ea10 6049{
6050 int insn_size;
6051
3c904dda 6052 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
15b9ea10 6053 {
2ccdedfd 6054 switch (m68k_sched_cpu)
6055 {
6056 case CPU_CFV1:
6057 case CPU_CFV2:
3c904dda 6058 insn_size = sched_get_attr_size_int (insn);
2ccdedfd 6059 break;
6060
6061 case CPU_CFV3:
3c904dda 6062 insn_size = sched_get_attr_size_int (insn);
2ccdedfd 6063
6064 /* ColdFire V3 and V4 cores have instruction buffers that can
6065 accumulate up to 8 instructions regardless of instructions'
6066 sizes. So we should take care not to "prefetch" 24 one-word
6067 or 12 two-words instructions.
6068 To model this behavior we temporarily decrease size of the
6069 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6070 {
6071 int adjust;
6072
6073 adjust = max_insn_size - insn_size;
6074 sched_ib.size -= adjust;
6075
6076 if (sched_ib.filled > sched_ib.size)
6077 sched_ib.filled = sched_ib.size;
6078
6079 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6080 }
6081
6082 ++sched_ib.records.adjust_index;
6083 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6084 sched_ib.records.adjust_index = 0;
6085
2fbe7a32 6086 /* Undo adjustment we did 7 instructions ago. */
2ccdedfd 6087 sched_ib.size
6088 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6089
6090 break;
15b9ea10 6091
3c904dda 6092 case CPU_CFV4:
6093 gcc_assert (!sched_ib.enabled_p);
6094 insn_size = 0;
6095 break;
6096
2ccdedfd 6097 default:
6098 gcc_unreachable ();
6099 }
15b9ea10 6100
3dd7d6a7 6101 if (insn_size > sched_ib.filled)
6102 /* Scheduling for register pressure does not always take DFA into
6103 account. Workaround instruction buffer not being filled enough. */
6104 {
11189c7a 6105 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3dd7d6a7 6106 insn_size = sched_ib.filled;
6107 }
6108
15b9ea10 6109 --can_issue_more;
6110 }
6111 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6112 || asm_noperands (PATTERN (insn)) >= 0)
2ccdedfd 6113 insn_size = sched_ib.filled;
15b9ea10 6114 else
6115 insn_size = 0;
6116
2ccdedfd 6117 sched_ib.filled -= insn_size;
15b9ea10 6118
6119 return can_issue_more;
6120}
6121
3c904dda 6122/* Return how many instructions should scheduler lookahead to choose the
6123 best one. */
6124static int
6125m68k_sched_first_cycle_multipass_dfa_lookahead (void)
15b9ea10 6126{
3c904dda 6127 return m68k_sched_issue_rate () - 1;
15b9ea10 6128}
6129
c8e5dcf5 6130/* Implementation of targetm.sched.init_global () hook.
15b9ea10 6131 It is invoked once per scheduling pass and is used here
6132 to initialize scheduler constants. */
6133static void
6134m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6135 int sched_verbose ATTRIBUTE_UNUSED,
6136 int n_insns ATTRIBUTE_UNUSED)
6137{
3c904dda 6138 /* Check that all instructions have DFA reservations and
6139 that all instructions can be issued from a clean state. */
1d674b45 6140 if (flag_checking)
6141 {
6142 rtx_insn *insn;
6143 state_t state;
15b9ea10 6144
1d674b45 6145 state = alloca (state_size ());
15b9ea10 6146
1d674b45 6147 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
6148 {
6149 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6150 {
6151 gcc_assert (insn_has_dfa_reservation_p (insn));
15b9ea10 6152
1d674b45 6153 state_reset (state);
6154 if (state_transition (state, insn) >= 0)
6155 gcc_unreachable ();
6156 }
6157 }
6158 }
15b9ea10 6159
6160 /* Setup target cpu. */
3c904dda 6161
6162 /* ColdFire V4 has a set of features to keep its instruction buffer full
6163 (e.g., a separate memory bus for instructions) and, hence, we do not model
6164 buffer for this CPU. */
6165 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6166
15b9ea10 6167 switch (m68k_sched_cpu)
6168 {
3c904dda 6169 case CPU_CFV4:
6170 sched_ib.filled = 0;
6171
6172 /* FALLTHRU */
6173
2ccdedfd 6174 case CPU_CFV1:
6175 case CPU_CFV2:
6176 max_insn_size = 3;
6177 sched_ib.records.n_insns = 0;
6178 sched_ib.records.adjust = NULL;
6179 break;
6180
6181 case CPU_CFV3:
6182 max_insn_size = 3;
6183 sched_ib.records.n_insns = 8;
225ab426 6184 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
15b9ea10 6185 break;
6186
6187 default:
6188 gcc_unreachable ();
6189 }
6190
2ccdedfd 6191 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6192
15b9ea10 6193 sched_adjust_cost_state = xmalloc (state_size ());
6194 state_reset (sched_adjust_cost_state);
6195
6196 start_sequence ();
6197 emit_insn (gen_ib ());
2ccdedfd 6198 sched_ib.insn = get_insns ();
15b9ea10 6199 end_sequence ();
6200}
6201
6202/* Scheduling pass is now finished. Free/reset static variables. */
6203static void
6204m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6205 int verbose ATTRIBUTE_UNUSED)
6206{
2ccdedfd 6207 sched_ib.insn = NULL;
15b9ea10 6208
6209 free (sched_adjust_cost_state);
6210 sched_adjust_cost_state = NULL;
6211
6212 sched_mem_unit_code = 0;
2ccdedfd 6213
6214 free (sched_ib.records.adjust);
6215 sched_ib.records.adjust = NULL;
6216 sched_ib.records.n_insns = 0;
6217 max_insn_size = 0;
15b9ea10 6218}
6219
c8e5dcf5 6220/* Implementation of targetm.sched.init () hook.
15b9ea10 6221 It is invoked each time scheduler starts on the new block (basic block or
6222 extended basic block). */
6223static void
6224m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6225 int sched_verbose ATTRIBUTE_UNUSED,
6226 int n_insns ATTRIBUTE_UNUSED)
6227{
2ccdedfd 6228 switch (m68k_sched_cpu)
6229 {
6230 case CPU_CFV1:
6231 case CPU_CFV2:
6232 sched_ib.size = 6;
6233 break;
6234
6235 case CPU_CFV3:
6236 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6237
6238 memset (sched_ib.records.adjust, 0,
6239 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6240 sched_ib.records.adjust_index = 0;
6241 break;
6242
3c904dda 6243 case CPU_CFV4:
6244 gcc_assert (!sched_ib.enabled_p);
6245 sched_ib.size = 0;
6246 break;
6247
2ccdedfd 6248 default:
6249 gcc_unreachable ();
6250 }
6251
3c904dda 6252 if (sched_ib.enabled_p)
6253 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6254 the first cycle. Workaround that. */
6255 sched_ib.filled = -2;
15b9ea10 6256}
6257
6258/* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6259 It is invoked just before current cycle finishes and is used here
6260 to track if instruction buffer got its two words this cycle. */
6261static void
6262m68k_sched_dfa_pre_advance_cycle (void)
6263{
3c904dda 6264 if (!sched_ib.enabled_p)
6265 return;
6266
15b9ea10 6267 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6268 {
2ccdedfd 6269 sched_ib.filled += 2;
15b9ea10 6270
2ccdedfd 6271 if (sched_ib.filled > sched_ib.size)
6272 sched_ib.filled = sched_ib.size;
15b9ea10 6273 }
6274}
6275
6276/* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6277 It is invoked just after new cycle begins and is used here
6278 to setup number of filled words in the instruction buffer so that
6279 instructions which won't have all their words prefetched would be
6280 stalled for a cycle. */
6281static void
6282m68k_sched_dfa_post_advance_cycle (void)
6283{
6284 int i;
15b9ea10 6285
3c904dda 6286 if (!sched_ib.enabled_p)
6287 return;
6288
15b9ea10 6289 /* Setup number of prefetched instruction words in the instruction
6290 buffer. */
2ccdedfd 6291 i = max_insn_size - sched_ib.filled;
6292
6293 while (--i >= 0)
15b9ea10 6294 {
2ccdedfd 6295 if (state_transition (curr_state, sched_ib.insn) >= 0)
57248c05 6296 /* Pick up scheduler state. */
6297 ++sched_ib.filled;
15b9ea10 6298 }
6299}
3c904dda 6300
6301/* Return X or Y (depending on OPX_P) operand of INSN,
6302 if it is an integer register, or NULL overwise. */
6303static rtx
ed3e6e5d 6304sched_get_reg_operand (rtx_insn *insn, bool opx_p)
3c904dda 6305{
6306 rtx op = NULL;
6307
6308 if (opx_p)
6309 {
6310 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6311 {
6312 op = sched_get_operand (insn, true);
6313 gcc_assert (op != NULL);
6314
6315 if (!reload_completed && !REG_P (op))
6316 return NULL;
6317 }
6318 }
6319 else
6320 {
6321 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6322 {
6323 op = sched_get_operand (insn, false);
6324 gcc_assert (op != NULL);
6325
6326 if (!reload_completed && !REG_P (op))
6327 return NULL;
6328 }
6329 }
6330
6331 return op;
6332}
6333
6334/* Return true, if X or Y (depending on OPX_P) operand of INSN
6335 is a MEM. */
6336static bool
d3ffa7b4 6337sched_mem_operand_p (rtx_insn *insn, bool opx_p)
3c904dda 6338{
6339 switch (sched_get_opxy_mem_type (insn, opx_p))
6340 {
6341 case OP_TYPE_MEM1:
6342 case OP_TYPE_MEM6:
6343 return true;
6344
6345 default:
6346 return false;
6347 }
6348}
6349
6350/* Return X or Y (depending on OPX_P) operand of INSN,
6351 if it is a MEM, or NULL overwise. */
6352static rtx
ed3e6e5d 6353sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
3c904dda 6354{
6355 bool opx_p;
6356 bool opy_p;
6357
6358 opx_p = false;
6359 opy_p = false;
6360
6361 if (must_read_p)
6362 {
6363 opx_p = true;
6364 opy_p = true;
6365 }
6366
6367 if (must_write_p)
6368 {
6369 opx_p = true;
6370 opy_p = false;
6371 }
6372
6373 if (opy_p && sched_mem_operand_p (insn, false))
6374 return sched_get_operand (insn, false);
6375
6376 if (opx_p && sched_mem_operand_p (insn, true))
6377 return sched_get_operand (insn, true);
6378
6379 gcc_unreachable ();
6380 return NULL;
6381}
6382
6383/* Return non-zero if PRO modifies register used as part of
6384 address in CON. */
6385int
ed3e6e5d 6386m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
3c904dda 6387{
6388 rtx pro_x;
6389 rtx con_mem_read;
6390
6391 pro_x = sched_get_reg_operand (pro, true);
6392 if (pro_x == NULL)
6393 return 0;
6394
6395 con_mem_read = sched_get_mem_operand (con, true, false);
6396 gcc_assert (con_mem_read != NULL);
6397
6398 if (reg_mentioned_p (pro_x, con_mem_read))
6399 return 1;
6400
6401 return 0;
6402}
6403
6404/* Helper function for m68k_sched_indexed_address_bypass_p.
6405 if PRO modifies register used as index in CON,
6406 return scale of indexed memory access in CON. Return zero overwise. */
6407static int
ed3e6e5d 6408sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
3c904dda 6409{
6410 rtx reg;
6411 rtx mem;
6412 struct m68k_address address;
6413
6414 reg = sched_get_reg_operand (pro, true);
6415 if (reg == NULL)
6416 return 0;
6417
6418 mem = sched_get_mem_operand (con, true, false);
6419 gcc_assert (mem != NULL && MEM_P (mem));
6420
6421 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6422 &address))
6423 gcc_unreachable ();
6424
6425 if (REGNO (reg) == REGNO (address.index))
6426 {
6427 gcc_assert (address.scale != 0);
6428 return address.scale;
6429 }
6430
6431 return 0;
6432}
6433
6434/* Return non-zero if PRO modifies register used
6435 as index with scale 2 or 4 in CON. */
6436int
ed3e6e5d 6437m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
3c904dda 6438{
6439 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6440 && sched_cfv4_bypass_data.con == NULL
6441 && sched_cfv4_bypass_data.scale == 0);
6442
6443 switch (sched_get_indexed_address_scale (pro, con))
6444 {
6445 case 1:
6446 /* We can't have a variable latency bypass, so
6447 remember to adjust the insn cost in adjust_cost hook. */
6448 sched_cfv4_bypass_data.pro = pro;
6449 sched_cfv4_bypass_data.con = con;
6450 sched_cfv4_bypass_data.scale = 1;
6451 return 0;
6452
6453 case 2:
6454 case 4:
6455 return 1;
6456
6457 default:
6458 return 0;
6459 }
6460}
869bde6b 6461
61fafd77 6462/* We generate a two-instructions program at M_TRAMP :
6463 movea.l &CHAIN_VALUE,%a0
6464 jmp FNADDR
6465 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6466
6467static void
6468m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6469{
6470 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6471 rtx mem;
6472
6473 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6474
6475 mem = adjust_address (m_tramp, HImode, 0);
6476 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6477 mem = adjust_address (m_tramp, SImode, 2);
6478 emit_move_insn (mem, chain_value);
6479
6480 mem = adjust_address (m_tramp, HImode, 6);
6481 emit_move_insn (mem, GEN_INT(0x4EF9));
6482 mem = adjust_address (m_tramp, SImode, 8);
6483 emit_move_insn (mem, fnaddr);
6484
6485 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6486}
6487
f5bc28da 6488/* On the 68000, the RTS insn cannot pop anything.
6489 On the 68010, the RTD insn may be used to pop them if the number
6490 of args is fixed, but if the number is variable then the caller
6491 must pop them all. RTD can't be used for library calls now
6492 because the library is compiled with the Unix compiler.
6493 Use of RTD is a selectable option, since it is incompatible with
6494 standard Unix calling sequences. If the option is not selected,
6495 the caller must always pop the args. */
6496
6497static int
6498m68k_return_pops_args (tree fundecl, tree funtype, int size)
6499{
6500 return ((TARGET_RTD
6501 && (!fundecl
6502 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
257d99c3 6503 && (!stdarg_p (funtype)))
f5bc28da 6504 ? size : 0);
6505}
6506
b2d7ede1 6507/* Make sure everything's fine if we *don't* have a given processor.
6508 This assumes that putting a register in fixed_regs will keep the
6509 compiler's mitts completely off it. We don't bother to zero it out
6510 of register classes. */
6511
6512static void
6513m68k_conditional_register_usage (void)
6514{
6515 int i;
6516 HARD_REG_SET x;
6517 if (!TARGET_HARD_FLOAT)
6518 {
6519 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6520 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6521 if (TEST_HARD_REG_BIT (x, i))
6522 fixed_regs[i] = call_used_regs[i] = 1;
6523 }
6524 if (flag_pic)
6525 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6526}
6527
5bb27b7c 6528static void
6529m68k_init_sync_libfuncs (void)
6530{
6531 init_sync_libfuncs (UNITS_PER_WORD);
6532}
6533
df47af5a 6534/* Implements EPILOGUE_USES. All registers are live on exit from an
6535 interrupt routine. */
6536bool
6537m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6538{
6539 return (reload_completed
6540 && (m68k_get_function_kind (current_function_decl)
6541 == m68k_fk_interrupt_handler));
6542}
6543
41af789c 6544
6545/* Implement TARGET_C_EXCESS_PRECISION.
6546
6547 Set the value of FLT_EVAL_METHOD in float.h. When using 68040 fp
6548 instructions, we get proper intermediate rounding, otherwise we
6549 get extended precision results. */
6550
6551static enum flt_eval_method
6552m68k_excess_precision (enum excess_precision_type type)
6553{
6554 switch (type)
6555 {
6556 case EXCESS_PRECISION_TYPE_FAST:
6557 /* The fastest type to promote to will always be the native type,
6558 whether that occurs with implicit excess precision or
6559 otherwise. */
6560 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6561 case EXCESS_PRECISION_TYPE_STANDARD:
6562 case EXCESS_PRECISION_TYPE_IMPLICIT:
6563 /* Otherwise, the excess precision we want when we are
6564 in a standards compliant mode, and the implicit precision we
6565 provide can be identical. */
6566 if (TARGET_68040 || ! TARGET_68881)
6567 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6568
6569 return FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE;
6570 default:
6571 gcc_unreachable ();
6572 }
6573 return FLT_EVAL_METHOD_UNPREDICTABLE;
6574}
6575
869bde6b 6576#include "gt-m68k.h"